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ABSTRACT 

 

Beneficial Effects of Dietary L-Arginine Supplementation  

to Diabetic Rats. (August 2003) 

Ripla Kohli, B.H.S., University of Delhi; M.S., Shreemati Nathibai Damodar  

Thackersey Women’s University   

                    Chair of Advisory Committee: Dr. Guoyao Wu 
 
 
 

Diabetic rats exhibit decrease in plasma arginine, NO synthesis and 

tetrahydrobiopterin in endothelial cells (EC). Treatment with L-arginine may be 

beneficial for enhancing NO synthesis in diseases associated with endothelial 

dysfunction. However, little is known about the mechanism responsible for the 

stimulatory effect of arginine on endothelial NO synthesis. We hypothesized that dietary 

arginine supplementation increases BH4 for NO synthesis in EC of diabetic rats, thereby 

preventing endothelial dysfunction. In experiment I, streptozotocin (STZ) induced-

diabetic male Sprague Dawley (SD) rats (a model of type-I diabetes) were individually 

pair- fed a casein-based diet on the basis of feed intake (per kg body weight) of non-

diabetic SD rats. Addition of arginine-HCl or alanine to drinking water for the rats were 

adjusted daily to ensure isonitrogenous provision per kg body weight. In non-diabetic 

rats, arginine supplementation increased plasma arginine (144%), plasma insulin (44%), 

and arginine concentrations (88%), BH4 concentrations (106%) and NO synthesis (80%) 

in EC, compared with alanine treatment. In diabetic rats, arginine supplementation 
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reduced body weight loss (36%), and plasma glucose (54%), and increased plasma 

arginine (110%), plasma insulin (209%), EC arginine (173%), EC BH4 (128%) and EC 

NO synthesis (125%), compared with alanine treatment.  In experiment II, male Zucker 

diabetic fatty (ZDF) rats (a model of type-II diabetes) were individually pair-fed a Purina 

5008 diet on the basis of feed intake by alanine-treated diabetic rats (per kg body wt). 

Addition of arginine-HCl or alanine to drinking water for the rats was adjusted daily to 

ensure isonitrogenous provision per kg body weight. Arginine supplementation to ZDF 

rats did not affect plasma levels of glucose and insulin, reduced epidididmal fat (30%), 

abdominal fat (43%) and body weight gain (18%), and increased plasma arginine 

(273%), EC arginine (197%), EC BH4 (120%) and EC NO synthesis (122%), compared 

with alanine-treated ZDF rats. These results show that dietary L-arginine 

supplementation increases BH4 and NO synthesis in EC of both STZ-diabetic and ZDF 

rats. Strikingly, arginine treatment prevented hyperglycemia in STZ-diabetic SD rats and 

reduced obesity in ZDF rats. Collectively, results demonstrate that oral administration of 

arginine is beneficial for both type-I and type-II diabetic rats. 
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CHAPTER I 

INTRODUCTION 

 
Introduction 

Diabetes mellitus is a group of metabolic diseases characterized by 

hyperglycemia resulting from defects in insulin secretion, insulin action, or both (1). 

Vascular complications are the major cause of morbidity and mortality in patients with 

diabetes (2, 3). Diabetic patients are at considerable risk of cardiovascular, 

cerebrovascular and peripheral vascular disease leading to myocardial infarction, 

strokes, and amputations (4). It is estimated that 77% of hospitalizations in the United 

States for chronic complications of diabetes are attributable to cardiovascular disease 

(CVD) (5). 

Multiple factors contribute to the macrovascular abnormalities in diabetes, 

manifested by accelerated atherosclerosis (6). These factors include oxidation and 

glycation of proteins and prevalence of traditional risks such as obesity, hypertension, 

and dyslipidemia, and the state of insulin resistance (5). Furthermore, small-vessel 

disease, resulting in diabetic retinopathy and nephropathy, also contributes importantly 

to the morbidity associated with this disease (6).  

The endothelium lines the entire vascular system and is comprised of a 

monolayer of endothelial cells (EC). In an adult human, the endothelium consist of  
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approximately 1x1013 cells forming an almost 1 kg “tissue” (7). Endothelium plays a key 

role in maintaining homeostasis of the vasculature through the synthesis of vasoactive 

substances that modulate vascular tone, as well as inhibition of platelet aggregation and 

vascular smooth muscle cell (VSMC) proliferation (8). Loss of the modulatory role of 

the endothelium could be implicated in the pathogenesis of the diabetic vascular 

complications.  

Endothelial dysfunction in diabetes. There is now substantial evidence 

indicating that endothelial dysfunction, characterized by diminished endothelium-

dependent relaxation, is abnormal in experimental models of diabetes mellitus 

(9,10,11,12,13). Several other studies have also demonstrated impaired endothelium-

dependent vasodilation in human diabetic patients (14,15). Studies designed to 

investigate the mechanism of this dysfunction have implicated the involvement of 

various factors. These factors include (1) destruction of endothelium by oxygen-derived 

free radicals (16); (2) increased release of endothelium-derived constricting factors (17); 

or (3) decreased release or production of nitric oxide (NO) (13,18). Hyperglycemia 

contributes directly to above mentioned factors and thus to endothelial dysfunction. 

There is substantial evidence suggesting that high concentrations of glucose could 

reduce NO availability due to an increase in superoxide anion production (19). Further, 

elevated glucose levels may lead to a decrease in cellular concentrations of nicotinamide 

adenine dinucleotide phosphate (reduced form) (NADPH) through activation of the 

polyol pathway (3). Because NADPH is an essential cofactor for NO synthase (NOS) for 

NO synthesis, its depletion could lead to a reduction in endothelial NO production. 
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Activation of protein kinase C (PKC) induced by hyperglycemia has also been suggested 

as a mechanism for endothelial dysfunction and vascular complications in diabetes (3). 

Additionally, in the presence of high plasma glucose concentrations, circulating or 

intracellular proteins undergo changes in structure and function, resulting in the 

formation of advanced glycation end products (AGE) (3). These AGE may affect 

cellular metabolism and contribute to endothelial dysfunction and diabetic vascular 

complications. 

Although several mechanisms for the defect in diabetic blood vessels have been 

proposed, much attention has been focused on altered endothelial production of NO. 

This free radical molecule is the most potent endothelium-derived vasodilator, and is 

essential for the regulation of vascular tone and integrity. L-Arginine is the substrate for 

the NOS, which is responsible for NO production in the presence of O2, 

tetrahydrobiopterin (BH4), NADPH, FAD, FMN, Ca2+ and calmodulin  (20). Endothelial 

NOS (eNOS) is constitutively expressed in the vasculature. Therefore, endothelial 

dysfunction could be attributed to a deficiency of arginine or a cofactor of NOS, and/or 

to the presence of endogenous inhibitors of NOS. This hypothesis leads to the 

assumption that increased provision of L-arginine could be beneficial for improving 

endothelial function. Thus, in diseases associated with reduced plasma arginine levels,  

NO synthesis may be inadequate and endothelium-dependent relaxation may be 

impaired (21). Several studies have shown that plasma concentrations of arginine are  

decreased in experimental diabetic animals (10,11,12) and in diabetic humans  (21,22). 

Thus, in recent years, there has been growing interest in the use of L-arginine to prevent 
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and treat endothelial dysfunction in diabetes.  However, little is known about the 

mechanism responsible for the stimulatory effect of arginine on endothelial NO 

synthesis in normal or diabetic subjects.  

Arginine availability for endothelial cells. L-Arginine is a basic amino acid 

found in large quantities in fish and other seafood, nuts, meats, and beans. In healthy 

adults, arginine can be synthesized endogenously from citrulline produced from 

glutamine and proline in enterocytes of the small intestine; the major tissue responsible 

for arginine synthesis is the kidney. However, in young animals and in other situations 

characterized by increased arginine requirements (e.g. infection, trauma and sepsis), the 

endogenous synthesis of arginine (primarily in the small intestine and kidney) may not 

be sufficient to meet the demand for this amino acid (23). Approximately 5.4 g of 

arginine is consumed each day in adults who ingest an average US diet (23).  

Endothelial cells form the inner layer of all blood vessels and are in direct 

contact with circulation. EC derive arginine from plasma, intracellular synthesis and 

protein degradation. Homeostasis of plasma arginine concentrations is regulated by 

dietary arginine intake, protein turnover, arginine synthesis and metabolism. This 

explains why arginine becomes an essential dietary component under certain disease 

conditions. Due to a relatively high arginase activity in enterocytes, 40% of dietary 

arginine is degraded during absorption and  the remainder enters the portal vein. 

However, more than 85% of arginine delivered to liver is not taken up by this organ. 

Although, the liver is also capable of synthesizing considerable amounts of arginine, this 

amino acid is rapidly hydrolyzed by arginase via the urea cycle. Thus, the liver does not 
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contribute to plasma arginine flux (24). The separation between hepatic and systemic 

arginine pools can be attributed to the fact that the active basic amino acid uptake 

system, the y+ transporter, has a very low activity in hepatocytes. Normal plasma 

arginine concentrations in humans and animals range from 95 to 250 µM. Although 

extracellular arginine is the major source of the arginine for endothelial NO synthesis 

(20), EC are able to recycle citrulline (a product of NO synthesis) into arginine via the 

so-called arginine–citrulline cycle (24). 

NO-dependent effects of arginine. The vascular effects of arginine are mediated 

primarily by NO production (20,25). The discovery of endothelial NO synthesis in late 

1980’s (26) has considerably improved our understanding of vascular biology and 

pathophysiology. NO mediates the endothelium-dependent vasodilation in response to 

stimuli such as shear stress, insulin, and actylcholine (27). Recent evidence suggests that 

NO interacts with other flow-induced vasodilation mediators, including prostacyclin and 

adenosine, and this interaction results in net hemodynamic changes. NO has also been 

shown to mediate exercise- induced vasodilation (28). As a potent endogenous 

vasodilator, NO has numerous beneficial effects that preserve normal vascular function. 

For example, NO activates guanylate cyclase in vascular smooth muscle, and increases 

the production of cyclic guanosine monophosphate (cGMP). cGMP, as a second 

messenger, mediates many of the biological effects of NO, e.g. causing relaxation of 

smooth muscle and inhibiting platelet aggregation  (20,28). In addition, NO inhibits 

platelet activation and adhesion to the surface of endothelium, the release of 

vasoconstrictor endothelin-1, smooth muscle cell proliferation, and the synthesis and 
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expression of cytokines and cell adhesion molecules that attract monocytes and 

leukocytes to the endothelial surface. NO reduces vascular oxidative stress and inhibits 

superoxide generation (23,29). In addition, NO stimulates angiogenesis, which plays an 

important role in wound healing, vascular remodeling, and conditions like myocardial 

infarction and diabetic retinopathy (23). NO is also a mediator of the immune response, 

a neurotransmitter, a cytotoxic free radical and a widespread signaling molecule (23,25).  

Nisoli et al (30) recently reported that the NO-cGMP-dependent pathway 

controls mitochondrial biogenesis and body energy balance. For example, NOS null-

mutant mice had a reduced metabolic rate and accelerated weight gain (30), insulin 

resistance (27), hypertension, and hyperlipidemia (31). NO stimulates insulin release 

from pancreatic ß cells in the presence of glucose (32). These properties suggest that the 

level of NO production by the endothelium may play a pivotal role in the regulation of 

vascular disease. Therefore, impaired endothelial NO production may constitute a 

critical manifestation of proatherogenic events in the vascular wall, including increased 

vascular tone, platelet aggregation, endothelial barrier dysfunction, vascular 

inflammation, and smooth muscle cell proliferation. Because one of the factors which 

regulate NO production, is arginine availability, utilization of L-arginine and its 

conversion to NO have important implications for the development of endothelial 

dysfunction.  

The arginine paradox. The available evidence indicates that supplemental 

administration of L-arginine is beneficial to restore endothelium-derived NO production 

in many cardiovascular disorders. However, some studies have also revealed that 
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elevating plasma arginine levels may not increase vascular NO synthesis in certain 

diseases (33). These results suggest the complexity of regulation of endothelial NO 

synthesis. The Km value is defined as the substrate concentration at which the reaction 

velocity is half maximal. The Km value of eNOS for L-arginine is 2.9 µM, while the 

intracellular value of L-arginine in vivo is 1-2 mM (20), which sufficiently saturates 

NOS. Thus, from an enzyme biochemical viewpoint, it is argued that additional L-

arginine could not have any effect on NOS activity, because this enzyme should be 

saturated with substrate at physiological levels. However, supplementation of L-arginine 

has consistently been shown to exert a beneficial effect on the endothelium-dependent 

vasodilation in vivo. The so-called arginine paradox remains to be explained.  

NO-independent effects of arginine. In addition to being the precursor of NO 

and an important component of protein, L-arginine is involved in several biologically 

important metabolic pathways (Fig. 1.1). Serving as a precursor for the synthesis of urea, 

creatine, agmatine, proline, polyamines, and glutamate, arginine plays a vital role in the 

physiology of the organism (23). The high energy phosphate storage compound creatine 

is essential for sustained skeletal muscle contraction and for energy metabolism in the 

nervous tissue. Arginine degradation by arginine decarboxylase yields agmatine, which 

is known to interact with receptors that are normally bound by centrally acting 

hypertensive agent including clonidine. L-Arginine is an essential component of the urea 

cycle, the major pathway for elimination of ammonia in mammals (23).  
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FIGURE 1.1 Pathways of arginine catabolism. Enzymes that catalyse the 

indicated reactions are: 1, arginase; 2, NOS; 3, arginine decarboxylase; 4, 

arginine:glycine amidinotransferase; 5, guanidinoacetate N-methyltransferase; 6, 

Ornithine aminotrasferase; 7, Pyrroline-5-carboxylate reductase; 8, Spontaneous 

reaction; 9, Pyrroline-5-carboxylate dehydrogenase; 10, glutamate dehydrogenase; 11, 

alanine aminotransferase, aspartate aminotransferase or branched-chain amino acid 

aminotransferase; 13, glutamine synthetase; 14, glutaminase; 15, ornithine 

decarboxylase; 16, spermidine synthase; 17, spermine synthase. Step 8 is a spontaneous, 

non-enzymic reaction. Abbreviations: DCAM, decarboxylated S-adenosylmethionine; 

MTA, methylthioadenosine; SAM, S-adenosylmethionine; SAHC, S-

adenosylhomocysteine; BH4, (6R)-5,6,7,8-tetrahydro-L-biopterin. 
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Arginine plays an important role in wound healing (34). As a product of arginine 

catabolism by arginase, ornithine is a precursor for synthesis of polyamines (putrescine, 

spermidine and spermine) and proline. Polyamines are essential for cell proliferation and 

differentiation. Proline is critical to collagen synthesis and thus extracellular matrix 

formation and vessel remodeling (23). Supplementation of arginine to healthy 

individuals improves matrix synthesis after wounding, whereas an arginine-free diet 

deteriorates healing in rats (35).  

L-Arginine functions as a secretogogue of a number of important hormones. 

High intravenous doses of L-arginine (30 g) have been used to stimulate growth 

hormone secretion in humans.  In addition, arginine increases the release of insulin, 

glucagon, prolactin polypeptide, and adrenal catecholamines (23,36), thus regulating the 

metabolism of protein, amino acids, glucose, and fatty acids. Arginine, independent of 

NO, is known to decrease lipid peroxidation and thus oxidative stress (37,38). 

Furthermore, arginine reduces copper- induced lipid peroxidation, scavenges O2
-, and 

inhibits O2
- release by EC (20). Through inhibiting the formation of thromboxane B2 and 

the platelet- fibrin complex while enhancing plasmin generation and fibrin degradation,  

arginine stimulates fibrinogenolysis (23). Arginine may directly decrease leukocyte 

adhesion to nonendothelial matrix (39), thereby inhibiting the development of 

atherosclerosis. Further, high concentrations of arginine may decrease blood viscosity at 

low shear rate independent of NOS activity (40), which contributes to improved blood 

flow after intravascular administration of L-arginine.  
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Arginine in diabetes. Diabetes is associated with reduced plasma concentrations 

of arginine (41,42). Thus, dietary supplementation of L-arginine could be beneficial for 

the treatment of endothelial dysfunction in diabetic patients. Ozcelikay et al. (43) 

showed that L-arginine treatment in vivo could prevent diabetes-associated 

abnormalities in vascular function. These results are consistent with the findings of 

Pieper et al. (41,42), which reported that L-arginine supplementation normalized the 

endothelium-dependent relaxation in diabetic aorta by enhancing NO availability and 

restoring the acetylcholine-stimulated cGMP generation.  

In the diabetic state, it is well known that oxidative stress is increased due to 

excessive production of oxygen free radicals and impaired antioxidant defense 

mechanisms. Increasing arginine supply to diabetic rats improved vascular reactivity, 

reduced blood pressure, and normalized lipid peroxidation (43). Further, concentrations 

of malondialdehyde, a product of lipid peroxidation, may be reduced by arginine in 

diabetic patients (38) and diabetic rats (44). 

It is known that hypertension is an independent risk factor for cardiovascular 

mortality in patients with diabetes. Giugliano et al (45) found that intravenous L-arginine 

infusion completely reversed both the increase in blood pressure and the decrease in leg 

blood flow brought about by short-term elevation of plasma glucose levels in healthy 

subjects. This effect of arginine is mediated by the generation of NO. 

As noted previously, AGE contribute to endothelial dysfunction and diabetic 

vascular complications by permanent chemical modification of cells and proteins (3). 

Interestingly, L-arginine supplementation may directly inhibit AGE action on the 
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vasculature (22). Because AGE is believed to quench NO, arginine administration might 

be of benefit to improve the endothelium-dependent relaxation by preventing AGE-

mediated quenching of the NO-dependent smooth muscle relaxation (22).  

Mendez and Balderas (32) recently reported beneficial effects of L-arginine 

supplementation on reducing serum concentrations of glucose and lipids in diabetic rats. 

These authors suggested that the beneficial effects of L-arginine treatment are primarily 

due to the action of polyamines synthesized from the arginine-derived ornithine in 

extrahepatic tissues. Putrescine and spermidine have antilipolytic action and are 

necessary for insulin and protein biosynthesis, whereas spermine depletion affects 

several processes involved in insulin metabolism (32). Importantly, NO stimulates 

glucose uptake and utilization by skeletal muscle (36). These results provide a 

biochemical basis for explaining the beneficial effects of L-arginine on hyperglycemia 

and dyslipidemia in experimental diabetes. 

Diabetic healing is impaired, but the mechanisms are not well understood. High 

blood glucose lowers fibroblast proliferation (46) and affects collagen synthesis. Cross-

linking of collagen fibers is reduced in diabetic subjects (47). Concentrations of growth 

factors, mediators of collagen synthesis, are also low in the wound milieu (48,49) 

probably secondary to the diminished and delayed inflammatory reaction. In diabetes, 

NO synthesis is reduced in the wound milieu and hence, arginine supplementation 

improves wound healing by restoring NO synthesis (50). Conversely, inhibiting wound 

NO formation lowers collagen formation and wound breaking strength (51), and 

decreases wound contraction (52) Alternatively, arginine can be metabolized in wounds 
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via arginase to ornithine. Ornithine is the precursor for polyamines and proline. 

Polyamines are essential for cell proliferation, whereas proline is necessary for collagen 

formation. Ornithine supplementation also enhances wound healing, suggesting that at 

least some of the arginine effect could be mediated through ornithine synthesis (23,34). 

Interestingly, iNOS knock-out mice supplemented with L-arginine do not demonstrate 

improved incisional healing, suggesting that the effect of arginine on wound healing 

involves primarily the arginine- iNOS pathway (50). 

Relation between arginine and tetrahydrobiopterin (BH4). BH4 has long been 

recognized as an essential co-factor for all isoforms of the NOS, including eNOS (53). 

Schmidt et al. (54) were the first to demonstrate that an increase in intracellular BH4 

availability due to an increase in its synthesis stimulated NO production by EC. Since 

this initial report, there has been growing interest in the role of BH4 in the therapeutic 

treatment of endothelial dysfunction (55). Meininger et al. (13) reported that EC from 

the spontaneously diabetic BB rat had an impaired ability to produce NO due to the 

deficiency of BH4 and replenishing BH4 levels in the EC from diabetic animals restored 

their ability to make NO and proliferate.  

 Importantly, administration of either BH4 or L-arginine improves endothelial 

function in experimental animals and humans with a variety of major cardiovascular risk 

factors such as diabetes, insulin resistance, smoking, and hypercholesterolemia 

(56,57,58). However, a combination of both L-arginine and BH4 has no additional effect 

on the endothelium-dependent relaxation, compared with either compound alone (59).  
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These findings raise an important question of whether BH4 is deficient in EC of diabetic 

persons and whether arginine stimulates de novo synthesis of endothelial BH4.  

 

Summary 

Endothelial dysfunction is a major factor contributing to the high rates of 

morbidity and mortality in diabetic patients. Impaired NO synthesis from arginine in EC 

plays an important role in the pathogenesis of diabetes-associated cardiovascular 

complications. Recent studies indicate that a deficiency of BH4 is the biochemical basis 

for inadequate generation of NO in EC. Extensive studies demonstrate that arginine 

administration improves endothelial function in humans with type-I or type-II diabetes 

mellitus and in animal models of type-I diabetes. However, the underlying mechanisms 

are not known. Because the Km value of the three isoforms of the NOS for arginine are 

< 10 µM, it is unlikely that increasing extracellular arginine concentrations would 

increase substrate concentrations for the enzymes in mammalian cells. Alternatively, 

arginine may stimulate endothelial BH4 synthesis and therefore increase endothelial BH4 

availability for NO generation. The available evidence indicates that diabetic subjects 

have low levels of plasma arginine, and thus dietary arginine supplementation may 

provide a potentially novel means to increase arginine availability and prevent 

endothelial dysfunction in diabetic subjects. 
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Objectives of This Research 

In view of the above literature review, we hypothesized that dietary arginine 

supplementation increases the availability of BH4 (a critical cofactor for endothelial 

NOS) for endothelial NO synthesis in diabetic rats, thereby preventing endothelial 

dysfunction. The major objective of the author’s thesis research was to test this 

hypothesis with the use of streptozotocin (STZ)- induced diabetic rats and Zucker 

diabetic fatty (ZDF) rats. The specific aims of the investigations were: 

1. To determine the effect of dietary arginine supplementation on body weight loss, EC 

BH4 availability, EC NO synthesis, and plasma glucose concentrations in STZ 

diabetic rats; and  

2. To determine the effect of dietary arginine supplementation on body weight gain, EC 

BH4 availability, EC NO synthesis, and plasma glucose concentrations in ZDF rats.  

 

Significance of This Research 

NO is an important product of arginine catabolism by NOS in virtually all animal 

cells. Although there is a great body of literature regarding the beneficial role of arginine 

in humans and rats with diabetes and endothelial dysfunction, little is known about the 

mechanisms responsible for the stimulating effect of arginine on endothelial NO 

synthesis in normal and diabetic subjects. Elucidating the underlying mechanism(s) will 

help in the design of new means to treat patients with a wide array of cardiovascular 

disorders. As arginine may be a potentially novel nutrient to improve endothelial 

function, it is of crucial importance to demonstrate that dietary arginine supplementation 
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increases NO synthesis in EC of both normal and diabetic animals. This new knowledge 

about arginine biochemistry and nutrition in the cardiovascular system will provide a 

much-needed experimental basis for the clinical application of arginine to prevent 

endothelial dysfunction in diabetic patients Because obesity and diabetes have become a 

major public health problem in the U.S. and worldwide, arginine may provide an 

effective solution for improving life quality and health of obese and diabetic patients 

while reducing the tremendous health care costs. 
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CHAPTER II 

EFEFCTS OF ORAL ADMINISTRATION OF L-ARGININE ON 

STREPTOZOTOCIN INDUCED DIABETIC RATS 

 
Synopsis 

L-arginine is the substrate for synthesis of nitric oxide (NO), the endothelium-

derived relaxing factor essential for regulating vascular tone and hemodynamics. In 

recent years, there has been growing interest in the use of L-arginine to prevent and treat 

the impaired endothelium-dependent relaxation associated with major cardiovascular 

risk factors (e.g. diabetes). However, little is known about the mechanism responsible 

for the stimulatory effect of arginine on endothelial NO synthesis in diabetic  and normal 

subjects. In the present study, the effect of dietary arginine supplementation on body 

weight changes, EC BH4 availability, EC NO synthesis, and plasma glucose 

concentrations in male Sprague-Dawley (SD) rats was studied. Diabetes in SD rats was 

induced by intravenous injection of streptozotocin (STZ). STZ-diabetic SD rats were 

individually pair-fed a casein-based diet on the basis of feed intake (per kg body weight) 

by non-diabetic rats. Addition of arginine-HCl (1.51%) or alanine (2.55%) to drinking 

water for the rats were adjusted daily to ensure isonitrogenous provision per kg body 

weight. In non-diabetic rats, arginine supplementation had no effect on feed intake, body 

weight or plasma glucose, but increased plasma concentrations of arginine (144%), 

plasma concentrations of insulin (44%), and arginine concentrations (88%), BH4 

concentrations (106%) and NO synthesis (80%) in EC, compared with alanine treatment. 

In diabetic rats, arginine supplementation reduced body weight loss (36%), and plasma 
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glucose levels (54%), and increased plasma arginine levels (110%), plasma insulin levels 

(209%), and arginine concentrations (173%), BH4 concentrations (128%), and NO 

synthesis (125%) in EC, compared with alanine treatment.  Results of this study 

demonstrate that dietary L-arginine supplementation is beneficial for preventing 

hyperglycemia and enhancing endothelial BH4 availability for NO synthesis in diabetic 

rats. 

 

Introduction 

A goal of the treatment of diabetes mellitus is to control plasma glucose 

concentrations. Hyperglycemia, the hallmark of diabetes mellitus, may initiate 

endothelial dysfunction, which results from decreased production of NO, inactivation of 

NO by oxygen-derived free radicals, and/or increased production of endothelium-

derived cont racting factors (opposing the protective activity of NO) (3). L-Arginine is 

the substrate for the NOS, which is responsible for the endothelial production of NO 

(20). Thus, utilization of L-arginine and its conversion to NO may contribute to a 

beneficial role of this amino acid in ameliorating endothelial dysfunction. 

L-Arginine supplementation may be beneficial for diabetic subjects. For 

example, Mendez and Balderas (32) reported that L-arginine supplementation reduced 

serum glucose and lipid levels in diabetic rats. Interestingly, administration of L-arginine 

reversed endothelial dysfunction, restored the NO-mediated endothelium-dependent 

relaxation, and decreased oxidative stress in diabetic rats (41,43). In diabetes, NO 
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synthesis is reduced in the wound milieu and hence, arginine improves wound healing 

(an angiogenesis-dependent process), by restoring NO synthesis (51).  

Despite the foregoing, little is known about the mechanisms responsible for the 

stimulating effect of arginine on endothelial NO synthesis in normal and diabetic 

subjects. Wu and Meininger (60) reported that impaired NO synthesis in EC of diabetic 

BB rats was not due to alterations in arginine uptake, NOS activity, or intracellular 

arginine concentrations but  might have resulted from a limited availability of cofactors of 

NOS. Recently, Meininger et al. (13) found that EC from the spontaneously diabetic BB 

rat have an impaired ability to produce NO due to a deficiency of BH4 and replenishing 

BH4 levels in the EC restores their ability to make NO. On the basis of the recent report 

(61) that arginine stimulates BH4 synthesis in cultured EC, we hypothesized that dietary 

L-arginine supplementation may increase BH4 availability for NO synthesis in EC of 

diabetic rats. The major objective of the present study was to test this hypothesis with 

use of STZ-induced diabetic rats.  

 

Materials and Methods  

Chemicals. Hexokinase, glucose-6-phosphate dehydrogenase and nitrate 

reductase were purchased  from Roche (Indianapolis, IN). Joklik's modified minimal 

essential medium, Dulbecco's phosphate-buffered saline, Dulbecco's modified Eagle's 

medium (DMEM), L-glutamine and penicillin/streptomycin/amphotericin B were 

obtained from GIBCO-BRL (Gaithersburg, MD). Collagenase type-II was purchased 

from Worthington Biochemical (Freehold, NJ). Heparin sodium was purchased from 
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Elkins-Sinn (Cherry Hill, NJ), whereas 2,3-daminonaphthalene (DAN), dithioerythritol, 

and streptozotocin were from Sigma (St. Louis, MO).  

Animals. Male Sprague-Dawley (SD) rats (65 days-old) were obtained from 

Harland (Houston, TX). At 70 days of age, SD rats received i.v. injection of 

streptozotocin (STZ; 65 mg/kg body wt) to induce diabetes or of vehicle solution (50 

mM sodium citrate, pH 4.5).  One day after the injection, rats received drinking water 

containing either 0.6% L-arginine-HCl (equivalent to 0.5% arginine) or 1.01% L-alanine 

(isonitrogenous control) (n = 8 per treatment, a 2 X 2 factorial design). This dose is 

chosen because it has shown to prevent endothelial dysfunction in BB rats and STZ-

diabetic rats and had no adverse effect on non-diabetic rats. The free arginine base was 

not used because 0.6% in water yields an alkaline solution (pH 10.2), while 0.6% 

arginine-HCl in water did not affect pH (5.8).  Addition of arginine or alanine to 

drinking water for rats was adjusted daily to ensure isonitrogenous provision of nitrogen 

per kg body weight. Diabetic rats were individually pair- fed a casein-based diet on the 

basis of feed intake by non-diabetic rats (per kg body wt). Table 2.1 shows the 

composition of the casein-based diet (62). Tail venous blood samples (0.2 ml) were 

obtained from SD rats on day 2 post arginine supplementation. Following two-week 

arginine supplementation to SD rats, blood samples (tail vein and heart) and coronary 

EC were obtained as described below. 
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TABLE 2.1 

Diet composition for SD rats (casein–based diet) 
 

Ingredient  20% Casein Diet   
  (g/kg diet) 
 
 
Casein1   200   

DL-Methionine  3     

Corn starch  150       

Sucrose  500            

Cellulose  50    

Corn oil  50      

Salt mix2   35    

Vitamin mix3   10     

Choline bitartrate  2    

TOTAL  1000        

Gross Energy (kJ/kg)  16,816 

   
 

 1Acid casein (88.1% protein) (New Zealand Milk Products, Inc., Santa Rosa, 
CA).  Amino acid composition of acid casein was as follows (g amino acid/100 g 
protein): alanine, 2.6; arginine, 3.6; aspartate plus asparagine, 6.5; cysteine plus cystine, 
0.4; glutamate plus glutamine, 20.9; glycine, 1.8; histidine, 2.6; isoleucine, 4.8; leucine, 
8.8; lysine, 7.4; methionine, 2.6; phenylalanine, 5.0; proline, 11.7; serine, 5.4; threonine, 
3.8; tryptophan, 1.2; tyrosine, 5.3; and valine, 5.7.   
 2Containing the following (g/kg salt mix): calcium phosphate dibasic (29.5% Ca 
and 22.8% P), 500; magnesium oxide (60.3% Mg), 24; manganous carbonate (47.8% 
Mn), 3.5; potassium citrate.1 H2O (36.2% K), 220; potassium sulfate (44.9% K and 
18.4% S), 52; sodium chloride (39.3% Na and 60.7% Cl), 74; chromium potassium 
sulfate.12 H2O (10.4% Cr), 0.55; cupric carbonate (57.5% Cu), 0.3; potassium iodate 
(59.3% I), 0.01; ferric citrate (21.2% Fe), 6.0; sodium selenite (45.7% Se), 0.01; zinc 
carbonate (52.1% Zn), 1.6; sucrose, 118.03.  
 3Containing the following (g/kg vitamin mix): retinyl palmitate (500,000 IU/g), 
0.8; cholecalciferol (100,000 IU/g), 1.0; all- rac-?-tocopheryl acetate (500 IU/g), 10.0; 
menadione sodium bisulfite (62.5% menadione), 0.08; biotin (1.0%), 2.0; 
cyanocobalamin (0.1%), 1.0; folic acid, 0.2; nicotinic acid, 3.0; calcium pantothenate, 
1.6; pyridoxine.HCl, 0.7; riboflavin, 0.6; thiamin.HCl, 0.6; sucrose, 978.42. 
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Isolation of coronary EC. Rats were injected with heparin sodium (130 U/100 g 

body wt) intraperitoneally, 20 min before the rats were euthanized. Rats were 

anesthetized by intraperitoneal injection of pentobarbital sodium (35mg/250g rat). The 

hearts were removed and placed in ice-cold Joklik's  modified minimal essential medium 

containing 60 mM taurine, 20 mM creatine, and 5 mM HEPES. The aortas were 

cannulated with stainless steel tubing (2-mm inner diameter) and perfused with the above  

medium from a static 40-mmHg hydrostatic pressure head. The oxygenated (100%) 

perfusate, which was supplemented with 0.1% dialyzed bovine  serum albumin and 

heparin (1 U/ml), was passed through the hearts once. After a 10-min washout period, 

new medium with collagenase (0.7 mg/ml) was introduced, and the perfusate was 

allowed to recirculate  until the aortic perfusion pressure decreased to below 40 mmHg 

(30-40 min). The ventricles were cut from the hearts, minced, and placed in fresh 

collagenase-containing perfusate. The tissue  was shaken at 250 rpm in a water bath for 

10 min. CaCl2 (50 µM) was added to the minced tissue, and digestion with collagenase  

continued for an additional 10 min. The cells were dispersed, filtered through a double 

layer of cheesecloth, and diluted 1:4  with buffer containing 0.1% dialyzed bovine serum 

albumin. The resulting suspension was allowed to settle to separate myocytes (which are 

heavier) from EC. EC were further purified by centrifugation through cushions of 6% 

and 3% bovine serum albumin in Joklik's modified minimal essential medium. The 

endothelial identity of the collected cells was confirmed by the uptake of modified low-

density lipoprotein.  
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Measurement of plasma glucose, arginine, and insulin. Plasma glucose 

concentration was determined by an enzymatic method involving hexokinase and 

glucose-6-phosphate dehydrogenase (63). Arginine levels in plasma were measured by 

HPLC (60). Insulin was analyzed using a radioimmunological assay kit from Linco 

Company (St. Louis, MO).  

High-performance liquid chromatography analysis of BH4 and arginine in 

freshly isolated EC. Cellular content of BH4 was determined using a modification of the 

HPLC method of Fukushima and Nixon (64). EC were lysed in 0.3 ml of 0.1 M 

phosphoric acid containing 5mM dithioerythritol (an antioxidant) and 35ul of 2M 

trichloroacetic acid. Cell debris was removed by centrifugation. Extracts were oxidized 

with acidic or basic iodine. Acidic iodine oxidation quantitatively converts BH4 and 

dihydrobiopterin to biopterin; basic iodine oxidation converts dihydrobiopterin to 

biopterin. Samples were incubated in the dark for 1 hr. Excess iodine was removed by 

adding ascorbic acid (final concentration 0.1M). The final solution was analyzed on a 

C18 reversed-phase column using fluorescence detection and authentic biopterin as a 

standard. The amount of BH4 in the extracts was determined from the difference in 

biopterin concentrations generated with acidic and basic iodine oxidation. Arginine 

levels in EC were measured by HPLC (60). Intracellular concentrations of BH4 and 

arginine were calculated on the basis of the average cell volume of rat coronary EC 

(0.348 µL/106 cells). 

NO synthesis in freshly isolated EC. EC were rinsed with the Basal Medium 

Eagle, and then incubated at 37°C for 6 hours in the Basal Medium Eagle containing 0.2 
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mM L-arginine, 0.5 mM L-glutamine, 5 mM D-glucose, 100 units/ml penicillin, 

100 µg/ml streptomycin and 0.25 µg/ml amphotericin B. At the end of the 6-h 

incubation period, media were analyzed for nitrite and nitrate (two major stable end 

products of NO oxidation) with HPLC as described by Li et al (65). In all experiments, 

medium incubated without cells were run as the blank.  

Data analysis. Results are expressed as mean ± SEM. Data were statistically 

analyzed by two-way analysis of variance using SAS (Statistical Analysis System). 

Differences between means were determined by the Student-Newman-Keul’s multiple 

comparison test.  Probability values less than 0.05 were taken to indicate significance. 

 
Results 

Body weight. Body weights of rats were recorded daily from the beginning of 

the experiment. Table 2.2 summarizes data on initial and final body weights as well as 

body weight changes. At the conclusion of the study (14 days after the onset of 

diabetes), in diabetic rats, treatment with L-arginine reduced (P< 0.01) the body weight 

loss by ~36% compared with alanine-treated rats. However, in non-diabetic rats, L-

arginine supplementation had no effect (P > 0.05) on body weight compared with the 

corresponding alanine-treated rats. There was a significant decrease (P<0.01) in the body 

weight of the alanine-treated diabetic rats due to uncontrolled diabetes.  
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TABLE 2.2 

Body weights of SD rats (g) 
 

Animals   Treatment Initial body Final body Change in body
  weight (d 0)   weight (d 14) weight gain 
 
 
Non-diabetic      Alanine  284 ± 9.0 319 ± 12  34 ± 2.7   
 Arginine 287 ± 4.9  319 ± 5.7    32 ± 1.5  
 
Diabetic  Alanine 283 ± 4.0   167 ± 3.6 * -116 ± 3.3 * 
 Arginine 282 ± 8.2 208 ± 10 *† -74 ± 8.1 *† 
 
 

Data are means ± SEM, n = 8.   

* P < 0.01 vs the corresponding non-diabetic group. 

† P < 0.01 vs the corresponding alanine-supplemented group. 
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TABLE 2.3 

Feed, water and calorie intake (g/kg body wt/day) by SD rats 
  
Animals   Treatment  Feed     Water      Gross Calorie † 
         (g/kg body wt/d)      (ml/kg body wt/d)    (kJ/kg body wt/d) 
 
 
Non-diabetic   Alanine   56.3 ± 2.2  110 ± 9.1 1008 ± 36 
 Arginine  53.2 ± 2.0   101 ± 10.4 933 ± 34 
  
Diabetic  Alanine  53.5 ± 2.3    420 ± 16.3 958 ± 35 
 Arginine  54.8 ± 2.4  341 ± 19.3 958 ± 39 
 
 

Data are means ± SEM, n = 8.   

† Including diet and drinking water. 
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Energy, food and water intake. Food and water consumption were measured 

every 24 hours. Table 2.3 summarizes the data on feed intake and water intake of rats. 

Food intake was similar among the four groups of rats to make their diets 

isonitrogenuos. Arginine and alanine intake from drinking water (Table 2.4) were 

adjusted daily to ensure isonitrogenous provision per kg body weight. Table 2.5 

summarizes the data on arginine and alanine intake from diet. Energy intake (Table 2.3) 

was calculated from the feed intake and water consumption for all four groups of rats. 

 

 

 

TABLE 2.4 

Intake of arginine from drinking water (g/kg body wt/d) by SD rats 
 
Animals    Treatment Arginine from    Alanine from  
  drinking water    drinking water 
 
 
Non-diabetic     Alanine ----      3.44 ± 0.23  
 Arginine 1.40 ± 0.12   ----      
 
Diabetic  Alanine ----        3.23 ± 0.26 
 Arginine 1.33 ± 0.12 ----           
 
 

Data are means ± SEM, n = 8.   
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TABLE 2.5 

Intake of arginine from diet (g/kg body wt/d) by SD rats 
 
Animals   Treatment Arginine from Alanine from  
  diet diet 
 
 
Non-diabetic         Alanine  0.36 ± 0.014          0.25 ± 0.006 
 Arginine 0.34 ± 0.013         0.24 ± 0.002 
 
Diabetic  Alanine 0.34 ± 0.015         0.26 ± 0.005
 Arginine 0.35 ± 0.015         0.25 ± 0.004 
 

 
Data are means ± SEM, n = 8.   
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Plasma glucose levels. All rats receiving STZ-injection developed diabetes 

within 24 h of administration on the basis of glucosuria, ketosis, and hyperglycemia and 

body weight loss, likely due to lot of fluid loss. Plasma glucose levels were higher in 

both L-arginine-treated and alanine-treated diabetic rats compared with non-diabetic rats 

at day 2 post onset of diabetes (Table 2.6). At day 14 post onset of diabetes, plasma 

glucose levels were reduced (P<0.01) in arginine-treated rats to values similar to those 

for non-diabetic rats (Table 2.6). 

 

 

TABLE 2.6 

Plasma concentrations of glucose in SD rats after arginine supplementation 
 

Animals   Treatment  Glucose (mM) 
  ________________________________________
              day 2     day 14 
 
Non-diabetic        Alanine 8.38 ± 0.8   7.73 ± 0.61  

Arginine 7.91 ± 4.1   7.66 ± 0.68 
 
Diabetic  Alanine 19.8 ± 1.7   17.8 ± 2.10 * 
 Arginine 16.9 ± 1.9   8.15 ± 0.99 † 
 
 

Data are means ± SEM, n = 8.   

* P < 0.01 vs the corresponding non-diabetic group. 

† P < 0.01 vs the corresponding alanine-supplemented group. 



   

 

30 

 
 
 
 

TABLE 2.7 

Plasma concentrations of arginine and insulin in SD rats after 14-day arginine 
supplementation 

 
Animals   Treatment Arginine   Insulin   
  (uM)   (ng/ml) 
  
 
Non-diabetic        Alanine 203 ± 7.8   3.42 ± 0.11  
 Arginine 496 ± 18 †   4.86 ± 0.31 †  
 
Diabetic  Alanine 137 ± 5.6 *   0.42 ± 0.04 *  
 Arginine 289 ± 14 *†   1.30 ± 0.15 *† 
  
 

Data are means ± SEM, n = 8.   

* P < 0.01 vs the corresponding non-diabetic group. 

† P < 0.01 vs the corresponding alanine-supplemented group. 
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Plasma insulin and arginine levels. Untreated diabetic rats exhibit low levels of 

plasma insulin and arginine (P<0.01), which were restored with arginine 

supplementation (Table 2.7). In diabetic rats, arginine treatment increased (P<0.01) 

plasma insulin levels by ~209% and plasma arginine levels by ~110% compared with 

alanine-treated diabetic rats. Additionally, arginine supplementation increased (P<0.01) 

plasma insulin (~44%) and arginine (~ 144%) levels in non-diabetic rats. 

Intracellular concentrations of arginine, BH4, and NO production in rat 

coronary EC. BH4 levels, arginine levels and NO production were decreased (P<0.01) 

in EC from diabetic animals, compared with non-diabetic rats (Table 2.8). However, 

arginine treatment for 14 days increased (P<0.01) arginine concentrations, BH4 

concentrations and NO production in coronary EC of both diabetic and non-diabetic rats. 

In diabetic rats, arginine treatment increased (P<0.01) arginine concentrations, BH4 

concentrations and NO production in coronary EC by ~ 173%, 128%, 125%, 

respectively, compared with the corresponding alanine-treated rats. In non-diabetic rats, 

arginine supplementation increased (P<0.01) arginine concentrations, BH4 

concentrations and NO production in coronary EC by 88%, 106%, and 80%, 

respectively, compared with the corresponding alanine-treated rats.  
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TABLE 2.8 

Intracellular concentrations of arginine, BH4 and NO production in SD rat coronary 
endothelial cells after 14-day arginine supplementation 

  
Animals  Treatment [Arginine] [BH4]    NO synthesis 
   (mM)  (uM)       (pmol/106 cells per h) 
 
 
Non-diabetic   Alanine  1.29 ± 0.06 2.94 ± 0.20  259 ± 12
 Arginine 2.43 ± 0.10 † 6.03 ± 0.03 † 468 ± 19 † 

 
Diabetic  Alanine 0.49 ± 0.03 * 1.40 ± 0.06 * 118 ± 8.1 * 
 Arginine 1.34 ± 0.08 *† 3.22 ± 0.03 *† 266 ± 18 † 
 
 

Data are means ± SEM, n = 8.   

* P < 0.01 vs the corresponding non-diabetic group. 

† P < 0.01 vs the corresponding alanine-supplemented group. 
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Discussion 

Endothelial dysfunction is a major factor contributing to morbidity and mortality 

in diabetes mellitus. Enhanced production of vasoconstrictors and/or reduced synthesis 

of the vasodilator, NO may be the most important factors responsible for diabetes-

associated cardiovascular complications (13). A deficiency of arginine or BH4 could 

impair the endothelium-dependent relaxation. As reported by other investigators (11.12), 

we observed a marked decrease in plasma concentrations of arginine in diabetic rats. 

This provides a basis for dietary supplementation of arginine as a potentially novel 

means to prevent diabetes-associated endothelial dysfunction.  

Our results demonstrate that oral administration of L-arginine-HCl via drinking 

water for 14 days decreased (P<0.01) glucose levels in diabetic rats by ~54%. This is a 

very significant finding, but the mechanism is not known at present. Arginine 

supplementation may stimulate NO production by skeletal muscle, and enhance NO-

mediated blood flow, thereby increasing glucose uptake by skeletal muscle and insulin 

sensitivity in tissues. Beneficial effects of L-arginine administration on serum glucose 

levels have also been demonstrated in other studies (32). Indeed, Popov et al (66) 

reported that oral administration of 622 mg arginine/kg body weight to hamsters reduced 

the high concentrations of circulating glucose by 63%. L-Arginine is known to stimulate 

the secretion of insulin from beta cells of the pancreas (23,36). Indeed, dietary 

supplementation of L-arginine resulted in an increase in the plasma insulin levels in both 

STZ-induced diabetic (by ~209%) and non-diabetic (by ~44%) SD rats. Note that in the 

STZ-diabetic rat model, not all the ß-cells are destroyed, and the remaining cells can 
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secret a physiologically significant quantity of sufficient insulin to keep the animals 

alive for up to 2 months.  

An important finding of this study is that L-arginine supplementation ameliorated 

weight loss in STZ diabetic rats. SD diabetic rats treated with L-arginine had 36% less 

weight loss than alanine-treated diabetic rats. The ability of L-arginine to reduce body 

weight loss in STZ-diabetic rats may result from one or more of the following factors: 1) 

prevention of hyperglycemia, 2) reduction in skeletal muscle protein degradation, and 3) 

increase in skeletal muscle protein synthesis. L-Arginine supplementation did not affect 

the weight gain, plasma glucose levels, food and water intake in normal, non-diabetic 

rats, indicating a lack of adverse effect of elevated levels of arginine under the 

experimental conditions of the study. 

Previous work (67) in our lab showed that rates of arginine degradation by 

enterocytes of the small intestine did not differ between normal and STZ-diabetic rats. 

Thus, similar amounts of dietary arginine would be expected to enter the portal 

circulation in normal and STZ-diabetic rats. L- Arginine treatment increased arginine 

levels by almost two folds (~110%) compared with alanine-treated diabetic rats. The 

reasons for decreased plasma arginine in diabetic state are unclear. However, previous 

work in our lab suggests that the reduced availability of circulating arginine in diabetic 

rats may result from impaired renal arginine synthesis owing to reduced availability of 

aspartate (an amino acid required for the conversion of citrulline into arginine by 

argininosuccinate synthase). Nevertheless, results of this study indicate that oral 

administration is an effective means to augment plasma arginine levels in diabetic rats.  
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Intracellular arginine concentrations are approximately 1-2 mM in freshly 

isolated endothelial cells. Intracellular values of L-arginine (0.49 mM) in diabetic SD 

rats were substantially decreased but were still much higher than the Km value of eNOS 

(2.9 µM) for L-arginine. This observation implies that endothelial NOS was saturated 

with intracellular L-arginine. However, dietary supplementation of L-arginine did 

increase NO production in coronary EC of both STZ-diabetic and non-diabetic SD rats 

(Table 2.8). This data further supports the notion that intracellular or extracellular 

arginine concentrations are critical for endothelial NO production. Importantly, we 

found that L-arginine increased endothelial BH4 availability in both STZ-diabetic and 

non-diabetic SD rats. This finding is consistent with the report that replenishing BH4 

levels in EC from diabetic animals restores their ability to make NO (13). Through an 

increase in BH4 availability, administration of L-arginine increased endothelial NO 

generation.  

 In conclusion, dietary arginine supplementation to STZ-diabetic rats increased 

plasma and EC concentrations of arginine, and enhanced BH4 availability and NO 

synthesis in EC. In addition, the arginine treatment prevented hyperglycemia and 

reduced the loss of body weight in diabetic animals. These data demonstrate that oral 

administration of arginine is beneficial for an animal model of insulin-dependent 

diabetes mellitus. The findings also provide a biochemical basis for explaining the 

beneficial effect of dietary arginine supplementation to diabetic human patients. 
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CHAPTER III 

EFEFCTS OF ORAL ADMINISTRATION OF L-ARGININE ON ZUCKER 

DIABETIC FATTY RATS 

 
Synopsis 

This study was conducted to test the hypothesis that dietary arginine 

supplementation would increase the availability of tetrahydrobiopterin (BH4) for NO 

synthesis in endothelial cells (EC) of type-II diabetic rats, thereby preventing endothelial 

dysfunction. Male Zucker diabetic fatty (ZDF) rats were individually pair-fed a Purina 

5008 diet on the basis of feed intake by alanine-treated diabetic rats (per kg body wt). 

Addition of arginine-HCL (1.51%) or alanine (2.55%) to drinking water for ZDF rats 

was adjusted daily to ensure isonitrogenous provision per kg body weight. Plasma 

glucose levels were determined in tail venous  blood samples, obtained at weeks 3, 6 and 

10 post arginine supplementation. At the end of a 10-week period of arginine 

supplementation, blood samples and coronary EC were obtained from rats. Arginine 

supplementation did not affect (P>0.05) plasma levels of glucose and insulin, compared 

with alanine-treated rats, but reduced (P<0.01) epididydmal fat (30%), abdominal fat 

(43%) and body weight gain and increased (P<0.01) plasma concentrations of arginine 

(273%), and arginine concentrations (197%), BH4 concentrations (120%) and NO 

synthesis (122%) in EC, compared with alanine-treated rats. These results indicate that 

oral administration of arginine enhances BH4 availability for NO synthesis in EC of ZDF 

rats and that arginine is a novel anti-obesity nutrient. Collectively, dietary arginine 
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supplementation may be beneficial for obese subjects with insulin- independent diabetes 

mellitus.  

 

Introduction 

Type-II diabetes mellitus and obesity commonly co-occur. Weight loss in obese-

diabetic patients is associated with significant health benefits, including improved 

glycemic control and reduced blood pressure (68). NO, synthesized from L-arginine by 

eNOS, has emerged as an important therapeutic molecule for enhancing insulin 

sensitivity and preventing endothelial dysfunction in diabetic subjects (25). Nisoli et al 

(30) reported that NO plays a major role in mitochondrial biogenesis in a cGMP-

dependent manner. Interestingly, NOS null-mutant mice had a reduced metabolic rate 

and accelerated weight gain (30), insulin resistance (27), hypertension, and 

hyperlipidemia (31). Other studies have also shown the evidence of NO role in 

regulation of lipolysis (69) by facilitating leptin- induced lipolysis (70). These findings 

suggest a possible role of NO as an anti-obesity agent. 

Recent data from our laboratory indicate that BH4 is deficient in EC of both STZ-

diabetic rats and ZDF rats. Results presented in chapter II of this thesis demonstrate that 

dietary arginine supplementation to STZ-diabetic rats increased BH4 concentrations and 

NO production in coronary EC. In view of this finding, we hypothesized that dietary 

arginine supplementation could also increase the availability of BH4 for NO synthesis in 

EC of ZDF rats, thereby preventing endothelial dysfunction.  
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Materials and Methods 

Chemicals. Hexokinase, glucose-6-phosphate dehydrogenase and nitrate 

reductase were purchased  from Roche (Indianapolis, IN). Joklik's modified minimal 

essential medium, Dulbecco's phosphate-buffered saline, Dulbecco's modified Eagle's 

medium (DMEM), L-glutamine and penicillin/streptomycin/amphotericin B were 

obtained from GIBCO-BRL (Gaithersburg, MD). Collagenase type-II was purchased 

from Worthington Biochemical (Freehold, NJ). Heparin sodium was purchased from 

Elkins-Sinn (Cherry Hill, NJ), whereas 2,3-diaminonaphthalene (DAN), dithioerythritol, 

and streptozotocin were from Sigma (St. Louis, MO).  

  Animals. Male Zucker diabetic fatty rats (ZDF) (8 week-old) were obtained from 

Charles River (Wilmington, MA). At 9 weeks of age, ZDF rats received drinking water 

containing either 1.51% L-arginine-HCl or 2.55% L-alanine (isonitrogenous control) (n 

= 5 per treatment). This dose is chosen because previous studies have shown that oral 

administration of arginine (1.2% in drinking water) prevented endothelial dysfunction in 

BB rats and STZ-diabetic rats and had no adverse effect on non-diabetic rats (41). The 

free arginine base was not used because 1.2% or 1.51 % in water yields an alkaline 

solution (pH 10.8), while 1.5% arginine-HCl in water did not affect pH (6.5). Addition 

of arginine or alanine to drinking water for diabetic rats was adjusted daily to ensure 

isonitrogenous provision of nitrogen per kg body weight. Diabetic rats were individually 

pair- fed a Purina 5008 diet on the basis of feed intake by alanine-treated diabetic rats 

(per kg body wt). The ingredients of the Purina 5008 diet are shown in Table 3.1 and 

composition of the diet in Table 3.2. Tail venous blood samples (0.2 ml) were obtained 
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from ZDF rats at weeks 3, 6 and 10 post arginine supplementation. At the end of a 10-

week period of arginine supplementation, blood samples and coronary EC were obtained 

from ZDF rats as described below.  

 

 

TABLE 3.1 

Ingredients of Purina 5008 diet for ZDF rats 
 

 
Ground corn  Dehulled soybean meal   Ground wheat 

Fish meal  Wheat middlings    Animal fat  

Cane molasses  Ground oats    Brewers dried yeast  

Wheat germ meal  Meat meal    Dried beet pulp  

Dehydrated alfalfa  Calcium carbonate   Dried whey  

Salt  Cyanocobalamin    DL-methionine  

Calcium   Pantothenate    Choline chloride  

Folic acid,  Pyridoxine hydrochloride  Riboflavin  

Thiamin mononitrate  Nicotinic acid    Vitamin A acetate  

Cholecalciferol  DL-alpha tocopheryl acetate  Manganous oxide  

Ferrous carbonate  Cobalt carbonate    Calcium iodate  

Copper sulphate  Zinc sulphate    Zinc oxide  

Vitamin K † 
 
 
† Provided as Menadione dimethylpyrimidinol bisulfite.
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TABLE 3.2 
 

Nutrient composition of Purina 5008 diet for ZDF rats 
  

Nutrients  
       
Protein        23.5 % 

Arginine      1.44 % 
 Cystine      0.35 % 
 Glycine      1.23 % 
 Histidine      0.58 % 
 Isoleucine      1.20 % 
 Leucine         1.87 % 
 Lysine       1.40 % 
 Methionine      0.43 % 
 Phenylalanine      1.08 % 
 Tyrosine      0.66 % 
 Threonine      0.90 % 

Tryptophan                             0.28 % 
 Valine       1.19 % 
 Serine        1.20 % 
 Aspartic Acid       2.60 % 
            Glutamic Acid   4.77 % 
 Alanine      1.39 % 
 Proline        1.63 % 
 Taurine      0.02 % 
Fat (ether extract)      6.5 % 
Fat (acid hydrolysis)      7.5 % 

Cholesterol, ppm     280  
Linoleic acid       1.37 % 
Linolenic acid       0.09 % 
Arachidonic acid     0.01 % 
Omega-3 fatty acids     0.29 % 
Total Saturated fatty acids    2.51 % 

 Total Monounsaturated fatty acids   2.32 % 
Fiber 3.8 % 
Nitrogen-free extract      49.4 % 
 Starch       34.9 % 
 Glucose      0.22 % 

Fructose      0.24 % 
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TABLE 3.2  Continued 
 
Nutrients        

 
 Sucrose      2.57 %  
 Lactose     0.39 % 
Total digestible Nutrients     81.2 %   
Minerals  

Ash       6.8 %  
 Calcium 1.0 %  
 Phosphorus   0.65 % 
 Potassium      1.10 % 
 Magnesium      0.20 % 
 Sulfur       0.24 % 
 Sodium 0.28 % 
 Chlorine 0.48 % 
 Fluorine, ppm 19  
 Iron, ppm 230  
 Zinc, ppm 73  
 Manganese, ppm 71  
 Copper, ppm  13  
 Cobalt, ppm 0.4  
 Iodine, ppm  0.8  
 Chromium, ppm     1.4  
 Selenium, ppm     0.23 
Vitamins 
 Carotene, ppm      4.0    
 Vitamin K (as menadione), ppm   3.2 
 Thiamine Hydrochloride, ppm   16 
 Riboflavin, ppm     5.0 
 Niacin, ppm      109 
 Pantothenic Acid, ppm    15 
 Choline Chloride, ppm    2000 
 Folic Acid, ppm     3.0 
 Pyridoxine, ppm     6.0 
 Biotin, ppm      0.20   
 B12, mcg/kg      20 
 Vitamin A, IU/gm 15 
 Vitamin D3 (added), IU/gm  3.3 

Vitamin E, IU/kg 55 
Ascorbic Acid, mg/gm --- 

Gross Energy, kJ/kg      17364 
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Isolation of coronary EC. Rats were injected with heparin sodium (130 U/100 g 

body wt) intraperitoneally, 20 min before the rats were euthanized. Rats were 

anesthetized by intraperitoneal injection of pentobarbital sodium (35mg/250g rat). The 

hearts were removed and placed in ice-cold Joklik's  modified minimal essential medium 

containing 60 mM taurine, 20 mM creatine, and 5 mM HEPES. The aortas were 

cannulated with stainless steel tubing (2-mm inner diameter) and perfused with the above  

medium from a static 40-mmHg hydrostatic pressure head. The oxygenated (100%) 

perfusate, which was supplemented with 0.1% dialyzed bovine  serum albumin and 

heparin (1 U/ml), was passed through the hearts once. After a 10-min washout period, 

new medium with collagenase (0.7 mg/ml) was introduced, and the perfusate was 

allowed to recirculate  until the aortic perfusion pressure decreased to below 40 mmHg 

(30-40 min). The ventricles were cut from the hearts, minced, and placed in fresh 

collagenase-containing perfusate. The tissue  was shaken at 250 rpm in a water bath for 

10 min. CaCl2 (50 µM) was added to the minced tissue, and digestion with collagenase  

continued for an additional 10 min. The cells were dispersed, filtered through a double 

layer of cheesecloth, and diluted 1:4  with buffer containing 0.1% dialyzed bovine serum 

albumin. The resulting suspension was allowed to settle to separate myocytes (which are 

heavier) from EC. EC were further purified by centrifugation through cushions of 6% 

and 3% bovine serum albumin in Joklik's modified minimal essential medium. The 

endothelial identity of the collected cells was confirmed by the uptake of modified low-

density lipoprotein.  
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Measurement of plasma glucose, arginine, and insulin. Plasma glucose 

concentration was determined by an enzymatic method involving hexokinase and 

glucose-6-phosphate dehydrogenase (63). Arginine levels in plasma were measured by 

HPLC (60). Insulin was analyzed using a radioimmunological assay kit from Linco 

Company (St. Louis, MO). 

High-performance liquid chromatography analysis of BH4 and arginine in 

freshly isolated EC. Cellular content of BH4 was determined using a modification of the 

HPLC method of Fukushima and Nixon (64). EC were lysed in 0.3 ml of 0.1 M 

phosphoric acid containing 5mM dithioerythritol (an antioxidant) and 35ul of 2M 

trichloroacetic acid. Cell debris was removed by centrifugation. Extracts were oxidized 

with acidic or basic iodine. Acidic iodine oxidation quantitatively converts BH4 and 

dihydrobiopterin to biopterin; basic iodine oxidation converts dihydrobiopterin to 

biopterin. Samples were incubated in the dark fo r 1 hr. Excess iodine was removed by 

adding ascorbic acid (final concentration 0.1M). The final solution was analyzed on a 

C18 reversed-phase column using fluorescence detection and authentic biopterin as a 

standard. The amount of BH4 in the extracts was determined from the difference in 

biopterin concentrations generated with acidic and basic iodine oxidation. Arginine 

levels in EC were measured by HPLC (60). Intracellular concentrations of BH4 and 

arginine were calculated on the basis of the average cell volume of rat coronary EC 

(0.348 µL/106 cells). 

NO synthesis in freshly isolated EC. EC were rinsed with the Basal Medium 

Eagle, and then incubated at 37°C for 6 hours in Basal Medium Eagle containing 0.2 
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mM L-arginine, 0.5 mM L-glutamine, 5 mM D-glucose, 100 units/ml penicillin, 

100 µg/ml streptomycin and 0.25 µg/ml amphotericin B. At the end of a 6-h incubation 

period, media were analyzed for nitrite and nitrate (two major stable end products of NO 

oxidation) by HPLC as described by Li et al (65). In all experiments, media incubated 

without cells were run as blanks.  

Data analysis. Results are expressed as mean ± SEM. Data were statistically 

analyzed by unpaired t-test or analysis of variance for repeated measurements using SAS 

(Statistical Analysis System). Probability values less than 0.05 were taken to indicate 

significance. 

 

Results 

Energy food and water intake. Food and water consumption were measured 

every 24 hours. Table 3.3 summarizes the data on feed intake and water intake of ZDF 

rats. Food intake was matched for L-arginine-treated and alanine-treated rats, to make 

their diets isonitrogenous. Arginine and alanine intake from drinking water (Table 3.4) 

were also adjusted daily to ensure isonitrogenous provision of nitrogen per kg body 

weight. Table 3.5 summarizes the data on arginine and alanine intake from diet. Energy 

intake (Table 3.3) was calculated from feed intake and water consumption for both 

groups of ZDF rats.  
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TABLE 3.3 

Feed, water and calorie intake by ZDF rats 
  
Treatment Feed     Water  Gross Calorie † 
                            (g/kg body wt/d)         (ml/kg body wt/d)                (kJ/kg body wt/d) 
 
 
Alanine 99.0 ± 1.0   423 ± 24 1908 ± 18 
   
Arginine     100.5 ± 1.9    472 ± 25 1894 ± 33 
    
 

Data are means ± SEM, n = 4 for alanine group and n = 5 for arginine group. 

† Including diet and drinking water. 

 

 

TABLE 3.4 

Intake of arginine and alanine from drinking water (g/kg body wt/day) by ZDF rats 
 
Treatment             Arginine from Alanine from                  
   drinking water  drinking water          
 
 
Alanine      ----          10.7 ± 0.59  
  
Arginine                            5.7 ± 0.28      ----      
 
 

Data are means ± SEM, n = 4 for alanine group and n = 5 for arginine group. 
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TABLE 3.5 

Intake of arginine and alanine from diet (g/kg body wt/day) by ZDF rats 
 
Treatment  Arginine from          Alanine from               
  diet                          diet  
     
Alanine                         1.43 ± 0.015                            1.38 ± 0.014   
  
Arginine                       1.44 ± 0.026                            1.39 ± 0.025   
 
 

Data are means ± SEM, n = 4 for alanine group and n = 5 for arginine group.  
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Body and tissue weights. Experiment with ZDF rats was started at 9 weeks of 

age. Rat weights were recorded daily. Figure 3.1 shows the change in body weights of 

ZDF rats receiving dietary supplementation of L-arginine or alanine for 10 weeks. A 

significant decrease in body weight gain (Table 3.6) was observed (P<0.01) in arginine-

treated ZDF rats from week 4 post dietary supplementation. Data on tissue weights of 

animals at week 10 after initiating arginine supplementation are summarized in Table 

3.7. Results indicate a marked decrease in epididymal fat (~30%, P<0.05) and abdominal 

fat (~43%, P<0.01) in arginine-supplemented rats, compared with control rats. Except 

for liver and pancreas, no significant differences were found in the weights of all other 

non-fat tissues examined (P>0.05). The ratio of tissue weight (Table 3.8) to whole body 

weight indicates a marked decrease (43%, P<0.01) in abdominal fat and a small decrease 

(P<0.05) in pancreas in arginine-supplemented rats, compared with control rats. There 

was a significant increase (P<0.05) in EDL muscle, soleus muscle, and brain weights in 

arginine-supplemented rats, compared with control rats.  However, for other non-fat 

tissues examined, the ratio of tissue weight to the whole body weight did not differ 

(P>0.05) between control and arginine treated ZDF rats.  
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TABLE 3.6 

Body weights of ZDF rats (g) 
 
Week  Alanine group   Arginine group 
 
 
0  338 ± 4.5   326 ± 8.8 

1  361 ± 5.3   337 ± 12.1 

2  375 ± 5.6   349 ± 12.8 

3  386 ± 9.3   344 ± 17.2 

4  368 ± 9.9   343 ± 15.3 * 

5  397 ± 9.0   349 ± 16.3 * 

6  447 ± 13.0   397 ± 15.6 * 

7  409 ± 15.6   352 ± 18.0 * 

8  404 ± 17.2   333 ± 16.1 * 

9  404 ± 19.9   344 ± 13.3 * 

10  411 ± 21.8   336 ± 13.0 * 
 
 
 Data are means ± SEM, n = 4 for alanine group and n = 5 for arginine group. 

 * P < 0.05 vs alanine treated ZDF rats group.
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     FIGURE 3.1 Changes in body weight of ZDF rats (Data are from Table 3.5). 
 

Body Weight of ZDF Rats

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10

Weeks Post Initiation of Ala/Arg 
Supplementation

B
o

d
y 

W
ei

g
h

t 
(g

)

Mean-Ala ZDF Rats Mean-Arg ZDF Rats



   

 

50 

 
 
 
 

TABLE 3.7 

Tissue weight (g) of ZDF rats after 10-week arginine supplementation 
 
Tissue       Treatment 
   ____________________________________________________ 
      Alanine   Arginine 
 
 
Epdidymal fat      9.38 ± 0.69   6.56 ± 0.57 * 

Abdominal fat 15.25 ± 1.34   8.64 ± 0.63 ** 

Liver 22.85 ± 1.30   17.75 ± 1.06 * 

Pancreas 1.69 ± 0.05    1.14 ± 0.06 ** 

EDL Muscle † 0.12 ± 0.004   0.11 ± 0.005 

Soleus Muscle 0.13 ± 0.008   0.12 ± 0.004  

Small Intestine  14.28 ± 1.1   12.68 ± 0.35 

Kidney 4.21 ± 0.08   3.95 ± 0.18 

Brain 1.72 ± 0.05   1.69 ± 0.03 

Heart 1.55 ± 0.12   1.47 ± 0.07 

Lung 1.05 ± 0.11   1.28 ± 0.05 

Spleen 0.62 ± 0.042   0.52 ± 0.032 

Testes 2.63 ± 0.13   2.49 ± 0.13 
 
 

Data are means ± SEM, n = 4 for alanine group and n = 5 for arginine group.  

† EDL = Extensor Digitorium Longus Muscle. * * P < 0.01, * P < 0.05 by t-test. 
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TABLE 3.8 

Ratio of tissue weight to whole body weight (g/kg body wt) of ZDF rats after 10-week 
arginine supplementation 

 
Tissue       Treatment 
     ____________________________________________________ 
      Alanine    Arginine 
 
 
Epdidymal fat     22.7± 0.97     19.6 ± 1.1 

Abdominal fat 36.7 ± 1.5     25.6 ± 1.2 ** 

Liver 55.4 ± 2.03    53.4 ± 2.7 

Pancreas 4.1 ± 0.17     3.4 ± 0.20 * 

EDL Muscle † 0.29 ± 0.003    0.33 ± 0.01* 

Soleus Muscle 0.31 ± 0.012    0.37 ± 0.004 *  

Small Intestine  35.2 ± 4.5    38.4 ± 1.9 

Kidney 10.2 ± 0.39    11.9 ± 0.58 

Brain 4.2 ± 0.23    5.1 ± 0.08 * 

Heart 3.7 ± 0.18    4.5 ± 0.29 

Lung 3.5 ± 0.45    4.3 ± 0.10 

Spleen 1.5 ± 0.05    1.6 ± 0.13 

Testes 6.4 ± 0.52    7.6 ± 0.58 
 
 

Data are means ± SEM, n=9. † EDL = Extensor Digitorium Longus Muscle.  

* * P < 0.01, * P < 0.05 by t-test. 
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Plasma glucose levels. Venous plasma was obtained from unanesthetized ZDF 

rats on weeks 3, 6 and 10 post-arginine supplementation for glucose analysis. 

Hyperglycemia (19-22 mM glucose) occurred in all ZDF rats. There was no significant 

difference (P>0.05) in plasma glucose levels (Table 3.9) between control and L-

arginine-treated rats at any sampling day. This was contrary to the results obtained with 

the STZ-diabetic rat model.  

Plasma insulin and arginine levels. At the conclusion of the study (10 week 

post-arginine supplementation), plasma arginine and insulin concentrations were 

measured. ZDF rats exhibited low levels of plasma insulin (normal physiological 

concentrations ~3-4 ng/ml) and plasma arginine (normal ~ 250-300 µM). Arginine 

supplementation increased (P<0.01) plasma arginine concentrations by ~ 274% 

compared with alanine-treated rats (Table 3.10). However, plasma insulin levels did not 

differ (P>0.05) between alanine and arginine-treated rats.  
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TABLE 3.9 

Plasma concentrations of glucose in 19-week-old ZDF rats after 10-week arginine 
supplementation 

 
 Treatment              Glucose (mM) 
           ________________________________________________________ 
       3 wk    6wk         10 wk 
 
 
Alanine  19.55 ± 0.66     22.23 ± 0.59      19.52 ± 0.42 
 
Arginine           20.41 ± 0.57       22.24 ± 0.33    18.76 ± 0.59 
  
 

Data are means SEM, n = 4 for alanine group and n = 5 for arginine group. 
 

 

 

TABLE 3.10 

Plasma concentrations of arginine and insulin in 19-week-old ZDF rats after 10-week 
arginine supplementation 

 
 Treatment   Arginine    Insulin    
         (µM)                                        (ng/ml)      
     
 
Alanine         206.9 ± 29.7          1.5 ± 0.3  
        
Arginine          773.56 ± 81.8 *   1.2 ± 0.2  
  
 

Data are means SEM, n = 4 for alanine group and n = 5 for arginine group. 

* P < 0.01 by t-test. 
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Intracellular concentrations of arginine, BH4, and NO production in rat 

coronary EC. BH4 levels, arginine levels and NO production were greater (P<0.01) in 

EC from arginine-treated ZDF rats compared with alanine-treated rats (Table 3.11). The 

relative increase in arginine concentration, BH4 concentration, and NO production in EC 

from ZDF rats, post arginine supplementation, was similar to those for STZ-diabetic SD 

rats.  

 

 

TABLE 3.11 

Intracellular concentrations of arginine, BH4 and NO production in coronary endothelial 
cells of 19-week-old ZDF rats after 10-week arginine supplementation 

 
Rats  [Arginine]  [BH4]   NO production 
     (mM)   (µM)            (pmol/106 cells/h) 
 
 
Alanine 0.70 ± 0.03  1.12 ± 0.06  71 ± 6 
 
Arginine 2.08 ± 0.10 *  2.47 ± 0.14 *  158 ± 9 * 
 
 

Data are means SEM, n = 4 for alanine group and n = 5 for arginine group. 

* P < 0.01 by t-test. 
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Discussion 

This is the first study to determine the effects of dietary L-arginine 

supplementation on 1) body weight, plasma concentrations of glucose, insulin and 

arginine in ZDF rats, and 2) concentrations of arginine and BH4, and NO synthesis in EC 

of ZDF rats. A novel, important finding of this work is that oral arginine administration 

to ZDF rats resulted in a significant decrease in epididymal fat (~30%) and abdominal 

fat (~43%) and in body weight. The reason for this observation is not clear at present. 

However, arginine or its product (NO) may inhibit lipogenesis and/or increase lipolysis. 

Importantly, others (30) have reported that a deficiency in the NO-cGMP-dependent 

pathway reduces mitochondrial biogenesis and promotes weight gain in mice, suggesting 

a critical role for NO in regulating body energy balance. By increasing NO synthesis, 

arginine supplementation may promote mitochondrial oxidation of fat in adipose tissue, 

liver and skeletal muscle, and thereby reducing body fat content. Except for small 

decreases in liver and pancreas weights, no significant difference was found in the 

weights of all other non-fat tissues examined. These results imply that the difference in 

body weights between control and arginine-treated ZDF rats is primarily due to changes 

in body fat. In addition, the finding suggests that adipose tissue is most sensitive to 

dietary arginine supplementation and perhaps to NO-mediated mitochondrial biogenesis. 

Future studies are necessary to determine body composition and energy expenditure in 

control and arginine-treated ZDF rats. 

In contrast to the results found with SD rats, oral supplementation of L-arginine 

did not affect plasma glucose levels in ZDF rats compared with alanine-treated animals. 
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This can be due to excess fat in the body, the oxidation of which provides energy and 

spares glucose. Oxidation of fatty acids, which results in the production of acetyl-CoA, 

inhibits glycolysis and stimulates gluconeogenesis. Importantly, gluconeogenesis also 

depends on fatty acid oxidation for ATP provision. Although plasma triglycerides levels 

were not measured in this study, it is possible, that hydrolysis of high levels of 

triglycerides may provide glycerol for hepatic gluconeogenesis. In type-II diabetic 

subjects, insulin-sensitive tissues do not efficiently utilize glucose, which may contribute 

to the elevated levels of plasma glucose (19-22 mM) in ZDF rats.  Interestingly, in 

contrast to STZ-diabetic rats, arginine did not increase plasma levels of insulin in ZDF 

rats. This finding may be due to a lack of stimulation of insulin release from pancreatic 

beta cells of ZDF rats. Plasma arginine levels were increased by arginine 

supplementation to a greater extent in ZDF rats compared with STZ-diabetic rats. This 

result may be explained by greater intake of arginine from diet and drinking water in 

ZDF rats.  

As in STZ-diabetic rats, dietary supplementation of L-arginine increased NO 

production in coronary EC of ZDF rats. Importantly, we found that L-arginine increased 

endothelial BH4 availability in ZDF rats. In both of these animal models of diabetes, the 

cellular mechanism for BH4 synthesis and the regulation of this pathway appear to be 

intact, which allows for the response of EC to elevated concentrations of extracellular 

arginine. Thus, through an increase in BH4 availability, administration of L-arginine 

restored the ability of EC to make NO in both type-I and type-II diabetes mellitus. 

Collectively, the results of this study support the hypothesis that dietary L-arginine 
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supplementation increases the availability of BH4 for NO synthesis in EC of diabetic 

rats, thereby preventing endothelial dysfunction.   

In conclusion, oral administration of arginine markedly increased endothelial 

BH4 availability and NO synthesis, and reduced abdominal and epididymal fat in ZDF 

arts. The weight–reducing effect of arginine may be mediated by NO, an activator of 

mitochondrial biogenesis. Arginine may be a novel anti-obesity nutrient, which has 

important implications for the prevention and treatment of obese, and diabetic patients. 
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CHAPTER IV 

GENERAL DISCUSSION AND CONCLUSION 

 
Arginine is Beneficial for Diabetic Rats 

L-arginine is a versatile amino acid in animal and human cells, serving as a 

precursor for the synthesis of not only proteins but also NO, creatine, agmatine, proline, 

polyamines, and other molecules involved in regulating cellular homeostatsis. L-

Arginine exerts favorable effects in humans with a number of atherosclerosis risk factors 

such as hypercholesterolemia, hypertension, smoking, and diabetes. In view of 

conflicting findings in the literature regarding the effect of arginine on endothelial 

function in diabetes (71), the present study was conducted to determine the effects of 

arginine in STZ-diabetic and ZDF rats at cellular, tissue and whole body levels. Results 

of this thesis work provide evidence for the beneficial effects of dietary intervention with 

L-arginine in both type-I and type-II diabetic subjects.  

An exciting finding of this work is that oral supplementation of L-arginine to 

STZ-induced diabetic rats prevented hyperglycemia. A daily dose of L-arginine-HCl 

(equivalent to 0.5 % arginine) in drinking water markedly decreased glucose levels in 

diabetic rats by ~54%. Hence, L-arginine possesses antihyperglycemic properties, likely 

due to an NO-mediated increase in blood flow, glucose uptake by skeletal muscle, and 

tissue insulin sensitivity. This observation is in agreement with recent data of Mendez 

and Balderas (32), who reported beneficial effects of L-arginine administration on 

reducing serum glucose levels. Further, Mohan and Das (72) demonstrated that L-

arginine and NO prevented beta-cell damage and the severe effects of diabetes. Also, 
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Popov et al. (66) reported that oral administration of 622 mg arginine/kg body weight to 

hamsters diminished the high concentrations of circulating glucose by 63%. However, 

arginine supplementation for 10 weeks is not effective in reducing plasma glucose or 

increasing plasma insulin levels in ZDF rats. This could be due to excess fat in the body, 

and hence the body uses lipid oxidation for providing energy and spares glucose. 

Oxidation of fatty acids, which result in the production of acetyl-CoA, inhibits 

glycolysis and stimulates gluconeogenesis. At the end of a 10-week period of arginine 

supplementation, there remains a substantial amount of abdominal and epididymal fat in 

ZDF rats. We expect that when a period of arginine supplementation is extended beyond 

10 weeks to deplete more body fat, arginine treatment may be able to reduce plasma 

levels of glucose. Further studies are required to test this hypothesis. 

The beneficial effect of L-arginine administration has been thought to result from 

an increase in insulin secretion by panc reatic ß-cells that are not destroyed after STZ 

injection (73). Consistent with this view, L-arginine increases the secretion of insulin 

from beta cells of the pancreas (23,36). Additionally, NO synthesis from arginine is 

known to mediate insulin release from pancreatic cells in the presence of glucose (32). 

Accordingly, arginine supplementation increased plasma insulin levels in both diabetic 

(by ~209%) and non-diabetic (by ~44%) STZ-SD animals. Interestingly, L-arginine 

supplementation had no effect on plasma insulin levels in ZDF rats, probably due to a 

lack of stimulation of insulin release from pancreatic ß-cells in this type-II diabetic 

animal model. Another possible reason may be age, as ZDF rats and STZ-diabetic rats 



   

 

60 

 
 
 
 

were 19 and 12 weeks old, respectively. In older animals, insulin release from ß-cells 

may not be sensitive to arginine stimulation. 

Another striking finding of this study is that L-arginine treatment reduced the 

weight loss of STZ-diabetic rats. SD diabetic rats treated with L-arginine had 36% less 

weight loss than alanine-treated diabetic rats. L-arginine supplementation did not affect 

the weight gain, food and water intake in normal, non-diabetic rats. Thus, through NO 

synthesis, arginine may improve the efficiency of utilization of dietary nutrients in type-I 

diabetic rats. It is possible that an increase in plasma insulin levels in STZ-diabetic rats 

stimulates protein synthesis and inhibits protein degradation in skeletal muscle and the 

whole body. 

The third novel, important finding of this study is that L-arginine 

supplementation promoted a significant decrease in body weight gain by ZDF rats, 

compared with alanine-treated rats. The reason for this finding is not clear at present. 

However, arginine or its product (NO) may inhibit lipogenesis and/or increase lipolysis 

(Fig. 4.1). In this regard, it is noteworthy that Nisoli et al (30) reported that the NO-

cGMP-dependent pathway controls mitochondrial biogenesis and body energy balance. 

NOS null-mutant mice had a reduced metabolic rate and accelerated weight gain. In our 

study, there were marked decreases in epididymal fat (~30%) and abdominal fat (~43%) 

in arginine-supplemented ZDF rats as compared with the alanine-treated rats. Thus, 

arginine may be a novel anti-obesity nutrient. Future studies are required to quantify 

body composition and whole body energy expenditure in control and arginine-treated 

ZDF rats 



   

 

61 

 
 
 
 

 

 

FIGURE 4.1 Role of arginine and NO in lipid metabolism. Abbreviations: TG, 

triglycerides; FFA, free fatty acids; GTP, guanosine tri phosphate; NO, nitric oxide; BH4, 

(6R)- 5,6,7,8-tetrahydro-L- biopterin; SR, Sepiapterin reductase; PTS, 6-Pyruvoyl 

tetrahydrobiopterin synthase. The sign (+) denotes activation of the reaction and the sign 

(-) denotes inhibition of the reaction.  
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Induction of diabetes with STZ injection in Sprague Dawley rats resulted in 

decreased levels of plasma [arginine] (67). Results of this study also indicated a decrease 

in plasma arginine levels in control ZDF rats. Impaired arginine synthesis and/or 

increased arginine degradation may contribute to low levels of circulating arginine in 

diabetic rats. Whatever the mechanism, arginine supplementation was effective to 

increase plasma [arginine] in both rat models of diabetes. Similarly, other researchers 

have reported decreases in plasma concentrations of arginine in experimental diabetic 

animals (10,11,12) and in diabetic humans (21,22). Thus, reduced plasma levels of 

arginine in diabetic subjects provide a metabolic basis for dietary arginine 

supplementation to diabetics. 

The “arginine paradox” has been a major conundrum in the NO research field 

over the past decade. Intracellular values of L-arginine (0.49 mM in SD rats; 0.70 mM in 

ZDF rats) in control diabetic rats were ~150 to 250 fold higher than the Km value of 

eNOS (2.9 µM) for L-arginine. Thus, on the basis of kinetics of the purified NOS in the 

test tube, an increase in intracellular or extracellular concentration of L-arginine would 

not provide more substrate for NO synthesis because eNOS should be saturated with 

arginine at levels of 0.49 or 0.70 mM. However, interactions of cellular substrates and 

cofactors with an enzyme in cells are likely more complex than in vitro enzyme 

reactions would indicate. Findings of this study provide the first line of evidence 

showing that dietary supplementation of L-arginine increases NO production in coronary 

EC of both STZ-diabetic SD rats and Zucker rats. This data further supports the notion 

that extracellular arginine concentrations are critical for endothelial NO production.  
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A central hypothesis of this thesis work is that dietary L-arginine 

supplementation increases the availability of BH4 for NO synthesis in EC of diabetic 

rats, thereby preventing endothelial dysfunction. Results of the present study confirm 

and extend the earlier findings from our laboratory that STZ-diabetic rats and ZDF rats 

exhibit low levels of BH4 in EC. To our knowledge, this is the first report of the effect of 

dietary arginine supplementation on increasing endothelial BH4 availability in both STZ-

diabetic SD rats and ZDF rats. Meininger et al. (13) reported that EC from the 

spontaneously diabetic BB rat have a deficiency of BH4 and replenishing BH4 levels in 

the EC from diabetic animals restores their ability to make NO. As a result of an increase 

in BH4 availability, administration of L-arginine restored the ability of EC to make NO 

in both STZ and ZDF diabetic rat models. Collectively, our results demonstrate that L-

arginine improves endothelial function in diabetic subjects through enhancing the 

availability of BH4 for NO synthesis by eNOS. 

Our findings with diabetic rats may have important implications for reducing 

body fat in both farm animals and humans. For example, dietary arginine 

supplementation may provide a means to decrease abdominal, back and intramuscular 

fat in pigs and poultry, thereby increasing lean tissue content. Likewise, dietary arginine 

supplementation may be extremely beneficial for obese patients. Obesity is a major 

public health problem in the U.S. and worldwide. Recent data show that 31 % and 65 % 

of the U.S. adult population are obese and overweight, respectively (74). Children and 

adolescents have not been immune to this epidemic, as 15 % of them are obese (74). 

Worldwide, more than 300 million adults are obese and over one billion are overweight 
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(74). Obesity is a major risk factor for such life-threatening diseases as type-II diabetes, 

atherosclerosis, hypertension, and some types of cancer (including colon and breast 

cancers). Consequently, obesity claims an increasing number of lives and contributes to 

tremendous costs of medical care. In the U.S. alone, about 300,000 people die of 

obesity-related diseases every year; incidence of type-II diabetes among children has 

increased 10-fold, and obesity accounts for 6-8 % of all health care expenditures (74,75). 

Unfortunately, clinicians have few tools to fight the obesity epidemic, because current 

antiobesity drugs are not highly effective and are fraught with side effects (76). 

Identifying arginine supplementation as a new means to reduce body fat will be 

extremely beneficial.  

 

Summary 

This research focuses on the beneficial roles of dietary L-arginine 

supplementation in diabetic rats. Specifically, we evaluated the effects of dietary L-

arginine intervention on 1) body weight, 2) plasma concentrations of glucose, insulin 

and arginine, 3) concentrations of arginine and BH4 in EC, and 4) NO synthesis in EC in 

two rat models of diabetes: STZ-diabetic rats (an animal model for type-I diabetes) and 

ZDF rats (an animal for type-II diabetes). Our results demonstrate that oral 

administration of arginine is beneficial for both STZ and ZDF diabetic rats and has no 

adverse effects in non-diabetic rats. Dietary arginine supplementation increased plasma 

concentrations of arginine as well as concentrations of arginine and BH4 in EC, and NO 

synthesis in EC, in both STZ-diabetic and non-diabetic SD rats, and in ZDF rats. 
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Additionally, arginine supplementation ameliorates weight loss in STZ diabetic rats, and 

promotes weight loss in ZDF rats. Thus, we expect that dietary arginine supplementation 

will be beneficial for diabetic subjects.  

The key findings of the present work are as follows: 

1. In STZ-diabetic SD rats, L-arginine supplementation for 2 weeks increased 

plasma concentrations of arginine (110%), plasma concentrations of insulin 

(209%), and arginine concentrations (173%), BH4 concentrations (128%), and 

NO synthesis (125%) in EC, compared with alanine-treated rats. 

2. In STZ-diabetic SD rats, L-arginine supplementation reduced body weight loss 

(36%) and prevented hyperglycemia. 

3. In non-diabetic SD rats, L-arginine treatment increased plasma concentrations of 

arginine (144%), plasma concentrations of insulin (44%), and arginine 

concentrations (88%), BH4 concentrations (106%) and EC NO synthesis (80%) 

in EC, compared with alanine-treated rats.  

4. Arginine supplementation for 10 weeks did not affect plasma levels of glucose 

and insulin in ZDF rats, compared with alanine-treated ZDF rats.  

5. In ZDF rats, supplementation with L-arginine for 10 weeks reduced epididymal 

fat (30%), abdominal fat (43%) and body weight gain (18%). 

6. Treatment with L-arginine in ZDF rats increased plasma concentrations of 

arginine (273%), and arginine concentration (197%), BH4 concentrations (120%) 

and NO production (122%) in EC by more than two folds, as compared with 

alanine-treated ZDF rats.  
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Results of this thesis work may have important implications for both animal 

agriculture and human health. Future studies are necessary to determine whether 

dietary arginine supplementation can reduce body fat in farm animals (e.g. pigs and 

chicks), companion animals (e.g. dogs and cats), and obese humans.  
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