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ABSTRACT 

Preemption Strategy for Traffic Signals at Intersections near  

Highway-Railroad Grade Crossings.  (December 2003) 

Hanseon Cho, B.S., Ajou University; 

M.S., Ajou University 

Chair Of Advisory Committee: Dr. Laurence R. Rilett 

 

 

Because the operational characteristics of signalized intersections near highway-railroad 

grade crossings (IHRGCs) are different from those of signalized intersections located 

elsewhere in the traffic system, standard operational strategies do not apply.  This is 

because safe operation at IHRGCs takes precedence over all other objectives.   

 

Because the prime objective of the current preemption methods is to clear the crossing, 

secondary objectives such as safe pedestrian crossing time and minimized delay are 

given less consideration or ignored completely.  Consequently, state-of-the-practice 

strategies may cause serious pedestrian safety and efficiency problems at IHRGCs.  

Therefore, there is a definite need for research on how to improve traffic signal 

preemption strategies.  

 

An important element of preemption strategy is detection of trains and prediction of 

arrival times.  However, because of the limitations of current detection technologies, 

estimation algorithms, etc., there is a wide range in these warning times.  In this 

dissertation, a new train-arrival prediction algorithm was developed using detection 

equipment located farther upstream from the HRGC.   

 

The state-of-the-art transition preemption strategy (TPS) was developed to ensure that as 

preemption is initiated by approaching trains, the signal display does not change in a 

manner that endangers either pedestrians or drivers.  However, because it does not 



 iv

account for the variability of predicted train arrival times, there is still a possibility of 

failure. 

  

Therefore, a new transition preemption algorithm that is specifically designed to 

improve intersection performance while maintaining or improving the current level of 

safety is developed.  This dissertation developed a preemption strategy (TPS3) that uses 

better train arrival time estimates to improve the safety and efficiency of IHRGCs.  The 

approach was simulated on a test bed in College Station, Texas, and it was concluded 

that the new TPS improves the safety and operation of intersections near highway-

railroad grade crossings. 
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CHAPTER I  

INTRODUCTION 

1.1  PROBLEM STATEMENT 

Because the operational characteristics of signalized intersections near highway-railroad 

grade crossings (IHRGCs) differ from those of signalized intersections elsewhere in the 

traffic system, standard operational strategies do not apply.  With an IHRGC, safe 

operation takes precedence over all other objectives.  When a train is detected 

approaching the highway-railroad grade crossing (HRGC), the normal traffic signal 

operation is preempted to ensure all queued vehicles on the track are cleared before the 

train reaches the crossing.  The traffic signal operation timing plan of the IHRGC, the 

distance between the intersection and the HRGC, and the traffic conditions on each 

approach of the intersection are important factors in identifying the track clearance 

strategy.  Important elements of the preemption strategy include detecting the train and 

predicting its arrival time at the crossing. Because the prime objective of the current 

preemption methods is to clear the crossing, secondary objectives, such as safe 

pedestrian crossing time and minimizing delay, are given less consideration or ignored 

completely.  Consequently, state-of-the-practice strategies may cause serious pedestrian 

safety and efficiency problems at the IHRGC.  Given the large number of traffic signals 

in close proximity to highway-railway grade crossings in the U.S., the fact that current 

architecture may not be adequate with respect to safety and efficiency, and the high cost 

of accidents, there is a definite need for research on how to improve traffic signal 

preemption strategies at IHRGCs.  

 

On the surface, the preemption logic of traffic signal controllers at IHRGCs is relatively 

simple. That is 1) as a train approaches the crossing it must be detected a certain time 

before it actually reaches the crossing, and 2) the vehicles must be cleared from the 
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HRGC before some set time period.  This must all be accomplished in a way that does 

not endanger other users of the intersection such as pedestrians.  However, a number of 

complex elements need to be considered when developing a successful preemption 

strategy.  A key requirement to any preemption strategy is estimating the train arrival 

time.  The estimate may be in terms of when crossing gates come down, or it may be in 

terms of a time headway until the train enters the HRGC.  Currently, railroad companies 

in the U.S. are required to give a minimum of 20 seconds of warning time before their 

trains arrive at crossings with active warning devices.  However, because of the 

limitations of current detection technologies, estimation algorithms, etc., a wide range of 

warning times occurs.  For example, it has been shown in Knoxville, Tennessee, that the 

range in warning time varies from 20 seconds to 90 seconds with an average value of 

41.7 seconds (1).  The uncertainty in arrival time arises because existing prediction 

methods assume that the train’s speed at the time of detection remains constant until the 

train reaches the crossing.  The relatively short period of warning time occurs because 

the train detection equipment is located fairly close to the HRGC.  As the accuracy of the 

predicted train arrival time improves, it would be expected that the traffic signal 

controller of the IHRGC will be able to initiate the preemption strategy closer to the 

ideal time, thus improving the safety and efficiency of the IHRGC.  In addition, if the 

train arrival time can be predicted earlier, then more robust preemption strategies may be 

employed that also will increase the efficiency and safety of the IHRGC.  One goal of 

this research is to develop new train arrival prediction algorithms using detection 

equipment located further upstream from the HRGC.  It is anticipated that the mean 

arrival time and a prediction interval will be estimated, and that both will be used in the 

signal timing methodology. 

 

The number of preemption strategies available depends on the arrival time estimate and 

its accuracy.  Recently, the transition preemption strategy (TPS) was developed at the 

Texas Transportation Institute (2,3,4,5,6) that explicitly accounts for the current signal 

status at the onset of preemption.  The goal of the TPS algorithm was to ensure that as 
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the preemption was initiated by approaching trains, the signal display did not change in a 

manner that endangered either pedestrians or drivers.  Although the TPS algorithm 

provides a smooth transition to preemption, the developers did not account for the 

variability of predicted train arrival times when identifying the default parameters.  

Therefore, even though the goal of TPS is to eliminate the case where the minimum 

vehicle time and pedestrian clearance time will be truncated before the preemption 

begins, in practice this goal is not achieved successfully.  Also, it does not account for 

overall intersection performance.  That is, the TPS algorithm may operate the signal in 

an ineffective manner with respect to the intersection performance as a whole 

(1,2,3,4,5,6).  Therefore, a new transition preemption algorithm that is specifically 

designed to improve the intersection performance while maintaining or improving the 

current level of safety is required.  The focus of the research described in this 

dissertation is on developing a better preemption strategies and a better train arrival time 

predict methodology in order to improve the safety and efficiency of IHRGCs. 

 

1.2  RESEARCH OBJECTIVES 

The objectives of this research are to develop 1) an accurate prediction algorithm of train 

arrival time, which includes prediction bounds on the estimate, at the HRGC based on 

data from upstream detectors, and 2) a new transition preemption strategy that uses the 

predicted arrival time and associated prediction intervals in the transition preemption 

methodology to operate signalized intersections near highway-railroad crossings in a 

safe and efficient manner. 

 

1.3  SCOPE OF STUDY  

1.3.1 Forecasting Train Arrival Time 

Better forecasting of train arrival time is essential if improved IHRGC preemption 

strategies are to be developed.  The transition preemption methodology requires a 

forecast of the train arrival time that must occur sooner than required under the normal 

preemption strategy.  To provide the earlier forecast train arrival time, the current TPS 
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assumes the train travels at a constant speed from the time of last detection until it 

arrives at the HRGC. The constant speed is equal to the last observed speed. This 

assumption is problematic because if the train is accelerating (decelerating), the normal 

preemption will begin later (earlier) than the optimal time.  In addition, because the 

current approach uses only one speed measurement, the trend of speed change is not 

reflected to the prediction algorithm.  

 

Regardless of which prediction algorithm is used, the forecast will be subject to some 

error. Therefore, the forecast train arrival time should be updated as new speed data are 

obtained in order to reduce the prediction error.  The updated prediction time will be 

used within the transition preemption methodology.  In this dissertation, a new train 

arrival prediction algorithm is developed using time series speed data from Doppler 

microwave radar.  Also, the prediction error bounds are obtained, and the method to 

incorporate these bounds into the new transition preemption strategy is developed.  

 

1.3.2 Preemption Transition Methodology 

Because 1) state-of-the-practice preemption strategies are designed to clear queued 

vehicles off the tracks as quickly as possible, and 2) the preemption warning time is 

relatively small, the current state-of-the-practice preemption algorithm is typically 

operated so that the track clearance phase has the higher priority.  This means that the 

minimum vehicle and/or pedestrian clearance length may not be provided.  A direct 

result of this strategy is that vehicle and/or pedestrian phases that conflict with the track 

clearance phase can be terminated abruptly.  Thus, an inadequate minimum green time 

may be provided to pedestrians or vehicles that have already entered the intersection.  As 

discussed in Section 1.1, the TPS algorithm was developed to eliminate the probability 

that the minimum vehicle time and pedestrian clearance time will not be provided before 

a preemption begins.  This design, however, can result in sub-optimal performance of 

the intersection as a whole.  Furthermore, the TPS was designed to be deterministic.  

Because the developers did not account for variability of predicted arrival time, a 
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possibility still exists that the controller will truncate a minimum vehicle time or 

pedestrian clearance interval when preemption occurs.  That is, the logic is based solely 

on average arrival time.  Using a prediction interval about the estimated arrival time 

could improve the operating condition of the signal.  For example, the current transition 

preemption algorithm may provide more green time to the main street phase, which is 

parallel to the railroad, even though these approaches do not have any vehicle on them 

before the preemption.  Because these phases also are provided during the preemption, 

providing more green time to the phases before the preemption is not necessary.  

Intuitively, the transition algorithm should provide more time to the phases that are not 

active during preemption.  Therefore, a new transition preemption strategy is needed to 

efficiently operate the intersection during the transition into preemption. 

 

1.3.3 Organization 

Chapter II provides a literature review of the state of the art of the main research.  It 

includes an introduction to preemption guidelines and sequence, train detector 

technologies, train arrival time prediction algorithms, and the transition preemption 

strategy.  Chapter III provides the methodology of this study.  It contains the simulation 

methods for sensitivity analysis and a description of the test bed.  A new train arrival 

time prediction algorithm and a new transition preemption strategy are developed in 

Chapters IV and V, respectively.  The methodology is demonstrated on a test bed in 

College Station, Texas, as shown in Chapter VI.  The findings of this dissertation and the 

future research are presented in Chapter VII.  
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CHAPTER II 

LITERATURE REVIEW  

Many steps should be followed when considering the implementation of signal 

preemption at the IHRGC. The first step is to determine if preemption is required at the 

intersection.  If preemption is needed, the preemption sequence should be designed 

considering the specific conditions of the intersection and the crossing.  In this chapter 

traffic signal preemption strategies at IHRGCs will be reviewed.  The train detection 

technologies, the current transition preemption strategy, and train arrival time prediction 

algorithms also will be reviewed. 

 

2.1  PREEMPTION GUIDELINE AND PREEMPTION SEQUENCE 

2.1.1 Preemption Standard and Guidelines 

The Manual on Uniform Traffic Control Devices (MUTCD) states that “On tracks where 

trains operate at speeds of 20 mph or higher, circuits controlling automatic flashing light 

signals shall provide for a minimum operation of 20 seconds before arrival of any train 

on such track” (7).  The Association of American Railroads (AAR) Signal Manual states 

that “warning time devices shall operate for a minimum of 20 seconds before a train 

operating at maximum speed enters the crossing” (8,9).   

 

To provide the appropriate warning time, the location of the train detector is critical.  In 

North America, the detector location is based on a minimum warning time (MWT). The 

recommended value from the MUTCD and the AAR Signal Manual is 20 seconds.  The 

product of the fastest train expected and the minimum warning time is used to identify 

detector location as shown in Equation 2-1 (10).   

 

∆  = Φ × W (2-1) 

where;  

 ∆      = Detector location from the crossing (m); 
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 Φ      = Fastest allowable train speed for the track (m/s); and 

 W      = Minimum warning time provided to crossing users (s). 

 

Equation 2-2 from the AAR Signal Manual shows all of the additive factors that should 

be considered when calculating the total warning time (8,10).  The total warning time, 

W*, is a function of the width of the crossing, equipment response time, safety buffer 

time, preemption time, and minimum warning time. 

 

W* = W + χ + φ + β (2-2) 

χ = )
3

7.10(upRound −δ  (2-3) 

where; 

 W*   = Total warning time (s); 

 χ      = Clearance time for each additional track clearance distance (s);  

 δ      = Minimum track clearance distance (m); 

 φ      = Adjustment time (s); and 

 β      = Buffer time added for safety purposes into the minimum warning 

time (s).  

 

If the minimum track clearance distance is greater than 10.7 m, additional time, known 

as the clearance time (χ), is provided.  AAR recommends 1 second of clearance time (χ) 

for each additional 3.0 m of track clearance distance as shown in Equation 2-3.  The 

adjustment time, φ, accounts for equipment response, motion sensing and constant 

warning time detectors, and automatic gate activation time.  Automatic gates should 

activate no less than 3 seconds after the flashing light signals are started.  The AAR also 

allows a buffer time (β) to be added for safety purposes.  The β is based on engineering 

judgment but should be less than 25 percent of the sum of δ plus χ (8,9,10).   
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The MUTCD recommends that preemption should be applied when the distance between 

a signalized intersection and the HRGC is less than 60 m (200 ft).  However, no 

explanation is provided on how this recommendation was identified.  Generally, 

preemption may be required at an intersection, even when the distance is more than 60 

m, if the prevailing queuing characteristics result in blockage of the HRGC.  Recently, 

Marshall and Berg showed that preemption should be considered even if the intersection 

is located farther from the HRGC than the 60 m based on an analysis using macroscopic 

traffic flow modeling procedures (9,11).  Based on the results of the study, the authors 

contend that preemption should be implemented wherever the possibility of collision 

between trains and queued vehicles exists, regardless of the distance.   

 

Preemption warning time is often longer than the total warning time because the phase 

clearance time of the operation phase and track clearance time should be provided before 

trains arrive at the HRGC.  Preemption warning time is calculated considering the time 

from the start of preemption to the end of the separation time after track clearance time 

as shown in Equations 2-4 and 2-5.  If the total warning time is greater than preemption 

warning time, the total warning time should be used as the preemption warning time. 

 

PWT  = γ  + σ + Yi + Ri + τ + Ω (2-4) 

PWT  = Max(PWT ,W*) (2-5) 

where; 

 PWT  = Preemption warning time (s); 

 γ       = Minimum green time for any vehicle phase and any pedestrian phase 

at the onset of the preemption (s); 

 σ       =  Selective pedestrian clearance: The time provided to clear a 

terminating walk during the transition to track green (s); 

 Yi     = Yellow interval of current phase i (s); 

 Ri     = All-Red interval of current phase i (s); 

 τ      = Track clearance time (s); and 
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 Ω     = Separation time (s). 

 

2.1.2 Preemption Sequence  

All controllers currently in use have the same basic preemption sequencing, in 

accordance with currently accepted practice (10,12).  The normal preemption sequence 

and the required variables for each step are shown in Figure 2-1. 

 

 

FIGURE 2-1 Preemption Sequence and the Required Variables for Each Step 
 

 

2.1.2.1 Entry into Preemption 

Because time available before the train arrives at the HRGC is relatively short, the signal 

controller usually initiates the preemption sequence immediately upon detection of an 

approaching train.  However, several signal controllers have the ability to choose 

between a locking and nonlocking mode of operation, similar to that of inductive loop 

detectors.  In the locking mode, the preemption sequences are initiated immediately and 

Entry Into Preemption

Terminate the Current Phase

Start Track Clearance Phase

Preemption Hold Interval

Return to Normal Operations

• Track Clearance Phase 

• Minimum Vehicle Green
• Minimum Pedestrian Clearance Time
• Exit Phase

• Minimum Vehicle Green Time 
• Minimum Pedestrian Clearance Time

• Signal Timing during Hold Interval

Required Variables
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cannot be shortened or aborted once the sequence has been initiated.  The only exception 

is for start-up flash or external start.  In the nonlocking mode,  a programmable delay 

timer is started once the train is detected. If the preemption call is still present when the 

timer has expired, the preemption is initiated.  If the preemption call is no longer there, 

as would be the case if the train had stopped and reversed direction, the preemption is 

not initiated and normal operation would continue  (10,13,14). 

   

2.1.2.2 Terminating the Current Phase 

At certain points in the cycle, the termination can occur immediately at the onset of 

preemption and, thus, the track clearance phase is provided directly, that is, in the case 

that the minimum green time and pedestrian clearance time are already provided at the 

onset of preemption.  At other points, however, the current phase must be extended to 

provide the minimum interval time prior to implementing the track clearance phase. 

Therefore, the point at which the difference between the start of preemption and the start 

of track clearance time, known as the wait time, would be the greatest must be identified 

in the cycle.  The required wait time prior to the track clearance phase is termed the 

right-of-way transfer time.  It is calculated based on Equation 2-6.   

 

 K  =  Yi + Ri                                              if c – Si  ≥ max(γ , σ) i∀  

      = max(γ , σ) – (c – Si) + Yi + Ri          if c – Si  < max(γ , σ) i∀  

(2-6) 

where; 

 K     = Right-of-way transfer time (s); 

 Si    = Start time of phase i in the cycle (s) (i = 1,..,Number of phases in the 

cycle); 

 c      = Time in the cycle (s); 

 γ       = Minimum green time for any vehicle phase and any pedestrian phase 

at the onset of the preemption (s); 

 σ      = Selective pedestrian clearance: The time provided to clear a 

terminating walk during the transition to track green (s); and 
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 Yi     = Yellow interval of current phase i (s);  

 Ri     = All-Red interval of current phase i (s); 

 

The maximum right-of-way transfer time occurs when the preemption signal is received 

at the beginning of a phase or a pedestrian clearance interval.  The wait time is added to 

the required preemption warning time.  The clearance interval of the phase being 

terminated also must be considered in the required preemption warning time, as it must 

be provided in its entirety.  If a preemption is activated during a clearance interval of any 

phase, the remainder of the clearance interval should be provided and the track clearance 

phases initiated immediately thereafter (10,13). 

 

2.1.2.3 Timing the Track Clearance Phase  

After the operation phase has been terminated and the clearance interval has been 

provided, a track clearance green time must be provided that is long enough to clear 

vehicles that may be queued over the track.  The duration of the track clearance time 

should be based on the maximum number of queued vehicles that need to be cleared 

before the train arrives (10,11,13,14).   

 

2.1.2.4 Preemption Hold Interval 

The preemption hold interval occurs after the track clearance interval.  It occurs when 

the train is near or in the crossing.  Once the preemption hold interval begins, the 

controllers keeps it active until the train has left the detection zone.  The MUTCD 

suggests that the signals be operated to permit vehicle movements that do not cross the 

tracks once the train is in the crossing.  It does not mention whether it is permissible to 

cycle through all phases that do not conflict with the track.  Many traffic signal 

controllers provide a function to allow the signal indication to cycle, alternately serving 

traffic flows that do not conflict with the train movement (2,7,10,14). 
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In addition, there is no apparent reason why nonconflicting pedestrian phases could not 

be served during the hold interval.  In fact, it may be wise to do so to avoid having the 

pedestrians grow impatient and attempt to cross against the signal.  Therefore, it is 

recommended that nonconflicting pedestrian movements be served during the hold 

intervals (2,7,10,14). 

 

 2.1.2.5 Return to Normal Operations 

Once the train vacated the crossing, the traffic signal must transition back to its normal 

mode of operation. The first phase implemented is based on the minimum delay.  

Generally, most engineers permit the controller to service the approaches that were not 

served while the crossing was blocked.  However, if vehicles from any other of the 

delayed movements are queue back into an adjacent intersection, some engineers permit 

to service these movements first to begin clearing the queues (2,10,14). 

 

2.2  TIMING OF TRACK CLEARANCE PHASE 

2.2.1 Queue Clearance Time 

The length of the track clearance phase should be based on the maximum number of 

queued vehicles that need to be cleared before the train arrives.  Queuing analysis has 

been applied to estimate the queued vehicles at each particular location.  A methodology 

for this analysis was developed using macroscopic traffic flow modeling procedures 

(11,13).   

 

The length of queue expected during any signal cycle is a function of the approach 

volume, cycle length, saturation flow rate, and green split.  Although the signalized 

intersection capacity analysis procedures in the U.S. Highway Capacity Manual (HCM) 

provide for the calculation of maximum discharge rates, they do not include a storage 

requirement for precluding spillback into an upstream intersection (15).  A simple 

practical method for doing this is to apply a macroscopic “continuum” model that 
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assumes constant arrival and discharge flow rates (16).  For unsaturated conditions, the 

time necessary to discharge vehicles queued in a cycle is given as Equation 2-7. 

 

λµ
λ

−
−= )gC(t0  (2-7) 

where;  

 t0    = Time necessary to discharge vehicles queued in a cycle (s); 

 λ     = Arrival rate (veh/h); 

 µ    = Discharge rate (veh/h); 

 C    = Cycle length (s); and 

 g       = Green split (s). 

 

The maximum number of queue from stopline can then be calculated as Equation 2-8. 

 

3600
1)gC(t0 








−
−==
λµ

λµµρ  (2-8) 

where;  

 ρ     = Maximum number of queue (veh). 

 

Assuming an average spacing of 6.7 m per vehicle, the maximum average distance that 

the queue will extend upstream can then be calculated as Equation 2-9. 

 









−
−=
λµ

λµθ )gC(
537

 (2-9) 

where;  

 θ    = Maximum distance of queue (m). 

 

Because the continuum model is based on the assumption of uniform arrivals, Equations 

2-8 and 2-9 represent the average queue length that will develop over many cycles.  
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Assuming an isolated intersection, vehicles will actually arrive in an approximately 

random distribution.  The length of the queue during any particular cycle then will 

fluctuate about the mean.  During some cycles, the queue may extend back over the 

tracks, and during other cycles, it may not.  Therefore, to determine the length of track 

clearance time, one must first establish the probability with which queues would be 

expected to spill back over the tracks (13).  

 

A methodology for estimating this probability was developed using the Poisson 

distribution to approximate random arrival (16).  The distribution gives the probability of 

x vehicles arriving during a given interval as Equation 2-10. 

!x
em)x(P

mx

r

−

=  (2-10) 

where;  

 x     = Expected number of arrivals in a given time period (= cycle length) 

(veh); and 

 m    = Average number of arrivals in a given time period (= cycle length) 

(veh). 

 

Using queuing analysis, one can estimate the maximum number of queued vehicles that 

need to be cleared before the train arrives.  The desired number of vehicles to be cleared 

is equal to the expected maximum queue that is between the tracks and the upstream 

grade signal crossing.  However, because of limited preemption warning time, track 

clearance time is normally set for the distance between the stopline of the intersection 

and the stopline of the crossing.   

 

Once the desired distance to be cleared is fixed, the track clearance interval can be 

calculated as shown below.  The track clearance interval normally includes two 

subintervals.  The first subinterval is the time for the last queued vehicle to begin to clear 

the track.  Shockwave methodology has been applied as a simplified approach to 
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calculate the time interval in which “the rate of queue dissipation is equal to the rate at 

which the starting wave moves backward through the queue” (11,13).  The time interval 

is obtained by dividing the length of queue by the dissipation rate as shown in Equation 

2-11. 

 

6.3
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w k
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u

2
=  (2-11) 

where;  

 t1    = Time interval until the last vehicle in the blocking queue departs (s); 

 Q   = Length of queue to be cleared as measured from the intersection 

stopline to the point where a vehicle needing to be cleared may be 

stopped (m); 

 uw  = Backward shockwave speed (km/h); 

 qs     = Saturation flow rate (veh/h); and 

 kj     = Jam density (veh/km). 

 

The second subinterval is the time needed for the last queued vehicle to accelerate and 

move to a position clear of the tracks.  The first step is to define the area at the tracks 

from which vehicles must be removed.  One definition of the area that should be cleared 

(as well as a methodology for determining the time required for a vehicle to accelerate 

across this area) is found in the U.S. procedures for determining sight distance 

requirements at highway-railroad grade crossings (17). 

 

Assuming the crossing geometry shown in Figure 2-2, any vehicle located within a 

danger zone, Γ, on either side of the tracks must be cleared completely before a train 

arrives at the crossing.  The critical vehicle for preemption design purposes is shown in 

Figure 2-2, with its front located at position (a).  After time t1 the vehicle will begin to 

move and its rear must reach position (b) before the train arrives at the crossing.  The 

time required for this maneuver, t2, is expressed in Equation 2-12 (13).  
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ν
ωΘΓςν −+++= 2

a
t2  (2-12) 

where; 

 ν      = Maximum speed of the design vehicle in first gear (m/s); 

 a      = Acceleration rate for the design vehicle in first gear (m/s2); 

 ς     =  Length of the design vehicle (m); 

 Γ     = Clearance distance on either side of the tracks (m); 

 Θ    = Width of the crossing (m); and 

 ω      = Distance traveled while accelerating to maximum speed in first gear 

(m). 

 

 

FIGURE 2-2 Crossing Clearance Geometry for Calculating t2 (13) 
 

 

2.2.2 Clearance Time to Avoid Preempt Trap 

To initiate a preemption sequence, two major executes must occur: 1) the traffic signal 

controller must receive an electronic signal to start the preemption sequence to clear the 

tracks, and 2) the active railroad warning devices, including the flashing lights and gates, 

must be activate to provide the warning signal and stop vehicles from crossing. 

b a

Θ ΓΓ
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The railroad warning devices should be active for a minimum time of 20 seconds before 

the train arrives at the crossing under normal conditions based on the federal 

requirements.  However, if the crossing is wide or crosses multiple track, or if requested 

by the highway authority, a MWT longer than 20 seconds may be provided (7).  

 

Two types of preemption are commonly used in practice: 1) simultaneous preemption, 

and 2) advance preemption.  Under simultaneous preemption, the traffic signal controller 

starts the preemption sequence at the same time that the railroad crossing warning 

devices activate, providing at least the minimum warning time.  Under advance 

preemption, the traffic signal controller starts the preemption sequence before the 

railroad crossing devices activate.  Advance preemption is required if the time available 

under simultaneous preemption is not enough to clear the tracks safely (18).  

 

The time difference between when the traffic signal controller starts the preemption 

sequence and when the railroad crossing warning devices activate is called the advance 

preemption time. The highway authority usually requests advance preemption time if the 

minimum warning time is not enough to clear traffic safely off the tracks.  The advance 

preemption time is zero for simultaneous preemption (18,19,20). 

 

The relationship between each element of preemption during simultaneous preemption is 

shown in Figure 2-3, while Figure 2-4 shows the same for advance preemption. 

 

After the traffic signal controller receives the preempt notification, the right of way must 

be transferred to traffic in the approach to the intersection crossing the tracks.  The 

required wait time prior to the track clearance phase is termed the right-of-way transfer 

time.  The right-of-way transfer time depends on the controller state and is calculated 

based on Equation 2-6 in the previous section.  Once the right of way is transferred, the 

track clearance phase is active.  The track clearance green should be provided at least 

equal to the queue clearance time, which is the time it requires a vehicle stopped on the  
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FIGURE 2-3  Relationship between Each Element of Preemption During 
Simultaneous Preemption (20) 

 

 

FIGURE 2-4  Relationship between Each Element of Preemption During Advance 
Preemption (20) 
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track to start up and move off the tracks (19).  The queue clearance time can be 

calculated using queuing analysis, the distance between the railroad stopline and the 

intersection stopline, and so on as shown in Section 2.2.1. 

 

From the railroad warning device perspective, first the warning lights flash for 3 to 5 

seconds.  This period is the “gate delay time” and is needed to warn drivers of the 

impending gate descent.  After the gate delay time, the gates start to descend, and 

railroad procedures require that the gates be horizontal not less than 5 seconds before the 

train arrives at the crossing (7,19). 

 

Although the preemption warning time is greater than the sum of the right-of-way 

transfer time and track clearance time, safe preemption operation may not be guaranteed 

at the crossing.  If the track clearance green ends before the warning lights start to flash, 

vehicles may be trapped between the intersection stopline and the moving train, or even 

worse, trapped on the tracks in the path of the oncoming train. The condition where the 

track clearance green ends before the warning lights start to flash is the “preempt trap” 

(19).   

 

Figure 2-5 shows an example of a preemption trap.  In this example, the crossing under 

consideration has a maximum right-of-way transfer time of 10 seconds and the track 

clearance green time was 13 seconds.  The median values of the preemption warning 

time and railroad warning time were 48 seconds and 29 seconds, respectively, from the 

observed data.  If the right-of-way transfer time is zero in this condition, the track 

clearance green will end 35 seconds (48 – 13 = 35) before the train’s arrival at the 

crossing.  Thus, the track clearance green will end 6 seconds (35 – 29 = 6) before the 

warning lights start to flash and 10 seconds before the gates start to descend.  During the 

first 6 seconds after the end of the track clearance green, vehicles have no warning of the 

imminent preemption and will continue to cross the tracks and possibly stop on the 
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tracks.  However, the track clearance phase has already expired, and there will be no 

further opportunity to clear (19,20). 

 

 

FIGURE 2-5  Scenario of Preempt Trap (20) 
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seconds is likely to be enough for vehicles to arrive and fill up the 65 feet of queue space 

and queue over the tracks thereby creating a preemption trap.  As discussed below, 

several potential solutions exist to remove, or at least mitigate, the preempt trap.   

 

2.2.2.1 Increasing the Track Clearance Green Time 

If a track clearance green is less than the advance preemption time, the possibility exists 

that the track clearance green will end before the warning lights are activated, which 

results in the preempt trap.  The situation worsens if variations in the warning time result 

in longer advance preemption time.  Any increase of the track clearance green will 

reduce the probability of the preempt trap occurring.  

 

A general rule of thumb for advance preemption is that, 

 

The track clearance green duration should be equal to 

the expected advance preemption time plus 15 seconds. 

 

This rule of thumb was suggested by Railroad Controls Limited of Fort Worth, Texas.  

The rationale for this rule of thumb is that the gates are guaranteed to be down 15 

seconds after flashing of the warning lights.  This is because federal law requires the 

gates be horizontal for at least the last 5 seconds of the 20 seconds minimum time.  

Therefore, the 15 seconds in which the gates may not be horizontal should be added to 

the advance preemption time.  Even though this rule of thumb does not consider the 

variation in advance preemption time, it does contain a safety factor, because the gates 

do not have to be completely horizontal to block access to the tracks.  In addition, the 

gates may reach the horizontal position less than 15 seconds after the warning lights start 

to flash.  

 

At the study site intersection, the Wellborn Road and George Bush Drive intersection, 

College Station, Texas, the gates usually blocked access to the crossing 11 seconds after 
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the warning lights started to flash.  Therefore, the gates reached the horizontal position 4 

seconds earlier than the recommended 15 seconds.  For this reason, the above-mentioned 

rule of thumb appears to be somewhat conservative.  

 

For many locations, 30 seconds (19 seconds of expected advance preemption time + 15 

seconds) of track clearance green is too long considering the queue clearance time of 10 

seconds.  Therefore, Engelbrecht, et al. proposed an alternative to the rule of thumb.  

This alternative involves determining the duration of the track clearance green that 

would reduce the probability to an acceptable target level using the probability 

distributions of the various components of the preemption sequence.  Engelbrecht, et al. 

used Monte Carlo analysis to calculate the probability of three or more vehicles in the 

preempt trap as a function of the track clearance green time and the approach volume 

using the probability distributions that were observed in the study site crossing.  The 

results show that increasing the track clearance green time results in a significant 

reduction in exposure to the preempt trap.  

 

It should be noted that due to variability of the predicted train arrival time, no guarantee 

exists that the gates will be down when the track clearance green ends, even with an 

increased track clearance green time.  It is always possible that the advance preemption 

time will exceed the track clearance green time. 

 

The only way to completely eliminate the problem is to treat the causes of the problem: 

the variability in the advance preemption time together with the variability in the right-

of-way transfer time. If there were no variability in either of these times, the end of the 

track clearance green easily could be timed to coincide with the gates descending. 

 

2.2.2.2 Actuating the End of Track Clearance Green 

The only way to completely eliminate the problem of the preempt trap is to actuate the 

end of the track clearance phase with a “gate down” confirmation signal.  The traffic 
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signal controller will initiate the track clearance phase as usual, but will dwell in the 

track clearance phase until the “gate down” confirmation signal is received.   

 

2.2.2.3 Using Two Preempts 

Even if existing traffic signal controllers do not have the function to actuate the end of 

the track clearance green, one way to implement a similar approach on existing 

controllers is to use two preempts.  This approach uses two different levels of preempt: 

1) a lower priority preempt activated at the start of the preemption sequence, and 2) a 

higher priority preempt activated by the “gates down” confirmation signal.  The first, 

lower priority preempt will initiate the normal preemption sequence, that is, go through 

the right-of-way transfer sequence without a track clearance interval and then hold the 

phase.  The lower priority preempt will be overridden by the higher priority preempt 

when the “gates down” confirmation signal is received.  Because the traffic signal will 

already be holding the track clearance phase, no right-of-way transfer would be required 

and the track clearance phase can start immediately.   In this case, the duration of the 

track clearance green would be only for clearing out the area between the crossing and 

the intersection, which depends on the distance between the crossing and the 

intersection.  

 

2.2.2.4 Controlling Variation in the Advance Preemption Time 

An additional preemption input into the controller may not be allowed in certain 

controllers.  In these cases, the possibility of preempt trap can be reduced by controlling 

variability in the advance preemption time and variability in the right-of-way transfer 

time.  Because the speed of an approaching train may change from the time the 

preemption is activated to the time the railroad warning devices are activated, the 

advance preemption time can vary.  Therefore, to ensure that the gates are horizontal 

before the end of the track clearance green is difficult.  This problem was recognized by 

the American Railway Engineering and Maintenance-of-Way Association (AREMA) 

and addressed in their 2000 Edition Signal Manual (21) as follows: 
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Where advance preemption is utilized, a timing circuit should be 

employed to maintain a maximum time interval between the initiation of 

the advance preemption and operation of the warning system for a train 

move where speed is decreasing. It should be noted, however, that this 

maximum time interval will decrease in the event train speed is 

increasing. 

 

Even if a “not-to-exceed” timer is used to control the maximum advance preemption 

time, it may not be able to prevent shorter advance preemption times.  However, because 

only long advance preemption times result in the preempt trap, this railroad timing 

solution can be very successful in preventing long advance preemption times, thereby 

helping to remove the preempt trap. 

 

While the “not-to-exceed” timer can control advance preemption time variation, 

variation in the right-of-way transfer time can cause a preempt trap, also, and should be 

controlled as well. 

 

2.2.2.5 Controlling Variation in the Right-of-Way Transfer Time 

Right-of-way transfer time can have more variation than advance preemption time, 

especially when pedestrian clearances are provided.  Even though, a maximum value of 

right-of-way transfer time exists, it can range between zero and a maximum value that 

depends on the state of the traffic signal controller at the onset of preemption.  

 

One source of variability is that vehicle clearance may or may not be required, 

depending on whether the controller is in the track clearance phase at the onset of 

preemption.  If it is possible to force the controller to always go through a “clearance 

time” regardless of the status of the controller, the variation in right-of-way transfer time 
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could be reduced by the duration of the clearance interval.  This actually can be achieved 

on controllers with a spare phase and by overlapping phases. 

 

2.2.2.6 Avoiding Use of Advance Preemption 

If, for some reason, these variance reduction methods cannot be applied, a final 

treatment for the cause of the preempt trap is to not use advance preemption.  The only 

way to completely eliminate the effects of variability in advance preemption time is to 

only use simultaneous preemption, as is currently done by the State of Illinois.  In this 

case the minimum warning time may be increased for safe preemption, which usually is 

more than the minimum time of 20 seconds.  The drawback of this approach is that if the 

railroad warning time is excessively long, the gates may be down for an extended period 

of time before the train arrives at the crossing, and this can encourage drivers to drive 

around the gates.  

 

2.3  TRAIN DETECTOR TECHNOLOGIES 

Once a train is detected, the detection system sends an electric signal to the traffic signal 

controller to activate the preemption sequence.  A number of detection technologies have 

been developed for this task.  The most common detector system uses the tracks as part 

of a circuit.  When no trains are present, a uniform signal in the form of white noise is 

sent to the controller.  When a train is present, the circuit is completed and a different 

signal is sent to the controller.  Because these systems send only detection information to 

the traffic signal controller, they can only measure the presence of a train and are 

therefore referred to as first-generation technology.  In contrast, second-generation 

technologies are capable of providing estimated time of arrival (ETA) information in 

addition to basic detection information.  Generally, these systems are not part of the 

railway operations and are installed adjacent to the railway.  Third-generation 

technologies go one step further to provide continuously updated train information 

typically acquired using on-board global positioning systems (GPS) (2,3). 
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2.3.1 First Generation Technologies 

2.3.1.1 Conventional Detection Systems 

In these systems, the rails are used as conductors of energy supplied by a battery.  The 

relay remains energized as long as no train is present in the circuit.  When a train enters 

the circuit between the battery and the relay, the train axles shunt the circuit, causing the 

relay to de-energize.  When the relay is de-energized, automatic warning devices are 

activated and the traffic signal controller near the intersection receives the notification 

that a train is approaching through a separate interconnection circuit (10,22).  

 

To allow the detection of trains operating in both directions over any single track, 

conventional train detection systems are composed of three isolated circuits along the 

track.  As shown in Figure 2-6, these include a circuit for each approach on either side of 

the HRGC and a circuit at the middle of the crossing.  These three circuits are separated 

electronically to provide an isolated circuit in each part.  Each circuit is used to detect 

the presence of a train.  Based on the order in which the circuits are actuated the train 

direction can be ascertained.  Considerable variability in actual train arrival time exists 

because: 1) the track circuit must be long enough to provide a minimum warning time 

for the fastest train expected on the given site, and 2) the system assumes train speed is 

constant  (3,10,23). 
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FIGURE 2-6 Conventional Train Detection Systems (10,20) 
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of the train.  Once the position and speed of the train are estimated, the arrival time can 

be estimated using Equation 2-13 (10).   

 

V
W ψ=  (2-13) 

where; 

 W    = Warning time (s); 

 ψ     = Estimated distance from the head of train to the crossing (m); and 

 V     = Train speed (m/s). 

 

The goal is to provide a constant warning time to the controller.  Note that it is assumed 

that the train speed is constant.  CWT systems are designed to establish an arrival time 

prediction at the crossing within the first 15 percent of the approach circuit.  Predicted 

arrival time at the crossing is based on the speed of the train as it enters the circuit, even 

though the train may accelerate or decelerate after entering a detection circuit.  

Therefore, there is still some variability in warning time (3,10,23,24). 

 

2.3.1.4 Inductive Loop Systems  

Inductive loop detectors are currently being used in a four-quadrant gate system to detect 

vehicles that may be trapped between the gates.  The use of this system is being 

evaluated as a means of providing a more fail-safe design for four-quadrant gate systems 

(24).  Loop detectors have also been applied to detect transit trains.  Several tests 

revealed that burying these detectors under the track ballast leads to a decrease in the 

effectiveness of the detector.  For this reason, a loop detector that can be mounted 

directly on the tracks was developed.  Systems of three or four detectors are often 

applied to detect a train approaching a HRGC and activate a preemption of the traffic 

signal at the IHRGC.  However, this technology has similar limitations to the 

conventional track circuitry approach (25). 
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2.3.1.5 Extension of Conventional Railroad Track Circuits 

It has been proposed by Jacobson, et al. that the conventional track circuits be extended 

to provide increasing warning time for preemption. The existing detection system would 

be modified to send the detection signal separately to the traffic signal controller and the 

railroad warning devices.  Therefore, the signal sent to the traffic signal controller could 

be sent earlier than the signal for the railroad warning devices, which may allow for 

safer operation.  By keeping the detection equipment on the tracks, the need to install 

additional equipment on the trains that use the crossing does not exist.  Also, the fail-safe 

properties of these systems have been repeatedly tested, and they are currently 

considered acceptable practice.  However, this system is still problematic because it does 

not account for speed change of approaching trains and the cases where a train may stop 

within the detection circuit or even reverse direction (3). 

 

2.3.2 Second Generation Technologies 

2.3.2.1 Sonic  

Sonic waveform detectors have been used to detect trains in several train priority 

systems.  Originally these systems were developed to identify the siren from an 

emergency vehicle so that the traffic signal controller could provide a green signal for 

that vehicle when it approaches the intersection.  These systems have been modified for 

trains so that a silent emitter is placed in each locomotive to emit sonic waves that the 

receiver can detect but are undetectable to the human ears.  When the wave is detected, a 

“preemption” call is sent to the traffic signal controller to activate the preemption 

sequence.  The emitter can be disabled by the driver of the train if preemption is not 

necessary at the intersection.  The major disadvantage of this system is that trains can be 

detected only within a limited distance of a HRGC.  Although the detector can be placed 

farther away from the crossing to provide a longer warning time, the actual warning time 

is a function only of the location at which the emitter in the locomotive emits sonic 

waves (3). 
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2.3.2.2 Doppler Radar 

The system continually measures and records train speed.  From the data recorded, train 

acceleration or deceleration may be estimated.  Prediction algorithms also have been 

developed using the speed, acceleration, and deceleration information.  Some of the 

arrival time prediction algorithms that were developed use the distance of the train and 

detector from the HRGC along with the train speed.  The prediction errors of these 

algorithms have been recorded to be relatively high (3).  For example, a prediction time 

algorithm that is currently used in College Station, Texas, calculates arrival time by 

dividing the estimated distance between the train head and the crossing by the last 

observed train speed.  Because this method assumes that the last observed train speed 

remains constant, the prediction error is approximately ±17 seconds (12.3 percent of 

mean absolute percentage error) when the prediction is performed after 100 seconds of 

observation.  More importantly, prediction intervals have not been calculated with any of 

these methods. 

 

2.3.3 Third Generation Technologies 

2.3.3.1 AVI/Radio Frequency 

Automatic vehicle identification (AVI) systems have been applied in a number of train 

applications.  An electronic “identification tag” containing information about the train is 

installed in all or a subset of the vehicles on the train.  AVI readers, which are typically 

radio frequency antenna, are located at various locations along the train right of way.  As 

the train passes the readers, the information from the identification tags is read.  

Therefore, this system provides more precise train position information than the systems 

discussed previously.  However, because the train information is collected only at 

discrete locations, only space mean speed between the receiver locations can be 

calculated.  Thus, speed change may not be accurately accounted for when predicting 

train arrival time, especially when the distance between the receiver locations is long 

(3,26). 
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2.3.3.2 GPS 

A global positioning system uses satellites orbiting the earth to collect information on 

the train as it approaches the HRGC.  The GPS device is located on the lead locomotive.  

Using this device and the satellites, the train’s position on the tracks, direction of travel, 

and train speed at any point along the approach to the HRGC are obtained.  Because the 

information is updated continuously, the forecast train arrival time can be updated 

continuously.  Even though this system is superior to any other system for collecting 

more accurate train information, there are a number of issues.  For example, the safety 

and operation of the system is entirely dependent on 1) access to U.S. military GPS 

satellite information, 2) the ability of GPS receivers on trains to remain in relatively 

constant radio communication with satellites, and 3) that there is a sufficient 

communication ability to transmit train information to the traffic management center 

(3,27).   

 

2.4  TRANSITION PREEMPTION STRATEGY (TPS) 

Because the general preemption sequence is designed to clear queued vehicles on the 

tracks as quickly as possible, the minimum vehicle and/or pedestrian phase length may 

not be provided. Therefore, it may be argued that the current system does not 1) 

generally account for the safety of pedestrian, or 2) attempt to maximize intersection 

efficiency.  For example, the vehicular and pedestrian phase that conflicts with the track 

clearance phase can be truncated before the minimum phase length has been provided, 

which could result in “stranded” pedestrians or vehicles.  However, as advance detection 

technologies are developed and additional preemption warning time is made available, 

safety issues such as “stranded” pedestrians and vehicles at the IHRGC have received 

increased interest.  That is, new preemption strategies can be implemented if more 

warning time is made available, thus allowing minimum interval times at the IHRGC to 

be satisfied (2,3,4). 
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Recently the TPS was developed for vehicle and pedestrian safety using earlier 

preemption warning time (2,3,4) obtained from a Doppler advance warning system.  TPS 

is initiated at the advance preemption warning time predicted using Doppler detector 

data, and the normal preemption is started at the normal preemption warning time 

predicted using the preemption warning time detector data.  The difference in time 

between the Doppler warning activation and the activation of the preemption warning 

time detector is the time period provided to operate the TPS algorithm.  Because both 

systems have variability, the advance preemption warning time can be shorter or longer 

than the predetermined advance preemption warning time.  If normal preemption is 

started before TPS completes its process, the current phase during the TPS algorithm can 

be cut abruptly.  This has the potential to create a safety problem.  If normal preemption 

is started after TPS completes its process, the track clearance phase will continue until 

normal preemption is started which may result in excessive intersection delay (3,4,5,6).  

  

The TPS system was programmed assuming an average detection of 70 seconds before 

train arrival at the crossing and normal preemption activation when the train was, on 

average, 48 seconds from the crossing.  The 22-second average duration between these 

two times is when the TPS system can operate.  TPS duration should be decided based 

on the features of the TPS algorithm, and advance preemption warning time is dependent 

on the TPS duration.  These times were selected as a compromise between giving the 

TPS system more time to operate (i.e., more than 22 seconds would give the system 

more time to influence controller operation) and the increasing variability the farther in 

time the Doppler system gives its warning (i.e., advance preemption warning time 

variability increases the farther the temporal detection horizon is set with respect to train 

arrival at the crossing).  For general application a new method is needed to find an 

adequate advance preemption warning time (3,4,5,6).   

 

It was found by Engelbrecht, et al. that the number of vehicle minimum green phases 

that were truncated was reduced by 82 percent, which corresponded to a 40 percent 
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reduction in abbreviation time.  In addition, the number of pedestrian clearance times 

that were truncated was reduced by 39 percent, which corresponded to a 77 percent 

reduction in abbreviation time.  These results are from data sets that included inadequate 

advance preemption warning time (i.e., when predicted time is longer than actual arrival 

time).  The analyses were repeated using data sets that did not include inadequate 

preemption warning time, and in this situation there was a 100 percent reduction of both 

abbreviation of vehicle minimum green and abbreviation of pedestrian clearance time.  

These results demonstrate that if advance preemption warning time is too long, the 

benefit of TPS is reduced (3,4,5,6).  In other words it is important to have an accurate 

prediction algorithm in addition to an appropriate transition preemption algorithm. 

 

The following variables are needed in order to use the TPS logic (3,4). 

 

Time to Train Arrival (T):  The time the train is predicted to arrive at the crossing.  

The estimator used to predict arrival time is a function of the track equipment and 

agency objective.  This value is updated every t seconds as the train approaches the 

crossing.  For all field applications in the U.S., t is 1 second. 

 

Track Clearance Time (τ): The time at which the track clearance phase should be 

initiated.   

 

Remaining Time Available (X  = T – τ.):  Effectively, a “countdown” until the track 

clearance time.  

 

Extended Time (Bi): Time period added into Mj to end a vehicle phase i that has a call.  

That is, when there is a vehicle call for phase i, phase i is provided until X = Mj + Bi 

,instead of X= Mj.  
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From the above definitions, two other variables that are used in the TPS logic are 

calculated. 

 

Mj:  Minimum time necessary to service the next phase (phase i+1); and 

 

Mk:  Minimum time needed to service the next two phases (phase i+1 and phase i+2) 

when the next phase is the track clearance phase. 

 

Once the train detection equipment has indicated that a train will arrive at the crossing 

within the TPS initiation time, the TPS logic monitors and, if necessary, affects 

controller operation. The following steps define the TPS logic.  TPS logic also is shown 

in the flow chart of Figure B-1 in Appendix B. 

 

Step 1:  

The status of the current phase is (are) checked to determine if both the minimum green 

time and minimum pedestrian time have been serviced.  If the minimums have not been 

completely serviced, the current phase remains active.  Otherwise, the logic proceeds to 

step 2. 

 

Step 2:  

If the T at the crossing is less than the τ, the track clearance phases are initiated.  The τ is 

the preset desired time that the track clearance phase should begin prior to the train’s 

arrival at the crossing.  This time is determined by vehicle and geometric characteristics 

at the crossing and is usually longer than the warning time provided by railroad 

equipment.  Theoretically, the intersection would then be in track clearance every time 

the preempt call is received from the railroad equipment.  This will lead to a more 

controlled and predictable entry into preemption. 
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Step 3:  

The current phase is (are) checked.  If the current phase is the track clearance phase, then 

the logic goes to step 5B-3.  Otherwise, it goes to step 4. 

  

Step 4: 

The next phase is (are) checked.  If the next phase is the track clearance phase, the logic 

goes to step 5A-1.  Otherwise, it goes to step 5B-1. 

  

Step 5A-1: 

Vehicle calls for the current phase are checked.  If there are still vehicle calls for the 

current phase, then the logic goes to step 5A-2.  Otherwise, it goes to step 5A-3.    

 

Step 5A-2: 

- If Mk + Bi ≥ X ≥ Mk, the current phase is terminated and the next phase is started.  

The logic skips to step 6. 

- If Mk + Bi < X or X < Mk, the current phase remains.  The logic skips to step 6. 

 

Step 5A-3:  

- If X ≥ Mk, the current phase is terminated and the next phase is started.  The logic 

skips to step 6. 

- If X < Mk, the current phase remains.  The logic skips to step 6. 

 

Step 5B-1: 

Vehicle calls for the current phase are checked.  If there are still vehicle calls for the 

current phase, then the logic goes to step 5B-2.  Otherwise, it goes to step 5B-3.    

 

Step 5B-2: 

- If Mj + Bi < X or X < Mj,  the phase is held green.  The logic skips to step 6. 
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- If Mj + Bi ≥ X ≥ Mj, the current phase will be terminated and the next phase will 

begin timing.  The logic skips to step 6. 

 

Step 5B-3: 

- If X < Mj, the phase is held green.  The logic skips to step 6. 

- If X ≥ Mj, the current phase will be terminated and the next phase will begin timing.  

The logic skips to step 6. 

 

Step 6:  

At this point, the logic returns to step 1 to ensure that the minimum times for the current 

phase have been satisfied. 

 

The above steps will be performed every time the train’s predicted arrival time at the 

crossing is updated by the detection equipment and each time a new signal phase 

becomes active.    

 

2.5  TRAIN ARRIVAL TIME PREDICTION 

The ultimate goal of the detection is to predict the train arrival time at the HRGC so that 

preemption is initiated at the most appropriate time.  The train arrival time prediction is 

important because it is the major input to the preemption strategy.  The deciding factor 

of the arrival time forecast is a function of the detector technology, the prediction 

algorithm, and the detector location with respect to the HRGC.   

 

CWT systems, which are used most commonly today, use the train’s detection position 

and the assumption that the train’s speed will remain constant to predict the train arrival 

time at the crossing.  However, because the train speed can vary considerably as it 

approaches the crossing, the predicted time is subject to error.  
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Recently Estes and Rilett used modular multiple linear regression to predict the train 

arrival time based on upstream train speed data.  Their model predicted the arrival time 

of a train to within ±20 seconds of its true arrival time when most trains are between 100 

and 200 seconds away from the crossing.  For earlier predictions (e.g., trains between 

200 and 300 seconds from the crossing) the prediction achieved an accuracy of ±60 

seconds (28). 

 

If a more advanced preemption strategy, such as the transition preemption algorithm, is 

considered before the normal preemption is initiated, the prediction of train arrival time 

should be performed earlier.  Because prediction accuracy will decrease as the detector 

is located farther from the crossing, more sophisticated detector and prediction 

algorithms will be required for the advanced preemption strategy.   

 

2.6  CONCLUDING REMARKS 

The general preemption sequence is designed to clear queued vehicles on the tracks as 

quickly as possible.  As discussed in this chapter, it is argued that the current preemption 

strategy does not generally account for the safety of pedestrians and vehicles at the 

intersection, or the intersection performance as a whole.  However, as advance detection 

technologies are developed and additional preemption warning time is made available, 

safety issues at the IHRGC has received increased interest.  That is, new preemption 

strategies can be implemented if more warning time is made available, thus allowing 

minimum interval times at the IHRGC to be satisfied. 

  

Recently a transition preemption strategy was developed for vehicle and pedestrian 

safety using earlier preemption warning time obtained from a Doppler advanced warning 

system.  TPS is initiated at the advance preemption warning time predicted by Doppler 

detector, and the preemption is started at the preemption warning time predicted by 

CWT.  However, because both systems have variability, it is difficult to expect that the 

TPS algorithm achieves its goal properly.  Therefore, it is important to have an accurate 
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train arrival prediction algorithm in addition to an appropriate transition preemption 

algorithm.  A new train arrival time prediction algorithm is developed in Chapter IV, and 

a new transition preemption strategy is developed to improve intersection safety and 

performance in Chapter V. 
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CHAPTER III  

STUDY DESIGN   

In Chapter II, the basic signal preemption logic at an IHRGC was introduced.  As 

discussed in the previous two chapters, a new train arrival time prediction algorithm and 

a new TPS algorithm are needed to improve the safety and performance of an IHRGC.  

In the first section of this chapter, the test bed for this study will be discussed.  

Subsequently, the methodologies used to develop these two new algorithms will be 

introduced.  The new train arrival time prediction algorithm and the new TPS algorithm 

will be developed in Chapters IV and V, respectively.   

 

The evaluation of a TPS algorithm requires information on each individual unit (i.e., 

vehicle and pedestrian) that behaves stochastically.  Because of the difficulty in 

obtaining empirical information, a behavior and periodic-scan based micro-simulation 

model was utilized.  For the topics covered in this dissertation the simulation model also 

is required to simulate vehicles, trains, and pedestrians.  The VISSIM micro-simulation 

model satisfies the above criteria.  More importantly the VISSIM micro-simulation 

model has an ability to control the user-defined traffic signal logic with a function called 

vehicle actuated programming (VAP), which is an optional add-on module for the 

simulation of programmable, phase- or stage-based, and traffic-actuated signal controls 

(29).  Therefore, the new TPS logic can be implemented along with the traffic signal 

controller logic in VISSIM using the VAP module.  The VISSIM micro-simulation 

model and VAP will be evaluated in this chapter.  The methodologies to emulate the 

actual train in the simulation and simulation procedure also are introduced.   

 

3.1  TEST BED 

3.1.1  Test Bed for Development of New Train Arrival Time Prediction Algorithm 

The test bed chosen for this study was the Wellborn Road corridor in College Station, 

Texas, as shown in Figure 3-1.  The corridor is approximately 2.2 km in length and is 
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located between FM 2818 and George Bush Drive.  An arrival time forecast is required 

at George Bush Drive because the Wellborn Road-George Bush Drive intersection is the 

test bed for traffic signal preemption research.  Currently train volume in the corridor is 

between 20 and 30 trains per day.  The train speed limit is 95 km/h (60 mi/h) south of 

Rock Prairie Road, which is a rural environment, while the speed limit is 50 km/h (30 

mi/h) inside the city limits.  A dual track alignment exists north of the test site that 

allows for train switching and passing.  Several depots where the trains may stop for 

loading and unloading also exist north of University Drive.  Thus, northbound trains tend 

to experience greater speed variations because of the lower speed limit and the 

possibility of having to wait for the switching station to clear (28).  Because of the wide 

range in operating speeds, the northbound trains were used in the research.  Doppler 

radar detectors have been installed at every major crossing (Rock Prairie Road, FM 

2818, George Bush Drive, and University Drive) along the Wellborn Road corridor as 

part of the TransLink Train Monitoring Project in College Station, Texas.  In this 

dissertation, information from 683 trains was collected at George Bush Drive and FM 

2818 during the period from April 18, 2001, to September 30, 2001.   
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FIGURE 3-1  Map of Wellborn Corridor, College Station, Texas 
 

 

3.2.2  Test Bed for Development of New TPS 

The signalized intersection of George Bush Drive and Wellborn Road in College Station, 

Texas, along the railway corridor, which is the test site for development of a new train 

arrival time prediction algorithm, was chosen as the test bed for development of a new 

TPS algorithm.  The geometric conditions for the highway-railroad grade crossing and 

the near intersection are shown in Figure 3-2.  All approaches have one through lane, 

one through/right-turn shared lane and one exclusive left-turn lane with the exception of 

the westbound approach, which has two through lanes, one exclusive right-turn lane and 

one exclusive left-turn lane.  The intersection has moderate to high traffic volumes 

during the peak hour and is regularly preempted by trains at the adjacent highway-

railroad grade crossing located approximately 12 m to the west of the intersection.  The 

railroad track detection system is designed to provide a minimum 35 seconds of 
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preemption warning time to the signal controller at the intersection.  The clear storage 

distance, or the distance between the intersection stopline in the eastbound direction and 

the intersection-side edge of the crossing, is approximately 10 m.  The storage capacity 

is two vehicles per lane (not including trucks).  Traffic volumes were collected at the 

intersection between December 7, 1999 and December 13, 1999 using video cameras for 

51 preemption cases, which have 15-minute period of volume.  Traffic volume between 

5:05 pm and 5:20 pm on December 9, 1999, was chosen as a representative peak volume 

and used for the analysis.  The flow rates of each movement were converted to hourly 

volume and these are shown in Figure 3-2.   

 

FIGURE 3-2 Site Detail for George Bush Drive and Wellborn Road Intersection 
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The intersection signal is operated in a coordinated mode with a 120-second cycle 

length, including the northbound and the southbound through, Wellborn Road, as 

coordinated phases. The eastbound and the westbound approaches, George Bush Drive, 

are individual phases.  That is, the left-turn and through movements operate together.  

The signal control variables in normal mode and preemption mode are shown in Tables 

3-1 and 3-2, respectively. 

 

 

TABLE 3-1 Signal Control Variables at the Intersection of George Bush and 
Wellborn 

Movement NB LT SB TH EB WB SB LT NB TH 
Phase Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
PASS 2 4.5 3 3 4 4.5 
MIN 7 10 8 8 7 10 
MAX 25 65 32 55 30 60 
YEL 4 4 4 4 4 4 
RED 1 1 1 1 1 1 

WALK 0 4 4 4 0 4 

Normal 
Mode 

PED CLR 0 15 15 15 0 15 
TIME 24 41 30 25 18 47 Coordinated 

Mode MODE 3 1 3 3 3 1 
Mode 1: Coordinated phase 
Mode 3: MAX REC - the phase will operate as an actuated phase with coordination modifier of 
MAXIMUM RECALL within the pattern defined 
Note: All values in table are expressed in seconds. 
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TABLE 3-2 Signal Control Variables in Preemption Mode at the Intersection of 
George Bush Drive and Wellborn Road 

Variable Time (seconds) Variable Time (seconds) 
MIN GRN/WLK 5   
SEL PED CLR 0 TRK RED/10 10 
SEL YEL/10 40 RET PED CLR 15 
SEL RED/10 10 RET YEL/10 40 

TRK PED CLR 0 RET RED/10 10 
TRK YEL/10 40 TRACK GREEN 22 
Track Green Phase 3 EXIT Phase 3 

Cycle Phase 2 & 6 – Max. REC. and Phase 5 – Min. REC. 
MIN GRN/WLK: Minimum Green Time for any vehicle phase and any pedestrian phase at the onset of the 
preemption. This time (0-999 seconds) must have been displayed prior to its termination for a transition to 
the preemption. 
SEL PED CLR (Selective Pedestrian Clearance):  This sets the time (0-99 seconds) that will be provided to 
clear a terminating Walk during the transition to Track Green. 
SEL YEL/10 (Selective Yellow Change): This sets the time (0-999 tenth seconds) that will be provided to 
clear a terminating Green during the transition to Track Green.  
SEL RED/10 (Selective Red Clear): This sets the time (0-999 tenth seconds) that will be provided to clear 
a terminating Yellow during the transition to Track Green.  
TRACK GREEN: This sets the time (0-99 seconds) that will be provided as a Track Green interval.  
TRK PED CLR (Track Pedestrian Clear): This sets the time (0-99 seconds) that will be provided to clear a 
terminating Walk during the transition to Dwell Green. 
TRK YEL/10 (Track Yellow Change): This sets the time (0-999 seconds) that will be provided to clear a 
terminating Green during the transition to Dwell Green. 
TRK RED/10 (Track Red Clear): This sets the time (0-999 seconds) that will be provided to clear a 
terminating Yellow during the transition to Dwell Green. 
RET PED CLR: This sets the time (0-99 seconds) that will be provided to clear a terminating Walk during 
the transition to Normal Operation. 
RET YEL/10 (Return Yellow Change): This sets the time (0-999 tenth seconds) that will be provided to 
clear a terminating Green during the transition to Normal Operation.  
RET RED/10 (Return Red Clear): This sets the time (0-999 tenth seconds) that will be provided to clear a 
terminating Yellow during the transition to Normal Operation.  
 

 

3.2  PREDICTION ALGORITHM  

The ability to forecast train arrival time at highway-railroad grade crossings is essential 

for the accurate preemption of traffic signals at an IHRGC.  However, because of the 

limitation of current detection technologies and estimation algorithms, a wide range in 

warning times exists.  The uncertainty in arrival time arises because the existing 

prediction methods assume that the train’s speed at the time of detection will remain 
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constant until the train reaches the crossing.  If the train is accelerating or decelerating, 

the preemption will begin later or earlier than the preemption warning time.  

 

The preemption warning time depends on several characteristics of the site including the 

distance between the intersection and the crossing, traffic signal timing, longest vehicle 

allowed on the roadway, pedestrian volume, and other factors.  Generally the preemption 

warning time is longer than the minimum warning time.  With the recent advances in 

train detection technology, the potential exists for placing additional equipment in the 

field that will allow for earlier detection of on-coming trains.  The goal of the proposed 

approach is to supplement, not replace, the current system.  Therefore, if the system is 

designed correctly, safety can only increase, or, at worse, remain constant.   

 

In this dissertation, artificial neural network (ANN) models are applied to handle the 

nonlinear relationship between the train speed profile and arrival time.  A modular 

artificial neural network (MANN) also is applied to model the situation where trains 

with markedly different speed profiles may have the same arrival time.  The current 

prediction method and five multiple linear regression (MLR) models also will be 

evaluated for comparison purposes.  Because the artificial neural network model is a 

non-parametric method, a bootstrap technique, which is a computer-based method for 

assigning measures of accuracy to statistical estimates, is used to obtain the prediction 

interval.  The mean predicted arrival time and associated prediction interval will be 

combined in the transition preemption strategy in order to reduce the effect of the error 

in the arrival time prediction.  The new prediction algorithm will be developed in 

Chapter IV.   

 

3.3  TPS ALGORITHM 

When a train is detected by CWT detector and the predicted arrival time is the same as 

the pre-determined preemption warning time, a preemption signal is sent to the traffic 

signal controller.  The traffic controller uses this information and any information from 
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inductive loop detectors and pedestrian push button to control the preemption.  After a 

while, when the predicted arrival time is the same as the pre-determined crossing 

warning time, the train detector also provides a signal to the gate controller so that the 

gate will begin to descend.  The conceptualization of the normal preemption method is 

shown in Figure 3-3.  As discussed in Chapters I and II, the traffic signal can operate in 

unsafe ways (i.e., abrupt truncation of pedestrian phases at the onset of preemption) in 

the normal preemption method.   

 

In order to reduce the safety problem of the exist preemption logics, Venglar et al. 

developed a new logic called the Transition Preemption Strategy (referred to here in this 

dissertation TPS1).  The concept of the TPS1 algorithm was to provide a smooth 

transition from normal mode to preemption mode by controlling the time period before 

the normal preemption begins (3,4,5,6).  The TPS1 algorithm is initiated by the advance 

preemption warning time (APWT) from the Doppler detector.  The TPS1 algorithm is 

operated until the traffic signal controller receives the preemption signal from the CWT 

detector.  Once the traffic signal controller receives the preemption signal from the CWT 

detector, the TPS1 logic is terminated and the normal preemption is initiated 

immediately regardless of the completion of the TPS1 algorithm.  Therefore, unexpected 

phase truncations still can occur because of the variability of predicted train arrival time 

but their likelihood is greatly reduced.  In addition, room for improvement exists because 

developers did not consider intersection performance in the TPS1 algorithm.  Figure 3-4 

shows a conceptualization of the preemption including the TPS1 algorithm.   
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FIGURE 3-3  Conceptualization of the Normal Preemption 
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FIGURE 3-4 Conceptualization of Preemption Using the TPS1 Algorithm 
 

 

3.4  MICRO-SIMULATION  

The evaluation of a TPS algorithm requires information on each individual unit (i.e., 

vehicle and pedestrian).  Therefore, a behavior and periodic-scan based micro-simulation 
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takes longer to perform than with regular traffic simulation models. Moreover, because 

the simulation model is connected to a real traffic signal controller, some communication 

errors may occur (30). 

 

Figure 3-5 shows a diagram of the hardware-in-the-loop system used in this dissertation.  

It can be seen that there are three main components.  Component 1 is a simulation model 

that gives the detection information to the controller.  The traffic signal in the simulation 

model is operated based on the signal information received from the controller.  

Component 3 is the traffic signal controller, which gives the signal information to the 

simulation model based on the detector information received from the simulation model.  

Component 2 is the controller interface device (CID), which allows a computer to 

communicate with the traffic controller (30).  Any number of micro-simulation models, 

including CORSIM, TEXSIM, and VISSIM, can be used.  The traffic controller was the 

Eagle EPAC 300, which was used at the test site. 

 

FIGURE 3-5  Framework of Hardware-in-the-Loop System 
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Most existing microscopic traffic simulation models such as CORSIM (31) do not 

provide all the traffic signal functions that the vendor-specific controllers have.  

Consequently the hardware-in-the-loop system has been the only viable solution for 

accurate simulation of functions in the controller.  Recently the development of new 

simulation models, including the VISSIM microscopic traffic model have increased the 

realism of traffic signal control.  VISSIM provides VAP, which is an optional add-on 

module for the simulation of programmable, phase- or stage-based, traffic-actuated 

signal controls (29).  Therefore most functions in the vendor-specific controllers can be 

modeled with software-only traffic simulation rather than hardware-in-the-loop.  All 

signal functions including transition preemption strategy logic, which is developed in 

this dissertation, as well as preemption and the transition back to normal after 

preemption, which are available in the controller, can be programmed using VAP.  

Because the VISSIM model also has the capability to simulate vehicles, trains, and 

pedestrians that behave stochastically, it was chosen as the microscopic traffic 

simulation model for this study. 

 

In this dissertation, different VAP codes were developed for each of the traffic signal 

preemption algorithms that were developed.  The traffic signal logic was based on an 

Eagle EPAC 300 controller, which is currently used in the study site.  The simulations 

are not constrained to run in real time and many more simulations can be run.  

Therefore, more scenarios can be tested and statistical inference of the results can be 

applied. 

 

3.5 DEVELOPMENT OF THE VAP TRAFFIC SIGNAL CONTROLLER 

LOGIC 

The features of the Eagle EPAC 300 signal controller were studied under a hardware-in-

the-loop system environment to develop the VAP traffic signal controller code in 

VISSIM.  Some of the complicated logics such as, the coordinated mode and transition 

mode back to normal mode, were obtained from the SIEMENS Energy & Automation, 
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Inc., who developed the traffic signal controller.  The VAP codes were developed by 

module for each control mode.  There are four signal modes required to emulate the 

controller: 1) coordinated actuated mode, 2) fully actuated mode, 3) preemption mode, 

and 4) transition mode back to the coordinated mode.  In the normal condition at the 

study site (i.e., the absence of trains), the permissive coordinated mode is operated.  The 

control mode is changed to the preemption mode at the onset of preemption.  After 

preemption, the controller returns to the coordinated mode through the transition mode, 

which includes the fully actuated mode.   

 

The permissive coordinated actuated mode and the transition mode will be reviewed in 

this section.  Special attention is required to code these two traffic signal control modes 

because the detailed processes of these two modes are not discussed in the literature.  

 

3.5.1 Permissive Coordinated Mode 

The permissive coordinated mode is designed to provide a safeguard against an 

excessive early release from the coordinated phases.  This mode controls the release 

period, called the permissive period, to each of the non-coordinated phases in the 

sequence.  The permissive period is the time during which the controller can release the 

coordinated phases to serve non-coordinated phases.  The length of the permissive 

period is determined based on the split time and the minimum time for each phase.  The 

permissive period for each phase opens and closes in sequence based on where the phase 

occurs in the cycle (32). 

 

When the coordinated phases are terminated to serve a non-coordinated phase during its 

permissive period, all subsequent phases can be served in their normal order before 

returning to the coordinated phases.  That is, once the controller has left the coordinated 

phases, it will leave a non-coordinated phase to serve another non-coordinated phase 

normally (32). 
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The beginning of the permissive period for each phase is the point that the controller 

could leave the coordinated phase and run the entire split time for that phase and all 

subsequent phases before the end of the cycle.  The end of the permissive period for each 

phase is the last point that the controller could leave the coordinated phase and run the 

minimum time for that phase and the split time for all subsequent phases before the end 

of the cycle.  That is, it is guaranteed that once the controller leaves to serve a phase, at 

least the minimum time for that phase will be served.  It also ensures that any phase that 

occurs after the phase will have the full split time to be served. A complete description 

of the permissive coordinated mode may be found elsewhere (32). 

 

3.5.2 Transition Modes Back to Normal Mode  

Four transition methods are provided in the Eagle EPAC 300 controller.  The SWY 

(Shortening Dwell) option provides an offset correction either by shortening the cycle 

length or by dwelling based on a shortest way calculation.  This option automatically 

takes into consideration minimum times.  Note that each phase length during the 

transition can be different and is a function of the vehicle calls.  Because the time period 

of interest in this dissertation is before the preemption, it is desirable that the time frame 

for each scenario is the same in order to observe any difference between the scenarios.   

 

In addition, even though DWL (Dwell) mode may produce higher delay, it was chosen 

for simplicity of coding in VAP.  While it can take a few cycles to return to normal 

mode with the SWY transition method, the DWL transition method needs only one cycle 

to return to normal cycle.  The signal is run with the fully actuated mode for the first 

cycle after the preemption.  During the second cycle the controller identifies its offset 

with the other traffic signal in the system at the same time it runs with the coordinated 

mode.  In the third cycle after preemption, the signal controller transitions to the default 

offset by increasing the coordinated phase length (32).   
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To verify if the VAP emulates the Eagle EPAC 300 controller correctly, the signal status 

for both the VAP and the hardware-in-the-loop system during the simulation including a 

normal preemption were collected and compared under several scenarios.  The 

simulations for the comparison were performed under both the permissive coordinated 

mode and the fully actuated mode with three different random number seeds.   

 

It was found that each function in the VAP emulated the controller logic correctly.  It 

should be noted that some differences in signal timing existed between the two methods 

during simulation.  These differences are considered to be caused by a communication 

problem.  This problem will be examined in detail in the Section 3.6. 

 

3.6  VAP AND HARDWARE-IN-THE-LOOP COMPARISON 

The signal status for both the hardware-in-the-loop system and the VAP during the 

simulation including a normal preemption were collected and compared under the fully 

actuated mode including a preemption.  Tables 3-3 and 3-4 show the signal status 

including each phase start time and duration during the simulation as an example for 

both the hardware-in-the-loop system and the VAP, respectively. 

 

Table 3-3 shows that the preemption occurred at 541 seconds during the simulation 

under the hardware-in-the-loop system.  Table 3-4 shows that the preemption occurred at 

540 seconds during the simulation under the VAP. There is a 1-second difference in the 

duration of phase 1 during cycle 5 (i.e., at the 437 seconds of the simulation time).  That 

is, the hardware-in-the-loop system gave phase 1 16 seconds and the VAP give it 17 

seconds.  From this point on, the start times of most phases in the VAP were shifted 1 

second later than in the hardware-in-the-loop system and the duration of some phases 

were changed by 1 second.  Interestingly, by time 949 the two are back in 

synchronization.  However, after 1089 seconds of the simulation time, the durations of 

phase 1 are quite different from each other.  It can be seen in Tables 3-3 and 3-4 that at 

1089 seconds the length of phase in the hardware-in-the-loop system was 10 seconds  
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TABLE 3-3 Signal Timing for Hardware-in-the-Loop System  

Phase 6 Phase 2 Phase 3 Phase 4 Phase 1 Phase 5 Cycle 
 ST* Dura

tion ST* Dura
tion ST* Dura

tion ST* Dura
tion ST* Dura

tion ST* Dura
tion 

1 1 10 1 10 16 19 40 19 64 9 64 7 
2 76 21 78 19 102 22 129 19 153 11 153 7 
3 165 23 169 19 193 19 217 19 241 16 241 7 
4 253 30 262 21 288 19 312 19 336 19 336 7 
5 348 34 360 22 387 19 411 21 437 16 437 7 
6 449 28 458 19 482 19 506 21 (532) (9) (532) (9) 
7     (546) (13)       
8   (564) (171)       (564) (7) 
9 (576) (60)         (641) (9) 

10 (655) (60)         (720) (7) 
11     740 19 764 21 790 25 790 7 
12 802 37 820 19 844 22 871 19 895 25 895 7 
13 907 37 925 19 949 19 973 22 1000 12 1000 7 
14 1012 24 1017 19 1041 19 1065 19 1089 10 1089 7 
15 1101 22 1104 19 1128 21 1154 19 1178 7 1178 7 
16 1190 19 1190 19 1214 20 1239 21 1265 7 1265 10 
17 1280 23 1277 26 1308 19 1332 19 1356 25 1356 7 
18 1368 49 1386 31 1421 19 1445 19 1469 17 1469 9 
19 1483 27 1491 19 1515 24 1544 0 0 0 0 0 

Sum  504  452  312  277  208  128 
ST* :  Phase start time during simulation 
() : Preemption period 
Bold: Critical checking point 
 

 

while the length of phase in the VAP system was 25 seconds.  After checking the 

animation files and detection information file, an error was found in the hardware-in-the-

loop system.  That is, the controller did not “recognize” a vehicle at the corresponding 

detector.  This detection error of one vehicle caused the difference of 15 seconds in 

phase duration.  This large difference is possible when the characteristics of actuated 

mode operation are considered.  For example, if there is no vehicle call for a phase at a 

certain time, the phase can “gap out.”  This means that once the minimum amount of 

green time is provided and there are no more vehicle calls the phase is terminated.  
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However, if there is a vehicle call for the phase at that time, the phase will be extended 

for the vehicle detected.  The phase may be further extended for other vehicles that are 

detected until the length of the phase reaches the maximum phase length.  Therefore, 

even a small error in detection can change the signal status considerably. 

 

 

TABLE 3-4 Signal Timing for VAP  

Phase 6 Phase 2 Phase 3 Phase 4 Phase 1 Phase 5 
Cycle 

ST* Dura
tion ST* Dura

tion ST* Dura
tion ST* Dura

tion ST* Dura
tion ST* Dura

tion 
1 1 10 1 10 16 19 40 19 64 9 64 7 
2 76 21 78 19 102 22 129 19 153 11 153 7 
3 165 23 169 19 193 19 217 19 241 16 241 7 
4 253 30 262 21 288 19 312 19 336 19 336 7 
5 348 34 360 22 387 19 411 21 437 17 437 7 
6 449 29 459 19 483 19 507 20 (532) (8) (532) (8) 
7     (545) (13)       
8   (563) (171)       (563) (7) 
9 (575) (60)         (640) (9) 

10 (654) (60)         (719) (7) 
11     739 19 763 21 789 25 789 7 
12 801 37 819 19 843 22 870 19 894 25 894 7 
13 906 38 924 20 949 19 973 22 1000 12 1000 7 
14 1012 24 1017 19 1041 19 1065 19 1089 25 1089 7 
15 1101 41 1119 23 1147 20 1172 19 1196 15 1196 10 
16 1211 24 1216 19 1240 20 1265 21 1291 11 1291 9 
17 1305 21 1307 19 1331 20 1356 19 1380 25 1380 7 
18 1392 40 1410 22 1437 23 1465 25 1495 9 1495 9 
19 1509 19 1509 19 1533 19 1557 0 0 0 0 0 

Sum  511  441  311  282  227  129 
ST* :  Phase start time during simulation 
() : Preemption period 
Bold: Critical checking point 
 

 

Note that all signal timings following time 1089 seconds were affected by this small 

error.  This error was considered a communication problem between the simulation 
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model and the controller.  Several more tests were performed under the same condition 

but different random number seeds.  For most of the tests, this type of error (i.e., non-

recognition of simulated vehicles by hardware-in-the-loop) was found.  Therefore, the  

hardware-in-the-loop system with VISSIM cannot be used for this simulation without 

fixing the communication problem.   

 

3.7  METHOD TO EMULATE TRAINS IN SIMULATION  

Because trains often change their speed continuously, it is not possible to emulate the 

train speeds exactly in VISSIM.  This would be true even if continuous data on the 

train’s speed throughout its journey were available.  Emulation of the real situation in  

VISSIM can be achieved by adjusting the placement of the train detector on the tracks 

(i.e., detector length) and the average train speed of each train according to the following 

steps:   

 

Step 1: From the field identify the time (X) when the advance preemption 

warning time is predicted as a specific time and the real time (Y) when the 

preemption warning time is predicted as 35 seconds. 

Step 2:  Set the detector lengths for X and Y for the given train using the average 

speed of each train at FM 2818.   

 

Because the TPS is designed to begin at a specific time before the train arrives at the 

crossing, it is necessary to accurately predict this arrival time.  However, it is not 

possible to predict the train arrival time with 100 percent accuracy regardless of how 

often the algorithm is updated.  In this dissertation, a new predicted arrival time will be 

forecast every 10 seconds.  Therefore, it should be acknowledged that the TPS algorithm 

does not have to be started at a specific desired time ahead of the arrival time.  For this 

simulation study, once the predicted arrival time is equal to or less than the desired 

arrival time prediction, the TPS algorithm is started. 
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Once the predicted arrival time is determined, the detector length can be calculated 

according to the predicted arrival time and the actual arrival time.  An example of the 

method to calculate the detector length to emulate the real train is shown in Figure 3-6.  

This example is the case where the TPS algorithm is started when the predicted arrival 

time is equal to or less than 100 seconds and the preemption is started when the 

predicted arrival time is equal to 35 seconds.  The actual arrival time and the predicted 

arrival time are shown in Figure 3-6.  For example, when the actual arrival time is 100 

seconds, the predicted arrival time is 106 seconds.  Because the predicted arrival time is 

more than 100 seconds, the TPS algorithm will not start.  When the prediction is 

performed again after 10 seconds, the predicted arrival time is 95 seconds and the TPS 

algorithm is started immediately.  Therefore, the detector length for the TPS algorithm 

should be 1000 m (= 90 (seconds) × 40 (km/h) × (1000/3600)) assuming a 40 km/h train 

speed.  Afterward the prediction is updated every 10 seconds.  If the preemption is 

started when the actual arrival time is 42 seconds, the detector length for the preemption 

should be 467 m (= 42 (seconds) × 40 (km/h) ×  (1000/3600)). 
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FIGURE 3-6  An Example of the Method to Calculate the Detector Length to 
Emulate the Real Train  
 

 

3.8  SIMULATION DESIGN 

As discussed in previous sections, in order to perform simulations various input data are 

required.  The required data for the simulation and the relationship between the real 

world and the simulation world are shown in Figure 3-7.   Simulation will be performed 

according to the following steps: 

 

Step 1: Collect train speed data, actual preemption warning time, and actual 

advance preemption warning time from the CWT detector and the 

Doppler detector. 

Step 2: Calculate detector length 1 based on actual preemption warning time and 

Predicted 
Time

Actual 
Time

Normal Preemption Start

Set Detector Length 1 so that TPS starts 90 seconds before 
the train arrives at the crossing.
Once TPS starts, predicted arrival time (95,83,74,58,48) is 
updated every 10 seconds.

119 106 95 3583 74 58 48

Set Detector Length 2 so that 
preemption starts 42 seconds before the 
train arrives at the crossing.

TPS Start

Predicted Train 
Trajectory

Detector 2
Location

Detector 1 
Location

Crossing

Distance

Actual Train 
Trajectory

110 100 90 4280 70 60 50 0
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the average train speed, and detector length 2 based on actual advance 

preemption warning time and the average train speed. 

Step 3: Predict the train arrival time (using the model developed in Chapter IV 

and the train speed data).   

Step 4: Input the detector lengths and the average train speed into the VISSIM 

model. 

Step 5:  Input the train arrival time into the VAP cord. 

Step 6:  Run the simulation. 

 

 

FIGURE 3-7  Relationship between the Real World and the Simulation World 
 

 

3.9  CONCLUDING REMARKS 

The methodologies to develop a new train arrival time prediction algorithm and new 

TPS algorithm were introduced in this chapter.  The new prediction algorithm will be 

CWT Detector
Doppler Detector
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preemption warning time, and advance preemption warning
time in order to emulate the speed change of real train.

Historic Data:
•Train Speeds
•Arrival Time (Travel Time)
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Real World
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developed using an artificial neural network and modular technology in Chapter IV.  The 

new TPS algorithm, where the phases that are blocked during the preemption are given 

more importance than phases that are served during the preemption, will be developed in 

Chapter V. 

 

Because the VISSIM micro-simulation model is a behavior and periodic-scan based 

micro-simulation model and has the capability to simulate vehicles, trains, and 

pedestrians, it was chosen as the microscopic traffic simulation model for this study.  

Moreover, because VISSIM provides VAP (vehicle actuated programming), which is an 

optional add-on module for the simulation of programmable, phase- or stage-based, and 

traffic-actuated signal controls (29), the functions in the vendor-specific controllers 

could be modeled within the simulation environment.  All signal functions for this study 

including permissive coordinated mode, fully actuated mode, preemption mode, and the 

transition mode back to normal after preemption, which are available in the traffic signal 

controller, were programmed in VAP.   

 

The test bed chosen for the train arrival time prediction algorithm was the Wellborn 

Road corridor in College Station, Texas.  The corridor is approximately 2.2 km in length 

and is located between FM 2818 and George Bush Drive.  The signalized intersection of 

George Bush Drive and Wellborn Road in College Station, Texas, along the railway 

corridor was chosen as the test bed for the development of 1) the new train arrival time 

prediction algorithms, and 2) the new TPS algorithm. 
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CHAPTER IV 

DEVELOPING A TRAIN ARRIVAL TIME PREDICTION 

ALGORITHM 

The ability to forecast train arrival time at highway-railroad grade crossings is essential 

for the accurate preemption of traffic signals at IHRGCs.  However, because of 

limitations in detection technologies and the train arrival time prediction algorithms, a 

wide range exists in predicted arrival times.  The uncertainty in arrival time arises 

because the existing prediction methods assume that the train’s speed at the time of 

prediction will remain constant until the train reaches the crossing.   

 

Generally two different arrival time predictions are needed at the site of interest in this 

dissertation: 1) the warning time for the HRGC, and 2) the preemption warning time for 

the IHRGC preemption.  This predictions are calculated using the constant warning time 

detector. 

 

With the recent advances in train detection technology, the potential exists for placing 

additional equipment in the field that will allow for earlier detection of oncoming trains, 

which is required for the TPS algorithm.  In this chapter, a new train arrival time 

prediction algorithm will be developed based on train data obtained using Doppler 

microwave radar, which is one of the second-generation detector technologies.  This new 

predicted arrival time will be updated continuously.  Once the train arrival prediction 

equals to the APWT, the TPS algorithm starts.  To predict the train arrival time, the train 

speed, acceleration rate, train length, time in detection, etc. can each be the candidate for 

the independent variable.  A preliminary analysis for the variables will be undertaken in 

order to provide insight regarding the data structure, the distribution, and the relationship 

between the variables.   
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A new prediction algorithm will be developed using the artificial neural network because 

of the complexity of a series of speed data and the nonlinear relationship between the 

speed and arrival time.  The study will identify the optimal number of neurons in the 

hidden layer and the optimal number needed for training, as well as the parameters in the 

models.  Because trains can exhibit a wide range of behavior, a modular approach will 

be used.  The chosen model will update the forecasted train arrival time at 10-second 

intervals.  The current prediction method for the current TPS algorithm and five Multiple 

Linear Regression (MLR) models also will be evaluated for the purpose of comparison.  

A bootstrap technique will be used to obtain the prediction interval. 

 

As discussed in Chapter III, the test bed was a railway corridor located in College 

Station, Texas.  Doppler radar equipment was utilized to measure train speed and 

direction approximately 2.2 km from the HRGC. Because the detector is located 

relatively far from the crossing, the prediction at the detector location is subject to error.  

Even though the prediction algorithm will be developed using the train data at a specific 

test bed, the methodology can be applied to any other place where the speed data of 

trains are available.  

 

4.1  PRELIMINARY ANALYSIS 

In this section, the relationship among the variables and the characteristics of the 

variables, including train speed, train arrival time, train length, and time in detection, 

observed or estimated from the detectors of FM 2818 and George Bush Drive, were 

studied in order to implement them into the train arrival time prediction algorithm.  

 

The average speed was obtained taking the average of all observed speeds per second.  

The average train speed during detection in the direction from FM 2818 toward George 

Bush Drive was 42.1 km/h and the standard deviation was 10.0 km/h.  The distribution 

of the average train speed follows the normal distribution based on a chi-square test 

performed at the 95 percent significance level.  The entering speeds of trains at FM 2818 
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ranged from 9.5 to 88.4 km/h.  The average train entering speed was 47.2 km/h with 15.7 

km/h of the standard deviation. The crossing speeds of trains at George Bush Drive 

ranged from 12.9 to 85.3 km/h.  The average train crossing speed was 39.0 km/h with 

8.2 km/h of the standard deviation.  These are shown in Table 4-1 and the histograms of 

those speeds are shown in Figures 4-1, 4-2, and 4-3.    

 

 

TABLE 4-1 Summary Statistics at FM 2818 and George Bush 

 

Average 
Train  
Speed 
(km/h) 

Speed at 
FM 2818 
(km/h) 

Speed at 
George 

Bush (km/h)

Train 
Arrival 

Time (s) 
Train 

Length (m) 

Time in 
Detection 

(s) 
Average 42.1 47.2 39.0 206 1363 128 
Standard 
Deviation 10.0 15.7 8.2 44.8 564.0 59.9 
Maximum 81.6 88.4 85.3 472 2327 405 
Minimum 11.4 9.5 12.9 99 83 10 

 

 

FIGURE 4-1 Histogram of Instantaneous Train Speed at FM 2818  
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FIGURE 4-2 Histogram of Instantaneous Train Speed at George Bush Drive 
 

FIGURE 4-3 Histogram of Average Train Speed at FM 2818 
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The average train speed decreases as the trains pass the FM 2818 crossing as shown in 

Figure 4-4.  However, the minimum speed is getting higher as time in detection 

increases as shown in Figures 4-1 and 4-2, and Table 4-1.  It can be seen that the average 

train speed is lower at George Bush Drive than at FM 2818 and the variability of speed 

at George Bush Drive is less than at FM 2818 as shown in Table 4-1.  Therefore, trains 

are typically experiencing a deceleration during their time in detection shown in Figure 

4-5.  This is consistent with Figure 4-4.   

 

Note that the Doppler detector does not provide the acceleration/deceleration rate.  

However, the acceleration/deceleration rate may be estimated using Equation 4-1. 

 

1iicc SSA −−=  (4-1) 

where; 

 Acc  = Acceleration/deceleration rate of train (km/h/s); and 

 iS     = Average train speed at i seconds after the detection (km/h) (i = 

2,3,…240). 

 

The estimate acceleration/deceleration rate, in km/h/s, at FM 2818 detector location are 

shown in Figure 4-5.  It may be seen that as trains approach the George Bush Drive 

crossing, the rate of deceleration decreases.  Whereas most of the trains tend to 

decelerate generally, some slow trains tend to accelerate.  This characteristic may cause 

trains that have different speed profiles to have the same arrival time.  This is 

problematic for many estimation procedures. 
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FIGURE 4-4 Average Train Speed versus Time in Detection at FM 2818 

 

 

FIGURE 4-5 Average Train Acceleration/Deceleration versus Time in Detection at 
FM 2818 
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The number of speed observations is dependent on the train speed and the train length.  

The number of speed observations is shown in Figure 4-6.  It shows that the number of 

speed observations decreases as time in detection increases.   

 

 

FIGURE 4-6 Number of Speed Observations for Time in Detection 
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FIGURE 4-7 Histogram of Arrival Time from FM 2818 to George Bush Drive 
 

 

Figure 4-8 shows the histogram of estimated train length.  The average estimated train 

length was 1363 m and the standard deviation was 564.0 m as shown in Table 4-1.  The 

train length was estimated using the speed observation and the time in detection as 

shown in Equation 4-2. 

 

∑
=

=
H

1i
iVξ  

 

(4-2) 

where; 

 ξ      = Estimated train length (m); and 

 Vi     = Observation train speed at i seconds after the detection (m/s); and 

 H     = Time in detection (s). 
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FIGURE 4-8 Histogram of Train Length 
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FIGURE 4-9 Histogram of Time in Detection  
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FIGURE 4-10  Time in Detection versus Average Train Speed  
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FIGURE  4-11  Time in Detection versus Train Length 
 

 

FIGURE 4-12  Average Train Speed versus Train Length 
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It was found that as the train length increases, the average train speed decreases slightly 

as shown in Figure 4-12.  The correlation coefficient was a relatively small -0.1417.  

From Figure 4-10 and 4-11, it would be expected that the relationship between train 

length and average speed would be negative.  That is, the following relationships were 

found from Figure 4-10 and 4-11; 

 

1) As the train speed increase, time in detection decrease.  

2) As the train length increase, time in detection increase. 

 

If the inverse relationship for each of two relationships is always satisfied, it is easy to 

derive the relationship between the average train speed and the train length.  However, 

the inverse relationship of 1 and 2 may not be true for individual trains.  For example, 

large values of time in detection can occur when (1) train length is long and train speed 

is high and (2) train length is short and train speed is low.  Therefore, there is no clear 

relationship between any train speed and train length as shown in Figure 4-12. 

 

It was found that as average speed increases, the train arrival time at George Bush Drive 

crossing decreases as shown in Figure 4-13.  The correlation coefficient was a relatively 

high –0.7914, illustrating a relatively high linear relationship.  However, it can be seen 

in the figure that, the relationship is a power function, then the actual correlation could 

be even higher.  Therefore, the speed could be used as an input variable for prediction of 

arrival time.   
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FIGURE 4-13  Train Arrival Time versus Average Train Speed 
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FIGURE 4-14  Train Arrival Time versus Time in Detection 
 

 

FIGURE 4-15  Train Arrival Time versus Train Length 
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4.2  ARTIFICIAL NEURAL NETWORK (ANN) MODEL DESIGN 

4.2.1 Input Variables for ANN 

An ANN model was used to model the relationship between train arrival time at George 

Bush Drive and the train speed at FM 2818.  An ANN architecture was adapted because 

there is a nonlinear relationship between the independent variables such as train speed 

profile and the dependent variable such as train arrival time at the crossing as discussed 

in the preliminary analysis.  Because a forecast arrival time is required every 10 seconds 

after the train is first detected, a series of ANNs is required.  Note that as the time in 

detection increases the number of observations increases and, therefore, all else being 

equal, so would the accuracy of the prediction.  While the best input would be the entire 

speed profile, 1-second speed measurements would be too complex for training an ANN.  

Consequently a speed profile consisting of 10 speed observations was used as input for 

each of the 24 forecasting models (i.e., a different model for every 10 seconds for 240 

seconds).  For example, for model 10 (i.e., 100 seconds after first detection) the input 

speed profile consisted of 10 observations starting at 10 seconds and proceeding in 

increments of 10 seconds.  The exact time the speed information was collected is shown 

in Table 4-2. 
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TABLE 4-2  Selected Seconds after Detection for the Input Speed 

Model TID* Selected Seconds after Detection for the Input Speed (s) 
1 10 1 2 3 4 5 6 7 8 9 10 
2 20 2 4 6 8 10 12 14 16 18 20 
3 30 3 6 9 12 15 18 21 24 27 30 
4 40 4 8 12 16 20 24 28 32 36 40 
5 50 5 10 15 20 25 30 35 40 45 50 
6 60 6 12 18 24 30 36 42 48 54 60 
7 70 7 14 21 28 35 42 49 56 63 70 
8 80 8 16 24 32 40 48 56 64 72 80 
9 90 9 18 27 36 45 54 63 72 81 90 

10 100 10 20 30 40 50 60 70 80 90 100 
11 110 11 22 33 44 55 66 77 88 99 110 
12 120 12 24 36 48 60 72 84 96 108 120 
13 130 13 26 39 52 65 78 91 104 117 130 
14 140 14 28 42 56 70 84 98 112 126 140 
15 150 15 30 45 60 75 90 105 120 135 150 
16 160 16 32 48 64 80 96 112 128 144 160 
17 170 17 34 51 68 85 102 119 136 153 170 
18 180 18 36 54 72 90 108 126 144 162 180 
19 190 19 38 57 76 95 114 133 152 171 190 
20 200 20 40 60 80 100 120 140 160 180 200 
21 210 21 42 63 84 105 126 147 168 189 210 
22 220 22 44 66 88 110 132 154 176 198 220 
23 230 23 46 69 92 115 138 161 184 207 230 
24 240 24 48 72 96 120 144 168 192 216 240 

*: Time since train was first detected  
 

 

4.2.2 ANN Design 

Because of the complexity of the function estimated, a fully connected multilayer neural 

network, rather than a single-layer ANN, was chosen for this study.  The 

backpropagation algorithm was used to train the multilayer neural networks.  The 

backpropagation algorithm is a generalization of the least mean square algorithm, and 

both algorithms use mean square error.  The chain rule is employed in the 

backpropagation algorithm in order to compute the derivatives of the squared error with 

respect to the weights and biases in the hidden layers.  However, when the 



 78

backpropagation algorithm converges, there is no guarantee the optimum solution is 

found.  Consequently, it is best to try several different initial conditions to increase the 

possibility of finding a global optimum solution (33).  Therefore, all ANNs tested in this 

dissertation were run 50 times with different initial parameters to find the parameters 

that gave the best results. 

 

Several nonlinear optimization algorithms including the steepest-descent algorithm, 

Newton’s method, and conjugate-gradient algorithm are generally used to minimize the 

squared error during training (33).  The Levenberg-Marquardt algorithm, which is a 

variation of Newton's method, was used in this dissertation. The Levenberg-Marquardt 

algorithm was designed for minimizing functions that are sums of squares of other 

nonlinear functions. This algorithm is very well suited to neural network training.  A 

hyperbolic tangent sigmoid was used as neuron transfer functions in this dissertation 

(33). 

 

The number of neurons used is related to the complexity of the function that is 

approximated.  Because a way to find the feature of the function does not exist, the 

number of neurons used in the hidden layer was identified based on a sensitivity 

analysis. Five different architectures, consisting of one, five, ten, twenty, and thirty 

hidden neurons were tested for each model and the average absolute error was used as 

the performance index.  The input-output structure of the ANN model used in this 

dissertation is shown in Figure 4-16.  A preliminary test indicated that 10 iterations were 

sufficient for identifying the initial ANN parameters.  A complete description of ANN 

theory may be found elsewhere (33,34,35,36,37). 
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FIGURE 4-16  Input-Output Structure of Artificial Neural Network Model 
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where; 

 AAEk= Average absolute error in testing set at time index k (k = 10, 20, …. 

240); 

 Oki     = Observed arrival time for train i at time index k (k = 10, 20, …. 240);  

 Pki      =  Predicted arrival time for train i at time index k  (k = 10, 20, …. 240); 

and   

 Nk       = Number of trains in testing set i at time index k (k = 10, 20, …. 240).  
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4.2.3 ANN Results 

One hundred iterations were performed for each of the ANNs using the initial 

parameters identified in the preliminary testing.  The results are shown in Table 4-3.  For 

all ANNs, the average absolute error (AAE) for the training sets decreases as the number 

of iterations increases, while the AAE for the testing sets decreases until the critical 

iteration is reached, at which point the AAE begins to increase.  Therefore, after a 

certain iteration number, the ANN model continues to perform better for training sets 

while it performs worse for testing sets.  This behavior is a well know property of ANN 

(33).  The optimal parameters of the ANN model are identified based on the ANN that 

has the minimum AAE for testing sets.   

 

The minimum AAE and the associated critical iteration number for every prediction 

model (i.e., every 10 seconds) are shown in Table 4-3.  It can be seen that the best 

number of hidden neurons tends to decrease as the time in detection increases.  As would 

be expected, the average absolute error also tends to decrease as time in detection 

decreases. 
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TABLE 4-3 Average Absolute Error as Function of Time in Detection 

Number of Neurons k 
(ANN Structure: 10-k-1) Model Time in 

Detection* 
1 5 10 20 30 

Min. 
AAE 

Best 
Number

of 
Neurons

1 10 21.1(9) 20.5(3) 20.8(8) 20.3(9) 20.8(10) 20.3 20 
2 20 18.9(13) 18.9(10) 18.6(19) 18.6(4) 18.1(17) 18.1 30 
3 30 17.6(8) 17.5(10) 17.9(10) 18.1(14) 18.4(6) 17.5 5 
4 40 17.7(10) 17(13) 16.9(13) 17(28) 17.6(10) 16.9 10 
5 50 17.1(8) 16.8(6) 16.8(3) 17.3(14) 17.6(5) 16.8 5 
6 60 17.1(10) 16.6(9) 16.4(9) 16.5(8) 16.7(4) 16.4 10 
7 70 16.8(10) 16.2(10) 16.6(10) 16.5(8) 17.5(13) 16.2 5 
8 80 16(4) 15.4(6) 15.7(6) 15.6(10) 15.6(10) 15.4 5 
9 90 14.6(5) 14.6(8) 14.8(10) 15(10) 15.1(6) 14.6 5 
10 100 14.1(9) 13.4(8) 13(8) 14.1(9) 14.4(4) 13 10 
11 110 11.4(5) 10.3(5) 10.8(4) 10.8(9) 11.1(5) 10.3 5 
12 120 10.3(6) 10.5(7) 11.1(7) 11.2(5) 11.8(6) 10.3 1 
13 130 10.6(10) 10.7(4) 11(6) 11.9(8) 12.4(14) 10.6 1 
14 140 11.5(9) 11.7(5) 11.7(6) 13.4(15) 11.6(12) 11.5 1 
15 150 11(8) 10.5(9) 10.3(5) 12.5(6) 12.1(3) 10.3 10 
16 160 11.8(11) 11.5(6) 11.8(7) 12(4) 12(6) 11.5 5 
17 170 11(10) 9.1(7) 9.5(12) 9.5(16) 10.5(3) 9.1 5 
18 180 11.1(11) 8.9(8) 10.1(7) 10.9(16) 12.7(5) 8.9 5 
19 190 12.4(10) 10.8(6) 12.1(12) 13.8(11) 14.4(8) 10.8 5 
20 200 16.8(9) 13.6(11) 15.9(17) 17.1(9) 16.9(7) 13.6 5 
21 210 11.2(6) 10.7(11) 9.3(13) 11.8(6) 13.3(11) 9.3 10 
22 220 15.7(6) 13.9(4) 15.1(34) 17.4(8) 15.1(3) 13.9 5 
23 230 19.2(9) 19.1(12) 16(17) 22.7(5) 20.4(2) 16 10 
24 240 23.4(10) 20.3(14) 15.7(8) 19.7(5) 39.2(4) 15.7 10 

( ):  Optimal number of iterations 
*: Time since train was first detected 
 

 

4.3  MODULAR ARTIFICIAL NEURAL NETWORK (MANN) DESIGN 

In general, the trains with lower initial speeds tended to accelerate, whereas the trains 

with higher initial speeds tended to decelerate.  Therefore, trains that have markedly 
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different speed profiles may have the same arrival time.  Because of this characteristic, a 

modular approach for train forecasting was also examined. 

 

4.3.1 Clustering Analysis 

The Ward method was used to group the speed profiles of the trains in the training sets 

for each of the 24 models that were developed (38).  The method starts off with a 

separate data set (i.e., speed profile represented by 10 observations) for each of the 

trains.  At the beginning of the algorithm each train is treated as a separate group.  For 

example, there are 499 data sets (trains) for model 1.  The objective is to identify, at each 

iteration, the two groups that, produce the minimum increase in total within group error 

sum of squares (E), when the two groups are combined as shown in Equation 4-4.  
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where; 

 E = Total within group error sum of squares; 
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Sample mean of the mk observations of element 

i in the kth group; 

 ijkx  = Value (speed) of ith element of jth data set 

(speed profile) in the kth group (i = 1,..,n; j = 

1,..,mk; k = 1,..,H); 

 n    = Number of elements in data set. In this 

dissertation, it is set to 10 for all 24 models; 

 km = Number of data sets (speed profile) in kth group 

(k = 1,..,H) ; and 

 NG  = Number of groups at current iteration of Ward 

algorithm. 
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The error sum of squares for a given group k is the sum of Euclidian distances from each 

data point in group k to the mean vector of group k  (i.e., the within group squared 

deviation about the mean for group k).  The algorithm is recursive in nature where after 

each iteration the total number of groups is reduced by one and the corresponding error 

sum of squares increases.  A graph of the error sum of squares versus group number for 

model 1 (i.e., 10 seconds of detection time) is shown in Figure 4-17.  Note that this 

technique does not identify the optimal number of groups but rather provides 

information to the analyst regarding the similarity among different grouping options.  

There is a natural bend at approximately four groups and therefore values in this area 

were studied further.  A detailed description of the grouping algorithm may be found 

elsewhere (38,39,40). 

 

FIGURE 4-17  Error Sum of Squares versus Group Number after 10 Seconds of 
Detection 
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An empirical study was conducted to identify the best group size.  Five ANN 

architectures, 10-1-1, 10-5-1, 10-10-1, 10-20-1, and 10-30-1 were considered in the 

analysis.  A separate ANN was trained and tested for the trains in each group using the 

process described earlier.  In order to compare and contrast the groups for a particular 

grouping option and a particular model, the average train speed for each group is 

calculated as shown in Equation 4-5. 
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 (4-5) 

where; 

 ASgi
   = Average train speed of gth group and ith speed observation (km/h); 

 sgij
      = Speed of ith observation of jth train of group g (km/h); 

 ng     = Number of data sets (trains) in group g; and 

 n      = Number of elements in data set (10).  

 

Figure 4-18 shows the relationship between the average speed and time in detection for 

the four groups for model 15 (i.e., 150 seconds after first detection).  It can be seen that 

the trains in group 4 originally have slow speeds and accelerate while trains in group 2 

have high speeds and decelerate.  The trains in group 1 and group 3 have similar speed 

profiles although the trains in group 1 experience speeds that are approximately 10 km/h 

higher.  Figures 4-19 and 4-20 show the relationship between average speed and time in 

detection for the three-group and two-group analyses, respectively.  It can be seen that 

the speed profiles for the three-group analysis may be categorized as increasing, 

decreasing, and constant.  The speed profiles in the two-group analysis may be 

categorized as constant and decreasing.  As the number of groups decreases there is a 

loss in similarity in the trains in each group but a gain in the average number of 

observations per group.  The number of trains for each group are shown in Table 4-4 

depending on the group number and time in detection.  
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FIGURE 4-18  Average Speed versus Time in Detection for Four Groups (Model 
15: 150 seconds of detection time) 

 

 

FIGURE 4-19  Average Speed versus Time in Detection for Three Groups 
(Model 15: 150 seconds of detection time) 
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FIGURE 4-20  Average Speed versus Time in Detection for Two Groups (Model 
15: 150 seconds of detection time) 
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TABLE 4-4 Number of Trains in Training Set and Testing Set for Each Model 
Tested 

Training 
Set 

Testing 
Set Training Set Testing Set Training Set Testing Set  

M1 TID2 
G1 G2 G1 G2 G1 G2 G3 G1 G2 G3 G1 G2 G3 G4 G1 G2 G3 G4

1 10 338 161 118 66 131 207 161 49 80 55 104 27 207 161 41 13 75 55
2 20 329 163 117 65 144 185 163 51 80 51 117 27 185 163 44 14 73 51
3 30 321 166 109 67 281 40 166 95 21 60 144 137 40 166 54 56 16 50
4 40 323 155 107 62 157 166 155 53 69 47 138 19 166 155 45 13 64 47
5 50 320 147 104 60 123 197 147 44 73 47 105 42 123 197 42 14 44 64
6 60 311 134 101 54 115 196 134 42 69 44 88 46 115 196 39 13 42 61
7 70 315 110 97 46 118 197 110 44 62 37 97 21 197 110 37 11 58 37
8 80 223 173 68 62 104 119 173 35 48 47 122 51 104 119 42 16 35 37
9 90 213 154 64 56 120 93 154 49 29 42 108 46 120 93 35 16 40 29
10 100 245 83 65 42 187 58 83 50 23 34 102 85 58 83 36 29 17 25
11 110 188 121 55 42 104 84 121 41 23 33 77 44 104 84 25 13 36 23
12 120 114 169 43 46 99 70 114 32 18 39 96 18 99 70 33 9 29 18
13 130 110 134 34 46 119 15 110 41 9 30 69 41 119 15 23 10 38 9 
14 140 109 113 27 40 98 15 109 34 8 25 88 21 98 15 22 5 32 8 
15 150 89 98 22 36 83 15 89 28 8 22 56 33 83 15 16 6 28 8 
16 160 73 88 19 34 73 15 73 28 8 17 40 33 73 15 10 6 29 8 
17 170 75 53 28 14 61 14 53 23 6 13 46 7 61 14 12 1 23 6 
18 180 70 29 22 11 58 12 29 19 6 8 45 13 12 29 13 6 5 9 
19 190 67 13 18 8 55 12 13 15 4 7 21 34 12 13 6 11 3 6 
20 200 58 12 14 7 49 9 12 14 2 5 17 32 9 12 4 11 2 4 
21 210 41 11 11 5 36 5 11 11 1 4 29 7 5 11 7 5 1 3 
22 220 32 9 8 3 28 4 9 8 1 2 23 5 4 9 6 2 1 2 
23 230 13 10 4 4 11 2 10 4 1 3 8 2 11 2 2 2 3 1 
24 240 10 9 3 3 8 2 9 3 1 2 7 2 8 2 1 2 2 1 

1 :  Model 
2 :  Time since train was first detected 
 

 

4.3.2 MANN Results 

Table 4-5 shows the smallest AAE and the number of hidden neurons for the different 

group sizes for all 24 models.  For Model 1 the four-group scenario experienced the 

smallest average AAE.  While the best group size is different for different models, a 
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group size of four was identified most often as the best.  As the detection time increases, 

the AAE tends to decrease.  A similar pattern was found for ANN.  A detailed set of 

results are provided in Appendix A.  

 

Note that there is a trade-off between the number of groups and the number of 

observations in each group.  Intuitively, as the number of groups increases, the average 

number of samples per group will decrease.  If the number of observations in a given 

group is small then the ANN cannot be trained adequately (33).  This was not seen to be 

a problem in this dissertation for two reasons.  Firstly, the number of groups was a 

control variable and the best number was identified based on the AAE of the testing set.  

More importantly, the groups were relatively distinct.  For example, group 4, which had 

the lowest number of observations in the training set (Model 15), consisted of trains that 

had positive accelerations after 150 seconds of detection.  This acceleration 

characteristic is non-typical for this test bed and, consequently, the fact that they are 

treated separately makes intuitive sense even though the groups had low numbers.  That 

is, it is better to have two small groups with homogeneous characteristics than one large 

group with heterogeneous characteristics.  It is hypothesized that as more data become 

available the number of observations per group will increase and this trade-off will cease 

to be an issue. 
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TABLE 4-5 Best Group Size and AAE versus Time in Detection 

2 Groups 3 Groups 4 Groups  
Model G1 G2 Ave. G1 G2 G3 Ave. G1 G2 G3 G4 Ave. 

Min. 
AAE 

Best 
Group
Size 

1 24.3 
(5) 

12.2 
(5) 20 34.4 

(10) 
15.1 
(5) 

11.3 
(5) 19.1 27.4 

(5) 
42.6 
(1) 

15.1 
(5) 

10.8 
(20) 18.5* 18.5 4 

2 22  
(5) 

11.8 
(1) 18.4 30.4 

(5) 
14.1 
(5) 

9.8  
(5) 17.5* 25.3 

(5) 
37.7 
(10) 

14.4 
(5) 

9.8  
(5) 17.5 17.5 3 

3 21.6 
(5) 

10.7 
(20) 17.4 18.9 

(5) 
28.9 
(10) 

9.6 
(10) 16.9 23.7 

(5) 
13.2 
(5) 

31.4 
(1) 

8.8  
(5) 16.8* 16.8 4 

4 20.5 
(10) 

10.1 
(1) 16.7 28.4 

(10) 
12.3 
(20) 

8.8  
(1) 16.4 25.1 

(20) 
30.1 
(1) 

11.7 
(5) 

9.2  
(1) 16* 16 4 

5 20.7 
(10) 

9  
(5) 16.4 25.7 

(10) 
14.7 
(5) 

8  
(1) 15.8* 9.4  

(1) 
4.9  
(5) 

27.5 
(5) 

14.9 
(5) 16 15.8 3 

6 20.7 
(20) 

7  
(10) 15.9 25.7 

(10) 
15  
(1) 

6.8  
(5) 15.6* 7.5  

(1) 
4  

(10) 
26.4 
(10) 

16.2 
(5) 15.7 15.6 3 

7 19.8 
(5) 

8.4 
(10) 16.2 23.3 

(10) 
14.9 
(5) 

7.8  
(5) 15.6* 21.2 

(5) 
27.1 
(5) 

14.9 
(1) 

8.3 
(10) 15.8 15.6 3 

8 21.9 
(5) 

8  
(5) 15.3 19.4 

(1) 
19.3 
(5) 

6.7 
(10) 14.8 7.6 

(20) 
4.5  
(5) 

19.2 
(1) 

22.1 
(5) 14.5* 14.5 4 

9 19.9 
(30) 

6.7  
(5) 13.7* 17.4 

(1) 
19.6 
(5) 

6.6  
(5) 14.2 7.4 

(10) 
3.5  
(5) 

18.7 
(1) 

20.1 
(10) 13.7 13.7 2 

10 7.2  
(5) 

21.5 
(1) 12.8 8.6  

(5) 
5.1  
(5) 

23.7 
(10) 12.6* 18.8 

(5) 
5.9  
(5) 

3.2 
(10) 

17.9 
(10) 12.6 12.6 3 

11 14.3 
(1) 

5.6  
(5) 10.5 9.2  

(5) 
19.8 
(20) 

4.8  
(5) 10.2* 5.2  

(1) 
4.1  
(5) 

10.5 
(10) 

19.7 
(5) 10.5 10.2 3 

12 15.7 
(1) 

5.7  
(5) 10.5 5.6 

(10) 
3.8  
(5) 

16.7 
(1) 10.1 11.8 

(5) 
22.9 
(5) 

5.8 
(20) 

4.1 
(10) 9.4* 9.4 4 

13 4.3 
(10) 

14.5 
(1) 10.2 10.9 

(5) 
24.1 
(10) 

4.8 
(10) 10.1* 5  

(10) 
1.9 
(10) 

11.2 
(5) 

36.2 
(1) 11.1 10.1 3 

14 4.4  
(5) 

15.5 
(1) 11* 13.4 

(5) 
22.2 
(5) 

4.7 
(10) 11.2 4.6 

(10) 
1.7  
(5) 

14.8 
(5) 

27.4 
(5) 12 11 2 

15 2.8  
(5) 

14.6 
(1) 10.1 11.1 

(10) 
27.9 
(5) 

3  
(10) 10.3 3.6 

(10) 
2.1 
(10) 

9.4  
(5) 

25.5 
(5) 9.3* 9.3 4 

16 3.5  
(5) 

14.7 
(1) 10.7 10.3 

(5) 
26.9 
(1) 

3.1 
(10) 10.5* 2.9  

(5) 
1.8 
(10) 

10.2 
(5) 

28.4 
(20) 10.6 10.5 3 

17 12.5 
(10) 

3.2 
(10) 9.4 7.9  

(5) 
26.4 
(20) 

2.7  
(5) 8.9 2.8  

(5) 
0  

(1) 
7.5  
(5) 

22.8 
(5) 8.2* 8.2 4 

18 11.9 
(10) 

3.7  
(1) 9.1 4.5  

(5) 
33.8 
(5) 

2.9  
(5) 9.5 6.2  

(5) 
3.7  
(5) 

29.2 
(30) 

3.2 
(10) 8.4* 8.4 4 

19 4.6  
(5) 

10.8 
(10) 6.5* 5.8 

(10) 
1  

(1) 
23.8 
(5) 9.9 2.4  

(1) 
10.2 
(5) 

0.8  
(1) 

17.2 
(10) 8.9 6.5 2 

20 4.1  
(5) 

25.2 
(5) 11.1 8.9 

(10) 
1.2  
(5) 

18.3 
(10) 10.4 3.3  

(1) 
6.8  
(5) 

0.9  
(1) 

20.6 
(20) 8.2* 8.2 4 

21 2.6  
(5) 

15.5 
(5) 6.6 1.9 

(10) 
0.4  
(5) 

23.8 
(1) 7.3 1.8  

(5) 
7.1  
(1) 

3.6 
(10) 

5.5 
(30) 4.3* 4.3 4 

22 2.5  
(1) 

22.5 
(10) 7.9 2.2  

(5) 
0.3 
(20) 

18.5 
(30) 5 2.2  

(5) 
1.7  
(5) 

1.1  
(5) 

11  
(20) 3.6* 3.6 4 

23 5  
(5) 

26.1 
(10) 15.6 1.4  

(5) 
1.4  
(5) 

33.6 
(10) 13.5 0.4  

(5) 
4.9 
(10) 

0.3  
(5) 

0.8 
(10) 1.6* 1.6 4 

24 1.1  
(1) 

11.1 
(10) 6.1 2.6  

(5) 
0.1  
(1) 

12  
(30) 5.3* 0.1  

(5) 
26.1 
(1) 

0.8  
(1) 

0.2 
(10) 9 5.3 3 

( ):  Number of neuron in hidden layer 
*:  Minimum AAE for input data duration 
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4.4  COMPARISON OF THE MANN MODEL WITH OTHER APPROACHES  

The ANN models and the MANN models also were compared to the current forecasting 

method and a series of linear regression models.  The current method assumes that the 

most recent observed speed will remain constant until the train arrives at the crossing.  

The distance is calculated as the difference of the distance between FM 2818 and George 

Bush Drive and the current estimated train length. The predicted arrival time of the 

current method and the remaining distance are calculated as shown in Equation 4-6.  
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(4-6) 

where; 

 D       = Distance from the detector at FM 2818 to the detector at George 

Bush (m); 

 Pk         = Predicted arrival time k seconds after detection (s); 

 ηk         =  Estimated distance between crossing and head of train at the 

crossing k seconds after detection (m); and 

 Vk         =  Train speed k seconds after detection (m/s). 

 

Five regression models were tested and in each case the arrival time was the dependent 

variable.  The independent variables examined included the most recent observed speed, 

the square of this speed, and the estimated distance between the head of the train and the 

HRGC. 

 

Regression Model 1 is a simple linear regression using the last observed speed as the 

independent variable and the arrival time as the dependent variable. 

 

Regression Model 2 is the polynomial regression model of degree 2 using the last 

observed speed as an independent variable and the arrival time as the dependent 

variable.  This model was chosen to improve the simple linear regression model because 
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it was found that there is the polynomial relationship between train speed and train 

arrival time in the preliminary analysis (see Figure 4-12). 

 

Regression Model 3 is a multiple linear regression using the last observed train speed 

and the remaining distance as independent variables and arrival time as the dependent 

variable.  Because the remaining distance is used as the current method, the same 

variables were tested for the regression model. 

 

Regression Model 4 is a combination of Regression Model 2 and Regression Model 3.  

The independent variables are the last observed train speed, the squared last observed 

train speed, and the remaining distance.  The arrival time is the dependent variable. 

 

In the current method the remaining distance is used with the form of the remaining 

distance divided by the last observed train speed.  In order to put the relationship among 

the remaining distance, train speed, and train arrival time into the linear regression 

model, the natural logarithm is applied to both sides in Regression Model 5. 

 

The models and corresponding AAE for each time in detection are shown in Table 4-6.  

Models 4 and 5 were the best regression models, based on the AAE, for the most time 

periods.  Regression Models 4 and 5 had the best AAE for 21 of the 24 time periods.  

Note that both models had significant coefficients.  The p-values of all the coefficients of 

the 24 best regression models are less than 0.033, which means they are statistically 

significant at the 95 percent level of confidence.  The optimal coefficient of 

determination also is shown and, as expected, the value increases as the time in detection 

increases. 
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TABLE 4-6 AAE for Different Linear Regression Models 

Model Time in 
Detection1 

Linear 
Reg.1 

Linear 
Reg.2 

Linear 
Reg.3 

Linear 
Reg.4 

Linear 
Reg.5 

R2 of 
Optimal 
Model 

1 10 23.4 22.4 23.2 22.2* (22.2) 0.47 
2 20 22.3 21.0 21.6 20.2 20.1* 0.51 
3 30 20.9 19.3 20.2 18.4 18.3* 0.56 
4 40 20.0 18.1 19.7 17.8 17.7* 0.61 
5 50 18.8 16.9* 18.7 17.1 17.8 0.68 
6 60 18.5 16.9* (18.6) (17.0) (17.9) 0.71 
7 70 18.7 17.5 (18.2) 17.0* 18.3 0.73 
8 80 18.1 17.4 17.4 16.2* 18.1 0.77 
9 90 18.1 17.5 16.3 15.0* 18.0 0.80 
10 100 19.8 18.2 16.0 14.3 14.3* 0.89 
11 110 18.7 15.6 14.9 12.2 11.2* 0.91 
12 120 19.6 17.8 14.6 11.9* 12.4 0.90 
13 130 21.0 18.8 15.3 12.1* 15.4 0.91 
14 140 23.6 20.8 16.1 12.4* 14.8 0.92 
15 150 25.0 21.3 16.2 12.2* 13.6 0.92 
16 160 25.4 21.8 16.9 13.2* 16.9 0.92 
17 170 28.5 24.3 18.3 14.3* (11.6) 0.93 
18 180 29.2 24.6 16.1 13.0 12.4* 0.96 
19 190 29.6 (27.0) 18.0 16.5* (13.3) 0.94 
20 200 34.6 (34.0) 20.1 19.7 17.7* 0.94 
21 210 30.7 (30.9) 16.8 16.7 13.5* 0.95 
22 220 35.9 (36.4) 19.2* 19.4 (17.2) 0.92 
23 230 42.7 (43.4) 22.8 (24.2) 20.8* 0.96 
24 240 42.1 (41.3) 29.2 (29.5) 25.6* 0.93 

* :  Best regression model for input data duration 
1 :  Time since train was first detected 
( ): At least one coefficient is not significant at the 95 percent level of confidence 
 

 

The regression equations are shown in Equations 4-7 through 4-11. 

Reg1: ikkkik xbbY 110 +=  (4-7) 

Reg2: 2
12110 ikkikkkik xbxbbY ++=  (4-8) 
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Reg3: ikkikkkik xbxbbY 22110 ++=  (4-9) 

Reg4: ikkikkikkkik xbxbxbbY 23
2

12110 +++=  (4-10) 

Reg5: )ln()ln()ln( 22110 ikkikkkki xbxbbY ++=  (4-11) 

where; 

 Yik      = Estimated arrival time of train i, k seconds after detection (s) 

(k=10,20,…,240, i=1,2,…Nk ); 

 X1ik  = Instantaneous speed of train i, k seconds after detection (m/s) 

(k=10,20,…,240, i=1,2,…Nk); 

 X1ik
2 = Squared Instantaneous Speed of Train i, k seconds after detection 

(k=10,20,…,240, i=1,2,…Nk); 

 X2ik  = Estimated distance between crossing and head of train i, k seconds 

after detection (m) (k=10,20,…,240, i=1,2,…Nk); and 

 Nk    = Number of trains, k seconds after detection (m/s) (k=10,20,…,240). 

 

Table 4-7 shows a comparison of the current method, the best linear regression model 

(from Table 4-6), the best ANN (from Table 4-3), and the best MANN (from Table 4-5).  

The current method had an average absolute error of 21.5 seconds across the entire 

analysis period.   The best MLR model error was approximately 17.8 percent lower at 

16.1 seconds.  The best ANN model was approximately 46 percent better than the 

current method, and the MANN model was approximately 19.5 percent better than the 

simple ANN model.  In summary, for this test bed the MANN gave superior results.  In 

addition, for all the methods examined as the time in detection increases the accuracy of 

forecasting is improved. 
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TABLE 4-7 AAE for Current Method, Best MLR Model, Best ANN, and Best 
MANN  

Model TID* Current 
Method MLR ANN MANN Diff1

1  
(%) 

Diff2
2

(%) 
Diff3

3

(%) 
Diff4

4 
(%) 

Diff5
5

(%) 
Diff6

6

(%) 
1 10 46.9 22.2 20.3 18.5 52.8 56.8 60.6 8.4 16.5 8.9 
2 20 41.3 20.1 18.1 17.5 51.3 56.2 57.7 10.0 13.0 3.3 
3 30 35.8 18.3 17.5 16.8 49.0 51.2 53.1 4.3 8.1 4.0 
4 40 30.9 17.7 16.9 16 42.9 45.4 48.3 4.4 9.5 5.3 
5 50 27.5 16.9 16.8 15.8 38.6 38.8 42.4 0.4 6.3 6.0 
6 60 24.6 16.9 16.4 15.6 31.2 33.4 36.7 3.2 7.9 4.9 
7 70 23.5 17.0 16.2 15.6 27.8 31.1 33.7 4.6 8.2 3.7 
8 80 22.4 16.2 15.4 14.5 27.6 31.3 35.3 5.1 10.6 5.8 
9 90 21.8 15.0 14.6 13.7 31.0 33.0 37.1 2.9 8.9 6.2 

10 100 17.1 14.3 13 12.6 16.5 23.9 26.2 8.8 11.6 3.1 
11 110 13.6 11.2 10.3 10.2 17.3 24.2 25.0 8.4 9.3 1.0 
12 120 15.2 11.9 10.3 9.4 22.0 32.5 38.4 13.4 21.0 8.7 
13 130 17.2 12.1 10.6 10.1 29.7 38.2 41.2 12.2 16.4 4.7 
14 140 15.5 12.4 11.5 11 20.1 25.8 29.0 7.1 11.1 4.3 
15 150 13.4 12.2 10.3 9.3 8.6 23.0 30.4 15.7 23.9 9.7 
16 160 12.6 13.2 11.5 10.5 -4.5 8.8 16.8 12.8 20.4 8.7 
17 170 12.4 14.3 9.1 8.2 -15.1 26.8 34.0 36.4 42.7 9.9 
18 180 12.1 12.4 8.9 8.4 -2.2 26.4 30.5 28.0 32.0 5.6 
19 190 13.6 16.5 10.8 6.5 -21.8 20.5 52.2 34.7 60.7 39.8 
20 200 17.3 17.7 13.6 8.2 -2.2 21.3 52.5 23.0 53.6 39.7 
21 210 14.6 13.5 9.3 4.3 7.6 36.5 70.6 31.3 68.2 53.8 
22 220 19.4 19.2 13.9 3.6 1.3 28.3 81.4 27.4 81.2 74.1 
23 230 20.3 20.8 16 1.6 -2.3 21.2 92.1 23.0 92.3 90.0 
24 240 25.9 25.6 15.7 5.3 0.9 39.3 79.5 38.7 79.3 66.2 
Average 21.5 16.1 13.6 11.0 17.8 32.2 46.0 15.2 29.7 19.5 

*: Time since train was first detected 
1:  Difference between Current method and MLR 
2:  Difference between Current method and ANN 
3:  Difference between Current method and MANN 
4:  Difference between MLR and ANN 
5:  Difference between MLR and MANN 
6:  Difference between ANN and MANN 
 

The differences between the methods are calculated as shown in Equation 4-12.  
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100
M

MM
Diff k

i

k
j

k
ik

n ×
−

=   (if n = 1,  i = 1 and j = 2; 

                                               if n = 2,  i = 1 and j = 3; 

                                               if n = 3,  i = 1 and j = 4; 

                                               if n = 4,  i = 2 and j = 3; 

                                               if n = 5,  i = 2 and j = 4; 

                                               if n = 6,  i = 3 and j = 4) 

(4-12) 

where; 

 Diff1
k = Difference between Simple method and Regression Model, k 

seconds after detection; 

 Diff2
k = Difference between Simple method and ANN, k seconds after 

detection; 

 Diff3
k = Difference between Simple method and MANN, k seconds after 

detection; 

 Diff4
k = Difference between Regression Model and ANN, k seconds after 

detection; 

 Diff5
k = Difference between Regression Model and MANN, k seconds after 

detection; 

 Diff6
k = Difference between ANN and MANN, k seconds after detection; 

 M1
k     = AAE of Simple method, k seconds after detection; 

 M2
k     = AAE of Regression model, k seconds after detection; 

 M3
k     = AAE of ANN, k seconds after detection; and 

 M4
k     = AAE of MANN, k seconds after detection. 

 

4.5  PREDICTION INTERVAL OF MANN 

Prediction error is defined as the difference between the real arrival time and the 

predicted arrival time.  Because the MANN is a non-parametric method, a bootstrap 

technique was chosen to obtain the prediction interval.  The bootstrap is a computer-

based method for assigning measures of accuracy to statistical estimates.  In this 
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dissertation, the bootstrap technique is used to estimate the interval for prediction error, 

which provides a measure of the accuracy of the forecast.  In general the narrower the 

interval, the more precise the prediction.  This prediction interval will be used as input to 

the preemption algorithm. 

  

The bootstrap is a data-based simulation method for statistical inference.  Figure 4-21 is 

a schematic diagram of the bootstrap applied to problem with a general data structure 

P→ x.  On the left is the real world, where an unknown probability mechanism P gives 

an observation data set x = (x1,x2,….,xn), according to the rule of construction indicated 

by the arrow “→”; from x the statistic of interest )(ˆ xs=θ  is calculated.  On the right 

side of the diagram is the bootstrap world.  The bootstrap world is defined by the 

analogous quantities in the real world: the arrow in *ˆ xP →  is defined to mean the same 

thing as the arrow in xP → .  In the bootstrap world, the estimated probability model 

produced by observed data generates a bootstrap sample ),...,,( **
2

*
1

*
nn xxxx =  according 

to the rule of construction indicated by the arrow “→”; from which the bootstrap 

replications of the statistic of interest, *)(ˆ* xs=θ  are calculated.  A major advantage of 

the bootstrap world is that as many bootstrap replications *θ̂  can be calculated as 

desired, or at least as many as can be afforded.  This allows probabilistic calculations to 

be calculated directly (41). 
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FIGURE 4-21   A Schematic Diagram of the Bootstrap Applied to Problems 
with a General Data Structure xP →  

 

 

A bootstrap data set x* is generated by re-sampling the training set and the testing set 

with replacement.  The MANN model is re-fitted based on the each bootstrap sample.  

The mean of the predicted value and the prediction interval of a train arrival time are 

calculated for each train based on the MANN models re-fitted.  Bootstrap replications 

*)(ˆ* xs=θ  (θ = mean of the error) are computed.  The sample size of both the training set 

and the testing set, Ni and Mi, is set equal to the size of the observed data set for the 

model under consideration.  For example the sample sizes for model 1,N1 and M1, are 

499 and 184 for the training set and the testing set, respectively, while the sample sizes 

for model 8, N8 and M8, are 396 and 130 for the training set and the testing set, 

respectively.  Let Ĝ  be the cumulative distribution function of *θ̂ .  The 1-2α percentile 

interval is defined by the α and 1-α percentiles of Ĝ  as shown in Equation 4-13. 

 

[ ] [ ])1(Ĝ),(Ĝˆ,ˆ 11
up%,lo%, ααθθ −= −−   (4-13) 

 

P

Unknown
Probability
Model

Observed 
Data

REAL WORLD

Statistic of Interest
)(ˆ xs=θ

Estimated
Probability
Model

Bootstrap
Sample

BOOTSTRAP WORLD

Bootstrap Replication

)(ˆ ** xs=θ

),...,,( **
2

*
1

*
nxxxx = ),...,,( **

2
*
1

*
nxxxx =P̂),...,,( 21 nxxxx = ),...,,( 21 nxxxx =
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Because, by definition )*(1 ˆ)(Ĝ αθα =− , the 100×αth percentile of the bootstrap 

distribution, the percentile interval can be written as shown in Equation 4-14.    

 

[ ] [ ])1*()*(
up%,lo%,

ˆ,ˆˆ,ˆ αα θθθθ −=   (4-14) 

 

Equations 4-13 and 4-14 refer to the ideal bootstrap situation in which the number of 

bootstrap replications is infinite.   The bootstrap procedure for the prediction interval is 

described as follows: 

 

Step 1: Generate a bootstrap sample from the training set and the testing set.  The 

size of the bootstrap sample is equal to the size of the observed data set 

for the model under consideration.  The sampling is random and with 

replacement. 

Step 2: The MANN model is re-fitted based on the bootstrap sample generated in 

Step 1. 

Step 3: Repeat steps 1 and 2 R times. 

Step 4: Input train speed data into R MANN models.  Obtain R predicted arrival 

time.   

Step 5: Sort the predicted arrival time in ascending order.  Extract the αRth and 

(1-α)Rth  value from the ordered R Predicted arrival time.  These represent 

the lower bound and upper bound of the 1 - 2α percentile interval for the 

predicted arrival time for the train.   

 

Therefore, the prediction interval is obtained based on each train and each time of 

prediction.  The prediction interval is converted to the prediction error interval to check 

the accuracy of the models.  For illustration purpose the Table 4-8 shows the intervals 

for the mean error over the trains in the testing set for each time period with the 90 

percent and 95 percent level of significance.  In this example, the MANN models were 

re-fitted based on the bootstrap samples using the optimal neuron number and the 
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optimal group size.  The optimal initial parameter and the optimal number of iterations 

are obtained each bootstrap sample.  A finite number of replications, R, was used where 

R was set to 20. 

 

It should be note that in this dissertation the MANN models were re-fitted for each 

bootstrap sample using the optimal neuron number and the optimal group size, which 

were found when the MANN model was originally fitted.  In fact, these two factors 

should also be optimized in order to re-fit the model correctly.  In this case, the model 

re-fitting time is relatively long.  It will take approximately one week to fit one 

replication of the MANN model.  Therefore, it is not realistic to obtain the prediction 

interval correctly.  Instead of this method, a simple method will be used to estimate the 

prediction error interval as will be discussed in Chapter V. 
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TABLE 4-8 Prediction Interval Depending on Significant Level and Input Data 
Duration with Model Refitting 

90% Bound 95% Bound Model Time in 
Detection1 Error Mean

Lower Upper Lower Upper 
1 10 -1.2 -5.6 2.9 -5.6 6.2 
2 20 -2.2 -5.2 0.7 -5.2 1.4 
3 30 -3.1 -6.0 -0.4 -6.0 0.8 
4 40 -3.3 -6.8 -1.2 -6.8 1.1 
5 50 -3.6 -7.5 -1.1 -7.5 -0.8 
6 60 -4.3 -8.3 -2.3 -8.3 -0.6 
7 70 -3.3 -6.9 -1.1 -6.9 2.5 
8 80 -4.4 -6.9 -0.9 -6.9 -0.9 
9 90 -4.5 -7.2 -2.0 -7.2 -1.8 

10 100 -5.2 -9.1 -1.6 -9.1 -0.5 
11 110 -2.1 -6.5 1.3 -6.5 2.2 
12 120 -0.5 -6.5 6.6 -6.5 11.0 
13 130 -3.0 -17.9 1.4 -17.9 8.0 
14 140 -3.0 -5.3 -1.2 -5.3 1.0 
15 150 -4.6 -12.4 -1.0 -12.4 2.2 
16 160 -2.5 -9.1 1.0 -9.1 5.3 
17 170 -3.4 -8.9 4.8 -8.9 7.0 
18 180 -1.8 -21.3 14.3 -21.3 20.9 
19 190 -1.4 -10.6 7.4 -10.6 10.7 
20 200 1.7 -15.9 12.9 -15.9 38.8 
21 210 2.6 -17.3 22.7 -17.3 27.6 
22 220 0.8 -7.0 9.6 -7.0 10.0 
23 230 -0.4 -62.9 14.8 -62.9 17.8 
24 240 -6.6 -60.0 24.7 -60.0 26.8 

1 :  Time since train was first detected 
 

 

4.6  CONCLUDING REMARKS 

The current forecasting method assumes that the last observed speed will be constant 

until the train arrives at the crossing.  It was found that this method had the highest 

forecasting error.  The MANN approach is promising for train arrival prediction in that it 

provided an average 19.5 percent improvement over a standard ANN model, an average 
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29.7 percent improvement over a multiple linear regression model, and an average 46 

percent improvement over the current method.  While the last observed speed is used to 

predict the train arrival time in the current method and the MLR model, the trend of 

speed change is used in the ANN and MANN.  Therefore, it is concluded that the trend 

of speed change is a better explanatory variable than the last observed speed when 

forecasting train arrival time.   

 

Because trains exhibit a wide range of behavior during detection, trains that have 

markedly different speed profiles may have the same arrival time.  Because the modular 

ANN approach first categorizes trains into groups having similar speed profiles, these 

characteristics of trains can be handled in the MANN methodology.  Therefore, a 

modular approach is appropriate for forecasting train arrival time at sites where there is a 

wide range in train speed profiles.  

 

It was found that as the forecast was updated the accuracy of all models tested improved.  

Because a more accurate predicted arrival time is available, there is a potential for 

improving traffic signal preemption at IHRGCs.  As well, a methodology for calculating 

the prediction error associated with the estimation was provided.  The methodology of 

incorporating these forecasts and their associated prediction intervals into the traffic 

signal preemption algorithms will be developed in Chapter V. 
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CHAPTER V 

DEVELOPING A TRANSITION PREEMPTION STRATEGY FOR 

IHRGC 

In Chapter IV, a new train arrival time prediction algorithm was developed.  In this 

chapter, a new TPS algorithm will be developed by modifying the signal logic from the 

current TPS algorithm to take advantage of the new train prediction model developed in 

Chapter IV. 

 

First, the current transition preemption strategy will be investigated in detail and its 

advantages and disadvantages will be examined.  From this analysis, a new transition 

preemption method will be developed based on the framework of the current TPS 

algorithm.  The new algorithm has two objectives.  The first is to increase safety by 

obtaining an earlier and more accurate warning regarding train arrivals.  It is 

hypothesized that by including a more accurate estimate of the train arrival time and its 

standard error, pedestrian phase truncations can be eliminated and therefore safety will 

be improved.  The second objective is to decrease vehicle delay.  The basic idea of the 

new transition preemption method is to provide more time to the traffic signal phases 

that are blocked during the preemption mode and less time to the traffic signal phases 

that are served during the preemption mode.   It is hypothesized that if this strategy is 

followed, the total intersection delay will be reduced.   

 

As discussed in Chapters III and IV, the test bed was a signalized intersection of George 

Bush Drive and Wellborn Road in College Station, Texas, along the railway corridor.  

The intersection has four-leg approaches and is operated with a dual ring structure.  Even 

though the new TPS algorithm is developed based on this specific test bed, the 

methodology developed in this dissertation can be applied to any IHRGC. 
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5.1  OVERVIEW OF CURRENT TPS (TPS1) 

The current TPS algorithm (TPS1) was designed to reduce the probability that the 

minimum vehicle green time and pedestrian clearance time of a given phase will be 

truncated, while simultaneously guaranteeing that sufficient track clearance time was 

available.  However, if the current system’s preemption warning time is long enough to 

provide the minimum vehicle/pedestrian green phase and pedestrian clearance phase at 

the onset of preemption, there is no need to truncate the minimum vehicle 

green/pedestrian green phase and pedestrian clearance phase at the onset of preemption.  

Therefore, the TPS1 algorithm is only useful in the case that the available preemption 

warning time is less than the required preemption warning time. 

 

Under certain circumstances, the TPS1 algorithm provides more green time to the phases 

of the parallel to the railroad (i.e., dwell phase) as compared to the normal signal mode, 

even if there is no vehicle call for those phases before the preemption.  These cases will 

be explained in detail in Section 5.1.2.  This extra green time may result in a higher 

average delay.  Because the dwell phase also are provided during the preemption mode, 

it is not necessary to provide more green time to them in the time period immediately 

before the preemption.  Therefore, in contrast to the current transition preemption 

method, the new transition preemption method is designed to provide more green time to 

the phases that will be blocked during a preemption, as compared to the normal traffic 

signal mode and TPS1.   

 

Finally, while the primary goal is to operate the HRGC in a safe manner, an opportunity 

exists to increase the efficiency (e.g., reduce delay) of the IHRGC during the transition 

into preemption. A new transition preemption method was developed that explicitly 

considers the variability of the predicted train arrival time.  There are two goals behind 

the methodology.  The first is to increase safety by minimizing the number of pedestrian 

phase truncations while still maintaining 100% track clearance time.  The second goal is 

to reduce overall intersection delay associated with a preemption.  The proposed 
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transition preemption methodology was developed based on the framework of the 

current transition preemption strategy (2-6). 

 

5.1.1 Issue 1: Inappropriate Minimum Time 

In the current signal timing plans, the minimum time necessary to service the next phase 

(Mj) is calculated as the sum of Yellow + All-Red of the current phase (Yi+Ri), the 

minimum green time of the next phase (Gj), and the Yellow + All-Red of the next phase 

(Yj+Rj).  Mk is defined as the minimum time needed to service the next two phases when 

the next phase is the track clearance phase.  Mk is calculated as the sum of Yellow + All-

Red of the current phase (Yi+Ri), the minimum green time for the next phase (Gj), the 

Yellow + All-Red of the next phase (Yj+Rj), the minimum green time of the next phase 

after the track clearance phase (Gk), and Yellow + All-Red of the next phase after the 

track clearance phase (Yk + Rk).  Mj and Mk can be expressed as in Equations 5-1 and 5-

2.   

 

                   Mj       =  Yi + Ri + Gj + Yj + Rj 

                   Mk      = Mj + Gk + Yk + Rk 

                                                                 (i =1,2,…n;    

                                                                   j = i+ 1, if i < n ;  j = 1, if i = n; 

                                                                   k = j + 1, if j < n;  k = 1, if j = n) 

(5-1) 

(5-2) 

where; 

 Yi       = Yellow interval of current phase i (s); 

 Ri      = All-Red interval of current phase i (s); 

 Gj         = Minimum green time of phase i+1 (s);  

 i       =  Current phase; 

 j      = Next phase after phase i; 

 k      =  Next phase after phase j;  

 Mj         = Minimum time necessary to service the next phase (phase i+1) (s); 

and 
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 Mk        =  Minimum time needed to service the next two phases when the next 

phase is the track clearance phase (s). 

 

Additional terms should be defined to further explain the current TPS algorithm. 

 

Time to Train Arrival (T):  The time the train is predicted to arrive at the crossing.  

The estimator used to predict arrival time is a function of the track equipment and 

agency objective.  This value is updated every t seconds as the train approaches the 

crossing.  For all field applications in the U.S., t is 1 second. 

 

Track Clearance Time (τ): The time at which the track clearance phase should be 

initiated.  As stated in Chapter II, this value is typically set equal to the expected 

advance preemption time plus 15 seconds.  For the test bed it is 22 seconds. 

 

Remaining Time Available (X  = T – τ.):  Effectively, a “countdown” until the track 

clearance time.  

 

Extended Time (Bi): Time period added into Mj to end a vehicle phase i that has a call.  

That is, when there is a vehicle call for phase i, phase i is provided until X = Mj + Bi 

,instead of X= Mj.     

 

Note that Mj (or Mk) includes the Yellow + All-Red of the next phase (or includes the 

Yellow + All-Red of the phase after the track clearance phase).  Therefore the next phase 

(the phase after the track clearance phase) will be terminated when the remaining time 

available (X) is equal to zero and the Yellow + All-Red is initiated.  That means that 

while Mj (or Mk) can serve the minimum time of the next phase (the minimum time of 

the phase after the track clearance phase), it also has an extra amount of time, equal to 

Yj+Rj (or Yk+Rk).  This feature often causes the controller not to serve the next phase 

even if there is enough time to serve the minimum of the next phase.  Note that this can 
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be a problem because once X is zero the Yellow + All-red interval is provided.   In other 

words, cases exist when the next phase could be serviced but are not.  Equation 5-3 

shows the problem. 

 

If Yi + Ri + Gj ≤  X ≤  Mj  

     then, keep current phase until X = 0 (problem: while there is enough    

     time to provide the next phase, the current phase is provided until X =      

     0) 

else if  X < Yi + Ri + Gj  

     then, keep current phase until X = 0 

else X > Mj 

     then, current phase is terminated and the next phase starts 

(5-3) 

 

Therefore, Mj (or Mk) does not need to include the Yellow + All-Red of the next phase 

(or the Yellow + All-Red of the phase after the track clear phase).  The problem can be 

solved as shown in Equation 5-4. 

 

 If Yi + Ri + Gj ≤  X ≤  Mj 

     then, current phase is terminated and the next phase starts 

(5-4) 

 

The difference in signal operation between the current Mj and the reduced Mj is shown 

in Figures 5-1 and 5-2, respectively.  Therefore, the problem can be solved by extracting 

Yj+Rj (or Yk+Rk) from the current Mj (or Mk) as shown in Figure 5-1 and Figure 5-2. 

 

As an example, consider the situation where Gj = 10, Yi+Ri = 5, and Bi = 5, Mj and Mk 

are 20 and 35 seconds based on the current TPS algorithm.  The problem will be 

explained using two cases: 1) when there is still a vehicle call for the current phase, and 

2) when there is no vehicle call for the current phase.  Indication for the vehicle call is 

shown in Equation 5-5.  
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Λi = 1,  There is a call for phase i during phase i 

      = 0,  There is no call for phase i during phase i 

(5-5) 

 

 

FIGURE 5-1  Signal Procedure with Current Mj  
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FIGURE 5-2  Signal Procedure with Suggested Mj 
 

 

5.1.1.1  Case 1:  Case When There Is Still a Vehicle Call for the Current Phase  

When vehicle calls for the current phase and the next phase (Λi = 1 and Λj = 1) exists, the 

signal will be changed to the next phase only if Mj ≤ X ≤ Mj +Bi as shown in Figure 5-3.  

However, when X is less than Mj, even if there is enough time to provide the minimum 

green time of the next phase, the signal is not changed to the next phase.  Rather, the 

current phase remains until the preemption is initiated.  That is, if X is in the period of 

“x1,” the signal has enough time to serve the minimum green of the next phase.  

However, the current phase is held until X reaches zero.  Therefore, it is reasonable to 

reduce Mj (or Mk) to 15 seconds (or 30 seconds) in order to serve the next phase once 

there is enough time to serve the minimum of the next phase.  When there is a call for 

the next phase (Λj = 1), and if enough time to provide the minimum green time exists, 

then there is no reason not to serve it.  However, when Mj (or Mk) is reduced to 15 

seconds (or 30 seconds), the signal changing to the next phase can occur up to “x2” 
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seconds later than when Mj is 20 seconds (or 35 seconds).  The time of the phase change 

increases/decreases by the extended time.  The extended time is used to adjust the time 

that phase i begins.  Increasing the extended time increases the time that phase j begins.  

If the Bi time increases, the current phase may be terminated earlier.  The amount by 

which it is terminated early is equivalent to the amount of time it was originally 

lengthened.  The next phase will be started, which will ensure that it will take a longer 

time to serve the next phase.  If the extended time of the current phase (Bi) is not 

changed, the current phase will be held more than when the Bi time increases, which is 

preferable for the current phase.  Therefore, there is a trade-off between the length of the  

 

 

FIGURE 5-3  Time Frame When There Is Still a Vehicle Call for the Current 
Phase  
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current phase and the length of the next phase.  This trade-off is represented by the 

extended time of the current phase (Bi). 

 

5.1.1.2  Case 2:  Case When There is No Call for the Current Phase 

When there is no call for the current phase (Λi = 0), the signal is changed to the next 

phase only if X ≥ Mj  as shown in Figure 5-4.  Once X is less than Mj, the current phase 

will be held until X reaches zero even if there is a call for the next phase (Λj = 1) and 

there is enough time to serve it.  That is, if X is in the period of “x1,” the signal has 

enough time to serve the minimum green of the next phase.  However, the current phase 

is continued until X reaches zero.  Therefore, it is reasonable to reduce Mj (or Mk) to 15 

seconds (or 30 seconds) in order to serve the next phase once there is enough time to 

serve the minimum of the next phase. 

 

This problem can be solved easily.  Based on the current TPS algorithm, the phase 

before the track clearance phase is terminated at X = 0 and the Yellow + All-Red is 

started.  Therefore, the track clearance phase is started Yi+Ri seconds after X reaches 

zero.  However, it is desirable that the track clearance phase is started at X = 0.  

Therefore, the phase before the track clearance phase should be terminated at X = Yi+Ri 

and the Yellow + All-Red should be started.  Even if the phase is terminated at X = 

Yi+Ri, the minimum green time is still guaranteed because Mj (or Mk) includes the 

Yellow + All-Red of the next phase (or the next phase after the track clearance phase).  

Then the problems mentioned above will be eliminated automatically by changing the 

terminating time of the phase before the track clearance phase at X = Yi+Ri. 
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FIGURE 5-4  Time Frame with No Vehicle Call for the Current Phase  
 

 

5.1.2 Issue 2: Longer Service Times of the Dwell Phases 

The current TPS logic may provide an excessively long dwell phase time.  Figure 5-5 

shows the conditions that may provide an excessively long dwell phase.  Basically, these 

conditions occur when the current phase is the dwell phase and 1) there is a call for the 

phase (Λi = 1) and X is greater than Mk + Bi, or 2) there is no call for the phase (Λi = 0) 

and X is less than Mk. 

 

Because the dwell phases are served an adequate length of time, as compared to the 

other phases during the preemption, those phases do not need to be served just before the 

preemption.  Therefore, if there is a call for the blocked phases, which are not provided 

during the preemption mode, the dwell phases should be terminated and the next phases 
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should be served even if there is still a call.  Once the preemption starts, these vehicles 

on the roadway will be served from the parallel roadway.  It is hypothesized that making 

this change will reduce overall delay for the vehicles in the IHRGC.  

 

 

FIGURE 5-5  Conditions to Provide Longer Service Times of the Dwell Phase 

 

 

The phase and the ring structure of the test bed are shown in Figure 5-6 to illustrate the 

problem and develop the new TPS algorithm.  Although the new TPS algorithm is 

developed based on this specific ring structure and phase sequence, it can be applied to 

any IHRGC having different signal timing.  As discussed in Chapter III, phases 2 and 6 
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are for the through (and right-turn) movements of Wellborn Road and phases 1 and 5 are 

the left-turn movements of George Bush Drive.  Phase 3 is the track clearance phase.  

 

FIGURE 5-6 Ring Structure 

 

 

The objective is to reduce the phase lengths for dwell phases.  In the Wellborn Road 

situation, this would be phases 2 and 6.  To remove the problems of an ineffectively long 

phase 2 or phase 6 just before the preemption, the TPS algorithm will be modified based 

on the methods discussed below.  The problems and solutions are explained in two 

cases: 1) when there is still a call for the current phase (phase 2 or 6, and Λi = 1), and 2) 

when there is no call for the current phase (phase 2 or 6, and Λi = 0). 

 

5.1.2.1  Case 1: When There Is Still a Call for the Current Phase (Phase 2 or 6) 

Figure 5-7 shows a schematic time diagram for the current TPS algorithm to illustrate 

the problem when there is a call for the current phases (Phase 2 or 6, and Λi = 1).  The 

current phase is changed to the next phase regardless of a call for next phases only when 

X is greater than Mk and less than Mk plus the extended time of phase i.  This condition 

is shown by Equation 5-5.   

 

Mk + Bi ≥ X ≥ Mk (5-5) 
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FIGURE 5-7  Time Frame with a Vehicle Call for the Current Phases (Phase 2 or 
6) 
 

 

When X is in the time period “a,” the current phase is served until X reaches the Mk + Bi 

regardless of whether there is a call for either of the next two phases (phase 3 or 4).  The 

amount of time that phases 2 and 6 are operated ineffectively (i.e., provides these phases 

excessively long before the preemption) can be calculated using Equation 5-6. 

 

ι = X – (Mk + Bi) (5-6) 

where; 

 ι         = Amount of time that is operated ineffectively (s); 
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last second of the dwell phase is provided at the onset of the TPS1 algorithm.  The 

minimum occurs when the first second of the dwell phase is provided at the onset of the 

TPS1 algorithm.  These values are shown in Equations 5-7 and 5-8. 

  

τMAX = APWT – (Mk + Bi) 

       τMIN = APWT – Gi – (Mk + Bi) 

(5-7) 

(5-8) 

where; 

 APWT  = Advance preemption warning time (s);  

 τMAX   = Maximum amount of time that is operated ineffectively (s); and 

 τMIN   = Minimum amount of time that is operated ineffectively (s). 

 

In addition, based on the current TPS logic, after the current phase is terminated at time 

Mk + Bi, the track clearance phase is served even if there is no call for the phase (Λj= 0).  

In this case, the amount of time that is operated ineffectively (i.e., operates this phase 

without a call) is Mk + Bi.  

 

If no call exists for the next phase (Λj = 0), the current phase should be provided until 

there is a call for the next phase as long as there is still a call for the current phase.  The 

current TPS algorithm will be modified such that the current phase is terminated once 

the minimum green time of the current phase is served and the next phase (phase 3 or 4) 

with a call is served if there is a call for either of the next two phases (phase 3 or 4).  

These conditions are shown by Equations 5-9 and 5-10 depending on whether there is a 

call for the current phase.  The condition to change to phase 4 is shown in Equation 5-11. 
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If   Λi = 1  & X ≥ Mk  &  (Λj = 1 or Λk = 1) 

     OR 

     Λi = 1  &  X < Mk  &  X < Mj  &  Λj = 1 

    OR 

     Λi = 1  &  X < Mk  &  X ≥ Mj  &  Λk = 0  &  Λj = 1 

     then, change to phase 3 

   (5-9) 

 

 

If   Λi = 0  &  X ≥ Mk  

     OR 

     Λi = 0  &  X < Mk  &  X < Mj 

     OR 

     Λi = 0  &  X < Mk  &  X ≥ Mj  &  Λk = 0   

     then, change to phase 3 

(5-10) 

 

 

If  Λi = 1  &  X < Mk  &  X ≥ Mj  &  Λk = 1   

     OR 

     Λi = 1  &  X < Mk  &  X ≥ Mj  &  Λk = 1  

     then, change to phase 4 

(5-11) 

 

When X is equal to or greater than Mj and equal to or less than Mk (Mk ≥ X ≥ Mj), even 

if there is a call for both of the next two phases (phases 3 and 4, and Λj = 1 and Λk = 1), 

the current phase remains until X reaches zero.  It will be modified to terminate the 

current phase and serve phase 3 if there is a call for phase 3 (Λj = 1) and there is no call 

for phase 4 (Λk = 0).  If there is a call for phase 4 (Λk = 1) regardless of a call for phase 3, 

the current phase will be terminated and phase 4 will be served.  Note that the phase 2 or 

6 followed by phase 4 could violate driver expectancy, because the sequence is out of 

order compared to the normal operation.  However, because phase 3 is provided at the 



 117

onset of preemption, it is proper to serve phase 4 before the preemption from an 

efficiency standpoint. 

  

When X is in the time interval “d,” even if there is a call for the next phase (phase 3 and 

Λj = 1), the current phase remains.  It will be modified to terminate the current phase and 

serve phase 3 if there is a call for phase 3 (Λj = 1).  In this case, because phase 3 is the 

track clearance phase and the phase will be started to serve when X reaches zero, 

minimum green time does not need to be guaranteed. 

 

5.1.2.2  Case 2: When There Is No Call for the Current Phase (Phase 2 or 6) 

Figure 5-8 shows the time frame during the current TPS algorithm to illustrate the 

problem when there is no call for the current phase (Λi = 0).  The current phase is 

changed to the next phase regardless of a call for next phases when X is greater than Mk.  

Therefore, if X is in the period of “a,” there is no problem with an ineffectively long 

phase 2 or phase 6 because the signal phase changes to the next phase once the minimum 

length of the phase is provided. 

 

However, when X is in the time interval “b,” even if there is a call for the next phase 

(phase 3 and Λj = 1), the current phase remains until X reaches zero.  It will be modified 

to terminate the current phase and serve phase 3 if there is no call for phase 4 (Λk = 0),  

regardless of a call for the next phase (phase 3) because there is enough time to serve the 

next phase.  If there is a call for phase 4 (Λk = 1) regardless of a call for phase 3, the 

current phase is terminated and phase 4 will be served.  Note that phase 2 or 6 followed 

by phase 4 could violate driver expectancy, because the sequence is out of order 

compared to the normal operation.  However, because phase 3 is provided at the onset of 

preemption, it is proper to serve phase 4 before the preemption from an efficiency 

standpoint. 
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FIGURE 5-8  Time Frame with No Vehicle Call for the Current Phase (Phase 2 or 
6) 
 

 

When X is in the time interval “c,” even if there is a call for the next phase (phase 3 and 

Λj = 1), the current phase remains.  It will be modified to terminate the current phase and 

serve phase 3 if there is a call for phase 3 (Λj = 1).  In this case, because phase 3 is the 

track clearance phase and the phase will be served when X reaches zero, minimum green 

time does not need to be guaranteed. 
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While the TPS1 algorithm is designed to increase vehicle and pedestrian safety, it does 
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Mk

X = 0
ba c

Mj

TPS1 
Detector

Preemption 
Detector

Crossing

Ideal Train 
Trajectory

Remaining Time 
Available (X)

Distance

Current phase remains active
Current phase terminates
and next phase starts



 119

transition preemption algorithm is to provide non-dwell phases, which are the phases 

blocked during the preemption, more time before the preemption mode starts.  Based on 

the analysis of the TPS1 algorithm, a new algorithm, TPS2, was developed.  The 

variables used in the TPS1 algorithm were also used for the TPS2 algorithm. 

 

Note that a four-leg intersection setup was assumed to develop the TPS2 algorithm.  The 

phase number of each movement and phase sequence also were assumed as shown in 

Figure 5-9.  That is, the number of phases of the parallel road is four and the number of 

phases of the perpendicular road is two as shown in Equation 5-12.  These values and 

phase numbers can be modified for the different locations.  However, the principles can 

be applied to any signal by using the appropriate phases for the parallel and 

perpendicular roadways. 

 

Ni = 4 

Nj = 2 

(5-12) 

where; 

 Ni = Number of phases of parallel road (phases 1,2,5,and 6); and 

 Nj =  Number of phases of perpendicular road (phases 3 and 4). 

 

In the TPS2 algorithm, phase 4 indicates the opposite phase of the track clearance phase 

for four-leg intersections and the blocked phase during the preemption phase for three-

leg intersections.  However, the new TPS algorithm can be applied to any IHRGC.   
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FIGURE 5-9  Phase Number of Each Movement and Phase Sequence for 
Developing the TPS2 Algorithm 
 

 

The process begins once a train has been detected.  The predicted arrival times are 

estimated every second.  Once the predicted train arrival time is less than the advance 

preemption warning time, the TPS2 algorithm is started as listed in the steps described 

below.  The logic is also presented graphically in the flow chart shown in Figure B-2 in 

Appendix B.   

 

Step 1:  

The status of the current phase is checked to determine if both the minimum vehicle 

green time and minimum pedestrian green/clearance time have been served.  If the 
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This condition is shown by Equation 5-13.  Otherwise, the logic proceeds to step 2. 
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If ti≥ Mi, 

     then, the logic proceeds to step 2 

otherwise, keep the current phase active 

(5-13) 

where; 

 ti     = Length of the current phase. 

 

Note that the process is updated every t seconds.  This is set in the controller logic.  

Typically in North America t is equal to 1 second and this was the value used at the test 

bed. 

 

Step 2:  

If the remaining time available (X) is equal to or less than the Yellow+All-Red interval 

of the current (Yi+Ri) phase, the current phase is terminated and the track clearance 

phase is started (End the TPS2 algorithm).   This condition is shown by Equation 5-14. 

 

If X ≤  Yi+Ri, 

     then, terminate the current phase, start the track clearance       

             phase, and leave the TPS2 logic 

otherwise, the logic proceeds to step 3 

 (5-14) 

 

Step 3:  

The current phase is checked.  If the current phase is the track clearance phase, then the 

logic proceeds to step 5B-3.  This condition is shown by Equation 5-15. 

 

If current phase = track clearance phase,   
          then, the logic proceeds to step 5B-3  

otherwise, the logic proceeds to step 4 

 (5-15) 
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Step 4: 

The next phase is checked.  If the next phase is not the track clearance phase, the logic 

proceeds to step 5B-1.  This condition is shown by Equation 5-16. 

 

If next  phase ≠  track clearance phase,   

     then, the logic proceeds to step 5B-1  

otherwise, the logic proceeds to step 5A-1 

 (5-16) 

 

Step 5A-1: Next phase is the track clearance phase 

The vehicle call status for the current phase is checked.  If there is no vehicle call for the 

current phase (Λi = 0), the logic proceeds to step 5A-3.  This condition is shown by 

Equation 5-17. 

 

If Λi = 0,   

     then, the logic proceeds to step 5A-3  

otherwise, the logic proceeds to step 5A-2 

 (5-17) 

    

Note that in the logic of the following steps, the (B), (C), and (D) indicate the logic flow 

as shown in the flow chart form in Figure B-2 in Appendix B.   

 

Step 5A-2: Vehicle call for the current phase 

If X ≥ Mk,  

- If there is no call for both of the next two phases (Λj = 0 and Λk = 0), the current 

phase remains. The logic proceeds to step 6. (D) 

- If there is a call for either of the next two phases (Λj = 1 or Λk = 1), the current phase 

is terminated and the next phase is started. The logic proceeds to step 6. (B) 

 

These conditions are shown by Equation 5-18. 
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If X ≥ Mk,  

     If Λj = 0 & Λk = 0,   

                then, keep the current phase active and the logic proceeds to step       

                         6 

     else if Λj = 1 or Λk = 1, 

               then, terminate the current phase, start the next phase, and the            

                        logic proceeds to step 6 

 (5-18) 

    

If Mk ≥ X ≥ Mj  

- If there is no call for both of the next two phases (Λj = 0 and Λk = 0), the current 

phase remains active.  The logic proceeds to step 6. (D) 

- If there is a call for the next phase and there is no call for the next phase of the track 

clearance phase (Λj = 1 and Λk = 0), the current phase is terminated and track clearance 

phase will start.  The logic proceeds to step 6. (B) 

- If there is a call for the next phase of the track clearance phase (Λk = 1) regardless of 

a call for the next phase, the current phase is terminated and the next phase of the track 

clearance phase is started.  The logic proceeds to step 6. (C) 

 

These conditions are shown by Equation 5-19. 
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If Mk ≥ X ≥ Mj,  

     If Λj = 0 & Λk = 0,   

                then, keep the current phase active and the logic proceeds to step  

                         6 

     else if Λj = 1 & Λk = 0, 

               then, terminate the current phase, start the track clearance           

                        phase, and the logic proceeds to step 6 

      else if Λk = 1, 

                then, terminate the current phase, start the next phase of the  

                         track clearance phase, and the logic proceeds to step 6 

 

 (5-19) 

    

If X ≤ Mj, 

- If there is no call for the next phase (Λj = 0), the current phase remains active.  The 

logic proceeds to step 6. (D) 

- If there is a call for the next phase (Λj = 1), the current phase is terminated and the 

next phase is started.  Note that because the next phase is the track clearance phase the 

minimum green time does not need to be guaranteed.  The logic proceeds to step 6. (B). 

 

These conditions are shown by Equation 5-20. 

 

If X ≤ Mj, 

     If Λj = 0,   

                then, keep the current phase active and the logic proceeds to step  

                        6 

     else if  Λj = 1, 

               then, terminate the current phase, start the next phase, and  

                        the logic proceeds to step 6 

 (5-20) 
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Step 5A-3:  

If X ≥ Mk,  

The current phase is terminated and the next phase will begin timing regardless of a call 

for the next phase.  The logic proceeds to step 6. (B) 

 

This condition is shown by Equation 5-21. 

 

If X ≥ Mk,   

          then, terminate the current phase, start the next phase, and the  

                  logic proceeds to step 6 

 (5-21) 

 

If Mk ≥ X ≥ Mj, 

- If there is no call for the next phase of the track clearance phase (Λk = 0) regardless 

of a call for the next phase, the current phase is terminated and the next phase is started.  

The logic proceeds to step 6. (B)  

 

- If there is a call for the next phase of the track clearance phase (Λk = 1) regardless of 

a call for the next phase, the current phase is terminated and the next phase of the track 

clearance phase is started.  The logic proceeds to step 6. (C) 

 

These conditions are shown by Equation 5-22. 

If Mk ≥ X ≥ Mj,  

     If Λk = 0,   

                then, terminate the current phase, start the next phase, and  

                        the logic proceeds to step 6 

     else if Λk = 1, 

               then, terminate the current phase, start the next phase of the                

                        track clearance phase and the logic proceeds to step 6 

 (5-22) 
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If X ≤ Mj, 

- The current phase is terminated and the next phase is started regardless of a call for 

the next phase.  The logic proceeds to step 6. (B) 

 

This condition is shown by Equation 5-23. 

 

If X ≤ Mj,   

          then, terminate the current phase, start the next phase, and the  

                   logic proceeds go to step 6 

 (5-23) 

 

Step 5B-1: 

Vehicle call for the current phase is checked.  If there is still a vehicle call for the current 

phase (Λi = 1), then the logic proceeds to step 5B-2.  Otherwise, the logic proceeds to 

step 5B-3.  This condition is shown by Equation 5-24. 

 

If Λi = 1,   

           then, the logic proceeds to step 5B-2.   

otherwise, the logic proceeds to step 5B-3  

 (5-24) 

 

Step 5B-2: 

- If Mj + Bi < X or X < Mj, the current phase remains active. The logic proceeds to 

step 6. 

- If Mj + Bi ≥ X ≥ Mj, the current phase will be terminated and the next phase will 

begin timing.  The logic proceeds to step 6. 

 

These conditions are shown by Equation 5-25. 
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If (Mj + Bi < X) or (X < Mj),   

           then, keep the current phase active and the logic proceeds to step 6 

else if (Mj + Bi ≥ X ≥ Mj), 

           then, terminate the current phase, start the next phase, and the  

                   logic proceeds to step 6 

 (5-25) 

 

Step 5B-3: 

- If X < Mj, the current phase remains active.  The logic proceeds to step 6. 

- If X ≥ Mj, the current phase will be terminated and the next phase will begin timing.  

The logic proceeds to step 6. 

 

These conditions are shown by Equation 5-26. 

 

If X < Mj,   

           then, keep the current phase active and the logic proceeds to step 6 

else if (X ≥ Mj), 

           then, terminate the current phase, start the next phase,  and the  

                    logic proceeds to step 6 

 (5-26) 

 

Step 6:  

Decrement T (T = T - 1).  Return to Step 1 to ensure that the minimum times of the 

current phase have been satisfied.  

 

The above steps will be performed every time the train’s predicted arrival time at the 

crossing is updated and each time a new signal phase becomes active.  

 

The time period that the TPS2 algorithm is operated also affects intersection 

performance and safety.  The TPS2 algorithm is designed to start at the advance 

preemption warning time, which is an estimated time of arrival of the train at the 



 128

crossing.  This time is estimated using the Doppler detector data.  In contrast, the 

preemption is initiated at the preemption warning time, which is also an estimated time 

of arrival of the train at the crossing.  This time is estimated using the CWT detector 

data.  Therefore the TPS2 algorithm is operated in the time period between these two 

timings.  This time period is decided by the two predicted arrival times.  However, 

because the variability in the predicted arrival time was not considered in the TPS2 

algorithm, the pedestrian phase truncation may still occur and the intersection 

performance may not be improved.  In the following section, the TPS3 algorithm will be 

developed, which incorporates the prediction error. 

 

5.3 MODIFYING THE NEW TPS ALGORITHM ASSOCIATED WITH THE 

PREDICTION ERROR BOUND (TPS3) 

Because both predicted arrival times for the TPS2 (or TPS1) algorithms and the standard 

preemption have variability, the preemption can be started before (or after) the TPS2 (or 

TPS1) algorithm is complete.  Both the TPS2 and the TPS1 algorithms are designed to 

provide the track clearance phase just before preemption is initiated in order to eliminate 

the possibility that any pedestrian phase is active at the onset of preemption.  However, 

if the predicted arrival time is longer than the actual arrival time (that is, a train arrives 

earlier at the position that the CWT detector activates a preemption than the predicted 

arrival time), the TPS2 algorithm will be terminated immediately meaning that some of 

its steps will not be completed.  As shown in Figure 5-10, the preemption mode will be 

started immediately following this termination.  In this case, the IHRGC has not been 

adequately prepared for the traffic signal preemption because the TPS2 algorithm is 

operated based on the predicted arrival time.  Therefore, most of the benefit of an 

advance warning of a train arrival is lost.  As was discussed in Chapter IV, errors 

associated with any given train arrival estimate exist.  Therefore, the probability that a 

given train arrives x percent earlier than predicted can be readily calculated.  A train 

could arrive earlier than predicted time.  As long as train arrives early, the safety 

problem cannot be eliminated at the onset of preemption. 
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FIGURE 5-10   Time Frame of Earlier Arrival Case 
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to eliminate the truncations completely as long as variability in the predicted arrival time 

occurs.  This study was performed based on the data observed from the test bed, in 

which the extreme cases did not occur. 

 

The extreme cases indicate when the time difference between the APWT and the 

preemption warning time is less than the length of the pedestrian clearance phase.  This 

circumstance can be caused by either the prediction error or the train speed.  The 

following two examples show the cases assuming 100 percent accuracy of the 

preemption warning time, and 15 seconds of the pedestrian clearance phase.  

 

Example 1: When the predicted APWT is 120 seconds and the error in the APWT is 

greater than 70 seconds, the train arrives at the crossing within 50 seconds after 

predicting 120 seconds of APWT.  Therefore, the pedestrian phase truncation can occur.  

Equation 5-27 shows the condition where the pedestrian phase truncation occurs due to 

the prediction error.   

 

APWT(t) – A(t) > APWT(t) – (PWT+F) 

A(t) < (PWT+F) 

 

(5-27) 

where; 

 APWT(t) = t seconds of APWT; 

 A(t)         = When APWT is t, the actual arrival time (s); 

 PWT            = Preemption warning time (s); and 

 F             = Length of pedestrian clearance phase (s). 

 

Example 2: The distance between the Doppler detector and the crossing is about 2.2 

km.  When the train speed is greater than 160 km/h, the train arrives at the crossing 

within 50 seconds after detection.  Therefore, the pedestrian phase truncation can occur.  

Equation 5-28 shows the condition where the pedestrian phase truncation occurs due to 

the train speed.   
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FP
V
D

WT +<  (5-28) 

where; 

 D     = Distance from the detector at FM 2818 to the detector at George Bush 

(m); 

 V      = Train speed (m/s);  

 PWT  = Preemption warning time (s); and 

 F      = Length of pedestrian clearance phase (s). 

 

A potential solution to the above problem is to input the minimum pedestrian clearance 

time into the preemption mode of the controller to guarantee the minimum pedestrian 

clearance time in that case.  However, because the extension of the preemption warning 

time is required to provide minimum pedestrian clearance time, dwell time may increase 

and the intersection performance will deteriorate.  Consequently, the benefit of the TPS2 

algorithm will be reduced.  Therefore, the extension of the preemption warning time is 

not a good solution. 

 

If the predicted arrival time is shorter than the actual arrival time (that is, a train arrives 

later at the position that the preemption warning time detector activates a preemption 

than the predicted arrival time), the TPS2 algorithm will provide the track clearance 

phase before a preemption is initiated.  As the predicted arrival time is earlier than the 

preemption start time, the duration of the track clearance phase before the preemption 

will be longer as compared to the desired time.  Because enough track clearance time is 

usually provided to serve the demand volume as calculated in Chapter II, the extra track 

clearance time (x in Figure 5-11) is not necessary.  Therefore, the late arrival leads to 

ineffective signal operation and negatively affects intersection performance even if there 

is no truncation in this case.  If the probability of the late arrival is reduced, intersection 

performance will be improved.  This can be achieved by applying the prediction error 

interval into the predicted arrival time.   
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The goal of obtaining prediction interval is to provide the amount of the increase 

required for the predicted value.  Under the assumption that the fitted model is close to 

the true model, the prediction error can be explained only by the residuals.  In this 

dissertation, the predicted arrival time was lengthened by the absolute value of the lower 

limit of the prediction error interval.  It is not necessary to consider the problem of the 

earlier arrival because the problem is already solved by eliminating the pedestrian phase 

once the TPS2 algorithm starts. 

 

FIGURE 5-11   Time Frame of the Late Arrival Case  
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Prediction error intervals of the mean error were obtained using bootstrap method for 24 

MANN models.  The bootstrap procedure for calculating the mean error over the trains 

is described as follows: 

 

Step 1: Generate a bootstrap sample from the training set and the testing set.  The 

size of the bootstrap sample is equal to the size of the observed data set 

for the model under consideration.  The sampling is random and with 

replacement. 

Step 2: MANN model is re-fitted and the mean of prediction error is calculated 

based on the bootstrap sample. 

Step 3: Repeat Steps 1 and 2 R times. 

Step 4: Sort the mean calculated in step 2 in ascending order.  Extract the αRth 

and (1-α)Rth mean error from the ordered R mean values.  These represent 

the lower bound and upper bound of the 1 - 2α percentile interval for the 

mean error.  In this dissertation, R was set to 10,000.  

 

As an example consider Model 1.  R sample data sets, of size 184, were created and the 

mean error for each sample was calculated.  Figure 5-12 shows a histogram of these 

sample means.  These values are normal in shape.  The (1–0.05) percentile lower and 

upper bounds are shown on the diagram and these represent the prediction error for this 

model. 
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FIGURE 5-12  Example of Histogram of Sample Means and (1–0.05) Percentile 
Lower and Upper Bound 
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TABLE 5-1 Prediction Interval Depending on Significant Level and Input Data 
Duration without Model Refitting 

90% Bound 95% Bound Model Time in 
Detection1 Error Mean 

Lower Upper Lower Upper 
1 10 -4.1 -7.9 -0.3 -8.8 0.3 
2 20 -1.8 -5.6 1.9 -6.4 2.5 
3 30 -3.6 -7.6 0.0 -8.5 0.6 
4 40 -3.6 -7.6 0.0 -8.4 0.6 
5 50 -5.1 -9.1 -1.4 -9.9 -0.8 
6 60 -4.6 -8.7 -0.9 -9.8 -0.3 
7 70 -5.0 -9.3 -1.2 -10.3 -0.5 
8 80 -5.9 -10.5 -1.9 -11.6 -1.2 
9 90 -3.9 -8.3 -0.1 -9.2 0.5 

10 100 -5.9 -10.5 -2.1 -11.4 -1.6 
11 110 -2.4 -5.2 0.2 -5.8 0.8 
12 120 -2.6 -5.7 0.4 -6.3 0.8 
13 130 2.1 -1.1 5.3 -1.8 5.8 
14 140 -1.6 -5.8 2.4 -6.7 3.0 
15 150 -2.3 -6.1 1.2 -7.0 1.9 
16 160 -5.7 -10.6 -1.4 -11.7 -0.7 
17 170 2.5 -1.7 8.2 -2.3 9.4 
18 180 1.8 -2.4 6.1 -3.1 7.0 
19 190 -1.4 -4.3 1.5 -4.9 2.0 
20 200 -2.3 -6.4 1.5 -7.2 2.2 
21 210 -2.2 -4.7 0.2 -5.3 0.6 
22 220 1.3 -1.1 4.2 -1.4 4.9 
23 230 -1.0 -3.3 0.4 -3.4 0.5 
24 240 2.6 -2.1 8.9 -2.6 10.1 

1 :  Time since train was first detected 
 

 

Therefore, the modified prediction error and modified predicted arrival time will be 

obtained using Equations 5-29 and 5-30. 
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Π =( P + ABS(L)) – A 

Π - ABS(L) = P –  A  

L < Π – ABS(L) < U 

L + ABS(L) < Π  < U + ABS(L) 

 

 

 

 

 

(5-29) 

where; 

 Π       =  Modified prediction error (s); 

 P       = Predicted arrival time from prediction algorithm (s); and 

 A       = Actual arrival time (s); and  

 [L, U](1-2α) =  (1–2α) percentile interval for prediction error (Predicted 

Arrival Time – Actual Time), where L is the low bound and U 

is the upper bound of the prediction error interval. 

 

 

L + ABS(L) < P + ABS(L) – A  < U + ABS(L) 

L + ABS(L) + A < P + ABS(L) = π  < U + ABS(L) +A 

 

(5-30) 

where; 

 π      =  Modified predicted arrival time (s).  

 

Therefore, the predicted arrival time of (1–α) × 100 (=(1–2α)+ α) percent of trains is 

greater than the actual arrival time.  This relationship can be shown in Figures 5-13 and 

5-14 for the negative upper bound and the positive upper bound, respectively.  Based on 

the results of the bootstrap method, while the lower bounds of the prediction error are 

less than zero for all 24 prediction models, the upper bounds of the prediction error are 

greater than zero for some models shown in Table 5-1.  Therefore, these two cases were 

considered: 1) when the upper bound is negative with a negative lower bound, and 2) 

when the upper bound is positive with a negative lower bound.  In this dissertation, the 

predicted arrival time will be obtained using 90 percent prediction intervals. 
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FIGURE 5-13  Application of Prediction Error to Predicted Arrival Time in 
Case of U<0 
 

FIGURE 5-14  Application of Prediction Error to Predicted Arrival Time in 
Case of U>0 
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preemption starts.  In this case, the intersection is operated inefficiently.  This problem 

can be reduced by increasing the predicted arrival time with the prediction interval.  The 

new TPS algorithm (TPS3) is presented graphically in the flow chart shown in Figure B-

3 in Appendix B. 

 

It should be noted that a preemption may not occur after TPS3 starts in situation where 

the train stops upstream of the crossing.  In this case, the traffic signal is operated in the 

TPS3 mode continuously.  Therefore, this case should be addressed in the TPS3 

algorithm so that the signal mode will be returned back to the normal signal mode.  This 

can be done simply by adding a delay function into the TPS3 algorithm.  That is, when 

the TPS3 algorithm starts, the delay begins its timing with the user-defined value.  If a 

preemption does not start at the completion of delay, the signal mode will return to the 

normal mode.  Under these circumstances the “safety” metrics at the intersection will be 

the same as that of the current technology. 

 

Once the TPS2 (or TPS1) algorithm is initiated, the predicted arrival time is 

automatically updated (i.e., countdown) as the train approaches the crossing.  Because 

the train speed is obtained continuously by the Doppler detector, the predicted train 

arrival time can be performed continuously.  In this dissertation this update occurred 

every 10 seconds.  However, once the train is completely past the Doppler detector, the 

predicted arrival time cannot be updated using observed speed data.  Rather the 

predicted travel time is simply the last predicted arrival time minus the time that has 

elapsed since it was calculated as shown in Equation 5-31. 

 

P = Z – z   (5-31) 

where; 

 P         =  Predicted train arrival time (s); 

 z       = Time since last prediction (s); and 

 Z      = Last predicted train arrival time (s).  
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Intuitively, the APWT that the TPS3 algorithm uses will affect the intersection 

performance in terms of both safety and delay.  However, it was not considered in the 

stage of development of the TPS3 algorithm because it is difficult to calculate the 

optimum period theoretically.  The optimal value for AWPT will be found using 

sensitivity analyses as will be in the next chapter. 

 

The TPS3 algorithm was motivated using the four-leg IHRGC and six phases of signal 

structure.  However, the TPS3 algorithm can still work for other geometric condition and 

other traffic signal phase plans.  The TPS3 algorithm also was developed based on the 

vehicle detector information at each movement.  However, even if no vehicle detectors 

are installed at the IHRGC, the TPS3 algorithm still can work because it may assume 

there is a vehicle call during every time in the period of time that the TPS3 algorithm is 

operated.   

 

5.4  CONCLUDING REMARKS 

The current transition preemption strategy has a number of advantages and 

disadvantages.  The main advantage is that it can reduce the possibility of pedestrian 

phase truncations at the onset of preemption.  There are two main disadvantages. The 

first is that it may provide exceedingly long service of the parallel road of the track 

before a preemption resulting in poor intersection performance.  The second, and more 

important, is that the pedestrian phase truncations can still occur at the onset of 

preemption.    

 

In this chapter a new transition preemption strategy was developed to improve the 

intersection performance and considerably reduce truncations of the pedestrian clearance 

phase at the onset of preemption.  The new prediction algorithm and its prediction error 

bound developed in Chapter IV were used as input to the approach.  The basic idea of 

the new transition preemption method is to provide more time to the blocked phases 

during the preemption mode than phases that are served during the preemption mode.   
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However, it is still possible that the pedestrian phase truncation can still occur when the 

advance preemption warning time is less than a critical value.  The new transition 

preemption methodology will be evaluated and a sensitivity analysis of the major 

parameter will be conducted in Chapter VI. 
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CHAPTER VI 

SENSITIVITY ANALYSIS 

A new prediction algorithm for train arrival time and a new transition preemption 

algorithm were developed in the previous two chapters.  The predicted time and 

prediction interval were incorporated into a new transition preemption algorithm as 

discussed in Chapter V.   In this chapter the proposed method will be tested and 

compared to existing systems using a simulation study of the Wellborn Road test bed. 

 

6.1  SIMULATION DESIGN 

6.1.1 Simulation Duration 

Two key components of any simulation analysis are the simulation duration and the 

analysis time.  In this dissertation, it was assumed that initially the network is operating 

under steady state conditions.  At some point a train passes through the network 

disrupting traffic, and then the system eventually returns to the original conditions.  

There were two questions that need to be answered: 1) how long should the simulation 

last, and 2) how long should the analysis phase last?   

 

To answer the first question, a test simulation run was performed to identify when the 

network reaches a steady state condition.  The traffic volume was measured 100 m 

downstream for each approach at an interval of 120 seconds (i.e., the cycle length).  The 

relationship between volume and time for a train preemption event is shown in Figure 6-

1.  The network reaches a steady state condition approximately 300 seconds after the 

simulation is started.  Consequently, all of the analyses were begun 300 seconds after the 

simulation began. 
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FIGURE 6-1 Change of Volume during Simulation 
 

 

Simulation time is dependent on the analysis time.  The analysis time should be long 
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simulation time to ensure that this happens.  The simulation period, the analysis period, 

and the train arrival time range at the crossing during simulation are shown in Figure 6-

2. 

 

 

FIGURE 6-2 Time Frame for Analysis Period and Train Arrival Time Range at 
the Crossing during Simulation for Fixed Train Arrival Time 
 

 

6.1.2 Estimating the Difference between CWT and Actual Arrival Time  

The TPS0 algorithm is initiated in the controller when the CWT detector predicts the 

train arrival time to be 35 seconds.  As discussed in Chapter IV, a difference between the 

predicted time and the actual arrival time exists because of the variation in the predicted 

time.  Therefore, the difference between the actual train arrival time and the predicted 

time (i.e., 35 seconds) is required if the system is to be simulated accurately.  However, 

this difference was not measured in the data set that was used to develop the prediction 

model.  Therefore, a study was conducted to identify the relationship between the actual 

arrival time and the predicted time using new train data. 

 

Data from 204 trains were collected for this study and will be referred to as Train Data 

Set2.  These data are different from the data on 683 trains that were used in forecasting 

train arrival time, which will be referred to as Train Data Set1.     
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Figures 6-3, 6-4, 6-5, and 6-6 show the relationship between the actual warning time and 

the first measured speed, the last measured speed, the average speed, and the difference 

between the first and last speed, respectively.  Two things can be noted from the graphs.  

The first is that the actual time is always greater than the predicted time of 35 seconds.  

This is expected because the system is set up to provide a minimum of 35 seconds 

warning time.  In addition, the train speed at FM 2818 can be considerably different than 

the speed at George Bush Drive, and this accounts for the variation in warning time.  

The second is that there does not appear to be any relationship between warning time 

and any of the speed metrics.  This would be expected because the warning time 

algorithm at George Bush Drive is designed to give a constant warning time of 35 

seconds irrespective of the train speed. 

 

Table 6-1 shows the correlation coefficient between warning time and the different 

speed metrics including the first train speed, the last train speed, the average speed, and 

the speed change during detection.  The low values are consistent with a visual 

inspection of the data.   

 

 

TABLE 6-1 Correlation between the Variables 

Variables Correlation Coefficient 
First Speed1 and Preemption Warning Time 0.1716 
Last Speed1 and Preemption Warning Time 0.0346 

Average Speed and Preemption Warning Time 0.1333 
Speed Change (Last − First) and Preemption Warning Time -0.1606 

1 : FM 2818 
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FIGURE 6-3  Preemption Warning Time versus First Train Speed  
 

 

FIGURE 6-4 Preemption Warning Time versus Last Train Speed 
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FIGURE 6-5 Preemption Warning Time versus Average Train Speed 
 

 

FIGURE 6-6 Preemption Warning Time versus Difference in Train Speed 
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To test if there was any statistical relationship between the variables, a simple linear 

regression of the form shown in Equation 6-1 was performed.  All four speed measures 

(First speed, Last speed, Average speed, and Speed change) were tested as the 

independent variable, and the preemption warning time was used as the dependent 

variable.  
 

Model 1 : Y = b0 + b1x1 

Model 2 : Y = b0 + b1x2 

Model 3 : Y = b0 + b1x3 

Model 4 : Y = b0 + b1x4 

(6-1) 

where; 

 Y  = Estimated preemption warning time; 

 b0 = Coefficients of the intercept; 

 b1 = Coefficients of slope; 

 x1 = First speed at FM 2818; 

 x2 = Last speed at FM 2818; 

 x3 = Average speed at FM 2818; and 

 x4 = Speed change (Last speed – First speed) at FM 2818. 

 

The parameters, p-value, and average absolute error of each model are shown in Table 6-

2.   

 

 

TABLE 6-2 Results of the Simple Regression Models 

Coefficients P-value  
b0 b1 b0 b1 

 
AAE 

Model 1 44.18 0.08 0.000* 0.014* 5.55 
Model 2 47.12 0.03 0.000* 0.623 5.67 
Model 3 43.69 0.11 0.000* 0.057 5.56 
Model 4 47.33 -0.08 0.000* 0.022* 5.60 

*: Statistically significant at 0.05 significance level 
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Models 1 and 4 have coefficients statistically significant at the 0.05 significance level.  

Because 1) the AAE of Model 1 was smaller than the AAE of Model 4, and 2) it was a 

simpler model, Model 1 was chosen as the best linear regression model. 

          

A further study was conducted to identify whether multiple independent variables could 

improve the results.  The models considered are shown in Equation 6-2.   

 

Model 5 : Y = b0 + b1x1 +  b2x2 

Model 6 : Y = b0 + b1x1 +  b2x3 

Model 7 : Y = b0 + b1x1 +  b2x4 

Model 8 : Y = b0 + b1x2+  b2x3 

Model 9 : Y = b0 + b1x2+  b2x4 

Model 10 : Y = b0 + b1x3+  b2x4 

(6-2) 

where; 

 Y  = Estimated preemption warning time; 

 b0 = Coefficients of the intercept; 

 b1 = Coefficients of slope; 

 x1 = First speed at FM 2818; 

 x2 = Last speed at FM 2818; 

 x3 = Average speed at FM 2818; and 

 x4 = Speed change (Last speed – First speed) at FM 2818. 

 

The correlations between the independent variables in each model are shown in Table 6-

3. 
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TABLE 6-3 Correlation between the Independent Variables in Each of the 
Multiple Linear Regression Models 

 Variables Correlation Coefficient
Model 5 First Speed1 and Last Speed1  0.347 
Model 6 First Speed1 and Average Speed 0.816 
Model 7 First Speed1 and Speed Change (Last – First)  -0.857 
Model 8 Last Speed1 and Average Speed 0.755 
Model 9 Last Speed1 and Speed Change (Last – First) 0.187 
Model 10 Average Speed and Speed Change (Last – First) -0.439 

1 : FM 2818 
 

 

It was decided to eliminate the models that had variables where the absolute value of the 

correlation coefficient was greater than 0.5.  The two independent variables in Model 6, 

7, and 8 are strongly correlated and therefore, these models were not calibrated.  The 

coefficients, p-value, and AAE of the remaining models are shown in Table 6-4.  

 

 

TABLE 6-4 Results of the Multiple Regression Models 

Coefficients P-value  
b0 b1 b2 b0 b1 b2 

 
AAE 

Model 5 44.93 0.090 -0.027 0.000* 0.015* 0.703 5.56 
Model 9 44.93 0.063 -0.090 0.000* 0.345 0.015* 5.56 
Model 10 44.84 0.065 -0.066 0.000* 0.316 0.103 5.56 

*: Statistically significant at 0.05 significance level 
 

 

None of the three models had coefficients that were statistically significant at the 0.05 

significance level.  Therefore, all of these models were rejected for use and Model 1 was 

chosen for all analyses. 

 

An alternative approach assumed that the preemption warning time was not influenced 

by train speed.  In this situation, the preemption warning time for the old data was 
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generated randomly based on the preemption warning time distribution from the new 

data.  The normal distribution was assumed for the preemption warning time distribution 

where the mean was 48.3 seconds and the standard deviation was 7.48 seconds.  This 

assumption was tested using the K-S test and passed at the 0.05 level of significance. 

Based on the results of 100 simulations, the average AAE was 8.2, which was 49.1 

percent larger than the results of the best regression model.  Therefore, Model 1 was 

used to estimate the preemption warning time for the trains in Data Set1. 

 

6.1.3 Simulation Scenarios 

The four transition preemption methods discussed in Chapter V were tested: standard 

preemption (TPS0), current TPS (TPS1), modified TPS (TPS2), and modified TPS using 

updated predicted arrival time and prediction intervals (TPS3).  The traffic volume of the 

base case (evening peak period) was used for all the simulations conducted.     

 

Two objectives were considered in this analysis.  The primary objective was safety, and 

the measures of effectiveness (MOEs) used were the number of truncated pedestrian 

clearance phases and the total amount of time truncated from these pedestrian clearance 

phases.  The secondary objective was the intersection performance, and the MOE used 

was average control delay. 

 

Because the intersection performance, in terms of both safety and efficiency, depends on 

the advance preemption warning time, the optimal starting time of the transition 

preemption strategy needs to be identified for TPS1, TPS2, and TPS3.  The optimization 

strategy employed in this dissertation was to test each TPS method with different 

APWTs at fixed intervals.  Because the APWT should be greater than the standard 

preemption warning time (35 seconds), the minimum advance preemption warning time 

tested was 40 seconds. The maximum APWT tested was 120 seconds, and the increment 

size was 10 seconds.   
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Algorithm performance was evaluated under two conditions: 1) no pedestrians 

(pedestrian phase inactive), and 2) pedestrians present (pedestrian phase active).  The 

former scenario is straightforward to model because the number of pedestrians per hour 

is set to zero.  The pedestrian phase inactive scenario would be analogous to having a 

single MOE of average intersection delay.   

 

The second condition required a mathematical analysis.  The probability that a 

pedestrian phase is active in every cycle is a function of the pedestrian volume, 

pedestrian arrival pattern, and the length of the time period in which the pedestrian can 

affect the next pedestrian phase.  This latter time period is based on the pedestrian green 

phase of each phase and the cycle length.  Because the pedestrian green phase is 4 

seconds for each movement and the cycle length is 120 seconds for this study, the length 

of the time period that the pedestrian can affect the next pedestrian phase is 116 seconds.  

That is, if pedestrians arrive at the intersection during this 116-second time interval, the 

next pedestrian phase will be active.  It was assumed that pedestrians arrive at the 

crosswalk randomly and, therefore, a negative exponential distribution was used in this 

dissertation.  The probability of the pedestrian phase being active during every cycle is 

equal to the probability of more than one pedestrian arriving during a given time period.  

This value can be calculated using Equation 6-3. 

 

Pr =  1 – Pr (0) = 1 –  e(–λ × t) ( 6-3 ) 

where; 

 Pr      = Probability of one or more than one pedestrian arriving during the 

time period at every cycle; 

 Pr (0) = Probability of no pedestrians arriving in a time interval (the 

probability that the next pedestrian phase will not be active); 

 λ        = Pedestrian arrival rate (= 400 ped/h); 

 t         = Length of the time period that a given pedestrian can affect the next 

pedestrian phase (= 116 seconds); and   
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 e        = Constant, Napierian base of logarithms (e = 2.71828…). 

 

If the pedestrian volume is 400 ped/h, the probability that the pedestrian phase will be 

active when the preemption starts is 99.99 percent.  Consequently, this pedestrian 

volume was used in the analysis.     

 

As shown in Chapter IV, the train arrival prediction accuracy is a function of the train 

speed profile.  Therefore, the simulation study was performed for different speed 

profiles.  Based on the analysis conducted in Chapter IV, it was decided to use three 

categories (increasing speed (Group 1), constant speed (Group 2), and decreasing speed 

(Group 3)).  To provide results that could be tested statistically, 30 trains from each 

category were used.  The 30 trains in each group were selected randomly.  The speed 

profiles of each group are shown in Figure 6-7.  The average speed of the trains in Group 

1 is 30 km/h and the AAE was 10.9 seconds.  The train speed tends to increase slightly 

with detection time.  The average speed of the Group 2 trains is 41 km/h and the AAE 

was 7.9 seconds.  The train speed tends to decrease slightly as time in detection 

increases.  The average speed of the Group 3 trains is 51 km/h and the AAE was 6.1 

seconds. The train speed tends to decrease drastically with detection time.  For each of 

the 90 scenarios a different random seed was chosen in order to represent the stochastic 

nature of the traffic. 
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FIGURE 6-7 Speed Profile of the 30 Trains in Each Subgroup  
 

 

Table 6-5 shows the number of trains for each group and the time in detection.  As the 

time in detection increases, the number of trains per group decreases.  In general, Group 

3 trains spent less time in detection than the Group 2 trains, which, in turn, spent less 

time in detection then Group 1 trains.  It would be expected that the faster trains would 

spend less time in detection, all else being equal, and this is shown in Table 6-5. 
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TABLE 6-5 Number of Train Speed Observations in Each Group Depending on 
Time in Detection 

Time in Detection Group 1 Group 2 Group 3 
10 30 30 30 
20 30 30 30 
30 30 30 30 
40 30 30 30 
50 30 30 30 
60 30 30 30 
70 30 30 30 
80 29 26 28 
90 27 25 24 

100 25 23 19 
110 22 21 18 
120 22 19 16 
130 20 18 13 
140 18 15 8 
150 17 12 7 
160 16 12 5 
170 14 9 3 
180 12 7 1 
190 10 4 0 
200 9 3 0 
210 6 3 0 
220 5 1 0 
230 5 1 0 
240 5 0 0 

 

 

6.2  SIMULATION RESULTS (FIXED TRAIN ARRIVAL TIMES) 

6.2.1 Metric 1: Truncation of Pedestrian Clearance Interval Results 

As discussed in Chapter V a new transition preemption strategy was developed to 

improve the safety of the intersection at the onset of preemption. This new strategy 

implicitly accounts for the variability of train arrival time prediction.  It should be 

remembered that all the TPS algorithms were designed with the goal of eliminating the 

possibility of the truncation of the pedestrian clearance interval.  However, if the 
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duration that the TPS is operated is short or the predicted time is not accurate, the 

possibility that the pedestrian phase will be truncated in an unsafe manner exists.  As 

discussed in Section 6.1.3 the safety MOEs were the number of pedestrian phases that 

were truncated (out of 90) and the average abbreviation time for each truncated phase 

(range 0 to 15 seconds).   

 

The truncation number and abbreviation time of the pedestrian clearance interval for the 

pedestrian phase active scenario as a function of the APWT is shown in Table 6-6.   

 

 

TABLE 6-6 Number of Pedestrian Phase Truncations and Average Phase 
Abbreviation Time at the Onset of Preemption for Pedestrian Phase Active 
Scenario and Fixed Train Arrival Time 

APWT* TPS01 TPS12 TPS23 TPS34 
 90(6)    

40  90(6) 90(6) 90(6) 
50  77(6) 77(6) 84(6) 
60  59(6) 59(6) 76(6) 
70  18(6) 18(6) 45(6) 
80  5(6) 5(6) 14(6) 
90  4(4) 4(4) 1(6) 
100  4(4) 4(4) 0(0) 
110  1(3) 5(4) 0(0) 
120  1(3) 5(3) 0(0) 

*:  Advance preemption warning time 
1:  Normal preemption without TPS 
2:  Current TPS 
3:  Modified TPS  
4:  Modified TPS using updated predicted arrival time and prediction intervals 
():  Seconds of phase abbreviation  
 

 

Because the analyses were designed such that a pedestrian phase is always active at the 

onset of preemption, a pedestrian phase truncation occurred in every TPS0 scenario.  

Note that this constraint will be relaxed in Section 6.3.  The average abbreviation time of 
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the pedestrian clearance was 6 seconds.  Therefore, the normal preemption operation is 

considered unsafe when the pedestrian phase of phase 4 is active when a train arrives.  In 

this situation, the pedestrian phase is immediately truncated with the possibility of 

stranding a pedestrian in the intersection. 

  

There are two necessary conditions for a pedestrian phase truncation to occur for the 

TPS1, TPS2, and TPS3 algorithms.  If the predicted arrival time is equal to or less than 

the actual arrival time, then the track clearance phase will be initiated before the 

preemption is started and pedestrian phase truncations will not occur.  Therefore, the 

first necessary condition for a pedestrian phase truncation to occur during the TPS1, 

TPS2, and TPS3 algorithms is that the predicted arrival time is greater than the actual 

arrival time.  However, even if the predicted arrival time is greater than the actual arrival 

time, if the pedestrian phase is not active at the onset of preemption, a pedestrian phase 

truncation will not occur.  Therefore, the second necessary condition for a pedestrian 

phase truncation is that the pedestrian phase is active at the onset of preemption under 

the first necessary condition.  That is, no matter how large the APWT is, a pedestrian 

phase can be truncated if the two necessary conditions are satisfied. 

 

Two examples are used to demonstrate how a pedestrian phase can be truncated in the 

TPS1 algorithm for the test bed.  The first example (train 3 in Group 1) has an APWT 

value of 80 seconds and the second (train 89 in Group 3) has an APWT value of 110 

seconds.  The traffic signal is operated based on current traffic and pedestrian conditions 

and the predicted arrival time during the TPS algorithms.  Therefore, the situation that a 

pedestrian phase is active at the onset of preemption is a function of traffic and 

pedestrian condition and the predicted arrival time.   

 

A pedestrian phase truncation occurred in the TPS1 algorithm for train 3 (out of 90) 

when the APWT was 80 seconds.  Figure 6-8 shows the process by which the pedestrian 

phase was truncated for this case.  The TPS1 algorithm is initiated 23 seconds after 
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phase 3 is started (i.e., 784 seconds into the simulation).  Because the pedestrian 

clearance phase was completed at time 780 seconds, phase 3 is terminated at this point 

and the TPS1 algorithm begins.  When the TPS1 algorithm was started, the predicted 

arrival time was 75 seconds, which is enough time to serve the minimum length of the 

next phase before preemption starts.  Therefore, 5 seconds of Yellow + All-red clearance 

time was provided and phase 4 was started at time 789 seconds.  Note that the train 

arrived at the preemption detector at time 794 seconds, which is 30 seconds earlier than 

expected and 5 seconds after phase 4 began.  Therefore, the pedestrian clearance phase is 

truncated at 794 seconds in order to serve the track clearance phase (phase 3).   

 

 

FIGURE 6-8 Example of a Pedestrian Phase Truncation for the TPS1 (Train 3, 
APWT = 80 seconds) 
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As another example consider train 89 when the APWT is 110 seconds as shown in 

Figure 6-9.  The TPS1 algorithm is initiated 3 seconds after phases 2 and 6 are ended.  

Because the Yellow + All-red clearance must be completed, the TPS1 algorithm begins 

at time 761 seconds.  When the TPS1 algorithm was started, the predicted arrival time 

was 108 seconds, which is enough time to serve the minimum length of phase 3 before 

the preemption starts.  Therefore, phase 3 is started at 761 seconds and is served for 19 

seconds, which is the minimum required for the pedestrian green phase and the 

pedestrian clearance interval.  After the end of phase 3, the TPS1 algorithm evaluates the 

traffic and pedestrian condition and the predicted arrival time.  The predicted arrival 

time is now 82 seconds, which is large enough to serve the minimum length of phase 4 

before preemption starts.  Therefore phase 4 is started at time 785 seconds.  Note that the  

 

 

FIGURE 6-9 Example of a Pedestrian Phase Truncation for the TPS1 (Train 89, 
APWT = 110 seconds) 
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train arrived at the preemption detector at time 796 seconds, which is 36 seconds earlier 

than expected.  This is only 11 seconds after phase 4 is started.  Consequently, phase 4 is 

truncated and pedestrians could be stranded in the crosswalk. 

 

For the TPS1 algorithm as the APWT increases, the number of pedestrian phase 

truncations decreases.  The truncation number is reduced to 5, 4, and 1 for the APWT 

values of 80, 90, and 110 seconds, respectively.  In the original TPS1 algorithm study, 

the evaluation was conducted at an APWT value of 70 seconds.  It was found that 11 

truncations occurred out of 51 simulations, which is approximately 22 percent (5).  

When an APWT value of 70 was used in this dissertation, 18 truncations occurred out of 

90 simulations, which is approximately 20 percent.  Based on the results of this analysis, 

a longer APWT will result in better metrics for the TPS1 algorithm.  It should be noted 

that a truncation occurred once out of 90 preemption cases when the APWT was set to 

110 and 120 seconds, and that this situation is still unsafe. 

 

With respect to the TPS2 algorithm it can be seen in Table 6-6 that as the APWT 

increases, the number of phases that are truncated decreases.  Once the APWT was equal 

to or greater than 80 seconds, the truncation number varied from 4 to 5.  Interestingly, 

only when the APWT was 110 and 120 seconds, the results of the TPS2 algorithm were 

different from that of the TPS1 algorithm.  This result occurs because the TPS1 

algorithm provides excessively long dwell phases for large APWT values.  In contrast, 

the TPS2 algorithm terminates the dwell phases and provides the non-dwell phase with 

the corresponding pedestrian phase at the onset of preemption.  Therefore, a pedestrian 

phase truncation occurred in the TPS2 algorithm and this led to the difference in results.  

 

Table 6-6 shows that for the TPS3 algorithm as the APWT increases, the number of 

pedestrian phase truncations decreases.  This result is similar to the other TPS 

algorithms.  Interestingly, the number of truncations for the TPS3 algorithm is greater 

than that for the TPS1 and TPS2 algorithms when the APWT is equal to or less than 80 
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seconds. However, once the APWT was equal to or greater than 100 seconds, pedestrian 

truncation did not occur at all.  Therefore, the best algorithm in terms of the safety MOE 

was the TPS3 algorithm.  For this test bed the TPS3 algorithm should be used with a 

minimum APWT value of 100 seconds.  This will reduce the possibility of the truncation 

of the pedestrian clearance time, which is the primary goal of TPS.   

 

There were more pedestrian phase truncations at the low APWT values because the 

probability will be higher that a pedestrian phase will be active when the preemption 

starts.  Table 6-7 shows the average length of time each of the TPS algorithms are active 

as a function of the design length of time.  As the APWT increases, the amount of time 

that the TPS algorithms are active increases.  Particularly for small APWT, some cases 

exist where the TPS was not even initiated due to the variability of the predicted arrival 

time.  For example, when the APWT is 40 seconds every TPS algorithm should operate 

for 5 seconds if there is no error in the predicted arrival time.  However, it can be seen 

that for an APWT value of 40 seconds none of the preemption algorithms were active.  

The reason for the difference between the design and actual TPS operation time is the 

variability of predicted arrival times.  

 

TABLE 6-7 Average TPS Duration as Function of Advance Preemption Warning 
Time for Pedestrian Phase Active Scenario and Fixed Train Arrival Time 

APWT* Designed TPS 
Duration (seconds) 

TPS1 & TPS2 
(seconds) 

TPS3 
(seconds) 

40 5 0 (0) 0 (0) 
50 15 5 (34) 2 (14) 
60 25 11 (74) 6 (52) 
70 35 21 (87) 13 (80) 
80 45 29 (90) 23 (89) 
90 55 39 (90) 32 (90) 

100 65 48 (90) 41 (90) 
110 75 60 (90) 51 (90) 
120 85 69 (90) 61 (90) 

*:  Advance preemption warning time 
(): Number of simulation runs that TPS algorithm is operated (out of 90) 
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6.2.2 Metric 2: Phase Length Results 

One objective of the TPS2 and TPS3 algorithms is to provide more green time to the 

road that runs perpendicular to the railroad tracks, which will be blocked during the 

preemption, before the preemption is started.  The phase lengths of each phase before the 

preemption began were obtained from the simulation output files to evaluate the extent 

to which this objective was met.  Intuitively, it would be hard to measure a difference in 

average phase length among the TPS scenarios over the entire simulation time because 

the signal plan is impacted for a maximum of 85 seconds during the 1 hour simulation 

time.  Therefore, the phase length just before the preemption was used as a measure of 

effectiveness. 

  

The time period between the TPS algorithm start time and the preemption start time is 

the appropriate period for obtaining values for the phase length metric comparison 

because the duration of the phase length in this period is a function of the TPS algorithm.  

However, because this period may be different for each simulation run based on the train 

attributes and TPS scenarios, an absolute reference time is required to serve as a basis.  

In all simulations, the TPS is initiated between 694 seconds and 763 seconds and the 

train arrival time ranges between 835 seconds and 855 seconds.  Because the traffic 

signal at George Bush Drive and Wellborn Road is operated with the coordinated 

actuated signal mode, it has a constant cycle length.  As discussed in Chapter III, this 

cycle length was measured directly from the signal controller and the value was used in 

the simulation.  Therefore, the cycle start time before the TPS algorithm begins is 

constant for all simulations.  The cycle start time before the start of the TPS algorithm 

was chosen as the starting time for calculating the phase length metrics and corresponds 

to the 600-second mark of the simulation. 

  

The time period for calculating the phase length metric should include the track 

clearance time in preemption mode to check the effect of a given TPS algorithm.  

Because the end of track clearance time is different for each scenario, an absolute 
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reference time after the end of track clearance time is required.  The maximum crossing 

time for all 90 trains was chosen as the end reference time and this corresponds to the 

855-second mark of the simulation.  Consequently, the total analysis period is 255 

seconds and this period also is long enough to guarantee the inclusion of all phases at 

least once.   Table 6-8 gives the total phase length for each TPS algorithm and each 

APWT studied during the comparison period.  The phase length results during the 

analysis period are also presented in Table C-1 in Appendix C.  Similar results were 

found, although because the analysis time was longer (225 seconds versus 3240 seconds) 

the difference in the phase length between the scenarios was not as significant. 

 

Table 6-8 shows that for the TPS3 algorithm as the APWT increases, the total length of 

phases 1 and 5 increases during the comparison period for signal timing.  It should be 

noted that phase 1 is blocked during the preemption but phase 5 is served.  Moreover, 

when the APWT is small, the difference in the phase length of phase 1 is relatively small 

or non-existent.  This can be attributed to the fact that when the APWT is small (i.e., <80 

seconds), the TPS may not even be active.  If it is active then its duration is small as was 

shown in Table 6-7 for the APWT values less than 80 seconds.  When the APWT is 

greater than 80 seconds, the difference in the phase length of phase 1 can be seen.  For 

example, when the APWT is 120 seconds, the TPS3 algorithm provided 28 seconds to 

phase 1, which is 46 percent more than the TPS0 algorithm, 52 percent more than the 

TPS1 algorithm, and 34 percent more than the TPS2 algorithm.  Therefore, the TPS3 

algorithm provided more time to phase 1 before preemption as compared to the other 

TPS algorithms for the APWT values greater than 80 seconds. 
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TABLE 6-8 Total Phase Length for APWT and TPS Algorithms (Comparison 
Period for Signal Timing1; Pedestrian Phase Active Scenario; and Fixed Train 
Arrival Time) 

APWT2 TPS 
Algorithm 

Phase 1 
(second)

Phase 2 
(second)

Phase 3 
(second)

Phase 4 
(second)

Phase 5 
(second) 

Phase 6 
(second)

 TPS0 19 96 72 28 36 42 
TPS1 19 96 72 28 36 42 
TPS2 19 96 72 28 36 42 40 
TPS3 19 96 72 28 36 42 
TPS1 19 97 74 27 37 42 
TPS2 19 97 74 27 37 42 50 
TPS3 19 96 73 27 37 42 
TPS1 19 98 74 27 37 43 
TPS2 19 97 74 27 37 42 60 
TPS3 19 97 73 27 37 42 
TPS1 19 98 71 29 37 44 
TPS2 19 97 72 29 37 43 70 
TPS3 19 97 71 29 37 42 
TPS1 19 99 69 30 37 44 
TPS2 19 98 70 30 37 43 80 
TPS3 19 97 69 30 37 42 
TPS1 19 101 71 28 37 46 
TPS2 19 97 69 31 37 42 90 
TPS3 20 97 66 32 37 42 
TPS1 19 104 73 25 37 49 
TPS2 19 95 69 32 37 41 100 
TPS3 21 96 63 33 38 42 
TPS1 19 111 73 21 37 54 
TPS2 19 92 69 34 38 37 110 
TPS3 24 95 60 32 39 42 
TPS1 18 112 72 22 37 54 
TPS2 21 89 68 36 38 34 120 
TPS3 28 92 58 31 41 40 

1: 600 to 855 seconds 
2:  Advance preemption warning time  
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While the TPS3 algorithm provided more time to phase 1, as was discussed in Chapter 

V, it provided less time to phases 2 and 6 compared to TPS1.  For the TPS3 algorithm as 

the APWT increases, the total length of phases 2 and 6 decreases.  For example, when 

the APWT is 120 seconds, the total length of phases 2 and 6 for the TPS3 algorithm 

decreased 5 and 6 percent, respectively, as compared to the TPS0 algorithm.  In effect, 

this time was allocated to the blocked phases (i.e., phases 1 and 4). In contrast the TPS1 

algorithm increased the total length of phases 2 and 6 compared to the TPS0 algorithm.   

 
The TPS3 algorithm was designed to serve phase 3 more than the TPS0 and TPS1 

algorithms.  However, Table 6-8 shows that the length of phase 3 was smaller in TPS3 

than in the TPS0, TPS1, and TPS2 algorithms.  The reason that phase 3 was allocated 

less time was related to the variability in prediction.  That is, the TPS3 algorithm does 

not serve phase 3 more than a necessary length for the given traffic condition.  

Moreover, because the TPS3 algorithm was designed to reduce the possibility of 

excessively long track clearance time by increasing the APWT, the length of phase 3 can 

be shorter in the TPS3 algorithm than in the TPS0, TPS1, and TPS2 algorithms.  That is, 

if the predicted train arrival time is shorter than the actual train arrival time, the TPS0, 

TPS1, and TPS2 algorithms are terminated and the track clearance phase is started 

earlier than expected.  In this case, the track clearance phase will be served longer than 

necessary, which means that the vehicles are not served by the track clearance phase.  

The TPS3 algorithm serves phase 3 more than the TPS0, TPS1, and TPS2 algorithms 

only if all conditions are identical, including TPS duration and traffic/pedestrian volume.  

Therefore, even if the length of phase 3 during the TPS3 algorithm is reduced, it is 

hypothesized that the available time was used more efficiently.  The delay metric will be 

used to test this hypothesis.  

  

As discussed in Chapter V phase 4 should have longer time in the TPS2 and TPS3 

algorithms as compared to the TPS0 and TPS1 algorithms.  Similar to the previous 

analysis, this only occurred when the APWT was over 90 seconds.  For example, when 
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the APWT is 120 seconds, the TPS3 algorithm provided 31 seconds to phase 4, which is 

13 percent more than the TPS0 algorithm and 45 percent more than the TPS1 algorithm.  

When the APWT is less than 90 seconds, the length of phase 4 is the same regardless of 

the TPS algorithms.  The reason this occurred for the lower APWT values is that there 

was not enough time for the TPS3 algorithm to achieve its goal. 

  

Based on the above analysis of the phase lengths (calculated prior to the train arriving at 

the crossing) shown in Table 6-8, it was concluded that the TPS3 algorithm operated as 

designed.   

 

A similar analysis was conducted for the pedestrian phase inactive scenario.  The phase 

length data are shown in Table 6-9.  There is less difference in the length of phases 3 and 

4 in the TPS3 algorithm as compared to both the TPS1 and TPS2 algorithms.  The 

reason for this is that in the pedestrian phase active scenarios the pedestrian phases for 

phases 3 and 4 are always active and therefore are served in the TPS1 and TPS2 

algorithms.  Once the pedestrian phase is active, 15 seconds of clearance time is 

provided and, therefore, the length of phases 3 and 4 should also be extended to the 

minimum value of 19 seconds.   However, because the TPS3 algorithm was designed to 

cancel the pedestrian phases, when a train is approaching, the minimum time for phases 

3 and 4 is only 10 seconds.  Therefore, while there is a maximum 32 percent difference 

between pedestrian phase active scenarios and pedestrian phase inactive scenarios in the 

TPS1 and TPS2 algorithms, the difference is reduced by 3 percent in the TPS3 

algorithm.  However, the same general pattern as the pedestrian phase active scenario 

was found.  It was concluded that the TPS3 algorithm performed as designed. 

 

The phase length of each phase for the analysis period in the pedestrian phase inactive 

scenario is also shown in Table C-2 in Appendix C.  Similar results were found, 

although because the analysis time was longer (225 seconds versus 3240 seconds) the 

difference in the phase length between the scenarios was not as significant. 
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TABLE 6-9  Total Phase Length for APWT and TPS Algorithms (Comparison 
Period for Signal Timing1; Pedestrian Phase Inactive Scenario; and Fixed Train 
Arrival Time) 

APWT2 TPS 
Algorithm 

Phase 1 
(second)

Phase 2 
(second)

Phase 3 
(second)

Phase 4 
(second)

Phase 5 
(second) 

Phase 6 
(second)

 TPS0 19 96 72 28 35 42 
TPS1 19 96 72 28 35 42 
TPS2 19 96 72 28 35 42 40 
TPS3 19 96 72 28 35 42 
TPS1 19 97 74 27 36 43 
TPS2 19 97 74 27 36 43 50 
TPS3 19 96 73 27 36 43 
TPS1 19 98 72 27 36 43 
TPS2 19 97 73 27 36 43 60 
TPS3 19 97 73 27 36 43 
TPS1 19 98 67 32 36 44 
TPS2 19 97 68 32 36 43 70 
TPS3 19 97 70 29 36 43 
TPS1 22 99 61 32 37 45 
TPS2 22 98 62 32 37 44 80 
TPS3 21 97 65 31 36 44 
TPS1 23 99 59 32 37 46 
TPS2 23 97 59 33 37 44 90 
TPS3 23 97 60 32 37 44 
TPS1 22 102 59 31 37 49 
TPS2 24 95 59 34 38 43 100 
TPS3 24 96 58 33 37 44 
TPS1 20 107 59 30 36 52 
TPS2 28 92 59 31 39 41 110 
TPS3 26 95 58 32 38 43 
TPS1 20 108 59 29 36 53 
TPS2 30 89 59 31 41 38 120 
TPS3 28 92 58 32 39 41 

1: 600 to 855 seconds 
2:  Advance preemption warning time  
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6.2.3 Metric 3: Delay Results 

For a given TPS algorithm, three factors influence vehicle delay: the advance 

preemption warning time, the pedestrian volume, and the train speed.  These three 

factors were analyzed individually, as there is not any correlation between the factors.  

First, the effect of the TPS algorithm on intersection delay will be evaluated as a 

function of the APWT.  Then, the effect of pedestrian volume on delay will be tested.  

Last, the effect of train speed on delay will be evaluated as a function of train 

classification.   

 

6.2.3.1 Effect of TPS Algorithm 

Similar to the preceding phase length analysis, it would be difficult to measure a 

statistically significant difference in vehicle delay between the different TPS algorithms 

over the 54-minute analysis period.  This is because the TPS algorithms only impact the 

signal plan for a maximum of 85 seconds in the 54-minute analysis period.  Therefore, 

the delay for a set time before and a set time after the preemption was used to analyze 

the effectiveness of the TPS algorithms.  The TPS algorithms are initiated between 694 

seconds and 763 seconds, and the preemption is terminated between 911 seconds and 

1142 seconds.  Consequently the delay comparison period selected began at 600 seconds 

and ended at 1320 seconds.  This period included six cycles where at least one of these 

cycles occurs after the preemption ends.   

 

Pedestrian Phase Active Scenario  

The average delay and the graph of delay versus APWT during the delay comparison 

period (12 minutes) for the pedestrian phase active scenario are shown in Table 6-10 and 

Figure C-1 in Appendix C, respectively.  
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TABLE 6-10 Average Delay (Delay Comparison Period1; Pedestrian Phase Active 
Scenario; and Fixed Train Arrival Time) 

APWT2 TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 54.7    

40  54.7 54.7 54.7 
50  56.5 56.5 55.5 
60  56.4 56.5 55.8 
70  55.2 55.4 54.8 
80  54.7 54.8 53.9 
90  56.5 54.4 52.9 
100  59.5 53.4 52.2* 
110  61.7 53.2 52.0* 
120  61.2 52.7 51.8* 

Mean 54.7 57.4 54.6 53.7 
1:  600 to 1320 seconds  
2:  Advance Preemption Warning Time 
*:  Recommended APWT based on safety analyses 
Bold: Minimum delay for each TPS algorithm 
 

 

From Table 6-10, It can be seen that the average delay for the base case (TPS0) was 54.7 

sec/veh.  The average delay for the TPS1 algorithm across all the APWT scenarios was 

57.4 sec/veh.  The smallest average delay was 54.7 sec/veh and occurred at the APWT 

values of 40 and 80 seconds.  However, for these APWT values, pedestrian phase 

truncations occurred in 90 and 5 out of the 90 preemption cases, respectively.  When the 

TPS2 algorithm is used, the lowest average delay was 52.7 sec/veh and occurred at an 

APWT value of 120 seconds.  However, pedestrian phase truncations occurred in 5 out 

of the 90 preemption cases.  Table 6-10 also shows that once the APWT is longer than 

80 seconds, the delay in the TPS3 algorithm decreases with an increase in APWT.  The 

minimum delay for the TPS3 algorithm was 51.8 sec/veh at an APWT value of 120 

seconds.  The best TPS3 algorithm delay was 2.9, 2.9, and 0.9 seconds lower than the 

best delay identified for the TPS0, TPS1, and TPS2 algorithms, respectively.   
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It was hypothesized in Section 6.2.2 that the TPS3 algorithm provides the signal time 

more efficiently.  Therefore, for this test bed, it can be concluded that the hypothesis is 

correct. 

 

The above analyses also were conducted for the analysis period.  The data can be found 

in Table C-3 and Figure C-2 in Appendix C, respectively.  Similar results were found in 

that the delay decreased overall and the difference in delay between each scenario also 

decreased compared to the comparison period analysis.  Therefore, it was relatively hard 

to evaluate the effect of each TPS algorithm and the APWT.  These results are 

attributable to the relatively long analysis period compared to the duration of the TPS 

algorithms. 

 

A pairwise comparison method was used to compare each pair among the four TPS 

algorithms for each APWT.  In this dissertation, Duncan’s multiple range test was 

performed and is conducted as follows (42): 

 

Step 1: Linearly order the k sample means.   

k = 3; For the comparison of the APWT value and the train group and 

k = 4; For the comparison of the TPS algorithms 

Step 2: Find the value of the least significant “studentized range,” rp, for each p = 

2,3,…,k.  This value is given in the table developed by Duncan (42).  In 

this table r denotes the number of degrees of freedom associated with 

MSE, the error mean square in the original analysis of variance. 

Step 3: For each p = 2,3,…,k find the shortest or least significant range, SSRp. 

This value is given by Equation 6-4. 

                                   
n

MSrSSR E
pp =                                                (6-4) 

where; 

MSE   =   Error mean square in the original analysis of variance; and 
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n        =   Sample size (90 in this dissertation). 

Step 4: 
Consider any subset of p adjacent sample means. Let |YY|

_

.j

_

.i −  denote the 

range of the means in this subgroup.  The population means, of span p, µI 

and µj are considered to be different if 

|YY|
_

.j

_

.i −  > SSRp 

 

The experimentwise error rate was set to 0.06, which means that the common level of 

significance per test is 0.01.  The results of the delay comparison period for the 

pedestrian phase active scenarios are shown in Table 6-11.  The table only shows the test 

results having a statistical difference between the TPS algorithms.  That is, only 12 out 

of a possible 54 pairings were found to have statistically significant differences in mean 

delay.  

 

It was found that the delay in the TPS3 algorithm is smaller than the delay in the TPS1 

for the APWT values of 90, 100, 110, and 120 seconds.  For the APWT values of 110 

and 120 seconds, the delay in the TPS3 algorithm is smaller than the delay in the TPS0 

algorithm.  Once the APWT is equal to or greater than 90 seconds, the TPS3 algorithm 

has a positive impact on the intersection delay.  Therefore, it can be concluded that for 

the pedestrian phase active scenarios the TPS3 algorithm with an APWT value of 90, 

100, 110, or 120 seconds is the best operational strategy in terms of efficiency.   
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TABLE 6-11 Results of Duncan Test between TPS Algorithms (Delay Comparison 
Period1; Pedestrian Phase Active Scenario; Fixed Train Arrival Time; and Pooled 
Test) 

Algorithm 
Comparison  Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

90 TPS3 TPS1 52.9 56.5 3.66 2.81 Reject H0
3

TPS3 TPS1 52.2 59.5 7.24 2.84 Reject H0 
TPS2 TPS1 53.4 59.5 6.04 2.76 Reject H0 100 
TPS0 TPS1 54.7 59.5 4.73 2.65 Reject H0 
TPS3 TPS1 52.0 61.7 9.75 2.77 Reject H0 
TPS3 TPS0 52.0 54.7 2.79 2.69 Reject H0 
TPS2 TPS1 53.2 61.7 8.53 2.69 Reject H0 

110 

TPS0 TPS1 54.7 61.7 6.96 2.58 Reject H0 
TPS3 TPS1 51.8 61.2 9.46 2.77 Reject H0 
TPS3 TPS0 51.8 54.7 2.98 2.69 Reject H0 
TPS2 TPS1 52.7 61.2 8.55 2.69 Reject H0 

120 

TPS0 TPS1 54.7 61.2 6.49 2.58 Reject H0 
1:  600 to 1320 seconds  
2:  Advance preemption warning time 
3:     Statistically different between two means at 0.01 level of significance 
 

 

Pedestrian Phase Inactive Scenario  

For the pedestrian phase inactive scenario, the safety problem caused by the truncation 

of the pedestrian clearance phase will not occur.  However, the TPS3 algorithm may 

have a benefit in terms of delay.  The average delay and the graphs of delay versus the 

APWT during the delay comparison period for the pedestrian phase inactive scenario are 

shown in Table 6-12 and Figure C-3 in Appendix C, respectively.  
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TABLE 6-12 Average Delay (Delay Comparison Period1; Pedestrian Phase 
Inactive Scenario; and Fixed Train Arrival Time) 

APWT2 TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 49.7    

40  49.7 49.7 49.7 
50  51.2 51.2 50.6 
60  50.5 50.6 50.6 
70  48.9 49.0 49.4 
80  48.2 48.4 48.4 
90  47.7 47.7 47.3 
100  48.2 47.5 46.8 
110  49.8 47.8 46.9 
120  50.2 47.6 47.1 

Mean 49.7 49.4 48.8 48.5 
1:  600 to 1320 seconds 
2:  Advance preemption warning time 
Bold: Minimum delay for each TPS algorithm 
 

 

When the preemption is operated for the base case (TPS0), the average delay was 49.7 

sec/veh.  When the preemption was operated with the TPS1 algorithm, the minimum 

average delay was 47.7 sec/veh, which occurred at an APWT value of 90 seconds.  

When the preemption was operated with the TPS2 algorithm, the minimum average 

delay was 47.5 sec/veh, which occurred at an APWT value of 100 seconds.  When the 

TPS3 algorithm was applied with an APWT value of 100 seconds, the average delay was 

46.8 sec/veh.  This was the lowest value of the nine APWT values tested.  Therefore, the 

best TPS3 algorithm delay was 2.9, 0.9, and 0.7 seconds lower than the best delay 

identified for the TPS0, TPS1, and TPS2 algorithms, respectively.   

 

The above analyses also were conducted for the analysis period.  The data can be found 

in Table C-5 and Figure C-4 in Appendix C, respectively.  Similar results were found in 

that the delay decreased overall and the difference in delay between each scenario also 

decreased compared to the comparison period analysis.  Therefore, it was relatively hard 
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to evaluate the effect of each TPS algorithm and the APWT.  These results are attributed 

to relatively long analysis periods compared to the duration of the TPS algorithms. 

 

Similar to before, Duncan’s multiple range test was used to compare the four TPS 

algorithms for each APWT value.  The experimentwise error rate was set to 0.06, which 

means that the common level of significance per test is 0.01.  The results of the delay 

comparison period for the pedestrian phase inactive scenario are shown in Table 6-13.  

The table only shows the test results that had a statistically significant difference 

between the TPS algorithms.  Only four comparisons, out of a possible 54, were found to 

have statistically significant differences in means.  

 

 

TABLE 6-13 Results of Duncan Test between TPS Algorithms (Delay Comparison 
Period1; Pedestrian Phase Inactive Scenario; Fixed Train Arrival Time; and Pooled 
Test) 

Algorithm 
Comparison  Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

100 TPS3 TPS0 46.8 49.7 2.89 2.84 Reject H0
3

TPS3 TPS1 46.9 49.8 2.86 2.77 Reject H0 110 
TPS3 TPS0 46.9 49.7 2.81 2.69 Reject H0 

120 TPS3 TPS1 47.1 50.2 3.05 2.77 Reject H0 
1:  600 to 1320 seconds  
2:  Advance preemption warning time 
3:     Statistically different between two means at 0.01 level of significance 
 

 

It was found that the TPS3 algorithm delay was smaller than the TPS0 algorithm delay 

for the APWT values of 100 and 110 seconds.  In addition, for the APWT values of 110 

and 120 seconds, the TPS3 algorithm delay was smaller than the TPS1 algorithm delay.  

Therefore, under certain circumstances the TPS3 algorithm does provide statistically 

better delay values than the state-of-the-practice approaches.  However, for the no- 

pedestrian case this only occurred for four out of the 54 scenarios examined. 
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Paired Test 

The above analyses showed some statistical difference between the TPS algorithms at an 

aggregate level.  To test the relationship further, a paired t-test was used for the results of 

each train.  To illustrate the rationale behind this approach, 10 trains were chosen.  Table 

6-14 shows the delay for 10 trains for the pedestrian phase active scenario with an 

APWT value of 120 seconds. 

 

 

TABLE 6-14 Delays during the Comparison Period (APWT of 120 Seconds; 
Pedestrian Phase Active Scenario; and Fixed Train Arrival Time) 

Train TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
1 56.8 65.9 65.9 61.4 
2 47.8 57.3 48.2 47.3 
3 75.6 83.6 72.2 70.3 
4 100 106 88 92.4 
5 54.6 66.6 51.8 51.4 
6 50.9 65.5 51.4 49.6 
7 81.1 80.1 67.7 70.5 
8 67.4 79.4 62.3 60.5 
9 80.7 87.7 80.1 78.6 

10 59.9 58.4 61.2 55.9 
 

 

For example, while the intersection delay for Train 4 is 100, 106, 88, and 92.4 sec/veh 

for the TPS0, TPS1, TPS2, and TPS3 algorithms, respectively, the intersection delay for 

Train 5 is 54.6, 66.6, 51.8, and 51.4 sec/veh for the TPS0, TPS1, TPS2, and TPS3 

algorithms, respectively.  That is, the difference in delay between TPS algorithms for a 

given train is much less than the difference between Train 4 and Train 5.  In this case, 

when the delay between two TPS algorithms is compared, the difference between Train 

4 and Train 5 significantly affected the comparison results under the pooled test.  

However, in this analysis the difference between paired observations rather than the 

variance within each sample is more interesting.  Pairing typically reduces variability 
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that might obscure significant difference (43).  Therefore, a paired t-test is appropriate 

for this simulation design.   

 

Because there are four treatments, which are four different TPS algorithms, in this 

simulation study, the block design, which is an extension of the paired t-test, was 

employed such that each train is considered as a block.  Duncan’s multiple range test 

also was applied to compare each pair combination of the four TPS algorithms for each 

value of the APWT.  Note that all further statistical comparisons in the following 

sections were performed using a block design. 

 

Pedestrian Phase Active Scenario 

The experimentwise error rate was set to 0.06, which means that the common level of 

significance per test is 0.01.  The result of the delay comparison period for the pedestrian 

phase active scenario is shown in Table 6-15.  The table only shows the test results that 

have a statistically significant difference between the TPS algorithms.  It can be seen that 

27 out of the 54 combinations were found to be statistically significant.  Because the 

paired test is a stronger test, more differences between the TPS algorithms were detected 

compared to the pooled test as expected.  The average percent difference between the 

algorithms was 3.6 percent and this corresponded to an average absolute difference in 

delay of 2.1 seconds for all pairs.  For the pairs having a statistically significant 

difference, the average percent difference between the algorithms was 6.4 percent and 

this corresponded to an average absolute difference in delay of 3.8 seconds. 
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TABLE 6-15 Results of Duncan Test between TPS Algorithms (Delay Comparison 
Period1; Pedestrian Phase Active Scenario; and Fixed Train Arrival Time) 

Algorithm 
Comparison  Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

TPS0 TPS1 54.7 56.5 1.71 0.86 Reject H0
3

TPS0 TPS2 54.7 56.5 1.71 0.84 Reject H0 
TPS3 TPS1 55.5 56.5 0.93 0.84 Reject H0 

50 

TPS3 TPS2 55.5 56.5 0.93 0.81 Reject H0 
TPS0 TPS2 54.7 56.5 1.72 1.06 Reject H0 
TPS0 TPS1 54.7 56.4 1.67 1.03 Reject H0 60 
TPS0 TPS3 54.7 55.8 1.09 0.99 Reject H0 
TPS3 TPS1 52.9 56.5 3.66 1.48 Reject H0 
TPS3 TPS0 52.9 54.7 1.87 1.45 Reject H0 
TPS3 TPS2 52.9 54.4 1.54 1.39 Reject H0 
TPS2 TPS1 54.4 56.5 2.12 1.45 Reject H0 

90 

TPS0 TPS1 54.7 56.5 1.79 1.39 Reject H0 
TPS3 TPS1 52.2 59.5 7.24 1.44 Reject H0 
TPS3 TPS0 52.2 54.7 2.51 1.41 Reject H0 
TPS2 TPS1 53.4 59.5 6.04 1.41 Reject H0 

100 

TPS0 TPS1 54.7 59.5 4.73 1.35 Reject H0 
TPS3 TPS1 52.0 61.7 9.75 1.19 Reject H0 
TPS3 TPS0 52.0 54.7 2.79 1.16 Reject H0 
TPS3 TPS2 52.0 53.2 1.21 1.11 Reject H0 
TPS2 TPS1 53.2 61.7 8.53 1.16 Reject H0 
TPS2 TPS0 53.2 54.7 1.57 1.11 Reject H0 

110 

TPS0 TPS1 54.7 61.7 6.96 1.11 Reject H0 
TPS3 TPS1 51.8 61.2 9.46 1.17 Reject H0 
TPS3 TPS0 51.8 54.7 2.98 1.14 Reject H0 
TPS2 TPS1 52.7 61.2 8.55 1.14 Reject H0 
TPS2 TPS0 52.7 54.7 2.07 1.09 Reject H0 

120 

TPS0 TPS1 54.7 61.2 6.49 1.09 Reject H0 
1:  600 to 1320 seconds  
2:  Advance preemption warning time 
3:  Statistically different between two means at 0.01 level of significance 
 

 

It was found that the delay in the TPS3 algorithm was statistically smaller than the delay 

in the TPS0 and TPS1 algorithms for the APWT values of 90, 100, 110, and 120 
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seconds.  At the APWT values of 50, 90, and 110 seconds, the delay in the TPS3 

algorithm was statistically smaller than the delay in the TPS2 algorithm.   

 

As discussed in Section 6.2.1, the best values of the APWT from a safety perspective 

were 100, 110, and 120 seconds.  It was found that there is no difference statistically at 

the 0.03 level of significance in delay among these values.  Therefore, it can be 

concluded that the TPS3 algorithm with APWT values of among 100, 110, and 120 

seconds provide the same level of safety and delay. 

 

A comparison among the best delays identified for each of the TPS algorithms also was 

performed.  It was found that the best delay in the TPS3 algorithm was statistically 

smaller than both the delay in the TPS0 algorithm and the best delay identified for the 

TPS1 algorithm at the 0.06 level of significance.   

 

It was found that for the delay comparison period, the delay for the TPS3 algorithm with 

the APWT values of 100, 110, or 120 seconds was less than the delay for the TPS0 

algorithm and the best delay identified for the TPS1 algorithm.  That is, when the TPS3 

algorithm is applied with an APWT value of 120 seconds, there was an improvement of 

2.9 sec/veh (or 5.4 percent reduction) compared to the TPS0 and TPS1 algorithms. 

Therefore, it can be concluded that for the pedestrian phase active scenario the TPS3 

algorithm with the APWT value of 100, 110, or 120 seconds is the best operation 

strategy in terms of both safety and efficiency.   

 

The above analyses also were conducted for the analysis period.  The results can be 

found in Table C-4 in Appendix C.  As expected, it was found that while similar results 

were found, there are fewer statistically significant differences between the TPS 

algorithms.  
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Pedestrian Phase Inactive Scenario 

The results of the delay comparison period for the pedestrian phase inactive scenario are 

shown in Table 6-16.  The table shows only the test results that have a statistically 

significant difference between TPS algorithms.  That is, only 21 pairs out of a possible 

54 were found to be statistically significant. 

  

 

TABLE 6-16 Results of Duncan Test between TPS Algorithms (Delay Comparison 
Period; Pedestrian Phase Inactive Scenario; and Fixed Train Arrival Time) 

Algorithm 
Comparison  Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

TPS0 TPS1 49.7 51.2 1.47 0.81 Reject H0
3 

TPS0 TPS2 49.7 51.2 1.47 0.79 Reject H0 50 
TPS0 TPS3 49.7 50.6 0.82 0.76 Reject H0 
TPS1 TPS0 48.2 49.7 1.50 0.96 Reject H0 
TPS2 TPS0 48.4 49.7 1.33 0.94 Reject H0 80 
TPS3 TPS0 48.4 49.7 1.32 0.90 Reject H0 
TPS3 TPS0 47.3 49.7 2.48 0.84 Reject H0 
TPS2 TPS0 47.7 49.7 2.06 0.82 Reject H0 90 
TPS1 TPS0 47.7 49.7 2.01 0.78 Reject H0 
TPS3 TPS0 46.8 49.7 2.89 0.81 Reject H0 
TPS3 TPS1 46.8 48.2 1.41 0.79 Reject H0 
TPS2 TPS0 47.5 49.7 2.23 0.79 Reject H0 

100 

TPS1 TPS0 48.2 49.7 1.48 0.76 Reject H0 
TPS3 TPS1 46.9 49.8 2.86 1.07 Reject H0 
TPS3 TPS0 46.9 49.7 2.81 1.04 Reject H0 
TPS2 TPS1 47.8 49.8 2.00 1.04 Reject H0 

110 

TPS2 TPS0 47.8 49.7 1.95 1.00 Reject H0 
TPS3 TPS1 47.1 50.2 3.05 1.06 Reject H0 
TPS3 TPS0 47.1 49.7 2.60 1.03 Reject H0 
TPS2 TPS1 47.6 50.2 2.58 1.03 Reject H0 

120 

TPS2 TPS0 47.6 49.7 2.13 0.99 Reject H0 
1:  600 to 1320 seconds  
2:  Advance preemption warning time 
3:  Statistically different between two means at 0.01 level of significance 
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It was found that the delay in the TPS3 algorithm is 1) smaller than the delay in the 

TPS0 algorithm at the APWT values of 80, 90, 100, 110, and 120 seconds and 2) smaller 

than the delay in the TPS1 algorithm at the APWT values of 100, 110, and 120 seconds.   

 

A comparison among the best delays identified for each of TPS algorithms also was 

performed.  It was found that the best delay in the TPS3 algorithm was statistically 

smaller than both the delay for the TPS0 algorithm and the best delay identified for the 

TPS1 algorithm at the 0.06 level of significance.   

 

During the delay comparison period the delay in the TPS3 algorithm with an APWT 

value of 100 seconds decreased compared to the delay for the TPS0 and the best delay 

identified for the TPS1 algorithm.  Therefore, it can be concluded that for the pedestrian 

phase inactive scenario the TPS3 algorithm with an APWT value of 100 seconds is the 

best operation strategy for efficiency.  Therefore, the conclusion mentioned previously 

that the TPS3 algorithm has a benefit compared to the other TPS algorithms even at the 

condition where there is no safety problem originally was confirmed again. 

 

The above analyses also were conducted for the analysis period.  The results can be 

found in Table C-6 in Appendix C.  As expected, it was found that while similar results 

were found, fewer statistically significant differences between the TPS algorithms were 

detected.  

 

6.2.3.2 Effect of Pedestrians 

During the delay comparison period, the average delays were 54.7, 57.4, 54.6, and 53.7 

sec/veh for the TPS0, TPS1, TPS2, and TPS3 algorithms in the pedestrian phase active 

scenario, respectively, as shown in Table 6-10.  However, in the pedestrian phase 

inactive scenario delay decreased to 49.7, 49.4, 48.8, and 48.5 sec/veh for the TPS0, 

TPS1, TPS2, and TPS3 algorithms, respectively, as shown in Table 6-12.   
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During the analysis period, the average delays were 50.9, 51.9, 50.9, and 50.8 sec/veh 

for the TPS0, TPS1, TPS2, and TPS3 algorithms in the pedestrian phase active scenario, 

respectively, as shown in Table C-3 in Appendix C.  However, in the pedestrian phase 

inactive scenario delay decreased to 42.5, 42.5, 42.3, and 42.3 sec/veh for the TPS0, 

TPS1, TPS2, and TPS3 algorithms, respectively, as shown in Table C-5 in Appendix C.  

These results show that the delay decreases by approximately 5 to 15 percent compared 

to the delay comparison period.   

 

To check statistically the difference between the pedestrian volume levels, a paired t-test 

was performed at the 0.05 level of significance.  The null hypotheses and alternative 

hypotheses were set as H0: Delay400ped/h = Delay0ped/h and H1: Delay400ped/h > Delay 0ped/h, 

respectively, for both the delay comparison period and the analysis period.  The results 

for both the analysis period and the delay comparison period are shown in Table 6-17.   

 

 

TABLE 6-17 Results of Paired t-Test between Two Pedestrian Scenarios 
(Pedestrian Phase Active Scenario vs. Pedestrian Phase Inactive Scenario) for Fixed 
Train Arrival  

Mean (sec/veh)  
 

Pedestrian 
Scenario 

Comparison  
400 

ped/h 
0  

ped/h 

Test 
Statistic 

Critical 
Value Result 

Comparison 
Period1 

400 
ped/h 

0 
ped/h 55.2 48.9 70.97 1.96 Reject H0

3 

Analysis 
Period2 

400 
ped/h 

0 
ped/h 51.2 42.4 92.53 1.96 Reject H0 

1:  600 to 1320 seconds  
2:  6 to 60 minutes 
3:  Statistically different between two means at 0.05 level of significance 
 

 

It is concluded that the delay in the simulation with the pedestrian phase active scenario 

is greater than the delay in the simulation with the pedestrian phase inactive scenario for 

both the delay comparison period and analysis period.  These results confirm the fact 
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that pedestrians can increase the average delay experienced by vehicles at the 

intersection. 

  

The difference in results for the two pedestrian scenarios is mainly caused by the right-

turning vehicles, as shown in Tables 6-18 and 6-19, because the right-turning vehicles 

must yield to pedestrians.  Through vehicles using the shared lane who are behind the 

right-turning vehicles also are affected by the right-turning vehicles.  The detailed delay 

results depending on the APWT also are shown in Tables C-7 and C-8 in Appendix C.  

 

 

TABLE 6-18 Average Delay of Each Movement During Analysis Period1 for 
Pedestrian Phase Active Scenario and Fixed Train Arrival Time 

Southbound 
(sec/veh) 

Eastbound 
(sec/veh) 

Northbound 
(sec/veh) 

Westbound 
(sec/veh) T

P
S LT T

H 
R
T 
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M 

L
T 

T
H 

R
T 

S
U
M

L
T 

T
H 

R
T 

S
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M

L
T 

T
H 

R
T 

S
U
M 

TOT
AL 

0 115 34 41 59 49 60 66 60 50 31 34 35 59 58 15 48 50.9 
1 113 34 41 58 51 63 69 63 50 31 34 34 61 61 15 51 51.9 
2 112 34 41 58 50 61 67 61 50 31 34 34 59 58 15 49 50.9 
3 113 34 41 58 50 61 67 61 49 31 34 34 58 58 15 48 50.8 

1:  6 to 60 minutes 
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TABLE 6-19 Average Delay of Each Movement During Analysis Period1 for 
Pedestrian Phase Inactive Scenario and Fixed Train Arrival Time 

Southbound 
(sec/veh) 

Eastbound 
(sec/veh) 

Northbound 
(sec/veh) 

Westbound 
(sec/veh) T

P
S LT T

H 
R
T 

S
U
M 

L
T 

T
H 

R
T 

S
U
M

L
T 

T
H 

R
T 

S
U
M

L
T 

T
H 

R
T 

S
U
M 

TOT
AL 

0 68 33 33 44 44 49 43 47 47 30 26 32 58 57 10 46 42.5 
1 68 33 32 43 45 49 43 48 46 30 26 32 58 57 10 46 42.5 
2 68 33 33 44 44 49 43 47 45 30 26 32 57 56 10 46 42.3 
3 68 33 33 43 44 49 43 47 45 30 26 32 57 56 10 46 42.3 

1:  6 to 60 minutes 
 

 

In the southbound left-turn movement, the delay is considerably different for the two 

pedestrian scenarios.  This result is not a direct effect of pedestrians in contrast to the 

right-turning movement situation.  A difference in signal timing occurs during transition 

back to the normal mode.  Because the first cycle after preemption is operated as fully 

actuated, the signal timing is very sensitive to the traffic volume and distribution.  

Intuitively, the difference in signal timing during this time period affects all following 

time periods.  Moreover, the demand volume of the southbound left-turn movement was 

308 veh/h and the capacity is about 250 veh/h during the coordinated mode.  Therefore, 

this over-saturation condition increases the delay for the left-turning movement by 

approximately 9 sec/veh. 

 

6.2.3.3 Effect of Train Speed Profile 

Pedestrian Phase Active Scenario  

The average delay by train speed groups is shown in Table 6-20 during the delay 

comparison period for the pedestrian phase active scenario.  Detailed results of the 

average delay as a function of the APWT also are shown in Table C-9 in Appendix C. 

 

 



 183

TABLE 6-20 Average Delay by Train Group (Delay Comparison Period1; 
Pedestrian Phase Active Scenario; and Fixed Train Arrival Time) 

 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) Average 

Group 1 60.4 64.6 61.5 60.0 61.6 
Group 2 53.9 56.2 53.0 52.4 53.9 

Average 
By 

Group Group 3 49.9 51.4 49.3 48.9 49.9 
Average 54.7 57.4 54.6 53.7 55.1 

1:  600 to 1320 seconds  
 

 

In all of the TPS algorithms, Group 3 has the smallest average delay at 49.9 sec/veh and 

Group 1 has the largest average delay of 61.6 sec/veh.  The difference in delay between 

Group 1 and Group 3 was 10.5 sec/veh for the TPS0 algorithm, 13.2 sec/veh in the TPS1 

algorithm, 12.2 sec/veh in the TPS2 algorithm, and 11.1 sec/veh in the TPS3 algorithm 

for the pedestrian phase active scenario.  For the delay comparison period, the delay of 

Group 2 is much smaller than that of Group 1, unlike the analysis period.   

 
To check statistically the difference among the train speed groups, Duncan’s multiple 

range test was performed.  The experimentwise error rate was set to 0.03, which means 

that the common level of significance per test is 0.01.  The results are shown in Table 6-

21. 
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TABLE 6-21 Results of Duncan Test between Train Speed Groups (Delay 
Comparison Period1; Pedestrian Phase Active Scenario; and Fixed Train Arrival 
Time) 

Mean (sec/veh) 
Group Comparison 1st 

Group 
2nd 

Group 

Test 
Statistic 

Critical 
Value Result 

Group3 Group1 49.9 62.0 12.09 1.14 Reject H0
2 

Group3 Group2 49.9 53.9 3.98 1.09 Reject H0 
Group2 Group1 53.9 62.0 8.12 1.09 Reject H0 

1:  600 to 1320 seconds  
2:  Statistical different between two means at 0.01 level of significance 
H0: Delaygroup i = Delaygroup j (i≠j, where, i=1,2 and j=2,3) 
 

 

It was found that the delay in Group 3 is statistically smaller than the delay in Groups 1 

and 2 at the 0.01 level of significance, and that the delay in Group 2 is statistically 

smaller than the delay in Group 1 at the 0.01 level of significance. 

  

Safety also was evaluated for the train speed.  The number of pedestrian phase 

truncations and average abbreviation time at the onset of preemption by each train speed 

group also were evaluated as shown in Table 6-22. 
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TABLE 6-22 Number of Pedestrian Phase Truncations and Average Phase 
Abbreviation Time at the Onset of Preemption by Train Speed Group for 
Pedestrian Phase Active Scenario and Fixed Train Arrival Time 

TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh) AP
WT1 G12 G23 G34 G1 G2 G3 G1 G2 G3 G1 G2 G3 

 30 
(6) 

30 
(7) 

30 
(6)          

40    30 
(6) 

30 
(7) 

30 
(6) 

30 
(6) 

30 
(7) 

30 
(6) 

30 
(6) 

30 
(7) 

30 
(6) 

50    21 
(6) 

27 
(7) 

29 
(6) 

21 
(6) 

27 
(7) 

29 
(6) 

25 
(6) 

29 
(7) 

30 
(6) 

60    15 
(5) 

20 
(7) 

24 
(6) 

15 
(5) 

20 
(7) 

24 
(6) 

21 
(6) 

27 
(7) 

28 
(6) 

70    4 
(6) 

5 
(8) 

9 
(6) 

4 
(6) 

5 
(8) 

9 
(6) 

11 
(5) 

14 
(7) 

20 
(5) 

80    1 
(10) 

2 
(8) 

2 
(4) 

1 
(10) 

2 
(8) 

2 
(4) 

2 
(2) 

4 
(8) 

8 
(6) 

90    1(6) 3(3) 0(0) 1(6) 3(3) 0(0) 0(0) 0(0) 1(6)
100    1(6) 3(3) 0(0) 1(6) 3(3) 0(0) 0(0) 0(0) 0(0)
110    0(0) 0(0) 1(3) 1(6) 3(3) 1(3) 0(0) 0(0) 0(0)
120    0(0) 0(0) 1(3) 1(6) 2(2) 2(2) 0(0) 0(0) 0(0)

1:  Advance preemption warning time 
2:  Train group 1 
3:  Train group 2 
4:  Train group 3 
 

 

For the TPS0 algorithm, a truncation occurred in every train group and the average 

abbreviation time of the pedestrian clearance phase was approximately 6 seconds.  

Therefore, it can be concluded that unlike the effect of the train speed groups on delay, 

safety was not affected by train speed at FM 2818 under the normal preemption 

operation. 

 

The number of truncations is the highest in Group 3 for the TPS1, TPS2, and TPS3 

algorithms when the APWT is less than 90 seconds.  Therefore, it can be concluded that 

the probability of truncations increases as train speed increases in the low region of the 

APWT.  However, as the APWT increases, the effect of train speed on truncation 
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decreases for all TPS algorithms.  That is, truncations occurred regardless of the train 

speed groups for the TPS1 and TPS2 algorithms.  Therefore, it can be concluded that the 

safety of the intersection is not affected by the train speed once an APWT is equal to or 

greater than 90 seconds. 

 

The above analyses also were conducted for the analysis period.  It was found that even 

though the delay of each group was not as great compared to the delay comparison 

period, the results of the comparison were similar.  But it was found that there was no 

statistically significant difference between Group 1 and Group 2.  Detailed results can be 

found in Tables C-10, C-11, and C-12 in Appendix C. 

 

 

Pedestrian Phase Inactive Scenario 

The effect of train speed also was evaluated when there is no pedestrian in the 

intersection.  The average delay by train speed groups during the delay comparison 

period for the pedestrian phase inactive scenario is shown in Table 6-23.  The detailed 

result of the average delay depending on the APWT also is shown in Table C-13 in 

Appendix C. 

 

 

TABLE 6-23 Average Delay by Group (Delay Comparison Period1; Pedestrian 
Phase Inactive Scenario; and Fixed Train Arrival Time) 

 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) 

Average 
(sec/veh) 

Group 1 55.6 55.5 55.4 54.8 55.2 
Group 2 49.1 48.2 47.3 47.4 47.7 

Average 
By 

Group Group 3 44.6 44.4 43.8 43.5 43.9 
Average 49.7 49.4 48.8 48.5 49.1 

1:  600 to 1320 seconds  
 

 



 187

It can be seen that for all the TPS algorithms, Group 3 has the smallest delay with an 

average 43.9 sec/veh and Group 1 has the largest delay with an average delay of  55.2 

sec/veh.  The difference in delay between Group 1 and Group 3 was 11.0 sec/veh in the 

TPS0 algorithm, 11.1 sec/veh in the TPS1 algorithm, 11.6 sec/veh in the TPS2 

algorithm, and 11.3 sec/veh in the TPS3 algorithm for the pedestrian phase active 

scenario.  For the delay comparison period, the delay of Group 2 is much smaller than 

that of Group 1, unlike the analysis period.  Therefore, it can be concluded that the effect 

of train speed decreases as time increase.  

 

To check statistically the difference among the train speed groups, Duncan’s multiple 

range test also was performed.  Experimentwise error rate was set to 0.03, which means 

that the common level of significance per test is 0.01.  The result is shown in Table 6-24.  

 

 

TABLE 6-24 Results of Duncan Test between Train Speed Groups (Delay 
Comparison Period1; Pedestrian Phase Inactive Scenario; and Fixed Train Arrival 
Time) 

Mean (sec/veh) 
Group Comparison 1st 

Group 
2nd 

Group  

Test 
Statistic 

Critical 
Value Result 

Group3 Group1 43.9 55.2 11.31 1.04 Reject H0
2 

Group3 Group2 43.9 47.7 3.78 1.00 Reject H0 
Group2 Group1 47.7 55.2 7.53 1.00 Reject H0 

1:  600 to 1320 seconds  
2:  Statistically different between two means at 0.01 level of significance 
 

 

It was found that the delay in Group 3 is statistically smaller than the delay in Groups 1 

and 2 at the 0.01 level of significance, and that the delay in Group 2 is statistically 

smaller than the delay in Group 1 at the 0.01 level of significance.   
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Intuitively, delay is affected by the time the train is blocking the crossing, and the 

blocking time is affected by the train speed.  That is, as train speed decreases the 

blocking time increases and then the delay will increase.  To evaluate the relationship 

between the delay and the blocking time, the blocking time was measured using train 

speed and train length.  Average train speed, average train length, and average blocking 

time by each group are shown in Table 6-25.   

 

 

TABLE 6-25 Average Train Speed, Average Train Length, and Average Blocking 
Time by Each Train Group 

Train Group Train Speed (km/h) Train Length (m) Blocking Time (s) 
Group 1 30 1284 161 
Group 2 41 1523 136 
Group 3 51 1625 116 
Average 41 1477 138 

 

 

It was found that the blocking time was the smallest in Group 3.  Therefore, it is 

reasonable that the delay of Group 3 was the smallest.  Therefore, it can be concluded 

that the delay is affected more by blocking time than the TPS algorithms.   

 

The above analyses also were conducted for the analysis period.  It was found that even 

though the delay of each group was not as great compared to the delay comparison 

period, the results of the comparison were same.  Detailed results can be found in Tables 

C-14, C-15, and C-16 in Appendix C. 

 

6.2.3.4 Preemption Trap 

In terms of the crossing safety, the preempt trap should not occur.  That is, the track 

clearance green should end after the warning lights start to flash.  For this safety metric, 

the end times of the track clearance green were collected from the simulations.  The 

warning lights start to flash 25 seconds before a train arrives at the crossing.  The gate 
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starts to descend after 4 seconds of the gate delay time.  In the simulation the yield sign 

was used to emulate both the warning lights and the gate.  Therefore, it was assumed that 

the warning lights start to flash 25 seconds before a train arrives at the crossing.  The 

train arrival times were collected from the simulations.  Twenty-five seconds were 

extracted from the train arrival times to obtain the start time of the warning lights.  The 

preempt trap was calculated as the start time of the warning lights minus the end times of 

the track clearance green as shown in Equation 6-5.   

 

Σ = Ψ - Ξ (6-5) 

where; 

 Σ      = Preempt trap interval; 

 Ψ     = Start time of warning lights; and 

 Ξ      = End times of the track clearance green. 

 

If the preempt trap interval is positive, the preempt trap occurs.  For the TPS0, TPS1, 

TPS2, and TPS3 algorithms under both the fixed train arrival time scenario and random 

train arrival time scenario, there was no preemption trap.  Therefore, it can be concluded 

that the TPS3 algorithm does not affect the preemption trap. 

  

6.3 SIMULATION RESULTS AND FINDINGS WITH RANDOM TRAIN 

ARRIVAL 

6.3.1 Truncation of Pedestrian Clearance Interval 

In Section 6.2, all simulations were designed so that the traffic signal controller is 

preempted by a train during a specific pedestrian clearance interval under the TPS0 

algorithm.  In other words, the study was designed to examine the worst case scenario.  

However, a preemption can be initiated at any time in the cycle.  When a preemption is 

initiated at the period of the cycle that does not provide a pedestrian green/clearance 

phase, the truncation problem will never occur.  Therefore, the signal can be operated 

safely without the need for the TPS algorithm in these situations.  
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In this section, simulations were performed under the same conditions as the previous 

section except that the trains arrive at the crossing randomly.  A detailed description of 

this case is illustrated in Appendix D. 

 

6.3.2 Results 

All evaluations follow the process described in Section 6.2.  It was found that the effect 

of the TPS3 algorithm on delay was almost the same.  That is, at the best APWT values 

for each TPS algorithm, the difference in delay decreases only by 0.2 to 0.7 seconds 

compared to the fixed arrival time scenario.  Therefore, in both situations the TPS3 

algorithm produced a minimum delay.  Therefore, no matter when a preemption is 

initiated during a cycle, the TPS3 algorithm can operate the intersection without safety 

problems and at the same time decrease the intersection delay.  Detailed results for this 

case are illustrated in Appendix D. 

 

6.4  BENEFIT/COST ANALYSIS  

To evaluate the viability of the TPS3 algorithm, a benefit/cost analysis was performed.  

The equivalent annual cost, the net present worth of benefits, and the benefit/cost (B/C) 

ratio were calculated.  

 

Capital cost elements included the Doppler radar detectors, the field hardened computer, 

the interface equipment, the communications processor, and software.  The ongoing 

operation and maintenance costs also were considered.  Both the equivalent annual cost 

and the net present worth for each element are shown in Table 6-26.  It was assumed that 

the lifetime of all elements is 6 years, the salvage value is zero, and the interest rate is 6 

percent.   
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TABLE 6-26 Elements of the TPS3 System and Its Cost  

Items EAC1 NPW2 
2x Doppler radar stations with communication: $1,500 each $610 $3,000 
1x Central communication processor: $1,000 $203 $1,000 
1x Field hardened computer: $1,500 $305 $1,500 
Cabinet interface equipment: $2,000 $407 $2,000 
Operational and maintenance cost: $50/mo $600 $2,950 
2x Software: $2,000 each $813 $4,000 
Sum $2,939 $14,450 

1: Equivalent annual cost 
2: Net present worth 
 

 

Net present worth of all elements except the operational and maintenance cost was 

converted to the equivalent annual costs using an interest rate of 6 percent per year 

because these elements have only the initial cost.  The operational and maintenance cost, 

$600, was used as the equivalent annual cost because the operational and maintenance 

cost occurs every year. 

 

The equivalent annual costs of each element depending on interest rate are shown in 

Figure 6-10.   
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FIGURE 6-10   Equivalent Annual Cost of Each Element versus Interest Rate 
 

 

It was found that as the interest rate increases the equivalent annual cost of each element 

increases.  Therefore, assuming an interest rate of 6 percent per year, the equivalent 

annual cost of the system is $2,939. 

 

There are two types of benefit of the TPS3 system: 1) safety and 2) delay. First, the cost 

per accident was used to determine the annual safety benefit.  To estimate the number of 

accidents, first the number of pedestrian phase truncations was estimated from the 

observed data at the test bed.  The number of pedestrian phase truncations was estimated 

using the simulation study assuming random train arrival.  While there is no pedestrian 

phase truncation under the TPS3 algorithm, 36 pedestrian phase truncations out of 90 

trains (40 percent) occurred in the normal preemption condition as shown in Table D-1.  

When a pedestrian volume of 400 ped/h was used for simulation study, the pedestrian 

phase was active with 99.99 percent probability during the simulations.  If the pedestrian 

volume decreases, the pedestrian phase may not be active at every cycle.  Therefore, the 

pedestrian phase truncation may not occur in some cases.  The probability that the 
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pedestrian phase is active at the onset of preemption was calculated assuming random 

arrival of pedestrians.  The observed pedestrian volume at the test bed was 10 ped/h, and 

the train volume was approximately 50 trains/day.  Therefore, the probability that the 

pedestrian phase is active was 0.28 and a total of 2044 (= 50×0.4×0.28×365) pedestrian 

phase truncations will occur every year.  The results are shown in Table 6-27.   

 

 

TABLE 6-27 Calculation of Number of Pedestrian Phase Truncations 

Trains /day  20 
Probability that pedestrian phase truncation occurs  0.4 
Probability that pedestrian phase is active at the onset of preemption 0.28 
Truncations/day 2.2 
Truncations/year 818 

 

 

The comprehensive costs recommended for use by state and local highway and safety 

agencies was used as the accident cost for this analysis. The relationship between cost 

per injury and injury severity by K-A-B-C Scale are shown in Table 6-28 (44,45). 

 

 

TABLE 6-28 Comprehensive Costs in Police-Reported Crashes by K-A-B-C Scale 
Severity (1994) 

Severity Descriptor Cost Per Injury 
K Fatal $2,600,000 
A Incapacitating $180,000 
B Evident $36,000 
C Possible $19,000 

PDO Property Only Damage  $2,000 
 

 

Although as truncations increase the accidents increase, occurrence of pedestrian phase 

truncation does not necessarily mean accidents.  Because the probability of an accident 
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occurring given a pedestrian phase truncation is unknown, a sensitivity analysis was 

performed.  The probability ranged from 0.0001 to 0.1.  The accident cost (benefit) was 

estimated as a function of the probability that accidents occur and the accident severity 

and the results values are shown in Table 6-29. 

 

 

TABLE 6-29 Accident Cost Depending on the Probability of Accident and the 
Accident Severity  

Pro.1 Num2 Fatal ($) Incap.3 ($) Evident 
($) 

Possible 
($) 

Property 
Only 

Damage 
($) 

Cost 
($) 

0.001 0.82 
2,125,760 

(723) 
147,168 

(50) 
29,434 

(10) 
15,534 

(5) 
1,635 
(0.56) $2,939

0.002 1.64 
4,251,520 

(1,447) 
294,336 

(100) 
58,867 

(20) 
31,069 

(11) 
3,270 
(1.11) $2,939

0.003 2.45 
6,377,280 

(2,170) 
441,504 

(150) 
88,301 

(30) 
46,603 

(16) 
4,906 
(1.67) $2,939

0.004 3.27 
8,503,040 

(2,893) 
588,672 

(200) 
117,734 

(40) 
62,138 

(21) 
6,541 
(2.23) $2,939

0.005 4.09 
10,628,800

(3,617) 
735,840 

(250) 
147,168 

(50) 
77,672 

(26) 
8,176 
(2.78) $2,939

0.006 4.91 
12,754,560

(4,340) 
883,008 

(300) 
176,602 

(60) 
93,206 

(32) 
9,811 
(3.34) $2,939

0.007 5.72 
14,880,320

(5,064) 
1,030,176 

(351) 
206,035 

(70) 
108,741 

(37) 
11,446 
(3.89) $2,939

0.008 6.54 
17,006,080

(5,787) 
1,177,344 

(401) 
235,469 

(80) 
124,275 

(42) 
13,082 
(4.45) $2,939

0.009 7.36 
19,131,840

(6,510) 
1,324,512 

(451) 
264,902 

(90) 
139,810 

(48) 
14,717 
(5.01) $2,939

0.01 8.18 
21,257,600

(7,234) 
1,471,680 

(501) 
294,336 

(100) 
155,344 

(53) 
16,352 
(5.56) $2,939

1:  Probability of accident when pedestrian  phase truncation occurs 
2:  Number of accident/ year 
3: Incapacitating 
( ):  B/C ratio  
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The analysis resulted in a B/C ratio of 0.56 with a net benefit of $1,635 under the most 

conservative scenario, that is, assuming a 0.1 percent probability of accident and 

property only damage.  The B/C ratio increases as the accident probability and accident 

severity level increases.  As an example, Figure 6-11 shows the change of B/C ratio 

depending on the probability of accident considering property only damage as the 

benefit. 

 

 

FIGURE 6-11  B/C Ratio Depending on the Probability of Accident Considering 
Property Only Damage as the Benefit 

 

 

It was found that as the probability of accident increases, B/C ratio increases.  The B/C 

ratio becomes 1 at a probability of accident of 0.0018.  Therefore, when the probability 

of accident is more than 0.18 percent and property only damage is considered, the 

viability of the proposed system is validated. 
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From the simulation results, the intersection delay was reduced in the TPS3 algorithm as 

compared to the TPS0 algorithm (normal preemption method) for both the pedestrian 

phase active scenario and the pedestrian phase inactive scenario as shown in Tables C-7 

and C-9.  Thus, in addition to safety benefit from accident reductions, it can be expected 

that there is also intersection delay benefit with 10 ped/h.  Rather than rerun the 

simulation for 10 ped/h, the delay was calculated using the 0 ped/h results.  While this 

approach is conservative, it does not appreciably affect the final results.   

 

The delay reduction of the simulation results with 0 ped/h (0.6 sec/veh) also was used to 

determine the annual delay benefit.  When the average traffic volume of 50 observations 

at the test bed (2496 veh/h) is used for this analysis, the total delay savings is 3644 hours 

per year as shown in Table 6-30. 

 

 

TABLE 6-30 Calculation of Annual Delay Reduced  

Delay Reduced 0.6 sec/veh 
Average Traffic Volume 2496 veh/h 

1498 sec/hr 
0.42 hr/hr Total Reduced Delay 
3644 hr/year 

 

 

$11.97 of the value of time recommended by the State of Texas TxDOT was used as the 

benefit of delay reduced for this analysis (46).  The value of time was estimated by 

Speed Choice Model developed by Chui and McFarland of Texas Transportation 

Institute (47). 

 

The benefit and B/C ratio is based on the value of time applied to analysis.  The change 

of B/C ratio depending on the value of time is shown in Figure 6-12. 
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FIGURE 6-12   B/C Ratio versus Value of Time 
 

It can be seen that the B/C ratio increases as the value of time increases.  When $11.97 

of the value of time was used for this analysis, the annual delay benefit was $43,623 (= 

3644×11.97) per year.  B/C ratio was 14.84 (= 43,623/2,939) concerning only the benefit 

from delay savings.  When the delay benefit is combined into the safety benefit, the B/C 

ratio increases by 14.84.  Therefore, it can be concluded that it is appropriate to install 

the TPS3 system at this IHRGC.  It is hypothesized that similar results will be found at 

any IHRGC where there are pedestrians present. 

 

6.5  CONCLUDING REMARKS 

6.5.1 TPS Algorithm  

It was found that safety problems did not occur when the TPS3 algorithm was used with 

the APWT values of 100, 110, and 120 seconds.  Therefore, it can be concluded that for 
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0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 5 10 15 20

Value of Time ($)

B
/C

 R
at

io



 198

When the delay comparison period was analyzed, the delay increased overall and the 

difference in delay between each scenario also increased compared to the analysis 

period.  Therefore, it was relatively easy to evaluate the effect of each TPS algorithm 

and the APWT.  During the delay comparison period the delay in the TPS3 algorithm 

with an APWT value of 120 seconds was 5.4 percent lower than the delay for both the 

TPS0 and TPS1 algorithms.  In addition, the TPS3 algorithm had zero truncation for the 

APWT values of 100, 110, and 120 seconds as compared to 90 and 1 truncations for the 

TPS0 and TPS1 algorithms.  Therefore, it can be concluded for the pedestrian phase 

active scenario that the TPS3 algorithm with an APWT value of 100, 110, or 120 

seconds is the best operation strategy for both safety and efficiency for the test bed.   

 

For the pedestrian phase inactive scenario, it was concluded that the TPS3 algorithm 

with an APWT value of 100 or 110 seconds results in a lower delay compared to the 

TPS0 algorithm even when there are no pedestrian present. 

 

6.5.2 Effect of Pedestrians 

When the pedestrian volume was 400 ped/h, the average delays were 54.7, 57.4, 54.6, 

and, 53.7 sec/veh for the TPS0, TPS1, TPS2, and TPS3 algorithms, respectively.  

However, for the pedestrian phase inactive scenario, the average delay decreased to 49.7, 

49.4, 48.8, and 48.5 sec/veh for the TPS0, TPS1, TPS2, and TPS3 algorithms, 

respectively.  It is concluded based on the statistical test that the delay in the simulation 

with the pedestrian phase active scenario is greater than the delay in the simulation with 

the pedestrian phase inactive scenario for both the delay comparison and analysis 

periods.  The difference is mainly caused by the right-turning vehicles because the right-

turning vehicles must yield the right of way to the crossing pedestrians when the phases 

are served.  Through vehicles using the shared lane with right-turning vehicles also were 

affected by the right-turning vehicles.   
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6.5.3 Effect of Train Speed Profile 

When the delays were compared for each train speed group, Group 3 (fastest train group) 

had the smallest delay and Group 1 (slowest train group) had the largest delay for all 

TPS algorithms and both pedestrian phase active and pedestrian phase inactive 

scenarios.  It was hypothesized that the difference in delay between train speed groups 

was caused by the difference in blocking time of the crossing for each train speed group.  

It was found that the blocking time was the smallest in Group 3 while Group 1 had the 

longest blocking time.  It also was found that the difference in delay between train speed 

groups is much greater than the difference in delay between the TPS algorithms.  

Therefore, it can be concluded that the delay is affected more by the blocking time than 

the TPS algorithms. It also was concluded that the safety of the intersection is not 

affected by the train speed once an APWT is equal to or greater than 90 seconds. 

 

6.5.4 Effect of Random Train Arrival  

In the simulation under random train arrival conditions, the effect of the TPS3 algorithm 

on delay was almost the same.  That is, in both situations the TPS3 algorithm produced a 

minimum delay.  Therefore, no matter when a preemption is initiated during a cycle, the 

TPS3 algorithm can operate the intersection without safety problems while simultaneous 

decreases the intersection delay. 

 

6.5.5 Benefit/Cost Analysis  

The TPS3 system has a safety benefit of $1,635 and a delay benefit of $43,623 per year 

assuming 0.1 percent probability of accident and property only damage.  The estimated 

cost is $2,939.  Therefore, the B/C ratio is 15.4 (= (1,635 + 43,623)/ 2,939).    This ratio 

validated the viability of the proposed system.  Therefore, it can be concluded that it is 

appropriate to install the TPS3 system at the IHRGC in the test bed.  It is hypothesized 

that similar results will be found at any IHRGC where there are pedestrians present. 

 



 200

Lastly, if the TPS1 algorithm is used, it was found that the value of the APWT had a 

profound affect on the results.  The optimal value for this test bed was found to be 110 

and 120 seconds in terms of safety as compared to the default value of 70 seconds.  

Therefore, if a decision is made to use the older algorithm it would be best to identify the 

best APWT rather than assuming the default conditions.  The optimization methodology 

developed in this dissertation can be applied for any location. 
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 CHAPTER VII 

CONCLUSIONS 

7.1  SUMMARY 

7.1.1 Prediction Algorithm 

An artificial neural network (ANN) model was developed to predict the train arrival time 

because there exists a nonlinear relationship between train arrival time and the train 

speed.  Because trains exhibit a wide range of behavior during detection, trains that have 

markedly different speed profiles may have the same arrival time.  Because the modular 

ANN (MANN) approach first categorizes trains into groups having similar speed 

profiles, these characteristics of trains can be handled in a MANN.  Therefore, the 

modular approach is appropriate to forecast the train arrival time in the study site.  As 

the speed is updated, the accuracy of forecasting was improved in all methods overall.   

 

Prediction intervals were obtained using a bootstrap method, because the ANN model is 

a non-parametric model.  The prediction intervals were incorporated into a new TPS 

algorithm. 

 

7.1.2 The Transition Preemption Strategy Algorithm 

The current TPS algorithm provides a transition to preemption in a manner that could 

potentially endanger pedestrians and/or drivers because it does not account for the 

variability of predicted train arrival times. Therefore, even if the goal of TPS is to 

eliminate situations where the pedestrian clearance phase is truncated in an unsafe 

manner, its goal is not achieved successfully.  While it is designed to reduce the 

truncation of minimum vehicle time and pedestrian clearance time before the normal 

preemption begins, it does not account for overall intersection performance.   
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In this dissertation, a new transition preemption algorithm that was specifically designed 

to improve the intersection performance while maintaining or improving the current 

level of safety was developed using an improved train arrival time prediction model. 

  

7.2  CONCLUSIONS 

7.2.1 Predicted Arrival Time 

The current forecasting method assumes that the last observed speed will be constant 

until the train arrives at the crossing.  It was found that this method had the highest 

forecasting error.  The MANN approach is promising for train detection in that it 

provided an average 19.5 percent improvement over a standard ANN model, an average 

29.7 percent improvement over a multiple linear regression model, and an average 46 

percent improvement over the current method.  While the last observed speed is used to 

predict the train arrival time in the current method and the MLR model, the trend of 

speed change is used as input to the ANN and MANN model.  Therefore, it is concluded 

that the trend of speed change is a better explanatory variable than the last observed 

speed when forecasting train arrival time.   

 

7.2.2 The Transition Preemption Strategy Algorithm  

When the preemption is operated with TPS0, the truncation occurred 90 times out of 90 

preemption cases for the simulation test bed.  Therefore, the normal preemption 

operation is clearly dangerous when the train arrives during the pedestrian phase.  When 

preemption is operated with the TPS1 and TPS2 algorithms, the pedestrian phase 

truncations still occurred 1 and 5 cases out of 90 preemptions, respectively, even though 

the advance preemption warning time of 120 seconds was used.  For the TPS3 

algorithm, the pedestrian phase truncations occurred until the advance preemption 

warning time reached 90 seconds.  Therefore, the advance preemption warning time 

should be at least 100 seconds to eliminate the possibility of the pedestrian phase 

truncation.   
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When the delay comparison period was analyzed, the delay increased overall and the 

difference in delay between each scenario also increased compared to the analysis 

period.  Therefore, it was relatively easy to evaluate the effect of each TPS algorithm 

and APWT.  During the delay comparison period, that is, during six cycles before and 

after preemption, the delay in the TPS3 algorithm with an APWT value of 120 seconds 

was 5.3 percent smaller as compared to the average delay for both the TPS0 and TPS1 

algorithms.  In addition, the TPS3 algorithm had zero truncation for the APWT value of 

100, 110, and 120 seconds as compared to 90 and 1 truncation for the TPS0 and TPS1 

algorithms.  Therefore, it can be concluded for the pedestrian scenario that the TPS3 

algorithm with an APWT value of 100, 110, or 120 seconds is the best operation strategy 

with respect to both safety and efficiency.   

 

For the pedestrian phase inactive scenario, it was concluded that the TPS3 algorithm 

with an APWT value of 100 or 110 seconds results in a lower delay compared to the 

TPS0 algorithm even for the condition where there is no safety problem originally. 

 

When the pedestrian volume was 400 ped/h, the average delays were 54.7, 57.4, 54.6, 

and 53.7 sec/veh for the TPS0, TPS1, TPS2, and TPS3 algorithms, respectively.  

However, when no pedestrians were present in the intersection, delay decreases 

drastically as evidenced by the delay metrics of 49.7, 49.4, 48.8, and 48.5 sec/veh for 

TPS0, TPS1, TPS2, and TPS3 algorithms, respectively.  The difference is mainly caused 

by the right-turning vehicles because the right-turning vehicles must yield the right of 

way to the crossing pedestrians when the phases are served.  Through vehicles using the 

shared lane with right-turning vehicles also were affected by the right-turning vehicles.   

 

For all the TPS algorithms, it was found that the trains in Group 3, which had the highest 

speed, had the smallest delay.  In contrast, the train in Group 1, which had the lowest 

speed, had the largest delay for both pedestrian volume levels.  In summary, as train 

speed increases, the prediction accuracy increases and the intersection is operated better.  
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Therefore, it is concluded that the new TPS algorithm improves the operation of the 

intersection near the highway-railroad grade crossing in terms of both safety and 

efficiency. 

 

7.2.3 Benefit/Cost Analysis  

The TPS3 system has a safety benefit of $1,635 and a delay benefit of $43,623 per years 

assuming 0.1 percent probability of accident and property only damage.  The estimated 

cost is $2,939.  Therefore, the B/C ratio is 15.4 (= (1,635 + 43,623)/2,939).    This ratio 

validated the viability of the proposed system.  Therefore, it can be concluded that it is 

appropriate to install the TPS3 system at the test bed IHRGC.  The methodology 

developed in this dissertation can be applied at any IHRGC. 

 

7.3  FUTURE RESEARCH 

Further sensitivity analyses are required to evaluate how various factors, such as, 

APWT, the pedestrian volume, etc., affect the new transition preemption strategy.  In 

this dissertation, only nine levels of APWT and two levels of pedestrian volume were 

tested.  A more detailed testing of the algorithm for these factors is required to evaluate 

the effect of the new transition preemption strategy thoroughly.   

 

The prediction intervals were all calculated at the 90 percent level of significance.  A 

sensitivity analysis on the most appropriate level of significance should be conducted. 

 

All simulations were performed using the traffic volume of the evening peak.  The new 

transition preemption strategy may work differently depending on the traffic volume. 

Additional simulation studies are needed to evaluate the effect of the new transition 

preemption strategy as a function of traffic volume.  In summary, a more comprehensive 

sensitivity analysis, including all of the factors mentioned above, is needed to guide 

usage of the new transition preemption strategy for field implementation.  
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This dissertation is based on the results of the simulations for evaluating the effect of the 

new transition preemption strategy.  Although the study was designed based on the 

Eagle EPAC 300 controller, which is currently used in the study site, controlled field 

studies should be performed to guarantee the safety and efficiency of the new transition 

preemption strategy before the algorithm is considered for field implementation.  

 

The TPS3 was developed in a simulation environment using VAP.  To test TPS3 in the 

real world, the TPS3 code should be recoded in a general programming language and 

used to control the traffic signal controller.  This would allow the hardware-in-the-loop 

analysis to be used. 
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GLOSSARY  

Adjustment Time (φ): 

Time accounted for equipment response, motion sensing and constant warning time 

detectors, and automatic gate activation time. 

 

Advance Preemption and Advance Preemption Time: 

Notification of an approaching train is forwarded to the highway traffic signal controller 

unit or assembly by railroad equipment for a period of time prior to activating the 

railroad active warning devices. This period of time is the difference in the maximum 

preemption time required for highway traffic signal operation and the minimum warning 

time needed for railroad operations and is called the advance preemption time. 

 

Advance Preemption Warning Time (APWT): 

Minimum amount of time the TPS algorithm shall start prior to the arrival of a train at a 

highway-railroad grade crossing. 

 

Onset of Preemption: 

The time at which the traffic signal controller receives the preemption signal from the 

CWT detector.  

 

Blocking Time: 

Time period that a train is blocking the HRGC, that is, from the time when a train arrives 

at the crossing to the time when the train leaves the crossing. 

 

Buffer Time (β): 

Buffer time added for safety purposes into the minimum warning time. 
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Clear Storage Distance: 

The distance available for vehicle storage measured 2 m from the rail nearest the 

intersection to the intersection STOP BAR or the normal stopping point on the highway. 

 

Comprehensive Cost:  

A method of measuring motor vehicle accident costs that includes the effects of injury 

on people’s entire lives. This is the most useful measure of accident cost since it includes 

all cost components and places a dollar value on each one. Comprehensive life values 

are estimated by examining risk reduction costs from which the market value of safety is 

inferred. The 11 components of the comprehensive cost are: property damage, lost 

earnings, lost household production, medical costs, emergency services, travel delay, 

vocational rehabilitation, workplace costs, administrative, legal, and pain and lost quality 

of life. 

 

Delay Comparison Period: 

Simulation time period to evaluate the difference in average delay. It begins at 600 

seconds and ends at 1320 seconds.  This period included six cycles where at least one of 

these cycles occurs after the preemption ends.   

 

Detector Length 1: 

The distance from the HRGC to the preemption warning time detector.  It emulates the 

CWT detector in the real world. 

 

Detector Length 2: 

The distance from the HRGC to the Doppler Radar detector in simulation.  It emulates 

the Doppler detector in the real world. 

 

Dwell Phases: 

Phases served during the preemption mode. 
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Extended Time (Bi):  

Time period added into the minimum time necessary to service the next phase (Mj) to 

end a vehicle phase i that has a call.  That is, when there is a vehicle call for phase i, 

phase i is provided until the remaining time available (X) is equal to the minimum time 

necessary to service the next phase (Mj) plus the extended time (Bi), instead of the 

minimum time necessary to service the next phase (Mj).     

 

External Start: 

An input, which when energized, normally causes the signal controller to revert to its 

programmed initialization interval. 

 

Flashing Don’t Walk (FDW): 

Pedestrian clearance interval.  

 

MAPE: 

Mean absolute percentage error; 

 

n
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where; 

 Pi         = Predicted arrival time of ith train (s); 

 Ri         = Real arrival time of ith train (s); and 

 n       = Number of data sets (trains). 

 

MIN GRN/WLK: 

Minimum green time for any vehicle phase and any pedestrian phase at the onset of the 

preemption. This time must have been displayed prior to its termination for a transition 

to the preemption. 
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Minimum Track Clearance Distance (δ): 

The length along a highway at one or more railroad tracks, measured either from the 

railroad stopline, warning device, or 4 m perpendicular to the track centerline, to 2 m 

beyond the track(s), measured perpendicular to the far rail, along the centerline or right 

edge line of the highway, as appropriate, to obtain the longest distance. 

 

Minimum Warning Time (W): 

The least amount of time active warning devices shall operate prior to the arrival of a 

train at a highway-railroad grade crossing. 

 

Non-Dwell Phases: 

Phases not served during the preemption mode. 

 

Pedestrian Phase: 

A traffic phase allocated to pedestrian traffic.  The traffic signal may provide a right-of-

way pedestrian indication either concurrently with one or more vehicular phases, or to 

the exclusion of all vehicular phases. 

 

Preemption: 

The transfer of normal operation of traffic signal to a special control mode. 

 

Preemption Mode: 

The signal mode in the period that the signal controller is preempted. 

 

Preempt Trap (Σ):  

Condition where the track clearance green ends before the warning lights start to flash. 

  

 

 



 210

Preemption Warning Time (PWT): 

The actual amount of time that expires between the initiation of the preemption sequence 

for the highway traffic signals and the arrival of the train at the highway-rail grade 

crossing. 

 

Remaining Time Available (X = T − τ):  

Effectively, a “countdown” or updating until the track clearance time is initiated. 

 

Return Pedestrian Clearance (Ω): 

The time that will be provided to clear a terminating Walk during the transition to 

normal operation. 

 

Right-of-Way Transfer Time (K):   

Required wait time prior to the track clearance phase after the traffic signal controller 

receives the preempt notification. 

 

Selective Pedestrian Clearance (σ): 

The time that will be provided to clear a terminating Walk during the transition to Track 

Green. 

 

Separation Time (Ω): 

The time difference between the time that the minimum track clearance distance is clear 

of vehicles and the time when the train arrives. 

 

Start-up Flash: 

A flashing operation that may be programmed to occur prior to initialization, after 

electric power is applied to the signal controller. 

 

 



 211

Time to Train Arrival (T):   

The time the train is predicted to arrive at the crossing.  it is calculated using input from 

the train detection equipment.  It is “counted down” and/or updated as the train 

approaches the crossing. 

 

Track Clearance Time (τ ):  

The time at which the track clearance phase should be initiated. 

 

TPS0 :  

Normal preemption algorithm. 

 

TPS1:  

Current TPS algorithm. 

 

TPS2:  

TPS algorithm developed in this dissertation.  It uses one time predicted time as input. 
 
TPS3:  

TPS2 algorithm developed in this dissertation  It used updated predicted arrival time and 

prediction intervals as input. 

 

TPS Duration: 

The time period that the TPS algorithm is active.  It is equal to the difference between 

the advance preemption warning time and the preemption warning time for all TPS 

algorithms. 

 

Value of Time: 

The dollar value placed on an additional hour spent in traveling (units are dollars per 

hour). 
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Yellow + All-Red (Yi+Ri): 

Required yellow change interval time and the required red clearance interval time for 

phase i. 
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NOTATIONS 

 

A      = Actual arrival time (s);  

Acc     = Acceleration/deceleration rate of train (km/h/s);  

a          = Acceleration rate for the design vehicle in first gear (m/s2); 

AAEk= Average absolute error in testing set at time index k (k = 10, 20, …. 240); 

ASgi
   = Average train speed of gth group and ith speed observation (km/h); 

Bi        = Extended Time(s); 

C      = Cycle length (s);  

c       = Time in the cycle (s); 

D     = Distance from the detector at FM 2818 to the detector at George Bush (m); 

E      = Total within group error sum of squares; 

Ek       = Error sum of squares for group k; 

F      = Length of pedestrian clearance phase (s); 

Gj       = Minimum green time of phase i+1 (s);  

Gk    =  Minimum green time of phase k in the preemption mode (s);  

g      = Green Split (s); 

H     = Time in detection (s); 

K      = Right-of-way transfer time (s); 

kj         = Jam density (veh/km); 

L      = Lower bound of the prediction error interval; 

Mj       =  Minimum time necessary to service the next phase (phase i+1);  

Mk      =  Minimum time needed to service the next two phases when the next phase is 

the track clearance phase; 

m     = Average number of arrivals in a given time period (= cycle length) (veh); 

km    = Number of data sets (speed profile) in kth group (k = 1,..,H) ;  

Ni        = Number of phases of parallel road (phases 1,2,5,and 6);  

Nj     =  Number of phases of perpendicular road (phases 3 and 4); 

Nk       = Number of trains in testing set i at time index k (k = 10, 20, …. 240);   
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NG    = Number of groups at current iteration of Ward algorithm; 

ng     = Number of data sets (trains) in group g;  

n      = Number of elements in data set (10);  

Oki      = Observed arrival time for train i at time index k (k = 10, 20, …. 240);   

P         =  Predicted train arrival time (s); 

Pk       = Predicted arrival time k seconds after detection (s); 

Pki      = Predicted arrival time for train i at time index k  (k = 10, 20, …. 240);   

PWT  = Preemption warning time (s); 

Pr     = Probability of one or more than one pedestrian arriving during the time 

period at every cycle; 

Q     = Length of queue to be cleared as measured from the intersection stopline to 

the point where a vehicle needing to be cleared may be stopped (m); 

qs        = Saturation flow rate (veh/h);  

Ri     = All-Red interval of current phase i (s); 

Rj     = All-Red interval of phase i+1 (s); 

Rk     =  All-Red interval of phase k (s); 

Si      = Start time of phase i in the cycle (s) (i = 1,..,Number of phases in the cycle); 

iS     = Average train speed at i seconds after the detection (km/h) (i = 2,3,…240); 

sgij
      = Speed of ith observation of jth train of group g (km/h); 

T      = Time to Train Arrival (s); 
t0      = Time necessary to discharge vehicles queued in a cycle (s); 

t1      = Time interval until the last vehicle in the blocking queue departs (s); 

ti          = Length of the current phase; 

U     = Upper bound of the prediction error interval; 

uw     = Backward shockwave speed (km/h); 

V      = Train speed (m/s); 

Vi     = Observation train speed at i seconds after the detection (m/s);  

Vk       =  Train speed k seconds after detection (m/s); 

W     = Minimum warning time provided to crossing users (s); 
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W*   = Total warning time (s); 

X      = Remaining time available ( = T – τ) (s); 
x       = Expected number of arrivals in a given time period (= cycle length) (veh);  

ikx    = Sample mean of the mk observations of element i in the kth group; 

ijkx   = Value (speed) of ith element of jth data set (speed profile) in the kth group (i 

= 1,..,n; j = 1,..,mk; k = 1,..,H); 

Y      = Estimated preemption warning time; 

Yi     = Yellow interval of current phase i (s);  

Yj     =  Yellow interval of phase i+1 (s); 

Yk     = Yellow interval of phase k (s);  

Z      = Last predicted train arrival time (s);  

z       = Time since last prediction (s); 

β      = Buffer time added for safety purposes into the minimum warning time (s); 

Γ        = Clearance distance on either side of the tracks (m); 

γ       = Minimum green time for any vehicle phase and any pedestrian phase at the 

onset of the preemption (s); 

∆      = Detector location from the crossing (m); 

δ      = Minimum track clearance distance (m); 

ε          =  Prediction error (s); 

ς       =  Length of the design vehicle (m); 

ηk       =  Estimated distance between crossing and head of train at the crossing k 

seconds after detection (m);  

Θ     = Width of the crossing (m);  

θ      = Maximum distance of queue (m); 

ι       = Amount of time that is operated ineffectively (s); 

λ      = Arrival rate (veh/h); 

µ      = Discharge rate (veh/h); 

ν        = Maximum speed of the design vehicle in first gear (m/s); 

Ξ      = End times of the track clearance green (s); 
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ξ      = Estimated train length (m);  

Π        =  Modified prediction error (s);  

π      =  Modified predicted arrival time (s);  

ρ      = Maximum number of queue (veh); 

Σ      = Preempt trap interval (s); 

σ      = Selective Pedestrian Clearance (s); 

τ       = Track clearance time (s); 

Φ     = Fastest allowable train speed for the track (m/s);  

φ      = Adjustment time (s);  

χ      = Clearance time for each additional track clearance distance (s);  

Ψ      = Start time of warning lights (s);  

ψ      = Estimated distance from the head of train to the crossing (m);  

Ω     =  Separation time (s); and 

ω        = Distance traveled while accelerating to maximum speed in first gear (m). 
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APPENDIX A 

 

AAE AND OPTIMAL NUMBER OF ITERATIONS FOR EACH ANN 

STRUCTURE AND EACH GROUP IN 2, 3, AND 4 GROUPINGS 
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TABLE A-1 AAE and Optimal Number of Iterations for Each ANN Structure and 
Each Group in 2 Grouping 

10-1-1 10-5-1 10-10-1 
Model Time in 

Detection* Group 1 Group 2 Average Group 1 Group 2 Average Group 1 Group 2 Average

1 10 25.2 (11) 12.3 (3) 20.6 24.3 (13) 12.2 (11) 20 24.6 (14) 12.3 (10) 20.2 
2 20 22.7 (9) 11.8 (10) 18.8 22 (8) 11.8 (19) 18.4 22.1 (21) 11.9 (4) 18.4 
3 30 22.1 (6) 11.3 (10) 18 21.6 (8) 10.9 (10) 17.5 22.5 (8) 11 (10) 18.1 
4 40 21.9 (11) 10.1 (3) 17.5 21.3 (5) 10.1 (9) 17.1 20.5 (9) 10.8 (7) 17 
5 50 21.4 (5) 9.7 (10) 17.2 20.8 (10) 9 (8) 16.5 20.7 (14) 10.8 (5) 17.1 
6 60 21.9 (9) 7.8 (10) 17 20.8 (13) 7.2 (10) 16.1 21.3 (10) 7 (3) 16.3 
7 70 20 (11) 8.5 (13) 16.3 19.8 (13) 8.7 (6) 16.2 20.1 (12) 8.4 (4) 16.3 
8 80 22.1 (10) 8.7 (10) 15.7 21.9 (8) 8 (8) 15.3 22.5 (7) 8.1 (9) 15.6 
9 90 21.2 (10) 7.6 (9) 14.9 21.4 (8) 6.7 (12) 14.6 21.6 (10) 7 (6) 14.8 

10 100 9 (10) 21.5 (9) 13.9 7.2 (65) 22.1 (10) 13.1 8 (10) 24 (15) 14.3 
11 110 14.3 (7) 5.9 (10) 10.7 14.3 (14) 5.6 (13) 10.5 14.7 (8) 5.7 (9) 10.8 
12 120 15.7 (7) 6.1 (13) 10.7 19 (10) 5.7 (16) 12.1 17.3 (9) 6 (11) 11.5 
13 130 5.5 (10) 14.5 (4) 10.7 4.5 (6) 15.6 (11) 10.9 4.3 (40) 15 (15) 10.5 
14 140 4.9 (6) 15.5 (7) 11.2 4.4 (10) 16.1 (7) 11.4 4.7 (12) 16.7 (7) 11.9 
15 150 4.1 (4) 14.6 (10) 10.6 2.8 (4) 16.2 (10) 11.1 3.7 (9) 16.3 (9) 11.5 
16 160 3.9 (11) 14.7 (7) 10.8 3.5 (10) 15.4 (5) 11.1 3.8 (10) 15.4 (11) 11.2 
17 170 14.4 (10) 4.4 (10) 11 12.7 (10) 3.3 (6) 9.6 12.5 (5) 3.2 (6) 9.4 
18 180 14.7 (10) 3.7 (7) 11.1 12 (13) 3.8 (10) 9.3 11.9 (11) 4.5 (6) 9.4 
19 190 8.4 (14) 23.3 (1) 13 4.6 (8) 18.9 (6) 9 5.9 (17) 10.8 (29) 7.4 
20 200 11.2 (11) 25.7 (11) 16 4.1 (13) 25.2 (10) 11.1 6.3 (10) 33.1 (4) 15.2 
21 210 3.6 (10) 21.2 (11) 9.1 2.6 (9) 15.5 (13) 6.6 3 (12) 17.6 (6) 7.6 
22 220 2.5 (10) 43.5 (4) 13.7 2.9 (7) 32.5 (1) 11 2.7 (10) 22.5 (7) 8.1 
23 230 8.2 (9) 29.9 (9) 19 5 (11) 26.2 (4) 15.6 7 (3) 26.1 (6) 16.6 
24 240 1.1 (10) 36.7 (11) 18.9 10.3 (4) 27.7 (14) 19 4.7 (4) 11.1 (3) 7.9 
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TABLE A-1 Continued 

10-20-1 10-30-1 Model Time in 
Detection* Group 1 Group 2 Average Group 1 Group 2 Average

1 10 24.8 (8) 12.4 (4) 20.3 24.3 (5) 13.4 (2) 20.4 
2 20 22 (7) 11.8 (13) 18.4 22 (8) 12.5 (7) 18.6 
3 30 22.9 (7) 10.7 (4) 18.2 23.5 (7) 12.8 (4) 19.4 
4 40 20.9 (10) 11.4 (11) 17.4 20.9 (6) 12.9 (5) 18 
5 50 21.7 (6) 12.1 (2) 18.2 21.4 (8) 14.7 (3) 19 
6 60 20.7 (17) 7.5 (4) 16.1 21.4 (6) 10.1 (4) 17.4 
7 70 20.4 (13) 10.9 (4) 17.3 20.7 (11) 11.1 (7) 17.6 
8 80 22.4 (7) 8.8 (10) 15.9 23.1 (4) 8.9 (6) 16.3 
9 90 21.2 (17) 7.3 (7) 14.7 19.9 (17) 7 (4) 13.9 

10 100 9.3 (7) 24.5 (8) 15.3 9.9 (7) 26.6 (3) 16.5 
11 110 15.4 (7) 6.8 (7) 11.7 16.9 (9) 6.2 (5) 12.3 
12 120 20 (4) 5.9 (8) 12.7 20.7 (21) 6.6 (12) 13.4 
13 130 4.9 (4) 17.3 (6) 12 4.9 (14) 17.7 (19) 12.3 
14 140 4.5 (11) 17 (3) 11.9 4.8 (4) 21.9 (12) 15 
15 150 3.6 (10) 17.9 (6) 12.5 4 (4) 17.1 (8) 12.2 
16 160 4.1 (6) 16.2 (4) 11.8 4.3 (6) 18.9 (4) 13.7 
17 170 14 5) 4.3 (14) 10.8 16.2 (6) 4.6 (6) 12.4 
18 180 13.4 (7) 6.9 (3) 11.2 14.1 (5) 9.1 (3) 12.4 
19 190 5.4 (8) 29.3 (4) 12.7 10.2 (10) 61.5 (2) 26 
20 200 7.7 (6) 27.6 (3) 14.3 6.6 (5) 83.5 (4) 32.2 
21 210 3.5 (9) 34.7 (5) 13.3 5.7 (8) 77.8 (2) 28.2 
22 220 2.5 (15) 36.3 (4) 11.7 8.8 (5) 37.9 (5) 16.7 
23 230 22.1 (4) 40.7 (3) 31.4 35.1 (5) 64.9 (4) 50 
24 240 19.2 (3) 13.8 (4) 16.5 18.8 (2) 29.8 (3) 24.3 

( ):  Optimal number of iterations 
*: Time since train was first detected  
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TABLE A-2 AAE and Optimal Number of Iterations for Each ANN Structure and 
Each Group in 3 Grouping 

10-1-1 10-5-1 Model Time in 
Detection* Group 1 Group 2 Group 3 Average Group 1 Group 2 Group 3 Average

1 10 36.5 (13) 15.4 (10) 12 (11) 20.0 35 (4) 15.1 (5) 11.3 (7) 19.3 
2 20 32.8 (6) 14.9 (9) 10.5 (9) 18.7 30.4 (9) 14.1 (20) 9.8 (12) 17.5 
3 30 19.8 (13) 31 (8) 10.3 (10) 17.9 18.9 (8) 30.9 (6) 10 (11) 17.3 
4 40 29.9 (14) 13 (11) 8.8 (3) 17.2 29.6 (13) 12.4 (11) 9 (10) 16.8 
5 50 28.9 (5) 14.7 (8) 8 (5) 16.6 26.8 (10) 14.7 (11) 8.2 (10) 16.1 
6 60 28.7 (10) 15 (10) 7.6 (10) 16.6 27.2 (13) 15.2 (8) 6.8 (8) 16.1 
7 70 25.1 (7) 15 (10) 8.3 (21) 16.4 24.2 (11) 14.9 (8) 7.8 (4) 15.9 
8 80 19.4 (7) 20.3 (7) 8.1 (6) 15.7 20.2 (9) 19.3 (15) 6.9 (10) 15.1 
9 90 17.4 (4) 23.6 (8) 7.3 (10) 15.4 17.9 (11) 19.6 (10) 6.6 (10) 14.4 
10 100 9.9 (100) 5.5 (10) 23.9 (10) 13.4 8.6 (94) 5.1 (11) 24.9 (6) 13.0 
11 110 9.7 (11) 20.7 (7) 5.1 (5) 10.8 9.2 (14) 20.1 (5) 4.8 (5) 10.3 
12 120 6.6 (9) 5.2 (10) 16.7 (7) 10.7 6.4 (9) 3.8 (11) 17.7 (11) 10.9 
13 130 11.1 (100) 34 (6) 5.1 (7) 11.4 10.9 (11) 29.5 (7) 5 (11) 10.8 
14 140 15.5 (100) 30.3 (9) 5.2 (5) 13.4 13.4 (9) 22.2 (13) 5 (10) 11.3 
15 150 15.2 (9) 30.7 (3) 4 (4) 13.1 12.5 (26) 27.9 (7) 3.4 (10) 11.2 
16 160 11.5 (10) 26.9 (3) 5.1 (5) 11.8 10.3 (10) 32.1 (2) 3.3 (10) 11.4 
17 170 11.7 (10) 26.5 (33) 4 (9) 11.4 7.9 (11) 27.2 (9) 2.7 (8) 9.1 
18 180 8.6 (13) 34.8 (10) 4 (10) 12.2 4.5 (8) 33.8 (4) 2.9 (9) 9.5 
19 190 8.9 (7) 1 (11) 25.3 (4) 12.1 6.9 (10) 1.4 (10) 23.8 (15) 10.6 
20 200 12.6 (10) 1.5 (10) 29.1 (8) 15.5 9.1 (13) 1.2 (10) 26.9 (4) 12.6 
21 210 2.2 (10) 4 (2) 23.8 (41) 7.7 2.6 (12) 0.4 (3) 28.1 (11) 8.9 
22 220 3.8 (13) 0.6 (11) 53.5 (9) 12.5 2.2 (12) 17.3 (2) 19.6 (11) 6.8 
23 230 5.3 (10) 10.1 (4) 34 (10) 16.7 1.4 (5) 1.4 (3) 35.1 (17) 14.0 
24 240 8 (10) 0.1 (4) 53.5 (16) 21.9 2.6 (4) 12.6 (2) 23.9 (2) 11.4 
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TABLE A-2 Continued 

10-10-1 10-20-1 Model Time in 
Detection* Group 1 Group 2 Group 3 Average Group 1 Group 2 Group 3 Average

1 10 34.4 (8) 16.1 (8) 11.8 (10) 19.7 36.6 (10) 16.1 (41) 11.8 (6) 20.3 
2 20 30.6 (7) 14.6 (4) 9.8 (13) 17.8 30.8 (10) 16.1 (5) 9.9 (5) 18.5 
3 30 19.2 (9) 28.9 (12) 9.6 (13) 17.1 20.3 (4) 38 (11) 10.1 (4) 18.9 
4 40 28.4 (9) 12.5 (9) 9 (8) 16.5 29.2 (8) 12.3 (22) 8.9 (9) 16.6 
5 50 25.7 (12) 14.9 (6) 9.5 (10) 16.2 28.9 (9) 16.5 (6) 9.2 (4) 17.7 
6 60 25.7 (9) 16.4 (16) 7.2 (13) 16.3 27.4 (10) 16.9 (5) 8.1 (12) 17.3 
7 70 23.3 (14) 15.1 (8) 8.1 (4) 15.8 24.9 (5) 15.7 (4) 10 (11) 17.1 
8 80 19.9 (13) 20.4 (13) 6.7 (12) 15.3 19.8 (15) 21.2 (5) 7 (16) 15.7 
9 90 18 (10) 20.6 (9) 7.1 (7) 14.8 19 (10) 23 (10) 7.6 (9) 16.0 
10 100 9.8 (5) 5.9 (7) 23.7 (10) 13.4 10.6 (4) 6.6 (10) 29.2 (9) 15.6 
11 110 9.5 (22) 22.2 (9) 4.9 (16) 11.0 10.2 (9) 19.8 (6) 5.6 (12) 10.9 
12 120 5.6 (12) 4.2 (7) 18 (12) 10.7 6.4 (6) 4.3 (7) 22.1 (4) 12.9 
13 130 11.6 (12) 24.1 (3) 4.8 (9) 10.4 12.8 (11) 42.9 (3) 5 (18) 13.3 
14 140 14.9 (4) 41 (9) 4.7 (22) 14.2 14.2 (6) 35 (5) 5 (11) 13.2 
15 150 11.1 (12) 47.5 (3) 3 (7) 13.0 13.5 (9) 29.4 (5) 3.6 (9) 11.9 
16 160 11.4 (2) 47.8 (4) 3.1 (6) 14.2 12.1 (5) 37.4 (5) 3.6 (9) 13.2 
17 170 9.6 (10) 26.8 (5) 3.2 (7) 10.1 10.2 (9) 26.4 (2) 4.3 (12) 10.7 
18 180 6.2 (12) 34.1 (3) 3.4 (8) 10.6 8.2 (10) 36.9 (2) 5.5 (7) 12.7 
19 190 5.8 (23) 4.1 (3) 27.7 (4) 11.4 5.8 (10) 22.6 (6) 24.7 (5) 13.4 
20 200 8.9 (13) 2.7 (2) 18.3 (2) 10.5 10.3 (10) 16.1 (4) 38.9 (4) 17.7 
21 210 1.9 (9) 9.7 (2) 30.1 (2) 9.5 3.9 (5) 5 (2) 27.2 (3) 9.8 
22 220 3.2 (11) 19.7 (1) 25.8 (2) 8.8 5.3 (5) 0.3 (4) 38.8 (4) 11.0 
23 230 6.4 (4) 1.6 (1) 33.6 (6) 16.0 39.2 (5) 16.3 (2) 41.2 (2) 37.1 
24 240 13.2 (3) 2.3 (1) 36.4 (1) 19.1 77.6 (2) 16 (3) 20.2 (4) 48.2 
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TABLE A-2 Continued 

10-30-1 Model Time in 
Detection* Group 1 Group 2 Group 3 Average

1 10 38.1 (7) 16.4 (6) 11.7 (9) 20.7 
2 20 31 (5) 17.3 (5) 10.7 (5) 19.3 
3 30 21.4 (7) 46.1 (5) 11.9 (11) 21.1 
4 40 30.5 (5) 13.3 (10) 11.3 (4) 18.1 
5 50 27.1 (4) 18.2 (7) 11.2 (4) 18.6 
6 60 29.1 (4) 18.9 (9) 8.7 (6) 18.8 
7 70 26.1 (4) 16 (7) 10.8 (6) 17.7 
8 80 22.9 (9) 19.8 (10) 7.2 (9) 16.1 
9 90 20 (9) 21.3 (3) 8.2 (8) 16.2 
10 100 10.3 (9) 8.6 (4) 32.9 (13) 17.1 
11 110 12.2 (5) 21.8 (5) 6.7 (8) 12.6 
12 120 7.8 (8) 7.3 (6) 25.7 (7) 15.5 
13 130 13.8 (7) 76.3 (5) 5.2 (18) 17.6 
14 140 17.3 (7) 47.7 (4) 5.1 (7) 16.4 
15 150 13.2 (6) 45.5 (2) 3.6 (22) 14.0 
16 160 17.1 (4) 46.4 (2) 4.2 (10) 17.4 
17 170 14.5 (4) 34.4 (4) 5.4 (16) 14.5 
18 180 12.5 (3) 64.4 (3) 4.5 (3) 20.0 
19 190 11.8 (8) 34.7 (5) 34 (2) 21.3 
20 200 14.7 (4) 26.4 (4) 47.3 (5) 23.6 
21 210 8 (5) 3.6 (4) 57.2 (3) 20.1 
22 220 6 (3) 9.2 (1) 18.5 (3) 8.6 
23 230 87.9 (2) 52.7 (3) 35.3 (2) 63.8 
24 240 100.6 (2) 18.8 (1) 12 (1) 57.4 

( ):  Optimal number of iterations 
*: Time since train was first detected  
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TABLE A-3 AAE and Optimal Number of Iterations for Each ANN Structure and 
Each Group in 4 Grouping 

10-1-1 10-5-1 
Model 

Time 
in 

Detec
tion* 

Group 1 Group 2 Group 3 Group 4 Ave. Group 1 Group 2 Group 3 Group 4 Ave.

1 10 29.6 (10) 42.6 (10) 15.6 (12) 11.8 (3) 19.5 27.4 (15) 46.8 (10) 15.1 (10) 11.4 (8) 19 
2 20 25.9 (15) 43.1 (7) 15 (9) 10.4 (9) 18.5 25.3 (25) 40.8 (8) 14.4 (10) 9.8 (12) 17.8
3 30 24.8 (9) 14.5 (11) 31.4 (8) 9.1 (10) 17.7 23.7 (8) 13.2 (5) 32.3 (10) 8.8 (10) 16.9

4 40 26.9 (10) 30.1 (7) 13.1 
(100) 9.2 (8) 17 26.2 (8) 37 (9) 11.7 (8) 9.4 (10) 16.9

5 50 9.4 (11) 6 (10) 28.6 (4) 15.2 (10) 16.5 10.9 (11) 4.9 (9) 27.5 (41) 14.9 (15) 16.4
6 60 7.5 (8) 5.6 (7) 28.7 (10) 16.7 (10) 16.7 7.5 (4) 6 (10) 27 (8) 16.2 (8) 16.1
7 70 22.7 (10) 29.9 (8) 14.9 (4) 8.8 (11) 16.5 21.2 (5) 27.1 (8) 15.4 (11) 8.4 (5) 16 
8 80 9.2 (10) 6.8 (34) 19.2 (7) 23.5 (10) 15.6 8.1 (9) 4.5 (10) 21.9 (9) 22.1 (12) 15.3
9 90 8.4 (10) 4.9 (10) 18.7 (5) 22 (11) 14.6 7.5 (10) 3.5 (4) 18.9 (19) 21.8 (6) 14.2

10 100 20.1 (10) 7.1 (10) 4.7 (9) 20 (9) 14.1 18.8 (7) 5.9 (7) 3.5 (16) 18.4 (11) 12.8
11 110 5.2 (7) 4.7 (10) 10.5 (11) 21.1 (10) 10.8 5.2 (8) 4.1 (8) 11 (10) 19.7 (4) 10.7
12 120 15.7 (68) 26.2 (10) 6.7 (6) 4.9 (11) 11.7 11.8 (13) 22.9 (15) 6.4 (6) 4.2 (7) 9.6 

13 130 6.5 (6) 2.6 (5) 11.7 
(100) 36.2 (11) 11.8 5.6 (16) 2.4 (5) 11.2 (12) 38.8 (10) 11.6

14 140 5.6 (4) 2.1 (9) 15.6 (10) 31.8 (10) 13.2 5 (14) 1.7 (11) 14.8 (10) 27.4 (3) 12.1
15 150 4.9 (9) 3.8 (10) 11.8 (11) 32.8 (11) 11.9 3.8 (10) 2.6 (13) 9.4 (12) 25.5 (5) 9.4 
16 160 5 (7) 3.9 (7) 13.5 (9) 31.7 (7) 13.5 2.9 (15) 2.3 (5) 10.2 (9) 30.6 (11) 11 
17 170 5.7 (10) 0 (8) 10.2 (9) 26.5 (85) 11 2.8 (8) 0.2 (9) 7.5 (11) 22.8 (1) 8.2 
18 180 9.3 (100) 7.4 (9) 31.9 (27) 3.3 (14) 10.8 6.2 (10) 3.7 (5) 30.4 (10) 3.4 (12) 8.7 
19 190 2.4 (5) 11.3 (14) 0.8 (9) 25.3 (14) 11.3 3.1 (5) 10.2 (8) 1.4 (8) 21 (14) 10 
20 200 3.3 (8) 16.4 (7) 0.9 (4) 30.1 (3) 15.1 4 (10) 6.8 (10) 1.5 (5) 30.8 (18) 10.3
21 210 2.1 (10) 7.1 (11) 23.2 (14) 29.4 (14) 10.1 1.8 (5) 8.1 (3) 5.2 (4) 23.5 (3) 8.1 
22 220 4.2 (12) 6.7 (6) 13.7 (6) 53.5 (10) 14.5 2.2 (9) 1.7 (2) 1.1 (5) 50.9 (4) 10.9
23 230 4.8 (10) 31 (4) 4.2 (9) 6.8 (2) 11.4 0.4 (5) 12.7 (1) 0.3 (12) 10.8 (1) 4.7 
24 240 0.4 (10) 26.1 (4) 0.8 (10) 32.1 (2) 14.4 0.1 (7) 60.5 (2) 2.7 (9) 2.8 (2) 21.6
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TABLE A-3 Continued 

10-10-1 10-20-1 
Model 

Time 
in 

Detec
tion* 

Group 1 Group 2 Group 3 Group 4 Ave. Group 1 Group 2 Group 3 Group 4 Ave.

1 10 28.2 (3) 48.6 (25) 15.3 (5) 11.3 (26) 19.3 27.9 (4) 58 (4) 15.4 (5) 10.8 (4) 19.8
2 20 25.4 (3) 37.7 (16) 14.5 (4) 9.8 (10) 17.6 26.1 (7) 50.6 (3) 16.3 (6) 10.1 (6) 19.6
3 30 24.9 (4) 13.3 (5) 31.8 (5) 8.9 (7) 17.3 25.6 (10) 15.1 (10) 39.2 (6) 8.9 (8) 18.7
4 40 25.5 (5) 70.5 (8) 12.6 (8) 9.2 (6) 19.5 25.1 (5) 104 (6) 13 (7) 11 (14) 22.7
5 50 14.9 (3) 6.2 (6) 28.1 (17) 15.3 (8) 17.8 14.3 (6) 7.1 (11) 29.4 (5) 15.4 (7) 18.2
6 60 9.7 (18) 4 (13) 26.4 (9) 16.2 (5) 16.3 10.5 (5) 5.8 (6) 27.9 (9) 18 (7) 17.8
7 70 21.8 (8) 37.5 (7) 15.1 (11) 8.3 (6) 16.8 22.2 (7) 65.6 (4) 15.5 (3) 8.7 (8) 19.4
8 80 8.3 (10) 6 (3) 22 (6) 23 (39) 15.9 7.6 (8) 8 (4) 21 (7) 23.6 (11) 15.8
9 90 7.4 (9) 7.4 (6) 19.1 (10) 20.1 (13) 14.4 8.2 (10) 8.5 (8) 20.6 (6) 27.1 (14) 16.9

10 100 19.6 (9) 6.5 (9) 3.2 (9) 17.9 (6) 13 19.9 (6) 7.7 (8) 4.9 (5) 22.3 (5) 14.8
11 110 5.6 (11) 4.4 (10) 10.5 (10) 20.2 (9) 10.7 5.8 (5) 6.2 (9) 12.4 (12) 24.6 (11) 12.8
12 120 15.3 (9) 30.8 (5) 6.9 (10) 4.1 (6) 11.9 16.7 (7) 39.7 (2) 5.8 (6) 5.4 (12) 13.2
13 130 5 (12) 1.9 (12) 13 (22) 43.7 (2) 12.8 5.6 (17) 2.6 (9) 11.9 (4) 45 (3) 12.7
14 140 4.6 (12) 2.8 (9) 16.2 (9) 32.7 (7) 13.4 4.8 (15) 2.8 (5) 15.8 (15) 35.1 (2) 13.5
15 150 3.6 (9) 2.1 (9) 9.4 (4) 43.1 (9) 11.7 4.9 (7) 2.6 (10) 16.6 (4) 49.2 (3) 16.4
16 160 4 (14) 1.8 (8) 12.1 (12) 29.9 (9) 12.1 5.5 (10) 3.2 (6) 12.2 (4) 28.4 (3) 12.4
17 170 3.9 (8) 6.5 (3) 9.2 (14) 29.9 (5) 10.6 3.9 (12) 0.8 (2) 9.8 (7) 35.4 (2) 11.6
18 180 8.8 (8) 6.5 (4) 37 (2) 3.2 (8) 11.1 10.8 (4) 48 (5) 44.1 (2) 5.2 (6) 21.1
19 190 4.1 (6) 12.7 (10) 2.3 (10) 17.2 (3) 10.5 15.5 (4) 16.6 (20) 20.6 (2) 40.2 (3) 22.3
20 200 3.4 (4) 9.8 (10) 2.8 (9) 24.4 (7) 10.7 34.3 (3) 12.1 (4) 14.6 (2) 20.6 (4) 18.2
21 210 1.8 (11) 25.1 (4) 3.6 (2) 21.9 (3) 13 2.5 (6) 62.2 (4) 9 (2) 34.7 (5) 27.6
22 220 3.3 (9) 28.3 (2) 5.4 (1) 15.4 (2) 10.3 6 (5) 75.3 (1) 3.3 (1) 11 (2) 19.3
23 230 4.6 (3) 4.9 (1) 5.2 (7) 0.8 (4) 4.4 15.2 (2) 121.2 (2) 44.8 (2) 6.7 (3) 51.7
24 240 8.7 (5) 68.3 (1) 9.9 (5) 0.2 (4) 27.5 6.9 (2) 40.5 (2) 39.6 (3) 44.6 (1) 35.3
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TABLE A-3 Continued 

10-30-1 Model Time in 
Detection* Group 1 Group 2 Group 3 Group 4 Average

1 10 30.7 (5) 59.1 (3) 16.4 (4) 12.4 (7) 21.4 
2 20 25.9 (3) 79.8 (12) 16.5 (6) 10.6 (5) 22 
3 30 25.2 (6) 15.6 (5) 48 (5) 9 (4) 19.6 
4 40 25.3 (10) 61.7 (3) 14 (10) 12 (5) 20.1 
5 50 18.8 (6) 14.5 (6) 29.6 (5) 16.3 (5) 20.4 
6 60 12.3 (6) 8.4 (4) 30 (6) 18.5 (7) 19.2 
7 70 26.1 (7) 73.1 (3) 16.1 (8) 8.7 (4) 21.2 
8 80 9.1 (7) 13.3 (5) 20.2 (3) 24 (3) 16.8 
9 90 7.6 (9) 17.1 (20) 19.6 (15) 29.3 (25) 18.1 

10 100 20.1 (18) 6.3 (25) 7.5 (4) 19.8 (4) 14.3 
11 110 7.5 (7) 6.5 (4) 10.8 (6) 28.1 (12) 13.5 
12 120 16.4 (3) 49.7 (3) 7 (7) 6.7 (7) 14.8 
13 130 6.6 (4) 6.7 (5) 13 (3) 76.2 (2) 17.5 
14 140 5 (7) 16 (4) 17.4 (5) 78.7 (2) 20.5 
15 150 4.7 (6) 4.2 (6) 15 (9) 57.7 (3) 16.9 
16 160 6.2 (7) 8.8 (7) 16.3 (5) 52 (2) 18.9 
17 170 7 (6) 6.6 (5) 14.6 (16) 49.4 (3) 17.2 
18 180 14.2 (6) 80.3 (5) 29.2 (1) 11.7 (6) 27.8 
19 190 53.9 (5) 14.8 (3) 27.8 (2) 54 (1) 34.4 
20 200 12.2 (2) 29.5 (4) 35.7 (4) 36.1 (2) 28.1 
21 210 15.2 (7) 98.2 (3) 7.5 (2) 5.5 (2) 38.8 
22 220 23.6 (4) 33.5 (1) 9.2 (3) 20.2 (3) 23.5 
23 230 20.3 (4) 111.6 (1) 56.5 (4) 52.4 (1) 60.7 
24 240 12.3 (2) 67 (2) 41.2 (1) 28 (3) 42.8 

( ):  Optimal number of iterations 
*: Time since train was first detected  
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FIGURE B-1  Flow Chart of the Current TPS Algorithm 
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FIGURE B-2  Flow Chart of the TPS2 Algorithm 
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Phase 3*:  Track clearance phase 
Phase 4*:  Opposite phase of track clearance phase for 4-leg intersection and blocked phase during 

preemption phase for 3-leg intersection 

FIGURE B-2 Continued 
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FIGURE B-3   Flow Chart of the TPS3 Algorithm 
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Phase 3*:  Track clearance phase 
Phase 4*:  Opposite phase of track clearance phase for 4-leg intersection and blocked phase during 

preemption phase for 3-leg intersection 

FIGURE B-3  Continued 
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C.1  PHASE LENGTH RESULTS 

TABLE C-1 Total Phase Length versus APWT and TPS Algorithms during 
Analysis Period1 for Pedestrian Phase Active Scenario and Fixed Train Arrival 
Time 

APWT2 TPS 
Scenario 

Phase 1 
(second)

Phase 2 
(second) 

Phase 3 
(second)

Phase 4 
(second)

Phase 5 
(second) 

Phase 6 
(second)

 TPS0 457 1069 665 522 368 1145 
40 TPS1 457 1069 665 522 368 1145 
 TPS2 457 1069 665 522 368 1145 
 TPS3 457 1069 665 522 368 1145 

50 TPS1 457 1071 666 522 368 1146 
 TPS2 457 1071 666 522 368 1146 
 TPS3 457 1070 666 522 368 1145 

60 TPS1 456 1073 665 522 368 1148 
 TPS2 456 1073 666 522 368 1147 
 TPS3 457 1069 666 522 368 1145 

70 TPS1 457 1073 663 523 368 1148 
 TPS2 457 1073 664 523 369 1147 
 TPS3 457 1070 665 523 369 1145 

80 TPS1 457 1073 661 524 369 1148 
 TPS2 457 1073 662 524 369 1147 
 TPS3 457 1073 661 523 369 1148 

90 TPS1 456 1078 662 524 367 1152 
 TPS2 457 1073 662 524 368 1147 
 TPS3 457 1074 659 524 369 1149 

100 TPS1 455 1081 663 524 366 1155 
 TPS2 457 1071 662 524 368 1146 
 TPS3 459 1072 657 525 368 1149 

110 TPS1 454 1085 663 523 366 1158 
 TPS2 458 1065 663 527 369 1140 
 TPS3 461 1072 653 524 369 1149 

120 TPS1 454 1082 662 524 367 1155 
 TPS2 459 1063 662 527 370 1138 
 TPS3 463 1070 651 524 371 1148 

1:  6 to 60 minutes 
2:  Advance preemption warning time 
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TABLE C-2 Total Phase Length versus APWT and TPS Algorithms during 
Analysis Period1 for Pedestrian Phase Inactive Scenario and Fixed Train Arrival 
Time 

APWT2 TPS 
Scenario 

Phase 1 
(second)

Phase 2 
(second) 

Phase 3 
(second)

Phase 4 
(second)

Phase 5 
(second) 

Phase 6 
(second)

 TPS0 461 1060 666 523 366 1142 
40 TPS1 461 1060 666 523 366 1142 
 TPS2 461 1060 666 523 366 1142 
 TPS3 461 1060 666 523 366 1142 

50 TPS1 461 1061 668 523 366 1142 
 TPS2 461 1061 668 523 366 1142 
 TPS3 461 1060 667 523 366 1141 

60 TPS1 461 1060 667 523 366 1142 
 TPS2 461 1060 667 523 366 1141 
 TPS3 461 1060 667 523 366 1142 

70 TPS1 461 1063 661 525 366 1144 
 TPS2 461 1062 662 526 366 1143 
 TPS3 461 1063 664 523 366 1144 

80 TPS1 462 1064 655 526 367 1146 
 TPS2 462 1063 657 526 367 1144 
 TPS3 462 1063 659 524 366 1145 

90 TPS1 463 1065 653 525 367 1147 
 TPS2 463 1064 653 526 367 1146 
 TPS3 464 1062 655 525 367 1145 

100 TPS1 462 1067 653 526 367 1149 
 TPS2 464 1061 653 527 368 1143 
 TPS3 464 1062 652 525 367 1146 

110 TPS1 461 1069 653 526 367 1150 
 TPS2 467 1056 654 525 370 1140 
 TPS3 466 1060 652 525 367 1144 

120 TPS1 459 1074 652 525 365 1155 
 TPS2 469 1053 654 526 371 1137 
 TPS3 467 1057 653 525 369 1141 

1:  6 to 60 minutes 
2:  Advance preemption warning time 
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C.2  DELAY RESULTS 

C.2.1 Effect of TPS Algorithm 

C.2.1.1  Delay Comparison Period; Pedestrian Phase Active Scenario  

 

FIGURE C-1 Average Delay versus APWT for each TPS Algorithm (Delay 
Comparison Period; Pedestrian Phase Active Scenario; and Fixed Train Arrival 
Time) 
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C.2.1.2  Analysis Period; Pedestrian Phase Active Scenario  

 

TABLE C-3 Average Delay (Analysis Period1; Pedestrian Phase Active Scenario; 
and Fixed Train Arrival Time) 

APWT2 TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 50.9    

40  50.9 50.9 50.9 
50  51.5 51.5 51.0 
60  51.5 51.6 51.1 
70  51.1 51.1 50.9 
80  50.9 51.0 50.7 
90  52.0 51.0 50.5 
100  53.1 50.8 50.5* 
110  53.4 50.1 50.8* 
120  52.5 49.8 50.7* 

Mean 50.9 51.9 50.9 50.8 
1:  6 to 60 minutes 
2:  Advance preemption warning time 
*:  Recommended APWT based on safety analyses 
Bold: Minimum delay for each TPS algorithm 
 

 

It can be seen that the average delay for the base case (TPS0) was 50.9 sec/veh.  As 

shown in Table 6-6 there was also a safety problem in all 90 simulations.  The average 

delay for the TPS1 algorithm across all the APWT scenarios was 51.9 sec/veh.  The 

smallest average delay was 50.9 sec/veh and occurred at APWT values of 40 and 80 

seconds.  However, for these APWT values there was a safety problem in 90 and 5 out 

of the 90 preemption cases, respectively, as shown in Table 6-6.  When the TPS2 

algorithm is used, the lowest average delay was 49.8 sec/veh and occurred at an APWT 

value of 120 seconds.  This is 0.7 second smaller than the TPS3 algorithm, which had its 

lowest value at an APWT value of 90 or 100 seconds.  However, there was still a safety 

problem in 5 out of the 90 preemption cases.  When the TPS3 algorithm is used, the 

minimum delay for the analysis period was found for 50.5 sec/veh at APWT values of 

90 and 100 seconds.  However, because there is one truncation of pedestrian clearance 
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interval at an APWT value of 90 seconds, it should be excluded as an option.  Therefore, 

when the TPS3 algorithm is applied with an APWT value of 100 seconds, the 

intersection can be operated safely and efficiently showing improvement of 0.4 sec/veh 

compared to both the TPS0 and TPS1 algorithms. 

 

 

FIGURE C-2 Average Delay versus APWT for each TPS Algorithm (Analysis 
Period; Pedestrian Phase Active Scenario; and Fixed Train Arrival Time) 
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TABLE C-4 Results of Duncan Test between TPS Algorithms (Analysis Period1; 
Pedestrian Phase Active Scenario; and Fixed Train Arrival Time) 

Algorithm 
Comparison  Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

TPS0 TPS1 50.9 51.5 0.63 0.45 Reject H0
3

TPS0 TPS1 50.9 51.5 0.63 0.43 Reject H0 
TPS3 TPS1 51.0 51.5 0.52 0.43 Reject H0 

50 

TPS3 TPS2 51.0 51.5 0.52 0.42 Reject H0 
TPS0 TPS2 50.9 51.6 0.67 0.61 Reject H0 60 
TPS0 TPS1 50.9 51.5 0.66 0.59 Reject H0 

90 TPS3 TPS1 50.5 52.0 1.53 1.18 Reject H0 
TPS3 TPS1 50.5 53.1 2.58 1.14 Reject H0 
TPS2 TPS1 50.8 53.1 2.31 1.11 Reject H0 100 
TPS0 TPS1 50.9 53.1 2.18 1.07 Reject H0 
TPS2 TPS1 50.1 53.4 3.34 1.00 Reject H0 
TPS3 TPS1 50.8 53.4 2.59 0.98 Reject H0 110 
TPS0 TPS1 50.9 53.4 2.52 0.94 Reject H0 
TPS2 TPS1 49.8 52.5 2.68 0.92 Reject H0 
TPS2 TPS0 49.8 50.9 1.05 0.89 Reject H0 
TPS3 TPS1 50.7 52.5 1.83 0.89 Reject H0 

120 

TPS0 TPS1 50.9 52.5 1.64 0.86 Reject H0 
1:  6 to 60 minutes 
2:  Advance preemption warning time 
3:  Statistically different between two means at 0.01 level of significance 
 

 

Seventeen out of a possible 54 were found to be significant for the analysis period using 

a standard paired t-test.  It was found that the delay in the TPS3 algorithm is smaller than 

the delay in the TPS1 algorithm at APWT values of 50, 90, 100, 110, and 120 seconds.  

Interestingly, there was no evidence statistically that the delay in the TPS3 algorithm is 

smaller than the delay in the TPS0 algorithm regardless of the APWT.  However, the 

TPS3 algorithm has a benefit in terms of both safety and delay compared to the TPS1 

algorithm at APWT values of 50, 90, 100, 110, and 120 seconds. 
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As discussed in Section 6.2.1, the best values of APWT from a safety perspective were 

100, 110, and 120 seconds.  It was found that there is no difference statistically at the 

0.03 level of significance in delay among these values.  Therefore, it can be concluded 

that the TPS3 algorithm with any APWT among 100, 110, and 120 seconds can provide 

the same level of safety and delay. 

 

A comparison among the best delays identified for each of the TPS algorithms also was 

performed.  It was found that the best delay in the TPS3 algorithm was not statistically 

smaller than both the delay in the TPS0 algorithm and the best delay identified for the 

TPS1 algorithm at the 0.06 level of significance 

 

Therefore, it can be concluded that even if the delay in the TPS3 algorithm with APWT 

values of 100, 110, or 120 seconds did not decrease compared to the best delay identified 

for the TPS0, TPS1, and TPS2 algorithms, respectively, safety problems can be solved 

with the TPS3 algorithm with 100, 110, or 120 seconds during the analysis period, that 

is, during 54 minutes before and after preemption.   
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C.2.1.3  Delay Comparison Period; Pedestrian Phase Inactive Scenario  

 

FIGURE C-3 Average Delay versus APWT for each TPS Algorithm (Delay 
Comparison Period; Pedestrian Phase Inactive Scenario; and Fixed Train Arrival 
Time) 
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C.2.1.4  Analysis Period; Pedestrian Phase Inactive Scenario  

 

TABLE C-5 Average Delay (Analysis Period1; Pedestrian Phase Inactive 
Scenario; and Fixed Train Arrival Time) 

APWT2 TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 42.5    

40  42.5 42.5 42.5 
50  42.9 42.9 42.6 
60  42.6 42.6 42.7 
70  42.3 42.3 42.6 
80  42.3 42.3 42.3 
90  42.1 42.2 42.0 
100  42.2 42.2 41.9 
110  42.5 42.2 41.9 
120  42.8 42.0 42.0 

Mean 42.5 42.5 42.3 42.3 
1:  6 to 60 minutes 
2:  Advance preemption warning time 
Bold: Minimum delay for each TPS algorithm 
 

 

For the pedestrian phase inactive scenario, the average delay for the base case (TPS0) 

was 42.5 sec/veh and there was no safety problem at all because there were no 

pedestrians during the simulations.  When the TPS1 algorithm was used, the lowest 

average delay was 42.1 sec/veh and occurred at an APWT value of 90 seconds.  When 

the TPS2 algorithm was used, the lowest average delay was 42.0 sec/veh and occurred at 

an APWT value of 120 seconds.  When TPS3 was applied with APWT values of 100 or 

110 seconds, the average delay was a minimum of 41.9 sec/veh.  Difference in delay 

between APWT scenarios was relatively small in each TPS algorithm compared to the 

pedestrian phase active scenario.  Maximum difference in delay was 0.8 second for the 

TPS1 algorithm, 0.9 second for the TPS2 algorithm, and 0.8 second for the TPS3 

algorithm.  The best TPS3 algorithm delay was 0.6, 0.2, and 0.1 second lower than the 

best delay identified for the TPS0, TPS1, and TPS2 algorithms, respectively.  Therefore, 
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it can be concluded that the effect of the TPS algorithms and the APWT on delay 

decreases considerably when there is no pedestrian in the intersection. 

 

 

FIGURE C-4 Average Delay versus APWT for each TPS Algorithm (Analysis 
Period; Pedestrian Phase Inactive Scenario; and Fixed Train Arrival Time) 
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TABLE C-6 Results of Duncan Test between TPS Algorithms (Analysis Period1; 
Pedestrian Phase Inactive Scenario; and Fixed Train Arrival Time) 

Algorithm 
Comparison Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

TPS0 TPS1 42.5 42.9 0.37 0.29 Reject H0
3

50 
TPS0 TPS1 42.5 42.9 0.37 0.29 Reject H0 

100 TPS3 TPS0 41.9 42.5 0.56 0.44 Reject H0 
TPS3 TPS1 41.9 42.5 0.64 0.51 Reject H0 110 
TPS3 TPS0 41.9 42.5 0.62 0.50 Reject H0 
TPS2 TPS1 42.0 42.8 0.77 0.57 Reject H0 120 
TPS3 TPS1 42.0 42.8 0.77 0.56 Reject H0 

1:  6 to 60 minutes 
2:  Advance preemption warning time 
3:  Statistically different between two means at 0.01 level of significance 
 

 

Seven out of a possible 54 were found to be significant for the analysis period using a 

standard paired t-test.  For the pedestrian phase inactive scenario, it was found that the 

delay in the TPS3 algorithm is smaller than the delay in the TPS0 algorithm at APWT 

values of 100 and 110 seconds and than the delay in the TPS1 algorithm at APWT 

values of 110 and 120 seconds.   

 

A comparison among the best delays identified for each of TPS algorithms also was 

performed.  It also was found that the best delay in the TPS3 algorithm is smaller 

statistically at the 0.06 level of significance than the delay in the TPS0 algorithm; 

however, it is not different from the delay in the TPS1 algorithm.   

 

Therefore, it can be concluded that even if the effect of the TPS algorithms and the 

APWT on delay decreases considerably when there is no pedestrian in the intersection, 

the TPS3 algorithm with APWT value of 100 or 110 seconds can decrease the delay 

compared to the TPS0 algorithm even at the condition where there is no safety problem 

originally. 
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C.2.2 Effect of Pedestrian 

 

TABLE C-7 Average Delay of Each Movement for APWT and TPS Algorithms 
(Analysis Period1; Pedestrian Phase Active Scenario; and Fixed Train Arrival 
Time) 

SB (sec/veh) EB (sec/veh) NB (sec/veh) WB (sec/veh) T
P
S 

AP
WT

2 LT T
H 

R
T 

S
U
M 

L
T 

T
H 

R
T 

S
U
M 

L
T 

T
H 

R
T 

S
U
M 

L
T 

T
H 

R
T 

S
U
M 

TOT
AL 

0 40 115 34 41 59 49 60 66 60 50 31 34 35 59 58 15 48 50.9 

40 115 34 41 59 49 60 66 60 50 31 34 35 59 58 15 48 50.9 
50 115 34 41 59 50 61 68 61 50 31 34 35 60 60 15 50 51.5 
60 115 34 41 59 50 62 68 62 50 31 34 35 60 60 15 50 51.5 
70 111 34 41 58 51 62 68 62 50 31 34 35 60 59 15 49 51.1 
80 110 34 41 57 51 61 68 62 49 31 34 34 59 59 15 49 50.9 
90 112 34 41 58 52 64 71 64 49 31 34 34 61 61 16 51 52.0 

100 114 34 41 58 53 66 74 66 50 31 34 34 63 63 16 52 53.1 
110 114 34 41 58 53 66 74 66 50 31 34 34 65 65 16 54 53.4 

1 
  
  
  
  
  
  
  
  120 114 34 41 58 51 63 69 63 50 31 34 34 64 64 16 53 52.5 

40 115 34 41 59 49 60 66 60 50 31 34 35 59 58 15 48 50.9 
50 115 34 41 59 50 61 68 61 50 31 34 35 60 60 15 50 51.5 
60 115 34 41 59 50 62 67 62 50 31 34 35 61 60 15 50 51.6 
70 111 34 41 58 51 62 68 62 50 31 34 35 60 59 15 49 51.1 
80 110 34 41 57 51 62 68 62 50 31 34 34 60 59 15 49 51.0 
90 111 34 41 58 51 62 68 62 49 31 33 34 59 59 15 49 51.0 

100 112 34 41 58 51 61 68 62 49 31 34 34 58 57 15 48 50.8 
110 111 34 42 58 49 59 65 59 49 31 34 34 57 56 14 47 50.1 

2 
  
  
  
  
  
  
  
  120 111 34 42 58 48 58 64 58 49 31 34 34 57 56 14 47 49.8 

40 115 34 41 59 49 60 66 60 50 31 34 35 59 58 15 48 50.9 
50 115 34 41 59 49 60 66 60 50 31 34 35 60 59 15 49 51.0 
60 114 34 41 59 49 60 66 60 50 31 34 35 60 59 15 49 51.1 
70 114 34 41 58 49 61 67 61 50 31 34 34 59 58 15 48 50.9 
80 112 34 41 58 50 61 67 61 50 31 34 34 58 58 15 48 50.7 
90 110 34 41 57 51 61 68 61 49 30 34 34 58 57 15 47 50.5 

100 113 34 41 58 50 61 68 61 48 30 33 34 57 56 14 47 50.5 
110 114 34 41 58 51 62 69 62 46 30 33 34 58 57 14 48 50.8 

3 
  
  
  
  
  
  
  
  120 113 34 41 58 50 62 68 62 45 30 33 33 58 58 15 48 50.7 

1:  6 to 60 minutes 
2:  Advance preemption warning time 
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TABLE C-8 Average Delay of Each Movement for APWT and TPS Algorithms 
(Analysis Period1; Pedestrian Phase Inactive Scenario; and Fixed Train Arrival 
Time) 

SB (sec/veh) EB (sec/veh) NB (sec/veh) WB (sec/veh) T
P
S 

AP
WT

2 
L
T 

T
H 

R
T 

S
U
M 

L
T 

T
H 

R
T 

S
U
M 

L
T 

T
H 

R
T 

S
U
M 

L
T 

T
H 

R
T 

S
U
M 

TOT
AL 

0 40 68 33 33 44 44 49 43 47 47 30 26 32 58 57 10 46 42.5 

40 68 33 33 44 44 49 43 47 47 30 26 32 58 57 10 46 42.5 
50 69 33 33 44 44 49 43 47 48 30 26 32 59 58 10 48 42.9 
60 68 33 33 43 44 49 43 47 47 30 26 32 58 58 10 47 42.6 
70 68 33 33 43 45 49 43 47 47 30 26 32 57 56 10 46 42.3 
80 68 33 32 43 45 50 44 48 45 30 26 32 57 56 10 46 42.3 
90 68 33 32 43 44 49 44 48 44 30 26 32 57 56 10 46 42.1 
100 69 33 32 43 45 50 44 48 45 30 26 32 57 56 10 46 42.2 
110 69 33 32 43 45 50 44 48 46 30 26 32 58 57 10 46 42.5 

1 
  
  
  
  
  
  
  
  120 69 33 32 44 45 50 44 48 46 30 26 32 58 58 10 47 42.8 

40 68 33 33 44 44 49 43 47 47 30 26 32 58 57 10 46 42.5 
50 69 33 33 44 44 49 43 47 48 30 26 32 59 58 10 48 42.9 
60 68 33 33 43 44 49 43 47 47 30 26 32 58 58 10 47 42.6 
70 68 33 33 43 45 49 43 47 47 30 26 32 57 56 10 46 42.3 
80 68 33 33 43 45 50 43 48 45 30 26 32 57 56 10 46 42.3 
90 68 33 33 43 45 50 44 48 44 30 26 32 56 56 10 45 42.2 
100 69 33 33 44 45 50 44 48 44 30 26 32 56 55 10 45 42.2 
110 69 33 33 44 44 49 43 47 42 30 26 31 56 56 10 46 42.2 

2 
  
  
  
  
  
  
  
  120 68 33 33 43 44 49 43 47 42 30 26 31 56 56 10 45 42.0 

40 68 33 33 44 44 49 43 47 47 30 26 32 58 57 10 46 42.5 
50 69 33 33 44 44 49 43 47 48 30 26 32 58 57 10 47 42.6 
60 68 33 33 44 44 49 43 47 47 30 26 33 58 58 10 47 42.7 
70 69 33 33 44 45 49 43 47 47 30 26 32 58 57 10 46 42.6 
80 68 33 33 43 44 49 43 48 46 30 26 32 57 56 10 46 42.3 
90 68 33 33 43 44 49 43 47 44 30 26 32 56 55 10 45 42.0 
100 68 33 33 43 45 49 43 48 43 30 26 31 56 55 10 45 41.9 
110 68 33 33 43 45 49 43 48 43 30 26 31 56 55 10 45 41.9 

3 
  
  
  
  
  
  
  
  120 68 33 32 43 45 49 43 48 42 30 25 31 56 56 10 45 42.0 

1:  6 to 60 minutes 
2:  Advance preemption warning time 
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C.2.3 Effect of Train Speed Profile 

C.2.3.1  Delay Comparison Period; Pedestrian Phase Active Scenario  

TABLE C-9 Average Delay by Group and APWT (Delay Comparison Period1; 
Pedestrian Phase Active Scenario; and Fixed Train Arrival Time) 

APWT2 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) 

Ave. By 
Group Ave.

Group 1 60.4 60.4 60.4 60.4 60.4 
Group 2 53.9 53.9 53.9 53.9 53.9 40 
Group 3 49.9 49.9 49.9 49.9 49.9 

54.7 

Group 1   63.9 63.9 62.4 63.4 
Group 2   54.9 54.9 54.2 54.6 50 
Group 3   50.6 50.6 50.0 50.4 

56.1 

Group 1   63.7 63.8 63.0 63.5 
Group 2   54.6 54.6 54.2 54.5 60 
Group 3   51.0 51.0 50.3 50.7 

56.2 

Group 1   62.2 62.6 61.1 61.9 
Group 2   53.2 53.2 53.6 53.3 70 
Group 3   50.3 50.3 49.6 50.1 

55.1 

Group 1   61.8 62.0 59.7 61.2 
Group 2   53.0 53.1 52.7 53.0 80 
Group 3   49.3 49.3 49.2 49.3 

54.5 

Group 1   64.5 62.2 58.6 61.8 
Group 2   55.4 52.4 52.0 53.3 90 
Group 3   49.7 48.7 48.0 48.8 

54.6 

Group 1   68.0 60.4 58.3 62.2 
Group 2   58.1 51.8 50.8 53.5 100 
Group 3   52.3 48.2 47.7 49.4 

55.1 

Group 1   68.7 59.7 58.2 62.2 
Group 2   61.6 51.8 50.2 54.5 110 
Group 3   54.8 48.1 47.5 50.1 

55.6 

Group 1   67.9 58.8 58.1 61.6 
Group 2   61.1 51.4 49.7 54.1 120 
Group 3   54.8 47.8 47.5 50.0 

55.2 

Group 1 60.4 64.6 61.5 60.0 61.6 
Group 2 53.9 56.2 53.0 52.4 53.9 

Ave. 
By 

Group Group 3 49.9 51.4 49.3 48.9 49.9 
55.1 

Average 54.7 57.4 54.6 53.7 55.1  
1:  600 to 1320 seconds 
2:  Advance preemption warning time  
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C.2.3.2  Analysis Period; Pedestrian Phase Active Scenario  

TABLE C-10  Average Delay by Group and APWT (Analysis Period1; 
Pedestrian Phase Active Scenario; and Fixed Train Arrival Time) 

APWT2 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) 

Ave. By 
Group Ave.

Group 1 52.2 52.2 52.2 52.2 52.2 
Group 2 52.7 52.7 52.7 52.7 52.7 40 
Group 3 47.7 47.7 47.7 47.7 47.7 

50.9 

Group 1  53.3 53.3 52.5 53.1 
Group 2  53.1 53.1 52.7 53.0 50 
Group 3  48.1 48.1 47.7 48.0 

51.3 

Group 1  53.6 53.6 52.9 53.4 
Group 2  53.1 53.1 52.7 53.0 60 
Group 3  47.9 47.9 47.9 47.9 

51.4 

Group 1  52.8 52.8 52.7 52.8 
Group 2  52.3 52.3 52.3 52.3 70 
Group 3  48.3 48.3 47.6 48.1 

51.0 

Group 1  52.5 52.6 52.3 52.4 
Group 2  52.3 52.3 52.0 52.2 80 
Group 3  48.0 48.0 48.0 48.0 

50.9 

Group 1  54.0 53.2 51.9 53.0 
Group 2  53.2 52.2 51.7 52.3 90 
Group 3  48.9 47.7 47.8 48.1 

51.2 

Group 1  55.2 52.7 51.8 53.2 
Group 2  54.0 52.0 52.1 52.7 100 
Group 3  49.9 47.6 47.6 48.4 

51.4 

Group 1  54.8 51.2 52.1 52.7 
Group 2  54.5 51.2 52.2 52.6 110 
Group 3  50.9 47.8 48.2 49.0 

51.4 

Group 1  53.2 50.9 52.2 52.1 
Group 2  54.3 51.2 52.2 52.5 120 
Group 3  50.0 47.4 47.7 48.4 

51.0 

Group 1 52.2 53.5 52.5 52.3 52.6 
Group 2 52.7 53.3 52.2 52.3 52.6 

Ave. 
By 

Group Group 3 47.7 48.9 47.8 47.8 48.1 
51.1 

Average 50.9 51.9 50.9 50.8 51.1  
1:  6 to 60 minutes 
2:  Advance preemption warning time 
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TABLE C-11  Average Delay by Group (Analysis Period1; Pedestrian Phase 
Active Scenario; and Fixed Train Arrival Time) 

 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) Average 

Group 1 52.2 53.5 52.5 52.3 52.7 
Group 2 52.7 53.3 52.2 52.3 52.6 

Average 
By 

Group Group 3 47.7 48.9 47.8 47.8 48.2 
Average 50.9 51.9 50.9 50.8 51.1 

1:  6 to 60 minutes 

 

 

In all of the TPS algorithms, Group 3 has the smallest delay with an average of 48.2 

sec/veh, and Group 1 has the largest delay with an average of 52.7 sec/veh.  The 

difference in delay between Group 1 and Group 3 was 4.5 sec/veh for the TPS0 

algorithm, 4.6 sec/veh for the TPS1 algorithm, 4.7 sec/veh for the TPS2 algorithm, and 

4.5 sec/veh for the TPS3 algorithm.  Interestingly, the average delay of Group 2 is 

almost the same as the average delay of Group 1, even though the average train speed of 

Group 2 at FM 2818 is 11 km/h higher than that of Group 1 as mentioned in Section 6.1. 

 

 

TABLE C-12  Results of Duncan Test between Train Speed Groups (Analysis 
Period1; Pedestrian Phase Active Scenario; and Fixed Train Arrival Time) 

Mean (sec/veh) 
Group Comparison  1st 

Group 
2nd 

Group 

Test 
Statistic 

Critical 
Value Result 

Group3 Group1 48.2 52.7 4.60 0.81 Reject H0
2 

Group3 Group2 48.2 52.6 4.44 0.78 Reject H0 
Group2 Group1 52.6 52.7 0.15 0.78 Do not Reject H0 

1:  6 to 60 minutes 
2:  Statistically different between two means at 0.01 level of significance 
 

 

It was found that the delay in Group 3 is smaller than the delay in Groups 1 and 2 and 

that the delay in Group 1 is the same as the delay in Group 2.  Therefore, it is difficult to 
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conclude that there is a relationship between the train speed and the intersection delay 

for evaluation of the analysis period.   
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C.2.3.3  Delay Comparison Period; Pedestrian Phase Inactive Scenario  

TABLE C-13 Average Delay by Group and APWT (Delay Comparison Period1; 
Pedestrian Phase Inactive Scenario; and Fixed Train Arrival Time) 

APWT2 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) 

Ave. By 
Group Ave.

Group 1 55.6 55.6 55.6 55.6 55.6 
Group 2 49.1 49.1 49.1 49.1 49.1 40 
Group 3 44.6 44.6 44.6 44.6 44.6 

49.7 

Group 1  58.4 58.4 57.7 58.2 
Group 2  49.9 49.9 49.4 49.7 50 
Group 3  45.3 45.3 44.6 45.1 

51.0 

Group 1  57.3 57.5 57.6 57.4 
Group 2  49.1 49.1 49.3 49.1 60 
Group 3  45.3 45.3 44.8 45.1 

50.6 

Group 1  55.0 55.3 55.2 55.2 
Group 2  47.7 47.7 48.9 48.1 70 
Group 3  43.9 43.9 44.0 44.0 

49.1 

Group 1  54.7 55.2 54.2 54.7 
Group 2  46.7 46.7 47.4 46.9 80 
Group 3  43.3 43.3 43.6 43.4 

48.4 

Group 1  53.9 53.9 53.0 53.6 
Group 2  46.3 46.2 46.1 46.2 90 
Group 3  42.9 42.9 42.7 42.8 

47.5 

Group 1  54.6 54.0 52.9 53.8 
Group 2  46.6 45.6 45.4 45.9 100 
Group 3  43.6 42.9 42.3 42.9 

47.5 

Group 1  55.2 54.5 53.1 54.3 
Group 2  49.5 45.9 45.4 46.9 110 
Group 3  44.6 43.0 42.3 43.3 

48.2 

Group 1  54.9 54.0 53.6 54.1 
Group 2  49.4 45.9 45.3 46.9 120 
Group 3  46.2 42.9 42.5 43.9 

48.3 

Group 1 55.6 55.5 55.4 54.8 55.3 
Group 2 49.1 48.2 47.3 47.4 48.0 

Ave. 
By 

Group Group 3 44.6 44.4 43.8 43.5 44.1 
49.1 

Average 49.7 49.4 48.8 48.5 49.1  
1:  600 to 1320 seconds 
2:  Advance preemption warning time 
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C.2.3.4  Analysis Period; Pedestrian Phase Inactive Scenario 

 

TABLE C-14 Average Delay by Group and APWT (Analysis Period1; Pedestrian 
Phase Inactive Scenario; and Fixed Train Arrival Time) 

APWT2 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh)

Ave. By 
Group Ave. 

Group 1 43.8 43.8 43.8 43.8 43.8 
Group 2 43.3 43.3 43.3 43.3 43.3 40 
Group 3 40.4 40.4 40.4 40.4 40.4 

42.5 

Group 1  44.5 44.5 44.2 44.4 
Group 2  43.6 43.6 43.3 43.5 50 
Group 3  40.5 40.5 40.4 40.5 

42.8 

Group 1  44.1 44.1 44.3 44.2 
Group 2  43.1 43.1 43.3 43.1 60 
Group 3  40.6 40.6 40.5 40.5 

42.6 

Group 1  43.5 43.6 43.7 43.6 
Group 2  42.8 42.8 43.7 43.1 70 
Group 3  40.5 40.5 40.4 40.5 

42.4 

Group 1  43.4 43.5 43.5 43.5 
Group 2  43.1 43.1 43.1 43.1 80 
Group 3  40.4 40.4 40.4 40.4 

42.3 

Group 1  43.5 43.6 43.3 43.4 
Group 2  42.4 42.4 42.8 42.5 90 
Group 3  40.6 40.6 40.0 40.4 

42.1 

Group 1  43.7 43.6 43.3 43.5 
Group 2  42.5 42.4 42.5 42.5 100 
Group 3  40.5 40.4 40.1 40.3 

42.1 

Group 1  43.6 43.6 43.3 43.5 
Group 2  43.5 42.4 42.2 42.7 110 
Group 3  40.5 40.5 40.1 40.4 

42.2 

Group 1  43.6 43.5 43.6 43.5 
Group 2  43.5 42.4 42.4 42.8 120 
Group 3  41.3 40.1 40.1 40.5 

42.3 

Group 1 43.8 43.7 43.7 43.7 43.7 
Group 2 43.3 43.1 42.8 42.9 43.0 

Ave. 
By 

Group Group 3 40.4 40.6 40.4 40.3 40.4 
42.4 

Average 42.5 42.5 42.3 42.3 42.4  
1:  6 to 60 minutes 
2:  Advance preemption warning time 



 257

TABLE C-15 Average Delay by Group (Analysis Period1; Pedestrian Phase 
Inactive Scenario; and Fixed Train Arrival Time) 

 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) Average 

Group 1 43.8 43.7 43.7 43.7 43.7 
Group 2 43.3 43.1 42.8 42.9 43.0 

Average 
By Group 

Group 3 40.4 40.6 40.4 40.3 40.4 
Average 42.5 42.5 42.3 42.3 42.4 

1:  6 to 60 minutes  

 

 

Although the delay is lessened in the pedestrian phase inactive scenario compared to the 

pedestrian phase active scenario, the trend is the same as the pedestrian phase active 

scenario.  In all of the TPS algorithms, Group 3 has the smallest delay with an average of 

40.4 sec/veh, and Group 1 has the largest delay with an average of 43.7 sec/veh.  The 

difference in delay between Groups 1 and 3 was 3.4 sec/veh for the TPS0 algorithm, 3.1 

sec/veh for the TPS1 algorithm, 3.3 sec/veh for the TPS2 algorithm, and 3.4 sec/veh for 

the TPS3 algorithm for the pedestrian phase inactive scenario.  It also was found that the 

average delay of Group 2 is only 0.7 sec/veh smaller than that of Group 1, even though 

the average train speed of Group 2 is 11 km/h higher than that of Group 1. 

 

 

TABLE C-16 Results of Duncan Test between Train Speed Groups (Analysis 
Period1; Pedestrian Phase Inactive Scenario; and Fixed Train Arrival Time) 

Mean (sec/veh) 
Group Comparison 1st 

Group 
2nd 

Group 

Test 
Statistic 

Critical 
Value Result 

Group3 Group1 40.4 43.7 3.27 0.49 Reject H0
2 

Group3 Group2 40.4 43.0 2.54 0.47 Reject H0 
Group2 Group1 43.0 43.7 0.74 0.47 Reject H0 

1:  6 to 60 minutes 
2:  Statistically different between two means at 0.01 level of significance 
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It was found that the delay in Group 3 is smaller than the delay in Groups 1 and 2, and 

the delay in Group 2 is smaller than the delay in Group 1 for the pedestrian phase 

inactive scenario.  Therefore, it can be concluded that as train speed increases, the 

intersection is operated more efficiently for the pedestrian phase inactive scenario.   
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RANDOM TRAIN ARRIVAL TIME 
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D.1  TRUNCATION OF PEDESTRIAN CLEARANCE INTERVAL RESULTS 

A preemption will be initiated any time in the cycle.  Considering the simulation period 

and the analysis periods, trains are designed to arrive at the crossing between 845 and 

966 seconds.  The simulation period, the analysis period, and the train arrival time range 

at the crossing are shown in Figure D-1.  This is to evaluate the effect of the TPS3 

algorithm under the normal operating condition.   

 

   

FIGURE D-1 Time Frame for Analysis Period and Train Arrival Time Range at 
the Crossing during Simulation for Random Train Arrival Time 
 

 

The truncation number and abbreviation time of the pedestrian clearance interval also 

were measured to evaluate the safety of the intersection at the onset of preemption for 

each TPS algorithm.  The results for the pedestrian phase active scenario are shown for 

each of the advance preemption warning times in Table D-1.   
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TABLE D-1 Number of Pedestrian Phase Truncations and Average Phase 
Abbreviation Time at the Onset of Preemption for Pedestrian Phase Active 
Scenario and Random Train Arrival Time 

APWT* TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 36(7)    

40  36(7) 36(7) 36(7) 
50  33(7) 33(7) 35(7) 
60  25(5) 25(5) 27(6) 
70  7(4) 7(4) 18(5) 
80  1(1) 1(1) 6(3) 
90  0(0) 0(0) 0(0) 
100  0(0) 0(0) 0(0) 
110  0(0) 0(0) 0(0) 
120  1(3) 2(3) 0(0) 

*:  Advance preemption warning time 
():  Seconds of phase abbreviation.  
 

 

Based on these results, once the APWT is 90 seconds or more, truncation does not occur 

except with the TPS1 and TPS2 algorithms at the APWT value of 120 seconds.  

However, in the worst case, that is, simulations that are designed to initiate preemption 

during a pedestrian clearance phase, the truncation still occurred 1 and 5 times out of 90 

trains for the TPS1 and TPS2 algorithm, respectively.  Even if the number of truncations 

decreased under the normal operating condition, the APWT should be decided based on 

the worst case.  Therefore, the conclusion is the same as in Section 6.2, that is, at least 

the APWT value of 100 seconds with the TPS3 algorithm should be provided to 

eliminate the possibility of truncation of the pedestrian clearance time.  

 

Even if there is no pedestrian volume in the simulations, because the coordinated signal 

timing is operated, the pedestrian phase corresponding to the coordinated phases are 

provided automatically whenever the coordinated phases are active, regardless of 

pedestrian calls.  Therefore, the truncation of the pedestrian clearance interval can occur 

at the onset of preemption, even if these truncations do not affect the safety problem.  
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The truncation number and abbreviation time of the pedestrian clearance interval for the 

pedestrian phase inactive scenario are shown for each of the APWTs in Table D-2.   

 

 

TABLE D-2 Number of Pedestrian Phase Truncations and Average Phase 
Abbreviation Time at the Onset of Preemption for Pedestrian Phase Inactive 
Scenario and Random Train Arrival Time  

APWT* TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 28(8)    

40  28(8) 28(8) 28(8) 
50  27(7) 27(7) 28(7) 
60  16(5) 16(5) 21(6) 
70  6(2) 6(2) 12(4) 
80  1(1) 1(1) 5(1) 
90  0(0) 0(0) 0(0) 
100  0(0) 0(0) 0(0) 
110  0(0) 0(0) 0(0) 
120  0(0) 0(0) 0(0) 

*:  Advance preemption warning time 
():  Seconds of phase abbreviation 
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D.2  DELAY RESULTS 

D.2.1 Effect of the TPS Algorithms  

D.2.1.1  Delay Comparison Period; Pedestrian Phase Active Scenario 

The average delay during the delay comparison period for the pedestrian phase active 

scenario is shown in Table D-3.  

 

 

TABLE D-3 Average Delay (Delay Comparison Period1; Pedestrian Phase Active 
Scenario; and Random Train Arrival Time) 

APWT2 TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 54.0    

40  54.0 54.0 54.0 
50  54.3 54.3 54.1 
60  54.0 54.0 54.1 
70  53.7 53.8 53.8 
80  53.8 53.8 53.6 
90  54.1 53.4 53.1 
100  54.8 53.1 52.4 
110  56.3 52.9 51.5 
120  56.0 52.5 51.1 

Mean 54.0 54.6 53.5 53.1 
1:  600 to 1320 seconds  
2:  Advance preemption warning time 
Bold: Minimum delay for each TPS algorithm 
 

 

The best TPS3 algorithm delay (51.1 sec/veh) was 2.9, 2.6, and 1.4 seconds lower than 

the best delay identified for the TPS0, TPS1, and TPS2 algorithms, respectively. 

Therefore, when the TPS3 algorithm is applied with an APWT value of 120 seconds, the 

intersection can be operated safely and efficiently showing improvement of 2.9 sec/veh 

compared to the TPS0 algorithm and 2.6 sec/veh compared to the TPS1 algorithm during 

the delay comparison period. 

 



 264

The graph of delay versus APWT during the delay comparison period for the pedestrian 

volume is shown in Figure D-2.  

 

 

FIGURE D-2  Average Delay versus APWT for each TPS Algorithm (Delay 
Comparison Period; Pedestrian Phase Active Scenario; and Random Train Arrival 
Time) 
 

 

Duncan’s multiple range test was performed to compare each pair among the four TPS 

algorithms.  Experimentwise error rate was set to 0.06, which means that the common 

level of significance per test is 0.01.  The results of the delay comparison period for the 

pedestrian phase active scenario are shown in Table D-4.  The table only shows the test 

results having a statistical difference between the TPS algorithms. 
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TABLE D-4 Results of Duncan Test between TPS Algorithms (Delay Comparison 
Period1; Pedestrian Phase Active Scenario; and Random Train Arrival Time) 

Algorithm 
Comparison  Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

TPS3 TPS1 53.1 54.1 1.03 0.82 Reject H0
3

90 
TPS3 TPS0 53.1 54.0 0.89 0.80 Reject H0 
TPS3 TPS1 52.4 54.8 2.34 1.03 Reject H0 
TPS3 TPS0 52.4 54.0 1.52 1.00 Reject H0 100 
TPS2 TPS1 53.1 54.8 1.67 1.00 Reject H0 
TPS3 TPS1 51.5 56.3 4.74 1.28 Reject H0 
TPS3 TPS0 51.5 54.0 2.43 1.24 Reject H0 
TPS3 TPS2 51.5 52.9 1.36 1.19 Reject H0 
TPS2 TPS1 52.9 56.3 3.38 1.24 Reject H0 

110 

TPS0 TPS1 54.0 56.3 2.31 1.19 Reject H0 
TPS3 TPS1 51.1 56.0 4.87 1.43 Reject H0 
TPS3 TPS0 51.1 54.0 2.80 1.39 Reject H0 
TPS3 TPS2 51.1 52.5 1.37 1.34 Reject H0 
TPS2 TPS1 52.5 56.0 3.51 1.39 Reject H0 
TPS2 TPS0 52.5 54.0 1.44 1.34 Reject H0 

120 

TPS0 TPS1 54.0 56.0 2.07 1.34 Reject H0 
1:  600 to 1320 seconds 
2:  Advance preemption warning time 
3:  Statistically different between two means at 0.01 level of significance 
 

  

It was found that the delay in the TPS3 algorithm is smaller than the delay in the TPS0 

and TPS1 algorithms at APWT values of 90, 100, 110, and 120 seconds.  It also was 

found that the best delay in the TPS3 algorithm was smaller statistically at the 0.06 level 

of significance than the best delay in the TPS0, TPS1, and TPS2 algorithms, 

respectively.  Therefore, it can be concluded that for the pedestrian phase active scenario 

the TPS3 algorithm with an APWT value of 120 seconds is the best operation strategy 

for both safety and efficiency.  Moreover, the TPS3 algorithm still has a benefit in terms 

of delay in the normal operation case.  These results can be interpreted that the TPS3 

algorithm has a benefit by reducing the delay even at the condition where there is no 

safety problem. 
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D.2.1.2  Analysis Period; Pedestrian Phase Active Scenario  

The average delay during the analysis period for the pedestrian phase active scenario is 

shown in Table D-5.  

 

 

TABLE D-5 Average Delay (Analysis Period1; Pedestrian Phase Active Scenario; 
and Random Train Arrival Time) 

APWT2 TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 51.3    

40  51.3 51.3 51.3 
50  51.4 51.3 51.1 
60  51.2 51.3 51.3 
70  51.0 51.1 51.2 
80  51.0 51.0 51.0 
90  51.2 51.0 50.6 
100  51.9 51.2 50.7 
110  52.1 50.7 50.3 
120  51.6 50.5 50.2 

Mean 51.3 51.4 51.0 50.9 
1:  6 to 60 minutes 
2:  Advance preemption warning time 
Bold: Minimum delay for each TPS algorithm 
 

 

It can be seen that the average delay for the base case (TPS0) was 51.3 sec/veh.  As 

shown in Table D-1 there was also a safety problem in 36 of 90 simulations.  When the 

TPS1 algorithm was used, the smallest average delay was 51.0 sec/veh and occurred at 

the APWT values of 70 and 80 seconds.  However, for this situation there was a safety 

problem in 7 and 1 out of the 90 preemption cases, respectively, as shown in Table D-1.  

When the TPS2 algorithm was used, the smallest average delay was 50.5 sec/veh and 

occurred at an APWT value of 120 seconds.  However, there was still a safety problem 

in 2 out of 90 preemption cases.  The minimum delay for the analysis period was found 

as 50.2 sec/veh with the TPS3 algorithm at an APWT value of 120 seconds.  Therefore, 

when the TPS3 algorithm is applied with an APWT value of 120 seconds, the 
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intersection can be operated safely and efficiently showing improvement of 1.1 sec/veh 

compared to the TPS0 algorithm, 0.8 sec/veh in delay compared to the TPS1 algorithm, 

and 0.3 sec/veh in delay compared to the TPS2 algorithm. 

 

The graph of delay versus APWT during the analysis period for the pedestrian volume is 

shown in Figure D-3.  

 

 

FIGURE D-3  Average Delay versus APWT for Each TPS Algorithm (Analysis 
Period; Pedestrian Phase Active Scenario; and Random Train Arrival Time) 
 

 

Duncan’s multiple range test was performed to compare each pair among the four TPS 

algorithms.  Experimentwise error rate was set to 0.06, which means that the common 

level of significance per test is 0.01.  The results of the analysis period at the pedestrian 

phase active scenario are shown in Table D-6.  The table also shows only the test results 

having a statistical difference between TPS algorithms.    
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TABLE D-6 Results of Duncan Test between TPS Algorithms (Analysis Period1; 
Pedestrian Phase Active Scenario; and Random Train Arrival Time) 

Algorithm 
Comparison  Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

100 TPS3 TPS1 50.7 51.9 1.19 0.97 Reject H0
3

TPS3 TPS1 50.3 52.1 1.84 0.98 Reject H0 
TPS3 TPS0 50.3 51.3 1.01 0.95 Reject H0 110 
TPS2 TPS1 50.7 52.1 1.42 0.95 Reject H0 
TPS3 TPS1 50.2 51.6 1.42 1.04 Reject H0 
TPS3 TPS0 50.2 51.3 1.11 1.01 Reject H0 120 
TPS2 TPS1 50.5 51.6 1.08 1.01 Reject H0 

1:  6 to 60 minutes 
2:  Advance preemption warning time 
3:  Statistically different between two means at 0.01 level of significance 
 

 

As expected, fewer differences between the TPS algorithms were detected during the 

analysis period than during the delay comparison period.  It was found that the delay in 

the TPS3 algorithm is smaller than the delay in the TPS0 algorithm at APWT values of 

110 and 120 seconds and is smaller than the delay in the TPS1 at APWT values of 100, 

110, and 120 seconds.  It also was found that the delay in the best TPS3 algorithm is not 

different statistically at the 0.06 level of significance from the smallest delay identified 

for the TPS1 algorithm; however, it is smaller than the delay for the TPS0 algorithm.  

Therefore, the same conclusion to the delay comparison period can be induced, that is, 

the TPS3 algorithm has a benefit by reducing the delay even in the normal operation 

case.   

 

 

D.2.1.3  Delay Comparison Period; Pedestrian Phase Inactive Scenario  

The average delay during the delay comparison period for the pedestrian phase inactive 

scenario is shown in Table D-7.  
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TABLE D-7 Average Delay (Delay Comparison Period1; Pedestrian Phase 
Inactive Scenario; and Random Train Arrival Time) 

APWT2 TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 48.9    

40  48.9 48.9 48.9 
50  49.4 49.4 49.1 
60  49.4 49.4 49.1 
70  48.8 49.0 48.8 
80  48.7 48.8 48.5 
90  48.2 47.9 48.1 
100  47.7 47.4 47.5 
110  47.8 47.0 46.8 
120  47.7 46.3 46.2 

Mean 48.9 48.5 48.2 48.1 
1:  600 to 1320 seconds 
2:  Advance preemption warning time 
Bold: Minimum delay for each TPS algorithm 
 

 

When the preemption was operated without a TPS algorithm, the average delay was 48.9 

sec/veh.  When the TPS1 algorithm was used, the smallest average delay was 47.7 

sec/veh and occurred at APWT values of 100 and 120 seconds.  When the TPS2 

algorithm was used, the smallest average delay was 46.3 sec/veh and occurred at an 

APWT value of 120 seconds.  When the TPS3 algorithm was applied with an APWT 

value of 120 seconds, the minimum average delay was 46.2 sec/veh.  Therefore, the best 

TPS3 algorithm delay was 2.7, 1.5, and 0.1 seconds lower than the best delay identified 

for the TPS0, TPS1, and TPS2 algorithms, respectively.   

 

The graph of delay versus APWT during the delay comparison period for the pedestrian 

phase inactive scenario is shown in Figure D-4.  

 

 



 270

FIGURE D-4 Average Delay versus APWT for Each TPS Algorithm (Delay 
Comparison Period; Pedestrian Phase Inactive Scenario; and Random Train 
Arrival Time) 
 

 

Duncan’s multiple range test was performed to compare each pair among the four TPS 

algorithms.  Experimentwise error rate was set to 0.06, which means that the common 

level of significance per test is 0.01.  The results of the delay comparison period at the 

pedestrian phase inactive scenario are shown in Table D-8.  The table also shows only 

the test results having a statistical difference between TPS algorithms.    
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TABLE D-8 Results of Duncan Test between TPS Algorithms (Delay Comparison 
Period1; Pedestrian Phase Inactive Scenario; and Random Train Arrival Time) 

Algorithm 
Comparison  Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

TPS0 TPS2 48.9 49.4 0.55 0.38 Reject H0 50 
TPS0 TPS1 48.9 49.4 0.55 0.37 Reject H0 
TPS2 TPS0 47.9 48.9 0.93 0.74 Reject H0 90 
TPS3 TPS0 48.1 48.9 0.74 0.72 Reject H0 
TPS2 TPS0 47.4 48.9 1.50 0.86 Reject H0 
TPS3 TPS0 47.5 48.9 1.36 0.83 Reject H0 100 
TPS1 TPS0 47.7 48.9 1.18 0.80 Reject H0 
TPS3 TPS0 46.8 48.9 2.09 1.00 Reject H0 
TPS3 TPS1 46.8 47.8 1.01 0.97 Reject H0 
TPS2 TPS0 47.0 48.9 1.83 0.97 Reject H0 

110 

TPS1 TPS0 47.8 48.9 1.08 0.94 Reject H0 
TPS3 TPS0 46.2 48.9 2.63 1.00 Reject H0 
TPS3 TPS1 46.2 47.7 1.45 0.98 Reject H0 
TPS2 TPS0 46.3 48.9 2.56 0.98 Reject H0 
TPS2 TPS1 46.3 47.7 1.38 0.94 Reject H0 

120 

TPS1 TPS0 47.7 48.9 1.17 0.94 Reject H0 
1:  600 to 1320 seconds  
2:  Advance preemption warning time 
3:  Statistically different between two means at 0.01 level of significance 
 

 

It was found that the delay in the TPS3 algorithm is smaller than the delay in the TPS0 

algorithm at APWT values of 90, 100, 110, and 120 seconds and smaller than the delay 

in the TPS1 algorithm at APWT values of 110 and 120 seconds.  It also was found that 

the best delay in the TPS3 algorithm was smaller than the delay for the TPS0 algorithm 

and the best delay identified for the TPS1 algorithm statistically at the 0.06 level of 

significance.  The delay in the TPS3 algorithm with an APWT value of 120 seconds 

decreased compared to the delay for the TPS0 algorithm and the best delay identified for 

the TPS1 algorithm.  Therefore, it can be concluded that for the pedestrian phase 

inactive scenario the TPS3 algorithm with an APWT value of 120 seconds is the best 

operation strategy for efficiency.  Conclusively, even if a preemption is initiated during 
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the period that does not serve a pedestrian clearance phase, the TPS3 algorithm still has 

a benefit in terms of delay. 

 

D.2.1.4  Analysis Period; Pedestrian Phase Inactive Scenario  

The average delay during the analysis period for the pedestrian phase inactive scenario is 

shown in Table D-9.  

 

TABLE D-9 Average Delay (Analysis Period1; Pedestrian Phase Inactive 
Scenario; and Random Train Arrival Time) 

APWT2 TPS0 (sec/veh) TPS1 (sec/veh) TPS2 (sec/veh) TPS3 (sec/veh)
 42.7    

40  42.7 42.7 42.7 
50  42.8 42.8 42.7 
60  42.7 42.6 42.7 
70  42.7 42.6 42.6 
80  42.7 42.8 42.5 
90  42.6 42.5 42.5 
100  42.5 42.3 42.4 
110  42.6 42.2 42.3 
120  42.6 42.1 42.1 

Mean 42.7 42.7 42.5 42.5 
1:  6 to 60 minutes 
2:  Advance preemption warning time 
Bold: Minimum delay for each TPS algorithm 
 

 

For the pedestrian phase inactive scenario, the difference in delay between the TPS 

algorithms was reduced compared to the pedestrian phase active scenario.  The average 

delay for the base case (TPS0) was 42.7 sec/veh and there was no safety problem at all 

because there was no pedestrian.  When the TPS1 algorithm was used, the smallest 

average delay was 42.5 sec/veh and occurred at an APWT value of 100 seconds.  When 

the TPS2 algorithm was used, the minimum average delay was 42.1 sec/veh and 

occurred at an APWT value of 120 seconds.  When the TPS3 algorithm was applied with 

an APWT value of 120 seconds, delay was the same as the TPS2 algorithm applied with 
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an APWT value of 120 seconds. Therefore, when the TPS2 or TPS3 algorithm was 

applied with an APWT value of 120 seconds, delay was improved by 0.6 sec/veh 

compared to the TPS0 algorithm, and 0.4 sec/veh compared to the TPS1 algorithm.  

Therefore, it can be concluded that the effect of the TPS algorithms and the APWT on 

delay decreases considerably when there is no pedestrian in the intersection.   

 

The graph of delay versus APWT during the analysis period for the no-pedestrian 

volume is shown in Figure D-5.  

 

 

FIGURE D-5 Average Delay versus APWT for Each TPS Algorithm (Analysis 
Period; Pedestrian Phase Inactive Scenario; and Random Train Arrival Time)  
 

 

Duncan’s multiple range test was performed to compare each pair among the four TPS 

algorithms.  Experimentwise error rate was set to 0.06, which means that the common 
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phase inactive scenario are shown in Table D-10.  The table also shows only the test 

results having a statistical difference between TPS algorithms.    

 

 

TABLE D-10  Results of Duncan Test between TPS Algorithms (Analysis 
Period1; Pedestrian Phase Inactive Scenario; and Random Train Arrival Time) 

Algorithm 
Comparison  Mean (sec/veh) APWT2 

Algo.1 Algo.2 Algo.1 Algo.2 

Test 
Statistic

Critical 
Value Result 

TPS2 TPS0 42.1 42.7 0.60 0.55 Reject H0
3

TPS2 TPS1 42.1 42.6 0.57 0.53 Reject H0 
TPS3 TPS0 42.1 42.7 0.55 0.53 Reject H0 

120 

TPS3 TPS1 42.1 42.6 0.52 0.51 Reject H0 
1:  6 to 60 minutes  
2:  Advance preemption warning time 
3:  Statistically different between two means at 0.01 level of significance 
 

 

When there is no pedestrian volume, a difference in delay between the TPS algorithms 

occurred only at an APWT value of 120 seconds.  Although the delay in the TPS2 and 

TPS3 algorithms is smaller than the delay in the TPS0 and TPS1 algorithms, there are no 

differences in delay between the TPS2 and TPS3 algorithms and between the TPS0 and 

TPS1 algorithms.  It also was found that the best delay in the TPS3 algorithm is smaller 

statistically at the 0.06 level of significance than the delay in the TPS0 algorithm; 

however, it is not different from the delay in the TPS1 algorithm.  Therefore, it can be 

concluded that even if the effect of the TPS algorithms and the APWT on delay 

decreases considerably when there is no pedestrian in the intersection, the TPS3 

algorithm with an APWT value of 120 seconds can decrease the delay compared to the 

TPS0 algorithms even at the condition where there is no safety problem originally. 
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D.2.2  Effect of Pedestrians 

When pedestrian volume was 400 ped/h, the average delays were 51.3, 51.4, 51.0, and 

50.9 sec/veh for TPS0, TPS1, TPS2, and TPS3, respectively.  However, when there was 

no pedestrian in the intersection, delay decreased to 42.7, 42.7, 42.5, and 42.5 sec/veh 

for TPS0, TPS1, TPS2, and TPS3, respectively, like the worst case in Section 6.2. 

 

To check statistically the difference between the pedestrian volume levels, a paired t-test 

was performed at the 0.05 significance level.  The null hypotheses and alternative 

hypotheses were set as H0: Delay400ped/h = Delay 0ped/h and H1: Delay400ped/h > Delay0ped/h, 

respectively.  The results for both the analysis period and the delay comparison period 

are shown in Table D-11.   

 

 

TABLE D-11 Results of Paired t-Test between Two Pedestrian Volumes for 
Random Train Arrival Time 

Mean (sec/veh)  
 

Pedestrian 
Scenario 

Comparison  
400 

ped/h 0 ped/h 

Test 
Statistic 

Critical 
Value Result 

Analysis 
Period1 

400 
ped/h 

0 
ped/h 51.1 42.6 93.16 1.96 Reject H0

3 

Comparison 
Period2 

400 
ped/h 

0 
ped/h 53.7 48.3 81.07 1.96 Reject H0 

1:  6 to 60 minutes 
2:  600 to 1320 seconds  
3:  Statistically different between two means at 0.05 level of significance 
 

 

It can be concluded that the delay in the simulation with the pedestrian phase active 

scenario is greater than the delay in the simulation with the pedestrian phase inactive 

scenario for both the analysis and delay comparison periods.  As seen in the means and 

the test statistics, pedestrians can have a significant effect on the delay performance of 

the intersection.  The main cause of the difference is the same as the case that is 

illustrated in Section 6.2.  
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D.2.3  Effect of Train Speed Profile 

D.2.3.1  Delay Comparison Period; Pedestrian Phase Active Scenario 

The average delay by train speed groups is shown in Table D-12 during the delay 

comparison period for the pedestrian phase active scenarios.  The detailed results of the 

average delay depending on APWT also are shown in Table D-13. 

 

 

TABLE D-12 Average Delay by Group (Delay Comparison Period1; Pedestrian 
Phase Active Scenario; and Random Train Arrival Time) 

 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) Average 

Group 1 58.3 59.4 58.4 57.6 58.4 
Group 2 52.9 53.2 52.6 52.2 52.7 

Average 
By 

Group Group 3 50.6 51.1 49.6 49.4 50.2 
Average 54.0 54.6 53.5 53.1 53.8 

1:  600 to 1320 seconds  
 

 

In all of the TPS algorithms, Group 3 has the smallest delay with an average of 50.2 

sec/veh and Group 1 has the largest delay with an average of 58.4 sec/veh.  The 

difference in delay between Group 1 and Group 3 was 7.7 sec/veh for the TPS0 

algorithm, 8.3 sec/veh for the TPS1 algorithm, 8.8 sec/veh for the TPS2 algorithm, and 

8.2 sec/veh for the TPS3 algorithm for the pedestrian phase active scenario.   
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TABLE D-13 Average Delay by Group and APWT (Delay Comparison Period1; 
Pedestrian Phase Active Scenario; and Random Train Arrival Time) 

APWT2 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) 

Ave. By 
Group Ave.

Group 1 58.3 58.3 58.3 58.3 58.3 
Group 2 52.9 52.9 52.9 52.9 52.9 40 
Group 3 50.6 50.6 50.6 50.6 50.6 

54.0 

Group 1  59.2 59.2 58.9 59.1 
Group 2  52.8 52.8 52.9 52.8 50 
Group 3  50.8 50.8 50.6 50.7 

54.2 

Group 1  59.2 59.2 59.1 59.2 
Group 2  52.6 52.4 52.8 52.6 60 
Group 3  50.4 50.5 50.4 50.4 

54.1 

Group 1  58.7 58.7 58.7 58.7 
Group 2  52.5 52.6 52.7 52.6 70 
Group 3  50.0 50.1 49.9 50.0 

53.8 

Group 1  58.9 58.8 58.3 58.7 
Group 2  52.6 52.7 52.8 52.7 80 
Group 3  49.9 49.9 49.7 49.8 

53.7 

Group 1  59.2 58.2 57.4 58.3 
Group 2  53.1 52.9 52.4 52.8 90 
Group 3  50.1 49.1 49.4 49.5 

53.5 

Group 1  59.6 57.8 56.2 57.9 
Group 2  53.6 52.8 52.0 52.8 100 
Group 3  51.1 48.7 49.1 49.6 

53.4 

Group 1  60.9 57.9 55.7 58.2 
Group 2  54.6 52.1 50.9 52.5 110 
Group 3  53.3 48.6 48.0 50.0 

53.6 

Group 1  60.7 57.3 56.2 58.1 
Group 2  53.9 51.8 50.2 52.0 120 
Group 3  53.4 48.4 47.1 49.6 

53.2 

Group 1 58.3 59.4 58.4 57.6 58.4 
Group 2 52.9 53.2 52.6 52.2 52.7 

Ave. 
By 

Group Group 3 50.6 51.1 49.6 49.4 50.2 
53.8 

Average 54.0 54.6 53.5 53.1 53.8  
1:  600 to 1320 seconds 
2:  Advance preemption warning time  
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To check statistically the difference among the train speed groups, Duncan’s multiple 

range test was performed.  Experimentwise error rate was set to 0.03, which means that 

the common level of significance per test is 0.01.  The results are shown in Table C-14. 

 

 

TABLE D-14 Results of Duncan Test between Train Speed Groups (Delay 
Comparison Period1; Pedestrian Phase Active Scenario; and Random Train 
Arrival Time) 

Mean (sec/veh) 
Group Comparison 1st 

Group 
2nd 

Group 

Test 
Statistic 

Critical 
Value Result 

Group3 Group1 50.1 58.5 8.42 0.81 Reject H0
2 

Group3 Group2 50.1 52.7 2.60 0.78 Reject H0 
Group2 Group1 52.7 58.5 5.82 0.78 Reject H0 

1:  600 to 1320 seconds,  
2:  Statistically different between two means at 0.01 level of significance 
 

 

It was found that the delay in Group 3 is smaller than the delay in Groups 1 and 2 and 

that the delay in Group 2 is smaller than the delay in Group 1.  Therefore, it can be 

concluded that as train speed increases, the intersection is operated better for the 

pedestrian phase active scenario during the delay comparison period.   

 

D.2.3.2  Analysis Period; Pedestrian Phase Active Scenario  

The average delay by train speed groups is shown in Table D-15 during the analysis 

period for the pedestrian phase active scenarios.  The detailed results of the average 

delay depending on APWT also are shown in Table D-16. 
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TABLE D-15 Average Delay by Group (Analysis Period1; Pedestrian Phase Active 
Scenario; and Random Train Arrival Time) 

 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) Average 

Group 1 52.9 53.2 53.0 52.9 53.0 
Group 2 51.8 51.9 51.7 51.4 51.7 

Average 
By 

Group Group 3 49.0 49.0 48.4 48.2 48.7 
Average 51.3 51.4 51.0 50.9 51.1 

1:  6 to 60 minutes 

 

 

In all of the TPS algorithms, Group 3 has the smallest delay with an average of 48.7 

sec/veh and Group 1 has the largest delay with an average of 53.0 sec/veh.  The 

difference in delay between Group 1 and Group 3 was 3.9 sec/veh for the TPS0 

algorithm, 4.2 sec/veh for the TPS1 algorithm, 4.6 sec/veh for the TPS2 algorithm, and 

4.7 sec/veh for the TPS3 algorithm.   
 



 280

TABLE D-16 Average Delay by Group and APWT (Analysis Period1; Pedestrian 
Phase Active Scenario; and Random Train Arrival Time) 

APWT2 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) 

Ave. By 
Group Ave.

Group 1 52.9 52.9 52.9 52.9 52.9 
Group 2 51.8 51.8 51.8 51.8 51.8 40 
Group 3 49.0 49.0 49.0 49.0 49.0 

51.3 

Group 1   53.1 53.1 52.5 52.9 
Group 2   52.0 51.9 51.9 51.9 50 
Group 3   49.0 49.0 49.0 49.0 

51.3 

Group 1   53.2 53.3 53.3 53.2 
Group 2   51.7 51.8 51.8 51.8 60 
Group 3   48.6 48.7 48.8 48.7 

51.2 

Group 1   52.9 52.7 53.2 53.0 
Group 2   51.5 51.7 51.6 51.6 70 
Group 3   48.6 48.8 48.9 48.8 

51.1 

Group 1   53.6 53.0 53.2 53.3 
Group 2   51.1 51.6 51.4 51.4 80 
Group 3   48.2 48.5 48.5 48.4 

51.0 

Group 1   53.6 53.1 52.9 53.2 
Group 2   51.9 52.0 51.2 51.7 90 
Group 3   48.1 47.8 47.8 47.9 

50.9 

Group 1   53.7 53.6 53.2 53.5 
Group 2   52.7 52.3 51.3 52.1 100 
Group 3   49.2 47.6 47.5 48.1 

51.2 

Group 1   53.7 53.3 52.7 53.2 
Group 2   52.2 50.8 50.8 51.3 110 
Group 3   50.4 47.9 47.3 48.5 

51.0 

Group 1   52.5 52.3 52.6 52.5 
Group 2   52.3 51.3 50.7 51.4 120 
Group 3   49.9 47.9 47.3 48.4 

50.7 

Group 1 52.9 53.2 53.0 52.9 53.0 
Group 2 51.8 51.9 51.7 51.4 51.7 

Ave. 
By 

Group Group 3 49.0 49.0 48.4 48.2 48.7 
51.1 

Average 51.3 51.4 51.0 50.9 51.1  
1:  6 to 60 minutes 
2:  Advance preemption warning time 
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To check statistically the difference among the train speed groups, Duncan’s multiple 

range test was performed.  Experimentwise error rate was set to 0.03, which means that 

the common level of significance per test is 0.01.  The results are shown in Table D-17. 

 

 

TABLE D-17 Results of Duncan Test between Train Speed Groups (Analysis 
Period1; Pedestrian Phase Active Scenario; and Random Train Arrival Time) 

Mean (sec/veh) 
Group Comparison 1st 

Group 
2nd 

Group 

Test 
Statistic 

Critical 
Value Result 

Group3 Group1 48.6 53.1 4.52 0.94 Reject H0
2 

Group3 Group2 48.6 51.7 3.12 0.90 Reject H0 
Group2 Group1 51.7 53.1 1.40 0.90 Reject H0 

1:  6 to 60 minutes, 
2:  Statistically different between two means at 0.01 level of significance 
 

 

It was found that the delay in Group 3 is smaller than the delay in Groups 1 and 2 and 

that the delay in Group 2 is smaller than the delay in Group 1.  Therefore, the same 

conclusion to the delay comparison period can be induced, that is, as train speed 

increases, the intersection is operated better for the pedestrian phase active scenario  

 

D.2.3.3  Delay Comparison Period; Pedestrian Phase Inactive Scenario  

When there is no pedestrian in the intersection, the effect of train speed also was 

evaluated.  The average delay by train speed groups is shown in Table D-18 during the 

delay comparison period for the pedestrian phase inactive scenario.  The detailed results 

of the average delay depending on APWT also are shown in Table D-19. 
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TABLE D-18 Average Delay by Group (Delay Comparison Period1; Pedestrian 
Phase Inactive Scenario; and Random Train Arrival Time) 

 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) Average 

Group 1 52.8 52.8 52.7 52.2 52.6 
Group 2 48.2 47.8 47.4 47.4 47.7 

Average 
By 

Group Group 3 45.6 44.9 44.5 44.7 45.0 
Average 48.9 48.5 48.2 48.1 48.4 

1:  600 to 1320 seconds 
 

 

Although the delay is lessened for the pedestrian phase inactive scenario compared to the 

pedestrian phase active scenario, the trend is the same for the pedestrian phase active 

scenario.  In all of the TPS algorithms, Group 3 has the smallest delay with an average of 

45.0 sec/veh and Group 1 has the largest delay with an average of 52.6 sec/veh.  The 

difference in delay between Group 1 and Group 3 was 7.2 sec/veh for the TPS0 

algorithm, 7.9 sec/veh for the TPS1 algorithm, 8.2 sec/veh for the TPS2 algorithm, and 

7.5 sec/veh for the TPS3 algorithm for the pedestrian phase inactive scenario.   
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TABLE D-19 Average Delay by Group and APWT (Delay Comparison Period1; 
Pedestrian Phase Inactive Scenario; and Random Train Arrival Time) 

APWT2 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) 

Ave. By 
Group Ave.

Group 1 52.8 52.8 52.8 52.8 52.8 
Group 2 48.2 48.2 48.2 48.2 48.2 40 
Group 3 45.6 45.6 45.6 45.6 45.6 

48.9 

Group 1   54.0 54.0 53.6 53.9 
Group 2   48.3 48.3 48.2 48.2 50 
Group 3   45.9 45.9 45.6 45.8 

49.3 

Group 1   53.8 53.8 53.8 53.8 
Group 2   48.4 48.3 48.2 48.3 60 
Group 3   45.9 46.0 45.4 45.8 

49.3 

Group 1   53.2 53.6 53.0 53.3 
Group 2   48.3 48.3 48.3 48.3 70 
Group 3   45.0 45.2 45.1 45.1 

48.9 

Group 1   53.3 53.5 52.5 53.1 
Group 2   48.1 48.0 48.0 48.0 80 
Group 3   44.8 44.8 45.0 44.8 

48.6 

Group 1   52.4 52.3 52.0 52.2 
Group 2   47.8 47.3 47.5 47.5 90 
Group 3   44.3 44.2 44.8 44.5 

48.1 

Group 1   51.6 51.6 51.0 51.4 
Group 2   47.5 46.9 46.7 47.0 100 
Group 3   44.0 43.5 44.8 44.1 

47.5 

Group 1   52.2 51.7 50.8 51.6 
Group 2   46.8 46.2 46.1 46.4 110 
Group 3   44.4 43.1 43.4 43.6 

47.2 

Group 1   52.1 50.8 50.6 51.2 
Group 2   46.5 45.5 45.4 45.8 120 
Group 3   44.5 42.6 42.7 43.3 

46.7 

Group 1 52.8 52.8 52.7 52.2 52.6 
Group 2 48.2 47.8 47.4 47.4 47.7 

Ave. 
 By 

Group Group 3 45.6 44.9 44.5 44.7 45.0 
48.4 

Average 48.9 48.5 48.2 48.1 48.4  
1:  600 to 1320 seconds 
2:  Advance preemption warning time   
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To check statistically the difference among the train speed groups, Duncan’s multiple 

range test also was performed.  Experimentwise error rate was set to 0.03, which means 

that the common level of significance per test is 0.01.  The results are shown in Table D-

20. 

 

 

TABLE D-20 Results of Duncan Test between Train Speed Groups (Delay 
Comparison Period1; Pedestrian Phase Inactive Scenario; and Random Train 
Arrival Time) 

Mean (sec/veh) 
Group Comparison 1st 

Group 
2nd 

Group 

Test 
Statistic 

Critical 
Value Result 

Group3 Group1 44.8 52.6 7.81 0.78 Reject H0
2 

Group3 Group2 44.8 47.6 2.79 0.75 Reject H0 
Group2 Group1 47.6 52.6 5.02 0.75 Reject H0 

1:  600 to 1320 seconds  
2:  Statistically different between two means at 0.01 level of significance 
 

 

It was found that the delay in Group 3 is smaller than the delay in Groups 1 and 2, and 

the delay in Group 2 is smaller than the delay in Group 1 for the pedestrian phase 

inactive scenario.  Therefore, it also can be concluded that as train speed increases, the 

intersection is operated more efficiently for the pedestrian phase inactive scenario.   
 

D.2.3.4  Analysis Comparison Period; Pedestrian Phase Inactive Scenario  

The average delay by train speed groups is shown in Table D-21 during the analysis 

period for the pedestrian phase inactive scenarios.  The detailed results of the average 

delay depending on APWT also are shown in Table D-22. 
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TABLE D-21 Average Delay by Group (Analysis Period1; Pedestrian Phase 
Inactive Scenario; and Random Train Arrival Time) 

 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) Average 

Group 1 44.4 44.2 44.0 44.0 44.2 
Group 2 42.6 42.9 42.7 42.7 42.7 

Average 
By Group 

Group 3 41.0 40.9 40.8 40.8 40.9 
Average 42.7 42.7 42.5 42.5 42.6 

1: 6 to 60 minutes 

 

 

In all of the TPS algorithms, Group 3 has the smallest delay with an average of 40.9 

sec/veh and Group 1 has the largest delay with an average of 44.2 sec/veh.  The 

difference in delay between Group 1 and Group 3 was 3.4 sec/veh for the TPS0 

algorithm, 3.3 sec/veh for the TPS1 algorithm, 3.2 sec/veh for the TPS2 algorithm, and 

3.2 sec/veh for the TPS3 algorithm for the pedestrian phase inactive scenario.   
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TABLE D-22 Average Delay by Group and APWT (Analysis Period1; Pedestrian 
Phase Inactive Scenario; and Random Train Arrival Time) 

APWT2 Train 
Group 

TPS0 
(sec/veh) 

TPS1 
(sec/veh) 

TPS2 
(sec/veh) 

TPS3 
(sec/veh) 

Ave. By 
Group Ave.

Group 1 44.4 44.4 44.4 44.4 44.4 
Group 2 42.6 42.6 42.6 42.6 42.6 40 
Group 3 41.0 41.0 41.0 41.0 41.0 

42.7 

Group 1  44.7 44.7 44.7 44.7 
Group 2  42.6 42.6 42.6 42.6 50 
Group 3  41.1 41.1 41.0 41.0 

42.8 

Group 1  44.2 44.2 44.5 44.3 
Group 2  42.8 42.7 42.6 42.7 60 
Group 3  41.1 41.1 41.0 41.1 

42.7 

Group 1  44.1 44.0 44.0 44.0 
Group 2  43.0 42.9 43.0 43.0 70 
Group 3  40.8 40.9 40.9 40.9 

42.6 

Group 1  44.2 44.1 43.9 44.0 
Group 2  43.0 43.0 42.7 42.9 80 
Group 3  41.1 41.1 41.0 41.1 

42.7 

Group 1  44.0 43.9 44.1 44.0 
Group 2  43.1 42.9 42.5 42.9 90 
Group 3  40.7 40.7 40.8 40.7 

42.5 

Group 1  43.8 43.6 43.9 43.8 
Group 2  43.0 42.8 42.7 42.8 100 
Group 3  40.8 40.6 40.7 40.7 

42.4 

Group 1  44.1 43.8 43.5 43.8 
Group 2  43.0 42.5 42.9 42.8 110 
Group 3  40.8 40.4 40.5 40.5 

42.4 

Group 1  44.1 43.4 43.3 43.6 
Group 2  42.8 42.4 42.5 42.6 120 
Group 3  41.0 40.4 40.5 40.6 

42.3 

Group 1 44.4 44.2 44.0 44.0 44.2 
Group 2 42.6 42.9 42.7 42.7 42.7 

Ave. 
 By 

Group Group 3 41.0 40.9 40.8 40.8 40.9 
42.6 

Average 42.7 42.7 42.5 42.5 42.6  
1:  6 to 60 minutes 
2:  Advance preemption warning time 
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To check statistically the difference among the train speed groups, Duncan’s multiple 

range test also was performed.  Experimentwise error rate was set to 0.03, which means 

that the common level of significance per test is 0.01.  The results are shown in Table D-

23. 

 

TABLE D-23 Results of Duncan Test between Train Speed Groups (Analysis 
Period1; Pedestrian Phase Inactive Scenario; and Random Train Arrival Time) 

Mean (sec/veh) 
Group Comparison 1st 

Group 
2nd 

Group 

Test 
Statistic 

Critical 
Value Result 

Group3 Group1 40.9 44.1 3.24 0.57 Reject H0
2 

Group3 Group2 40.9 42.7 1.89 0.55 Reject H0 
Group2 Group1 42.7 44.1 1.34 0.55 Reject H0 

1:  6 to 60 minutes 
2:  Statistically different between two means at 0.01 level of significance 
 

 

It was found that the delay in Group 3 is smaller than the delay in Groups 1 and 2, and 

the delay in Group 2 is smaller than the delay in Group 1 for the pedestrian phase 

inactive scenario.  Therefore, the same conclusion to the delay comparison period can be 

induced, that is, as train speed increases, the intersection is operated more efficiently for 

the pedestrian phase inactive scenario  

 

D.3  CONCLUDING REMARKS 

In the simulation under the normal operation condition instead of the worst condition, 

which is the case where the pedestrian clearance phase is active at the onset of 

preemption in every simulation, the effect of the TPS3 algorithm on delay was almost 

same.  That is, in both situations the TPS3 algorithm produced a minimum delay.  

Therefore, no matter when a preemption is initiated during a cycle, the TPS3 algorithm 

can operate the intersection without a safety problem and at the same time decrease the 

intersection delay. 
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