405-1227-7,500-L180

TEXAS AGRICULTURAL EXPERIMENT STATION

B. YOUNGBLOOD, DIRECTOR

COLLEGE STATION, BRAZOS COUNTY, TEXAS

BULLETIN NO. 375

JANUARY, 1928

DIVISION OF CHEMISTRY

The Soils of Bowie, Denton, Freestone, and Red River Counties

AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. O. WALTON, President

STATION STAFF[†]

- ADMINISTRATION: *B. Youngelood, M. S., Ph. D., Director A. B. Conner, M. S., Acting Director R. E. KARPER, B. S., Acting Vice-Director J. M. Schaedel, Secretary M. P. HOLLEMAN, JR., Chief Clerk J. K. FRANCKLOW, Assistant Chief Clerk CHESTER HIGGS, Executive Assistant C. B. NEBLETTE, Technical Assistant

- C. B. NEBLETTE, Technical Assistant CHEMISTRY: G. S. FRAPS, Ph. D., Chief; State Chemist S. E. ASBURY, M. S., Assistant Chemist E. C. CARLYLE, B. S., Chemist WALDO H. WALKER, Assistant Chemist VELMA GRAHAM, Assistant Chemist T. L. OGLER, B. S., Assistant Chemist J. G. EVANS, Assistant Chemist J. G. EVANS, Assistant Chemist ATHAN J. STERGES, B. S., Assistant Chemist G. S. CRENSHAW, A. B., Assistant Chemist J. FANDEM, FUEGAS, Assistant Chemist JEANNE M. FUEGAS, Assistant Chemist
- HORTICULTURE:

Chie H. NESS, M. S., Berry Breeder

- RANGE ANIMAL HUSBANDRY: J. M. JONES, A. M., Chief; Sheep and Goat Investigations J. L. LUSH, Ph. D., Animal Husbandman; Breeding Investigations W. H. DAMERON, B. S., Wool Grader ENTOMOLOGY: F. L. THOMAS, Ph. D., Chief; State
- L. THOMAS, Ph. D., Chief; State Entomologist

- Entomologist H. J. REINHARD, B. S., Entomologist R. K. FLETCHER, M. A., Entomologist W. L. OWEN, JR., M. S., Entomologist FRANK M. HULL, M. S., Entomologist J. C. GAINES, JR., M. S., Entomologist C. J. TODD, B. S., Entomologist F. F. BIBBY, B. S., Entomologist S. E. McGREGOR, JR., Acting Chief Foulbrood Inspector A. B., KENNERLY, Foulbrood Inspector
- A. B. KENNERLY, Foulbrood Inspector GILLIS GRAHAM, Foulbrood Inspector
- AGRONOMY:

 - E. B. REYNOLDS, M. S., Chief A. B. CONNER, M. S., Agronomist; Grain Sorghum Research R. E. KARPER, B. S., Agronomist; Small Grain
 - Research C. M C. MANGELSDORF, Sc. D., Agronomist; in charge of Corn and Small Grain Investi-
 - D. T. V KILLOUGH, M. S., Agronomist; Cotton
 - Breeding H. E. REA, B. S., Agronomist; Cotton Rot Rot Investigations

 - E. C. CUSHING, B. S., Assistant in Crops P. R. JOHNSON, B. S., Assistant in Soils

- SUBST No. 1, Beeville, Bee County: R. A. HALL, B. S., Superintendent No. 2, Troup, Smith County: W. S. HortchKISS, Superintendent No. 3, Angleton, Brazoria County: R. H. STANSEL, M. S., Superintendent FRANK M. HULL, M. S., Entomologist No. 4, Beaumont, Jefferson County: R. H. WYCHE, B. S., Superintendent No. 5, Temple, Bell County: HENRY DUNLAVY, M. S., Superintendent B. F. DANA, M. S., Plant Pathologist H. E. REA, B. S., Agronomist; Cotton Root Rot Investigations No. 6, Denton, Denton County:

- Investigations No. 6, Denton, Denton County: P. B. DUNKLE, B. S., Superintendent No. 7, Spur, Dickens County: R. E. Dickson, B. S., Superintendent No. 8, Lubbock, Lubbock County: D. L. JONES, Superintendent FRANK GAINES, Irrigationist and Forest Nurseryman No. 9, Balmorhea, Reeves County:
- No. 9, Balmorhea, Reeves County: J. J. BAYLES, B. S., Superintendent

 - Teachers in the School of Agriculture Carrying Cooperative Projects on the Station:

****In cooperation with the School of Agriculture

- G. W. ADRIANCE, M. S., Associate Professor of Horticulture S. W. BILSING, Ph. D., Professor of Entomology V. P. LEE, Ph. D., Professor of Marketing and Finance D. Scoartes, A. E., Professor of Agricultural Engineering H. P. SMITH, M. S., Associate Professor of Agricultural Engineering
 - †As of December 1, 1927. *On leave. **Dean, School of Veterinary Medicine. ***In cooperation with U. S. Department of Agriculture.

B. J. JORNE, D. V. M., Viel Markan, M. J. Charles, D. J. NAUBENHAUS, Ph. D., Chief
J. J. TAUBENHAUS, Ph. D., Plant Pathologist and Laboratory Technician
W. J. BACE, M. S., Plant Pathologist
J. PAUL LUSK, S. M., Plant Pathologist
B. F. DANA, M. S., Plant Pathologist B. P. DANA, M. S., Italia Failudogist
FARM AND RANCH ECONOMICS:
L. P. GABBARD, M. S., Chief
*B. YOUNGBLOOD, M. S., Ph. D., Farm and Ranch Economist
G. L. CRAWFORD, M. S., Marketing Research

VETERINARY SCIENCE: **M. FRANCIS. D. V. M., Chie, H. SCHMIDT, D. V. M., Veterinarian J. D. JONES, D. V. M., Veterinarian

- Ranch Economic G. L. CRAWFORD, M. S., Markenny Specialist C. A. BONNEN, M. S., Farm Management Research Specialist V. L. CORY, M. S., Grazing Research Bolaniut ***T. L. GASTON, JR., B. S., Assistant; Farm Records and Accounts ***J. N. TATE, B. S., Assistant; Ranch Records and Accounts HOME RESEARCH:

RURAL HOME RESEARCH: JESSIE WHITACRE, Ph. D., Chief MAMIE GRIMES, M. S., Textiles and Clothing Specialist

- SOIL SURVEY: ***W. T. CARTER, B. S., Chief H. W. HAWKER, Soil Surveyor E. H. TEMPLIN, B. S., Soil Surveyor T. C. REITCH, B. S., Soil Surveyor
- BOTANY: H. NESS, M. S., Chief

- PUBLICATIONS: A. D. JACKSON, Chief SWINE HUSBANDRY: FRED HALE, M. S., Chief DAIRY HUSBANDRY:
- Chief

- Chief
 POULTRY HUSBANDRY:
 R. M. SHERWOOD, M. S., Chief
 ****AGRICULTURAL ENGINEERING:
 MAIN STATION FARM:
 G. T. MCNESS, Superintendent
 APICULTURE (San Antonio):
 H. B. PARKS, B. S., Chief
 A. H. ALEX, B. S., Queen Breeder
 FEED CONTROL SERVICE:
 F. D. FULLER, M. S., Chief
 S. D. PEARCE, Secretary
 J. H. ROGERS, Feed Inspector
 W. H. WOOD, Feed Inspector
 W. D. NORTHCUTT, J.R., B. S., Feed Inspector
 S. M. MOORE, Feed Inspector
 TONS

Entomologist

V. L. CORY, M. S., Grazing Research Botanist ***0. G. BABCOCK, B. S., Collaborating

Entomologist O. L. CARPENTER, Shepherd No. 15, Weslaco, Hidalgo County: W. H. FRIEND, B. S., Superinlendent W. J. BACH, M. S., Plant Pathologist No. 16, Iowa Park, Wichita County: E. J. WILSON, B. S., Superintendent J. PAUL LUSK, S. M., Plant Pathologist

- SUBSTATIONS No. 10, Feeding and Breeding Station, near College Station, Brazos County:
 R. M. SHERWOOD, M. S., Animal Husband-man in Charge of Farm
 L. J. MCCALL, Farm Superintendent
 No. 11, NacOgdoches, Nacogdoches County:
 H. F. MORRIS, M. S., Superintendent
 ***No. 12, Chillicothe, Hardeman County:
 J. R. QUINBY, B. S., Superintendent
 ***J. C. STEPHENS, M. A., Junior Agronomid No. 14, Sonora, Sutton-Edwards Counties:
 E. W. THOMAS, B. S., Superintendent
 V. L. CORY, M. S., Grazing Research Bolanist

SYNOPSIS

This is the eleventh bulletin dealing, by counties, with the chemical composition of Texas soils, and discusses the soils of Bowie, Denton, Freestone, and Red River counties. The upland soils of the forested areas of all these counties are somewhat low, on an average, in active phosphoric acid, nitrogen, and potash, though they are better supplied with potash than with nitrogen or phosphoric acid. The group of forested soils generally respond well to fertilizer and the use of fertilizer on them is usually profitable. Many of them are acid. The prairie upland soils and the first-bottom soils are much better supplied with plant-food material. Detailed descriptions and analyses are given of the various soil types. Methods for maintaining and increasing soil fertility are discussed.

TABLE OF CONTENTS

PA	GE
Introduction	5
Maintenance of Fertility	5
Explanation of Terms	9
Average Composition of the Soils of the Counties Studied	10
Crop-Production Power of Average Soils	12
Pot Experiments	13
Fertilizers for the Soils Studied	13
Use of Lime	14
Soils of Bowie County	14
Pot Experiments on Soils of Bowie County	15
Classification of Soils of Bowie County	15
Alphabetical List of Soil Types of Bowie County,	22
Soils of Denton County	23
Classification of Soils of Denton County	23
Alphabetical List of Soils of Denton County	27
Alkali Spots	30
Soils of Freestone County	31
Classification of Soils of Freestone County	31
Alphabetical List of Soil Series of Freestone County	32
Soils of Red River County	38
Chemical Composition	38
Classification of Soils of Red River County	39
Alphabetical List of Soil Series of Red River County 4	10
Acknowledgment 4	17
Summary and Conclusion 4	17

JANUARY, 1928

BULLETIN NO. 375

THE SOILS OF BOWIE, DENTON, FREESTONE, AND RED RIVER COUNTIES

G. S. FRAPS

This Bulletin deals with the chemical composition and fertility of samples of typical soils from four counties in Texas, and is the eleventh bulletin of a series dealing with the chemical composition of typical Texas soils. The preceding bulletins are Numbers 99, 125, 161, 173, 192, 213, 244, 301, and 337. Most of the samples analyzed were collected by field agents of the Bureau of Soils of the United States Department of Agriculture, in connection with the Texas Agricultural Experiment Station.

Detailed reports of the surveys, with maps showing the location of the various soil types, have been published by the Bureau of Soils, United States Department of Agriculture, and from these reports the descriptions given in this Bulletin are taken:

Soil survey of Bowie County, Texas, by L. R. Schoenmann et al., in cooperation with the Texas Agricultural Experiment Station.

Soil survey of Denton County, Texas, by W. T. Carter, Jr. and M. W. Beck.

Soil survey of Freestone County, Texas, by H. W. Hawker et al., in cooperation with the Texas Agricultural Experiment Station.

Soil survey of Red River County, Texas, by W. T. Carter, Jr. et al., in cooperation with the Texas Agricultural Experiment Station.

Requests for copies of reports of any soil survey should be addressed to the Bureau of Chemistry and Soils, United States Department of Agriculture, Washington, D. C. The Division of Chemistry has no copies of these reports for distribution.

MAINTENANCE OF FERTILITY

The following are some of the essentials to the maintenance of soil fertility:

(1) The supply of nitrogen and vegetable matter in the soil should be maintained by growing legumes in a proper rotation, and by plowing these under or grazing them off.

(2) Any deficiency of phosphoric acid in the soil should be corrected by the proper use of phosphates as a fertilizer.

(3) Any acidity injurious to the crops being grown, if present, should be corrected by the use of ground limestone or other forms of lime. Lime is also used for the improvement of the physical character of the heavy soils poor in lime or for supplying lime for crops which need a quantity of lime. Lime should be used chiefly in connection with a systematic legume rotation.

111-1-1-1-1-1 Part Press to regard Bowie, upland Forested Phosphoric Acid WIII Nitrogen Denton, upland Forested - Potash Fig.L. mm Freestone, upland Forested Red River, upland Forested Denton, Upland Prairie mm Bowie, First Bottom mm Denton, First Bottom Freestone, First Bottom IIIIA Red River, First Bottom 40 80 120 160 Corn. possibility

(4) Any deficiency of potash in the soil should be corrected by the use of potash fertilizers.

Maintenance of Humus and Nitrogen. The maintenance of the humus or vegetable matter in the soil is essential to fertility. Partly decayed vegetable matter, sometimes termed humus, in sufficient quantity, improves the capacity of the soil to hold a favorable amount of water, enables it to break up into a good condition of tilth when plowed or cultivated, and acts in other favorable ways. Humus also contains most of the nitrogen of the soil.

Some soils produce good crops for a long time without additions of vegetable matter, but for permanent productiveness, vegetable matter must be added sooner or later. Vegetable matter may be supplied in barnvard manure, which is excellent when sufficient quantities can be secured, but barnyard manure cannot always be secured in large eonugh quantities. Legume crops, which have power to take nitrogen from the ir, may then be grown in rotation with other crops, and either turned inder or grazed off. If the crop is heavy, it is best to allow it to become nearly mature before turning it under. To graze off the crop is better han to turn it under, as some of its feeding value is secured when the rop is grazed, while the droppings from the animals, together with the iquid excrement, return to the soil the bulk of the plant food taken up by the crop. To make the crop into hay, and save the manure from the lay, is not as good for the soil as grazing off the crop, since a large part of the plant food in the hay is lost. When the legume is made into hay o be sold, the land probably gains little nitrogen and actually loses hosphoric acid and potash.

Crops other than legumes add vegetable matter to the soil when plowed under or grazed off, or are suitable for cover crops to reduce osses from leaching or washing when the land would otherwise be bare, out legumes are the only plants which can fix the nitrogen of the air nd place it in the soil in forms suitable for the use of other crops. For this reason it is best to grow legumes for hay, forage, or renovating rops whenever possible.

The maintenance of the nitrogen content of the soil is more important han the maintenance of the humus content. Nitrogen may be purhased as a fertilizer, but it is expensive when bought in this way, and rdinarily a farmer cannot afford to buy enough of it to keep the itrogen content of his land from decreasing. The only practical way p maintain the nitrogen content of the soil when ordinary farm crops re grown is to secure nitrogen from the air by growing legumes. The itrogen fixed by legumes can then be utilized for cotton, corn, kafir, or milar crops. The kind of legume best to grow depends upon the imate and other conditions, which vary with different sections of the tate and with different conditions of farming.

Phosphoric Acid. Texas soils are frequently deficient in phosphoric id. This Bulletin contains statements of the probable deficiencies in

phosphoric acid of the soils of the counties described. A discussion of the use of phosphatic fertilizers is given in Bulletin 167. Deficiency of phosphoric acid may be easily and profitably corrected by the use of acid phosphate as a fertilizer.

Acidity. Some soils contain organic or inorganic acids. Some crops such as clover, alfalfa, barley, and rye do not grow well on acid soils. There are other crops, such as cowpeas and watermelons, which do well on acid soils. Acidity may be corrected by the use of hydrated lime, ground oyster shells, air-slaked lime, or ground limestone rock. A number of acid soils are found to occur in the counties described in this Bulletin. The acidity of some of the soils is slight, while that of others is high. Acidity is discussed more fully in Bulletin 243.

Potash. While the soils of Texas as a rule contain enough potash to produce good crops, there is some variation and some soils need potash as a fertilizer. In general, potash is the least often needed of the three plant foods, nitrogen, phosphoric acid, and potash. Plants can take up more potash than they need.

The needs for potash of the various types of soils here studied are indicated by the tables of analyses and interpretation of results given later. Some of the soils described are low in active potash compared with other soils of the State, though they are much better supplied with potash than with phosphoric acid or nitrogen.

How to Use the Analyses

Analyses of the soils are given in connection with the descriptions of the various types of soil. The interpretation of the analyses is also given and there discussed.

If a soil well supplied with plant food does not give good yields it is obvious that some condition other than plant food controls the yields. The physical condition may be poor, either in respect to cultivation, drainage, or otherwise. In some instances it may contain injurious substances, such as alkali. Plant diseases also may be present.

If the soil is well supplied with total plant food, but low in active plant food, attempts may be made to increase the activity of agencies which make the plant food available, by means of additions of manure, of green crops plowed under, or if the soil needs lime, by additions of lime or ground limestone in connection with a legume rotation.

If the crop yields are low and the plant food of the soil is deficient, fertilizer should be used. The depth of the soil, the character of the subsoil, and the season, influence the yield of crops as much as the plant food, which can be seen by observing the variation in yields on the same land from one year to another.

EXPLANATION OF TERMS

Total phosphoric acid is the entire quantity of phosphoric acid contained in the soil. It cannot all be taken up by plants at once, for only a small portion is immediately available.

Active phosphoric acid is the phosphoric acid soluble in 0.2 normal nitric acid. As shown in Bulletins 126 and 276, there is a relation between the active phosphoric acid of the soil and the amount of phosphoric acid which crops are able to take from the soil in pot experiments. There is a closer relation between the active phosphoric acid of the soil and the needs of the soil for phosphoric acid as a fertilizer, than between the total phosphoric acid and the needs of the soil.

Total potash represents the entire amount of potash in the soil. Some of this is locked up in highly insoluble silicates, and may not become available for the use of plants in centuries. The total potash does not show how much may be taken up by plants.

Acid-soluble potash is the amount of potash which is dissolved by strong hydrochloric acid. As pointed out by Hilgard, there is a relation between the acid-soluble potash of the soil, and the wearing qualities of the soil. (Fraps' Principles of Agricultural Chemistry, page 171.)

Active potash is the potash soluble in 0.2 N nitric acid. It represents potash which can be readily taken up by plants, as shown by pot experiments in Bulletins 145 and 325.

Total nitrogen is the entire quantity of nitrogen present in the soil. As shown in Bulletin 151, there is a relation between the total nitrogen of the soil, and the nitrogen which can be taken from it by crops in pot experiments. The total nitrogen is therefore an index as to the needs of the soil for nitrogen, although the nitrogen in worn soils is not as available as that in new soils.

Acid-soluble lime is the lime which is dissolved by strong hydrochloric acid. According to Hilgard, the amount of lime found by this method is a valuable indication as to the fertility of the soil.

Basicity. This term is applied to the bases (chiefly lime) which neutralize the 0.2 N nitric acid in the method for determining active phosphoric acid and active potash. This term is merely used as a convenient one for the determination referred to. If all the acid is neutralized, the basicity is 10 per cent or 200,000 pounds of base (carbonate of lime) to 2,000,000 of the soil.

Acidity here determined is the amount of lime required to neutralize the soil as ascertained by the Veitch method. Acidity is discussed in Bulletin 243.

Corn possibility represents the average amount of plant food which is withdrawn by plants in pot experiments from soils containing similar

amounts of active phosphoric acid, active potash, or total nitrogen. It is based on 2,000,000 pounds of the soil.

The corn possibility is not claimed to indicate the possible yield from the soil, as this depends upon other conditions in addition to the fertility of the soil. According to David D. Long, however, there is a close relation between the average yields of corn, oats, wheat, and cotton given by census reports for Southeastern States (also Texas), and the corn possibility as shown by the chemical analysis of some common types of soil, converted into terms of these other crops (The Fertilizer Green Book, December, 1922). The corn possibility is a convenient way of comparing amounts of various foods in the soil. For example, with the Bowie very fine sandy loam of Red River County, the corn possibility for active phosphoric acid is 12, for the active potash 61, and for total nitrogen 13. The soil is probably deficient both in phosphoric acid, and in nitrogen, and it is less likely to be deficient in potash.

The experiments on which this interpretation is based are published in Bulletins 126, 145, 151, 178, 267, and 355, and the method is discussed in Bulletins 213 and 355.

AVERAGE COMPOSITION OF THE SOILS OF THE COUNTIES STUDIED

The average composition of the soils is given in Table 1. The soils are divided into four groups: the upland forested soils, the upland prairie soils, the second-bottom or terrace soils, and the first-bottom or alluvial soils. The term "forested" refers to the original condition of the soils, as they are now largely in cultivation. The upland forested soils studied in this Bulletin are usually low in active phosphoric acid and nitrogen. They are a little better supplied with active potash. A number of them in Bowie, Freestone, and Red River Counties are acid, but they are not acid in Denton County. The subsoils are likewise low in plant food and they are more acid than the surface soils.

The upland prairie soils are better supplied with plant food and with lime than the forested soils. They contain two or three times as much active plant food or total nitrogen as the forested soils. While many of them are limestone soils, a few are acid, especially in Bowie County.

The second-bottom or terrace soils are located above overflow. They are somewhat better supplied with plant food than the upland forested soils but are not as well supplied as the prairie soils. These soils are quite low in nitrogen in Freestone and Denton Counties.

The first-bottom soils are sometimes subject to overflow. They are much better supplied with plant food than the other groups of soils discussed in this Bulletin. While some of them are slightly acid, most of them are well supplied with lime. They contain 4 to 8 times as much active phosphoric acid, 2 to 3 times as much active potash, and 2 to 4 times as much total nitrogen as the upland forested soils.

	Phosphoric Acid	ric Acid			Potash		Lime, I	Lime, Per Cent	
	Total Per Cent	Active Per Million	Nitrogen Per Cent	Total Per Cent	Acid Soluble Per Cent	Acti ve Per Million	Acid Soluble	Basicity	Number Averaged
Upland (Forested) Surface Soils Bowie County Denton County cross timber) Freestone County. Red River County.	.041 .064 .039 .049	125.03	.054 .038 .041 .062	.55 .79 .49		103 103 115			15 15 14
Upland (roresed) subsous Bowie County. Denton County (cross timber) Freestone County. Red River County.	.040 .047 .041 .044	14 11 13	.034 .038 .038 .054	.74 .52 .49	5,5 <u>8</u> ,5	116 116 134 104	119 119 118 118 118 118		15 3 16 8 16 8 16
Upland (Prantre) Surface Souls Bowie County, Denton (Grand Prairie) Denton (Black Prairie) Freestone County, Red River County,	054 071 083 083	62322 2322 626 2322 232 232 232 232 232	.067 .107 .112 .132	1.35 1.35 1.35 .62	272888844 2738888 2738888	223 215 256 208 124	$\begin{array}{c} 1.19 \\ 3.66 \\ 3.55 \\ 10.66 \end{array}$	2.08 1.31 3.35 5.10 5.10	ကထလာက
Uptaut (France) subsoin Bowie County. Denton (Grand Prairie) Penton (Black Prairie) Freestone County. Reed River County. Second Bottom (or terrace) Surface	.046 .053 .050 .086	322033 325033 325033 3203 3203	.035 .070 .058 .049 .067	$1.14 \\ 1.14 \\ 1.18 \\$	21 337 249 249	$143 \\ 155 \\ 155 \\ 95$	$\begin{array}{c} 1.55\\ 2.49\\ 3.70\\ 1.61\\ 12.48\end{array}$	3.53 1.98 5.6 5.6	က်ထုတ်ထုက်
Bowie County Bowie County Denton County Freestone County Red River County	.057 .044 .023 .035	34 58 58 9	.063 .088 .023 .016	.90 .73 .92 .92 .92	.13 .06 .07	216 70 89	.19 .145 .14		040H
Bowie County. Denton County. Denton County.	.041 .029 .040	13 11 22	.033 .051 .040	1.01 .88	.19 .40 .24	$ \begin{array}{c} 105 \\ 208 \\ 147 \end{array} $.16	1.48 .40	∞.4.01
First Dorden Source Sources Sources Bowle County Dento County Freestone County Red River County	.093 .106 .087 .116	$192 \\ 173 \\ 72 \\ 430$.092 .135 .128 .118	1.87 1.21 1.41 1.54		248 230 316 240	$ \begin{array}{c} 1.34 \\ 2.55 \\ 2.41 \\ 2.41 \end{array} $	2.79 4.88 2.30 2.30	96 55 44 3 6 5 5 4
Bowle County Denton County Freestone County Referstone County Red River County	.068 .092 .092 .092	142 125 165 165	.062 .069 .059	1.68 1.09 1.38 1.82	.54 .49 .37	218 189 247 190	4.09 1.76 1.78	$2.00 \\ 6.14 \\ 1.67 \\ 2.00 $	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.-Average composition of soils by groups.

CROP-PRODUCTION POWER OF AVERAGE SOILS

Table 2 contains the number of crops of 40 bushels of corn that could be produced by the plant food in an acre to the depth of seven inches (two million pounds), provided all the plant food could be extracted by the plants, in the groups of soils as averaged in Table 1. The total phosphoric acid of the upland forested soils could produce 31 to 51

Table 2.—Number of crops of forty bushels of corn which would be produced by the plant food in two million pounds of soil (an acre 7 inches deep).

	Total Phosphoric Acid	Nitrogen	Acid- Soluble Potash
Upland (Forested) Surface Soil			
Bowie County	33	18	70
Denton County (Cross Timbers)	51	13	45
Freestone County	31	14	50
Red River County	39	21	75
Upland (Prairie) Surface Soil			
Bowie County	43	22	165
Bowie County Denton County (Grand Prairie)	48	36	220
Denton County (Black Prairie)	57	29	190
Freestone County	52	37	190
Red River County	66	44	135
Second Bottom (or terrace) Surface Soil	1		
Bowie County	46	21	65
Denton County	35	88	130
Freestone County	18	8	30
Red River County	28	5	35
First-Bottom Surface Soil		and the stands	
Bowie County	74	31	250
Denton County	85	45	215
Freestone County	70	43	175
Red River County	93	39	345

Table 3.-Interpretation of analyses of soils averaged by groups.

	Corn Mi	Possibilit llion Pou	y Two nds	Phos-		
	Active Phos- phoric Acid	Nitro- gen	Active Potash	phoric Acid	Potash	Lime
Upland (Forested) Surface Soils						12.00
Bowie County	18	18	50	good	fair	good
Denton County (Cross Timbers)	12	13	61	fair	fair	fair
Freestone County	12	18	50	fair	fair	fair
Red River County	12	23	61	good	fair	good
Upland Prairie Surface Soil	14	20	01	goou	Tan	goou
Bowie County	24	23	105	good	good	good
Denton County (Grand Prairie)	18	33	105	good	good	good
Denton County (Black Prairie).	30	28	125	good	good	high
Freestone County	35	33	105	good	good	good
Red River County	35	38	61	good	good	high
Second Bottom or Terrace	00	00	01	goou	good	mgn
Bowie County	24	23	50	fair	fair	fair
Denton County	18	28	105	good	good	good
Freestone County	30	13	38	low	low	good
Red River County	6	8	50	fair	low	low
First Bottom		°.	00	Aun	10 11	10 11
Bowie County	45	23	115	good	good	good
Denton County	45	23	94	good	good	high
Freestone County	30	28	94	good	good	good
Red River County	45	18	94	good	good	good
and an and as and a start of the start of th		10		Bood	Bood	soou

crops of 40 bushels of corn, the acid-soluble potash could produce 13 to 21 crops, and the total nitrogen 45 to 75 crops. The upland prairie soils and the second-bottom soils average much better, as can be seen in the table.

Table 3 contains the corn possibility of the groups, derived from Table 1. The corn possibility of the active phosphoric acid varies from 6 to 45 bushels, the active potash from 38 to 125, and the total nitrogen from 8 to 38 bushels. These figures show the importance of adding nitrogen and phosphoric acid to these soils, and that potash is less important.

POT EXPERIMENTS

The needs for plant food of some of the soils discussed in this Bulletin were studied by growing the plants in pots containing portions of the soils, to which various forms of plant food were added. In making these experiments, 5,000 grams of soil were placed in a galvanized iron pot, and to one or two pots, a complete fertilizer (KPN) was added. To one or two more pots nitrogen and potash (NK) were added, phosphoric acid being omitted. The difference between this pot and the pot with the complete fertilizer shows the need of the soil for phosphoric To one or two more pots, phosphoric acid and potash (PK) were acid. added, nitrogen being omitted. The difference between this pot and that with the complete fertilizer shows the need of the soil for nitrogen. To a third set of one or two pots, nitrogen and phosphoric acid (NP) were added, potash being omitted. The difference between this pot and the pot receiving the complete fertilizer shows the effect of potash. The tables show the weights of the crops secured with the different additions, and also the amounts of phosphoric acid, potash, or nitrogen removed from the pot by the plants grown in the experiments. This is expressed in bushels of corn to the acre. The soil in pot experiments is under favorable conditions, and it is possible for the plants to take up more plant food from the same quantity of soil than would be the case under field conditions. It is also possible for a greater growth to be produced. There might be a considerable difference between the crop receiving the complete fertilizer (KPN), and the crop which had no potash (PN), in the amount of crop produced, and yet the crop produced without potash might be equal to the possibility of production under the climatic conditions prevailing. Thus the soil would appear deficient in the pot experiment, while for all practical purposes it would not be deficient. This is the reason why the plant food withdrawn is expressed in bushels of corn to the acre. It shows the relative possibility of the soil to furnish plant food for crops in pot experiments.

FERTILIZERS FOR THE SOILS STUDIED

The soils studied may be divided into several groups with respect to their relation toward fertilizers.

The upland soils, originally forested, of all these counties, are gen-

erally somewhat low in plant food, especially phosphoric acid and nitrogen, and generally respond well to fertilizers under favorable seasonal conditions. The use of fertilizers is generally advisable for field crops, but especially for truck and fruit crops. Fertilizers suggested for use are given in other publications of the Experiment Station. In general, the light soils are likely to need more potash than the heavier soils.

The black calcareous prairie soils, especially the Houston soils, do not respond well to fertilizers, and at present we cannot recommend fertilizers to be used on them, but recommend legume rotation and manure.

The non-calcareous prairie soils will probably respond to fertilizers, though they are at present in less need of them than are the calcareous prairie soils.

The first-bottom soils are well supplied with plant food and generally do not need fertilizers so much as the upland forested soils. Where they produce a heavy growth of stem and leaves but do not fruit well, applications of acid phosphate may correct this condition. Where the productiveness has begun to decrease, due to cultivation over a period of years, fertilizers will probably be of advantage.

USE OF LIME

A number of the soils described in this Bulletin are acid. Acidity can easily be neutralized by means of lime, as described in Bulletin 243.

The use of lime on sandy soils which are well drained, such as Norfolk, Ruston, or Orangeburg soils, is not to be advised except in connection with a legume rotation, for the reason that application of lime is likely to stimulate the production of nitrates and cause loss of the nitrogen of the soils during the winter months. The acidity of these surface soils is usually not high enough to be injurious to crops ordinarily grown.

The use of lime on the heavier, less porous soils, such as the heavier soils of the Lufkin, Crowley, and Susquehanna series, is more likely to be of advantage. It will not only correct the acidity, which is sometimes high, but may also improve the physical character of these soils so that they break up into a better tilth under cultivation. However, it would be better to use the lime in connection with legume rotation on these soils also. The lighter or more sandy soils of these series are less often acid than the heavier soils.

The black prairie soils of the Houston series, and some others, and many of the first-bottom soils, contain an abundance of lime and are not acid.

SOILS OF BOWIE COUNTY

Bowie County is located in the northeastern corner of Texas. The elevation ranges from about 200 to 450 feet above sea level. There are three surface divisions, consisting of (1) broad ridges extending east and west through the central part of the county, (2) somewhat lower land south and north of the central ridge, and (3) alluvial belts along the rivers. The chief crops are cotton, corn, oats, and peanuts. Cow-

peas, sweet potatoes, sorghum, and various other vegetables are produced, as well as some live stock.

Table 4 contains the acreage and percentage of the areas occupied by some of the types of soils which occur in Bowie County. Thirty-four types were mapped, divided into seventeen series. A key to the classification of the soils is given below.

The Susquehanna very fine sandy loam occupies 18.0 per cent of the county, the Bowie very fine sandy loam 17.5 per cent, and the Susquehanna silt loam 8.5 per cent. These three are upland soils. The Ochlockonee very fine sandy loam, which is the chief alluvial soil, occupies 4.7 per cent of the county.

The average composition of the groups of soils is given in Table 1. It is seen from the table that the forested uplands contain less plant food than the prairie upland or the bottom lands and on an average are low in both phosphoric acid and nitrogen.

The chemical composition of the various types of soils is contained in Table 5. Table 4 contains the interpretation of the analyses of the various soil types.

An examination of the analyses shows that nitrogen is needed which may be supplied by a legume rotation which also furnishes vegetable matter. Fertilizers containing phosphoric acid and nitrogen are needed on the upland forested soils. The upland forested soils are better supplied with active potash than with nitrogen or phosphoric acid but are still low in active potash. The other groups of soils are better supplied with plant food, but are likely to respond to fertilizers.

These results indicate that one of the first needs of the upland soils of this county is a legume rotation, accompanied by the use of phosphoric acid, nitrogen and potash in fertilizers.

Pot Experiments on Soils of Bowie County

Pot experiments were made on the soil and subsoil of only one type of this county, the deep phase of the Susquehanna very fine sandy loam, for testing need for nitrogen only. The results of these are given in Table 6. The weights of the crops with complete fertilizer are given in the first column and those without nitrogenous fertilizer in the second. The nitrogen withdrawn in the pot experiment expressed in bushels of corn to the acre is given in the next column. This is 18 to 24 bushels for the first crop. The yields fall off rapidly in succeeding crops, showing the importance of nitrogen.

Classification of Soils of Bowie County

Upland soils of the forested area:

- Non-calcareous, gray to brownish-gray surface soils with friable sandy clay subsoils:
 - Subsoil pale yellow-Norfolk soils.
 - Subsoil yellow above, red mottled below-Bowie soils.
 - Subsoil reddish yellow to yellow red—Ruston soils.
 - Subsoil red—Orangeburg soils.

4	res of Area	3136 0.5 14144 2.4 02592 17.5 7936 1.4 5056 0.9 8128 1.4 43712 7.5 7940 1.2 7360 1.2 7360 1.3 7360 1.3 7360 1.3 7360 1.3 7360 1.3 7360 1.3 2432 0.4 2176 0.4 2176 0.4 2176 0.4 2176 0.4 2176 0.4 21780 0.4 2138 3.3 358 3.5 19136 3.3 21280 4.7 5184 0.9 5184 0.2
	ty Acres	
	Acidity	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
le	Lime	good pow low good good good good good good good go
Acid-Soluble	Potash	good low good good good good low low good good good good good good good go
ł	Phos- phoric Acid	good good good good good good good good
/ Two	Active Potash	ះสอ <u>ន</u> ិនិនិ ខេត្តភ្លំង៩ភាពន្លិតតាតន្លត្តតាតិនិត្តតាតិនិត្តតិនិត្តនិត្តនិត្តនិ
Corn Possibility Two Million Pounds	Total Nitro- gen	88~282888828828828888888888888888888888
Corn Mi	Active Phos- phoric Acid	న్రంథితం విశివం చెప్పటి చిశిశ సరికి కొని కొని కొంత చెంది కొంత కొంత కొంత కొని కొంత కొని కొంత కొని కొంత కొని కొం తిరుగు కొంత కొంత కొని కొంత కొన
	Type Name	Bastrop Clay-surface. Bawie Fine Sandy Loam-surface. Bowie Fine Sandy Loam-surface. Average Bowie Very Fine Sandy Loam-subsoil. Average Bowie Very Fine Sandy Loam-subsoil. Crowley Sitt Loam-surface. Leaf Very Fine Sandy Loam-subsoil. Leaf Very Fine Sandy Loam-subsoil. Leaf Very Fine Sandy Loam-subsoil. Leaf Very Fine Sandy Loam-subsoil. Laft Nery Fine Sandy Loam-subsoil. Laft Nery Fine Sandy Loam-subsoil. Lufkin Sitty Clay Loam-subsoil. Lufkin Sitty Clay Loam-subsoil. Lufkin Sitt Loam-surface. Lufkin Sitt Loam-surface. Lufkin Sitt Loam-surface. Miller Clay-surface. Average Miller Very Fine Sand-subsoil. Average Miller Clay Loam-subsoil. Ochlockonee Silty Clay Loam-subsoil. Ochlockonee Silty Clay Loam-subsoil. Ochlockonee Silty Clay Loam-subsoil. Ochlockonee Silty Loam-subsoil.
de	No.	14880 14880 14875 14875 14875 14875 14875 14875 14875 14870 14891 14891 14891 14891 14891 14891 14891 14891 14891 14891 14891 144902 144902 144902 144903 144902 144903 144903 144903 144903 144903 144903 144903 144903 144903 144903 144903 144903 144903 144903 144903 144903 144913 144923 144924 144924 144924 144924 144924 144924 144924 144924

BULLETIN NO. 375, TEXAS AGRICULTURAL EXPERIMENT STATION

14934 14940 14941 14935 14936 14938 14939 14963 14964 14956 14957	Pledger Clay-subsoil. Portland Clay-surface. Portland Clay-surface. Portland Silty Clay Loam-surface. Portland Silty Clay Loam-subsoil. Portland Very Fine Sandy Loam-surface. Portland Very Fine Sandy Loam-surface. Average Ruston Fine Sandy Loam-subsoil. Average Ruston Very Fine Sandy Loam-surface. Average Ruston Very Fine Sandy Loam-subsoil. Sumpter Clay-surface. Sumpter Clay-subsoil. Susquehanna Clay Loam-surface. Susquehanna Clay Loam-surface. Average Susquehanna Silt Loam-surface. Suspiter Silt Silt Silt Silt Silt Silt Silt Silt	$\begin{array}{c} 6\\ 35\\ 125\\ 545\\ 500\\ 35\\ 24\\ 6\\ 355\\ 12\\ 6\\ 6\\ 6\end{array}$	$ \begin{bmatrix} 28 \\ 38 \\ 18 \\ 28 \\ 23 \\ 13 \\ 13 \\ 13 \\ 13 \\ 23 \\ \dots \\ 18 \\ 13 \\ 23 \\ 13 \\ 23 \\ 13 \\ 13 \\ 23 \\ 13 \\ 1$	$\begin{array}{c} 120 \\ 157 \\ 182 \\ 157 \\ 80 \\ 120 \\ 120 \\ 80 \\ 51 \\ 37 \\ 37 \\ 120 \\ 51 \\ 80 \\ 80 \\ 37 \\ 51 \end{array}$	fair good good good fair low low good fair low fair low	good good good good good good low fair low good good good fair good	fair good fair good good good fair fair fair fair fair fair fair fair	$\begin{array}{c} 0\\ 0\\ 230\\ 0\\ 0\\ 153\\ 153\\ 465\\ 1600\\ 0\\ 2800\\ 1600\\ 780\\ 1292 \end{array}$	19072 3.3 2560 0.4 1600 0.3 9344 1.6 30592 5.2 576 0.1 19840 3.4 49728 8.5	SOILS OF BOWLE, DENI
14966 14967 14975 14976 14973 14973	Average Yahola Silt Loam-subsoil Average Yahola Silt Loam-subsoil Yahola Clay-subsoil Average Yahola Silt Loam-subsoil Yahola Very Fine Sandy Loam-surface Yahola Very Fine Sandy Loam-surface Yahola Very Fine Sandy Loam-subsoil	$ \begin{array}{r} 6 \\ 45 \\ 45 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ \end{array} $	18 13 38 63 28 13 28 18 13 8 8	$\begin{array}{c} 37 \\ 51 \\ 80 \\ 182 \\ 157 \\ 37 \\ 182 \\ 120 \\ 37 \\ 51 \end{array}$	good low good good good good good low good	low good fair good good good good good	good fair good good high high good high high	367 1323 0 0 0 0 0 0 0 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	UN, FREESIUNE, A

Table 5.—Analyses of soils of Bowie County.

		Phosphor	ric Acid	Nitro-		Potash		Acid Soluble,		
Lab. No.		Total Per Cent	Active Per Million	gen Per Cent	Total Per Cent	Acid Soluble Per Cent	Active Per Million	Lime, Per Cent	Basicity	Acidity
4880	Bastrop Clay-surface	.081	22	.078	.55	.44		.92	1.90	0
4881	Bastrop Clay-subsoil	.072	61	.042	1.36		124	1.36		230
1874	Bowie Fine Sandy Loam-surface	.022	9	.019	.48	.05	51	.05		200
1875	Bowie Fine Sandy Loam-subsoil	.044	7	.029	.58	.21	90	.06	.15	700
1877	Bowie Very Fine Sandy Loam-surface	.014	11	.055	.28	.07	61	2.23		230
1878	Bowle Very Fine Sandy Loam-subsoil	.026	5	.040	.35		71	.21	.50	1100
1879	Bowie Very Fine Sandy Loam-surface	.029	6	.031	.30	.21	59	.11	.15	1600
1882	Bowie Very Fine Sandy Loam-surface	.073	7	.037	.42	.11	34	.08		. 0
1883	Bowie Very Fine Sandy Loam-subsoil	.107	5	037	.54		58	.14	.15	1100
1876	Bowie Very Fine Sandy Loam-subsoil	.015	5	.031	.45		75		.30	2100
1886	Bowie Very Fine Sandy Loam-surface	.043	27	.041	1.27	39	130		.30	230
1887	Bowie Very Fine Sandy Loam-subsoil	.061	7	.034	.47	.20	124			700
	Average Bowie Very Fine Sandy Loam-surface	.040	13	.041	. 58		71			515
1870	Average Bowie Very Fine Sandy Loam-subsoil	.050	6	.036	.45		82	.21	.34	1250
1871	Crowley Silt Loam-surface	.029	10	.108	.57	.10	55		.03	900
1969	Crowley Silt Loam-subsoil.		7	.063	.56	.15	43		.20	900
1893	Crowley Silt Loam-subsoil (deep)	.084	6	.082	.99		121		.50	0
1894	Leaf Very Fine Sandy Loam-surface	.057	40	.044	.34		74			230
1895	Leaf Very Fine Sandy Loam-subsoil Leaf Very Fine Sandy Loam-deep subsoil	.032	10	.029	.74				. 30	1100
4899	Lufkin Clay-surface	.044 .072	$\frac{11}{29}$.032	.80		140			2800
4900	Lufkin Clay-subsoil.	.072	29	.089	.45					3800
1896	Lufkin Silty Clay Loam-surface	.070	- 13	.051 .051	.45		149			400
1897	Lufkin Silty Clay Loam-subsoil	.048	12	.031	.08					900
1898	Lufkin Silty Clay Loam-deep subsoil	.040	14	.030	.70		73			900
1890	Lufkin Silt Loam-surface	.035	36	.084	.34	.07	113			700
1891	Lufkin Silt Loam-subsoil.	.120	11	.084	.64					700
1892	Lufkin Silt Loam-deep subsoil	.013	19	.043	.28		134			900
1901	Miller Clay-surface	.134	159	.103	2.40		353			900
4902	Miller Clay-subsoil	.092	183	.077	2.39	1.14			2.95	
8369	Miller Very Fine Sand-surface	.065	269	.031	.82		58		5.02	Ö
1906	Miller Very Fine Sand-surface	.057	24	.023	1.78			1.50		i i i
1907	Miller Very Fine Sand-subsoil.	.082	331	.019	2.08	.15			3.30	
	Average Miller Very Fine Sand-surface	.061	147	.027	1.30					Ö
1908	Miller Verv Fine Sandy Loam-surface	.090	355	.073	2.05	.30				Ö
4909	Miller Very Fine Sandy Loam-subsoil	.113	234	.072	2.64	.69				
4903	Myatt Silty Clay Loam-surface	.045	27	.055	. 68		53			
4904	Myatt Silty Clay Loam-subsoil	.030	26	.032	.83	.28	115			
4905	Myatt Silty Clay Loam-subsoil	.014	19	.028	.94	.24	105			
4912	Myatt Silty Clay Loam-surface	.067	29	.109					.45	

Markati Silv Carry Lammathedi 064 054 <	SOIL	SOF	BOWIE	. DENT	ron,	FRE	ESTO	NE,	AND	RE	DR	IVE	R CC	UNI	TIES		19
Myatt Sity Clay Lonn-atbell 054 <td< td=""><td>23000 233000 2330000</td><td></td><td>153</td><td>5100 5100 5100</td><td>002</td><td>230</td><td>000</td><td>000</td><td>230</td><td>230</td><td>463 230</td><td>000</td><td>230 230</td><td>230</td><td>153 700</td><td>230</td><td>465</td></td<>	23000 233000 2330000		153	5100 5100 5100	002	230	000	000	230	230	463 230	000	230 230	230	153 700	230	465
Myatt Sity Cay Lourestbeil 064 2 064 2 11 Nastt Sity Cay Lourestbeil 068 2 064 2 11 Nastt Sity Cay Lourestbeil 068 2 064 2 11 Narolk Fine Sandarthen 075 2 11 1 166 Narolk Fine Sandarthen 075 2 11 166 Narolk Fine Sandarthen 075 2 11 166 Narolk Fine Sandarthen 076 2 17 17 Narolk Fine Sandarthen 076 2 17 17 166 Narolk Fine Sandarthen 076 2 17 17 17 Narolk Fine Sandarthen 076 2 17 17 16 Narolk Fine Sandarthen 076 2 17 17 16 Narolk Fine Sandarthen 076 17 17 16 17 Narolk Fine Sandarthen 076 17 17 17 16 Narolk Fine Sandarthen 076 17 17 17 16 Narolk Fine Sandarthen 076 17 17 17 16 Narok Fine Sandarthen 076 17 17 16										000	000	000	000	100	804	100	
Wart Sity Clay Loam-subsol. 068 12 054 55 054 55 Wart Sity Clay Loam-subsol. 055 25 054 55 054 55 Norrolk Fine Statisty Clay Loam-subsol. 055 25 054 55 054 55 Norrolk Fine Statisty Clay Loam-subsol. 054 55 054 55 054 55 Norrolk Fine Statisty Clay Loam-subsol. 054 55 054 55 054 Norrolk Fine Statisty Clay Loam-subsol. 054 55 054 55 054 Norrolk Fine Statisty Clay Loam-subsol. 054 55 054 55 054 Norrolk Fine Statistic 054 55 054 55 054 Norrolk Fine Statistic 054 55 054 166 166 Norrolk Fine Statistic 054 55 054 166 166 Norrolk Fine Statistic 054 166 166 166 166 Norrolk Fine Statistic 054 166 166 166 166 Norrolk Fine Statistic 054 166 166 166 166 Norrolk Fine Statistic 054 166 167 166 166	1.20 93 10	-02022	1.90	12000	120	1.85			1.20.1	202	1.2	4.0	.20		- cic	icie	ici
Waster Silty Clay Learn-subsoli 054 055 054 055 054 055 054 055 054 055	<u>00400</u>	8-0.00	2467	008122	06	610	10 08 08	32 32 34	26 14 89	020	44		.10	027	0.1	.10	II.
Myatt Silv Clay Loum-subsol 058 12 054 23 Average Nyatt Silv Clay Loum-subsol 058 12 054 23 Average Nyatt Silv Clay Loum-subsol 058 12 054 23 Norfolk Fine Sand-surface 058 17 058 11 Norfolk Fine Sand-surface 058 058 11 058 12 Norfolk Fine Sand-surface 058 058 058 058 058 Ochlockonee Silv Nuls 058 058 058 058 058 Ochlockonee Silv Nul	9400 <u>-</u>											:					
Myatt Silv Clay Learn subsol. 088 12 064 28 064 064 28 064 064 28 064 064 28 064 064 28 064 064 28 064 064 28 064 064 28 064 10 064 10 064 10 064 116 10 064 116 10	118 136 118 118	54 64 60 60 60 60 60 60 60 60 60 60 60 60 60	50 356 356	254	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	154	99 154 151	150 300	265 207 387	328	236 236 210	218 111 00	184 178	173 148	141	124	871 808
Myatt Silty Clay Loam subsoil 0000 Myatt Silty Clay Loam subsoil 0000 Myatt Silty Clay Loam surface 0000 Nortolk Fine Sand-subsoil 0000 Ochlockone Clay Loam subsoil 0000 Ochlockone Very Fine Sandy Loa	23 29 14	1.00			1200	2021	.15		1.01	1.23	24		.0.80	500		.15	.06
Myatt Silty Clay Loam subsoil 0000 Myatt Silty Clay Loam subsoil 0000 Myatt Silty Clay Loam surface 0000 Nortolk Fine Sand-subsoil 0000 Ochlockone Clay Loam subsoil 0000 Ochlockone Very Fine Sandy Loa			0400	010000	041	×-10	182	223	1000	2870	3030	223	24 :	16	36 36	30	33
Myatt Sily Clay Loam-subsoil 088 Myatt Sily Clay Loam-subsoil 058 Myatt Sily Clay Loam-subsoil 058 Norfolk Fine Sand-subsoil 057 Ochlochone Clay subsoil 057 Ochlochone Silty Clay Loam-subsoil 057 Ochlochone Silty Clay Loam-subsoil 057 Ochlochone Silty Clay Loam-subsoil 057 Ochlochone Very Fine Sandy Loam-subsoil 057 O	022 028 028 028 028 028 028 028 028 028	1.11	1.0.2	8440 7440	000	4.01	C.L.L.	c	10101	200	000	101	.1				
Myatt Sily Clay Loam-subsoil 088 Myatt Sily Clay Loam-subsoil 058 Myatt Sily Clay Loam-subsoil 058 Norfolk Fine Sand-subsoil 057 Ochlochone Clay subsoil 057 Ochlochone Silty Clay Loam-subsoil 057 Ochlochone Silty Clay Loam-subsoil 057 Ochlochone Silty Clay Loam-subsoil 057 Ochlochone Very Fine Sandy Loam-subsoil 057 O	054 034 032 037	032 032 032 030	017 031 024 167	052 118 070 046	046 070 020	058	049	029	092	.052	.045	039	025	020	045	.027	.024
Myatt Silty Clay Loam-subsoil Myatt Silty Clay Loam-subsoil Average Myatt Silty Clay Loam-subsoil Average Myatt Silty Clay Loam-subsoil Norfolk Fine Sand-surface Norfolk Fine Sand-surface Norfolk Fine Sand-surface Norfolk Fine Sand-surface Norfolk Fine Sand-subsoil Norfolk Fine Sand-subsoil Ochockonee Silty Clay Loam-subsoil Ochockonee Very Fine Sandy Loam-subsoil Ortiand Clay-subsoil Ortiand Clay-subsoil Ortiand Clay-subsoil Ortiand Clay-subsoil Ortiand Clay-subsoil Ocholand Very Fine Sandy Loam-subsoil Ortiand Clay-subsoil Ortiand Silty Clay Loam-subsoil Ortiand Very Fine Sandy Loam-subsoil Ortiand Very Fine Sandy Loam-surface Ortiand Very Fine Sandy Loam-subsoil Nuston Fine Sandy Loam-subsoil Nuston Fine Sandy Loam-subsoil Nuston Fine Sandy Loam-subsoil Nuston Very Fine Sandy Loam-subsoil Nusto																	
Myatt Silty Clay Loam-subsoil 086 Myatt Silty Clay Loam-subsoil 086 Myatt Silty Clay Loam-surface 055 Average Myatt Silty Clay Loam-surface 056 Norfolk Fine Sand-subsoil 056 Ocholechone Clay-subsoil 057 Ocholechone Clay-subsoil 057 Ocholechone Clay-subsoil 057 Ocholechone Silty Clay Loam-subsoil 057 Ocholechone Very Fine Sandy Loam-surface 057 Orangeburg Fine Sandy Loam-subsoil 071 Orangeburg Fine Sandy Loam-subsoil 071 Orangeburg Fine	0.0 %	22282	1288	45 35 35 16	12	111	10 ¹ 01	210	34 9 10	64 15 537	147	312 19	9 00 00	169	980 980 980	-6	000
Myatt Silty Clay Loam-subsoil Average Myatt Silty Clay Loam-subsoil Average Myatt Silty Clay Loam-surface Average Myatt Silty Clay Loam-surface Norfolk Fine Sand-surface Norfolk Fine Sand-surface Norfolk Fine Sand-surface Norfolk Fine Sand-surface Norfolk Fine Sand-surface Norfolk Fine Sand-surface Norfolk Fine Sand-surface Average Norfolk Fine Sand-surface Celockonee Silty Clay Loam-subsoil Ochlockonee Very Fine Sandy Loam-subsoil Ochlockonee Very Fine Sandy Loam-subsoil Ochlockonee Very Fine Sandy Loam-subsoil Ochlockonee Very Fine Sandy Loam-subsoil Othlobeha Clay Joam-subsoil Othlobeha Clay Joam-subsoil Othlabeha Clay Subsoil Othlabeha Clay Subsoil Othlabeha Clay Subsoil Othlabeha Clay Subsoil Othlabeha Clay Subsoil Nuston Fine Sandy Loam-subsoil Average Ruston Fine Sandy Loam-surface Ruston Fine Sandy Loa					000	1001	111	525	90 33 33		-	-	021	037	035	015	045
Myatt Silty Clay Loams Myatt Silty Clay Loams Average Myatt Silty Clay Average Myatt Silty Clay Average Myatt Silty Clay Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surbso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Ochlockonee Clay-surfact Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Norfolk Fine Sand-subso Ochlockonee Very Fine Sand- Sandy Orangeburg Very Fine Sand- Sandy Orangeburg Very Fine Sandy Orangeburg Very Fine Sandy Dortland Clay-surface. Average Ruston Fine Sandy Loa Ruston Very Fine Sandy Average Ruston Very Fine Sandy Nuston Fine Sandy Loa Ruston Very Fine Sandy Loa Ruston Fine Sandy Loa Ruston Fine Sandy Loa Ru	02202	00.00	0225 7000 7000 7000 7000	10100	000	0000	0000	000	0.0.0.	-0-	0.7.0		0.0.0				
Myatt Silty Clay Loams Myatt Silty Clay Loams Average Myatt Silty Clay Average Myatt Silty Clay Average Myatt Silty Clay Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surbso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Ochlockonee Clay-surfact Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Norfolk Fine Sand-subso Ochlockonee Very Fine Sand- Sandy Orangeburg Very Fine Sand- Sandy Orangeburg Very Fine Sandy Orangeburg Very Fine Sandy Dortland Clay-surface. Average Ruston Fine Sandy Loa Ruston Very Fine Sandy Average Ruston Very Fine Sandy Nuston Fine Sandy Loa Ruston Very Fine Sandy Loa Ruston Fine Sandy Loa Ruston Fine Sandy Loa Ru					: : :	:::	:::	:::	:::	::	:::	:::	:::	: : :	::	: :	I
Myatt Silty Clay Loams Myatt Silty Clay Loams Average Myatt Silty Clay Average Myatt Silty Clay Average Myatt Silty Clay Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surbso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Ochlockonee Clay-surfact Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Norfolk Fine Sand-subso Ochlockonee Very Fine Sand- Sandy Orangeburg Very Fine Sand- Sandy Orangeburg Very Fine Sandy Orangeburg Very Fine Sandy Dortland Clay-surface. Average Ruston Fine Sandy Loa Ruston Very Fine Sandy Average Ruston Very Fine Sandy Nuston Fine Sandy Loa Ruston Very Fine Sandy Loa Ruston Fine Sandy Loa Ruston Fine Sandy Loa Ru								e							e	/	subso
Myatt Silty Clay Loams Myatt Silty Clay Loams Average Myatt Silty Clay Average Myatt Silty Clay Average Myatt Silty Clay Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surbso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Ochlockonee Clay-surfact Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Norfolk Fine Sand-subso Ochlockonee Very Fine Sand- Sandy Orangeburg Very Fine Sand- Sandy Orangeburg Very Fine Sandy Orangeburg Very Fine Sandy Dortland Clay-surface. Average Ruston Fine Sandy Loa Ruston Very Fine Sandy Average Ruston Very Fine Sandy Nuston Fine Sandy Loa Ruston Very Fine Sandy Loa Ruston Fine Sandy Loa Ruston Fine Sandy Loa Ru	ce				surfac	osqus		urfac				face.			urfac	soil.	soil.
Myatt Silty Clay Loams Myatt Silty Clay Loams Average Myatt Silty Clay Average Myatt Silty Clay Average Myatt Silty Clay Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surbso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Ochlockonee Clay-surfact Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Norfolk Fine Sand-subso Ochlockonee Very Fine Sand- Sandy Orangeburg Very Fine Sand- Sandy Orangeburg Very Fine Sandy Orangeburg Very Fine Sandy Dortland Clay-surface. Average Ruston Fine Sandy Loa Ruston Very Fine Sandy Average Ruston Very Fine Sandy Nuston Fine Sandy Loa Ruston Very Fine Sandy Loa Ruston Fine Sandy Loa Ruston Fine Sandy Loa Ru	surfa			rface	oam-	oam-	urfac	ubsoi aam-s			oil	m-sur m-sul	oil	oil	am-s	-subs-	-subs
Myatt Silty Clay Loams Myatt Silty Clay Loams Average Myatt Silty Clay Average Myatt Silty Clay Average Myatt Silty Clay Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surfac Norfolk Fine Sand-surbso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Norfolk Fine Sand-subso Ochlockonee Clay-surfact Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Ochlockonee Very Fine Sand- Norfolk Fine Sand-subso Ochlockonee Very Fine Sand- Sandy Orangeburg Very Fine Sand- Sandy Orangeburg Very Fine Sandy Orangeburg Very Fine Sandy Dortland Clay-surface. Average Ruston Fine Sandy Loa Ruston Very Fine Sandy Average Ruston Very Fine Sandy Nuston Fine Sandy Loa Ruston Very Fine Sandy Loa Ruston Fine Sandy Loa Ruston Fine Sandy Loa Ru	soil soil		surfasubs	un-su	am-su idy L idy L	ace	soil am-s	dy Lod			-subs	Loa	-subso	-subs -surf	dy Lo	Loan	Loan Loan
Myatt Silty C Myatt Silty C Myatt Silty C Myatt Silty C Norfolk Fine Norfolk Fine N	n-sub n-sub lay L lay L	soil.	face. soil. Sand	ace soil y Los	e San e San	e San I-surfi I-subs	ly Lo	dy Lo e San e San			.oam.	andy	oam	oam	e San	andy	andy y Fin
Myatt Silty C Myatt Silty C Myatt Silty C Myatt Silty C Norfolk Fine Norfolk Fine N	Loan Loan Ity C	d-sur d-sur d-sur d-sur	d-sur d-sur Fine Fine	v-surf v Cla	y Cla y Fin y Fin	y Fin Loam Loam	San(Fin Fin	face.	- 0.2	lay I lay I	Tine	ndy I ndy I	ndy l ndy l	Fin	me S	ine S n Ver
	Clay Clay att Si	e San San San San San	e San e San rfolk rfolk	Clar Clar Silt	e Ver Ver	e Ver Clay	Fine	Fine Ver	ly-sul	lay-su lay-s lay-s	ilty (ery I ery I	ne Sa ne Sa	ne Sa ne Sa	ustor	sry F	
	Silty Silty e My	Fine Fine	c Fin e No	konee konee konee	kone kone	kone beha beha	eburg	eburg	ar Cla	nd C	s pur	v pur	n Fi		age B	on Vo	>>"
	Myatt Myatt Averag	Averag Norfoll Norfoll Vorfoll	Norfoll Norfoll Averag	Ochloc Ochloc Ochloc Ochloc	Ochloc Ochloc Ochloc	Ochloc Oktibl	Orang	Orang	Pledge	Portla Portla	Portla Portla	Portle	Ruste Ruste	Rusto	Aver	Rust	Rust
010 838888646 64646464646464646464646464646464	4913 N 4914 N				4919 4920 4921	4922 4923	4925 4926	4928	4933	14948 14940 14941	14935	14938	8238 8239 14942	14943	1494/	14872 14873	14944 14945

Table 5.—Analyses of soils of Bowie County—(continued	Tabl	le 5	-Analyses	of soils of	Bowie	County-	continued
---	------	------	-----------	-------------	-------	---------	-----------

		Phospho	ric Acid	Nitro-		Potash		Acid Soluble.	2 2 2 3	
Lab. No.		Total Per Cent	Active Per Million	gen Per Cent	Total Per Cent	Acid Soluble Per Cent	Active Per Million	Lime, Per Cent	Basicity	Acidity
	Average Ruston Very Fine Sandy Loam-subsoil	.030	6	.026	.37	.17	91	.11	.23	800
4963	Sumter Clay-surface	.065	79	.065	1.34	.39	236	2.32	3.40	C
4964	Sumter Clay-subsoil	.062	54		1.71		145		9.35	C
4965	Sumter Clay-subsoil	.039		.041	1.42	.43		3.33		C
1956 1957	Susquehanna Clay Loam-surface	.035	11	.053	.80		166		.40	2800
1957	Susquehanna Clay Loam-subsoil	.024	6	.029	1.24	. 62	187	.13	.25	1600
1950	Susquehanna Silt Loam-surface Susquehanna Silt Loam-subsoil	.036 .064	13	.056	.70		120	.14	. 55	1100
1951	Susquehanna Silt Loam-deep subsoil	.004 .022	5 7	.038	1.01	.32	64	.14	.40	230
1952	Susquehanna Silt Loam-subsoil	.122	6	.051	.77		$ 141 \\ 145 $.16	. 65	$230 \\ 2800$
1953	Susquehanna Silt Loam-surface	.088	6		1.08		145		.60 .20	2800
1954	Susquehanna Silt Loam-subsoil	.032	9	.075	.40		188		.20	1100
955	Susquehanna Silt Loam-deep subsoil	.043	5	.055	.40		120	.10	.05	2100
	Average Susquehanna Silt Loam-surface	.062	10	.066	.55	.14	68	.09	.38	780
	Average Susquehanna Silt Loam-subsoil	.057	6	.040	.84	.28	132	.15	.35	1292
619	Susquehanna Very Fine Sandy Loam-surface	.035	20	.059	.41	.08	99	.71	.25	1201
620	Susquehanna Very Fine Sandy Loam-subsoil	.023	16	.034	.41	.06	104	.25	.15	432
958	Susquehanna Very Fine Sandy Loam-surface	.032	12	.048	.56	.12	139	.14	.15	C
959	Susquehanna Very Fine Sandy Loam-subsoil	.017	7	.036	.97	.43	154	.07	.35	460
960	Susquehanna Very Fine Sandy Loam-surface	.056	7	.036	.55	.11	45	.05	.05	1100
961	Susquehanna Very Fine Sandy Loam-subsoil	.047	5	.030	.60	.14	55	.12	.05	2800
962	Susquehanna Very Fine Sandy Loam-deep sub-	010						1.1 1 2.3		
2.3	soil	.016	5	.031	1.06	.57	135	.07	.40	1600
	Average Susquehanna Very Fine Sandy Loam- surface	.041	13	0.40		10		20		0.05
	Average Susquehanna Very Fine Sandy Loam-	.041	15	.048	.51	. 10	94	.30	.15	367
	subsoil	.026	8	.033	70	.30	112	19	94	1323
966	Trinity Clay-surface	.020	120	.129	.76	.30	198	$\begin{array}{c} .13\\ 1.32 \end{array}$	2.45	1525
967	Trinity Clay-subsoil.	.075	149	.239	1.08	.23	491	$1.32 \\ 1.36$	2.40	Ő
968	Trinity Clay-subsoil	.016	34	. 200	1.61	.46	259	1.10	1.85	230
975	Yahola Clay-surface	.106	199	.088	2.36	.96	321	3.66	7.40	
976	Yahola Clav-subsoil	.093	297	.029	.38		98	3.09	6.25	Č
910	Yahola Silt Loam-surface	.121	349	.094	2.60	.75	455	1.72	3.75	Ő
911	Yahola Silt Loam-subsoil	.122	319	.047	2.08	.85	259	2.76	5.85	C
970	Yahola Silt Loam-surface	.112	350	.069	2.29	.80	384	1.97	5.00	0
971	Yahola Silt Loam-subsoil	.116	385	.082	1.57	.41	356	2.04	1.40	0
972	Yahola Silt Loam-deep subsoil	.048	400	.025	2.08	.37	186	1.93	4.15	0
	Average Yahola Silt Loam-surface	.117	350	.082	2.45	.78	419	1.14	4.38	0
973	Average Yahola Silt Loam-subsoil.	.095	368	.051	1.91	.54	267		3.80	0
1973	Yahola Very Fine Sandy Loam-surface Yahola Very Fine Sandy Loam-subsoil	.029 .078	$\frac{315}{374}$.039	2.15	.37	79	2.42	4.95	0
:014	ranola very Fine Sandy Loam-subsoil	.078	3/4	.017	1.80	.30	105	2.30	4.90	0

	Weight Gra		Corn Possibility of Plant Food
Type—Name	With Complete Fertilizer	Without Nitrogen	Withdrawn, in Bushels. Nitrogen
 7619 Susquehanna Very Fine Sandy Loam—deep phase Surface soil—1st crop—corn, 1915 Surface soil—2nd crop—sorghum, 1915 Surface soil—3rd crop—corn, 1916 Surface soil—4th crop—sorghum, 1916 7620 Susquehanna Very Fine Sandy Loam—deep 	37.5 20.5 29.0 29.4	$17.6 \\ 2.8 \\ 8.4 \\ 1.9$	$\begin{array}{c} 24\\ 7\\ 13\\ 4\end{array}$
phase. Subsoil—1st crop—corn, 1915 Subsoil—2nd crop—sorghum, 1915 Subsoil—3rd crop—corn, 1916 Subsoil—4th crop—sorghum, 1916	$28.1 \\ 11.5 \\ 15.5 \\ 22.8$	$13.7 \\ 1.2 \\ 2.0 \\ 1.6$	18 2 3 3

Table 6.- Pot experiments on soils of Bowie County.

Soils with heavy subsoils:

- Gray to brownish surface soils with red or mottled red, yellow and gray plastic subsoils—Susquehanna soils.
- Brown to brownish-gray surface soils, subsoil mottled red and drab, or red, yellow, and drab stiff heavy subsoils—Crowley soils.
- Gray or mottled gray and brownish surface soils with mottled gray or yellow and gray, compact, impervious clay subsoils, poorly drained—Lufkin soils.
- Upland calcareous soils of the prairie area:
 - Gray to brownish surface soils with red or mottled red, yellow and gray plastic subsoils, with underlying calcareous clays or marl— Oktibbeha soils.
 - Chocolate-brown surface soils, subsoil chocolate-red—Bastrop soils. Greenish-yellow surface soil, subsoil greenish-yellow and grades
 - into white chalky material-Sumter soils.

Alluvial soils:

First-bottom soils, subject to overflow:

Surface brown to mottled brown and drab with brown or mottled yellow and gray subsoils, non-calcareous—Ochlockonee soils.

Surface black with brown to mottled gray, and yellow subsoils, calcareous—Trinity soils.

Surface and subsoil chocolate-red-Miller soils.

Surface and subsoil chocolate-red, subsoil coarser in texture and lighter in color than subsoil—Yahola soils.

Surface chocolate brown, subsoil chocolate-red—Portland soils. Surface black, subsoil chocolate-red—Pledger soils.

Second-bottom soils not subject to overflow:

Surface soil gray to brownish, or mottled gray and brownish, subsoils gray to mottled gray and yellow, with a tough red and yellow impervious deep subsoil—Leaf soils.

Surface soil gray to dark gray with impervious subsoil gray to mottled gray and yellow in color, poorly drained—Myatt soils.

Key to Soil Types of Bowie County Arranged Alphabetically

Bastrop clay.—Upland calcareous soils of the prairie area, chocolatebrown surface soils, chocolate-red subsoil.

Bowie series.—Úpland, well drained soils of the area originally forested, non-calcareous, gray to brownish-gray surface soil, yellow upper subsoil, red lower subsoil.

Crowley silt loam.—Upland soil of the original forested area noncalcareous with dark gray to brown surface soil and heavy mottled gray and brown subsoil.

Leaf very fine sandy loam.—Second-bottom soil, not subject to overflow, gray to brownish surface soil, with a tough red and yellow impervious subsoil.

Lufkin series.—Upland soil of the forested area, non-calcareous, with heavy subsoils. Gray or mottled gray and brownish surface soils with mottled gray or yellow and gray, compact, imperious clay subsoils, poorly drained.

Miller series .- First-bottom soils, subject to overflow.

Myatt series.—Second-bottom soils, not subject to overflow. Surface soil gray to dark gray with impervious subsoil gray to mottled gray and yellow in color, poorly drained.

Norfolk series.—Upland soils, originally forested area, well drained, non-calcareous with gray to brownish-gray surface soils and pale yellow friable clay subsoil.

Ochlockonee series.—First-bottom soils, subject to overflow. Surface brown to mottled brown and drab with brown or mottled yellow and gray subsoils, non-calcareous.

Oktibbeha series.—Upland calcareous soils of the prairie area. Gray to brownish surface soils with red or mottled red, yellow and gray plastic subsoils, with underlying calcareous clays or marl.

Orangeburg series.—Upland well drained non-calcareous soils of the forested area. Surface soil gray to brownish gray, subsoil friable red sandy clay.

Pledger series.—First-bottom soils, subject to overflow. Surface black, subsoil chocolate red.

Portland series.—First-bottom soils, subject to overflow, surface chocolate brown, subsoil chocolate red.

Ruston series.—Upland soils of the forested area, well drained, noncalcareous. Gray to brownish-gray surface soil with reddish-yellow to yellowish-red friable sandy clay subsoils.

Sumter series.—Upland calcareous soils of the prairie area. Greenish-yellow surface soil, subsoil greenish-yellow and grade into white chalky material.

Susquehanna series.—Upland soils of the forested area, non-calcareous, with heavy subsoils. Gray to brownish surface soil with red or mottled red, yellow and gray plastic subsoils.

Trinity series.—First-bottom soils, subject to overflow. Surface black with brown to mottled gray, and yellow subsoils, calcareous.

Yahola series.—First-bottom soils subject to overflow. Surface and subsoil chocolate-red, subsoil coarser in texture and lighter in color than surface.

SOILS OF DENTON COUNTY

Denton County is located in the north central part of the State. The elevation ranges from 500 to 1000 feet. The eastern part of the county is in the black prairie region, which occupies about one-fourth of the county. Next is the East Cross Timbers section, which likewise occupies about one-fourth of the area. The western half of the county is in the Grand Prairie or the Fort Worth Prairie region. The soils of these three sections have been averaged separately as shown in Table 1.

The number of types mapped is 34, in 23 series.

The San Saba clay occupies 18.6 per cent of the county, Denton clay 13.2, Kirvin fine sandy loam 10.5, Bell clay 6.0, and Frio clay 5.4 per cent. The Houston clay, which is a very important black prairie soil, occupies about 5 per cent of the county.

The average composition of the various groups of soil is given in Table 1. The soils of the East Cross Timbers are not as well supplied with plant food as the other soils of the county and are more likely to need fertilizers. The first bottom soils are the richest in plant food, as is usually the case.

The chemical composition of the various types of soils is contained in Table 7. The interpretation of the analyses of the various soil types is in Table 8. Table 9 contains pot experiments on four of the soils. These tables give detailed information concerning the chemical analyses and the strength of the soil with respect to plant food.

Classification of Soils of Denton County

Upland Prairie soils, Grand Prairie region:

- Black surface soil, black to brown to yellow subsoils, limestone or marl 3 feet below or less—San Saba soils.
- Light-colored to whitish surface, chalky clay or limestone near surface—Brackett soils.

Brown surface soils, brown subsoils-Denton soil.

Upland timbered soil, Cross Timber section:

- Red to reddish-brown or brown surface soils and red plastic clay subsoils—Kirvin soils.
- Brown to dark-brown surface soils, with a brown or yellowish subsurface, grading into a reddish clay mottled with yellow or brown—Durant soils.
- Gray to brown surface soils with yellow, tough heavy clay sub-soils— Tabor soils.

Gray surface soils and friable yellow subsoil-Norfolk soils.

Upland prairie soils, Black Prairie region:

Black to brown surface soils, brown to yellow subsoils, with a substratum of calcareous clay—Houston soils. Table 7.—Analyses of soils, Denton County.

		Phospho	ric Acid	NUL		Potash		Acid		
Lab. No.		Total Per Cent	Active Per Million	Nitro- gen Per Cent	Total Per Cent	Acid Soluble Per Cent	Active Per Million	Soluble, Lime, Per Cent	Basicity	Acidity
5976	Cahaba Clay Loam-surface	.053	17	.126	1.04	.38	340	.43	.95	0
5977	Cahaba Clay Loam-subsoil	.034	14	.062	1.43	.67	220		2.75	Õ
014	Cahaba Fine Sandy Loam-surface	.033	47	.030	. 62	.10	165	.13	.35	0
015	Cahaba Fine Sandy Loam-subsoil	.036	7	.045	.74	.22	270	.34	.47	0
012	Catalpa Clay-surface	.080	71	.110	1.61	.62	366		6.85	0
013	Catalpa Clay-subsoil	.053	91	.074	1.19	. 60	233	4.33	7.55	0
986	Crockett Clay Loam-surface	.029	16	.072	. 61	.14	123	.37	.75	0
987	Crockett Clay Loam-subsoil	.018	16	.050	.72	.21	134	.50	1.50	0
175	Denton Clay probably-surface	.075	51	.119	1.00	.57	225			0
984	Denton Clay-surface	2.07	30	.152	1.41	. 63	225	.65	8.75	0
985	Denton Clay-subsoil	.067		.037	1.07				10.00	0
037	Denton Clay-surface.	.041	6	.077	. 98	.48	219		1.40	0
038	Denton Clay-subsoil	.046	15	.060	1.03	. 56	139		2.45	
41	Denton Clay-surface.	.052	8	.117	.87	. 59	156		9.40	C
142	Denton Clay-subsoil	. 100	17	.067	.76	. 55	145		9.35	
145	Denton Clay-surface	.059	44	. 139	. 98	.98	150	.94	1.70	
146	Denton Clay-subsoil	.048	41	.055		.36	296		1.70	C
135	Denton Clay shallow phase-surface	. 105	7	. 180		.44	184	15.04	9.80	
136	Denton Clay shallow phase-subsoil	.098	5	.085	.84	.49	120			0
1.1	Average Denton Clay-surface	.093	19	.133	1.06	. 62	187	5.14	6.21	0
	Average Denton Clay-subsoil	.072	20	.061	.88	.49	175		6.67	0
016	Durant Clay Loam-surface	. 103	15	.144	.95	.35	24	.37	. 90	400
017	Durant Clay Loam-subsoil	.092	12	.100		.34	84	.61	.60	0
018	Durant Clay Loam-surface	.041	6	.087	.31	.11	95		1.15	700
019	Durant Clay Loam-subsoil	.056		.044	.26	.08		.39		0
	Average Durant Clay Loam-surface	.074	11	.116	. 63	.23	60		1.03	550
	Average Durant Clay Loam-subsoil.	.074	12	.072	. 55	.21	84	.50	.30	0
124	Durant Fine Sandy Loam probably-surface	$.045 \\ .030$	87	.086		.87	105		.59	0
125	Durant Fine Sandy Loam probably-subsoil Durant Fine Sandy Loam-surface	.030	32	.069		.51	104	.45		0
980	Durant Fine Sandy Loam-subsoil	.021	17	$.049 \\ .032$.55	.04	63	.37	.50	0
981	Durant Fine Sandy Loam-subsoli	.057	19			.19	100		1.05	
024	Durant Fine Sandy Loam-subsoil	.067	19	$.053 \\ .082$.38	.16	121	.22	.45	0
$025 \\ 026$	Durant Fine Sandy Loam-subsoil	.067	6	.082	.65 .58	.29	93 80		.75	0
026	Durant Fine Sandy Loam-surface.	.045	28	.069	. 58		106		.90	0
029	Durant Fine Sandy Loam-subsoil	.033	20	.031	.32	.12	106		.50	Q
030	Average Durant Fine Sandy Loam-surface	.037	22	.080	.48		106		.65	
	Average Durant Fine Sandy Loam-subsoil	.040		.067	.40	.30	99 97	.30	.81	0
353	Durant Loam, probably-surface	.040	26	.100	.52	.20	380		. 64	0
3354	Durant Loam, probably-subsoil	.062	11	.079		.30	278	.35	.69	

					And the latest	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Sec. Mart	S. Lo Salar		
15996	Ellis Clay-surface	. 0451	17	1 . 1241	2.281	.861	5201	.741	1.95	0	
15597	Ellis Clay-subsoil	.070	26	.081	2.38		537		1.80	2100	
16031						C1		6.30	9.65		
	Frio Clay-surface	.122	7	.122	1.30	.61	176				
16032	Frio Clay-subsoil	. 101	10	.072	1.17	. 52	53	9.88	9.90	0	03
16137	Frio Clay-surface	.068	39	.143	1.55.5451	122.241	263		1.55	0	SOIL
16138	Frio Clay-subsoil	.053	13	.073		.48	225	1.31	1.90	ő	Ĩ
10100	Filo Clay-subsolt				· · · · · · ·					0	F
	Average Frio Clay-surface	. 095	23	. 133	. 65	.31	220	3.15	5.60	0	ŝ
12 C	Average Frio Clay-subsoil	.077	12	.072	1.17	.50	139	5.55	5.90	0	
16033	Frio Silty Clay Loam-surface	.055	-3	.083	1.00	.33	210	. 51	1.45	0	OF
16034	Enio Silty Clay Loan - sultact.							.73	.70	ŏ	T
	Frio Silty Clay Loam-subsoil	.064	33	.055	1.10	. 50	443		70	0	
16143	Frio Silty Clay-surface	.076	8	.075	. 95	.31	96	4.01	7.80	0	BOWIE
16144	Frio Silty Clay Loam-subsoil	.120	115	.094]		. 52	211	7.20	9.30	0	0
	Average Frio Silty Clay Loam-surface	.066	6	.079	.98	.32	153	2.26	4.63	0	4
1 1 1 1 1 1 1 1 1	Avonage Frie Silter Clay Loam-sulface	.092	74		1.10			3.97	5.00	ő	I
10000	Average Frio Silty Clay Loam-subsoil			.075		.51	327			0	E .
16008	Houston Black Clay-surface	.054	101	.075	1.10	. 53	305	2.22	3.78	0	-
16009	Houston Black Clay-subsoil	.051	7	.058	. 98	.39	146	10.22	9.85	. 0	-
16010	Houston Clav-surface	.243	59	.027	1.17	.39	231	19.36	9,90	Ō	0
16011	Houston Clay-subsoil	.047	54	.072	1.91	.00	119	10.00	9.85	ŏ	E
										0	Z
3347	Kirvin Fine Sandy Loam, probably-surface	.340	30	.070	.52	.17	139	.28	.49	0	H
3348	Kirvin Fine Sandy Loam, probably-subsoil	.056	7	.061	.45	.54]	95	.48		0	DENTON
3373	Kirvin Fine Sandy Loam, probably-surface	.023	21	.022		.14	89	.13	.20	Ō	Z
3374	Kirvin Fine Sandy Loam, probably-subsoil	.035	19	.038			85	.23	.54	Ő	
	Kirvin Fine Sandy Loam, probably-subsolt					.42		. 45		0	H
9181	Kirvin Fine Sandy Loam, probably-surface	.059	7	. 053	.27	.21	163	.10	.47	0	FREES
9182	Kirvin Fine Sandy Loam, probably-subsoil	.029	7	.047	. 55	.47	280	.22	. 55	0	20
15988	Kirvin Fine Sandy Loam-surface	.052	22	.038	.44	.12	344	.42	. 50	0	8
15989	Kirvin Fine Sandy Loam-subsoil	.089	17	.033	.52	.31	76	.09	.45	ŏ	E
	Kirvin Fine Sandy Loam-subson									0	01
16000	Kirvin Fine Sandy Loam-surface	.036	14	.079	.51	.10	99	.22	.95	0	TONE
16001	Kirvin Fine Sandy Loam-subsoil.	.032	5	.033	. 69	.24	95	.23	.85	1100	2
	Average Kirvin Fine Sandy Loam-surface	.102	19	.052	.44	.15	167	.23	.52	0	Z
		.048	11					.25	60	220	E
15998	Average Kirvin Fine Sandy Loam-subsoil			.042	.55	.40	126	. 20		440	
	Lewisville Clay-surface	.049	9	.084	1.14	.42	183	. 62	1.40	0	AND
15999	Lewisville Clay-subsoil	.026	11	.053	1.39	.50	276	2.18	1.65	0	5
16002	Lewisville Clay-surface	.039	28	.082	.57	.16	104	.56	.75	0	4
16003	Lewisville Clay-subsoil.	.022	11	.044	.52	.24	100	.81	1.30	ŏ	0
10000	Lewisvine Clay-subsoit										-
	Average Lewisville Clay-surface	.044	19	.083	.86	.29	144	.59	1.08	0	20
	Average Lewisville Clay-subsoil	.024	11	.049	. 96	.37	188	1.50	1.48	0	RED
15994	Norfolk Fine Sand-surface	.017	11	.030	.38	.03	29	.02	.35	0	0
15995	Norfolk Fine Sand-subsoil	.054	6	.035	.61	.24	124	.09	.60	2100	
15992	O-Ll-l-									2100	RIVE
	Ochlockonee Fine Sandy Loam-surface	.071	58	. 080	.71	.15	179	.23	.95	0	-
15993	Ochlockonee Fine Sandy Loam-subsoil	.049	10	.040	. 66	,12	48	.28	2.80	0	5
16006	San Saba Clay-surface	048	12	.168	1.05	.41	335	.65	1.30	0	E
16007	San Saba Clay-subsoil	.016	8	.060	1.11	.41	214	.81	1.50	ŏ	R
16020	San Saba Clay-subson.					.41		.01		0	
	San Saba Clay-surface	.093	76	.199	1.02	.72	285	2.12	3.85	0	Q
16021	San Saba Clay-subsoil	.043	18	.076	1.22	.32	316	26.39	9.95	0	0
16035	San Saba Clay-surface	.073	. 4	.147	1.18	.65		2.57	7 4.55	0	q
16036	San Saba Clay-subsoil	.032	4		1.09		EO		9.90	ŏ	COUNTIE
	San Saba Clay-subsoll	.052		.067		. 53	58	13.50			H
16133	San Saba Clay-surface	.063	29	.098	. 69	.70	504	1.47	2.30	0	H
16134	San Saba Clay-subsoil	.059	34	.057	.94	.69	321	2.39	3.35	0	E
	Average San Šaba Clay-surface	.069	30	.153	.99	.62	375	1.70	3.00	ŏ	20
	Average San Saba Clay-subsoil		16	.100						Ő	
16120	Can Caba City Class Augustin	.038		.065	1.09	.49	227	10.77	6.18		
16139	San Saba Silty Clay Loam-surface	.041)	12	.092	.83	.32	150	.47	.851	0	N
						1 1 1 1 1 1 1	100 m				UT.

		Phosphoric Acid	ric Acid			Potash		Acid		
Lab. No.		Total Per Cent	Active Per Million	Nitro- gen Per Cent	Total Per Cent	Acid Soluble Per Cent	Active Per Million	Soluble, Lime, Per Cent	Basicity	Acidity
(6140) (5974) (5975) (5975) (5975) (5975) (5975) (5975) (5975) (5022) (6022) (6002)	San Saba Silty Clay Loam-subsoil Simmons Clay-surface. Sumter Clay-surface. Tabor Fine Sandy Loam, probably-surface Tabor Fine Sandy Loam, probably-surface. Tabor Fine Sandy Loam, probably-surface. Tabor Fine Sandy Loam, probably-surface. Tabor Fine Sandy Loam-subsoil Tabor Fine Sandy Loam-surface. Average Tabor Fine Sandy Loam-subsoil Tabor Fine Sandy Loam-surface. Tabor Fine Sandy Loam-surface. Average Tabor Fine Sandy Loam-subsoil Trinity Clay-subsoil Trinity Clay-subsoil Wilson Clay-subsoil. Wilson Fine Sandy Loam-subsoil Trinity Clay-subsoil. Wilson Fine Sandy Loam-subsoil Wilson Loam-surface. Wilson Loam-surface. Wilson Loam-surface. Wilson Loam-subsoil.	0444 0444 05072 05070 00000000	854748888888494440104468888888888888888888888888888888	0.055 0.025 0.	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	82222222222222222222222222222222222222	25555 2555 255555 255555 255555 255555 255555 255555 255555 2555555	7148482824859685 3148482824859685 31488488888 31488488888 3148848888 3148848888 3148848888 3148848888 3148848888 314884888 31488488 31488488 31488488 3148848 314848 3148648 3148448 314848 314848 314848 314848 314	1 0000 0000000000000000000000000000000	

- Yellowish brown surface soils and yellow or greenish-yellow subsoils—Sumter soils.
- Brown or olive surface soils and grayish-brown brittle clay subsoil— Ellis soils.
- Brown to grayish surface soils with mottled red and brownish or yellowish subsoil—calcareous substratum—Crockett soils.
- Black compact surface soils, with dark compact subsoils, noncalcareous—Wilson soils.

Second-bottom or terrace soils:

Black surface with brown subsoil or high stream benches, not calcareous—Simmons soils.

- Brown surface with yellow subsoil on high stream terraces, high in lime—Lewisville soils.
- Brown to gray surface with light-red or yellow-red subsoil, low in lime—Cahaba soils.
- Brown to gray surface, stiff clay subsoils mottled with red, yellow and gray—Leaf soils.
- Dark-gray or dark-brown surface with yellow or brown clay subsoils, on high terraces—Bell soils.

First-bottom or alluvial soils:

Brownish surface soils and subsoils, highly calcareous, in western prairie—Frio soils.

Black calcareous soils-Trinity soils.

Brown surface and brown or yellowish brown or mottled subsoil in cross timbers—Ochlockonee soils.

Brown calcareous soils in the black prairie-Catalpa soils.

Alphabetical Key to Soils of Denton County

Brackett series.—Upland prairie soils. Light-colored to whitish surface, chalky clay or limestone near surface.

Bell series.—Second-bottom soils. Dark-gray to dark-brown surface with yellow or brown clay subsoils, on high terraces.

Cahaba series.—Second-bottom or terrace soils with friable subsoils. Brown to gray surface with light-red or yellow-red subsoil, low in lime.

Catalpa series.—First-bottom soils. Brown calcareous soils in the black prairie.

Crockett series.—Soils of the Black Prairie region. Brown to grayish surface soils with mottled red and brownish or yellowish subsoil calcareous substratum.

Denton series.—Upland calcareous prairie soils of the Grand Prairie region. Brown surface soils, brown subsoils.

Durant series.—Upland soils of the Cross Timbers. Brown to darkbrown surface soils, with a brown or yellowish sub-surface, grading into a reddish clay mottled with yellow or brown.

Ellis series.—Upland soils of the Black Prairie. Brown or olive surface soils and grayish-brown brittle clay subsoil.

	ULLETI	N NO 375, TEXAS AGRICULTURAL EXPERIMENT STATION
Dar Cant	of Area	4 1 6 1 6 1 6 1 0 1 6 6 2 7 2 0 5 4 4 5 4 5 4 1 2 1 2 1 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
	Acres	2240 9344 15232 6144 61448 3328 16448 16448 7296 5312 5312 5312 5312 5312 5312 5312 5312
	Acidity	
e	Lime	good good good good good good good good
Acid-Soluble	Potash	good good good good good good good good
V	Phos- phoric Acid	good good good good good good good good
Two	Active Potash	20222222222222222222222222222222222222
Corn Possibility Two Million Pounds	Total Nitro- gen	82222222222882222222222222222222222222
Corn	Active Phos- phoric Acid	828°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
	Type Name	Cahaba Clay Loam-surface Cahaba Fire Sandy Loam-subsoil Cahaba Fire Sandy Loam-subsoil Cataba Olay-surface Cataba Olay-surface Cataba Olay-surface Crockett Clay Loam-subsoil Average Denton Clay-surface Average Durant Clay Loam-subsoil Average Durant Clay Loam-surface Average Durant Clay Loam-surface Average Durant Clay Loam-subsoil Average Durant Clay Loam-subsoil Burant Loan, probably-subsoil Average Prio Clay-surface Average Frio Clay-surface Average Frio Clay-surface Average Frio Silty Clay Loam-subsoil Houston Clay-surface Average Frio Silty Clay Loam-subsoil Houston Clay-surface Average Frio Silty Clay Loam-subsoil Houston Clay-surface Average Kirvin Fine Sandy Loam-surface Average San Saba Clay-surface Average San Saba Sily Clay Loam-surface Average San Saba Clay-surface Average San Saba Sily Clay Loam-surface Average San Saba Clay-surface Average San Saba Clay-surface Average San Saba Sily Clay Loam-surface Average San Saba Clay-surface
I ab	No.	15976 15976 15976 15976 15987 16015 15987 15987 15987 15987 15994 16010 15995 15995 15995 15995 15995 15995 15995 15995 16010 16010 16010 16010 16010 16010 16010 15995 16010 16010 15995 16010 15995 16010 15995 16010 15995 16010 15995 16010 15995 16010 15997 16010 15997 16010 15987 15977 15977 15977 15977 15977 15977 15977 15977 15977 15977 15977 15977 15977 15977 15977 15977 159777 159777 15977 15977 15977 15977 15977 15977 15977 15977 15977 1597

Table 8.-Interpretation of analyses, Denton County.

15975	Simmons Clay-surface	12	1 18	1 84 1	low	1 good	good 1	0	I	
15978	Sumter Clay-surface	45	33	105	good	good	high	Ō	3776 .6	
15879	Sumter Clav-subsoil	12	18	50	good	good	high	Ō		
	Average Tabor Fine Sandy Loam-surface	18	13	61	fair	low	fair	Ō	24128 4.0	
	Average Tabor Fine Sandy Loam-subsoil	6	13	50	fair	good	good	Ő		
16027	I Trinity Clay-surface	60	48		good	good	high	Ő	27136 4.5	
16028	Trinity Clay-subsoil.	55	28		good	good	high	- Õ		
16004	Wilson Clay-surface	12	28		good	good	good	230	13376 2.2	
16005	Wilson Clay-subsoil	6	18		good	good	good	0		
	Average Wilson Fine Sandy Loam-surface	24	18	125	good	good	good	ŏ	15872 2.6	
	Average Wilson Fine Sandy Loam-subsoil	12	18	232	good	good	good	ŏ		
	Average Wilson Loam-surface	30	23	73	good	good	good	Ő	4800 .8	
	Average Wilson Loam-subsoil	12	18	61	good	good	good	ŏ		
					0	0	8004			

......

Table 9.—Pot experiments on soils of Denton County.

Lab.			Weight Croj	ps in Grams		Corn Pos With	sibility of P drawn, in B	lant Food ushels
No.	Type Name	With Complete Fertilizer	Without Phosphoric Acid	Without Nitrogen	Without Potash	Phosphoric Acid	Nitrogen	Potash
9175	Denton Clay, probably-surface			12.018				
	Corn—1st crop	26.9			31.5			331
9181	Sorghum—2nd crop Kirvin Fine Sandy Loam, probably-surface	35.5			33.5			146
5101	Corn—1st crop	32.9		10.4			14	
5042	Sorghum—2nd crop	32.0		2.7			4	
5943	Tabor Fine Sandy Loam, probably-surface Corn—1st crop	50.7	45.4	1.1.2.1.1.1		67		
	Sorghum—2nd crop.	23.9	21.1			34		
	Corn—3rd crop	47.7	36.7			31		
	Sorghum—4th crop	27.7	19.4			22		
5944	Tabor Fine Sandy Loam-subsoil			1.				
	Corn—1st crop	26.6	15.8			23		
	Sorghum—2nd crop	17.7	14.7			18		
	Corn—3rd crop	50.2	20.4			18		
	Sorghum—4th crop	23.5	9.1			10		

SOILS OF BOWIE DENTON, FREESTONE, AND RED RIVER COUNTIES

Frio series.—First-bottom soils. Brownish surface soils and subsoils, highly calcareous, in western prairie.

Houston series.—Prairie soils, generally calcareous. Black to brown surface soils, brown to yellow subsoils, with a substratum of calcareous clay.

Kirvin series.—Upland soil, originally forested. Red to reddishbrown or brown surface soils and red plastic clay subsoils.

Leaf series.—Second-bottom or terrace soils. Brown to gray surface, stiff clay subsoils mottled with red, yellow and gray.

Lewisville series.—Second-bottom soils. Brown surface with yellow subsoil on high stream terraces, high in lime.

Norfolk series.—Upland well drained soils, originally forested. Gray surface soils and friable yellow subsoil.

Ochlockonee series.—First-bottom or alluvial soils. Brown surface and brown or yellowish-brown or mottled subsoil in Cross Timbers.

San Saba series.—Upland prairie soils of the Grand Prairie. Black surface soil, black to brown to yellow subsoils, limestone or marl 3 feet below or less.

Simmons series.—Second-bottom soils. Black surface with brown subsoil on high stream benches, not calcareous.

Sumter series.—Upland prairie soils. Yellowish-brown surface soils and yellow or greenish-yellow subsoils.

Tabor series.—Upland soils, originally timbered (Cross Timber Section). Gray to brown surface soils with yellow, tough heavy clay subsoils.

Trinity series.—First-bottom or alluvial soils. Black calcareous soils. Wilson series.—Black prairie soils. Black compact surface soils, with dark compact subsoils, non-calcareous.

Alkali Spots

There are a number of small alkali spots in Denton County, mostly in the San Saba silty clay loam and San Saba clay, or the Grand Prairie section. They are seldom more than 100 feet across. In most of the areas a very plastic clay lies near the surface. The subsoil contains some small black concretions, and the lower subsoil white particles, probably gypsum. Crops do not do well in these spots.

Laboratory Number.	Depth	Calc. Carb,	Calc. Sulph.	Cale. Chlor.	Mag. Carb.	Mag. Sulph.	Mag. Chlor.	Sod. Carb.	Sod. Sulph.	Sod. Chlor.
6303 6304 6305 6306.	$0^{\prime\prime}-6^{\prime\prime}$ $6^{\prime\prime}-12^{\prime\prime}$ $12^{\prime\prime}-18^{\prime\prime}$ $18^{\prime\prime}-24^{\prime\prime}$	178 178 178 237			92	167 596		146 103	$158 \\ 710 \\ 2856$	$371 \\ 524 \\ 648 \\ 746$
6307 6308	$ \begin{array}{r} 18 -24 \\ 24'' - 30'' \\ 30'' - 40'' \end{array} $	$237 \\ 237 \\ 200$	4590 1671	548		1490	529	· · · · · · · · · · · · · · · · · · ·	4310	945

Table 10 .- Salt content in parts per million of soil from an alkali spot, Denton County.

Table 10 contains the alkali analysis of one of these spots. The alkali

present is chiefly sodium sulphate, though other alkali salts are also present.

SOILS OF FREESTONE COUNTY

Freestone County is located in east central Texas. The elevation ranges from 200 to 600 feet. It is in the coastal plain section. The soils are classed in 4 groups: the upland forested soils, the upland prairie soils, the second-bottom or terrace soils, and the first-bottom or alluvial. The soils of these sections are averaged separately in Table 1. The number of types mapped is 31, in 17 series. The Susquehanna fine sandy loam occupies 28.8 per cent of the county, Ruston fine sandy loam 17.0, and Norfolk fine sandy loam 7.2 per cent. The principal alluvial soils are Ochlockonee fine sandy loam 6.9 per cent, and the Trinity clay 6.4 per cent. Both of these are subject to overflows.

The upland forested soils are low in active phosphoric acid and in nitrogen and somewhat better supplied with active potash, although still low. A number of them are acid. The upland prairie soils are much better supplied with plant food and with lime. The secondbottom or terrace soils are quite low in nitrogen, although they are somewhat better supplied with phosphoric acid. The first-bottom soils are lower in active phosphoric acid than the other first-bottom soils of the other counties discussed in this Bulletin. They are better supplied with potash and equally as well supplied with nitrogen.

The chemical composition of the various types of soils is contained in Table 11. The interpretation of the analyses is given in Table 12. Some pot experiments are given in Table 13.

Classification of Soils of Freestone County

Upland soils of the forested area:

Soils with friable subsoils; surface soils gray to brownish-gray:

Subsoil dull red-Ruston soils.

Subsoils yellow to brownish-yellow-Norfolk soils.

Subsoil vellow mottled with red-Bowie soils.

Soils with heavy subsoils:

- Gray soils with mottled red, yellow and gray heavy plastic subsoils—Susquehanna soils.
- Gray to dark gray soils with yellowish-brown to brown and gray heavy plastic subsoils—Tabor soils.
- Gray soils with gray to dark-gray heavy plastic subsoils—Lufkin soils.
- Reddish-brown to red surface soil with mottled red, yellow and gray subsoils, similar to the Susquehanna soils but deeper red subsoils—Kirvin soils.

Upland soils of the prairie area, subsoils heavy:

Black surface soils with black or gray, but generally olive-colored subsoils, non-calcareous—Wilson soils.

- Dark gray surface soils with red upper subsoil, sometimes changing to gray or olive in the lower subsoil, calcareous subsoil—Crockett soils.
- Brown surface soil with a heavy calcareous yellowish-brown to greenish-yellow subsoil—Sumter soils.
- Dark-gray to grayish-brown calcareous surface soils, with light brown to gravish-brown or greenish-vellow subsoil—Houston soils.

Second-bottom or terrace soils:

Friable subsoils:

- Gray to brownish surface soil with red or red mottled with gray or yellow friable subsoils—Cahaba soils.
- Gray to brownish surface soils with yellow friable subsoils, not as well drained as Cahaba soils—Kalmia soils.

Heavy subsoils:

- Grayish-brown surface soils with heavy plastic subsoil, red in the upper part and mottled red, yellow and gray in the lower part—Leaf soils.
- Gray surface soil, with gray to dark-gray mottled with yellow of brown, not as well drained as the leaf soils-Myatt soils.

First-bottom soils:

- Grayish-brown to dark-brown surface soils with dark-gray to brown subsoils—Ochlockonee soils.
- Black surface soils with black to gray heavy subsoils, calcareous— Trinity soils.

Alphabetical List of Soil Series of Freestone County

Bowie series.—Upland well drained soils of the forested area, friabl subsoils. Gray to brownish-gray sandy surface soils, yellow mottled with red subsoils.

Cahaba series.—Second-bottom or terrace soils with friable subsoils Gray to brownish surface soil with red or red mottled with gray o yellow friable subsoils.

Crockett series.—Upland prairie soils, with heavy subsoils. Dark gray surface soils with red upper subsoil, sometimes changing to gra or olive in the lower subsoil, calcareous subsoil.

Houston series.—Upland calcareous prairie soils. Gray to grayish brown calcareous surface soils, with light-brown to grayish-brown c greenish-yellow subsoil.

Kalmia series.—Second-bottom or terrace soils with friable subsoil Gray to brownish surface soils with yellow subsoils, not as well draine as Cahaba soils.

Kirvin series.—Upland soils of the forested area with heavy subsoil Reddish-brown to red surface soil with mottled red, yellow and gra subsoils, similar to the Susquehanna soils but deeper red subsoils.

Table 1	1.—Composition	of so	oils of	Freestone	County.
---------	----------------	-------	---------	-----------	---------

		Phospho	ric Acid	Nitro-		Potash		Acid Soluble,		
Lab. No.		Total Per Cent	Active Per Million	gen Per Cent	Total Per Cent	Acid Soluble Per Cent	Active Per Million	Lime, Per Cent	Basicity	Acidity
3397	Bowie Fine Sandy Loam-surface	.072	27	.055	.89	.11	113	.11	.15	200
3398	Bowie Fine Sandy Loam-subsoil	.082	-9	.041	.05	.21	110		.51	1400
3064	Bowie Fine Sandy Loam-surface	.024	11	.044	1.15	.08	78	.11	.25	460
6065	Bowie Fine Sandy Loam-subsoil	.020	4	.027	1.14	.11	81	.04	.25	1100
6066	Bowie Fine Sandy Loam-subsoil	.015	6		1.10	.13	70		.20	2210
	Average Bowie Fine Sandy Loam-surface	.048	19	.050	1.02	.10	96	.11	.20	330
	Average Bowie Fine Sandy Loam-subsoil	.039	7	.044	1.12	.15	84	.13	.32	1570
5114	Cahaba Sand-surface	.023	50	.019	.52	.07	31	.12	.20	700
5077	Cahaba Fine Sandy Loam-surface	.025	79	.025	.99	.01	80	.45	.15	0
6078	Cahaba Fine Sandy Loam-subsoil	.027	7	.045	.91	.22	186		.40	460
5024	Crockett Fine Sandy Loam-surface	.040	77	.050	1.08	.18	309		.15	0
5025	Crockett Fine Sandy Loam-subsoil	.043	14	.058	.81	. 53	171	.49	1.40	0
5026 5021	Crockett Fine Sandy Loam-subsoil	.041	34	.029	.74	.42	126			0
5022	Crockett Loam-surface	.057	27	.131	.61	.38	309	.61	1.25	230
5023	Crockett Loam-subsoil Crockett Loam-subsoil	. 023	8	.048	.54	.41	153		1.30	0
51025	Houston Clay Loam-surface	.037	70 96	.032	1.03	. 52	99	1.79	3.90	0
6104	Houston Clay Loam-subsoil.	.062 .044	96 51	.133	.88	.39	. 96	.97	1.95	0
5079	Kalmia Fine Sandy Loam-surface	.044	45	.039	.94	.47	146 99		7.60	0
3080	Kalmia Fine Sandy Loam-subsoil.	.021 .052	37	.024	.03	.25	99 107	.09	.10	700 700
5027	Kirvin Gravelly Fine Sandy Loam-surface	.032	22	.034	.84	.13	139		.40 .40	100
5028	Kirvin Gravelly Fine Sandy Loam-subsoil	.057	10	.069	.38	.30	219		1.50	700
5032	Lufkin Fine Sandy Loam-surface	.047	10	.023	.58	.31	174	.50	1.00	2100
5033	Lufkin Fine Sandy Loam-subsoil	.046	82	.083	.75	.12	176		.70	230
5034	Lufkin Fine Sandy Loam-subsoil	.061	17	.055	.28	.16	109		.85	200
5031	Lufkin Fine Sandy Loam-surface.	.025	12	.080	.43	.22	125		.85	ŏ
	Average Lufkin Fine Sandy Loam-surface	.036	11	.052	.51	.27	149		.93	1050
5.992	Average Lufkin Fine Sandy Loam-subsoil	.054	50	.069	. 52	.14	143	.30	.78	115
5039	Norfolk Fine Sand-surface	.033	21	.015	. 98	.06	65		.05	0
5040	Norfolk Fine Sand-subsoil	.040	11	.012	1.43	.10	68	.06	.05	230
5041	Norfolk Fine Sandy Loam-surface	.074	7	.043	.38	.09	56	.09	.20	0
5042	Norfolk Fine Sandy Loam-subsoil	.022	5	.034	.42	.15	50	.09	.30	230
5037	Norfolk Sand-surface	.041	37	.039		.14	44	.13		. 0
5038	Norfolk Sand-subsoil.	.037	22	.019		.13	40	.10		0
$6110 \\ 6111$	Norfolk Sand-surface.	.019	11	.046	. 55	.05	23	.05		1100
0111	Norfolk Sand-subsoil.	.048	9	.021	.37	.04	21	.04	.05	700
	Average Norfolk Sand-surface	.030	24	.043		.10	34	.09		550
6083	Average Norfolk Sand-subsoil.	.043	16	.020		.09	31	.07	.10	350
	Norfolk Sandy Loam-surface Norfolk Sandy Loam-subsoil	$.021 \\ .015$	28 11	.024	.65		31	.07		0
0004	Tronois Banuy Loant-Subson	.015	11	.015	. 70	.21	105	.18	.30	700

		Phospho	ric Acid	Nitro-		Potash		Acid Soluble.		
Lab. No.		Total Per Cent	Active Per Million	gen Per Cent	Total Per Cent	Acid Soluble Per Cent	Active Per Million	Lime, Per Cent	Basicity	Acidity
6112	Ochlockonee Clay-surface	.101	99	.144	1.89		510		1.70	0
6113	Ochlockonee Clay-subsoil	.075	107	. 105	1.60			.70	1.60	0
250	Ochlockonee Fine Sandy Loam (probably)-surface	.041	17	.045	.89		96	.11	.22	0
251	Ochlockonee Fine Sandy Loam (probably)-subsoil	.028	6 .	.046	.54		41	.15	.19	0
108	Ochlockonee Fine Sandy Loam-surface	.033		.068	1.28					0
109	Ochlockonee Fine Sandy Loam-subsoilAverage Ochlockonee Fine Sandy Loam-surface	.028 .037	65 17	.034 .057	$1.30 \\ 1.09$.18	65 96		.85 .22	0
	Average Ochlockonee Fine Sandy Loam-subsoil	.037	$\frac{17}{36}$.037	1.09					0
075	Ochlockonee Silt Loam-surface	.028	121	.151	1.66	10				Ő
076	Ochlockonee Silt Loam-subsoil	.032	38	.081	1.46					460
119	Ochlockonee Silty Clay Loam-surface	.106		.200	1.54		345			700
120	Ochlockonee Silty Clay Loam-subsoil	.096		.144	1.43	.28	289			0
67	Ruston Fine Sand-surface	.024	8	.024	.41		38	.04		200
68	Ruston Fine Sand-subsoil	.032	5	.023	.39		73	.01		C
35	Ruston Fine Sandy Loam-surface	.050	7-	.047	.27	.09	91	.13	.35	(
36	Ruston Fine Sandy Loam-subsoil	.030		.044	.80			.14		(
72	Ruston Fine Sandy Loam-surface	.038		.037	1.37					(
73	Ruston Fine Sandy Loam-subsoil	.038		.050	1.10					
74	Ruston Fine Sandy Loam-subsoil	.032		.023	1.62					
15	Ruston Gravelly Fine Sandy Loam-surface	.016	12	.040	. 63					1100
16	Ruston Gravelly Fine Sandy Loam-subsoil	.034	7	.042	. 95	.25	146			
81	Sumter Clay Loam-surface	. 107	163	.114	2.84					
82	Sumter Clay Loam-subsoil	.135		.061	.83					
69	Susquehanna Clay Loam-surface	.013		.036	1.24	.14	179			
070	Susquehanna Clay Loam-subsoil Susquehanna Clay Loam-subsoil	.050		.047	1.34		153			2800
071	Susquehanna Fine Sandy Loam (probably)-sur-	.029	1 1	.025	1.61	.25	155	.07	1.01	2800
101	face.	.077	18	.049	.74	.09	71	.07	.21	
102	Susquehanna Fine Sandy Loam (probably)-sub-	.077	10	.049	. 14	.08	1 11	.07	.41	
104	soil.	.090	9	.041	.51	.22	66	.26	.72	. 1400
05	Susquehanna Fine Sandy Loam (probably)-sur-	.000		.041		.44	1 00			1100
00	face	.042	12	.049	.87	.09	61	.11	.80	(
06 -	Susquehanna Fine Sandy Loam-subsoil	.024		.035	1.23	3 .32		.21		
07	Susquehanna Fine Sandy Loam-subsoil	.030		.030		.34			1.20	
117	Susquehanna Fine Sandy Loam-surface	.020	21	.040	1.20	.11	277	.15	.05	700
118	Susquehanna Fine Sandy Loam-subsoil	.035	5 3	.033	1.31	.27	29	.37	1.10	1100
	Average Susquehanna Fine Sandy Loam-surface.	.046	5 17	.046	.94	1 .10	136	.11	.35	
	Average Susquehanna Fine Sandy Loam-subsoil.	.045	5 8	.035			91 91		1.02	
085	Susquehanna Gravelly Fine Sandy Loam-surface	.018		.060						
086	Susquehanna Gravelly Fine Sandy Loam-subsoil.	.061	4	.054	1.11		359	1	1.00	460

Table 11.—Composition of soils of Freestone County—(continued).

16087	Susquehanna Gravelly Fine Sandy Loam-subsoil.	.025	4	.035	1.22	.321	231	.441	1.00	460	
15029	Tabor Fine Sandy Loam-surface	.115	273	.029	.92	.11	275	.20	1.35	100	
15030	Tabor Fine Sandy Loam-subsoil	.093	6	.041	.69	47	170	.34	1.15	0	
7256	Tabor Fine Sandy Loam (probably)-surface	.029	24	.043	.66	.14	143	.33	1.15	0	
7257	Tabor Fine Sandy Loam (probably)-subsoil	.047	42	.035	.59	.20	83	. 33	.19	0	
16121	Tabor Fine Sandy Loam (probably)-surface	.012	17	.035	.94	.12		.1/	.09	0	
16122	Tabor Fine Sandy Loam (probably)-subsoil	.026	10				160	.25	.30	0	
10144	Average Tabor Fine Sandy Loam-surface			.050	.64	.24	121	.64	1.20	0	
	Average Tabor Fine Sandy Loam-subsoil	.021	21	.067	.80	.13	152	.29	.25	0	
16101	Tripity Clay surface	.037	26	.043	. 62	.22	102	.41	. 65	0	
16103	Trinity Clay-surface	.055	20	.074	1.44	. 68	268	1.34	2.40	0	
	Trinity Clay-subsoil	.138	107	.195	1.55	. 90	478	2.07	3.95	0	
16155	Trinity Clay-surface	.146	23	.102	.29	.29	240	.40	1.00	0	
16156	Trinity Clay-subsoil	.072	14	.030	1.47	. 59	231	2.37	4.30	Ő	
1.2614 14	Average Trinity Clay-surface	. 101	22	.088	.87	.49	254	.87	1.70	ŏ	
Sec. 2	Average Trinity Clay-subsoil	.105	61	.113	1.51	.75	355	2.22	4.13	Ő	
15018	Wilson Silt Loam-surface	.059	30	124		.43	119	.43	1.05	230	
15019	Wilson Silt Loam-subsoil	.033	10			.45	174	.59	2.10	200	
15020	Wilson Silt Loam-subsoil	.040	34	0.11		54	231		$\frac{2}{2}$.20	0	
1.15		.0.10		.011		.04	201	. 34	2.20	0	

SOILS OF BOWIE, DENTON, FREESTONE, AND RED RIVER COUNTIES

			Possibility llion Pou		. A	cid-Solubl	le	Acidity 3330 1570 0 460 700 230 0 0 0 0 0 0 0 0 0		Per Cent
Lab. No.	Type Name	Active Phos- phoric Acid	Total Nitro- gen	Active Potash	Phos- phoric Acid	Potash	Lime	Acidity	Acres	of Area
	Average Bowie Fine Sandy Loam-surface	12	18	50	fair	low	fair	330	26752	4.8
	Average Bowie Fine Sandy Loam-subsoil	16	13	50	fair	fair	fair	1570		
077	Cahaba Fine Sandy Loam-surface	35	13	50	low	low	good		1728	.3
078	Cahaba Fine Sandy Loam-subsoil	6	18	94	low	good	good			
114	Cahaba Sand-surface	30	8	26	low	fair	good			
021	Crockett Loam-surface	18	38	144	good	good	good		8512	1.5
022	Crockett Loam-subsoil	6	18	84	low	good	good			
023	Crockett Loam-subsoil	35	13	50	good	good	good			
024	Crockett Fine Sandy Loam-surface	35	18	144	fair	good	good		15680	2.8
025	Crockett Fine Sandy Loam-subsoil	12	18	84	good	good	good			
026	Crockett Fine Sandy Loam-subsoil	24	13	73	good	good	good		640	
102	Houston Clay Loam-surface	40	38	50	good	good	good		040	1.1
104	Houston Clay Loam-subsoil	30	18	73	good	good	high		1152	
079	Kalmia Fine Sandy Loam-surface	30	13 13	50	low	fair	low good		1152	.4
080	Kalmia Fine Sandy Loam-subsoil	24	13	61 73	good fair	good fair	good		512	
027	Kirvin Gravelly Fine Sandy Loam-surface	18	23	105			good		012	1
028	Kirvin Gravelly Fine Sandy Loam-subsoil	$12 \\ 6$	18	105	good	good	good		4416	
	Average Lufkin Fine Sandy Loam-surface	30	23	73	good	fair	good		TIN	
000	Average Lufkin Fine Sandy Loam-subsoil	16	8	38	fair	fair	low		59008	10.6
039	Norfolk Fine Sand-surface	10	18	38	fair	fair	fair		00000	1.0.0
040	Norfolk Fine Sandy Loam-surface	12	18	38	low	low	low		40128	7.2
$)41 \\ 042$	Norfolk Fine Sandy Loam-subsoil	6	13	76	low	fair	low			1
942	Average Norfolk Sand-surface	18	18	26	low	fair	fair		9280	1.7
	Average Norfolk Sand-subsoil	12	8	26	fair	fair	fair	350		
083	Norfolk Sandy Loam-surface	24	13	26	low	low	low		1600	.3
084	Norfolk Sandy Loam-subsoil	12	8	61	low	fair	fair	700		
112	Ochloc' nee Clay-surface	40	43	211	good	good	good	0	6208	3 1.1
113	Ochlockonee Clay-subsoil	45	33	163	good	good	good	0		
	Average Ochlockenee Fine Sandy Loam-surface	12	18	50	fair		fair	0	38720	6.9
	Average Ochlockenee Fine Sandy Loam-subsoil	24	13	. 38	low	good	good	0		
075	Ochlockonee Silt Loam-surface	45	43	163	fair	low	low	0	6976	1.3
076	Ochlockonee Silt Loam-subsoil	24	28	84	fair	fair	fair	460		
119	Ochlockonee Silty Clay Loam-surface	45	53	154	good	good	good	700	11136	3 2.0
120	Ochlockonee Silty Clay Loam-subsoil	30	43	135	good	good	good	$\begin{vmatrix} 0\\200 \end{vmatrix}$	832	
067	Ruston Fine Sand-surface	6	13	26	low	low	low		832	2 .1
068	Ru-ton Fine Sand-subsoil	6	13.	38	fair	low	low			
035	Ruston Fine Sandy Loam-surface	6	18	50	fair	low	fair	0		
5036	Ruston Fine Sandy Loam-subsoil		18	1	low	good	fair	1 0	1	

Table 12.—Interpretation of analyses, Freestone County.

36

SOILS OF BOWIE, DENTON, FREESTONE, AND RED RIVER COUNTIES 37

38 BULLETIN NO. 375, TEXAS AGRICULTURAL EXPERIMENT STATION

Lufkin series.—Upland soils of the forested area with heavy subsoils. Gray soils with gray to dark-gray heavy plastic subsoils.

Norfolk series.—Upland soils of the forested area with friable sandy subsoils. Gray to brownish gray sandy surface soils with yellow to brownish-vellow subsoils.

Ochlockonee series.—First-bottom soils. Grayish-brown to darkbrown surface soils with dark-gray to brown subsoils.

Ruston series.—Upland soils of the forested area, with friable subsoils. Gray to brownish gray sandy surface soils with dull-red subsoils.

Sumter series.—Upland soils of the prairie region with heavy subsoils. Brown surface soil with a heavy calcareous yellowish-brown to greenish-yellow subsoil.

Susquehanna series.—Upland soils of the forested area with heavy subsoils. Gray soils with mottled red, yellow and gray heavy plastic subsoils.

Tabor series.—Upland soils of the forested area with heavy subsoils. Gray to dark gray soils with yellowish-brown to brown or brown and gray heavy plastic subsoils.

Trinity series.—First-bottom soils. Black surface soils with black to gray heavy subsoils, calcareous.

Wilson series.—Upland soils of the prairie region, heavy subsoils. Black surface soils with black or gray, but generally olive-colored subsoils, non-calcareous.

SOILS OF RED RIVER COUNTY

Red River County is in the northeastern corner of Texas, next to Bowie County. The elevation is 300 to 500 feet above the sea level. It has a broad central ridge on which border belts of flat land, and has extensive stream bottoms. The soils are divided into four groups consisting of upland forested soils, upland prairie soils, second-bottom or terrace soils, and the first-bottom or alluvial soils.

The number of types mapped is 38, divided into 22 series. The Susquehanna very fine sandy loam occupies 26.9 per cent of the area, the Trinity clay, which is the first-bottom soil, occupies 8.2 per cent of the area, the Lufkin clay occupies 6.9 per cent, Bowie very fine sandy loam 6.8 per cent, Lufkin very fine sandy loam 6.8 per cent, and the Lufkin silty clay loam 6.3 per cent. They are all upland soils. The Houston black clay, which is a black calcareous soil, occupies 5.4 per cent. The Wilson clay, which is a black prairie soil but not calcareous, occupies 5.3 per cent.

Chemical Composition

The average chemical composition of the various groups of soils is given in Table 1. The upland forested soils, like those of the other counties discussed in this Bulletin, are low in active phosphoric acid and in nitrogen, and lower in potash than the other groups of soils, al-

SOILS OF BOWIE, DENTON, FREESTONE, AND RED RIVER COUNTIES 39

though better supplied with potash than with other forms of plant food. They are also inclined to be acid.

The upland prairie soils are better supplied with plant food, are usually calcareous, and are not acid. The second-bottom or terrace soils of this county are low in nitrogen and phosphoric acid, and comparatively low in active potash.

The first-bottom soils are richer in active phosphoric acid than any of the other groups of soils described in this Bulletin. They average about the same in active potash and in total nitrogen. They are limestone soils and are not acid.

The detailed chemical composition of the various soils is contained in Table 14. The interpretation of the detailed analyses of the various soil types is given in Table 15. Pot experiments are given in Table 16.

Classification of Soils of Red River County

Upland soils of the forested area:

- Surface soils, brown to grayish-brown or gray, with sandy well drained subsoils:
 - Friable sandy clay subsoil, yellowish in upper part of subsoil, mottled red and gray or red, yellow and gray in the lower part—Bowie soils.
 - Yellow or pale-yellow friable sandy subsoil-Norfolk soils.
 - Reddish-yellow, yellowish-red or light-red friable sandy subsoil— Ruston soils.
- Brown to grayish-brown or gray surface soils, with heavy subsoils: Stiff heavy clay, mottled red and gray or red, yellow and gray in the lower part—Susquehanna soils.
 - Gray surface soil and a gray, bluish-gray or mottled gray and yellow heavy clay subsoil, compact and impervious in the lower part—Lufkin soils.

Upland soils of the Prairie area:

- Prairie soils, stiff heavy clay subsoil, mottled red and bluish-gray or yellow and bluish-gray. The lower subsoil is tough and impervious—Crowley soils.
- Dark brown to black prairie soils with brown or bluish-gray subsoil, slightly mottled with yellow—Wilson soils.
- Dark brown to black calcareous prairie soils, with dark to grayish subsoil resting on chalk or chalky clay at a depth of a few inches to several feet—Houston soils.
- Brown to grayish surface soil with mottled red or gray or red, gray and yellow plastic clay subsoil, calcareous in the lower part— Oktibbeha soils.

Second-bottom or terrace soils:

Grayish to yellow surface soil and a mottled yellow and gray subsoil—Kalmia soils.

BULLETIN NO. 375, TEXAS AGRICULTURAL EXPERIMENT STATION

Gray surface soils and a gray or mottled gray and yellow heavy clay subsoil, poorly drained—Myatt soils.

Gray to brown surface soils and a heavy mottled gray and red subsoil—Leaf soils.

Black to dark-brown surface soils and a brown to bluish-gray subsoil—Brewer soils.

Brown to grayish surface soil and light-red, yellowish-red or reddish-yellow friable subsoil—Cahaba soils.

Brown to grayish surface soil and yellowish-red friable sandy clay— Teller soils.

Chocolate-brown surface soils and a chocolate-red subsoil, calcareous in surface or subsoil—Bastrop soil.

First-bottom soils, subject to overflow:

Dark-colored to black surface soils and brown to mottled gray and yellow subsoil, calcareous in surface or subsoil—Trinity soils.

- Brown surface soils, with a brown, light-brown, or mottled grayish and brownish or yellowish subsoil, non-calcareous—Ochlockonee soils.
- Brown surface soils with grayish or mottled gray and yellow subsoil, calcareous—Catalpa soils.

First-bottom Red River soils:

Brownish-red surface and subsoil, clayey subsoil-Miller soils.

- Brownish-red surface and subsoil; the lower subsoil more sandy than the upper subsoil—Yahola soils.
- Chocolate-brown surface soils, brownish-red subsoils, with poorly drained areas having bluish-gray and brown mottled subsoil—Portland soils.
- Black surface soils grading into a brownish-red subsoil—Pledger soils.

Alphabetical List of Soil Series of Red River County

Bowie series.—Upland soils of the forested area with brown to grayish-brown or gray surface soils and sandy well drained subsoils. Friable sandy clay, yellowish in upper part of subsoil, mottled red and gray or red, yellow and gray in the lower part.

Catalpa series.—First-bottom soils, subject to overflow. Brown surface soils with grayish or mottled gray and yellow subsoil, calcareous.

Crowley series.—Upland soils of the prairie region. Prairie soils, stiff heavy clay subsoil, mottled red and bluish-gray or yellow and bluish-gray. The lower subsoil is tough and impervious.

Houston series.—Black calcareous prairie soils. Calcareous upland soils. Dark-brown to black prairie soils, with dark to grayish subsoil resting on chalk or chalky clay at a depth of a few inches to several feet.

Kalmia series.—Second-bottom soils. Non-calcareous second-bottom soils, or terraces. Grayish to yellow surface soil and a mottled yellow and gray subsoil.

Table 14.—Composition of soils of Red River County.

		Phospho	ric Acid	Nitro-		Potash	1827	Acid Soluble.	1. 1996	
Lab. No.		Total Per Cent	Active Per Million	gen Per Cent	Total Per Cent	Acid Soluble Per Cent	Active Per Million	Lime, Per Cent	Basicity	Acidity
389	Bowie Very Fine Sandy Loam-surface	.015		.030	.36	.12	114	.13	.2	0
390	Bowie Very Fine Sandy Loam-subsoil	.017	8	.030	.34	.15	67	.13	.3	200
403	Bowie Very Fine Sandy Loam-surface	.042	11	.031	.48	.19	57	.06	.2	200
404	Bowie Very Fine Sandy Loam-subsoil	.022	$14 \\ 9$.031	. 57	.16	74	.07	.2	200
611	Bowie Very Fine Sandy Loam-surface	.025	12	.047	$.63 \\ 1.17$.25	83 106		10.0	0
612 583	Bowie Very Fine Sandy Loam-subsoil Bowie Very Fine Sandy Loam-surface	.015		.031	1.17	.08	83		10.0	300
584	Bowie Very Fine Sandy Loam-subsoil.	.010	4	.016	.37	.00	63			
621	Bowie Very Fine Sandy Loam-surface	.033	43	.044	.28	.07	95		.2	1000
622	Bowie Very Fine Sandy Loam-subsoil.	.022	18	.052	.36	.11	64		.2	Ő
522	Bowie Very Fine Sandy Loam-surface	.031	24	.024	.22	.07	130		.2 .2 .3 .3 .2	0
523	Bowie Very Fine Sandy Loam-subsoil	.016		.019	.41	.08	109		.2	460
524	Bowie Very Fine Sandy Loam-subsoil	.085	2	.027	.37	.17	104		0	
538	Bowie Very Fine Sandy Loam-surface	.049	16	.035	.48	.08	90		.4	0
539	Bowie Very Fine Sandy Loam-subsoil	.033	4 19	.038	. 50	.23	49 93		.9	
	Average Bowie Very Fine Sandy Loam-surface Average Bowie Very Fine Sandy Loam-subsoil	.030 .042	19	.035 .038	$.42 \\ .51$	$.12 \\ .25$	95 80		1.5	71 61
426	Catalpa Silty Clay Loam-surface	.042	469	.038	1.99	1.32	90		1.5	
427	Catalpa Silty Clay Loam-subsoil.	.123		.100	2.14	.84	271		.0	i i
969	Chalk (Houston Material)-surface	.044	9	.157	.33	.07	59		10.1	č
968	Chalk (Houston Material)-subsoil	.114	9	.075	.33	.08	51	17.12		
512	Chalk (Houston Material)-surface	. 135		.117	.58	.19	38	40.00		
513	Chalk (Houston Material)-subsoil	.059		.057	.70	.19				
	Average Chalk (Houston Material)-surface	.090		.137	.46	.13	49	28.88	10.1	
-01	Average Chalk (Houston Material)-subsoil	.087	6	.066	.52	.14	55	28.94	10.0	
504 505	Crowley Silt Loam-surface	.062	63	.108 .094	.64 .60	.17 .43	143 140		1.3	
506	Crowley Silt Loam-subsoil Crowley Silt Loam-subsoil	.028		.071	.82	.36				
531	Houston Black Clay-surface.	.080		177	.02	.30				
532	Houston Black Clay-subsoil	.071		.122	.53					
533	Houston Black Clay-subsoil	.170		.054	.60					
546	Houston Black Clay-surface	.096		.118				3.76	6.4	
547	Houston Black Clay-subsoil	. 101		.112	.94		110			
	Average Houston Black Clay-surface	.088		.148						
	Average Houston Black Clay-subsoil	.114		.096						
511	Kalmia Very Fine Sand-surface	.035		.016			89			
502 503	Lufkin Clay-surface			.090	.47			.87		
7525	Lufkin Clay-subsoil Lufkin Silt Loam-surface			.051						
1526	Lufkin Silt Loam-subsoil			.035					1.2	1600

		Phospho	ric Acid	Nitro-		Potash		Acid Soluble.	1.13	1.0
Lab. No.		Total Per Cent	Active Per Million	Per Cent	Total Per Cent	Acid Soluble Per Cent	Active Per Million	Lime, Per Cent	Basicity	Acidity
17517	Lufkin Silty Clay Loam-surface	.061	37	.108	.31	.07	164	.34	9	230
17518	Lufkin Silty Clay Loam-subsoil	:023	9	.030	.26	.08	74	.41	.6	900
17519	Lufkin Silty Clay Loam-subsoil	:065	5	.025	.25	.10	67			0
18540	Lufkin Silty Clay Loam-surface	.042	21	.068	.42	.08	- 98			0
18541	Lufkin Silty Clay Loam-subsoil	.029	8	.025	.40	.09	+ 45			1100
	Average Lufkin Silty Clay Loam-surface	.052	29	.088	.37	.08	131		.9	115
	Average Lufkin Silty Clay Loam-subsoil	.039	7	.027	.30	.09	62			667
17529	Lufkin Very Fine Sandy Loam-surface	.052	7	.021	.12	.08	73			0
17530	Lufkin Very Fine Sandy Loam-subsoil	.031	7	.030	.33	.12	85			0
$17509 \\ 17510$	Ochlockonee Silty Clay Loam-surface Ochlockonee Silty Clay Loam-subsoil	.071 .058	$\begin{array}{c}123\\33\end{array}$.110	.72	.34	167	.60		700
15963	Oktibbeha Clay Loam-surface	.033	33	.040 .044	1.13 .61	.26.24	$125 \\ 106$		1.0	700
5964	Oktibbeha Clay Loam-subsoil	.055	9 42	.044	.61	.24	106			2800
5967	Oktibbeha Clay Loam-subsoil	.016	42	.030	.57	.10	146		$\frac{2.7}{1.2}$	0
7507	Ruston Very Fine Sandy Loam-surface	.068	1	.035	. 46	.12	140		1.2	0
7508	Ruston Very Fine Sandy Loam-subsoil	.072	- 3	.050	46	12	76		.4	0
7520	Susquehanna Clay-surface	.070		.049	.37	10	10	13		460
7521	Susquehanna Clay-subsoil	.086		.054	.47	.26		.45		100
15965	Susquehanna Fine Sandy Loam-surface	.047	12	.039	.39	.08	90			ŏ
15966	Susquehanna Fine Sandy Loam-subsoil	.021	11	.034	.46	.18	129		1.0	2100
17514	Susquehanna Very Fine Sandy Loam-surface	.042	19	.045	.24	.08	149			0
17515	Susquehanna Very Fine Sandy Loam-subsoil	.117	104	.080	.28	.08	104	.12	$^{.2}_{.7}$	460
17516	Susquehanna Very Fine Sandy Loam-subsoil	.044	8	.048			87		.4	
18544	Susquehanna Very Fine Sandy Loam-surface	.027	16	.034	.73	.06	61	.10	.4	0
18545	Susquehanna Very Fine Sandy Loam-surface	.030	3	.045	. 68	.27	111	.14	.8	0
	Average Susquehanna Very Fine Sandy Loam-	: 005	10		1.1.1					
	surface	.035	18	.040	.49	.07	105	.14	.3	0
3. A	Average Susquehanna Very Fine Sandy Loam-	:064	20	050		10		10		000
15972	subsoil	.064	38	.058	.48	.18	101	.13	.6	230
15972	Trinity Clay-surface Trinity Clay-subsoil.	.080	142	.211 .044	$1.18 \\ 1.34$.33	382 147		.3	1100
4355	Wilson Clay-surface.	.040	142	.044 .079	1.54	.19	147		2.1	1100
4356	Wilson Clay-subsoil	.040	7	.103	.50	.40 .25	130		$\frac{2.1}{1.7}$	0
7534	Wilson Clay-surface.	.055	7	.103 .162	00	.23	145		$1.7 \\ 1.6$	230
7535	Wilson Clay-subsoil	.064	4	.083		.19	98			250
18542	Wilson Clay-surface.	.049	19	.117	.58	.19	121	.69		Ő
18543	Wilson Clay-subsoil.	.036	10	.072	.46	.16	90			ŏ
18548	Wilson Clav-surface	.050	19	.087	.49	.17	101	1.12		Ő
18549	Wilson Clay-subsoil	.037	6	.068	.43	.17	85	1.17	1.2	Ő
	Wilson Clay (probably)-surface	.037	18		.48					Ō

Table 14.—Composition of soils of Red River County—(continued).

	Average Wilson Clay-surface	.048	16	.111)	.51	.24	147	.95	1.9]	58	
	Average Wilson Clay-subsoil	.043	7	.082	.43	.19	105	.96	1.3	0	
159		.033	7	.069	.73	.25	135	.50	1.8	0	
159	71 Wilson Silt Loam-subsoil	.024	16	.111	.73	.13	109	.26	. 8	2100	07
175	27 Wilson Silty Clay Loam-surface	.033	4	.084	.88	.26	144	.51	1.1	0	Õ
175	28 Wilson Silty Clay Loam-subsoil	.034 .		.045	. 53			.82	1.6	0	H
175	36 Yahola Very Fine Sandy Loam-surface	.128	407	.030	.65	.36	202	2.80	6.2	0	à
177	21 Yahola Very Fine Sandy Loam-subsoil	.067	342	.030		.40	199	2.93	6.7	. 0	-
185		.130	372	.101	2.22	. 50	291	2.22	5.6	0	G
185		.085	309	.037	1.97	.33	108	1.97	4.8	0	-1
	Average Yahola Very Fine Sandy Loam-surface.	.129	390	.066	1.44		247	2.51	5.9	0	B
	Average Yahola Very Fine Sandy Loam-subsoil.	.076	326	.034	1.97	.37	153	2.45	5.8	0	0
		1.2 8	1.		12 100 100		23102231	5 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1	11 1 2 2 4 4		5

Table 15.—Interpretation of analyses, Red River County.

		Corn Mi	Possibility Ilion Pou	y Two nds	А	cid-Solubl	le			Per Cen
Lab. No.	Type Name	Active Phos- phoric Acid	Total Nitro- gen	Active Potash	Phos- phoric Acid	Potash	Lime	Acidity	Acres	of Area
		12	13	61	low	fair	fair	71	45184	6.8
	Average Bowie Very Fine Sandy Loam-surface	12	13	38		good	good	61	40104	0.0
100	Average Bowie Very Fine Sandy Loam-subsoil	55	13	50	good	good	high	0	9216	1.4
3426	Catalpa Silty Clay Loam-surface	50	28	135	fair	good	high	0	5210	1.4
3427	Catalpa Silty Clay Loam-subsoil Average Chalk (Houston Material)-surface	6	38	26	low	fair	high	l ő	1280	.2
	Average Chalk (Houston Material)-surface	6	23	38	low	fair	high	0	1200	
=04	Average Chalk (Houston Material)-subsoil		33	73	good	good	good	0	3968	
504	Crowley Silt Loam subsoil	6	28	73	good	good	good	ŏ	0000	
$505 \\ 506$	Crowley Silt Loam-surface Crowley Silt Loam-subsoil Crowley Silt Loam-subsoil	6	23	94	low	good	good	ŏ		
200	Average Houston Black Clay-surface	35	43	84	good	good	high	Ö.	35136	54.0
	Average Houston Black Clay-sufface	30	28	61	good	good	high	Ŏ	00100	01.0
511	Average Houston Black Clay-subsoil. Kalmia Very Fine Sand-surface.	6	8	50	fair	good	fair	ŏ	704	1
502	Lufkin Clay-surface	18	28		good	good	good	Ŏ	45632	
503	I ufkin Clay-subsoil	12	13	50	good	good !	good	1100	10001	0.0
525	Lufkin Silt Loam-surface	16	18	38	good	low	fair	700	6656	1.0
526	Lufkin Silt Loam-subsoil.	6	18	38	low	low	fair	1600		
520	Average Lufkin Clay Loam-surface	18	28	73	good	good	good	115	42240	6.3
	Average Lufkin Clay Loam-surface. Average Lufkin Clay Loam-subsoil	6	13	. 38	good	good	good	667		
529	Lufkin Very Fine Sandy Loam-surface	6	13	38	low	good	fair	0	18048	6.8
530	Lufkin Very Fine Sandy Loam-subsoil	. 6	13	50	good	fair	fair	0		
509	Ochlockonee Silty Clay Loam-surface	45	33	84	good	good	good	0	16064	2.4
510	Ochlockonee Silty Clay Loam-subsoil	24	13	73	good	good	good	700		
963	Oktibbeha Clay Loam-surface	6	18	61	good	good	good	2800	7680	1.1
964	Oktibbeha Clay Loam-subsoil	30	23	50	good	good	good	0		
967	Oktibbeha Clay Loam-subsoil	6	13	73	low	low	low	0		

BOWIE, DENTON, FREESTONE, AND RED RIVER COUNTIES

Lab.		Corn Mi	Possibilit llion Pou	y Two nds	A	cid-Solub	le			
No.	Type Name	Active Phos- phoric Acid	Total Nitro- gen	Active Potash	Phos- phoric Acid	Potash	Lime	Acidity	Acres	Per Cent of Area
17507 17508 17520 17521 15965 15966	Ruston Very Fine Sandy Loam-surface Ruston Very Fine Sandy Loam-subsoil. Susquehanna Clay-surface. Susquehanna Clay-subsoil. Susquehanna Fine Sandy Loam-surface. Susquehanna Fine Sandy Loam-subsoil. Average Susquehanna Very Fine Sandy Loam- surface.	6 	13 18 18 18 13 13 13	84 50 50 73 61	good good fair fair good low good	good good fair good good good fair	good good good good fair	$ \begin{array}{c} 0 \\ 0 \\ 460 \\ 0 \\ 2100 \\ 0 \end{array} $	14528 5376 4928 143872	.8
15972 15973 15970 15971 17527 17528	Average Susquehanna Very Fine Sandy Loam- subsoil. Trinity Clay-surface. Trinity Clay-subsoil. Average Wilson Clay-surface. Average Wilson Clay-subsoil. Wilson Silt Loam-surface. Wilson Silt Loam-subsoil. Wilson Silty Clay Loam-surface. Wilson Silty Clay Loam-surface. Average Yahola Very Fine Sandy Loam-surface. Average Yahola Very Fine Sandy Loam-subsoil.	$ \begin{array}{c} 6\\ 6\\ 12\\ 6 \end{array} $	$ \begin{array}{r} 18 \\ 58 \\ 33 \\ 28 \\ 23 \\ 33 \\ 28 \\ 18 \\ 23 \\ 13 \\ 13 \\ \end{array} $	$\begin{array}{r} 61\\ 171\\ 73\\ 61\\ 73\\ 61\\ 73\\ 61\\ 73\\ \cdots\\ 115\\ 84\\ \end{array}$	good good low good good good good good good good	f air good good good good good good good goo	fair good good good good good good good high high	$230 \\ 0 \\ 1100 \\ 58 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	54400 35328 4352 9920 17472	5.3 .6 1.5

Table 15.—Interpretation of analyses, Red River County—(continued).

40			Weight Cro	Weight Crops in Grams		Corn Pos Witho	Corn Possibility of Plant Food Withdrawn, in Bushels	lant Food ushels
No.	Type Name	With Complete Fertilizer	Phosphoric Acid	Without Nitrogen	Without Potash	Phosphoric Acid	Nitrogen	Potash
3611	Bowie Very Fine Sandy Loam-surface Corn-1913. Sorghum-1913.	22.5 13.9	6.5 4.7			15 6		
7621	Bowie Very Fine Sandy Loam-surface	39.9	6.9	0 66	č	2		
2695	Sorghum-1915 Sorghum-1915 Corn-1916 Bowie Verw Pine South I com-enhead	24.0 26.8		4.5 9.1			90 12 12	
0630	Corn-1915. Com-1915. Constitum-1916. Sorghum-1916.	33.2 16.7 25.8 20.1		21.0 22.0 1.7			31 5544	
00000	Dowe very frine satudy Loam-surface Corn-1921 Boord Distribution 1921	$24.8 \\ 34.4$	16.8 31.1	$13.5 \\ 24.2$	26.5 28.8		26 67	142 93
18546	Down very rule satury Loam-surface Corn-1921 Houston Black Clatenrifora	24.4 27.6	$4.3 \\ 6.6$	12.6 18.8	$17.4 \\ 22.2$		25 51	122 65
18547	Tourney Cars-surger Corn-1921, Cars-surger Gorn-1921, Cars-surger Houston Blank, Chrysenbool	18.1 21.7	10.7	$14.9 \\ 25.5$	$21.4 \\ 18.6$		41 84	251 116
8540	turbucture and tray-supsui Com-1921 Turbucture 1921	15.5 24.3	8.9 16.0	13.8 22.3	12.3 23.1		47 71	, 173 161
18541	Lucia rousy commendation Comm-1921 Lights Silva Close anteoil	29.4 42.6	$ \begin{array}{c} 15.9 \\ 27.5 \end{array} $	17.3 34.6	$32.2 \\ 46.1$		34 93	196 168
8544	Corn-1921 Corn-1921 Suscription-1921 Suscription-1921	25.9	7.3	13.6 19.3	26.8 22.0		25 55	108
18545	Corn-1921. Construction of the standy Loom-surface Corn-1921. Construction of the standy Loom subsoil	34.8 35.5	12.6 21.7	$ \begin{array}{c} 12.2 \\ 27.8 \end{array} $	31.0 28.2		27 73	105 81
18542	Wilson Clarsentiane	17.5	2.9	11.9	14.3		26	365
	Corn-1921 Sorghum-1921	30.5	13.6 24.0	17.7	27.8 30.6		37	249

Table 16 .-- Pot experiments on soils of Red River County.

SOILS OF BOWIE, DENTON, FREESTONE, AND RED RIVER COUNTIES

Lab.			Weight Cro	ps in Grams		Corn Pos With	sibility of Pla drawn, in Bu	ant Food shels
No.	Type Name	With Complete Fertilizer	Without Phosphoric Acid	Without Nitrogen	Without Potash	Phosphoric Acid	Nitrogen	Potash
8543	Wilson Clay-subsoil	14.1						
	Corn—1921 Sorghum—1921.	$\begin{array}{c} 20.5\\ 40.6\end{array}$	$6.6 \\ 11.2$	$17.0 \\ 22.9$	$\begin{array}{c} 21.2\\ 30.7\end{array}$		38 67	187 85
8548	Wilson Člay-surface Corn-1921	23.6	16.8	15.9	23.6		34	216
8549	Sorghum—1921 Wilson Clay-subsoil	30.7	27.4	24.1	27.2		68	115
	Corn—1922. Sorghum—1922. Cowpeas—1922. Rice—1922.	$45.2 \\ 24.7 \\ 29.0 \\ 59.1$			$36.7 \\ 27.2 \\ 33.2 \\ 33.2$			$210 \\ 16 \\ 149$
3536	Yahola Very Fine Sandy Loam-surface		1		53.0			265
	Corn—1921 Sorghum—1921. Yahola Very Fine Sandy Loam-subsoil	$\begin{array}{c} 20.3 \\ 26.5 \end{array}$	$ \begin{array}{c} 19.4 \\ 28.2 \end{array} $	$21.4 \\ 26.8$	21.0 26.8		78 104	$ 364 \\ 267 $
3537	Yahola Very Fine Sandy Loam-subsoil Corn—1921	18.4	9.7	12.7	18.6	1	31	205
	Sorghum—1921	33.7	26.7	21.1	30.6		$\begin{array}{c} 51\\60\end{array}$	205 136

Table 16.—Pot experiments on soils of Red River County-(continued).

BULLETIN NO. 375,

TEXAS AGRICULTURAL EXPERIMENT

STATION

SOILS OF BOWIE, DENTON, FREESTONE, AND RED RIVER COUNTIES 47

Lufkin series.—Upland soils of the forested area, brown to gray surface soils with heavy subsoils. Gray surface soil and a gray, bluish-gray or mottled gray and yellow, heavy clay subsoil, compact and impervious in the lower part.

Ochlockonee series.—First-bottom soils, subject to overflow. Brown surface soils, with a brown, light-brown, or mottled grayish and brownish or yellowish subsoil, non-calcareous.

Oktibbeha series.—Upland soils of the prairie area. Brown to grayish surface soil with mottled red or gray or red, gray and yellow plastic clay subsoil, calcareous in the lower part.

Ruston series.—Upland soils of the forested area, with brown to gray surface soils and sandy well drained subsoils. Reddish-yellow, yellowish-red, or light-red friable sandy subsoil.

Susquehanna series.—Upland soils of the forested area with brown to gray surface soils and heavy subsoils. Brown to grayish-brown or gray surface soils, with heavy subsoils. Stiff heavy clay, mottled red and gray or red, yellow and gray in the lower part.

Trinity series.—First-bottom soils, subject to overflow. Dark-colored to black surface soils and brown to mottled gray and yellow subsoil, calcareous in surface or subsoil.

Wilson series.—Upland soils of the prairie region. Dark brown to black prairie soils with brown or bluish-gray subsoil, slightly mottled with yellow.

Yahola series.—First-bottom soils of the Red River. Brownish-red surface and subsoil; the lower subsoil more sandy than the upper subsoil.

ACKNOWLEDGMENT

Chemical analyses and other work involved in the preparation of this Bulletin have been taken part in by S. E. Asbury, N. J. Volk, T. L. Ogier, W. H. Walker, and other members of the staff.

SUMMARY AND CONCLUSIONS

This Bulletin discusses the chemical composition and fertility of typical soils of Bowie, Denton, Freestone, and Red River Counties.

Methods of maintenance of soil fertility are outlined.

An explanation of terms is given.

The upland forested soils (originally forested) are usually low in active phosphoric acid and nitrogen. They are a little better supplied with active potash but some of them are low in active potash. A number of these soils are acid.

The upland prairie soils are better supplied with plant food and with lime than the forested soils. They contain two or three times as much active plant food or total nitrogen as the forested soils. Most of them are limestone soils but a few are acid.

The second-bottom or terrace soils are usually better supplied with plant food than the upland forested soils but are not as well supplied

48 BULLETIN NO. 375, TEXAS AGRICULTURAL EXPERIMENT STATION

as the prairie soils. Some of these soils, however, are quite low in nitrogen.

The first-bottom soils are better supplied with plant food than the other groups of soils discussed. They contain four to eight times as much active phosphoric acid, two to three times as much active potash, and two to four times as much total nitrogen as the surface soil of the upland forested soils.

A table is given showing the crop-producing power of the average soils.

The group of forested soils generally respond well to fertilizer and the use of fertilizer is usually profitable, especially on truck crops. The black prairie soils do not respond well to fertilizers. The first-bottom soils do not need fertilizer as much as the upland soils.

While many of the soils in these areas are acid, the acidity in many cases is low and the use of lime on such soils is not recommended except in connection with a legume rotation.

The use of lime in some form would probably be of benefit on the acid heavy upland soils, especially if legume crops are to be grown, as it would not only correct the acidity but would favorably improve the physical character of the soil.

The black prairie soils of the Houston series and many of the bottom soils are well supplied with lime.

A brief tabular classification of the different soil types is given, which should aid in identifying the type of any particular soil. Some small saline spots (alkali spots) are found in Denton County. Analyses of the salts of one of these spots is given.

A brief detailed description is given of the various soil types, with tables showing the chemical composition of samples examined, the interpretation of the analyses, and the results of pot experiments with their interpretations.

3705-4