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ABSTRACT 
 
 
 

Stochastic Modeling of Transport and Degradation of Reactive 

Solutes in Heterogeneous Aquifers. (May 2005) 

Ziad Joseph Fadel, B.E., American University of Beirut 

Co-Chairs of Advisory Committee: Dr. Jeffrey Cunningham 
          Dr. Anthony Cahill 

 
 
 

 Hydraulic conductivity fields (K) and degradation rate constants (α) are 

commonly used in predicting the fate and transport of reactive contaminants. The 

natural heterogeneity in aquifer porous materials and its effect on hydrological 

parameters such as K and α has to be accounted for by using an appropriate stochastic 

approach. 

 The spatial distribution of K and its correlation with α were examined. Random 

fields of K having prescribed mean, variance, and correlation lengths were generated 

using the HYDRO_GEN method. Transport simulations were conducted for an 

ensemble of two-dimensionally heterogeneous aquifers. Both positive and negative 

correlations of K and α were considered. 

 The solute’s remaining mass in both the positive and negative correlation 

scenarios was found to be, on average, within a small range. Concentration profiles for 

a positive K-α correlation displayed a more uniform behavior of the contaminated 

plume, compared to a more variable spreading in the negatively correlated cases. 
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CHAPTER I 

 

INTRODUCTION 
 

 
 
 

Over the past three decades, groundwater contamination has become a highly 

active area of research in the environmental field. However, one major feature that 

hinders the investigation of this problem is the heterogeneity of aquifer porous materials, 

which typically occurs at length scales significantly smaller than the field scales of 

practical interest [Gelhar, 1993]. In an effort to overcome this limitation, several 

stochastic techniques have been developed to model contaminants’ fate and transport 

under spatially variable conditions [Dagan, 1989; Gelhar, 1993]. This variability affects 

several hydrological properties (hydraulic conductivity, dispersion coefficient, 

degradation rate, etc.) as well as the major physical and biological processes that govern 

groundwater flow (advection, sorption, degradation, etc.). 

 By definition, the word “contaminant” is used to describe a chemical, biological, 

or radiological substance that produces an adverse effect when present in a certain 

environment (groundwater in this case). Only a small number of contaminants are truly 

inert and harmless when present in groundwater. A large variety of solutes can be 

dangerous to both human and environmental health, but can become less hazardous 

when undergoing the process of biodegradation. 

 

 
This thesis follows the style and format of the Water Resources Research Journal. 



 

 

2 

As mentioned earlier, it is a well-established fact that the hydraulic conductivity 

and the degradation rate are heterogeneously distributed in space. However, it has not 

yet been proven if these two variables are either positively or negatively correlated, and 

whether this correlation has any significant effect on contaminant behavior. Several 

applications dealing with spatial variability in aquifers and its effect on contaminants’ 

fate and transport have been reported in the literature (e.g. correlation between the 

sorption’s distribution coefficient Kd and the hydraulic conductivity [Allen-King et al., 

1998; Robin et al., 1991]), whereas the connection between the hydraulic conductivity 

and the degradation rate remains the subject of wide speculation despite some intensive 

research [Miralles-Wilhelm and Gelhar, 1996]. 

The purpose of this project is to quantify how contaminant fate and transport in 

groundwater are affected by the correlation between two spatially-varying properties, 

namely, hydraulic conductivity (K) and degradation rate (α). Two sets of transport 

simulations were conducted along an ensemble of two-dimensionally (2-D) 

heterogeneous aquifers: the first set based on a positive correlation between K and α, 

and the second based on a negative correlation. If the simulations showed that the 

contaminant fate depended strongly upon the correlation, then it would be important to 

further investigate and research the K-α relationship. If the contaminant behavior did not 

vary significantly in both cases, then one need not be concerned about the K-α 

correlation.  

 A brief theoretical review is given in Chapter II. Several stochastic models used 

in the generation of spatially correlated random fields are presented in Chapter III. The 
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aquifer’s stochastic configuration and investigational setup are described in Chapter IV. 

Experimental results are discussed in Chapter V. Finally, conclusions and 

recommendations are summarized in Chapter VI. 
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CHAPTER II 

 

THEORETICAL BACKGROUND 
 
 

 
 
 In this section, the major processes that describe mass or solute transport in 

groundwater are presented. Before delving into the specifics of each of these processes, 

Darcy’s Law, which is the driving force behind groundwater flow, is illustrated 

hereunder.  

 

A. Darcy’s Law 

 
 The movement of groundwater was well established by hydraulic principles 

reported in 1856 by Henry Darcy, who investigated the flow of water through beds of 

permeable sand [Fetter, 1994]. Darcy discovered one of the most important laws in 

hydrology. It states that the flow rate through porous media is proportional to the 

hydraulic head loss and inversely proportional to the length of the flow path. Darcy’s 

law was originally derived in one dimension (Eq. 1), but since the hydraulic head is a 

function of the three dimensions, (x, y, z), Eq. 1 could also be expanded to cover two-

dimensional (2-D) and three-dimensional (3-D) groundwater concerns (Eq. 2).  

dx
dh

K
A
Q

q −==  (1) 

hKq
�

� ∇−=  (2) 
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Rate of 
Change of 
Solute’s 

Mass within 
the REV 

Inward 
Flux of 
Solute 

Outward 
Flux of 
Solute 

Gain/Loss 
of Solute 
Mass Due 

to Reactions 

= − ± 

where Q is the volumetric flow rate [L3/T]; A is the cross-sectional area through which 

water flows [L2]; K is the aquifer’s hydraulic conductivity [L/T]; ∇h is the hydraulic 

gradient [L/L]; q is defined as the specific discharge (Darcy’s velocity) [L/T].  

 

B. Transport Processes 

 
 
 The starting point in modeling transport in porous materials is by developing 

partial differential equations (PDE) that describe the flux of contaminants into and out of 

a certain fixed volume within the aquifer, also known as the representative elementary 

volume (REV) [Bear, 1972]. This flux is illustrated by the following mass balance 

equation: 

 

 

(3) 

 

 The two main physical processes that control the solute flux in and out of the 

REV are advection and dispersion. Some other mechanisms, such as sorption 

(adsorption / absorption), also play a role (retardation) in the transport of contaminants, 

but are disregarded in this work for illustration purposes. 
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1. Advection 

 

 Advection is the component of contaminant movement due to the groundwater 

flow. The rate of transport of the dissolved solids is equal to the average water velocity 

“v” in the aquifer’s pores, 

n
q

v =  (4) 

 

where q is the specific discharge (Eq. 1) and n the effective porosity. 

Advection is sometimes referred to as “convection” in cases where groundwater 

flow is driven by thermal gradients. The advective flux Jadv [M/L2T] is given by: 

 

nvCJ adv =  (5) 

 

where C is the solute’s concentration [M/L3]. The one-dimensional (1-D) advective 

transport equation is: 

x
txC

v
t

txC
x ∂

∂−=
∂

∂ ),(),(
 (6) 

 

which describes the movement of a solute due to the process of advection only. 
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2. Dispersion 

 

 When the solute tends to spread out of the path that it would be expected to 

follow according to the advective hydraulics, the solute’s concentration usually 

decreases. This spreading phenomenon is known as hydrodynamic dispersion, which 

involves two simultaneous processes: molecular diffusion and mechanical dispersion.   

 

2.1 Molecular Diffusion 

 

 Molecular diffusion occurs at a molecular scale (smaller than the REV scale). It 

only affects the overall dispersion process at low groundwater velocities. It is mainly due 

to the thermal kinetic energy of the contaminant’s molecules. The diffusion coefficient 

D* is given by [Bear, 1972]: 

 

τ
mD

D =∗
 (7) 

 
where Dm is the molecular diffusivity [L2/T]; τ is the tortuosity coefficient, which is a 

measure of the effect of the flow path followed by water molecules in porous media. If L 

is the straight-line distance between both ends of a tortuous flow path of length Le, then τ 

= Le / L (τ is always larger than 1). 

 

 



 

 

8 

2.2 Mechanical Dispersion 

 

Mechanical dispersion takes place at an REV scale and is caused by the 

following three mechanisms (Figure 1):  (a) some pores are larger in size than others, 

and hence allow water traveling through these pores to move faster; (b) some of the 

water will move along more tortuous flow paths, which will result in longer travel times 

for the same linear distance; (c) water will be faced by friction along the edges of the 

pores, which will lead to a faster flow at the center of the pores than along the edges. 

 

 
 

 
 

 
 
From Figure 1 above, it is clear that varying conditions across the aquifer forces 

groundwater to travel at different velocities. The velocity gradients lead to the mixing of 

the solute. The mixing that occurs along the direction of flow is called “longitudinal 

Figure 1. Factors causing mechanical dispersion [Fetter, 1994]. 

(a) 

(b) 

(c) 
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dispersion”, whereas the mixing taking place in the direction normal to the flow path is 

referred to as “transverse dispersion”. In general, the former occurs to a larger degree 

than the latter. The longitudinal and transverse dispersion coefficients, Dm
l and Dm

t 

respectively, are given by: 

 

ii
l
m vD α=  (8) 

ij
t
m vD α=  (9) 

 
 

where αi and αj are the dynamic dispersivities in the i (longitudinal)  and j (transverse) 

directions [L]; vi is the average linear velocity in the longitudinal direction [L/T]. 

The dispersive flux Jdisp [M/L2T] is given by: 

 

CnDJ disp ∇−=  (10) 

 

where ∇C is the concentration gradient [M/L3/L]; D = D* + Dm is the hydrodynamic 

dispersion coefficient [L2/T]. The one-dimensional dispersive transport equation is: 

 

2

2 ),(),(

x

txC
D

t
txC

∂
∂=

∂
∂

 (11) 

 

which describes the movement of a solute due to the process of dispersion only. 
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2.3 Advective-Dispersive Equation (ADE) 

 

 For a conservative solute (non-reactive) in an isotropic homogeneous aquifer, 

under steady-state uniform flow, Eq. 11 and Eq. 6 can be combined with the 

conservation of mass principle (Eq. 3) to obtain the one-dimensional Advective-

Dispersive Equation [Bear, 1972]: 

 

2

2 ),(),(),(
x

txC
nD

x
txC

nv
t

txC
n x ∂

∂+
∂

∂−=
∂

∂
 (12) 

 

3. Degradation 

 

 Also known as decay, degradation is often the most significant process resulting 

in the reduction of the contaminant’s mass in a certain system. Decay can occur under 

either aerobic or anaerobic conditions, and can lead to a significant reduction in the 

contaminant’s aqueous concentration in both cases. Several types of degradation kinetics 

exist in real-case groundwater applications, but the scope of this work is limited to cover 

first-order kinetics only.  

First-order kinetics refers to a reaction process of which the reaction rate of a 

certain solute is proportional to the concentration of the solute itself: 

 

),(
),(

txC
t

txC α−=
∂

∂
 (13) 



 

 

11 

 

where C is the solute’s concentration [M/L3]; α is the reaction rate constant [1/T], which 

can also be written as α = ln (2) / λ (λ is the solute’s half-life). 

 Plugging Eq. 13 into Eq. 12 yields a more inclusive PDE that extends the scope 

of the ordinary ADE (Eq. 12) to cover degradation and 1-D transport of a reactive 

contaminant in porous media [Bear, 1972; Bear and Verruijt, 1987]: 

 

),(
),(),(),(

2

2

txCn
x

txC
nD

x
txC

nv
t

txC
n x α−

∂
∂+

∂
∂−=

∂
∂

 (14) 
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CHAPTER III 

 

STOCHASTIC MODELS 
 

 

 As stated in the Introduction, geologic formations, which act as groundwater 

flow conduits, always exhibit a large degree of natural variability. It would be virtually 

impossible to represent some of the aquifer’s soil properties using deterministic 

functions.  

This heterogeneity usually occurs over spatial scales that are too small to be 

accurately reflected in a regular discretized numerical model. Hence, a stochastic 

approach, which accounts for this small scale variability (SSV), seems to be a more 

suitable solution. The idea behind such an approach is to try to include this SSV in a 

large scale model in order to determine its corresponding effects on groundwater flow 

and contaminant concentration. This process has proven to be extremely reliable, 

especially with the advancement of computing power, which enables researchers to 

analyze heterogeneous systems in great detail [Bellin and Rubin, 1996]. 

 Hydraulic properties can be represented mathematically as stationary correlated 

space random functions (SRF). SRFs are usually characterized by their first two 

statistical moments: the mean and the variance [Gelhar and Axness, 1983]. Also, 

correlation length scales are needed to define or relate the structural variation in different 

directions along the flow domain of interest.  

Some of the most widely used stochastic methods for generating correlated 

random fields are discussed in the following sections. 
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A. Mejia and Rodriguez-Iturbe (MRI) Model 

 

 As in all the stochastic models that will be reviewed in subsequent sections, this 

model is based on the assumption that the statistical characteristics (mean, variance, etc.) 

of the random field in question are known. The model uses these pre-defined statistics to 

simulate different realizations while preserving all of these characteristics.  

 The MRI model [Mejia and Rodriguez-Iturbe, 1974], also known as the 

multidimensional spectral method, represents the simulated field as a series of cosine 

functions having the same amplitude: 

  

( )�
=

+�
�

�
�
�

�=
N

k
kks xw

N
xZ

1

2
1

cos
2

)( φσ  (15) 

 

where the subscript “s” on Zs represents the simulated realizations of the field; σ2 is the 

variance of the process; φk is a random angle uniformly distributed between 0 and 2π; wk 

is an independent random vector; N is the number of harmonics. 

   

B. Matrix Decomposition Method (MDM) 

 

 This method generates normally distributed random fields having a known 

covariance structure, as shown in Eq. 16: 
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WeZ =  (16) 

 

where Z is a column vector containing the simulated values; W is a vector of weighting 

factors; “e” is a white noise vector having a unit variance and a zero mean. 

 The covariance matrix of the process, C, is obtained as the expectation of the 

product of Z and its transpose ZT. C can also be computed using: 

 

 TWWC =  (17) 

 

Using the theoretical covariance value of C, W is calculated by decomposition 

and is then plugged into Eq. 16 to generate the field. This method generates ergodic, 

stationary, and isotropic fields with a rather high degree of accuracy. However, its main 

disadvantage is the lengthy computational time it requires, which is also a reflection of 

the large computer storage needed to handle matrix operations. The MDM has been 

proven to be highly efficient when dealing with relatively small fields [Mantoglou and 

Wilson, 1982].  

 

C. Turning Bands Method (TBM) 

 

 The TBM was first introduced by Matheron in 1973 at the Ecole des Mines de 

Paris [Matheron, 1973]. It has been mostly used in the simulation of 3-D fields in mining 

applications. The originality of this technique lies in the fact that it transforms a 2-D or 
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3-D problem into a unidimensional (1-D) one. The TBM simulator generates single or 

multiple replicates of a certain stationary random process Z(x), having a user-supplied 

mean, variance, and correlation structure.  

 One of the major assumptions that underline this process is that all the replicated 

values are 2nd order stationary, isotropic, have a zero mean, and are normally distributed 

along the field nℜ . If P is the region in nℜ where a 2-D or 3-D field is to be simulated, 

lines are generated randomly at an arbitrary origin O, as shown in Figure 2. 

 

 

Figure 2. Schematic representation of the field P and the turning bands lines [Mantoglou 
and Wilson, 1982].  

 
 

 Each line “i” forms an angle θ with the X-axis. In the 2-D case shown above, 

since the X-axis is assumed to be fixed, the randomness of the direction of line “i” 

indicates that θ is uniformly distributed between 0 and 2π. As stated earlier, a 2nd order 

stationary 1-D process is generated with zero mean and a covariance function C1(ξ), 

where ξ is the coordinate along line “i”. There are several forms of covariance functions 
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(Spherical, Exponential, Gaussian, Bessel, etc.), but the exponential C1(ξ) is most often 

used for reasons that are not relevant to the scope of this study. The resulting synthetic 

value ZN at a certain point N is given by: 

 

�
=

⋅=
L

i
iNiNs uxZ

L
xZ

1

)(
1

)(  (18) 

 

where xN is the location vector of point N; ui is the unit vector along line “i”; L is the 

total number of lines; the inner product (xN.ui) represents the orthogonal projection of 

point N onto line “i”. 

Although considered as one of the most accurate and efficient techniques for 

generating spatially correlated random fields, some of the statistical characteristics of the 

TBM simulated fields can be different than the theoretical values that were pre-set by the 

user. Such errors may be greatly reduced or even eliminated with an appropriate choice 

of the model parameters (covariance type, number of lines, etc.). 

 

D. HYDRO_GEN Method 

 

 The three models discussed above, among others, have been frequently used by 

researchers and scientists to generate spatially correlated random fields, and the validity 

of these methods has been widely reported in the literature. However, the HYDRO_GEN 
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method (HGM) [Bellin and Rubin, 1996] was used in this work to generate hydraulic 

conductivity fields for the reasons illustrated hereunder. 

   The two main factors that come into play when selecting a certain stochastic 

approach, is its ability to reproduce the prescribed spatial moments as well as the 

associated computational time, which increases at a higher-than-linear rate with the 

dimensions of the simulated field. Another feature that directly affects the required 

computational effort is the accuracy of the resulting output values and their divergence 

from the pre-set theoretical statistical characteristics. Bellin and Rubin developed and 

presented the relatively new HYDRO_GEN approach (1996), and have demonstrated 

that the two aforementioned objectives have been largely met [Bellin and Rubin, 1996].  

 The relative ease with which the HYDRO_GEN code was compiled and its free-

of-charge availability were also encouraging factors in selecting the HGM over other 

stochastic models. 

 

1. General Approach 

 

 The synthetic field Z(x), which is generally a continuous function, is generated 

using the HYDRO_GEN algorithm, coupled with a Monte Carlo approach, over a pre-

defined arbitrary grid (Figure 3). All the replicates generated by the HGM, although 

different in parameter magnitude, have to meet the same condition of honoring the 

prescribed spatial statistics (mean and variance). 
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Figure 3. Domain discretization and grid refinement; a) coarse grid generation; b) 
search neighborhood; c) first stage refinement; d) second stage refinement [Bellin 
and Rubin, 1996]. 



 

 

19 

2. Field Generation Technique 

 

 This section explains the simulation process of a normally (Gaussian) or log-

normally distributed Z field. The first realization Z(xo), at a certain location xo, is 

produced using a standard Gaussian random generator with an a-priori set 

(unconditional) mean µz(x) and variance )(2 xzσ as target statistics. Once Z(xo) is 

generated, it will be used as a reference when computing the Z values at adjacent nodes. 

In other words, the simulated value Z(x1) at a neighboring node will be conditioned on 

the previously generated Z(xo), using the Gaussian conditioning procedure [Mood and 

Graybill, 1963]. For a more general case, a realization Z(xN) is dependent upon the 

previously generated (N-1) data points, and is hence called a “conditional realization”. 

The conditional mean, also referred to as the expected value, <Z(xN)>, is given by 

(superscript “c” denotes “conditional”):    

 

[ ]�
−

=

−+=
1

1

)()()()()(
N

j
jzjNjNzN

c xxZxxxZ µλµ  (19) 

 

The conditional variance is given by:  

 

),()()(
1

1

2,2
jN

N

j
zNjzN

c
z xxCxx �

−

=

−= λσσ  (20) 
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where Cz is the function’s covariance; the interpolation coefficients, λj, are the solution 

to the following linear system [Dagan, 1989]:  

 

),(),()(
1

1
qNzqj

N

j
zNj xxCxxCx =�

−

=

λ for =q 1 → )1( −N  (21) 

 

 Once the two statistical characteristics in Eq. 19 and Eq. 20 have been calculated, 

the same steps used for the generic Z(xN) are also applied to compute the Z values at all 

designated nodes within the domain. However, one noticeable difference in the 

successive steps is in the growing number of previously-computed data points used for 

conditioning, which increases the total number of interpolation coefficients. The 

repetitive solving of Eq. 21 to obtain the λj values is considerably the most demanding 

aspect of the model as far as time is concerned. In order to help alleviate the 

computational burden, the conditioning part in the calculation of Z(xN) is based only on 

a limited search neighborhood of surrounding nodes, rather than on all the cells within 

the grid. That leads to the interpolation coefficients being computed only once for the 

entire domain, and hence reducing significantly the total amount of time necessary to 

generate the random field. The size of the search neighborhood was determined based on 

extensive numerical experimentation [Bellin and Rubin, 1996]. A step-by-step outline of 

the HGM can be summarized as follows: 
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(i). <Z(xN)> and ),(2 xzσ required in the conditioning process of all data points in 

the L-shaped search neighborhood (Figure 1b – xN placed in the upper right 

corner), are computed using Eq. 19 and Eq. 20.  

(ii). A realization Z(xN) is generated using the conditional mean and variance 

computed in (i) as target statistics. 

(iii). Z(xN) is added to the database used for the conditioning at the next node 

(N+1) to compute Z(xN+1). 

(iv). Same steps (i), (ii), and (iii) are repeated for the next node according to a 

certain pre-determined scheme. 

 

 Step (iv) above is ultimately what defines the HYDRO_GEN model and 

separates it from other stochastic techniques. While other methods follow random paths 

to generate Z(x) for different realizations, the HGM applies a fixed pattern of filling in 

values along the domain (row-by-row or column-by-column). This regularity has proven 

to be very economical from a computational point of view, especially for the generation 

of a large number of replicates.  

 

3. Multi-Stage Grid Refinement (MSGR) 

 

Another factor that plays an important role in the eventual computational power 

needed is the grid density of the domain in question (Figure 3). Although a high density 

grid entails a higher computational load, it is often necessary to better mimic the true 
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state of the dependent variables in the actual field under investigation. For example, a 

high level of discretization of the hydraulic conductivity field is required in order to 

accurately simulate the contaminant fate and transport in a highly heterogeneous 

geologic formation [Tompson and Gelhar, 1990]. The HGM, by using the MSGR 

technique, takes advantage of the fact that high resolution is only needed in the domain 

areas where the contaminated plume has actually traveled.  

 The first part of the grid refinement consists of generating realizations of Z at 

every cell of an initially coarse grid using the four-step procedure outlined in the 

previous subsection. Then, the density of nodes is increased by refining subsections of 

the grid and Z values are generated at the additional nodes created. An example of the 

MSGR process is clearly illustrated in Figure 3: a realization of Z is first generated at the 

center of the node (Figure 3c) and is conditioned by the four neighboring cells marked 

with a large black dot �; Figure 3d represents the second stage of the refinement 

procedure, where Z values are generated on the cell edges marked by �; this is achieved 

by conditioning every cell � (“0”) on its four closest cells (“1”, “2”, “3” and “4”), 

symmetrically located around the node in question.  

 Two HGM simulated hydraulic conductivity fields, having two different types of 

covariance, are illustrated in Figures 4 and 5. 
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Figure 4. Hydraulic conductivity field, with an exponential 
covariance, generated using the HGM [Bellin and Rubin, 1996].  

Figure 5. Hydraulic conductivity field, with a Gaussian covariance, 
generated using the HGM [Bellin and Rubin, 1996]. 
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CHAPTER IV 

 

APPROACH 
 

 

 As mentioned earlier, the natural heterogeneity and spatial variability of any 

hydrologic or geologic system, due to cost constraints and other limiting factors, cannot 

be completely modeled using deterministic methods. The use of stochastic models to 

overcome these limitations has proven to be a highly favored alternative. In this 

research, the HGM was applied to generate log-normally distributed hydraulic 

conductivity fields, which were used to compute the hydraulic head values at all 

locations within the domain. Generated heterogeneous fields of α, correlated to the 

random fields of K, were then integrated in the simulations of contaminant transport and 

degradation. All of these steps are discussed in more detail in the following sections. 

 

A. Generation of Hydraulic Conductivity Fields  

 

 Since this research project was not based on any existing real-case groundwater 

aquifer, a set of assumptions was made in order to define the various parameters of the 

system, which can be grouped into two major categories: the input data used to describe 

the field properties (length, discretization, correlation lengths, mean, variance, etc.) are 

classified as physical parameters; the input data that are necessary to run the 

HYDRO_GEN algorithm are referred to as the parametric parameters. It should be noted 
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that most of these parameters often overlap, since they can be part of both of these 

categories.  

 Table 1 below lists all the physical parameters that define the aquifer’s 

properties: 

 

 

 

 It has been assumed that the hydraulic head at the domain’s right boundary was 

lower than the head at the left boundary by 1 m (hr = hl – 1 = 4 m). This leads, based on 

Eq. 1 and Eq. 2 (Darcy’s Law), to the groundwater flow being directed from the left side 

towards the right side, due to a hydraulic head gradient ∇h.   

 The first step of the HYDRO_GEN algorithm, as indicated in the previous 

section, would be the discretization of the domain under investigation. Figure 6 

illustrates the discretized (100m x 10m) aquifer, where the hydraulic conductivity values 

will be determined at the center of each of the square nodes. 

Table 1. Physical Parameters of the Aquifer Under Investigation. 
Length in 

X 
Direction, 

Lx,  

Length in 
Y 

Direction, 
Ly,   

Porosity, 
n 

Head at 
Left 

Boundary, 
Hl, 

Head at 
Right 

Boundary, 
Hr,  

Longitudinal 
Dispersion 
Coefficient, 

Dx,  

Transverse 
Dispersion 
Coefficient, 

Dy,  
m m   m m m2/d m2/d 

100 10 1/3 5 4 0.3 0.03 
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 The parametric parameters needed to run the HYDRO_GEN algorithm are listed 

in Table 2 hereunder: 

 

 
Distribution 

 
Covariance ln (K) 

 
∆x, ∆y, Correlation Length 

(CL) 

  Mean Variance m m CLX , m CLY, m 
Log-Normal Exponential 0 1 0.5 0.5 4 1 

 

  

The chosen value of the ln (K) variance (σ2 = 1) is reasonable based on known 

field values reported in the literature [Sudicky, 1986; Benson et al., 2000; Garabedian et 

al., 1991]. 

Figure 6. Discretization of the (100m x 10m) aquifer. 

Table 2. Parametric Parameters Used by the HYDRO_GEN Algorithm in the Generation 
of Hydraulic Conductivity Fields. 
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 Using a FORTRAN compiler, all the system’s parameters presented in Tables 1 

and 2 were incorporated into the HYDRO_GEN program in order to generate 50 

different Monte Carlo replicates.  

 

 

ln (K) ln (K) 
Replicate 

Mean Variance 
Replicate 

Mean Variance 
1 0.128414 0.839476 26 -0.03979 0.95788 
2 0.163651 0.68781 27 -0.06239 0.83001 
3 -0.03189 0.867376 28 -0.03889 0.997585 
4 0.034259 0.902259 29 -0.34027 0.977377 
5 -0.10418 0.790973 30 0.060985 0.898631 
6 -0.06095 0.786962 31 -0.23119 0.938943 
7 -0.01348 0.851853 32 0.106056 0.954563 
8 -0.10633 0.832353 33 0.079477 0.755779 
9 -0.00473 0.813863 34 -0.04036 0.994598 

10 -0.02792 1.038833 35 0.1808 0.839521 
11 0.312707 0.76656 36 0.079229 0.932827 
12 0.106332 0.908501 37 -0.15885 0.879352 
13 0.04577 0.890279 38 0.043125 0.808185 
14 0.114071 0.86932 39 0.099483 0.713717 
15 -0.17769 0.9087 40 -0.16014 0.89419 
16 -0.01255 0.793176 41 0.132075 0.877269 
17 -0.11534 0.935596 42 -0.26354 0.851676 
18 -0.01028 0.952371 43 0.014207 0.817272 
19 -0.01712 0.790439 44 0.077948 0.958962 
20 0.073252 0.993436 45 0.066212 0.837534 
21 0.081756 0.94073 46 -0.02995 0.904536 
22 -0.02743 0.946001 47 -0.12287 0.853727 
23 0.061265 0.97015 48 -0.06713 0.914805 
24 -0.05796 0.881404 49 0.041115 0.916901 
25 -0.06032 0.993533 50 0.162709 0.959363 

 

Table 3. Output Spatial Statistics of the 50 Monte Carlo Replicates 
Generated Using the HYDRO_GEN Method. 
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 All the 50 Monte Carlo realizations were subjected, as part of the HGM 

requirements, to the same prescribed spatial moments (zero mean and unit variance). 

The small divergence from these two a-priori set characteristics (refer to Table 3) was 

only due to an expected modeling error, but was always within an acceptable confidence 

interval [Bellin and Rubin, 1996].   

 

 

 

 

 The 50 normally distributed replicates were then transformed into log-normally 

distributed hydraulic conductivity fields, K, by taking the antilog at each grid cell:  

 

)ln( KeK =  (22) 

 

 Figure 8 represents the same simulated field as in Figure 7 (normal distribution), 

which became log-normally distributed after being coupled with Eq. 22. 

Figure 7. Contour plot of a (100m x 10m) normally distributed field, ln(K), using the 
parameters listed in Tables 1 and 2 (replicate 42). 
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B. Hydraulic Head  

 

 Each of the cells in the discretized domain (Figure 6) is described, at its center, 

by a hydraulic conductivity “K”, hydraulic head “h”, and a flow velocity “v” (Figure 9). 

While the “K” values were generated using the HGM, the Finite Volume Method (FVM) 

was adopted to obtain the hydraulic head at every node:  

  

DCBA

jiDjiCjiBjiA
ji KKKK

hKhKhKhK
h

+++
+++

= −++− 1,,11,,1
,  (23) 

 

where KA, KB, KC and KD (Eq. 24) represent the harmonic mean of the hydraulic 

conductivities related to the groundwater flow across two adjacent cells. 

Figure 8. Contour plot of a (100m x 10m) log-normally distributed, K [m/d], using the 
parameters listed in Tables 1 and 2 (replicate 42). 
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C. Groundwater Velocity  

 

 Similarly to the hydraulic head calculation, the FVM was also used to determine 

the groundwater flow at a certain node, as fluxes from the four adjacent nodes to the cell 

Figure 9. Example of the finite volume approach used in the 
computation of the hydraulic head and flow velocity at every node 
within the (100m x 10m) domain. 
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in question. From Eq. 4, the four velocity vectors surrounding node (i, j) can be 

estimated by: 
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D. Degradation Rate Coefficient 

 
 
 Since the objective of this research was to determine how contaminant fate and 

transport in groundwater are affected by the correlation between K and α, a certain 

equation linking these two variables was to be proposed. Eq. 26 below was the premise, 

whose validity was tested based upon numerous contaminant transport simulations: 

 

bKm += )ln()ln( α  (26) 

 

where “m” and “b” are the slope and intercept, respectively, of the linear correlation 

ln(α)-ln(K). In the case where K and α are positively correlated (PC), “m” would be a 

positive integer (m > 0); when K and α are negatively correlated (NC), “m” would be a 

negative integer (m < 0). 
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 From basic probabilistic and statistical operations, multiplying a random variable 

(K) by a constant value (m) multiplies the expected value or mean by that same constant 

[Montgomery and Hines, 1972]. Eq. 26 becomes: 

 

bKm += )]ln([mean*)]ln([mean α  (27) 

  

 Knowing that the hydraulic conductivity fields generated by the HGM have a 

zero mean, Eq. 27 yields: 

 

b=)]ln([mean α  (28) 

 Another statistical manipulation of Eq. 26 can also be performed based on the 

fact that multiplying a random variable (K) by a constant (m) increases the variance 

(var) by the square of the constant [Montgomery and Hines, 1972]: 

 

)(var)]ln([var*)]ln([var 2 bKm +=α  (29) 

 

 Since var [ln (K)] = 1 (refer to Chapter IV) and var (b) = 0 (variance of a 

constant is always null), it follows that var [ln (α)] = m2. It has been assumed throughout 

this work that m = +1 for the PC case, and m = -1 for the NC case. Therefore, the 

variance of ln (α) is 1, equal to the variance of ln (K).  

 The total time for the contaminant plume to travel from the left boundary of the 

aquifer to the right boundary (LX = 100 m) can be approximated as follows: 
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� Head gradient = ∇h = 1 / 100 = 0.01 (from Eq. 2). 

� mean [ln (K)] = 0 � K � e0 � 1.0 m/d. 

� q = K * 0.01 � q � 0.01 m/d (from Eq. 1). 

� v = q / n = 0.03 m/d (from Eq. 4). 

� Time for groundwater to move from left to right boundary:  

 

t = LX / v � 9 years (30) 

  

In order to estimate the “b” constant in Eq. 26, we specified that the steady-state 

solute’s concentration halfway through the aquifer (X = 50 m) should be approximately 

C = 0.01 mg/L. Since the contaminant was undergoing 1st order kinetics’ degradation, 

the remaining concentration was estimated using: 

 

e -α t = 0.01 (31) 

 

where t = 4.5 years is the approximate time for the solute to travel 50 m.  

 From Eq. 31, we get α = 0.0027 d-1, which can be plugged into Eq. 28 to obtain: 

 

b � ln (0.0027) � -5.8768 (32) 

 

 Hence, the correlation between the aquifer’s hydraulic conductivity and the 

solute’s degradation rate can be written as follows: 
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[ ]8768.5)ln( −±= Keα  (33) 

 

E. Contaminant Concentration 

 
 
 A Crank-Nicolson algorithm, coupled with a finite volume approximation 

(MATLAB code), was used to determine the solute’s concentration values across the 

aquifer based on Eq. 14, which was slightly altered to account for the 2-D flow 

(longitudinal and transverse directions): 
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 The above PDE was transformed into ordinary differential equations (ODE) 

using a Taylor series approximation. The ODEs were then converted into algebraic 

equations (Eq. 35), whose solution was C(x, y, t). 
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F. Boundary Conditions  

 
 
 As in any numerical model, a set of initial and boundary conditions were to be 

pre-specified in order to solve for the head and concentration values throughout the 

aquifer. 

It has already been stated in preceding sections that head values were set to be 

constant on both the left (j = 1) and right (j = N) boundaries (Figure 6). Furthermore, it 

was assumed that at the left boundary, a constant contaminant concentration Co = 100 

mg/L was to be maintained at all times. No longitudinal dispersive flux was allowed at 

the right boundary. Both top and bottom layers were set as no-flow boundaries (no 

advective flux; no transverse dispersive flux). 

 

 

 

 
 

 
 

Figure 10. Concentration profile along a (100m x 10m) aquifer having a uniform  
hydraulic conductivity and degradation rate (K = 1.0 m/d, α = 0.0027 d-1). 
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CHAPTER V 
 
 

RESULTS 
 
 
 

 

 As described in the previous section, the aquifer’s parameters listed in Table 1 

along with the boundary conditions were all included in a MATLAB algorithm, which 

was used to compute the reactive solute’s concentration values at the center of all cells 

within the (100m x 10m) aquifer. For each of the 50 hydraulic conductivity fields 

illustrated in Table 3, two transport simulations were conducted: the first one 

corresponding to K and α being positively correlated (Eq. 36), and the second one for K 

and α being negatively correlated (Eq. 37).  

 

[ ]8768.5)ln(
,

, −+= jiK
ji eα  (36) 

[ ]8768.5)ln(
,

, −−= jiK
ji eα  (37) 

  

 Since it has been shown that t = 9 years was an approximate time interval for the 

contaminant to migrate from one side of the aquifer to the other (Eq. 30), each 

simulation was carried out for a period T = 15 years to ensure sufficient time for the 

concentration profile to reach steady-state. Comparison of simulations using T = 15 

years and T = 20 years verified that steady state was reached within 15 years. 
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A. Qualitative Analysis 

 
 
 In each of the Figures 11 through 16 below, three graphs are presented: the top 

graph represents the normally distributed ln (K) field generated using the HGM; the 

middle and bottom graphs correspond to the contaminant’s concentration profiles along 

the aquifer for the PC (m = +1) and NC (m = -1) cases, respectively. All profiles are 

shown at T = 15 years, at which point the concentration profiles have reached steady 

state. 

 

 

 

 

 

 

Figure 11. Concentration profiles for the PC and NC cases based on the hydraulic 
conductivity values from replicate 11 (Table 3). 
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Figure 12. Concentration profiles for the PC and NC cases based on the hydraulic 
conductivity values from replicate 6 (Table 3). 

Figure 13. Concentration profiles for the PC and NC cases based on the hydraulic 
conductivity values from replicate 2 (Table 3). 
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 From a qualitative point of view, the PC cases in Figures 11, 12, and 13 look 

rather uniform, as if the solute was moving in a homogeneous environment (refer to 

Figure 10). The NC cases exhibit more fingering and the contamination front is more 

advanced in the direction of the domain’s right boundary. A larger hydraulic 

conductivity variance (var [K] � 1 in this work) would have probably led to more 

extreme fingering of the contaminated plume.   

 
 

 
 
 

 
 

 

 

 

 

 

 

Figure 14. Concentration profiles for the PC and NC cases based on the hydraulic 
conductivity values from replicate 15 (Table 3). 
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Figure 15. Concentration profiles for the PC and NC cases based on the hydraulic 
conductivity values from replicate 42 (Table 3). 

Figure 16. Concentration profiles for the PC and NC cases based on the hydraulic 
conductivity values from replicate 29 (Table 3). 
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 Figures 14, 15, and 16 display quite the opposite effects from those previously 

described (11 - 12 - 13). The PC graphs show more spreading of the contamination front, 

which remains closer to the left boundary in the NC profiles. It is worth noting, though, 

that the PC graphs still appear to be more uniformly distributed. This is probably due to 

the fact that, in the PC case, more degradation occurs in the highly transmissive regions 

(having high K) where solutes can spread more easily. Whereas in the NC case, regions 

having high hydraulic conductivity values reflect relatively low degradation levels, 

which might explain the fingering and random behavior of the contaminated plume. 

 

B. Quantitative Analysis 

 

 In order to quantify the difference in the solute’s behavior in both cases, a spatial 

moments’ analysis was adopted to provide a more integrated measure of the 

contaminated plume’s distribution [Yeh et al., 1995]. The zeroth spatial moment, M00, 

represents the total mass of solute remaining within the rectangular domain. The center 

of mass (centroid) of the contaminated cloud, Xc, is determined by normalizing the first 

spatial moment, M10, by the total remaining mass. 
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X c =  (40) 

 

where Ce(x, y, t) is the concentration at node “e”, having spatial coordinates (x, y), at 

time t; “E” is the total number of nodes within the domain; xe is the abscissa at the 

node’s center; Ve = (∆x∆y∆z) is the node’s volume (the thickness, ∆z = 1 m, is assumed 

to constant throughout the aquifer). 

 

P C   N C 
M00, M10, Xc,  M00, M10, Xc, Replicate 
kg kg.m m   kg kg.m m 

1 4.19 57.99 13.86  5.51 93.53 16.96 
2 4.84 70.43 14.54  6.28 104.85 16.70 
3 4.98 72.27 14.51  4.62 59.81 12.95 
4 5.57 78.89 14.17  5.91 86.23 14.59 
5 5.75 85.70 14.91  4.43 53.47 12.07 
6 5.36 81.70 15.24  7.28 120.96 16.60 
7 5.29 74.01 14.00  3.56 40.74 11.43 
8 4.26 58.32 13.69  3.37 42.59 12.65 
9 4.70 66.86 14.22  4.16 54.95 13.20 

10 4.50 65.32 14.51  6.11 97.88 16.03 
11 4.50 59.42 13.21  7.05 136.27 19.32 
12 4.60 61.76 13.42  5.85 99.24 16.97 
13 4.26 54.57 12.81  3.99 54.88 13.74 
14 3.71 47.26 12.73  4.65 85.19 18.33 
15 5.48 81.72 14.92  3.16 30.17 9.56 

16 4.62 69.73 15.08  5.05 75.35 14.91 
 

Table 4. Zeroth Spatial Moment, First Spatial Moment, and Center of 
Mass Location  (PC and NC cases) for the 50 Simulated Fields. 
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Table 4 
 
 

17 

(continued) 
 
 

5.67 

 
 
 

83.23 

 
 
 

14.68 

 

 
 
 

4.77 

 
 
 

58.30 

 
 
 

12.23 
18 4.15 51.17 12.34  4.01 67.14 16.73 
19 5.11 75.44 14.78  5.26 77.39 14.71 
20 4.56 63.23 13.85  6.90 130.50 18.92 
21 6.07 87.83 14.48  7.42 117.42 15.82 
22 4.07 55.67 13.68  5.49 90.85 16.55 
23 4.36 60.25 13.81  6.46 108.57 16.80 
24 5.40 78.90 14.61  5.06 66.60 13.16 
25 4.45 56.88 12.79  2.78 27.99 10.05 
26 4.12 60.67 14.72  5.91 92.46 15.65 
27 4.92 70.99 14.42  4.96 70.44 14.21 
28 4.86 64.96 13.38  4.37 63.54 14.55 
29 5.39 81.85 15.17  3.75 40.63 10.84 
30 4.65 61.16 13.15  4.48 66.52 14.85 
31 5.99 92.52 15.45  4.52 52.84 11.68 
32 4.02 49.32 12.27  4.37 72.01 16.46 
33 4.53 60.09 13.27  5.24 87.16 16.63 
34 4.44 58.88 13.26  5.83 102.03 17.50 
35 5.32 76.41 14.36  5.31 74.83 14.09 
36 5.04 73.51 14.58  7.72 138.55 17.95 
37 4.97 72.58 14.59  4.99 72.07 14.43 
38 4.73 64.34 13.61  4.76 73.11 15.36 
39 5.06 71.47 14.11  5.44 84.40 15.51 
40 4.71 63.37 13.46  3.70 46.22 12.50 
41 4.05 50.65 12.52  5.66 104.71 18.49 
42 5.00 69.23 13.84  2.53 22.03 8.70 
43 4.60 64.26 13.97  4.20 55.27 13.17 
44 4.78 67.24 14.07  5.32 78.56 14.76 
45 5.34 75.03 14.04  9.29 180.84 19.46 
46 4.66 64.22 13.77  4.15 52.76 12.71 
47 5.13 77.90 15.19  4.40 56.14 12.76 
48 4.63 65.92 14.23  5.94 97.13 16.35 
49 4.44 58.96 13.28  4.88 75.52 15.46 
50 4.26 54.01 12.69   5.83 112.11 19.23 
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 One important parameter that plays a role in characterizing the solute’s behavior 

in both the PC and NC cases is the contaminated plume’s travel distance. X1% is the 

abscissa of the point beyond which the solute’s concentration is less than 1% of its initial 

inlet concentration (Co = 100 mg/L). In other words, X1% represents the maximum 

distance traveled by the contamination. It can be considered as a measure of the plume’s 

fingering. (X1% - Xc) can also be regarded as another factor that describes the extent of 

the plume’s spread along the aquifer. Note that Xc and X1% vary between 0 and 100, 

corresponding to -50 and 50, respectively in the concentration profiles. 

 

 

P C   N C 
X1% ,  (X1% - Xc),  X1% ,  (X1% - Xc), Replicate 

m m   m m 
1 64.50 50.65  85.00 68.04 
2 66.00 51.46  85.50 68.80 
3 66.00 51.49  63.00 50.05 
4 68.00 53.83  76.00 61.41 
5 71.00 56.09  57.50 45.43 
6 71.50 56.26  71.00 54.40 
7 67.00 53.00  61.00 49.57 
8 62.00 48.31  60.50 47.85 
9 66.50 52.28  67.50 54.30 

10 68.00 53.49  68.50 52.47 
11 61.50 48.29  100.00 80.68 
12 66.00 52.58  91.50 74.53 
13 60.50 47.69  69.50 55.76 
14 59.00 46.27  83.00 64.67 
15 65.00 50.08  44.00 34.44 
16 67.00 51.92  66.50 51.59 
17 68.00 53.32  67.50 55.27 

Table 5. Contaminated Plume’s Travel Distance for the 50 
Simulated Fields (PC and NC cases). 
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Table 5 
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(continued) 
 

 
63.50 

 
 
 

51.16 

 

 
 
 

76.00 

 
 
 

59.27 
19 69.00 54.22  64.00 49.29 
20 64.50 50.65  93.00 74.08 
21 67.50 53.02  87.50 71.68 
22 65.00 51.32  68.00 51.45 
23 61.50 47.69  79.00 62.20 
24 69.00 54.39  63.50 50.34 
25 60.50 47.71  50.50 40.45 
26 67.50 52.78  65.00 49.35 
27 65.50 51.08  66.50 52.30 
28 62.50 49.12  76.50 61.95 
29 69.00 53.83  55.50 44.66 
30 64.00 50.85  79.00 64.15 
31 74.00 58.55  58.50 46.82 
32 60.50 48.23  81.50 65.04 
33 62.50 49.23  78.00 61.37 
34 63.50 50.24  78.50 61.00 
35 61.50 47.14  73.00 58.91 
36 69.50 54.92  85.00 67.05 
37 68.50 53.91  76.50 62.07 
38 66.50 52.89  76.50 61.14 
39 68.00 53.89  78.50 62.99 
40 64.50 51.04  63.50 51.00 
41 61.50 48.98  86.50 68.01 
42 67.00 53.16  44.00 35.30 
43 65.00 51.03  72.00 58.83 
44 63.50 49.43  63.50 48.74 
45 71.50 57.46  82.00 62.54 
46 62.50 48.73  61.50 48.79 
47 66.50 51.31  59.00 46.24 
48 69.50 55.27  66.50 50.15 
49 63.00 49.72  77.50 62.04 
50 57.50 44.81   89.00 69.77 
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  P C   N C 
 M00, Xc, X1% ,  M00, Xc, X1% , 
  kg m m   kg m m 

Mean, µ 4.80 13.96 65.46   5.13 14.89 71.85 
STDEV, σ2 0.54 0.81 3.51   1.31 2.60 12.22 

 

 

1. Zeroth Spatial Moment 

 

In the work by Miralles-Wilhelm and Gelhar [1996], the authors state that the 

effective decay constant is not a function of the K-α correlation. Therefore, on average, a 

positive or a negative correlation should both result in the same mass of solute 

remaining. This statement is confirmed by the findings in Table 6, where the averaged 

zeroth moments for the PC and NC cases are roughly equal. However, the NC cases 

exhibit more variability in the solute’s remaining mass, which ranges from 2.5 kg to 9.3 

kg, whereas M00 varies only between 3.7 kg and 6 kg in the PC cases (Table 4). This 

variability is quantified in Table 6 where, for approximately the same arithmetic mean, 

σ2 in the NC cases is almost three times as large as σ2 in the PC cases.  

It can also be inferred, from Miralles-Wilhelm and Gelhar’s statement, that 25 

cases should have a higher M00 for a positive K-α correlation, and 25 cases should have 

a higher M00 for a negative correlation. In this work, 29 simulated fields have more mass 

remaining in the NC case, as opposed to 21 having more mass in the PC case, which 

Table 6. Comparison of the Arithmetic Mean and Standard Deviation 
(STDEV) of the 50 Simulated Fields (PC and NC cases). 
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shows that the simulation results agree with the theoretical prediction despite the small 

discrepancy.  

 

2. First Spatial Moment 

 

 The contaminated plume’s centroid is located, on average, within a 1 m interval 

for both PC and NC cases (Table 6). The X1% parameter is slightly higher in the NC case 

than in the PC case. The 10% difference in X1% (71.85 – 65.46 = 5.99 m) suggests that 

the NC cases exhibit more fingering than the PC cases. Had var[ln(K)] been larger than 

1 (Table 2), the difference in the plume’s spreading might have been more discernible 

(higher than 10%). 

Similarly to the zeroth moment analysis, the first spatial moments in the NC case 

display a high degree of variability (Table 4), which is again manifested by the fact that, 

for both X1% and Xc, σ2 in the NC cases is over three times larger than σ2 in the PC cases 

(Table 6). This can only assert the conclusion drawn from the qualitative analysis, as to 

the relatively uniform behavior of the plume in the PC case compared to the randomness 

and irregularity that govern a negative K-α correlation. 
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3. Homogeneous vs. Heterogeneous 

 

According to Miralles-Wilhelm and Gelhar [1996], the effective decay rate 

should be less than the mean decay rate. This implies a larger remaining mass in a 

heterogeneous aquifer as compared to a homogeneous case. In order to verify this 

statement, a transport simulation was conducted along a homogeneous domain having 

the same prescribed spatial statistics as those of the heterogeneous case. The arithmetic 

mean of the aquifer’s K and α were computed as follows: 
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where µln(K) = 0 and 2
)ln( Kσ = 1 (Table 2); µln(α) = -5.8768 (Eq. 38) and 2

)ln( ασ = 1 (Eq. 

29). 

 For K = 1.65 m/d, α = 0.00462 d-1, and with all the other hydrological parameters 

(porosity, dispersion coefficient, etc.) used in the heterogeneous case (Table 1), the 

remaining mass within the homogeneous aquifer (Figure 17) was 5080 g, compared to 

an average of 4802 g in the case of a positive K-α correlation, and 5134 g for a negative 

K-α correlation. 
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 The zeroth moments in the PC and NC cases are both relatively close (within a 

4% interval) to the theoretical estimate of 5080 g, assuming a homogeneous K and α. 

This outcome does not agree with the analytical solution [Miralles-Wilhelm and Gelhar, 

1996], which predicts a higher M00 value for a heterogeneous aquifer than for a 

homogeneous one. This may be due to the fact that Miralles-Wilhelm and Gelhar [1996] 

used a different approach for correlating K and α. Other possible reasons for the 

discrepancy might be their use of a spatially-varying dispersivity and a 3-D domain, as 

opposed to a constant dispersivity value and a 2-D domain in this work.  

 
 

 

4801 g
5080 g 5134 g

0

1000

2000

3000

4000

5000

6000

M
00

 (g
)

Heterogeneous (PC) Homogeneous Heterogeneous (NC)

 

 
 
 
 
 
 
 

Figure 17. Comparison of the mass remaining in a homogeneous aquifer vs. a 
heterogeneous aquifer. 
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CHAPTER VI 

 

CONCLUSIONS AND RECOMMENDATIONS  
 
 
 
 

A stochastic analysis of reactive solute transport and first-order decay in two-

dimensionally heterogeneous aquifers has been presented in this work.  Specifically, the 

effects of the correlation between the spatially-variable hydraulic conductivity (K) and 

degradation rate (α) have been examined. 

 Random fields of K were generated using the HYDRO_GEN method, which has 

proven to be very efficient in preserving the prescribed spatial statistics (mean, variance, 

etc.). Two sets of transport simulations, based on a Crank-Nicolson algorithm, were 

conducted for 50 Monte Carlo realizations of K fields: the first set based on a positive 

correlation between K and α, and the second set based on a negative correlation. A 

spatial moments analysis has been carried out to quantify the effect of such a correlation 

on the contaminated plume’s behavior under steady flow conditions. 

 It has been demonstrated that, on average, both K-α correlation scenarios lead to 

an equal zeroth moment (contaminant mass remaining).  However, a negative correlation 

displayed much more variability in the mass of solute remaining within the aquifer: for 

roughly the same mean, the standard deviation of a negative correlation was almost three 

times that of a positive correlation.  
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 Concentration profiles for positively correlated cases were marked by a relatively 

uniform behavior of the contaminated cloud, as opposed to a more variable spreading in 

the negatively correlated cases, which generally exhibited more fingering of the plume. 

It has also been found that, for both cases of the K-α correlation, zeroth moments 

were, on average, close to those of a homogeneous aquifer.  This finding has important 

practical implications, since it contradicts a result predicted by Miralles-Wilhelm and 

Gelhar [1996], and is hence worthy of follow-up research. 

An important improvement of this study would be to investigate the K-α 

correlation in three-dimensional aquifers.  Also, a change in the statistical characteristics 

(mean and variance) of the spatially-variable parameters (K, α, etc) may help clarify the 

effect of such a change on the contaminated plume’s fingering. 

 In summary, the correlation between K and α has a significant influence on 

contaminant fate and transport in heterogeneous aquifers, including the effects 

demonstrated in this thesis, and is worthy of additional theoretical and experimental 

research. 
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APPENDIX 

 

MATLAB ALGORITHM 
 
 
 
function thesis (dx, xmax, ymax, tolerance, h_l) 
 
% Square cells: dx = dy 
% Top and bottom are no-flux boundaries: Psi_t = Psi_b = 0; 
n = 0.33; 
dy = dx; 
h_r = h_l - 1;                               % Dh = 1 m 
xmin = -xmax; 
ymin = -ymax; 
M = (ymax - ymin) / dx;             % M nodes in the X-direction (rows) 
N = (xmax - xmin) / dx;             % N nodes in the Y-direction 
(columns) 
 
x = [xmin + 0.5*dx: dx: xmax - 0.5*dx];     % Node at center of cell 
y = [ymin + 0.5*dx: dx: ymax - 0.5*dx]; 
[X, Y] = meshgrid (x, y); 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%   Set "k" Everywhere    %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
logk = load ('K1.txt');  % output from Hydro-Gen 
 
for i = 1:M 
    for j = 1:N 
        k(i,j) = exp(logk(i,j)); 
    end 
end 
     
for i = 2:(M-1) 
    for j = 2:(N-1) 
        ka(i,j) = 2/(1/k(i-1,j) + 1/k(i,j)); 
        kb(i,j) = 2/(1/k(i,j+1) + 1/k(i,j)); 
        kc(i,j) = 2/(1/k(i+1,j) + 1/k(i,j)); 
        kd(i,j) = 2/(1/k(i,j-1) + 1/k(i,j)); 
    end 
end 
 
i = 1; 
for j = 2:(N-1) 
    kb(i,j) = 2/(1/k(i,j+1) + 1/k(i,j)); 
    kc(i,j) = 2/(1/k(i+1,j) + 1/k(i,j)); 
    kd(i,j) = 2/(1/k(i,j-1) + 1/k(i,j)); 
end 
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i = M; 
for j = 2:(N-1) 
    ka(i,j) = 2/(1/k(i-1,j) + 1/k(i,j)); 
    kb(i,j) = 2/(1/k(i,j+1) + 1/k(i,j));     
    kd(i,j) = 2/(1/k(i,j-1) + 1/k(i,j)); 
end 
 
j = N; 
for i = 2:(M-1) 
    ka(i,j) = 2/(1/k(i-1,j) + 1/k(i,j)); 
    kc(i,j) = 2/(1/k(i+1,j) + 1/k(i,j)); 
    kd(i,j) = 2/(1/k(i,j-1) + 1/k(i,j)); 
end 
 
j = 1; 
for i = 2:(M-1) 
    ka(i,j) = 2/(1/k(i-1,j) + 1/k(i,j)); 
    kb(i,j) = 2/(1/k(i,j+1) + 1/k(i,j)); 
    kc(i,j) = 2/(1/k(i+1,j) + 1/k(i,j)); 
end 
 
i = 1; 
j = 1; 
kb(i,j) = 2/(1/k(i,j+1) + 1/k(i,j)); 
kc(i,j) = 2/(1/k(i+1,j) + 1/k(i,j)); 
 
i = M; 
j = 1; 
ka(i,j) = 2/(1/k(i-1,j) + 1/k(i,j)); 
kb(i,j) = 2/(1/k(i,j+1) + 1/k(i,j));  
 
i = 1; 
j = N; 
kc(i,j) = 2/(1/k(i+1,j) + 1/k(i,j)); 
kd(i,j) = 2/(1/k(i,j-1) + 1/k(i,j)); 
 
i = M; 
j = N; 
ka(i,j) = 2/(1/k(i-1,j) + 1/k(i,j)); 
kd(i,j) = 2/(1/k(i,j-1) + 1/k(i,j)); 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%   Calculate head “h”  %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Initial Guess 
 
% Left Boundary: 
j =1; 
for i = 1:M 
    h(i,j) = h_l; 
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end 
 
% Right Boundary: 
j =N; 
for i = 1:M 
    h(i,j) = h_r; 
end 
 
% Interior: 
J_h = (h_l-h_r) / (dx*(N-1)); 
for i = 1:M 
    for j = 2:N-1 
        h(i,j) = h_l-J_h*dx*(j-1); 
    end 
end 
 
% Updating Interior "h": 
error = 100; 
while error > tolerance 
    for i = 2:(M-1) 
        for j = 2:(N-1)             
            h(i,j) = (ka(i,j)*h(i-
1,j)+kb(i,j)*h(i,j+1)+kc(i,j)*h(i+1,j)+kd(i,j)*h(i,j-
1))/(ka(i,j)+kb(i,j)+kc(i,j)+kd(i,j)); 
        end 
    end 
     
    % Updating Top Boundary "h":    
    i = 1; 
    for j = 2:(N-1)         
        h(i,j) = (kb(i,j)*h(i,j+1)+kc(i,j)*h(i+1,j)+kd(i,j)*h(i,j-
1))/(kb(i,j)+kc(i,j)+kd(i,j)); 
    end 
     
    % Updating Bottom Boundary "h":    
    i = M; 
    for j = 2:(N-1)         
        h(i,j) = (ka(i,j)*h(i-1,j)+kb(i,j)*h(i,j+1)+kd(i,j)*h(i,j-
1))/(ka(i,j)+kb(i,j)+kd(i,j)); 
    end 
     
    % Check Error: 
    error = 0; 
    for i = 2:(M-1) 
        for j = 2:(N-1)             
            error = error + abs (h(i,j)-(ka(i,j)*h(i-
1,j)+kb(i,j)*h(i,j+1)+kc(i,j)*h(i+1,j)+kd(i,j)*h(i,j-
1))/(ka(i,j)+kb(i,j)+kc(i,j)+kd(i,j))); 
        end 
    end 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%   Calculate V's  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Avg Pore Vel = Darcy's Vel or Specific Discharge / Eff Porosity; 
% V = q / n; 
 
% Interior Nodes 
for i = 2:(M-1) 
    for j = 2:(N-1) 
        Va(i,j) = (1/n) * ka(i,j) * (h(i-1,j)-h(i,j))/dy; 
        Vb(i,j) = (1/n) * kb(i,j) * (h(i,j+1)-h(i,j))/dx; 
        Vc(i,j) = (1/n) * kc(i,j) * (h(i+1,j)-h(i,j))/dy; 
        Vd(i,j) = (1/n) * kd(i,j) * (h(i,j-1)-h(i,j))/dx; 
    end 
end 
 
% Top Layer (Va = 0) 
i = 1; 
for j = 2:(N-1) 
    Va(i,j) = 0; 
    Vb(i,j) = (1/n) * kb(i,j) * (h(i,j+1)-h(i,j))/dx; 
    Vc(i,j) = (1/n) * kc(i,j) * (h(i+1,j)-h(i,j))/dy; 
    Vd(i,j) = (1/n) * kd(i,j) * (h(i,j-1)-h(i,j))/dx; 
end 
     
% Bottom Layer (Vc = 0) 
i = M; 
for j = 2:(N-1) 
    Va(i,j) = (1/n) * ka(i,j) * (h(i-1,j)-h(i,j))/dy; 
    Vb(i,j) = (1/n) * kb(i,j) * (h(i,j+1)-h(i,j))/dx; 
    Vc(i,j) = 0; 
    Vd(i,j) = (1/n) * kd(i,j) * (h(i,j-1)-h(i,j))/dx; 
end 
 
% Left Boundary (Vd(i,j) = Vd(i,j+1)) 
j = 1; 
for i = 2:(M-1) 
    Va(i,j) = (1/n) * ka(i,j) * (h(i-1,j)-h(i,j))/dy; 
    Vb(i,j) = (1/n) * kb(i,j) * (h(i,j+1)-h(i,j))/dx; 
    Vc(i,j) = (1/n) * kc(i,j) * (h(i+1,j)-h(i,j))/dy; 
    Vd(i,j) = Vd(i,j+1); 
end 
     
% Right Boundary (Vb = -Vd) 
j = N; 
for i = 2:(M-1) 
    Va(i,j) = (1/n) * ka(i,j) * (h(i-1,j)-h(i,j))/dy;   
    Vc(i,j) = (1/n) * kc(i,j) * (h(i+1,j)-h(i,j))/dy; 
    Vd(i,j) = (1/n) * kd(i,j) * (h(i,j-1)-h(i,j))/dx; 
    Vb(i,j) = -Vd(i,j); 
end 
 
% Upper Left Corner (Va = 0; Vd(i,j) = Vd(i,j+1)) 



 

 

58 

i = 1; 
j = 1; 
Vb(i,j) = (1/n) * kb(i,j) * (h(i,j+1)-h(i,j))/dx; 
Vc(i,j) = (1/n) * kc(i,j) * (h(i+1,j)-h(i,j))/dy; 
Vd(i,j) = Vd(i,j+1); 
 
% Lower Left Corner (Vc = 0; Vd(i,j) = Vd(i,j+1)) 
i = M; 
j = 1; 
Va(i,j) = (1/n) * ka(i,j) * (h(i-1,j)-h(i,j))/dy; 
Vb(i,j) = (1/n) * kb(i,j) * (h(i,j+1)-h(i,j))/dx; 
Vd(i,j) = Vd(i,j+1); 
 
% Upper Right Corner (Va = 0; Vb = - Vd) 
i = 1; 
j = N; 
Vc(i,j) = (1/n) * kc(i,j) * (h(i+1,j)-h(i,j))/dy; 
Vd(i,j) = (1/n) * kd(i,j) * (h(i,j-1)-h(i,j))/dx; 
Vb(i,j) = -Vd(i,j); 
 
% Lower Right Corner (Vc = 0; Vb = - Vd) 
i = M; 
j = N; 
Va(i,j) = (1/n) * ka(i,j) * (h(i-1,j)-h(i,j))/dy; 
Vd(i,j) = (1/n) * kd(i,j) * (h(i,j-1)-h(i,j))/dx; 
Vb(i,j) = -Vd(i,j); 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%   Calculate C  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
t = 0; 
T = 15;         % years 
T = T * 365;    % days 
Dt = 1;        % days 
Dx = 0.3;       % m2/day 
Dy = 0.03;      % m2/day 
Co = 100;       % mg/L 
 
 
m = +1;     %K and alpha are +vely correlated 
% m = -1;    %K and alpha are -vely correlated 
 
for i = 1:M 
    for j = 1:N 
        alpha(i,j) = exp (m * logk(i,j) - 5.8768); 
    end 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   R, W, X, Y, Z (old + new)  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Interior Nodes 
for i = 2:(M-1) 
    for j = 2:(N-1) 
        R_new(i,j) = 1/Dt + Dx/dx^2 + Dy/dy^2 - 0.25*Va(i,j)/dy - 
0.25*Vb(i,j)/dx - 0.25*Vc(i,j)/dy - 0.25*Vd(i,j)/dx + alpha(i,j)/2; 
        W_new(i,j) = -0.5*Dx/dx^2 - 0.25*Vb(i,j)/dx; 
        X_new(i,j) = -0.5*Dx/dx^2 - 0.25*Vd(i,j)/dx; 
        Y_new(i,j) = -0.5*Dy/dy^2 - 0.25*Vc(i,j)/dy; 
        Z_new(i,j) = -0.5*Dy/dy^2 - 0.25*Va(i,j)/dy; 
         
        R_old(i,j) = 1/Dt - Dx/dx^2 - Dy/dy^2 + 0.25*Va(i,j)/dy + 
0.25*Vb(i,j)/dx + 0.25*Vc(i,j)/dy + 0.25*Vd(i,j)/dx - alpha(i,j)/2; 
        W_old(i,j) = +0.5*Dx/dx^2 + 0.25*Vb(i,j)/dx; 
        X_old(i,j) = +0.5*Dx/dx^2 + 0.25*Vd(i,j)/dx; 
        Y_old(i,j) = +0.5*Dy/dy^2 + 0.25*Vc(i,j)/dy; 
        Z_old(i,j) = +0.5*Dy/dy^2 + 0.25*Va(i,j)/dy; 
    end 
end 
 
% Top Layer 
i = 1; 
for j = 2:(N-1) 
    R_new(i,j) = 1/Dt + Dx/dx^2 + 0.5*Dy/dy^2 - 0.25*Vb(i,j)/dx - 
0.25*Vc(i,j)/dy - 0.25*Vd(i,j)/dx + alpha(i,j)/2; 
    W_new(i,j) = -0.5*Dx/dx^2 - 0.25*Vb(i,j)/dx; 
    X_new(i,j) = -0.5*Dx/dx^2 - 0.25*Vd(i,j)/dx; 
    Y_new(i,j) = -0.5*Dy/dy^2 - 0.25*Vc(i,j)/dy; 
     
    R_old(i,j) = 1/Dt - Dx/dx^2 - 0.5*Dy/dy^2 + 0.25*Vb(i,j)/dx + 
0.25*Vc(i,j)/dy + 0.25*Vd(i,j)/dx - alpha(i,j)/2; 
    W_old(i,j) = +0.5*Dx/dx^2 + 0.25*Vb(i,j)/dx; 
    X_old(i,j) = +0.5*Dx/dx^2 + 0.25*Vd(i,j)/dx; 
    Y_old(i,j) = +0.5*Dy/dy^2 + 0.25*Vc(i,j)/dy; 
end 
 
% Bottom Layer 
i = M; 
for j = 2:(N-1) 
    R_new(i,j) = 1/Dt + Dx/dx^2 + 0.5*Dy/dy^2 - 0.25*Va(i,j)/dy - 
0.25*Vb(i,j)/dx - 0.25*Vd(i,j)/dx + alpha(i,j)/2; 
    W_new(i,j) = -0.5*Dx/dx^2 - 0.25*Vb(i,j)/dx; 
    X_new(i,j) = -0.5*Dx/dx^2 - 0.25*Vd(i,j)/dx; 
    Z_new(i,j) = -0.5*Dy/dy^2 - 0.25*Va(i,j)/dy; 
     
    R_old(i,j) = 1/Dt - Dx/dx^2 - 0.5*Dy/dy^2 + 0.25*Va(i,j)/dy + 
0.25*Vb(i,j)/dx + 0.25*Vd(i,j)/dx - alpha(i,j)/2; 
    W_old(i,j) = +0.5*Dx/dx^2 + 0.25*Vb(i,j)/dx; 
    X_old(i,j) = +0.5*Dx/dx^2 + 0.25*Vd(i,j)/dx; 
    Z_old(i,j) = +0.5*Dy/dy^2 + 0.25*Va(i,j)/dy; 
end 
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% Left Boundary + Both (Upper and Lower) Corners 
% j = 1; 
% C(i,j) = Co; 
 
% Right Boundary 
j = N; 
for i = 2:(M-1) 
    R_new(i,j) = 1/Dt + 0.5*Dx/dx^2 + Dy/dy^2 - 0.25*Va(i,j)/dy - 
0.25*Vc(i,j)/dy + 0.25*Vd(i,j)/dx + alpha(i,j)/2; 
    X_new(i,j) = -0.5*Dx/dx^2 - 0.25*Vd(i,j)/dx; 
    Y_new(i,j) = -0.5*Dy/dy^2 - 0.25*Vc(i,j)/dy; 
    Z_new(i,j) = -0.5*Dy/dy^2 - 0.25*Va(i,j)/dy; 
     
    R_old(i,j) = 1/Dt - 0.5*Dx/dx^2 - Dy/dy^2 + 0.25*Va(i,j)/dy + 
0.25*Vc(i,j)/dy - 0.25*Vd(i,j)/dx - alpha(i,j)/2; 
    X_old(i,j) = +0.5*Dx/dx^2 + 0.25*Vd(i,j)/dx; 
    Y_old(i,j) = +0.5*Dy/dy^2 + 0.25*Vc(i,j)/dy; 
    Z_old(i,j) = +0.5*Dy/dy^2 + 0.25*Va(i,j)/dy; 
end 
 
% Upper Right Corner (Va = 0; Vb = - Vd) 
i = 1; 
j = N; 
R_new(i,j) = 1/Dt + 0.5*Dx/dx^2 + 0.5*Dy/dy^2 - 0.25*Vc(i,j)/dy + 
0.25*Vd(i,j)/dx + alpha(i,j)/2; 
X_new(i,j) = -0.5*Dx/dx^2 - 0.25*Vd(i,j)/dx; 
Y_new(i,j) = -0.5*Dy/dy^2 - 0.25*Vc(i,j)/dy; 
 
R_old(i,j) = 1/Dt - 0.5*Dx/dx^2 - 0.5*Dy/dy^2 + 0.25*Vc(i,j)/dy - 
0.25*Vd(i,j)/dx - alpha(i,j)/2; 
X_old(i,j) = +0.5*Dx/dx^2 + 0.25*Vd(i,j)/dx; 
Y_old(i,j) = +0.5*Dy/dy^2 + 0.25*Vc(i,j)/dy; 
 
% Lower Right Corner (Vc = 0; Vb = - Vd) 
i = M; 
j = N; 
R_new(i,j) = 1/Dt + 0.5*Dx/dx^2 + 0.5*Dy/dy^2 - 0.25*Va(i,j)/dy + 
0.25*Vd(i,j)/dx + alpha(i,j)/2; 
X_new(i,j) = -0.5*Dx/dx^2 - 0.25*Vd(i,j)/dx; 
Z_new(i,j) = -0.5*Dy/dy^2 - 0.25*Va(i,j)/dy; 
 
R_old(i,j) = 1/Dt - 0.5*Dx/dx^2 - 0.5*Dy/dy^2 + 0.25*Va(i,j)/dy - 
0.25*Vd(i,j)/dx - alpha(i,j)/2; 
X_old(i,j) = +0.5*Dx/dx^2 + 0.25*Vd(i,j)/dx; 
Z_old(i,j) = +0.5*Dy/dy^2 + 0.25*Va(i,j)/dy; 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   L.H.S. Matrix (A_new)  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
A_new = zeros ([M*N, M*N]); 
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i = 1; 
 
for j = 2:(N-1) 
    row = (i-1)*N + j; 
    A_new(row, row-1) = X_new(i,j); 
    A_new(row, row) = R_new(i,j); 
    A_new(row, row+1) = W_new(i,j); 
    A_new(row, row+N) = Y_new(i,j); 
end 
 
j = N; 
row = (i-1)*N + j; 
A_new(row, row-1) = X_new(i,j); 
A_new(row, row) = R_new(i,j); 
A_new(row, row+N) = Y_new(i,j); 
 
for i = 2:(M-1) 
    for j = 2:(N-1) 
        row = (i-1)*N + j; 
        if (row <= N) 
            A_new(row, row-1) = X_new(i,j); 
            A_new(row, row) = R_new(i,j); 
            A_new(row, row+1) = W_new(i,j); 
            A_new(row, row+N) = Y_new(i,j); 
        else 
            A_new(row, row-N) = Z_new(i,j); 
            A_new(row, row-1) = X_new(i,j); 
            A_new(row, row) = R_new(i,j); 
            A_new(row, row+1) = W_new(i,j); 
            A_new(row, row+N) = Y_new(i,j); 
        end 
    end 
     
     
    j = N; 
    row = (i-1)*N + j; 
    if (row <= N) 
        A_new(row, row-1) = X_new(i,j); 
        A_new(row, row) = R_new(i,j); 
        A_new(row, row+N) = Y_new(i,j); 
    else 
        A_new(row, row-N) = Z_new(i,j); 
        A_new(row, row-1) = X_new(i,j); 
        A_new(row, row) = R_new(i,j); 
        A_new(row, row+N) = Y_new(i,j); 
    end 
end 
 
i = M; 
for j = 2:(N-1) 
    row = (i-1)*N + j; 
    if (row <= N) 
        A_new(row, row-1) = X_new(i,j); 
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        A_new(row, row) = R_new(i,j); 
        A_new(row, row+1) = W_new(i,j); 
    else 
        A_new(row, row-N) = Z_new(i,j); 
        A_new(row, row-1) = X_new(i,j); 
        A_new(row, row) = R_new(i,j); 
        A_new(row, row+1) = W_new(i,j); 
    end 
end 
 
j = N; 
row = (i-1)*N + j; 
if (row <= N) 
    A_new(row, row-1) = X_new(i,j); 
    A_new(row, row) = R_new(i,j); 
else 
    A_new(row, row-N) = Z_new(i,j); 
    A_new(row, row-1) = X_new(i,j); 
    A_new(row, row) = R_new(i,j); 
end 
 
j = 1; 
for i = 1:M 
    row = (i-1)*N + j; 
    A_new(row,:) = 0; 
    A_new(row, row) = 1; 
end 
 
invA = inv (A_new); 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   R.H.S. Matrix (B)  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% B = zeros ([M*N,1]); 
C_temp = zeros ([M*N,1]); 
A_old = zeros ([M*N, M*N]); 
 
i = 1; 
for j = 2:(N-1) 
    row = (i-1)*N + j; 
    A_old(row, row-1) = X_old(i,j); 
    A_old(row, row) = R_old(i,j); 
    A_old(row, row+1) = W_old(i,j); 
    A_old(row, row+N) = Y_old(i,j); 
end 
 
j = N; 
row = (i-1)*N + j; 
A_old(row, row-1) = X_old(i,j); 
A_old(row, row) = R_old(i,j); 
A_old(row, row+N) = Y_old(i,j); 
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for i = 2:(M-1) 
    for j = 2:(N-1) 
        row = (i-1)*N + j; 
        if (row <= N) 
            A_old(row, row-1) = X_old(i,j); 
            A_old(row, row) = R_old(i,j); 
            A_old(row, row+1) = W_old(i,j); 
            A_old(row, row+N) = Y_old(i,j); 
        else 
            A_old(row, row-N) = Z_old(i,j); 
            A_old(row, row-1) = X_old(i,j); 
            A_old(row, row) = R_old(i,j); 
            A_old(row, row+1) = W_old(i,j); 
            A_old(row, row+N) = Y_old(i,j); 
        end 
    end 
         
    j = N; 
    row = (i-1)*N + j; 
    if (row <= N) 
        A_old(row, row-1) = X_old(i,j); 
        A_old(row, row) = R_old(i,j); 
        A_old(row, row+N) = Y_old(i,j); 
    else 
        A_old(row, row-N) = Z_old(i,j); 
        A_old(row, row-1) = X_old(i,j); 
        A_old(row, row) = R_old(i,j); 
        A_old(row, row+N) = Y_old(i,j); 
    end 
end 
 
i = M; 
for j = 2:(N-1) 
    row = (i-1)*N + j; 
    if (row <= N) 
        A_old(row, row-1) = X_old(i,j); 
        A_old(row, row) = R_old(i,j); 
        A_old(row, row+1) = W_old(i,j); 
    else 
        A_old(row, row-N) = Z_old(i,j); 
        A_old(row, row-1) = X_old(i,j); 
        A_old(row, row) = R_old(i,j); 
        A_old(row, row+1) = W_old(i,j); 
    end 
end 
 
j = N; 
row = (i-1)*N + j; 
if (row <= N) 
    A_old(row, row-1) = X_old(i,j); 
    A_old(row, row) = R_old(i,j); 
else 
    A_old(row, row-N) = Z_old(i,j); 
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    A_old(row, row-1) = X_old(i,j); 
    A_old(row, row) = R_old(i,j); 
end 
 
j = 1; 
for i = 1:M 
    row = (i-1)*N + j; 
    A_old(row,:) = 0; 
    A_old(row, row) = 1; 
end 
 
for c = 1:(M*N) 
    if rem (c,N) == 1 
        C_temp (c,1) = Co; 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Main time-marching loop  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
while t <= T     
    B = A_old * C_temp; 
    C_new = invA * B; 
    C_temp = C_new; 
    t = t + Dt;     
end 
 
for row = 1:(M*N) 
    if rem (row,N) == 1 
        i = (row - 1 + N) / N; 
        for z = 0:(N-1) 
            J(i,1+z) = C_temp(row+z,1); 
        end 
    else 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Save Concentration Matrix J  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
save +1.txt J -ascii 
 
 
figure (1); 
pcolor (X, Y, J); 
shading interp 
axis equal tight; 
hold off; 
 
end 
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