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ABSTRACT 

 

Error Analysis for Randomized Uniaxial Stretch Test 

on High Strain Materials and Tissues. (May 2005) 

Choon-Sik Jhun, B.S., Kon-Kuk University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. John C. Criscione 

 

Many people have readily suggested different types of hyperelastic models for 

high strain materials and biotissues since the 1940’s without validating them. But, 

there is no agreement for those models and no model is better than the other because of 

the ambiguity. The existence of ambiguity is because the error analysis has not been 

done yet (Criscione, 2003). The error analysis is motivated by the fact that no physical 

quantity can be measured without having some degree of uncertainties. Inelastic 

behavior is inevitable for the high strain materials and biotissues, and validity of the 

model should be justified by understanding the uncertainty due to it. 

We applied the fundamental statistical theory to the data obtained by 

randomized uniaxial stretch-controlled tests. The goodness-of-fit test ( 2R ) and test of 

significance (t-test) were also employed. We initially presumed the factors that give 

rise to the inelastic deviation are time spent testing, stretch-rate, and stretch history. 

We found that these factors characterize the inelastic deviation in a systematic way. A 

huge amount of inelastic deviation was found at the stretch ratio of 1.1 for both 

specimens. The significance of this fact is that the inelastic uncertainties in the low 
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stretch ranges of the rubber-like materials and biotissues are primarily related to the 

entropy. This is why the strain energy can hardly be determined by the experimentation 

at low strain ranges and there has been a deficiency in the understanding of the 

exclusive nature of the strain energy function at low strain ranges of the rubber-like 

materials and biotissues (Criscione, 2003). We also found the answers for the 

significance, effectiveness, and differences of the presumed factors above. 

Lastly, we checked the predictive capability by comparing the unused deviation 

data to the predicted deviation. To check if we have missed any variables for the 

prediction, we newly defined the prediction deviation which is the difference between 

the observed deviation and the point forecasting deviation. We found that the 

prediction deviation is off in a random way and what we have missed is random which 

means we didn’t miss any factors to predict the degree of inelastic deviation in our 

fitting. 
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CHAPTER I 

INTRODUCTION 

 

During the last half of the century, many people have readily suggested 

different types of hyperelastic models for high strain materials and biotissues without 

showing their validities. Even the well-known experts in this area such as Mullins, 

Mooney, Rivlin, Fung, Ogden, and so on have published their own models without 

discussing the uncertainties in them. They got the results without finding out what the 

errors in the experimental data were. They also didn’t show how their models deviated 

from the hyperelastic assumption. It should be noted that no hyperelastic models have 

been suggested without doing experiments and none of the measurements can be made 

without having some degree of uncertainties. This fact implies that it is extremely 

important to know if there is an error in any model. We need to know the uncertainty 

of a model if we are going to use it. A model is useful only if the uncertainty in it is 

quantified and if the uncertainty is acceptable for the particular application of the 

model. The particular application means if we are building some structures made out of 

steels, the linear elastic model will be acceptable for building it even though the steel is 

not perfectly elastic. We can accept that the uncertainty that comes from the 

assumption of linear elasticity for the steel is insignificant. Note that no model is 

acceptable for all applications. If the error analysis, which should have been done in 

the 1940’s, is not performed, a model cannot be evaluated. In the study of 

biomechanics (how the stress relates to the strain in biology or vice versa) and 

_______________________________________ 
The Journal of Biomechanics has been used as a model for style and format. 



  2

mechanobiology (how the stresses/strains influence the biological procedure), it is 

crucial to develop a reliable constitutive model that quantifies the uncertainty in it. It is 

understood that the strain guides the growth and remodeling of the tissues. It has been 

also suggested that the strain pattern is atypical for unhealthy tissues and hence are the 

growth and remodeling. To get a better understanding of the strain pattern, modeling of 

a better constitutive relation is an essential requirement and this can be done by 

characterizing the uncertainty in it. There may be some other factors that go unnoticed 

and hence we may get underestimated uncertainties. Thus we have to carefully decide 

and find all probable causes of errors and estimate their effects. 

The error analysis is motivated by the fact that no physical quantity can be 

measured without having some degree of uncertainties. Although many different types 

of models for hyperelasticity have been developed since the 1940’s, there are very few 

publications that discussed the errors in the data for the constitutive modeling. Since 

having some degree of uncertainties is inevitable especially in experiments on high 

strain material and biotissues, validity of the model should be justified by 

understanding the uncertainty in the data. Every constitutive relation in hyperelasticity, 

therefore, should be modeled after characterizing the uncertainties in the data. Only 

after doing this, can the model be regarded as an appropriate one for an application. 

The fundamental statistical theory, for this study, has been used to find the systematic 

significant factors and random errors as well as to characterize the uncertainties. The 

systematic factors that give rise to the deviation from hyperelasticity were presumed as 

time spent testing, stretch-rate, and stretch history.  
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They gave rise to the deviation of elastomers and tissues from hyperelasticity as 

evident in the randomized uniaxial stretch-controlled tests. By considering all 

measurements that would make uncertainties such as measurement errors, instrument 

errors, and extra randomized factors that make additional uncertainties, we found out 

which ones are significant factors that make those uncertainties in the context of error 

propagation. After we realized the significant factors that make the uncertainty, we 

applied fundamental statistical theories such as multivariable linear regression analysis 

to those factors to better understand the uncertainty in the data obtained by uniaxial 

(randomized stretch-controlled protocols) stretch tests on high strain materials and 

biotissues. This has been done for each stretch level λ = 1.1, 1.3, 1.5, 1.7, and 1.9. 

Since we have assumed that the highly suspected factors that deviate from the 

hyperelasticity are time spent testing, stretch-rate, and stretch history, they have been 

treated as independent variables and the deviation from hyperelasticity has been treated 

as the dependent variable for the multivariable linear regression analysis. To test 

whether the regression model is proper or not, the goodness-of-fit test by using 

2R (coefficient of determination) and test of significance (t-test) have been employed. 

Finally we have answered for the following three questions; 

a) Are they (time spent testing, stretch-rate, and stretch history) really 

significant factors that make considerable amount of uncertainties from 

hyperelasticity? 

b) Are they effective to all the stretch levels? 

c) If not, how do they differ? 
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Lastly, we checked the predictive capability by comparing the unused 

(deviation) data in the randomized stretch-controlled protocol to the predicted 

deviation obtained by the regression models. The test of the predictability should be 

involved in the final step in any regression model to evaluate how well the derived 

regression model forecasts the intermediate or future values. It is important to note that 

the best way to accomplish this work is to compare predicted result to data that were 

not used in the formulation of the regression models.  

 

Hyperelastic Models for Rubber-like Materials and Biotissues 
 

Hyperelastic Models for Rubber-like Materials: Many people in the area of 

the hyperelasticity have been struggling to find general constitutive relations in terms 

of strain energy function W which is a scalar function. In spite of all their efforts, most 

of the models are only fitted to the specified conditions and environments when they 

were derived. Individual models can predict the stress/strain relations only within the 

specified ranges of strain. They also applied huge assumptions such as isotropy, 

hyperelasticity, or pseudoelasticity which ignores the hysteresis that is an inevitable 

phenomenon in high strain materials and biotissues. While it is acceptable to use these 

assumptions, the deviation from hyperelasticity that arises from these assumptions has 

never been considered. It’s been suggested that the Mooney model (1940) shown in 

equation (1.1) has good agreement with the expected value when the materials undergo 

the stretch ratio λ more than 1.4.  
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where Ci, i = 1, 2 is a material constant, I1 = trC and I2 = 1/2[(trC)2-trC2] are called the 

first and second principal invariants, respectively. The right Cauchy-Green tensor C is 

described with the deformation gradient F as C = FTF. 

Treloar (1943, 1948) introduced the following form of strain energy function called 

neo-Hookean model as 

)3( 1 −= ICW                                                          (1.2) 

where C is a material constant. For the biaxial swollen rubber sheet, he suggested the 

stress/strain relations shown in equation (1.3) as 

2,1),( 2
3

2 =−= iG ii λλσ                                   (1.3) 

where σi  is a stress and G is a material constant.  

Mullins (1947) suggested the stress/strain relations for the simple tensile test as  
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where σ is a stress and G is a material constant. Equation (1.4) is only valid for the 

equilibrium state of stress/strain or low strain rate which can be regarded as quasi-

equilibrium state. Like other model developers, Mullins didn’t mention the difference 

between loading and unloading stress/strain curves. The equation (1.5) suggested by 

Rivlin and Saunders, 1951 mentioned that other forms of strain energ
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There are a few other models that have been as shown below, but there are too many to 

introduce all of the models that have been developed since 1940’s.  
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 volume changes of current and reference bodies and µ is a 

material constant. Obata et al (1970) also suggested the hyperelastic model for rubber-

like materials as following. 
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Although many models for rubber-like materials and biotissues have been proposed so 

far, there is no agreement for those models; no model is better than the other. This 

means that there is ambiguity for developing the hyperelastic models of high strain 

materials as well as of biotissues. The reason for this ambiguity is because the error 

analysis has not been done yet (Criscione, 2003).  

Hyperelastic Models for Biotissues: Experimentally developed hyperelastic 

models for biotissues have also been developed by well-known experts in the area of 

hyperelasticity. Again, those models have been fitted to only a certain range of strain. 
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are toe region, fairly linear region, and nonlinear region. The toe region is defined as 

the region that the load is exponentially increasing over the stretch, i.e., the constitutive 

relation is nonlinear. The fairly linear region is the region located in between the toe 

region and nonlinear region. The stress/strain relationship in the region is regarded as 

linear. The nonlinear region is the region where the stress and stretch relationship is not 

linear and rupture occurs within that range of 10 to 15 % of stretch (Fung, 1993). Fung 

suggested following equation to see the stress/strain relationship for the toe region of 

the tendon. 

( ) 01, λλααλ ≤<−= eeCT      

ooke’s law or neo-Hookean law could be 

used for the fairly linear region, Johnson et al (1

                                  (1.9) 

where T is  a stress, α is an elastic stiffness and C is a material constant. Although, by 

the inspection and assumption of Fung, a H

992) suggested the following equation 

for both the toe and fairly linear regions where C0 and µ are material constants. 

0
2

0 1,1111 λλλµ ≤<⎟
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⎛ += CT                                (1.10) 
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A.Viidik (1987) introduces Wertheim’s constitutive relation (1847) for tendons by 

following equation (1.11). 

   

where ε is strain, A and B are material constants. M

σσε BA += 22                                                  (1.11) 

organ (1960), Kenedi et al (1964), 

Ridge and Wright (1964) suggested the following constitutive relations shown in 

equation (1.12), (1.13), and (1.14), respectively. 

aC σε 1=                                                     (1.12) 
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where a, b, c, d, K and L are constants. Those empirically established equations again 

re valid for the anticipation of material properties of the biotissues only under the 

 deriving the hyperelastic models without knowing that the 

deviati

The elastic models help us look at what is the relationship between stress and strain, 

a

same experimental situations and limited ranges. In addition, many people ignore the 

higher order terms in

on comes from omission of the higher order terms. Here we considered all the 

points of motion profile of stretch-controlled protocol and then averaged them which 

means we didn’t omit the higher order terms so that we considered a preferably true 

hyperelastic model but have a deviation provoked by the time spending, stretch-rate 

and stretch history. 

 

Why Such Hyperelastic Models are Useful for the High Strain 

Materials/Biotissues 

The usefulness of a model is in its providing of insights into the mechanisms 

underlying the mechanical behavior of the materials. The reason that we are doing the 

error analysis for the hyperelastic models of high strain materials and biotissues is that, 

even though they are never perfectly correct, those models are comprehensively being 

used and regarded as useful in the area of biomechanics and mechanobiology. The 

elastic models are never exact but they are useful because they guide our directions. If 

there is no model for a certain application, one may have to have some trial and error. 
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how the materials respond relative to the stress and strain. For example, an elastic 

model for steel is useful for building structures such as bridges and skyscrapers. 

Although steel is not elastic and has some inelastic behavior (Kliman and Bily, 1984., 

Tong et al, 1989.,  Wittke et al, 1997., Ohno and Karim, 2000., Sablik et al, 2004), a 

linear elastic model for steel gives mostly the right answer so that we can model steel 

as an elastic material by the first order approximation. Although the linear elastic 

odel for steel gives mostly the right answer, it is not truly right. There are deviations 

uld look at the deviation and 

include

m

for second order and higher order models as well. We sho

 this deviation in the models. But it is not necessary to include the higher order 

terms for steel for most applications because the first order model gets very close 

enough to be used for the applications. It is the same with rubber and tissue. In this 

case the hyperelastic models help us understand what is the relationship between stress 

and strain, how they grow relative to the stress or strain. 

 

Why We Need to Know the Uncertainty in the Models 

If we have an infinite number of higher order terms, then the model would be 

perfect under the assumption of that the Error-of-measurement is ignorable relative to 

the Error-of-definition. In spite of that assumption, a perfect model is unfeasible 

because we can’t have infinite number of data points. If we have only first order, or 

second order terms, then it is approximation. We need to look for the uncertainty due 

to the approximation or omission of the rest of the higher order terms. By considering 

all points of motion profile of stretch-controlled protocol and then average, we 

consider a perfect hyperelastic model but have a deviation caused by the time 
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spending, stretch rate and stretch history. It will be great to have a perfect model for 

tissue if we are looking at the role of stress in the growth and remodeling of a tissue. 

But in lieu of perfect model, hyperelastic models would be the best choice for 

biotissues. Since, for steels, the second and higher order terms are not used, it may not 

be correct to say that the first order model for steel is linear elastic and the first order 

model for biotissues is hyperelastic. But it is the first approximation. Approximation is 

mostly useful but we need to know the error induced by the approximation (called 

Error-of-Definition) or by neglecting the other terms so that we can estimate if it is 

good enough. For steel, we already know that the error is small so that we can neglect 

it for most applications. But, for biotissues, the error comes from the omission of 

nonlinear terms that have never been specified. Most of the models introduced in prior 

section have been developed within the high strain ranges where they have low 

deviations. Even in the low range of low strain which has huge amount of deviation 

from elasticity, they neglected it and just applied the assumption of hyperelasticity, 

isotropy, or/and Fung used the pseudoelasticity for the biotissues which is false as the 

name implies (Skalak and Chien, 1987). So if we use the hyperelastic models for the 

biotissues, we need to know how it deviates from the hyperelasticity before we can say 

whether we can neglect the deviation or not because we cannot neglect the deviation 

rior to the understanding of the deviation. We need to know how the deviation 

ct our results. It should be answered what if we 

didn’t k

theory. It is good to know what degree of uncertainty the hyperelastic models for high 

p

induced by neglected terms will affe

now by this amount/how the approximation can be proposed to our uncertainty 

in the final answer. The uncertainty will be looked at by the fundamental statistical 



  11

strain materials and biotissues have.  It is suggested that the degree of hyperelasticity 

of rubber is very high, about 98% hyperelastic.  

 

Why We Need a Random Protocol 

The completely randomized stretch controlled protocol is indispensable for 

error analysis. By the assumption that a hyperelastic model for the high strain materials 

and biotissues is a function of three variables such as time T, stretch-rate S and stretch 

history H, the stress σ can be described as 

),,( HSTσσ =                                                 (1.15) 

To satisfy equation (1.15), those three variables should be completely independent of 

each other so that they are not coupled or correlated. Thus, the randomized uniaxial 

stretch- controlled protocol enables us to look at the three variables as independent 

variables as well as the major factors that cause the deviation from the hyperelasticity. 

ince all randomized points that meet the stretch ratio 1.1, 1.3, 1.5, 1.7 and 1.9 of the 

ntire protocol have been used and averaged together, a hyperelastic model that can 

potentially be made didn’t exclude the higher order terms, i.e., it didn’t force the 

stress/strain relationship to be linear bic or higher than that by allowing 

ll higher order terms. The deviation due to the time spent, stretch-rate and stretch 

eraged stress. 

 

S

e

, quadratic, cu

a

history has been found from the av
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CHAPTER II 

METHODS 

 

Preparation of Test Specimens 

For this study, rubber fibers as high strain materials and longitudinal strips of 

pulmonary artery from adult swine as tissues were used. The initial length of the rubber 

specimen was chosen as 25.4 mm with radius of 0.3 mm. The maximum limit of stretch 

ratio that the rubber can go up to is 1.9. The tissue specimen for this study was strips of 

pulmonary artery of adult swine. The dimension of the tissue was 2.5 mm × 2 mm as 

the width × the length. The tissue specimens have less collagen (“a protein consisting 

of bundles of tiny reticular fibrils that combine to form the white glistening inelastic 

fibers of the tendons, the ligaments, and the fascia, Mosby’s Medical, Nursing, & 

Allied Health Dictionary”, Anderson, 1998) but have much elastin (“a protein that 

forms the principal substance of yellow elastic tissue fibers”, Mosby’s Medical, 

Nursing, & Allied Health Dictionary, Anderson, 1998) so that they experienced very 

high strain. To use the same randomized stretch-controlled protocols for both the 

checked the maximum stretch ratio that the tissue can go without 

over limiting the range of the force-transducer (Its maximum is 50 gram). According to 

the preliminary test to ensure the maximum stretch ratio for the tissue, its maximum 

rubber and tissue, we 

stretch ratio was 1.97 at 10.25 voltage output of force-transducer. Thus, we decided the 

maximum stretch ratio for the tissue as 1.9 and then used the same length of the tissue 

to use the same randomized stretch-controlled protocol used for the rubber, i.e., we 

used the same displacements for both the rubber and tissue.  
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To use the same protocol, the length of the tissue can be calculated by using equation 

(2.2). Since the maximum stretch ratio was the same as 1.9 for both the rubber and 

tissue, the length of the tissue specimen was chosen as 1 inch. Figure 2.1 shows the 

nonlinear behavior of the strips of pulmonary artery of adult swine. 
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shows linear behavior until the stretch ratio 1.6 and then nonlinear behavior from the 

range up to 50 gram, it didn’t detect the force of the corresponding stretch ratios which 

 

Fig.2.1. Nonlinear behavior of the tissue (strips of pulmonary artery of adult swine).  It 

stretch ratio 1.6. Since the force transducer used for this study can detect the force 

is higher than 1.97. 
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The tissues have been kept in a phosphate buffered saline (PBS). Although 

most of the tissues are fixed by formalin, formaldehyde, or glutaraldehyde, elastin is 

kept in a PBS to hold on to its elasticity (Fung, 1993). The fixation agents such as 

formalin, formaldehyde, or glutaraldehyde change the property of tissue by cross 

linking the collagens. It makes the tissue stiff and loses extensible. PBS was sprayed on 

the tissues to keep them moist during the randomized uniaxial stretch-controlled test. 

To keep bacteria from growing we kept them on ice. All the experiments have done at 

room temperature which is around 23 °C. 

Uniaxial randomized stretch-controlled tests were executed for both the rubber 

fiber and tissues and the data obtained by the experiment were analyzed based on the 

ssumption that there are certain factors that cause the deviation from the 

t cause the deviation were expected to be 

strain-r

a

hyperelasticity. Highly suspected factors tha

ate, strain history and time spent testing. For the stretch-controlled randomized 

protocol, stretch ratios and stretch rates were randomly generated as for nodal values 

and they were interpolated with the C1 continuity by the custom codes. All codes were 

developed by using LabVIEW. For each nodal interval, maximum and minimum slopes 

meant by maximum and minimum velocities have been checked. If the maximum slope 

was higher than the maximum velocity of the actuators then time-interval was 

expanded to decrease the slope. Newport’s Universal Motion Controller/Driver 

(ESP7000) and its compatible actuators (CMA-25CCCL) that have high precision have 

been employed for the randomized stretch-controlled uniaxial stretch test. These CMA 

actuators are capable of having minimum incremental motion of the order of sub-

micron (Resolution = 0.048828 µm, Speed = 50 – 400 µm/sec). These motions were 
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controlled by the LabVIEW based algorithms developed by us. After the experiment, it 

has shown how the error was looked at in 1-D. For each stretch level, it has been 

checked what factors were the most effective to make the deviation from the 

hyperelatsticity. It was highly suspected there would be different factors for the 

different stretch levels that make uncertainties. 

 

Randomized Stretch-Controlled Protocol 

Ideal randomized stretch-controlled protocol has been achieved by using cubic 

Hermite interpolation. Randomly generated nodal values for the interpolation were 

defined as stretch ratio (displacement) and velocity of the actuators. We, first, got the 

71 raw random points for both the stretch ratio and velocity. They were used as nodal 

values for the interpolation. Figure 2.2 and figure 2.3 show the 71 raw random points 

for the stretch ratio and interpolated protocol, respectively. Algorithm for cubic 

Hermite interpolation and motion for the actuators were programmed by using software 

w random points for the velocity of actuator and interpolated velocity protocol, 

spectively. By following the stretch-controlled protocol as shown in figure 2.3 and 

onary artery of an 

dult swine) were stretched with a specified velocity. Data has been acquired by using 

Newport Universal Motion Controller/Driver (ESP 7000).  

 

 

 

language LabVIEW (National Instrument, Inc). Figure 2.4 and figure 2.5 show the 71 

ra

re

figure 2.5 below, the specimens (a rubber fiber and a strip of pulm

a
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Fig.2.2. Randomly generated raw data points of stretch ratio for the cubic Hermite 
interpolation. 
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Fig.2.3. Interpolated ideal stretch-controlled protocol. 
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Fig.2.4. Randomly generated raw data points of the actuator velocity for the cubic 

 
Hermite interpolation. 
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Fig.2.5. Interpolated ideal velocity protocol of an actuator (motor). 
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Cubic Hermite Interpolation 

In the area of numerical method of mechanics such as Finite Element Analysis, 

a third-order curve called cubic Hermite polynomial which has C1 continuity property 

is widely being used. It is a spatial (interpolation with space, x, y, z) or temporal 

 nodal values. It is a processing of 

estimation of the nodal values that are unknown by using the nodal values that are 

already given as, in this study, stretch ratios and velocities (as stretch-rate) within a 

given range. The basic form of the cubic Hermite interpolation function for 1-D is 

(interpolation with time, t) interpolation of
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where  and are the interpolation functions or shape 

functions. Cubic Hermite polynom hown above, has the form that has two 

prearranged points 
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λ and 

2N
λ

1N 2N

and two prearranged tangents ⎟⎟
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⎞
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λ and ⎟⎟
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ξ
λ  . 

They are given at element nodes N1 and N2. The element, therefore, has four degree of 

ls

0
1
10 ξξ HH

From

freedoms (i.e., two degree of freedom per node) and they are given by scalar values as 

stretch ratios and velocities in this study. To get the cubic Hermite polynomia  

),(21 ξH  and )(2 , we applied the interpolation properties shown 

below. 

),(),( 1 ξH

 
1
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λξλ == , we have  
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The polynomials used to represent the H(ξ) must have all terms beginning with a 

constant terms up to the highest order. Since there are four conditions (two per node) 

for each H(ξ), a four-parameter polynomial should be chosen for H(ξ) which is a cubic 

polynomial. These four values are given for setting the nodal conditions. 

By using the four conditions above, we have   

1

322
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If we consider an 1-D cubic Hermite interpolation function in the global coordinate t 

which is the coordinate of the problem, it will be expressed as 
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and, ettt −= . Schematic for the derivation of cubic Hermite interpolation function is 

shown in the figure 2.6. It shows the relationships between global, local and 

generalized coordinates where e-1, e, e+1, and e+2 are global node numbers, 

( ) htt /−= eeξ  and ht /1/ =∂∂ he length of the element he is the scalar factor and eξ . T

used for chain rule such as e
eee

h
tt

⋅
∂

=
∂

⋅
∂

=
∂ ξξ

. 
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Fig.2.6. Schematic for the derivation of cubic Hermite interpolation function. It shows 
the relationships between global, local and generalized coordinates where e-1, e, e+1, 
and e+2 are global node numbers, ( ) ee htt /−=ξ  and eht /1/ =∂∂ξ . The length of the 
element h  is the scalar factor and used for chain rule such 

as
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Verification of Randomness 

The significance of randomness in this study is that it provides reliable results 

from error analysis.  It should be evident that there is no correlation amid the time 

spent, stretch-rate and stretch history before we do the experiment of randomized 

stretch-controlled protocol to guarantee, if there is any, the validity of the correlation 

after the experiment. Thus it can be answered for the question of validity of 

randomness of the original raw data which have obtained by random number 

generation command in LabVIEW (National Instrument, Inc). The randomness is 

defined by the ignorance of cause and effect, i.e., any event should be caused by 

chance alone and uncontrollable if it can be regarded as random. Thus, a random signal, 

also known as a white noise, doesn’t have any recurring of same patterns in the signal, 

i.e., there is no correlation between the signal values. White noise, by definition ideally, 

ned 

frequency domain. Thus, by using the properties of white noise, the randomness of the 

randomized stretch-controlled protocol can be verified by investigating the frequency 

components and their amplitudes in the protocols. Discrete Fourier Transformation 

(DFT) and Wavelet Transformation (WT) have been employed to see whether the 

protocols satisfy the properties of the white noise. Figure 2.7, figure 2.8 and figure 2.9 

show the DFT, WT (2-D) and WT (3-D) of the stretch protocol, respectively. Figure 

2.10, figure 2.11 and figure 2.12 show the DFT, WT (2-D) and WT (3-D) of the 

velocity protocol, respectively. The spectral analysis of the protocols by using wavelet 

transformations (Time-Frequency domain) shown in figure 2.8, 2.9, 2.11, and 2.12 

show the more detail distributions of the frequency components over time. If we see a 

has all frequency components which have the same powers throughout a defi
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specific frequency component, there is the highest pick of the frequency component. 

The frequency components that we see in FFT (Frequency domain) are those that have 

e highest picks for each frequency components. They show the every frequency 

omponents that are consist of within the maximum frequency range (0.5Hz) and the 

pectrums are fairly even. In other words, since there is no dominant frequency, most 

f the frequencies are represented of similar magnitudes, and spectral representations 

how that they have all spectrums in the range, they are affectively random. Thus, we 

an conclude that we prohibited most of the factors that can possibly cause any 

orrelations before we conducted the experiment and error analysis. In reality, we can’t 

ave perfectly flat spectrums because it is impossible to have infinite number of points 

 develop a perfectly flat spectral representation. If we execute the cyclic loading test, 

we will have dominant spectrums. 

If we have more random data, the resolution will get finer and it will seem to 

mostly follow the properties of white noise for the spectrum analysis. The more 

random points we have the higher spectral resolution will be achieved. At this moment, 

we have 71 data points to be analyzed. Figure 2.13 and figure 2.14 show the frequency 

spectrum of total interpolated stretch ratio and velocity of an actuator data points. They 

show the much higher resolution of frequency spectrums because of involving a 

number of data points (the number of total interpolated points is 3500).  
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ig.2.7. Fourier spectral representation of the randomized stretch ratio data points. 
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Fig.2.8. Frequency spectrum of randomized stretch ratio data points viewed in time-
frequency domain (2-D) using wavelet transformation. 
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Fig.2.9.  Frequency spectrum of randomized stretch ratio data points viewed in time-
frequency domain (3-D) using wavelet transformation. 
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Fig.2.10. Fourier spectral representation of the randomized velocity data points. 
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Fig.2.11. Frequency spectrum of randomized velocity data points viewed in time-
frequen
 

 

 

 

 

 

 

 

 

 

cy domain (2-D) using wavelet transformation. 
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Fig.2.12. Frequency spectrum of randomized velocity data poin
frequency domain (3-D) using wavelet transformation. 
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Fig.2.13. Frequency spectrum of total interpolated stretch data points. 
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Data Acquisition and Conversion 

The motions of actuators (CMA-25CCCL, Newport) were controlled and 

monitored by the Newport’s Universal Motion Controller/Driver (ESP7000). The data 

of the motions for the randomized stretch-controlled protocol also have been obtained 

by the controller. It gets the time, position of the actuators for a corresponding time, 

and analog output as data for every 0.1 second. An analog output in this study was a 

voltage output for the corresponding force input whenever the specimens (rubber/ 

tissue) were stretched. The force transducer (Ha

ble 2.1 shows the conversion table 

r converting the non-decimal configuration of the data obtained by the 

ontroller/driver to decimal configuration of the data. Because of the oscillation of the 

signal (voltage) from the force transducer, a low-pass filter has been made and 

employed into the experimental system to get more stable signal output from the force 

transducer.  2nd order Active Low-Pass Butterworth Filter of -40dB/decade has been 

chosen as for the low-pass filter because it makes the closed-loop gain to be 1 as close 

as possible within the pass band (Coughlin and Driscoll, 1982). To design the filter, we 

chose the cutoff frequency fc as 5 Hz (note that a sampling frequency fs is 10 Hz) R1 = 

R2 = R = 10 kΩ, and Rf = 2R = 20 kΩ.  By using following formula 

rvard Apparatus, Inc) was connected 

between the specimens and the motion controller/driver through the data acquisition 

board. It detected the voltage changes according to the motion variations. Figure 2.15 

shows the experimental setup for the uniaxial randomized stretch-controlled protocol. 

Because the controller/driver didn’t give the decimal configuration of the numbers for 

the data, the data obtained by the controller/driver should be converted by proper gains 

which have not been supported by the Newport. Ta

fo

c
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FCC

F
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µ

µ

5.4122

25.2
10105

707.0707.01 3

==

=
××

==
                             (2.12) 

we selected the proper capacitors and resistors for designing the filter. Figure 2.16 

shows a basic circuit diagram for the 2nd order Active Low-Pass Butterworth Filter of -

40dB/decade. 

 

Table.2.1. Conversion table for non-decimal data of force, position of actuator, and 
time. 
 

Data Conversion 

Analog Input Position Time 

1 volt = 3200 1 mm = 20480 1 sec = 2560 
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Fig.2.15. Schematic of the experimental setup. Two CMA-25CCCL Actuators are 
onnected to the Aluminum sliding rod and the force transducer through the sliding 

tables which are not shown in the figure. 
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Fig.2.16. Circuit diagram of 2nd Order Low-Pass Active Butterworth Filter of 
dB/decade. 
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Stretch History 

Since the change in mechanical properties of the rubber-like materials and 

biotissues are highly dependent on the previous stretches, it is very important to 

understand the stretch history for the materials. Stretch history tells us what has come 

before. Thus stretch history says that what types of experiences the 

undertaken before. One aspect of stretch history is a quantity that we refer to as 

affective (or average) stretch history which is the average of the stretches for the prior 

ample, if there are three different stretch-controlled protocols, 

ven if the stretch ratio and stretch-rate are the same at a certain time, stretch histories 

re different, i.e., the areas under the curves are different. Thus, by integrating the λ(t) 

nd dividing it by the last amount of time th that is a suitably chosen time constant 

btained from the relaxation spectrums by the stress relaxation tests, we got averaged 

tretch ratio for th. Figure 2.17 shows the basic concept of stretch history. From the 

gure 2.17, we saw that it was very important to decide a reasonable th for achieving 

e reasonable stretch history. Because if th gets smaller and smaller, H(t) approaches 

 λ(t) therefore it doesn’t give us much history. Equation (2.13) shows the relationship 

H(t) and stretch ratio λ(t) which is a function of time. 

specimens have 

time interval of duration th - a suitable chosen time constant obtained by the relaxation 

spectrums. To get the relaxation spectrum, we have executed the stress relaxation tests 

on the testing materials.  

The reason that we have to perform the stress relaxation tests on them can be 

explained that, for ex

e

a

a

o

s
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th

to

between stretch history function 

h
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tt
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dtt
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If th is zero, it doesn’t give any history. In contrast, as th gets bigger and bigger, it gets 

lose to the average of whole stretch ratios of entire motion which is not consequential.  

hus finding reasonable th is important to figure out the uncertainty due to the stretch 

history. To find the t , we performed the stress relaxation test for the specimens so that 

st decay and slow decay of the stress relaxation.  

c

T

h

we could capture the relaxation spectrum for the specimens and then figured out the 

fa
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Fig.2.17. Although the stretch ratio functions )(and,)(,)( ttt 321 λλλ   that are function 

for each of the functions are different. 

 

of time give the same value at time tN, the average stretch ratios for the time duration th 
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Stress Relaxation Tests 

Rubber: A stretch history, as mentioned in prior section, tells what types of 

experiences the specimens have for the previous times. To get the appropriate stretch 

istory which is an average stretch ratio for the specified time duration th, we executed 

e stress relaxation tests on the rubber. Figure 2.18 shows the stress relaxation data 

urve and fitting curve for the rubber. By using the constrained nonlinear optimization 

 the Matlab (Mathworks, Inc), we obtained the acceptable fitting curve corresponding 

 the raw stress relaxation data for the rubber. The equation for the optimized fitting 

urve could be expressed by a summation of two exponential functions as following. 

h

th

c

in

to

c

21)( t
t

t
t

CeBeAtV
−−

++=                                           (2.14) 

where A = 2.756, B = 0.097, C = 0.025, t1 = 403, t2 = 8.99, and V is a voltage output 

which is equivalently a force. For the rubber, the stress history cutoffs (or relaxation 

spectrums), th, have been chosen as th = 10 sec and th = 400 sec for early (fast) decay 

and late (slow) decay, respectively.  

It is very important to note that the stretch history obtaining by the history 

cutoff, th =10 sec is rely on the direction of approach because it is a relatively short 

duration. If a stretch rate is positive at a certain point of time tN, the average stretch 

ratio which is within relaxation spectrum th = 10 sec will be less than the stretch ratio at 

the point tN. Since the slope (stretch rate ) is changing gradually and acceleration 

of stretch ratio  relatively low, stretch rate  tells what was immediately 

happening before. In rubber case, what happens 10 seconds prior is given by the rate.  
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Fig.2.18. Stress relaxation test on the rubber fiber. Fitting shows that it is well-fitted by 
summation of two expo
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This tells that the relationship between the stretch history scanned by the 

relaxation spectrum th =10 sec and the stretch-rate is exactly inverse. If stretch rate 

)(tλ& is positive, it means the randomized stretch-controlled protocol move in positive 

directions and vice versa. Thus, we can have following relationships described in 

equation (2.15).  

N

ht
h

10=

Moreover, the correlation coefficients for both the stretch-rate and stretch history 

scanned by th = 10 sec have exactly the same absolute values but opposite signs. For 

the tissue, it can be understood likewise. Figure 2.19 shows the schematic of the 

relationship between the stretch-rate and stretch history scanned by early decay of 

relaxation spectrums. 
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Fig.2.19. When the stretch rate is positive, the stretch history scanned by th =10 sec is 
less than the present stretch ratio. (b) When the stretch rate is negative, the stretch 
history scanned by th =10 sec is bigger than the present stretch ratio )( Ntλ . 
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Biotissues: Unlikely to the rubber, the stress relaxation curve for the tissue was 

well-fitted by the summation of four exponential functions as follows. 

                (2.16) 

10 sec has been used chosen as fast decay of the relaxation 

spectru

y cutoff of the relaxation spectrums to get the 

stretch history function for a long decay

 

 

tttt eeeetV −−−− ++++= 5.03.15.05.15.5)( 10/30/400/

For the tissue, th = 

ms to get the rate-related stretch history function. Although the th = 400 sec 

would be the reasonable slow histor

, we figured out from the figure 2.20 that that 

there is a longer relaxation spectrum that was th = 1000 sec. So we employed one more 

variable which was the new stretch history function H(t) scanned by history cut-off, th 

= 1000 sec, for the multivariable linear regression analysis for the tissue. But, it was 

hardly affective to the deviation from the hyperelasticity as will be shown in the results. 
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Fig.2.20. Stress relaxation test on the strip of pulmonary artery of the adult swine. Data 

asymptotically stable. 

 

 

 

 

have been obtained at every 0.4 second for 1 hour. After a half an hour, it seems 
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Types of Uncertainties 

There are two types of errors; random error and systematic error. Here the term 

error is being regarded as an uncertainty. Random errors appear during the time of any 

measurement in random manner so they are statistically unpredictable. This type of 

error can be reduced by repeating the same procedure for all measurements under the 

identical experimental situation. But systematic error cannot be reduced in this way. 

System

 the true value in the same way. They are, in general, hard to 

detect and estimate. Here we defined the uncertainties due to the stretch-rate, stretch 

history, and time spent testing as systematic errors because they behave systematically. 

We have found that as stretch history and time get bigger the deviations get smaller. 

But as stretch-rate gets bigger, deviation also gets bigger which intuitively make sense. 

Because there is no hyperelastic material in the world, whenever we use the 

measurem

asuring of force (or voltage), radius of the rubber fiber, 

resolution of force transducer, motion controller, and actuators will give rise to the 

atic errors affect the results in a systematic way, to be exact, they make a 

certain degree of bias from

hyperelastic model for a constitutive modeling of elastomers and biotissues, the error-

of-definition becomes an issue. Thus if the elastic constitutive relation is to be 

determined by the experiment, the assumption of hyperelasticity should be considered 

as a part of errors. Error-of-definition stands for a degree of uncertainty that we are 

uncertain of the elastic stresses in rubber fibers and biotissues. This tells that we have 

to consider the inelastic behavior as an experimental error.  In contrast, an Error-of-

ent is issued whenever the error comes from any measurement and 

instrument. More specifically, hyperelastic assumption for the rubber fiber gives rise to 

the Error-of-definition. The me
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Error-of-measurement. Note that the Error-of-Measurement sometimes includes the 

Error-of-Definition. For example, let say we are measuring a temperature 

and the temperature of the beaker is, for example, 400 K. For measuring the 

mperature, we normally take the average. By saying that the beaker has a 

w, if we think about the 

thermometer, we may not be able to read the e

hem. By doing this we got just one 

value which was finally representing the Error-of-Measurem

away if we measure a lot of times. If we have a specimen that has systematically 

re.  

Since the error-of-measurement is able to

 won’t be consequential 

for this study. Note that, however, a certain amount of error (deviation) comes from the 

inelastic behavior can’t be reduced whatsoever as shown in later chapter.  Now we 

should figure out what causes this inelastic behavior by using the concept of error 

analysis. By making the assumption that highly suspected factors causing this 

inelasticity are stretch history, stretch- rate and time, the error analysis has been done 

by focusing on these three factors. Note that stretch ratio and stretch-rate are 

of the beaker 

te

temperature, we expect that there is an Error-of-Definition. No

th rmometer because of the unscaled part 

of it. This gives rise to the instrument error which is a part of the Error-of-

Measurement. Another example is a measurement of the dimension of the specimens. 

If we measure a width, a, of the tissue, we don’t have just one value for a. The 

measurement of a certain specimen has both the Error-of-Definition and the Error-of-

Measurement. To get rid of the Error-of-Definition which is dependent on the location, 

we measured many times on it and then averaged t

ent. The randomness goes 

increasing width, we don’t have the Error-of-Definition any mo

 be reduced as much as possible as 

long as we are using extremely accurate measuring devices, it
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instantaneous and they have nothing to do with history obtained by relatively long 

relaxation spectrum. Some of the uncertainty could be caused by the edge effect. But 

since we used the long specimens, the deviation due to the edge effect has been found 

to be in

Error Propagation 

To quantify the uncertainty due to the inelasticity of rubber fiber and biotissue, 

we assumed the following relation as 

FM = FW ± ∆F                                           (2.17) 

where FM is force measure at a certain stretch ratio. FW is

measures and it is a continuous function that satisfies the hyperelastic assumption. 

Since the experiments were performed in 1-D and there was no symmetry group, we 

didn’t need to assume the isotropy. If we assume hyperelastici

one value of force for each corresponding deformation or stretch ratio (one-to-one 

mapping of stress and strain). The average uncertainty or standard deviation ∆F of FM 

 the hyperelastic point of view. The fundamental question for finding ∆F 

was where the deviation came from. It has been assum

ld be random 

noises and errors due to the inaccuracies of measurement of cross-sectional area 

consequential.  

 

 the average of the force 

ty, there should be only 

represents a degree of uncertainty that how much the measurements of forces are 

deviated from

ed that the deviation ∆F consists 

of as following; 

∆F = ∆Fsr + ∆Fsh + ∆Ft + ∆Frf                                   (2.18) 

where ∆Fsr, ∆Fsh, ∆Ft and ∆Frf  are uncertainties due to the stretch-rate, stretch history, 

time spent testing, and extra random factors. Extra random factors wou
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(related to a measurement of a radius) of the rubber fiber, measurement of cross-

sectional area (related to a measurement of a width and a length) of a strip of

pulmonary artery of adult swine, voltage output for corresponding stretch levels, 

reference weight, voltage output for the reference weight and stretch ratios. B

auchy stresses should be calculated after measuring a force, a radius of rubber 

fiber, a width, and a length of the strip of pulmonary artery o

ratios of specimens (rubber and tissue), those measurements have been done first. But 

each measurement has their errors and hence there would be resulting error which 

suggests the error propagation. Since, for a rubber specimen,

measurements such as force f, radius of rubber fiber r, and stretch ratio λ, the Cauchy 

stress was t = t(f, r, λ) for a certain function. In addition, the force measure can be f = 

f(v, w, p) where v is a voltage output for each deformation (or s

motion period, w is a reference weight, and p is a corresponding voltage output for 

reference weight. For the tissue specimen, we have primarily  four measurements, force 

 repeated measurements have been done and standard deviation was 

obtained. Before we got the resulting error of the 

ed the general formula shown by the equation (2.19) (John 

. Taylor, 1997) without proof. 

 

ecause 

the C

f adult swine, and stretch 

 we had principally three 

tretch ratio) during the 

f, a width a, a length b, and stretch ratio λ, therefore the Cauchy stress was t = t(f, a, b, 

λ) for a certain function. To find an uncertainty due to the resolution of force 

transducer,

Cauchy stress measures, we had to 

calculate the resulting error due to the process of force measurement. For a calculation 

of error-propagation, we us

R
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where, δg is the uncertainty in g = g(x,…, z). The variables x,…, z are measured values 

and δx,…, δz are uncertainties in measuring of x,…, z. Note that δgx,…, δgz are the 

uncertainties in a function g due to the δx alone and δz alone, respectively. Although 

the equation (2.19) which is for calculating the abso

zxg δδδ ⎟⎜+⋅⋅⋅+⎟⎜=

lute uncertainty in the function g is 

not our interest, we used it to figure out how the relative uncertainty which is our true 

interest affects the absolute uncertainty.  

For rubber specimen, since the Cauchy stress is t = t(f, r, λ), the uncertainty in 

function t is expressed as 

( ) ( ) ( )222

222

λδδδ

δλ
λ

δδδ

ttt

r
r

f
f

t

rf ++=

⎟
⎠

⎜
⎝ ∂

+⎟
⎠

⎜
⎝ ∂

+⎟⎟
⎠

⎜⎜
⎝ ∂                         (2.20) 

Again, δtf is an uncertainty in t due to the δf alone, δtr is an uncertainty in t due to the 

δr alone, and δtλ is an uncertainty in t due to the δλ alone. It is extremely important to 

know that the uncertainty in t due to the δf which is δt  includes the uncertainty due to 

the inelastic behavior of the rubber and the biotissues. The uncertainties in the 

measured forces are not related to any instrumentally measured values such as r, a, and 

b for the rubber fiber. In other word, the inelastic behavior of the rubber fiber has 

nothing to do with those measurements. They are just static measurement so that they 

ever vary. They are not independent variables. Again, we didn’t look at the absolute 

error but relative erro

ttt ⎞⎛ ∂⎞⎛ ∂⎞⎛ ∂
=

 

f

n

r. For the tissue, it can be understood likewise.  
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For a strip of pulmonary artery of an adult swine, the Cauchy stress is a 

function of four variables which is t = t(f, a, b, λ). Thus the uncertainty in the function 

t for biotissues is expressed as 
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δλδδδδ baft ⎟⎜+⎟⎜+⎟⎜+⎟⎜=

Since the Cauchy stress is related to the 1st Piola-Kirchhoff as 

 FP
J

t 1
=                                                      (2.22) 

where, t is a Cauchy stress, J is a volume change ratio which is 

d(vol)current/d(Vol)reference, and equivalently det(F), F is a measure 

o

of finite deformation 

called deformation gradient, and P is a 1st Piola-Kirchhoff stress which called nominal 

r engineering stress and it is a force in deformed body on the area of undeformed 

body. Since we were studying the uniaxial behaviors of nearly incompressible 

materials, the equation (2.22) can be simplified as  

0A
ft λ=                                                    (2.23) 

The force f can be calculated by using the following equation.  

 
p

By combining the equation (2.23) and equation (2.24), we get 

wvf =                                                   (2.24) 
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Note that the equation (2.25) includes both the uncertainty due to the measurements 

which called the Error-of-measurement and the uncertainty due to the inelastic 

behavior of the specimens which called the Error-of-definition. 

With the equation (2.25) for a rubber, the uncertainty in function t can be 

expressed as 
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and  
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The variables λ, v, w, r, and p are measured values and these measured values are 

expressed as 

avg δλλλ ±=

www
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                                           (2.32) 

ilarly, 

for the tissue specimen, the uncertainty in function t can be exp

Therefore, we can get the uncertainty in t for the rubber specimen by using the 

equations (2.26) – (2.32). Again, the uncertainty includes both the uncertainty due to 

the error-of-measurement and the uncertainty due to the error-of-definition. Sim

ressed as 
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ll the variables except the a and b are the same as for the rubber specimen.  The 

reference area can be obtained by using the measured width a and length b of the tissue 

specimen. 
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Thus, the uncertainty in t for the tissue specimen can be obtained by using the 

equations (2.33) – (2.40).  

 

Fundamental Statistical Approaches; Multiple Linear Regression Analysis 

To check the assumption that the deviations are mostly caused by stretch rate, 

ed.  

tatistical theory included the multivariable regression analysis, goodness-of-fit test 

nd test of significance called t-test as shown in below.  Throughout the experiments 

tool, the 

relationship between the devi

stretch history and time spent, fundamental theory of statistics has been us

S

a

we obtained the data of time spent and force for the corresponding stretch ratios 1.1, 

1.3, 1.5, 1.7, and 1.9. By using those data we got groups of data such as the deviation, 

time spent testing, stretch-rate, and stretch history. 

Since the multivariable linear regression analysis is a linear regression 

ated value of force measurements and independent 

variables such as time spent, stretch history, and stretch-rate is only viewed by linearly. 
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Note that, instead of using the stretch-rate calculated by simply dividing the change in 

stretch ratio by change in time spent, we, for the error analysis of stretch history parts, 

used the stretch history obtained by usi

corresponding to the early exponential decay because the speed of the actuators was 

cimens. The constrained nonlinear 

optimization fitting has been used on the data of stress relaxation test to get the 

relaxation spectrums. The variables that have been employed for the

linear regression analysis are the Deviation D, Time spent T, rate-related Stretch 

1

exponential decay.  

We also found out how strongly/weakly they were related. Note that we 

assumed that there were linear relationships between them. We found out how the 

deviation D which is dependent variable changes with independent variables T, 

and . The existence of several variables forced us to use the multivariable linear 

regression model for the error analysis. The linear regress

first order functional relationship of the independent and dependent variables under 

ng the stress relaxation spectrum t2 
2t

H

not our control variable which means motor didn’t allow us to control the velocity. We 

defined the 
2t

H as rate-related stretch history. The relaxation spectrums were obtained 

after the stress relaxation tests for the spe

 multivariable 

History H  which can be regarded as a stretch-rate, long-time Stretch history 

obtained by using the stress relaxation spectrum t  corresponding to the long 

2t

1t
H

2t
H , 

1t
H

ion model searches for the 

several assumptions for the residuals. 
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The sample model for multivariable linear regression is  

( ) ( ) eHHTD ++++= ˆˆˆˆ βββα                         (2.41) iititii 12 321

Where, Di represents the variables for a deviation, Ti represents the variables for a time, 

( ) , ( )
it2

H represents the variables for a rate-related stretch history
it1

i

i

M W i

i

variables Ti, 

H  represents the 

variables for a long-time stretch history and e  is called residual or regression error and 

it represents a random error. Note that the deviation D  is identical to the ∆F in the 

equation (2.17). Thus, the equation (2.17) can be rewritten as F  = F  + D . The 

partial regression coefficients , i = 1, 2 and 3 describe how the independent β̂

( )
itH

2
, and ( )

itH
1

 affect the dependent variable Di. Specifically, the 

partial regression coefficient β1 describes how much the time variable T affect the Di 

when the other variables are assumed to be constant and only T is varying. Other 

partial regression coefficients can be understood likewise. The sample regression line 

for the multivariable is given by 

( ) ( )
ititii HHTD ˆˆˆˆ ββα ++=

12 321 β̂+                             (2.42) 

where α̂  and i ,  = 1, 2, and 3 are assumed to be the best guessed values obtained by 

iii eDD +=                                                   (2.43) 

β̂ i

least square method (LSM). Then the sample model for multivariable regression can be 

rewritten as 

ˆ
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From the equation (2.43), we get iii DDe ˆ−= . It represents the difference between the 

observed deviation Di and best guessed value iD̂ . To get α̂ and iβ̂ , i = 1, 2, and 3, we 

have to minimize the regression error using LSM as following. 
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Using matrix notation, if we have n measures at least but preferably many more for 

each variables, the equations above can be described as 
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These equations were used for e
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ach stretch level from λ=1.1 to λ=1.9 to determine 

α̂ and , i = 1, 2, 3. Actually it was trivial to find aiβ̂  value α̂  and regression 

coefficients , i = 1, 2, 3. After getting the partia

be two important questions to be asked. The first question is how well the derived 

sample regression line for the multivariable T

of significance called t-test. 

iβ̂ l regression coefficients there should 

, 
2t

H , and H  describes the observed 
1t

variable D which can be justified by the goodness-of-fit test. The second question is 

how much the regression coefficients are significant which can be verified by the test 
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Goodness-of-fit Test: As mentioned above the goodness-of-fit test tells how 

well the derived sample regression line explains the linear relationship between the 

independent variables T, 
2t

H , and 
1t

H  and the observed dependent variable D. For this 

test, coefficient of determination R2 is being used. For this test, consider the following 

identity that satisfies for all the observed data. 

( ) ( )DDDDDD −+−=− ˆˆ                               (2.47) i

sidual

iii 43421

The equation (2.47) shows the d

reei= :

ecomposition of the observed value. The value DDi −  

says the difference between t nd the average of Di. The value 

 represents the differen th d value and the best-guessed 

value of D which called residua  which is related to the unexplainable portion of the 

deviation. The value 

he observed value a

ii DD ˆ− ce between e observe

l ei

DDi −ˆ  represents the difference between the best-guessed value 

of D and the average of D which is related to the explainable portion of the deviation. 

Figure 2.21 shows the basic concept of the decomposition.  

Now, let’s define the variation of Di as  

( )
( ) ( ) ( )( )

( ) ( ) ( )∑∑∑ =−+−= 0ˆˆ

var i

eDDDD Q

43421

hat 

∑∑∑
∑

−−+−+−=

−=

=

ˆˆ2ˆˆ

22

22

2

iiii

i

e

iiiii DDDDDDDD

DDD

i

   (2.48) 

Thus, we have noticed that Dvar is separated into two categories; residual variation (or 

unexplained variation) and explained variation such t

( ) ( ) ( )
443442144344214434421

SSR

i

SSE

ii

SST

i DDDDDD
===

∑∑∑ −+−=−
222 ˆˆ                 (2.49) 
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where iD is the observed values, D is the average of iD , iD̂ is the best guessed value 

of D . i

 

ii DD −
ii DD ˆ−

DDi −ˆ

ii DD −

ii DD ˆ−

DDi −ˆ

D

12
,, tt HHT

D

ˆ HHTD βββα +++=
12 321

ˆˆˆˆ
tt

ii DD −
ii DD ˆ−

DDi −ˆ

ii DD −

ii DD ˆ−

DDi −ˆ

D

12
,, tt HHT

D

ˆ HHTD βββα +++=

 

value Di and the average of observed value

12 321
ˆˆˆˆ

tt

Fig.2.21. Decomposition of the value which is the difference between the observed 
D . 

 

 

The equation (2.49) tells that squared sum of difference between the observed value of 

D and the average of D is equal to sum of squared sum of residual ei and squared sum 

of difference between best-guessed value of D and the average of D. Physically, it 

describes the level of scattering of D (2.49) can be rewritten as 

                                    (2.50) 

SST, SSE, and SSR are abbreviations of sum of squared total, sum of squared error 

sum of squared regression which is 

i . The equation 

SST = SSE + SSR              

which is related to the unexplained deviation, and 
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related to the explained deviation, respectively. If we normalize the equation (2.50) by 

dividing by SST, then we have following equation. 

{
2

SST
SSR

SST
SSE1

R=

+=                                                     (2.51) 

From the equation (2.51), last term in right hand side SSR/SST is defined as R2 called 

coefficient of determination. From the following equation (2.52), it can easily be seen 

that the range of R2 is in value between 0 and 1.  

)1(1
SST
SSE

SST
SST

SST
SSR 22 RR −−=−==                          (2.52) 

( )∑
∑−=−=

−
=

2
2 1

SST
SSE1

SST
SSESST e

R i               (2.53) 
−

2DDi

Since R

’t justify the number of degree of freedom. To resolve 

this pr

2 is representing the ratio of sum of squared regression in the sum of squared 

total, the regression model can be regarded as good-fit as R2 closes to unity. The 

obscurity arises, however, because of the degree of freedom, when the R2 is used to test 

the goodness-of-fit. R2 is only related to explained (regression) and unexplained (error) 

variation in D and hence it doesn

oblem, modified R-squared 2R  is being used using variances of ei and Di as 

follows. 

( )
1

11
)(

1 2

2

2

−

−−−=−=
)( −∑

∑

n

kn
e

eVar
R

i

i

i

i                                   (2.54) 

where, n is the number of data, k is the number of independent variables. Although we 

have a sample regression model for the multivariable, independent variables Ti, H , 

DDDVar

2t
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and 
1t

H cannot describe the model perfectly because of four of the following major 

reasons. First one is the random factors that cannot be explained whatsoever. Second 

one

they are significant enough for explaining the variation of dependent variable D or not.  

If one of the partial regression coefficients β  is zero or statistically not 

el is not proper. For example, if  is 

zero, then it means that the independent variable T scarcely explain the variation of 

dependent variable D and hence the time is not effective variable to cause the 

deviation. For the t-test we generally set two hypotheses; Null-Hypothesis H0 and 

Alternative-Hypothesis HA. So we have done the hypothesis testing for these two 

hypotheses by looking at the t value. Let’s assume that we are looking at the 

significance of the time variable T. Then t value can be obtained by using the equation 

(2.55). The t values for the other independent variables can be determined likewise. 

 is the measurement error. Third one is the omission of the significant variables. 

Last one is the nonlinearity of the independent and dependent variables. 

Test of Significance: t-test: Although the multivariable regression model has a 

good fit, each independent variable T, H , and H has to be tested to check whether 

i

significant, then it means the regression mod

2t 1t

3,2,1,ˆ =i

1β̂

( )
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−
=

−

−−

−

−
=

−

−
=

−
=−−

2

1

2

2

1

2

1

ˆ

1
1

1
SSE

ˆ

1

ˆ

ˆˆˆ

1

TT

kn

TT

kn
DD

TT

SS
t

i
i

ii

i

e
kn

ββββββββ

β

     (2.55) 

where n is the number of samples, k is the number of independent variables,  is a 

standard error of estimate for the partial regression coefficient , and Se is a  standard 

i
S

β̂

1β̂
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error of estimate for the observed values Di.  For testing the hypotheses, we first have 

to set the confidence interval. The confidence interval is associated with the level of 

significance α.  The confidence interval (C.I) is calculated as  

C.I = 100(1- α)                                            (2.56) 

This represents the probability that the partial regression coefficient is likely to be 

contained within that interval. Confidence interval is used for testing the hypothesis 

and evaluating the significance of the derived regression coefficients. The hypotheses 

that we are using is  

≠

iβ̂  

0:)
0:) 0 =

β
β

AHii
                                              (2.57) 

Null hypothesis H0 represents no effect for a specific independent variable. On the 

e hypothesis HA represents an effect for a specific independent 

variable. Now we have to compare calculated t-value using equation (2.55) with 

tc obtained from the table by considering the degree of freedom (n-k-

) and the level of significanceα. If the null hypothesis is rejected, alternative 

ypothesis is accepted which means the independent variable corresponding to the 

artial regression coefficient is significant. It is important to know that the significance 

vel α should carefully be decided because it depends on the researchers and models 

at are being developed. We can get 90 % confidence interval, for example, with a 10 

% level of significance such that  

Hi

other hand, alternativ

1−−knt  

the critical value 

1

h

p

le

th

9.0
ˆ

ˆ

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
<

−
<− cc t

S
tprob

β

ββ                                (2.58) 

Thus, we can obtain the 90 % confidence interval for β from equation (2.58) such that 
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( ) 9.0ˆˆ
ˆˆ =+<<−

ββ
βββ StStprob cc                            (2.59) 

                                                 (2.60) 

It physically means that, for the unknown value

β
β ˆ
ˆ Stc±

β , the true value will fall into the 

range of equation (2.60) 90 times out of the 100. Provided that the critical value tc of 

the t distribution is properly selected, the confidence interval can be decided for any 

level of significance. 

Basic Assumptions for Least Square Method: There are seven basic 

assumptions that we can use the least square method to get a sample regression line. 

These seven assumptions should be satisfied so that the goodness-of-fit test (

β̂  

2R ) and 

test of significance (t-test) can reasonably be applicable. These assumptions are 

2) E[εi
2] = σε

2 for all i 

3) E[εiεj] = 0, i ≠ j 

4) E[εiXi] = 

1) E[εi] = 0 

⋅iX E[εi] = 0 

5) ))(),(( iii VarEN εεε ≈  or 

6) n>k+1 

7) ρ(Xi, Xj) ≠ ±1 

First assumption means the average of error terms is zero. The second 

mption s nons an  

constant. Fifth assumption is that the error te ormally distributed. Sixth 

),0( 2
εσε Ni ≈  

assumption states that all error terms have same variances called homoscedasticity. 

Third assumption states that all error terms are linearly independent for different error 

rms. Fourth assu  is that Xi i tochastic variable d can be treated as

rm is n

te
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assumption is that the num bserved variables should be bigger than one plus 

number of independent variables. Seventh assum that correlatio cients 

between independent va ouldn’t be ±1

All the assumptions have been checked to hey are satisf  first 

assumption which is related to the linearity has been checked by seeing the scatter 

plots of the variables. It is a basic condition for calculating process of LSM for one’s 

conv r the second tion, we have checked the scatter plot of residuals 

w en ic c

error terms have constant standard deviation, i.e., SD(ei) = σ for all i. The third 

assumption which is related to the autocorrelation has been confirmed by plotting the 

residuals in order and checking the patterns. The autocorrelation may be at hand if 

observations have a natural sequential order, for example, time. In general, however, it 

can hardly be expected that this assumption is perfectly satisfied. The fourth 

assumption is saying that the independent variable Xi will be treated as nonrandom 

variable or constant. It is understood that this assumption is not problematic for using 

the LSM. The fifth assumption has been checked by plotting the histogram of 

residuals. The sixth assumption has been easily checked by seeing the number of data 

and independent variables. The last assumption which is related to the multicollinearity 

has been checked by seeing the correlation coefficients between the independent 

variables. 

 

 

 

ber of o

ption is n coeffi

 the riables sh .  

 see if t ied.  The

enience. Fo  assump

ith each independ t variable. The phys al meaning the homos edasticity is that the 
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CHAPTER III 

RESULTS FOR RUBBER 

 

Error-of-Measurement and Error-of-Definition 

In general, a stretch ratio of 2 of a certain material can be regarded as highly 

an acquire without damaging or breaking the cross-linked polymer chains in it, there 

w  spik  pea the o  proto eans the cross-linked polymer chains 

i ubber f t go up to the  a ti t rox

stretch ratio of 5 was the maximum tio th bb oul

with no dama The results o rom m xia

d prot orresponding put profiles are shown in the figure 3.1 

fi file ly f e tch

bout 5 ds to finish th otoc

e ndo tch d m

er spe owed that th otice ast on 

sticity re 3.3 shows re b f n ty a

inelasti

deformed status. But for the experiment of the rubber fiber in this study, since the 

stretch ratio of 2 was much lower than the maximum stretch ratio that the rubber fiber 

c

as no y k in utput col. This m

n the r iber didn’  states in ght straigh line. App imately a 

stretch ra at the ru er fiber c d acquire 

ge of it. btained f  the rando ized unia l stretch-

controlle ocol and c  force out

and the gure 3.2. The output pro has smooth ollowed th input stre  protocol. 

It took a 600 secon e entire pr ol. 

As we expected, the experim nt of the ra mized stre -controlle otion of 

the rubb cimen sh ere is a n able inel ic deviati from the 

hyperela . The figu that there a ehaviors o onlineari s well as 

city. If the hyperelastic assumption is perfectly satisfied, there would be only 

one point for each stretch ratio. 

To find the uncertainty due to the measurements, all manual measurements 

(radius r, reference weight w, voltage output p for a fixed weight) have been done for 

10 times. It is important to note that the uncertainty due to the manual measurement 
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can be reduced as much as possible as long as we use the extremely accurate 

measuring devices or equipments. Since the uncertainty due to the manual 

measurements is fixed or static for entire stretch levels, it can be ignored for the error 

analysis which was focusing on the uncertainty due to the inelastic behaviors of the 

specimen. Note that the uncertainty due to the inelastic behavior varies. It was 

explained in detail in later chapter.  

To check the absolute Cauchy stress, first, we measured the reference area of 

the rubber fiber. The radius of the rubber specimen has been measured for 10 times. As 

for the reference weight, the weight of the paper clip has been measured for 10 times. 

To check the resolution of the force transducer, we dangled up a paper clip on the tip of 

the force transducer and saw the voltage output, and with the same paper clip, we 

checked the corresponding voltage output for 10 times. The results of those 

 

 

 

 

 

measurements are shown in the table 3.1. It also shows the standard deviations and 

fractional uncertainties for each measurement. 
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Fig.3.1. The randomized stretch-controlled protocol and corresponding force output 
profile (0-3000 sec). 
 

 
Fig.3.2. The randomized stretch-controlled protocol and corresponding force output 
profile 
 

 

 

(3000-5600). 
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Fig.3.3. Forces obtained by force transducer for each corresponding stretch ratio have 
been grouped and averaged. It shows the inelastic and nonlinear behaviors. 
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Table 3.1 
A diameter of the rubber fiber, a reference weight obtained by using a paper clip, and a 
voltage output corresponding to a paper clip's weight (used fixed weight) have been 
measured for 10 times. 
 

No. of Measure radius[mm] ref.weight[gram] voltage output[volt]
1st 0.1345 0.3938 0.3084 
2nd 0.1375 0.3940 0.3067 
3rd 0.1360 0.3940 0.3058 
4th 0.1345 0.3940 0.3061 
5th 0.1345 0.3938 0.3085 
6th 0.1415 0.3940 0.3054 
7th 0.1400 0.3940 0.3063 
8th 0.1415 0.3940 0.3046 
9th 0.1345 0.3939 0.3042 
10  0.1415 th 0.3939 0.3054 

Average 0.1376 0.3939 0.3061 
Standard deviation 0.0032 0.0001 0.0014 

Fractional- 2.3286 0.0214 0.4666 Uncertainty[%] 
M = M  ± ∆M r = 0.1376 ± 0.0032 w = 0.3939± 0.0001 avg p = 0.3061± 0.0014 
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Stretch Ratio 1.1: The rubber data corresponding to the stretch ratio 1.1 is 

shown in the table 3.2. It shows the times and stretch ratios obtained by the motion 

controller, forces vM obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the 

Deviation versus Time, 
2t

H and 
1t

H . Again, the 
2t

H is a rate-related stretch history 

function scanned by a history cut-off th = 10 sec, and H is the long-time stretch 

 

Table 3.2 
The rubber data corresponding to the stretch ratio 1.1. It shows the times and stretch 
ratios obtained by the motion controller, forces v  obtained by the force transducer and 
calculated deviation, stretch-rate, and stretch histories. The error 
done on the data of the Deviation versus Time, and .  

1t

history function scanned by a history cut-off th = 400 sec. 

M
analysis has been 

 
Time vM vavg Deviation dλ/dt 

2t
H

1t
H

)(
2

tH t  )(
1

tH t  

[sec] 
λ 

[volt] [volt] vM - vavg[volt] [/sec] th=10 sec th=400 sec
130.8 0.36812 0.06707 -0.00485 1.13068 1.07313 
299.8 0.33656 0.03551 -0.00004 1.11956 1.21757 
622.5 0.33844 0.03739 0.00130 1.09920 1.42234 
700.4 0.35875 0.05770 -0.00004 1.10070 1.39949 
989.8 0.30500 0.00395 -0.00552 1.14034 1.39676 
1391.2 0.30125 0.00020 -0.00138 1.11561 1.47724 
1466.3 0.32813 0.02708 -0.00460 1.11815 1.43617 
1773.4 0.30406 0.00301 -0.00086 1.11279 1.42072 
2157.1 0.28281 -0.01824 -0.00181 1.11982 1.53323 
2307.9 0.28625 -0.01480 -0.00248 1.12653 1.51722 
2651.5 0.28313 -0.01792 -0.00048 1.11603 1.44743 
3561.0 0.30500 0.00395 0.00618 1.08060 1.55591 
3858.4 0.26281 -0.03824 -0.00106 1.12729 1.56106 
4401.7 0.26281 -0.03824 0.00213 1.11483 1.46314 
4858.6 0.27312 -0.02793 0.00472 1.10172 1.51438 
4998.9 0.27469 -0.02636 0.00477 1.10422 1.48922 
5584.5 0.24688 -0.05417 -0.00472 1.13489 1.54672 

1.1 0.30105
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It is important to note that, instead of using the stretch-rate calculated by simply 

dividing the change in stretch ratio by change in time spent testing, we, for the error 

analysi

and forces are used for calculating the absolute uncertainty and relative (or fractional) 

e have the b er dev io  from lasticity we get. It’s been revealed as 

rom ur xpe  t -ra the  

lasticity tive relationshi

.3
er v  s evi stret and re 
ting the  uncertainty a e (o al) nty
ratio 1 have also been alc nc in r
 stresse

s of stretch history parts, have used the stretch history function
2t

H obtained by 

using the stress relaxation spectrum t2 corresponding to the early (or fast) exponential 

decay. It is because the stretch-rate is not our control variable for the experiments. The 

stretch history function H is obtained by using the stress relaxation spectrum t1 

corresponding to the late (or slow) exponential decay. We defined the  and as 

rate-related stretch history function and long-time stretch history function, respectively. 

The table 3.3 shows the average values and standard deviations of stretch ratios 

1t

2t
H

1t
H

uncertainty for the stretch ratio 1.1. They have also been used to calculate the 

uncertainty in resulting Cauchy stresses. We originally expected that the more stretch-

rate w igg iat n  the hypere

true f o other e riments hat the stretch te and  deviation from the 

hypere  have posi p. 

 

Table 3  
age The av alues and tandard d ations of ch ratios  forces a used for 

calcula  absolute nd relativ r fraction  uncertai  for the 
stretch .1. They  used to c ulate the u ertainty esulting 
Cauchy s. 
 

Average Stan
deviation 

dard 

λ  v  ∆λ ∆v avg avg

1.10002 0.30105 0.00008 0.03488
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In fact, for the stretch ratio 1.1, it has been discovered by the multivariable 

linear regression analysis that the rate-related stretch history function 
2t

H is the most 

significant factor that causes the deviation from hyperelasticity. The long-time stretch 

history H has been revealed that it is not significant parameter that causes the 

deviation from hyperelasticity. These founds are explained in detail in the part of the 

multivariable linear regression analysis that is in later section. 

To get the uncertainty in the C

1t

auchy stress due to δλ, δv, δw, δr, and δp the for 

the stretch ratio 1.1, the equations (2.26) – (2.32) were employed as 

( )
]/[1021.5 24 mmg−×=

)00008.0(
)3061.0((0.1376)
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Thus, the total uncertainty in t for the stretch ratio 1.1 is 
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           (3.6) 

We have seen that the uncertainty in the Cauchy stress t due to the δλ (average 

deviation or standard deviation of λ) has the lowest uncertainty among the other 

uncerta

ot our 

interest s and the 

uncertainties due to them are always constants for both the absolute un

inties. It is because we used the actuators (CMA-25CCCL, Newport) that 

provide quite precise motions (Resolution = 0.048828 µm, Speed = 50 – 400 µm/sec). 

In addition, since the weight of a paper clip has been measured by the scale 

(Ainsworth, Inc) that has very high resolution (Resolution = 0.0001g), the uncertainty 

in the Cauchy stress t due to the δw has also a quite low uncertainty. It is important to 

note that the uncertainty in the Cauchy stress t due to the δv which is standard 

deviation of forces has the highest uncertainty of the other uncertainties. Thus we can 

tell that there are huge amount of inelastic behavior in the rubber at a stretch level 1.1. 

Although the uncertainty in the Cauchy stress t due to the δr alone seems to be 

relatively high, again, it can be reduced as much as possible to the maximum resolution 

range that the measuring devices would have. These absolute uncertainties are n

s because the measured values r, w, and p are static variable

certainty and 

fractional uncertainty. 
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Note that, if a certain variable is a dynamic variable, the fractional uncertainty 

amic variation of 

force due to the inelastic behavior of a cer ter ig sh

e δ an  u  ic

to  appr ly 2 s big n the taint  t w

due to the δr alone. 

Now, if we look at the fractional (or relative) uncertainties defined as 

due to the variable will never be constant. The example can be a dyn

tain ma ial. The f ure 3.4 ows the 

uncertainties in t du to the δλ, v, δw, δr, d δp. The ncertainty δtv in t wh h is due 

 the δv alone is oximate .5 time ger tha  uncer y δtv in hich is 

avgM
UF Mδ

=.                                                (3.7) 

where M  is the average of the measurements and δM is the standard deviation of M , avg i

i=1,…,N, and get the fractional uncertainties for each variables, we have   
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1.1 is obtained as 
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www
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δ

δ

δλ

           (3.8) 

Using equation (2.25) for the rubber specimen, the Cauchy stress t for the stretch ratio 

%493.21100,0.895067.16432 =×±=±=
avg

avg t
tttt δδ

Summarized fractional uncertainties are shown in the table 3.4. 

           (3.9) 
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Table 3
Fractional uncertainties for the measured data r, w, and p, and obtained data λ and v by 

 
 

. 4 

the motion controller and the Cauchy stress t for the stretch level 1.1. 

Data λ1.1 v[volt] w[gram] r[mm] p[volt] t[g/mm2]
Average 1.10002 0.30105 0.39390 0.13760 0.30610 7.164322

Standard deviation 0.00008 0.03488 0.00010 0.00320 0.00140 0.895057
Fractional 

uncertainty[%] 0.007 11.586 0.025 2.326 0.457 12.493 

 

 

For calculating the (absolute) Cauchy stress, although the uncertainty δt  in t 

δ

r the force v is almost 5 

tim  bigger than the fractional uncertainty for the radius measure r. In fact, the 

calculation of the uncertainty in the (absolute) Cauchy stress is affected by the formula, 

i.e., if the scale gets bigger, the uncertainty also gets bigger. But since the fractional 

uncertainty is ratio-related value, it is not affected by the scale. In addition, if we look 

at the fractional uncertainties due to the manual measurements such as the 

measurements of w, r, and p, they are the same for all stretch levels. But, even though 

we got the force data for the same stretch ratios over time, the fractional uncertainties 

are changing in deceasing way. The error analysis, therefore, has been devoted to and 

focused on the uncertainty due to the inelastic behavior of the rubber. The fractional 

uncertainties in the Cauchy stress t due to the obtained data λ and v through the motion 

controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured data w, r, 

and p is shown in the figure 3.5. The fractional uncertainty for the force v is almost 5 

v

which is due to the v alone is approximately only 2.5 times bigger than the uncertainty 

δtv in t which is due to the δr alone, the fractional uncertainty fo

es

times bigger than the fractional uncertainty for the radius measure r. 
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ig.3.4. Uncertainties in the Cauchy stress t due to the δλ, δv, δw, δr, and δp. The 
ncertainty δtv in t which is due to the δv alone is approximately 2.5 times bigger than 
e uncertainty δtv in t which is due to the δr alone. 
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ig.3.5. Fractional uncertainties in the Cauchy stress t due to the obtained data λ and v 
rough the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and 
easured data w, r, and p. The fractional uncertainty for the force v is almost 5 times 

igger than the fractional uncertainty for the radius measure r. 

F
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Stretch Ratio 1.3: The rubber data corresponding to the stretch ratio 1.3 is 

hown in the table 3.5. It shows the times and stretch ratios obtained by the motion 

controller, forces vM obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the 

Deviation versus Time, and . Again, the is a rate-related stretch history 

 = 

 

able 3.5 
he rubber data corresponding to the stretch ratio 1.3. It shows the times and stretch 

ined by the motion controller, forces obtained by the force transducer and 

t t

s

2t 1t 2t

function scanned by a history cut-off th 10 sec, and 
1t

H is the long-time stretch 

history function scanned by a history cut-off th = 400 sec. 

 

H H H

T
T
ratios obta
calculated deviation, stretch-rate, and stretch histories. 
 
Time vM vavg Deviation dλ/dt )(tH  )(tH  

2 1

sec] [volt] [volt] vM - v [volt] [/sec] th=10 sec th=400 sec
λ 

[ avg

54 1.01  -0.00087 1.31439 1.4341 8.6 281 0.01187 
85 1.0 -0  2.0 4281 0.04187 .00067 1.30578 1.35408 
1086.2 1.06500 -0.06406 0.00331 1.31344 1.30078 
2987.1 0.99156 -0.00938 0.00130 1.29646 1.49394 
3278.9 0.96969 --0.03125 0.00413 1.32786 1.55918 
3605.5 1.03781 0.03687 0.00074 1.28483 1.53925 
4160.5 0.97844 -0.02250 -0.00252 1.31652 1.48771 
4626.5 0.96688 -0.03406 -0.00071 1.31578 1.51952 
4700.6 1.00719 0.00625 0.00535 1.27817 1.49356 
5171.8 0.98875 -0.01219 0.00496 1.28458 1.45993 
54

1.00094 

39.5 

1.3 

0.94937 -0.05157 -0.00433 1.33973 1.55221 
 

Again fo ivariable line on a e h  the

history function ed by using rela tr res

to the early (or fast) exponential decay usin ch-  ca

by simply dividing the change in stretch ratio by change in time spent testing because 

r the mult ar regressi nalysis, w ave used  stretch 

2t
H obtain the stress xation spec um t2 cor ponding 

instead of g the stret rate dλ/dt lculated 
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the stretch-rate is not our control variable for the experiments. The table 3.6 shows the 

average values and standard deviations of stretch ratios and forces are used for 

calculating the absolute uncertainty and relative (or fractional) uncertainty for the 

stretch ratio 1.3. They have also been used to calculate the uncertainty in resulting 

Cauchy stresses.  

 

Table 3.6 
The average values and standard deviations of stretch ratios and forces are used for 
calculating the absolute uncertainty and relative (or fractional) uncertainty for the 
stretch ratio 1.3. They have also been used to calculate the uncertainty in resulting 
Cauchy stresses. 
 

Average Standard 
deviation 

λavg vavg ∆λ ∆v 
1.30000 1.00094 0.00005 0.03597

 

To get the Cauchy stress for the stretch ratio 1.3, we again used the equations 

(2.26) – (2.32) as 
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Thus, the total uncertainty in t for the stretch ratio 1.3 is 

01376.0 222 prp avgavg
p ∂ ππ

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ){ } ( )

]/[66.1
1025.596 4

mmg=

× −

The uncertainty in the Cauchy stress t due to the δλ (average deviation or 

standard deviation of λ) has again the lowest uncertainty among the other uncertainties 

by the same reason for the case of stretch ratio 1.1. The uncertainty in the Cauchy 

stress t due to the δw has

16
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 also a quite low uncertainty. Although the uncertainty in the 

Cauchy due to the δv, as mentioned 

above, the uncertainties due to the manual measurements can be easil

much a

 stress t due to δr is now higher than the uncertainty 

y reduced as 

s possible to the maximum resolution of the range of the measuring device (if it 

is extremely accurate). Additionally, if we look at the fractional uncertainties below, 

the fractional uncertainty for the force v is still higher than the fractional uncertainty 

for the r. It is still important to note that the uncertainty in the Cauchy t due to the δv 

which is standard deviation of forces can not be reduced no matter what we do.  
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If we look at the fractional uncertainties for each variable, we have   

%896.6596.150

.4003.

%

%0.025100,00010.039390.0

%594.3100,03597.000094.1

×±

=

=×±=±=

=×±=±=

avg
avg

a

avg

avg
avg

avg
avg

t
tt

pp

r

wwww

v
vvvv

δ

δδ

δδ

λ

5100 =,31.58 ±28=tδ

%570100 =×,140 pδ.00610 ±0=± pδ

% 0.004100,00005.030000.1 =×±=±=
δλδλλλ

2.326100,00320.013760.0 =×±=±=

avg
avg

rrrr

w

δδ
           (3.16) 

=t

avgpvg

avg

Summarized fractional uncertainties are shown in the table 3.7. 

 

Table 3.7 
Fractional uncertainties for the measured data r, w, and p, and obtained data λ and v by 
the motion controller and the Cauchy stress t for the stretch level 1.3. 
 

Data λ1.3 v[volt] r[mm] w[gram] p[volt] t[g/mm2] 
Average 1.30000 1.00094 0.13760 0.39390 0.30610 28.15058

Standard deviation 0.00005 0.03597 0.00320 0.00010 0.00140 1.65963 
Fractional 

uncertainty[%] 0.004 3.594 2.326 0.025 0.457 5.896 

 

For the calculation of the absolute Cauchy stress, the uncertainty δt has 

ag

e weight measure p, and the radius measure r for the rubber 

varying and they are just static measured 

variables. Thus, if we assume the uncertainties that come from those measurements are 

included all the measured variables such as a reference-weight measure w, volt e 

output for the sam

specimen. But the uncertainty arise from the Error-of-definition has nothing to do with 

ose variables because they are not th
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ignorab

.are h how

norable).  

If we look at the fractional uncertainties in the figure 3.7 below, the fractional 

r the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and 

measured data w, p. T ti y fo rce i

th nal un for the radiu r. But the uncertainty arise f

E efiniti thing to do  va hu ssu

u ies tha om those mea s are  (o we

e  a ra r es), acto av ide

u y that  the inelastic  the

le (or let say we use the extremely accurate measuring devices), the only factor 

that we have to consider for the uncertainty that is causing the inelastic behavior is the 

force v. In other words, those static variables such as r, w, and p can never cause the 

deviation from the hyperelasticity of the rubber specimen. The uncertainties in t due to 

the δλ, δv, δw, δr, and δp  grap ically s n in the figure 3.6. The uncertainty δtr in 

t which is due to the δr alone is bigger than the uncertainty δtv in t which is due to the 

δv alone. Although the uncertainty in the Cauchy stress t due to δr is now higher than 

the uncertainty due to the δv, the uncertainty due to the δr can be easily reduced as 

much as possible to the maximum resolution of the range of the measuring device 

(even if it is not extremely accurate, it can reasonably be assumed to be ig

uncertainty for the force v is still higher than the fractional uncertainty for the r. The 

figure 3.7 shows the fractional uncertainties in t due to the obtained data λ and v 

th ough 

r, and he frac onal uncertaint r the fo  v is still b gger than 

e fractio certainty s measure rom the 

rror-of-d on has no with those riables. T s, if we a me the 

ncertaint t come fr surement  ignorable r let say  use the 

xtremely ccu te measu ing devic  the only f r that we h e to cons r for the 

ncertaint is causing behavior is  force v. 
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Fig.3.6. Uncertainties in t due to the δλ, δv, δw, δr, and δp. The uncertainty δtr in t 
which is due to the δr alone is bigger than the uncertainty δtv in t w
alone. Although the uncertainty in the Cauchy stress t due to δr is now higher than the 
uncertainty due to the δv, the uncertainty due to the δr can be easily reduced as much 
as possible to the maximum resolution of the range of the measuring device (even if it 
is not extremely accurate, it can reasonably be assumed to be ignor
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motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 

fractional uncertainty for the radius measure r. But the uncertainty arise from the Error-

 

 

 

 

 
 

 
 

 

 
Fig.3.7. Fractional uncertainties in t due to the obtained data λ and v through the 

data w, r, and p. The fractional uncertainty for the force v is still bigger than the 

of-definition has nothing to do with those variables. 
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Stretch Ratio 1.5: The rubber data corresponding to the stretch ratio 1.5 is 

hown in the table 3.8. It shows the times and stretch ratios obtained by the motion 

ontroller, forces vM obtained by the force transducer and calculated deviation, stretch-

ate, and stretch histories. The error analysis has been done on the data of the 

eviation versus Time, and where is a rate-related stretch history function 

canned by a history cut-off th = 10 sec, and is the long-time stretch history 

function scanned by a history cut-off th = 400 sec. 

 

Table 3.8 
he rubber data corresponding to the stretch ratio 1.5. It shows the times and stretch 

ratios obtained by the motion controller, forces obtained by the force transducer and 
alculated deviation, stretch-rate, and stretch histories. 

Time vM vavg Deviation dλ/dt 

s

c

r

D
2t

H
1t

H
2t

H

s
1t

H

T

c
 

)(
2

tHt  )(
1

tH t  
[sec] 

λ 
[volt] [volt] vM - vavg[volt] [/sec] th=10 sec th=400 sec

68.1 1.64500 0.11366 0.00638 1.46415 1.04359 
398.5 1.60219 0.07085 0.00386 1.47416 1.26212 
758.2 1.60156 0.07022 0.00556 1.46095 1.39023 
1317.1 1.51031 -0.02103 -0.00031 1.50652 1.49416 
1617.8 1.52375 -0.00 59 -0.00314 1.51439 1.487 207 
1698.3 1.52750 -0.0 384 -0.00063 1.50438 1.490 456 
1999.5 1.50812 -0.02322 0.00481 1.48339 1.50564 
2445.7 1.49531 -0.03603 -0.00497 1.53378 1.52627 
2878.6 1.48219 -0.04915 -0.00634 1.54106 1.5475 
3075.0 1.52344 -0.00790 0.00023 1.49976 1.48492 
3138.0 1.51719 -0.01415 -0.00130 1.50624 1.48684 
3932.6 1.52937 -0.00197 -0.00315 1.50124 1.52586 
4049.0 1.51437 -0.01697 -0.00217 1.51008 1.44632 
4082.6 1.51594 -0.01540 0.00260 1.48832 1.44999 
4245.6 1.51406 -0.01728 -0.00493 1.51756 1.4993 
5223.9 1.51625 -0.01509 0.00051 1.49126 1.47043 
5515.4 

1.5 

1.50625 

1.53134

-0.02509 0.00071 1.49273 1.53433 
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For the multivariable linear regression analysis, we have used the stretch 

history function obtained by using the stress relaxation spectrum t2 corresponding 

to the early (or fast) exponential decay instead of using the stretch-rate dλ/dt calculated 

by simply dividing the change in stretch ratio by change in time spent testing because 

the stretch-rate is not our control variable for the experiments. The table 3.9 shows the 

average values and standard deviations of stretch ratios and forces are used for 

calculating the absolute uncertainty and relative (or fractional) uncertainty for the 

stretch ratio 1.5. They have also been used to calculate the uncertainty in resulting 

Cauchy stresses.  

 

ons of stretch ratios and forces are used for 
alculating the absolute uncertainty and relative (or fractional) uncertainty for the 

stretch ratio 1.5. They have also been used to calculate the uncertainty in resulting 
Cauchy
 

2t
H

Table 3.9 
The average values and standard deviati
c

 stresses t. 

Average Standard 
deviation 

λavg vavg ∆λ ∆v 
1.50000 1.53134 0.00005 0.04300

 

Now, we have unc rtaint δtλ, δtv, δtw, δtr, and δtp as  e ies 
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We can see the graphical result in the figure.3.8 which is showing the 

uncertainties in t due , δp  stretch ratio 1.5. The 

actional uncertainties in t due to the obtained data λ and v through the motion 

controller (ESP 7000 Motion Controller/Driver easured data w, r, 

and p for the stretch ratio 1.5 have been calculated by following equations and are 

shown in the figure.3.9. 

If we calculate the fractional uncertainties, we have 
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           (3.23) 

Although the uncertainty in the Cauchy stress t due to δr is higher than the 

uncertainty due to the δv, the fractional uncertainty for the force v is still higher than

the fractional uncertainty for the r. The fractional uncertainties for the radius measure r 

as well as other manually measured values w and p for all stretch levels are constant. 

The uncertainty causing the Error-of-definition has nothing to do with those variables. 

The fractional uncertainties for the force v continuously decreased. The table 3.10 

shows the summary of the averages, standard deviations, and fractional uncertainties of 

the variables we have for stretch ratio 1.5. 

 

the motion controller and the Cauchy stress t for the stretch level 1.5. 

Data λ1.5 v[volt] r[mm] w[gram] p[volt] t[g/mm ] 

 

Table 3.10 
Fractional uncertainties for the measured data r, w, and p, and obtained data λ and v by 

 
2

Average 1.50000 1.53134 0.13760 0.39390 0.30610 49.69341
Standard deviation 0.00005 0.04300 0.00320 0.00010 0.00140 2.70945 

Fractional 
uncertainty[%] 0.003 2.808 2.326 0.025 0.457 5.452 
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ig.3.8. Uncertainties in t due to the δλ, δv, δw, δr, and δp for the stretch ratio 1.5.  F
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Fig.3.9. Fractional uncertainties in t due to the obtained data λ and v through the 
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 
data w, r, and p for the stretch ratio 1.5.  
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Stretch Ratio 1.7: The rubber data corresponding to the stretch ratio 1.7 is 

shown in the table 3.11. It shows the times and stretch ratios obtained by the motion 

controller, forces vM obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the 

Deviation versus Time, and where is a rate-related stretch history function 

scanned by a history cut-off th = 10 sec, and is the long-time stretch history 

function scanned by a history cut-off th = 400 sec. The table 3.12 shows the average 

values and standard deviations of stretch ratios and forces are used for calculating the 

absolute uncertainty and relative (or fractional) uncertainty for the stretch ratio 1.7. 

They have also been used to calculate the uncertainty in resulting Cauchy stresses t. 

 forces obtained by the force transducer and 
alculated deviation, stretch-rate, and stretch histories. 

 
tH  tH  

2t
H

1t
H

2t
H

1t
H

 

Table 3.11 
The rubber data corresponding to the stretch ratio 1.7. It shows the times and stretch 
ratios obtained by the motion controller,
c

Time vM vavg Deviation dλ/dt 2t 1t
)( )(

[sec] 
λ 

[volt] [volt] v  - v [volt] [/sec] t =10 sec t =400 secM avg h h
910.9 2.00281 0.04930 0.00083 1.66228 1.39245 
1240.7 1.94781 -0.00570 0.00284 1.68818 1.44272 
1529.8 1.99750 0.04399 0.00602 1.65074 1.41311 
1923.4 1.93813 -0.01538 0.00299 1.68751 1.44299 
2082.0 1.93562 -0.01789 -0.00500 1.71875 1.56733 
2232.2 1.96875 0.01524 0.00284 1.66541 1.51749 
2740.2 1.96906 0.01555 0.00268 1.66506 1.45485 
3219.2 1.93781 -0.01570 -0.00594 1.72022 1.53906 

1.7 1.95351

3707.4 1.95563 0.00212 0.00126 1.67526 1.52407 
4474.6 1.94344 -0.01007 -0.00331 1.69728 1.48998 
4551.8 1.92719 -0.02632 -0.00023 1.70312 1.52069 
4924.9 1.94562 -0.00789 0.00197 1.6724 1.46919 
5297.4 1.92625 -0.02726 -0.00472 1.71694 1.51066 
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Table 3.12 

calculating the absolute uncertainty and relative (or fractional) uncertainty for the 

Cauchy stresses t. 

The average values and standard deviations of stretch ratios and forces are used for 

stretch ratio 1.7. They have also been used to calculate the uncertainty in resulting 

 

Average Standard 
deviation 

λavg vavg ∆λ ∆v 
1.70002 1.95351 0.00003 0.02463

 

e have calculated the uncertainties δtλ, δtv, δtw, δtr, and δtp for the stretch ratio 

1.7 as 

W
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Thus, the total uncertainty in t f t 7or the stre ch ratio 1.  is 
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The absolute uncertainties in in t due to the δλ, δv, δw, δr, and δp for the stretch 

easured data w, r, and p for the stretch ratio 1.7 are shown in the figure.3.10 and 

ratio 1.7 and the fractional uncertainties in t due to the obtained data λ and v through 

the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and 

m

figure.3.11, respectively. The table 3.13 shows the summary of the averages, standard 

deviations, and fractional uncertainties of the variables we have for stretch ratio 1.7. 
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Table 3.13 

the motion controller and the Cauchy stress t for the stretch level 1.7. 

Data λ1.7 v[volt] r[mm] w[gram] p[volt] t[g/mm2] 

Fractional uncertainties for the measured data r, w, and p, and obtained data λ and v by 

 

Average 1.70002 1.95351 0.13760 0.39390 0.30610 71.84649
Standard deviation 0.00003 0.02463 0.00320 0.00010 0.00140 3.47790 

Fractional 
uncertainty[%] 0.002 1.261 2.326 0.025 0.457 4.841 
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Fig.3.10.Uncertainties in t due to the δλ, δv, δw, δr, and δp for the stretch ratio 1.7. 
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Fig.3.11. Fractional uncertainties in t due to the obtained data λ and v through the 

otion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 
data w, r, and p for the stretch ratio 1.7.  
m
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Stretch Ratio 1.9: The rubber data corresponding to the stretch ratio 1.9 is 

shown 

function scanned by a history cut-off th = 400 sec. The table 3.15 shows the average 

values and standard deviations of stretch ratios and forces are used for calculating the 

absolute uncertainty and relative (or fractional) uncertainty for the stretch ratio 1.9. 

They have also been used to calculate the uncertainty in resulting Cauchy stresses t. 

 

Table 3.14 

ratios obtained by the motion controller, forces obtained by the force transducer and 

 

in the table 3.14. It shows the times and stretch ratios obtained by the motion 

controller, forces vM obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the 

Deviation versus Time, 
2t

H and 
1t

H where 
2t

H is a rate-related stretch history function 

scanned by a history cut-off th = 10 sec, and H is the long-time stretch history 

The rubber data corresponding to the stretch ratio 1.9. It shows the times and stretch 

calculated deviation, stretch-rate, and stretch histories. 

Time vM vavg Deviation dλ/dt )(
2

tHt  )(
1

tH t  

1t

[sec] 
λ 

[volt] [volt] vM - vavg[volt] [/sec] th=10 sec th=400 sec
221.8 2.39719 0.06688 0.00377 1.8644 1.14375 
473.0 2.35969 0.02938 -0.00244 1.9009 1.35842 

1167.5 2.35500 0.02469 0.00012 1.899 1.35769 
1848.3 2.34531 0.01500 -0.00437 1.9031 1.40355 
2386.8 2.33687 0.00656 -0.00303 1.8863 1.54094 
2817.4 2.32063 -0.00968 0.00106 1.8852 1.49814 
3379.4 2.32188 -0.00843 0.00110 1.8817 1.50878 
3461.6 2.30063 -0.02968 0.00299 1.8872 1.54695 
3782.4 2.30969 -0.02062 0.00126 1.8866 1.54495 
4324.1 2.31219 -0.01812 -0.00575 1.9082 1.49347 
4775.4 2.31562 -0.01469 0.00236 1.8742 1.52669 
5073.6 2.31594 -0.01437 -0.00224 1.8873 1.47706 
5371.8 

1.9 

2.30344 

2.33031

-0.02687 0.00398 1.8714 1.50703 
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Table 3.15 

calculating the absol  u
The average values and standard deviations of stretch ratios and forces are used for 

ute ncertainty and relative (or fractional) uncertainty for the 
stretch ratio 1.9. They have also been used to calculate the uncertainty in resulting 

auchy stresses t. C
 

Average Standard 
deviation 

λavg vavg ∆λ ∆v 
1.90001 2.33031 0.00003 0.02762

 

The uncertainties for the stretch level 1.9 are calculated as 
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Thus, the total uncertainty in t for the stretch ratio 1.5 is 
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, and the fractional uncertainties are 
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t

or the stretch ratio 1.9 are shown in the figure.3.12 and 

figure.3.13, respectively. The table 3.16 shows the summary of the averages, standard 

nd fractional uncertainties of the variables we have for stretch ratio 1.9. 

The absolute uncertainties in in t due to the δλ, δv, δw, δr, and δp for the stretch 

ratio 1.9 and the fractional uncertainties in t due to the obtained data λ and v through 

the motion controller (ESP 7000 Motion Controller/Driver, Newpor , Inc) and 

measured data w, r, and p f

deviations, a
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Table 3.16 
Fractional uncertainties for the measured data r, w, and p, and obtained data λ and v by 

e motion controller and the Cauchy stress t for the stretch level 1.9. 
 

Data 9 v[volt] r[mm] w ram] p[volt] t[g/mm2] 

th

 λ1. [g
Average 0  2.33031 0.13760 90 95.786761.900 1 0.393 0.30610 

Standard deviation  0.027 0320 0 4.6184680.00003 62 0.0  0.0001 0.00140 
Fractional 

uncertainty[%] 1.18 326  4.822 0.002 5 2. 0.025 0.457 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  96

0

0.5

1

1.5

2

2.

4.5

U
nc

er
ta

in
ty

 [g
/m

m2

3.5

4
]

5

3

dtl dtv dtw dtr dtp
Data

vtδλδt wtδ rtδ ptδ
0

0.5

1

1.

2.

4.5

U
nc

er
ta

in
ty

 [g
/m

m2

3.5

4
]

3

5

2

5

dtl dtv dtw dtr dtp
Data

vtδλδt wtδ rtδ ptδvtδλδt wtδ rtδ ptδ

 

 
Fig.3.12.Uncertainties in t due to the δλ, δv, δw, δr, and δp for the stretch ratio 1.9.  
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t due to the obtained data λ and v through the 

otion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 
data w, r, and p for the stretch ratio 1.9.  
 

Fig.3.13. Fractional uncertainties in 
m
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For rubber fiber specimen, we have summarized the values of the absolute 

uncertainties and fractional uncertainties for each stretch ratio in the table 3.17. Figure 

3.14 shows the summarized absolute uncertainties in the

f

The fractional uncertainties related to the manual measurements are same for 

entire stretch levels. Note that the fractional uncertainty comes from inelastic behavior 

noticed from the force data is significant but the fractional uncertainty comes from the 

data of stretch ratio λ is ignorable and the fractional uncertainties for the static 

measured variables r, w, and p are constants for all selected stretch levels. 

 

 

 

 

 

 

 

 

 Cauchy stress t due to the 

reference-weight measures w, the voltage measures p to check the resolution o  the 

force transducer, and the radius measures r. These values come from the manual 

measurements. Figure 3.15 shows the summarized absolute uncertainties in the Cauchy 

stress t due to the stretch ratio data λ, and the force data v. These values are obtained 

by the motion controller/driver (ESP7000, Newport, Inc). 
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Table 3.17 
The summary of ab certainti ction ainti ch stretch 
ratio. 
 

 1.1  1.7 

solute un es and fra al uncert es for ea

1.3 1.5 1.9 

λavg 1.10002 00 1.70 0001 01.30 1.50000 0 .902 1
∆λ 0.00008 0.00005 0.00005 0.00003 0.00003

∆λ/λ [%] 0.007  0.004  0.003  0.002  0.002  avg
λ 

δtλ [g/mm2] 0.00052 0.00108 0.00166 0.00127 0.00151
vavg 0.30105 1.00094 1.53134 1.95351 2.33031
∆v 0.03488 0.03597 0.04300 0.02463 0.02762

∆v/ vavg [%] 11.586  3.594  2.808  1.261  1.185  
f 

[ olt] v

δtv [g/mm ] 2 0.83007 1.01163 1.39539 0.90585 1.13531
r  avg 0.13760 
∆r 0.00320 

∆r/ ravg [%] 2.326  
r 

[mm] 

δtr [g/mm2] 0.33322 1.30933 2.31132 3.34170 4.45520
w  0.39390 avg

∆w 0.00010 
∆w/ wavg [%] 0.025  

w 
[g] 

2δtw [g/mm ] 0.00182 0.00715 0.01262 0.01824 0.02432
pavg 0.30610 
∆p 0.00140 

∆p/ pavg [%] 0.457  
p 

volt] 

δtp [g/mm2] 0.03277 0.12875 0.22728 0.32860 0.43810
[

tavg 7.16432 28.1506 49.6934 71.8465 95.7868
∆t 0.89506 1.65963 2.70945 3.4779 4.61847

t 
[g/mm2] 

∆t/ tavg [%] 12.493  5.896  5.452  4.841  4.822  
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om e manual measurements. 

Fig.3.14. The (absolute) uncertainties in the Cauchy stress t due to the reference-weight 
measures w, the voltage measures p to check the resolution of the force transducer, and 
the radius measures r. These values come fr  th
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Fig.3.15. The (absolute) uncertainties in the Cauchy stress t due to the stretch ratio data 
λ, and the force data These values are obtained by the motion controller/driver 
(ESP7000, Newport, Inc).  

 v. 
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The reason that the uncertainty in the Cauchy stress t due to δtr which is the 

standard deviation of the radius measurements shown in figure 3.14 seems to increase 

as the stretch ratio gets bigger is because of the calculation process to get the absolute 

Cauchy

p  ignored for the error analysis. If we look 

at the fractional uncertainties shown in figure 3.16, the fractional uncertainties related 

to the manual measurements such as the reference-weight measures w, the voltage 

measures p to check the resolution of the force transducer, and the radius measures r 

are constant for all stretch levels. But the fractional uncertainty due to the force 

measurements done by the experimental system decreased as the stretch level got 

bigger. The fractional uncertainty due to the resolution of the motor was 

inconsequential because we have used very high precision actuators (CMA 25CCCL 

otor, Newport, Inc) for the experiments. It is important to note that, for the 

.2 times bigger than that of the stretch ratio s bigger than that 

of the stretch ratio 1.9. This reveals that the smaller n we have 

the more ation f perelast et. 

     

 

 stress. Unlikely to the fractional uncertainty, it is affected by the scale and 

nothing to do with the deviation from the hyperelasticity.  Again, any uncertainty due 

to the physical (or manual) measurements can be reduced as much as to the negligible 

levels, i.e., with proper assum tion, it can be

DC servo m

force measurements, the fractional uncertainty for the stretch ratio 1.1 is approximately 

3 1.3 and almost 10 time

amount of deformatio

 devi rom the hy icity we g
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Fig.3. 16. Fraction uncertainties in the data of the λ, w, p, r, v, and t.  
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Error-of-Definition 

The error-of-definition is the uncertainty that comes from the assumption. In 

this case, the assumption is that the rubber is hyperelas

a tly hyperelastic, they 

predominantly behave like hyperelastic. Thus, the assumption would be useful as long 

as we find the uncertainty in it. Since we initially assumed that the uncertainty caused 

by the inelastic behavior of the rubber-like materials and biotissues is due to the Time, 

Stretch-rate, and Stretch history, we have found their effects on the uncertainty by one 

of the fundamental statistical theory called multivariable linear regression analysis. 

This has included the goodness-of-fit test and test of significance called t-test as shown 

in below. As we mentioned in prior chapter, we used the rate-related stretch history 

ol the velocity, the only controllable variable (input) is the stretch ratio. Note 

again that the stretch-rate and rate-related stretch history are inversely related. Thus, 

partial re ression ient corre ing to the elated h history 

hould be understood as opposite when we figure out the deviation due to the stretch 

 history , the sign for the partial regression coefficient for the stretch-

rate should be positive. To do the multivariable linear regre

normalize or nondimensionalize both the dependent variable that is the Deviation D 

tic which is, although it’s useful, 

not truly correct. But many people use the assumption of hyperelasticity for the rubber-

like materials and biotissues without knowing the uncertainty due to the assumption. 

Although the rubber-like m terials and biotissues are not perfec

2t
H  instead of using the stretch-rate values. Because the motor didn’t allow us to 

contr

the g coeffic spond  rate-r stretc

s

rate, i.e., if we have a negative sign for the partial regression coefficient for the rate-

related stretch  
2t

H

ssion analysis, we have to 
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and the independent variables that are the Time T, rate-related Stretch History 
2t

H , and 

e lo time Stretch History H . 

 

Multivariable Linear Regression Analysis 

e existence of several variables forces to use the multivariable regression 

model. The first order functional relationship of the independent d dependent 

variables under several assumptions for the residuals was examined by the e

th ng-

Th

 an

rror 

analysi

w ome st itting regression model. 

This is for getting the maximum effect with the m um

irst, for the regression analysis, we used the whole data T , and as 

 variables. Second, we checked the

1t

s. Note that we assumed that there are linear relationships between the 

dependent variable D and independent variables T, 
2t

H , and 
1t

H . We found out how 

strongly/weakly they are related and which variable(s) can be disregarded for the final 

regression model. We had to follo  s eps to get the best-f

inim  number of independent 

variables. F , 
2t

H
1t

H

 2R  independent as well as calculated t-values that 

are correspond , and significant 

variable, we did the regression analysis wit

important to know xcluding nific ende le doesn’t 

mean that the excl endent oesn the  variable. 

There could be a reasonably high correlation coefficient between the independent 

variables. If we include some inde varia hav orrelation 

coefficient between will hav lline h ca increasing 

of standard errors a he goodn . The oss o

ing to the data T, 
2t

H
1t

H . Third, if there was an in

hout having the insignificant variable. It is 

that the e  the insig ant indep nt variab

uded indep variable d ’t affect dependent

pendent bles that e high c

 them, we e multico arity whic uses the 

nd lower t ess-of-fit re is no l f information even 
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though on able two that gh corr  coefficient 

is vanished.  Note again that the ideal regression model is the model that has the 

maximum efficiency with the minimum number of independent variables. This means 

the good model can predict the future values with the minimum number of the 

independent variables. 

e α as 0.1 so that the confidence interval 

(C.I) was  

coefficient  is likely to be contained within that interval. It physically means that, 

for the unknown value

e of the independent vari of the  has hi elation

We have set the level of significanc

      C.I = 100(1- 0.1) = 90 %                                     (3.38) 

This represents the probability (90 % of probability) that the partial regression 

ˆ
iβ

β , the true value will fall into the range of  for 90 

mes out of the 100 where is expressed as (for independent variable T) 

β̂    
β

β ˆ
ˆ Stc±

β̂
Sti

( )

( ) ( )∑∑ −
=

−
=

22ˆ
1

TTT
S

ii

β
                             (3.39) 

To carry out the multiv  linear reg  analysis, ve nondimensionalized 

the data to av id the s endency ause the p regressi efficients 

 be nonsense. We have used  L2-norm for nondimensionalization as 

∑
−−

−
2ˆ

kn
DD

S
ii

e

T

ariable ression we ha

o cale-dep which c artial on co

to

2/12

1
⎟
⎠

⎜
⎝

⎟
⎞

⎜
⎛

= ∑
=

n

ixx                                        (3.40) 
i

Stretch Ratio 1.1: The nondimensionalized data for the stretch ratio 1.1 of the 

rubber specimen is shown in the table 3.18. The dependent variable is Deviation D and 
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the independent variables are Time T, rate-related stretch history function H  and 

long-time stretch history function
1t

H . 

 

Table 3.18 

2t
,

Nondimensionalized data using L2-norm for the stretch ratio 1.1 of the rubber 
specimen. 
 

Dependent variable Independent variables 
D 2t 1t

H  H  λ 
vM - vavg 

T 
th=10 th=400 

0.48072 0.01058 0.24582 0.18016 
0.25452 0.02424 0.24340 0.20441 
0.26800 0.05034 0.23898 0.23879 
0.41356 0.05664 0.23930 0.23495 
0.02833 0.08004 0.24792 0.23449 
0.00145 0.11250 0.24255 0.24801 
0.19410 0.11857 0.24310 0.24111 
0.02159 0.14340 0.24193 0.23852 
-0.13071 0.17443 0.24346 0.25741 
-0.10606 0.18663 0.24492 0.25472 
-0.12842 0.21441 0.24264 0.24300 
0.02833 0.28796 

1.1

0.23493 0.26121 
-0.27406 0.31200 0.24509 0.26208 
-0.27406 0.35594 0.24238 0.24564 
-0.20016 0.39288 0.23953 0.25424 
-0.18891 0.40423 0.24007 0.25002 

 

-0.38823 0.45158 0.24674 0.25967 
Correlation Coefficients -0.87 -0.16 -0.76 

 

Since the number of sample for the stretch ratio1.1 is 17, the degree-of-freedom 

(DOF) for t is n-k-1 = 17-3-1 = 13. Thus, the critical t value for the stretch ratio 1.1 for 

this case is 771.1)13;05.0()1;2/( ==−− cknc tt α  for two-tailed test. 

Thus if we have the condition as 

771.11 >−−nt                                                (3.41) k
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we reject the null hypothesis and accept the alternative hypothesis which means that 

the specific independent variable(s) affect the dependent variable. The result of 

multivariable linear regression analysis using entire independent variables T, 

2t
H and

1t
H is shown in the table 3.19.  

 

Table 3.19 

specimen with entire independent variables T, 
2t

H and
1t

H . 

 iβ̂  se t-value 

Result of multivariable linear regression analysis for stretch ratio 1.1 of rubber 

 
2R  

α̂  7.55 1.64 4.62 
T -1.19 0.20 -5.91 

2t
H  -27.14 6.34 -4.28 

1t
H  -3.08 1.96 -1.58 

0.88 

 

Although the 2R  is high, the t-value of the long-time stretch history function 
1t

H  

which is didn’t satisfy the condition above. This means the long-time stretch 

history is insignificant. Thus we have eliminated the and executed the 

multivariable linear regression analysis again. Since the number of independent 

58.1−  

1t
H

1t
H

variables are reduced to 2, 761.1)14;05.0()1;2/( ==−− cknc tt α , we should have a new 

condition as 

761.11 >−−knt                                            (3.42) 

to reject  null h  and ac alter poth  result of 

multivariable linear  analysi tch r f ru imen with 

independent variabl  is sho  table

the ypothesis cept the native hy esis. The

regression s for stre atio 1.1 o bber spec

es T, and H wn in the  3.20. 
2t
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Table 3.20 
Result of multivar r regres ysis ch r of rubber 
specimen with independent variables T
 

 e 

iable linea sion anal for stret atio 1.1 
 and tH . 

2

iβ  ˆ se t-valu 2R  
α̂  6.66 1.62 4.11 
T -1.40 0.15 -9.08 

2t
H  -26.37 6.68 -3.95 

0.86 

 

Thus the final regression model for the stretch ratio 1.1 of the rubber specimen can be 

expressed as 

2
37.2640.166.6D̂                                    (3.43) 

The optimal independent variable

1.1 tHT −−=

s that can predict the deviation D is T and . In 

addition, their ability to explain the deviation is 86 %. The rest 14 % can’t be explained 

rate-related stretch history are the substantial factors that cause the deviation from 

is more substantial than the 

T  the partial regression coefficient for the is exactly the 

Stretch Ratio 1.3: The nondimensionalized data for the stretch ratio 1.3 of the 

rubber specim n is show he table 3.2 e dependen ble is deviation D and 

the independent variables are time T, ated stretc ory fun , and 

long-time stretch history function .  

 

2t
H

by this model whatsoever. From the model, we have noticed that the time T and the 

2t
H  

the hyperelasticity and the rate-related stretch history
2t

H  

time . Note that the sign of
2t

H

opposite of the stretch-rate.  

e n in t 1. Th t varia

rate-rel h hist ction
2t

H

1t
H
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Table 3.21 

specimen. 
 

Dependent variable Independent variables 

Nondimensionalized data using L2-norm for the stretch ratio 1.3 of the rubber 

D 2 1tH  tH  λ 
VM - Vavg 

T 
th=10 th=400 

0.10439 0.04449 0.30317 0.29330 
0.36818 0.06910 0.30119 0.27693 
0.56329 0.08810 0.30296 0.26603 
-0.08245 0.24227 0.29904 0.30553 
-0.27475 0.26593 0.30628 0.31888 
0.32421 0.29242 0.29636 0.31480 
-0.19781 0.33743 0.30367 0.30426 
-0.29946 0.37523 0.30350 0.31077 
0.05498 0.38123 0.29482 0.30546 
-0.10716 0.41945 0.29630 0.29858 

1.3 

-0.45342 0.44116 0.30902 0.31745 
Correlation Coefficients -0.71 -0.44 -0.77 

 

Since the number of sample for the stretch ratio1.3 is 11, the degree-of-freedom 

(DOF) for t is n-k-1 = 11-3  = 7. For this se, the criti e for the stretch ratio 

1.3 is 05.0(;2/( = cnc tt α  for two-tailed test. 

hus if we have following constraint as 

-1  ca cal t valu

895.1)7; =)1−−k

T

895.11 >−−knt                                            (3.44) 

we reject the null hypothesis and accept the alternative hypothesis which means that 

the independent variable(s) is significant to predict the value of the dependent variable. 

 

The result of multivariable linear regression analysis for the stretch ratio 1.3 of the 

rubber specimen using entire independent variables T, and is shown in the table 

3.22.  

 

2t
H

1t
H



  109

Table 3.22 

specimen with entire independent variables T, 
2t

H and
1t

H . 
Result of multivariable linear regression analysis for stretch ratio 1.3 of rubber 

 
  se t-value iβ̂  2R  

α̂  11.33 3.47 3.27 
T -1.44 0.64 -2.26 

2t
H  -30.79 11.65 -2.64 

1t -5.43 4.76 -1.14 

0.77 

H  
 

Although the 2R  is reasonably high as 77 %, the t-value of the long-time stretch 

istory is -1.14 which means it is insignificant. So we have executed a regression 

nalysis withou . Since the number of independent variables are reduced to 2 for 

h
1t

H

a t
1t

H

that case, 860.1)8;05.0()1;2/( ==−− cknc tt α , we should have a new constraint as 

860.11 >−−knt                                             (3.45) 

to reject the null hypothesis and accept th

multivariable linear essi lysis for  ratio 1.3 ber specimen with 

independent variabl shown in ble 3.23. 

 

cimen with independent variables T and . 
 

 se t-value 

e alternative hypothesis. The result of 

 regr on ana  stretch  of rub

es T, and
2t

H  is  the ta

Table 3.23 
Result of multivariable linear regression analysis for stretch ratio 1.3 of rubber 
spe

2t
H

iβ̂  2R  
α̂  10.74 3.50 3.07 
T -2.00 0.42 -4.79 

2t -33.74 11.60 H  -2.91 
0.76 
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Thus the final regression model for the stretch ratio 1.3 of the rubber specimen can be 

expressed as 

2
74.3300.274.10ˆ

3.1D tHT −−=                                   (3.46) 

Again, 

T and . The rest 24 % can’t be explained by this model no matter what we do. From 

io 1.5 of the 

rubber 

long-time stretch history function  

 

 

 

 

 

the optimal independent variables that can anticipate the dependent variable is T 

and . This model can explain the deviation by 76% using the independent variables 

2t

the model, for the stretch ratio 1.3, we have noticed again that the time T and the rate-

related stretch history
2t

H  are the substantial factors that cause the deviation from the 

hyperelasticity and the rate-related stretch history
2t

H  is more substantial than the time 

T. Note that the sign of the partial regression coefficient for the
2t

H is exactly the 

opposite of the stretch-rate. 

Stretch Ratio 1.5: The nondimensionalized data for the stretch rat

2t
H

H

specimen is shown in the table 3.24. The dependent variable is deviation D and 

the independent variables are time T, rate-related stretch history function H , and 

1t

 

 

2t

H .
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Table 3.24 
Nondimensionalized data using L2-norm for the stretch ratio 1.5 of the rubber 
pecimen.  

 
Dependent variable Independent variables 

s

Deviation Stretch History H(t) λ 
VM - Vavg 

Time 
th=10 th=400 

0.66080 0.00522 0.23681 0.17400 
0.41191 0.03058 0.23843 0.21044 
0.40825 0.05819 0.23629 0.23180 
-0.12227 0.10107 0.24366 0.24913 
-0.04413 0.12415 0.24493 0.24711 
-0.02233 0.13033 0.24332 0.24919 
-0.13501 0.15344 0.23992 0.25104 
-0.20948 0.18769 0.24807 0.25448 
-0.28576 25 0.25802  0.22091 0.249
-0.04594 57 0.24759  0.23598 0.242
-0.08227 0.24081 0.24362 0.24791 
-0.01146 0.30179 0.24281 0.25441 
-0.09867 0.31072 0.24424 0.24115 
-0.08954 0.31330 0.24072 0.24176 
-0.10047 0.32581 0.24545 0.24998 
-0.08774 0.40089 0.24119 0.24517 

1.5 

-0.14588 0.42325 0.24143 0.25582 
Correlation Coefficients -0.65 -0.79 -0.92 

 

Since the number of sample for the stretch ratio1.5 is 17, the degree-of-freedom 

(DOF) for t is n-k-1 = 17-3-1 = 13. In this case, the critical t value for the stretch ratio 

1.5 of the rubber specimen is 771.1)13;05.0()1;2/( ==−− cknc tt α  for two-tailed test. 

Thus if we have the following constraint as 

771.1>t                                           (3.47) 1−−kn

we reject the null hypothesis and accept the alternative hypothesis. This implies that 

the independent variable(s) affect the dependent variable. The result of multivariable 

linear regression analysis for the stretch ratio 1.5 of the rubber specimen using entire 

independent variables T and is shown in the table 3.25.  , 
2t

H
1t

H



  112

Table 3.25 

specimen with entire independent variables T, 
2t

H and
1t

H . 
 

 ˆ  s  t-value 

Result of multivariable linear regression analysis for stretch ratio 1.5 of rubber 

eiβ 2R  
α̂  7.50 1.67 4.49 
T -0.35 0.20 -1.72 

2t
H  -22.13 8.26 -2.68 

1t
H  -8.48 2.67 -3.17 

0.82 

 

Although the modified coefficient of determination 2R  is high as 82%, the t-value of 

the time T  didn’t satisfy the above constraint which means the time T is 

inconsequential to cause the deviation from the hyperelasticity. So we have 

reperformed a regression analysis without T. Since the number of independent 

variables are reduced to 2, 761.1)14;05.0()1;2/( ==−− cknc tt α , we should have a new 

constraint as 

761.11 >−−knt                                            (3.48) 

to reject the null hypothesis and accept the alternative hypothesis. The result of 

multivariable linear regression analysis for stretch ratio 1.5 of the rubber specimen 

with independent variables 
2t

H  and
1t

H  is shown in the table 3.26. 
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Table 3.26 
Result of multivariable linear regression analysis for stretch ratio 1.5 of rubber 
pecimen with independent variables and . 

 se t-value 

s
2t

H
1t

H
 

iβ̂  2R  
α̂  7.41 1.79 4.14 

2t
H  -19.89 8.75 -2.27 

1t
H  -10.65 2.52 -4.22 

0.80 

 
 
 
Thus, the final regression model for the stretch ratio 1.5 of the rubber specimen can be 

expressed as 

12
65.1089.1941.7ˆ

5.1 tt HHD −−=                                 (3.49) 

The optimal independent variables that can expect the dependent variable D is 

and . Their ability of the regression model to explain the deviation is 80 %. The 

rest 20 % can’t be explained by this model. From the model for the stretch ratio 1.5 of 

en, the rate-related stretch history and the long-time stretch 

tretch ory is more substantial than the long-time stretch history . The sign 

Stretch Ratio 1.7: The nondimensionalized data for the stretch ratio 1.7 of the 

rubber specimen is shown in the table 3.27. The dependent variable is deviation D and 

the independent variables are time T, rate-related stretch history function , and 

long-time stretch history function . 

 

2t
H

1t
H

the rubber specim
2t

H

history
1t

H  are the substantial factors that cause the inelastic deviation. The rate-related 

 hist
2t

H  
1t

Hs

of the partial regression coefficient for the
2t

H is exactly the opposite of the stretch-rate. 

2t
H

1t
H
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Table 3.27 
Nondimensionalized data using L2-norm for the stretch ratio 1.7 of the rubber 
specimen.  
 

Dependent variable Independent variables 
Deviation Stretch History H(t) λ 
VM - Vavg 

Time 
th=10 th=400 

0.57784 0.07633 0.27336 0.26019 
-0.06680 0.10397 0.27762 0.26958 
0.51561 0.12819 0.27146 0.26405 
-0.18026 0.16118 0.27751 0.26964 
-0.20968 0.17447 0.28265 0.29287 
0.17863 0.18705 0.27387 0.28356 
0.18227 0.22963 0.27382 0.27185 
-0.18401 0.26977 0.28289 0.28759 
0.02486 0.31068 0.27549 0.28479 
-0.11802 0.37497 0.27912 0.27842 
-0.30848 0.38144 0.28008 0.28415 
-0.09247 0.41271 0.27502 0.27453 

1.7 

-0.31950 0.44392 0.28235 0.28228 
Correlation Coefficients -0.63 -0.84 -0.69 

 

Since the number of sample for the stretch ratio1.7 is 13, the degree-of-freedom 

(DOF) for t is n-k-1 = 13-3-1 = 9. Thus, the critical t value for this case for the stretch 

ratio 1.7 is 833.1)9;05.0()1;2/( ==−− cknc tt α  for two-tailed test. 

Thus if we have the following constraint as 

833.11 >−−knt                                               (3.50) 

we reject the null hypothesis and accept the alternative hypothesis which means that 

the specific independent variable affect the dependent variable. The result of 

multivariable linear regression analysis for the stretch ratio 1.7 of the rubber specimen 

using entire independent variables T and is shown in the table 3.28. 

 

, 
2t

H
1t

H
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Table 3.28 
Result of multivariable linear regression analysis for stretch ratio 1.7 of rubber 
specim ith entire ent var and
 

  

en w independ iables T, 
1t
. 

2t
H H

iβ̂  s  e t-value 2R  
α̂  14.07 2.87 4.90 
T   -0.56 0.34 -1.67

2t
H  -53.66  13.04 -4.12 

3.33 5.79 

0.7

0.57 

5 

1t
H  

 

 

Alth 2R  ough the is convincingly high as 75%, the t-values of the time T

me stretch history didn’t satisfy the above constraint. This means that the time T 

nd long-time stretch history don’t affect the deviation from the hyperelasticity. 

ficant is the rate-related stretch history 

So we have carried out a regression analysis only with . Since the number of 

dependent variables are reduced to 1,

 and the long-

ti
1t

H

a
1t

H

The only independent variable that is signi
2t

H . 

2t
H

 796.1)11;05.0()1;2/( ==−− cknc tt αin , we should have a 

ew constraint as n

796.11 >−−knt                                              (3.51) 

 reject the null hypothesis and accept the alternative hypothesis. The result of 

ultivariable linear regression analysis for stretch ratio 1.7 of the rubber specimen 

ith only independent variable is shown in the table 3.29. 

 
 
 

 

to

m

w  
2t

H
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Table 3.29 

specimen with independent variable
2t

H . 
 

  s  t-value 

Result of multivariable linear regression analysis for stretch ratio 1.7 of rubber 

eiβ̂  2R  
α̂  15.06 2.77 5.43 

2t
H  -54.41 9.98 -5.45 

0.72 

 

 

Thus the final regression model for the stretch ratio 1.7 of the rubber specimen can be 

expressed as 

2
41.5406.5ˆ

7.1 tHD −=                                         (3.52) 

and we found that the opt al independent variable that can expect the dependent 

variable D is rate-related stretch history
2t

H only. The ability of the acquired regression 

mode

1

im

l with independent variable to explain the deviation is 72 %. The rest 28 % 

odel. From regression model for the stretch ratio 1.7 of 

en, we have noticed that the rate-related stretch history is the 

only factor that causes the substantial deviation from the hyperelasticity. Note that this 

doesn’t mean that the other two independent variables are not causing the deviation 

from the hyperelasticity at all; they are just insignificant relative to the stretch-rate. The 

deviation D can be well-explained only by the rate-related stretch history function

f the partial regression coefficient for th is exactly the opposite of the 

 
2t

H  

can’t be explained by this m  the 

the rubber specim
2t

H

2t
H . 

The sign o e
2t

H

stretch-rate. 
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Stretch Ratio 1.9: The nondime onaliz a for the s tch ra o 1.9 of the

rubber specimen wn table The d ent e is on

the independent variables are time el c  f

long-time stretch history function

 

T 0
N nsionalized data using L2 r tc 1  
s
 

Independent variables 

nsi ed dat tre ti  

 is sho in the  3.30. epend variabl  deviati  D and 

T, rate-r ated stret h history unction H
2t

, and 

1t
H . 

able 3.3  
ondime -norm fo  the stre h ratio .9 of the rubber 

pecimen. 

Dependent variable 
Deviation e ryStr tch Histo  H(t) λ 

 Vavg 
 

VM -
Time

th=10 th=400 
0.69886 6 3 0.0.0179 0.27 97 21749 
0.30698 0.03830 0.27933 0.25831 
0.25797 0.09454 0.27905 0.25817 
0.15671 0.14967 0.27966 0.26689 
0.06851 0.19328 0.27719 0.29302 
-0.10120 0.22815 0.27702 0.28488 
-0.08813 0.27366 0.27652 0.28690 
-0.31020 0.28032 0.27732 0.29416 
-0.21552 0.30630 0.27724 0.29378 
-0.18939 0.35016 0.28041 0.28399 
-0.15355 0.38671 0.27541 0.29031 
-0.15021 0.41085 0.27734 0.28087 

1.9 

-0.28083 0.43500 0.27500 0.28657 
Correlation Coefficients -0.89 -0.07 -0.93 

 

 n-k-1 = 13-3-1 = 9. Thus, the critical t value for this case for the stretch 

ratio 1.

 

Since the number of sample for the stretch ratio1.9 is 13, the degree-of-freedom 

(DOF) for t is

9 of rubber specimen is 833.1)9;05.0()1;2/( ==−−knα

we have a following constraint as 

cc tt  for two-tailed test. Thus, if 

833.11 >−−knt                                            (3.53) 
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we reject the null hypothesis and accept the alternative hypothesis. The result of 

multivariable linear regression analysis for the stretch ratio 1.9 of the rubber specimen 

using entire independent variables T, 
2t

H and
1t

H is shown in the table 3.31. 

 

Table 3.31 
multivariable linear regression analysis for stretch ratio 1.9 of rubber Result of 

specimen with entire independent variables T, 
2t

H and
1t

H . 
 

  iβ̂  se t-value 2R  
α̂  5.81 5.78 1.01 
T -1.00 0.29 -3.48 

2t
H  -1 19.52.48 4 -0.64 

1t
H  - 97.5  2.84 -2

0.84 

.68 
 

Althou

 

gh the 2R  is very high, the t-value for the rate-related stretch history H didn’t 
2t

satisfy the above constraint. The significant independent variables are the time T and 

the long-time stretch history function  . Thus we have carried out a regression 

analysis again without the rate-related stretch history . Since th

independent variables are reduced to 2, 

1t
H

2t
H e number of 

812.1)10;05.0()1;2/( ==−− cknc tt α , we should have 

a new constraint as 

812.11 >−−knt                                              (3.54) 

to reject the null hypothesis and accept the alternative hypothesis. The result of 

multivariable linear regression analysis for stretch ratio 1.9 of the rubber 

with independent variables T and is shown in the table 3.32. 

specimen 

1t
H
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Table 3.32 
Result of multivariable linear regression analysis for stretch ratio 1.9 of rubber 
specimen with independent variables T and . 
 

 s  t-value 

1t
H

i eβ̂  2R  
α̂  2.14 0.67 3.18 
T -0.95 0.27 -3.56 

1t
H  -6.94 2.56 -2.71 

0.85 

 

Thus the final regression model for the stretch ratio 1.9 of the rubber specimen can be 

expressed as 

1
94.695.014.2ˆ

9.1 tHTD −−=                                     (3.55) 

From the results, we have noticed that the optimal independent variables that can 

expect the dependent variable D are T and
1t

H . The ability of the regression model to 

explain the deviation is 85 %. The rest 15 % can’t be explained by this model. In 

addition, we have realized that the rate-related stretch history 
2t

H is not a significant 

actor that causes the deviation from the hyperelasticity. The only factors that cause the 

deviation from the hyperelasticity are the time T and long-time stretch history H . 

f

 

Nonsense of Correlation Coefficients 

We have checked the correlation coefficients between the deviation D 

(dependent variable) and independent variables T , and . The summary of the 

correlation coefficients for each stretch ratio for the rubber is shown in the table 3.33.  

 
 
 
 

1t

, 
2t

H
1t

H
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Table 3.33 
The summary of correlation coefficients between the deviation D and the time T, rate-
related stretch history , and long-time stretch history  
 

Correlation Coefficients: D between. 

2t
H

1t
H .

2t
H  

1t
H  λ T 

th=10 th=400 
1.1 -0.87 -0.16 -0.76 
1.3 -0.71 -0.44 -0.77 
1.5 -0.65 -0.79 -0.92 
1.7 -0.63 -0.84 -0.69 
1.9 -0.89 -0.07 -0.93 

 

Generally, the correlation coefficient can be obtained by using the following equation 

as 

( )( )

( ) ( )
( )( )

( ) ( )∑∑
∑

∑

−−

−−
=

−−

−−

==
2

(3.56) 
222 nnmm

nnmm

nnmm
N

nnmm

c
i

ii

ii

nm

mn

σσ
σ

      NN
iii

is the covariance which is a degree of covarying of two variables m and n, where mnσ

mσ  is a standard deviation of m  and i nσ  is a standard deviation of n . The correlatioi n 

coefficient just shows whether there is a relationship between one variable and the 

o rel  o ee ari r ,  

ent and ordering of the correlation 

coeffic

b

A

other or n t.   It is a ationship nly betw n two v a obles. F t yhis stud since we

have too many variables and scatterness, the assessm

ients are not meaningful. 

Indisputably, if the correlation coefficient between a certain dependent variable 

and independent variable is high, then we naturally know there is high relationship 

etween them. But again, it merely tells a relationship between the two variables. 

dditionally, since the correlation coefficient is a nonratio-related value, we cannot 
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compare a certain value of a correlation coefficient to the other. For example, if there 

are two variables A and B that have the correlation coefficients 0.4 and 0.8, 

respectively, we cannot say that B is two times more related to a certain variable than A 

is. Besides, if there are many variables, correlation coefficient never tells which one is 

significant, how intensively related and which one is more related to the other. This can 

be told only by the multivariable (linear or nonlinear) regression analysis.  

For example, despite the correlation coefficients between the deviation D and 

rate-rel

 

 

 

 

 

 

 

 

 

ated stretch history 
2t

H are much lower than the others for the stretch ratios 1.1 

and 1.3, the results of multivariable linear regression analysis for them showed that the 

rate of the stretch is highly related to the deviation from the hyperelasticity. Moreover, 

the rate of the stretch is the most substantial factor that causes the deviation from the 

hyperelasticity for the stretch ratios 1.5 and 1.7 as well.  
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CHAPTER IV 

RESULTS FOR TISSUES 

 

Error-of-Measurement and Error-of-Definition 

For the experiment of the biotissues, we have used the strips of pulmonary 

artery of the adult swine in this study. Unlikely to the results of the experiment of the 

rubber specimen, the stretch ratio of 2 of the biotissues was almost the maximum 

stretch ratio that the biotissues can acquire without damaging or breaking the 

substances of the tissues such as elastin. 

If we look at the figure 4.1, wherever the stretch ratio is 2, there was no spiky 

did. The experiment of the randomized stretch-controlled motion of the tissue 

specimen showed that there is a noticeable inelastic deviation from the hyperelasticity. 

ere are behaviors of nonlinearity as well as inelasticity. If 

e hyperelastic assumption is perfectly satisfied, there would be only one point for 

a and length b of the tissue specimen, reference weight w, and voltage output p 

peak in the output protocol. This means the randomly-arranged elastin in the biotissues 

went up to almost the maximum stretch ratio. Approximately a stretch ratio of 2 was 

the maximum stretch ratio that the biotissues could acquire with no damage.  

The figures 4.1 and 4.2 show the results of the randomized stretch-controlled 

protocol and corresponding force output of the strip of the pulmonary artery of the 

adult swine. The output profile showed the much higher nonlinearity than the rubber 

The figure 4.3 shows that th

th

each stretch ratio. 

To find the uncertainty due to the manual measurements, all measurements 

(width 
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for a fixed weight) have been done for 10 times. Again, it is important to note that the 

uncertainty due to the measuremen  r m o  e 

u extrem rate meas ic ui T  e 

l  h s  h u t c f e 

s As for es of refere t lt t v e 

s ues m or the rubb

a

entire s

in the table 4.1. It shows the width a and length b of the tissue, a reference weight w, a 

voltage output p for a fixed weight have been measured for 10 times. It also shows the 

standard deviations and fractional uncertainties for each measurement. 

 

 

 

 

 

 

t can be educed as uch as p ssible as long as w

se the ely accu uring dev es or eq pments. he width a and th

ength b of t e tissue pecimen as been sed to ge a referen e area o  the tissu

ample.  the valu nce weigh  w and vo age outpu  p, we ha e used th

ame val easured f er experiment. 

Since the uncertainty due to the m nual measurements is fixed or static for 

tretch levels, it can be ignored for the error analysis which was focusing on the 

uncertainty due to the inelastic behaviors of the specimen. Note that the uncertainty 

due to the inelastic behavior varies. The summarized manual measurements are shown 

 

 

 



  124

 
Fig.4.1. The randomized stretch-controlled protocol and corresponding fo
profile for the tissue specimen (0-3000 sec). 
 
 

rce output 

 
Fig.4.2. The randomized stretch-controlled protocol and corresponding force output 

 

 

 

 

profile for the tissue specimen (3000-5600). 
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Fig.4.3. Fo
tissue specimen have been grouped and averaged. It shows the inelastic and nonlinear 
behaviors. 
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Table 4.1 

fixed weight have been measured
 

The width a and length b of the tissue, a reference weight w, a voltage output p for a 
 for 10 times. 

No. of Measure width[mm] length[mm] ref.weight[gram] voltage 
output[volt] 

1st 2.4950 2.0210 0.3938 0.3084 
2nd 2.6220 2.1480 0.3940 0.3067 
3rd 2.7490 1.8940 0.3940 0.3058 
4th 2.5966 2.0464 0.3940 0.3061 
5th 2.4950 2.1480 0.3938 0.3085 
6th 2.6220 2.0210 0.3940 0.3054 
7th 2.6220 1.8940 0.3940 0.3063 
8th 2.5966 1.9194 0.3940 0.3046 
9th 2.7490 1.9194 0.3939 0.3042 
10th 2.6220 1.8940 0.3939 0.3054 

Average 2.6169 1.9905 0.3939 0.3061 
∆M 0.0853 0.1015 0.0001 0.0014 

F.U [%] 3.2611 5.0971 0.0214 0.4666 
M = Mavg 

  ± ∆M 
a = 2.6169 
   ± 0.0853 

b = 1.9905 
   ± 0.1015 

w = 0.3939 
    ± 0.0001 

p = 0.3061 
   ± 0.0014 
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Stretch Ratio 1.1: For the error analysis, we grouped the data according to the 

h ratios. The table 4.2 shows the grouped data for the stretch ratio 1.1 for 

eviation, stretch-rate, and stretch histories. The error analysis has been done on the 

data of the deviation D versus time T

tim tch his tion  A e d re s 

re  spet made the n  h t  

as one of the dent variab e b r n s 

because there is high correlations between  e c  

b the i nt variable ro i ty e 

a  and  the incea h d o lo e 

goodness-of-fit. In the same way b i ra  

istory by a histo  th ec th im  

history

same stretc

the tissue. It shows the times, measured forces by the force transducer and calculated 

d

, rate-related stretch history function
2t
, long-H

e stre tory func
1t

H . lthough w  has foun  that the  is one more strets

laxation rum that ew stretch istory function H
0t
, it hasn’ been used

 indepen le for th multivari le linea regressio  analysi

T and H
0t

. If ther   is high orrelation

etween ndepende s, the p blem of the mult collineari  will b

ppeared it causes sing of t e standar  error s  that it wers th

to the ru ber exper ments, 
2

is the te-relatedtH

stretch h scanned ry cut-off  = 10 s , H is e long-t e stretch
1t

 scanned by a history cut-off th = 400 sec, and 
0t

H is the new stretch history 

scanned by a history cut-off th = 1000 sec. 
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Table 4.2 
The tissue data corresponding to the stretch ratio 1.1. It shows the times and stretch 

ined by the motion controller, forces vM obtained by the force transducer and 

M vavg D dλ/dt 

ratios obta
calculated deviation, stretch-rate, and stretch histories. The error analysis has been 
done on the data of the Deviation versus Time, 

2t
H and 

1t
H . 

 
Time v  )(

2
tH t  )(

1
tH t  )(

0
tH t  

[sec] 
λ 

[volt] [volt] [volt]  th=400 th=1000  [/sec] th=10
130.8 0.11438 0.03035 8 1.07313 1.02925  -0.00481 1.1306
299.8 0.10406 0008 956 1.21757 1.08703 0.02003 -0.0 1.11
622.5 0.10719 316 1.42234 1.18387 0.02 0.00134 1.0992 
700.4 0.1146 66 04  1.39949 1.1899 9 0.030  -0.000  1.1007
989.8 0.09469 0.01066 -0.00547 1.14034 1.39676 1.27413 

1391.2 0.09844 0.01441 -0.00134 1.11561 1.47724 1.41393 
1466.3 1.43617 1.40516  0.10625 0.02222 -0.00456 1.11815 
1773.4 0.09156 0.00753 -0.00082 1.11279 1.42072 1.42336 
2157.1 0.08812 0.00409 -0.00185 1.11982 1.53323 1.47978 
2307.9 0.09063 0.00660 -0.00248 1.12653 1.51722 1.4774 
2651.5 0.09406 0.01003 -0.00040 1.11603 1.44743 1.46874 
3561.0 0.07531 -0.00872 0.00622 1.0806 1.55591 1.52316 
3858.4 0.06844 -0.01559 -0.00102 1.12729 1.56106 1.52006 
4401.7 0.06156 -0.02247 0.00213 1.11483 1.46314 1.51433 
4858.6 0.04156 -0.04247 0.00468 1.10172 1.51438 1.48701 
4998.9 0.04250 -0.04153 0.00472 1.10422 1.48922 1.48863 
5584.5 

1.1 

0.03500 

0.08403 

-0.04903 -0.00472 1.13489 1.54672 1.51059 
 

Note that,  we have used the stretch history function obtained by using the 

stress relaxation spectrum t2 corresponding to the early ( t) exponen

instead of using the stretch-rate calculated by simply dividing the change in stretch 

ratio by change in time spent testing. Those two independent variables are r

variables. However, the stretch-rate is not our control variable for the experiments. The 

stretch history function is obtained by using the stress relaxation spectrum 1

corresponding to the late (or slow) exponential decay. We, again, defined the  and 

as rate-related stretch history function and long-time stretch history function, 

respectively. 

2t
H

or fas tial decay 

ate-related 

 t  
1t

H

2t
H

1t
H



  129

The table 4.3 shows the average values and standard deviations of stretch ratios 

and forces. They have been used for calculating the absolute uncertainty and relative 

(or fractional) uncertainty for the stretch ratio 1.1 of the tissue specimen. T

also been used to calculate the uncertainty in resulting Cauchy stresses. Similarly to the 

results 

The average values and standard deviations of stretch ratios and forces are used for 

stretch ratio 1.1 of tissue. They have also been used to calculate the uncertainty in 

 

hey have 

of rubber experiment, the higher stretch-rate we got the bigger deviation from 

the hyperelasticity we had. It’s been revealed as true from our other experiments that 

the stretch-rate and the deviation from the hyperelasticity have positive relationship. 

 

Table 4.3 

calculating the absolute uncertainty and relative (or fractional) uncertainty for the 

resulting Cauchy stresses. 

Average Standard deviation 

λ  v  ∆λ ∆v avg avg

1.10001 0.08403 0.00008 0.02572 
 

To get the Cauchy stress for the stretch ratio 1.1, the equations (2.33) – (2.40) 

were employed as 

( )( )
( )( )( ) ( )

]/[101.66072

0.000080.393900.08403

26- mmg

wvtt
avgavgavg

avgavg

×=

==
∂

= δλδλδ λ 0.306101.990502.61690pba∂λ            (4.1) 

( )( )
( )( )( ) ( )

]mm0.00699[g/

0.02572
0.306101.990502.61690

0.393901.10001

2=

==
∂
∂

= v
pba

w
v

v
tt

avgavgavg

avgavg
v δ

λ
δδ

              (4.2) 
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( )( )
( )( )( ) ( ).00010
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84010
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t avg

×=

=
∂
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/[6- mg5.7972

.306101.990502.6169
0.0001 31.wavg δ

pavgavgaavg

v
w =δtw =δ
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Thus, the total uncertainty in t for the stretch ratio 1.1 is 

( ) ( ) ( ) ( ) ( ) ( )
]mm0.00139[g/ 2

222222

=
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222222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

= p
p
tb

b
ta

a
tw

w
tv

v
ttt δδδδδδλ

λ
δ

precise motions (Resolution = 0.048828 µm, Speed = 50 – 400 µm/sec), the uncertainty 

in the Cauchy stress t due to the δλ (average deviation or standard deviation of λ) has 

the lowest uncertainty among the other uncertainties. The uncertainty in the Cauchy 

stress t due to the δw is also quite low. Since the uncertainty in the Cauchy stress t due 

to the δv which is standard deviation of the forces has the highest uncertainty of the 

Since the actuators (CMA-25CCCL, Newport) that we have used provide quite 

other uncertainties, we can tell that there are huge amount of inelastic behavior in the 
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tissue at a stretch level 1.1. Although the uncertainty in the Cauchy stress t due to the 

δa and δb seem to be relatively high, it can be reduced as much as possible to the 

maximum resolution range that the measuring devices would have. The surface 

ughness of the specimen also affects the increasing of uncertainty. Now, if we look at 

l uncertainties, we have 

ro

the fractiona

%0.457100,00140.00.30610

%.09950199

852.61

0.000.3

%30.608100.0257.08403

% 0.007100
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=±
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avg
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δ
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δ

δ

100 =×,500.1050 ±1.=± bδ

%3.260100×
a,300.0690 ±

%.025100 =×,010 wδ09390 ±

0,20=vδ

,00008.01.10001 =×±=±= avg λ
δλδλλλ

= avgbb
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avgwav
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δ

δ

           (4.8) 

The Cauchy stress t for the stretch ratio 1.1 of the tissue, using equation (2.25) for the 

tissue, we got 

%6.069100,0.001390.022841.1 =×±=±=
avg

avg t
tttt δδ            (4.9) 

Summarized fractional uncertainties are shown in the table 4.4. 

Table 4.4 
Fractional uncertainties for the measured data a, b, w, and p, and obtained data λ and v 
by the motion controller and the Cauchy stress t for the stretch level 1.1 of the tissue. 
 

Data  λ1.1 v[volt] w[gram] a[mm] b[mm] p[volt] t[g/mm2]
Avg 1.10001 0.08403 0.39390 2.61690 1.99050 0.30610 0.02284 
S.D 0.00008 0.02572 0.00010 0.08530 0.10150 0.00140 0.00139 

F.U [%] 0.007 30.608 0.025 3.260 5.099 0.457 6.069 
*S.D = standard deviation, F.U = Avg/S.D 
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For calculating the absolute Cauchy stress, the uncertainty δtv in t which is due 

to the δv alone is approximately 9 times bigger than the uncertainty δta in t which is 

due to the δa alone and 6 times bigger than the uncertainty δtb in t which is due to the 

δb alone. The figure 4.4 shows the uncertainties in t due to the δλ, δv, δw, δa, δb and 

δp. Since the uncertainties δtw δta δtb , and δtp are due to the measuring process and the 

resolution of the measuring devices, those can be reduced to the insignificant level of 

uncertainties as long as we use the extremely accurate devices. In addition, they can be 

assumed to be ignorable because the fractional uncertainties corresponding to them are 

never changed for the whole stretch ranges. This means if we initially measured them 

very accurately by using extremely accurate measuring devices, they would remain as 

low amount of uncertainties. The error analysis, therefore, has been devoted to and 

focused on the uncertainty due to the inelastic behavior of the tissue.  

The fractional uncertainties in t due to the obtained data λ and v through the 

motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 

data w, a, b, and p are shown in the figure 4.5. Unlikely to the rubber case, the reason 

that the ratio of the absolute uncertainty to the fractional uncertainty is same is that the 

result of the δtv/δta is same as (∆v/vavg)/ (∆a/aavg). It can be easily shown as following. 
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Likewise, it can be understood that δtv/δtb is same as (∆v/vavg)/ (∆b/bavg). 
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Fig.4.4. Uncertainties in t due to the δλ, δv, δw, δa, δb and δp for the stretch ratio 1.1 
of the tissue specimen. 
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Fig.4.5. Fractional uncertainties in t due to the obtained data λ and v through the 
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 
data w, a, b, and p for the stretch ratio 1.1 of the tissue specimen.  
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Stretch Ratio 1.3: The tissue data corresponding to the stretch ratio 1.3 is 

shown in the table 4.5. It shows the times and stretch ratios obtained by the motion 

controller, forces vM obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the D versus 

T and . Again, the is a rate-related stretch history function scanned by a 

history cut-off th = 10 sec, and is the long-time stretch history function scanned by 

a history cut-off th = 400 sec. 

 

Table 4.5 
The tissue data corresponding to the stretch ratio 1.3. It shows the times and stretch 
ratios obtained by the motion controller, forces obtained by the force transducer and 
calculated deviation, stretch-rate, and stretch histories. 
 

Time vM vavg D dλ/dt 

, 
2t

H
1t

H
2t

H

1t
H

)(
2

tH t  )(
1

tH t  )(
0

tH t  

[sec] 
λ 

[volt] [volt] [volt] [/sec] th=10 th=400 th=1000 
548.6 0.40250 0.02489 -0.00083 1.31439 1.4341 1.1742 
852.0 0.41969 0.04208 -0.00067 1.30578 1.35408 1.22832 

1086.2 0.41531 0.03770 -0.00335 1.31344 1.30078 1.28872 
2987.1 0.36937 -0.00824 0.00130 1.29646 1.49394 1.50735 
3278.9 0.36719 -0.01042 -0.00417 1.32786 1.55918 1.50382 
3605.5 0.38906 0.01145 0.00074 1.28483 1.53925 1.50908 
4160.5 0.36687 -0.01074 -0.00248 1.31652 1.48771 1.52161 
4626.5 0.36531 -0.01230 -0.00071 1.31578 1.51952 1.51478 
4700.6 0.35844 -0.01917 0.00535 1.27817 1.49356 1.50886 
5171.8 0.35656 -0.02105 0.00496 1.28458 1.45993 1.4892 
5439.5 

1.3 

0.34344 

0.37761

-0.03417 -0.00429 1.33973 1.55221 1.51785 
 

Again for the multivariable linear regression analysis, we have used the stretch 

history function obtained by using the stress relaxation spectrum t2 corresponding 

to the early (or fast) exponential decay instead of using the stretch-rate dλ/dt calculated 

by simply dividing the change in stretch ratio by change in time spent testing because 

2t
H
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the stretch-rate is not our control variable for the experiments. The table 4.6 shows the 

average values and standard deviations of stretch ratios and forces. They were used for 

calculating the absolute uncertainty and relative (or fractional) uncertainty for the 

stretch ratio 1.3 of the tissue. They have also been used to calculate the uncertainty in 

resulting Cauchy stresses. 

 

Table 4.6 
The average values and standard deviations of stretch ratios and forces are used for 
calculating the absolute uncertainty and relative (or fractional) uncertainty for the 
stretch ratio 1.3 of the tissue. They have also been used to calculate the uncertainty in 
resulting Cauchy stresses. 
 

Average Standard deviation 

λavg vavg ∆λ ∆v 
1.30000 0 0.00005 0.02523 .37761
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Thus, the total uncertainty in t for the stretch ratio 1.3 is 
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The uncertainty in the Cauchy stress t due to the δλ (average deviation or 

standard deviation of λ) has again the lowest uncertainty among the other uncertainties 

by the same reason to the case of stretch ratio 1.1. The uncertainty in the Cauchy stress 

t due to the δw is also quite low. The uncertainty δtv due to the inelastic behavior is 

approximately 2 times bigger than the uncertainty δta and 1.3 times bigger than the 

uncertainty δtb. The absolute uncertainties in t due to the δλ, δv, δw, δa, δb and δp are 

shown in the figure 4.6. The uncertainty in the Cauchy stress t due to the δv which is 

standard deviation of forces can not be reduced no matter what to do. For the fractional 

uncertainties for each variable for the stretch ratio 1.3, we have   
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%0.457100,00140.00.30610

%5.099100,0.101501.99050

%3.260100,0.085302.61690
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The Cauchy stress t for the stretch ratio 1.3, using equation (2.25) for the tissue, we get 

%6.069100,0.007360.12127 =×±=±=
avg

avg t
tttt δδ            (4.19) 

Summarized fractional uncertainties are shown in the table 4.7. 

 

Table 4.7 
Fractional uncertainties for the measured data a, b, w, and p, and obtained data λ and v 
by the motion controller and the Cauchy stress t for the stretch level 1.3. 
 

Data  λ1.3 v[volt] w[gram] a[mm] b[mm] p[volt] t[g/mm2]
Avg 1.30000 0.37761 0.39390 2.61690 1.99050 0.30610 0.12127 
S.D 0.00005 0.02523 0.00010 0.08530 0.10150 0.00140 0.00736 

F.U [%] 0.004 6.681 0.025 3.260 5.099 0.457 6.069 
 

The fractional uncertainty due to the force is still the highest and the fractional 

uncertainties measured by manually are constant. The fractional uncertainties in t due 

to the obtained data λ and v through the motion controller and measured data w, a, b 

and p is shown in the figure 4.7. 
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Fig.4.6. Uncertainties in t due to the δλ, δv, δw, δa, δb and δp for the stretch ratio 1.3 
of the tissue specimen. 
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Fig.4.7. Fractional uncertainties in t due to the obtained data λ and v through the 
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 
data w, a, b and p for the stretch ratio 1.3 of the tissue specimen. 
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Stretch Ratio 1.5: The tissue data corresponding to the stretch ratio 1.5 is 

shown in the table 4.8. It shows the times and stretch ratios obtained by the motion 

controller, forces vM obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the D versus 

T and where is a rate-related stretch history function scanned by a history 

cut-off th = 10 sec, and is the long-time stretch history function scanned by a 

history cut-off th = 400 sec. 

 

Table 4.8 
The tissue data corresponding to the stretch ratio 1.5. It shows the times and stretch 
ratios obtained by the motion controller, forces obtained by the force transducer and 
calculated deviation, stretch-rate, and stretch histories. 
 

Time vM vavg D dλ/dt 

, 
2t

H
1t

H
2t

H

1t
H

)(
2

tH t  )(
1

tH t  )(
0

tH t  

[sec] 
λ 

[volt] [volt] [volt] [/sec] th=10 th=400 th=1000 
68.1 0.89219 0.08346 0.00634 1.46415 1.04359 1.01744 

398.5 0.86656 0.05783 0.00386 1.47416 1.26212 1.10485 
758.2 0.86844 0.05971 0.00552 1.46095 1.39023 1.20151 

1317.1 0.80781 -0.00092 -0.00031 1.50652 1.49416 1.39912 
1617.8 0.81937 0.01064 -0.00314 1.51439 1.48207 1.4188 
1698.3 0.81937 0.01064 -0.00059 1.50438 1.49456 1.41631 
1999.5 0.79906 -0.00967 0.00477 1.48339 1.50564 1.43855 
2445.7 0.79656 -0.01217 -0.00496 1.53378 1.52627 1.50022 
2878.6 0.76656 -0.04217 -0.00634 1.54106 1.5475 1.52188 
3075.0 0.79562 -0.01311 0.00023 1.49976 1.48492 1.50369 
3138.0 0.79156 -0.01717 -0.00130 1.50624 1.48684 1.51689 
3932.6 0.80437 -0.00436 -0.00311 1.50124 1.52586 1.51113 
4049.0 0.79125 -0.01748 -0.00213 1.51008 1.44632 1.52244 
4082.6 0.79000 -0.01873 0.00260 1.48832 1.44999 1.53089 
4245.6 0.78844 -0.02029 -0.00497 1.51756 1.4993 1.49661 
5223.9 0.78094 -0.02779 0.00048 1.49126 1.47043 1.47368 
5515.4 

1.5 

0.77031 

0.80873

-0.03842 0.00075 1.49273 1.53433 1.51271 
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For the multivariable linear regression analysis, we have used the stretch 

history function obtained by using the stress relaxation spectrum t2 corresponding 

to the early (or fast) exponential decay instead of using the stretch-rate dλ/dt calculated 

by simply dividing the change in stretch ratio by change in time spent testing because 

the stretch-rate is not our control variable for the experiments. The table 4.9 shows the 

average values and standard deviations of stretch ratios and forces. They were used for 

calculating the absolute uncertainty and relative (or fractional) uncertainty for the 

stretch ratio 1.5 of the tissue specimen. They have also been used to calculate the 

uncertainty in resulting Cauchy stresses. 

 

Table 4.9 
The average values and standard deviations of stretch ratios and forces are used for 
calculating the absolute uncertainty and relative (or fractional) uncertainty for the 
stretch ratio 1.5 of the tissue. They have also been used to calculate the uncertainty in 
resulting Cauchy stresses t. 
 

2t
H

Average Standard deviation 

λavg vavg ∆λ ∆v 
1.50000 0.80873 0.00005 0.03529 

 

Now, we have uncertainties δtλ, δtv, δtw, δta, δtb and δtp as  

( )( )
( )( )( ) ( )

]/[109.99

0.00005
0.306101.990502.61690

0.393900.80873

26- mmg

pba
wvtt

avgavgavg

avgavg

×=

==
∂
∂

= δλδλ
λ

δ λ            (4.20) 

( )( )
( )( )( ) ( )

]mm0.01308[g/

0.03529
0.306101.990502.61690

0.393901.50000

2=

==
∂
∂

= v
pba

w
v

v
tt

avgavgavg

avgavg
v δ

λ
δδ

              (4.21) 



  141

( )( )
( )( )( ) ( )

]/[107.61

0.00010
0.306101.990502.61690

0.808731.30000

25- mmg

w
pba

v
w

w
tt

avgavgavg

avgavg
w

×=

==
∂
∂

= δ
λ

δδ
             (4.22) 

( )
( )( )( )

( ) ( )( )
( )

]mm0.00977[g/

0.08530
0.306101.990502.61690
0.393900.808731.50000

2

22

=

−
=

−
=

∂
∂

= a
pba

wv
a

a
tt

avgavgavg

avgavgavg
a δ

λ
δδ

       (4.23) 

( )
( )( )( )

( )( ) ( )
( )

]mm0.01528[g/

0.10150
0.306101.990502.61690
0.393900.808731.50000

2

22

=

−
=

−
=

∂
∂

= b
pba

wv
b

b
tt

avgavgavg

avgavgavg
b δ

λ
δδ

       (4.24) 

( )
( )( )( )

( )( )( )
( )

]mm0.00137[g/

0.00140
0.306101.990502.61690

0.393900.808731.50000

2

22

=

−
=

−
=

∂
∂

= p
pba

wv
p

p
tt

avgavgavg

avgavgavg
p δ

λ
δδ

        

(4.25) 

Thus, the total uncertainty in t for the stretch ratio 1.5 is 
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The uncertainties in t due to the δλ, δv, δw, δa, δb and δp for the stretch ratio 

1.5 of the tissue is graphically shown in the figure 4.8. Although the uncertainty in the 

Cauchy stress t due to δb is now higher than the uncertainty due to the δv, the 

uncertainty due to the δb can be easily reduced as much as possible to the maximum 

resolution of the range of the measuring device. Again, the uncertainty causing the 

Error-of-definition has nothing to do with those measuring variables.  Thus, if we 
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assume the uncertainties that come from those measurements are ignorable, the only 

factor that causes the deviation from the hyperelasticity is the inelastic behavior of the 

tissue shown in the data of force v. The fractional uncertainties have been obtained as 

%0.457100,00140.00.30610

%5.099100,0.101501.99050

%3.260100,0.085302.61690
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The Cauchy stress t for the stretch ratio 1.5, using equation (2.25) for the tissue, we got 

%6.069100,0.018190.29969 =×±=±=
avg

avg t
tttt δδ            (4.28) 

The results of the fractional uncertainties for the stretch ratio 1.5 of the tissue is shown 

in the figure 4.9. The table 4.10 shows the summary of the averages, standard 

deviations, and fractional uncertainties of the variables we have for stretch ratio 1.5. 

 

Table 4.10 
Fractional uncertainties for the measured data w, a, b, and p and obtained data λ and v 
by the motion controller and the Cauchy stress t for the stretch level 1.5 of the tissue. 
 

Data  λ1.5 v[volt] w[gram] a[mm] b[mm] p[volt] t[g/mm2]
Avg 1.50000 0.80873 0.39390 2.61690 1.99050 0.30610 0.29969 
S.D 0.00005 0.03529 0.00010 0.08530 0.10150 0.00140 0.01819 

F.U [%] 0.003 4.364 0.025 3.260 5.099 0.457 6.069 
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Fig.4.8.Uncertainties in t due to the δλ, δv, δw, δa, δb and δp for the stretch ratio 1.5 of 
the tissue specimen. 
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Fig.4.9. Fractional uncertainties in t due to the obtained data λ and v through the 
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 
data w, a, b and p for the stretch ratio of the tissue specimen. 
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Stretch Ratio 1.7: The tissue data corresponding to the stretch ratio 1.7 is 

shown in the table 4.11. It shows the times and stretch ratios obtained by the motion 

controller, forces vM obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the D versus 

T and where is a rate-related stretch history function scanned by a history 

cut-off th = 10 sec, and is the long-time stretch history function scanned by a 

history cut-off th = 400 sec. The table 4.12 shows the average values and standard 

deviations of stretch ratios and forces. They were used for calculating the absolute 

uncertainty and relative (or fractional) uncertainty for the stretch ratio 1.7 of the tissue. 

They have also been used to calculate the uncertainty in resulting Cauchy stresses t. 

 

Table 4.11 
The tissue data corresponding to the stretch ratio 1.7. It shows the times and stretch 
ratios obtained by the motion controller, forces obtained by the force transducer and 
calculated deviation, stretch-rate, and stretch histories. 
 

Time vM vavg D dλ/dt 

, 
2t

H
1t

H
2t

H

1t
H

)(
2

tH t  )(
1

tH t  )(
0

tH t  

[sec] 
� 

[volt] [volt] [volt] [/sec] th=10 th=400 th=1000 
910.9 1.62344 0.11019 0.00083 1.66228 1.39245 1.24823 

1240.7 1.50469 -0.00856 0.00280 1.68818 1.44272 1.36554 
1529.8 1.59719 0.08394 0.00602 1.65074 1.41311 1.40768 
1923.4 1.48406 -0.02919 0.00299 1.68751 1.44299 1.42215 
2082.0 1.49719 -0.01606 -0.00496 1.71875 1.56733 1.47176 
2232.2 1.55531 0.04206 0.00284 1.66541 1.51749 1.47697 
2740.2 1.55938 0.04613 0.00264 1.66506 1.45485 1.46351 
3219.2 1.48469 -0.02856 -0.00591 1.72022 1.53906 1.51388 
3707.4 1.50906 -0.00419 0.00126 1.67526 1.52407 1.51703 
4474.6 1.48344 -0.02981 -0.00331 1.69728 1.48998 1.51296 
4551.8 1.46656 -0.04669 -0.00023 1.70312 1.52069 1.52312 
4924.9 1.46312 -0.05013 0.00197 1.6724 1.46919 1.47641 
5297.4 

1.7 

1.44406 

1.51325

-0.06919 -0.00472 1.71694 1.51066 1.49391 
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Table 4.12 
The average values and standard deviations of stretch ratios and forces are used for 
calculating the absolute uncertainty and relative (or fractional) uncertainty for the 
stretch ratio 1.7 of the tissue. They have also been used to calculate the uncertainty in 
resulting Cauchy stresses t. 
 

Average Standard deviation 

λavg vavg ∆λ ∆v 
1.70002 1.51325 0.00003 0.05437 

 

The uncertainties δtλ, δtv, δtw, δta, δtb and δtp for the stretch ratio 1.7 of the 

tissue have been obtained as 
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Thus, the total uncertainty in t for the stretch ratio 1.7 is 
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, and the fractional uncertainties are 

%6.069100,0.038570.63553

%0.457100,00140.00.30610

%5.099100,0.101501.99050

%3.260100,0.085302.61690

%0.025100,0.000100.39390

%3.593100,0.054371.51325

% 0.002100,0.000031.70002
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The absolute uncertainties in in t due to the δλ, δv, δw, δa, δb, and δp for the 

stretch ratio 1.7 and the fractional uncertainties in t due to the obtained data λ and v 

through the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and 

measured data w, a, b, and p for the stretch ratio 1.7 are shown in the figure 4.10 and 
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figure 4.11, respectively. The table 4.13 shows the summary of the averages, standard 

deviations, and fractional uncertainties of the variables for the stretch ratio 1.7 of the 

tissue. 

 

Table 4.13 
Fractional uncertainties for the measured data w, a, b, and p and obtained data λ and v 
by the motion controller and the Cauchy stress t for the stretch level 1.7 of the tissue. 
 

Data  λ1.7 v[volt] w[gram] a[mm] b[mm] p[volt] t[g/mm2]
Avg 1.70002 1.51325 0.39390 2.61690 1.99050 0.30610 0.63553 
S.D 0.00003 0.05437 0.00010 0.08530 0.10150 0.00140 0.03857 

F.U [%] 0.002 3.593 0.025 3.260 5.099 0.457 6.069 
 

Although the fractional uncertainties due to the manually measuring process 

were constant, the fractional uncertainty due to the force v continuously decreased even 

though we got the data for the same displacements (stretch ratios). This tells that there 

is inelastic behavior on the tissue. Again, we don’t need to consider the uncertainties 

due to the manual measurements such as w, a, b, and p.  
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Fig.4.10.Uncertainties in t due to the δλ, δv, δw, δa, δb and δp for the stretch ratio 1.7 
of the tissue specimen. 
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Fig.4.11. Fractional uncertainties in t due to the obtained data λ and v through the 
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 
data w, a, b, and p for the stretch ratio 1.7 of the tissue specimen. 
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Stretch Ratio 1.9: The tissue data corresponding to the stretch ratio 1.9 is 

shown in the table 4.14. It shows the times and stretch ratios obtained by the motion 

controller, forces vM obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the D versus 

T and where is a rate-related stretch history function scanned by a history 

cut-off th = 10 sec, and is the long-time stretch history function scanned by a 

history cut-off th = 400 sec. The table 4.15 shows the average values and standard 

deviations of stretch ratios and forces. They were used for calculating the absolute 

uncertainty and relative (or fractional) uncertainty for the stretch ratio 1.9. They have 

also been used to calculate the uncertainty in resulting Cauchy stresses t. 

 

Table 4.14 
The tissue data corresponding to the stretch ratio 1.9. It shows the times and stretch 
ratios obtained by the motion controller, forces obtained by the force transducer and 
calculated deviation, stretch-rate, and stretch histories. 
 

Time vM vavg D dλ/dt 

, 
2t

H
1t

H
2t

H

1t
H

)(
2

tH t  )(
1

tH t  )(
0

tH t  

[sec] 
λ 

[volt] [volt] [volt] [/sec] th=10 th=400 th=100
0 

221.8 8.89437 1.54074 0.00377 1.86438 1.14375 1.0575 
473.0 7.92938 0.57575 -0.00244 1.90088 1.35842 1.14337

1167.5 7.79125 0.43762 0.00012 1.89895 1.35769 1.326 
1848.3 7.43750 0.08387 -0.00437 1.90309 1.40355 1.42373
2386.8 7.49844 0.14481 -0.00303 1.8863 1.54094 1.47655
2817.4 7.38219 0.02856 0.00106 1.88516 1.49814 1.50159
3379.4 7.28531 -0.06832 0.00110 1.88173 1.50878 1.49897
3461.6 7.01875 -0.33488 0.00303 1.88716 1.54695 1.51145
3782.4 7.06625 -0.28738 0.00126 1.8866 1.54495 1.51905
4324.1 6.67469 -0.67894 -0.00579 1.90822 1.49347 1.50724
4775.4 6.93156 -0.42207 0.00240 1.87418 1.52669 1.51081
5073.6 6.82406 -0.52957 -0.00224 1.88732 1.47706 1.50052
5371.8 

1.9 

6.86344 

7.35363

-0.49019 0.00398 1.87136 1.50703 1.51033
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Table 4.15 
The average values and standard deviations of stretch ratios and forces are used for 
calculating the absolute uncertainty and relative (or fractional) uncertainty for the 
stretch ratio 1.9. They have also been used to calculate the uncertainty in resulting 
Cauchy stresses t. 
 

Average Standard deviation 

λavg vavg λ∆ ∆v 
1.90001 7.35363 0.00003 0.59756 

 

The uncertainties for the stretch level 1.9 have been calculated as 
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Thus, the total uncertainty in t for the stretch ratio 1.9 is 
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, and the fractional uncertainties are 

%6.069100,0.209493.45168

%0.457100,00140.00.30610

%5.099100,0.101501.99050

%3.260100,0.085302.61690

%0.025100,0.000100.39390

%8.126100,0.597567.35363

% 0.002100,0.000031.90001
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The absolute uncertainties in in t due to the δλ, δv, δw, δa, δb, and δp for the 

stretch ratio 1.9 and the fractional uncertainties in t due to the obtained data λ and v 

through the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and 

measured data w, a, b, and p for the stretch ratio 1.9 are shown in the figure 4.12 and 
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figure 4.13, respectively. The table 4.16 shows the summary of the averages, standard 

deviations, and fractional uncertainties of the variables for the stretch ratio 1.9 of the 

tissue. 

Note that the fractional uncertainty due to the force v has increased. Although 

the fractional uncertainty due to the force v has been decrease as stretch ratio got 

bigger, the fractional uncertain due to the force v for the stretch ratio 1.9 has increased. 

This is due to the tremendous nonlinear behavior of the tissue.  

 

Table 4.16 
Fractional uncertainties for the measured data w, a, b, and p, and obtained data λ and v 
by the motion controller and the Cauchy stress t for the stretch level 1.9 of the tissue. 
 

Data  λ1.9 v[volt] w[gram] a[mm] b[mm] p[volt] t[g/mm2]
Avg 1.90001 7.35363 0.39390 2.61690 1.99050 0.30610 3.45168 
S.D 0.00003 0.59756 0.00010 0.08530 0.10150 0.00140 0.20949 

F.U [%] 0.002 8.126 0.025 3.260 5.099 0.457 6.069 
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Fig.4.12.Uncertainties in t due to the δλ, δv, δw, δa, δb and δp for the stretch ratio 1.9 
of the tissue specimen. 
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Fig.4.13. Fractional uncertainties in t due to the obtained data λ and v through the 
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured 
data w, a, b, and p for the stretch ratio 1.9 of the tissue specimen. 
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For tissue specimen, we have summarized the values of the absolute 

uncertainties and fractional uncertainties for each stretch ratio in the table 4.17. The 

absolute uncertainties are graphically shown in the figure 4.14 and figure 4.15. The 

fractional uncertainties are graphically shown in the figure 4.16. Note that the 

fractional uncertainty comes from inelastic behavior noticed from the force data is 

significant but the fractional uncertainty comes from the data of stretch ratio λ is 

ignorable. The fractional uncertainties for the static measured variables w, a, b, and p 

are constants for all selected stretch levels. 

Because of the calculation process to get the absolute Cauchy stress, the 

uncertainties in the Cauchy stress t due to δtλ , δtv , δtw , δta , δtb , and δtp increase as 

the stretch ratio gets bigger. If we look at the fractional uncertainties shown in figure 

4.16, the fractional uncertainties related to the manual measurements such as the 

reference-weight measures w, the voltage measures p to check the resolution of the 

force transducer, and the width and the length measures a and b, respectively are 

constant for all stretch levels. The fractional uncertainty due to the measurement of the 

force measured by force transducer is decreasing until the stretch level 1.7 even though 

we got the data at the same amount of the displacements. Thus, we can conclude that 

the uncertainty is due to the inelastic behavior. If the uncertainty is totally due to the 

uncertainty due to the noise or resolution of the force transducer, it won’t have any 

systematic trend, that is, there would be no decreasing or increasing trends of the 

fractional uncertainty due to the force v. Note, again, that any uncertainty due to the 

physical measurements can be reduced as much as the negligible levels, i.e., with 

proper assumption, it can be ignored for the error analysis.  
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Table 4.17 
The summary of absolute uncertainties and fractional uncertainties for each stretch 
ratio of the tissue specimen. 
 

 1.1 1.3 1.5 1.7 1.9 

λavg 1.10001 1.30000 1.50000 1.70002 1.90001 
∆λ 0.00008 0.00005 0.00005 0.00003 0.00003 

∆λ/λavg 0.007 0.004 0.003 0.002 0.002 
λ 

δtλ [g/mm2] 0.000002 0.000005 0.000010 0.000011 0.000054 

vavg 0.08403 0.37761 0.80873 1.51325 7.35363 
∆v 0.02572 0.02523 0.03529 0.05437 0.59756 

∆v/ vavg [%] 30.608 6.681 4.364 3.593 8.126 
f 

[volt] 

δtv [g/mm2] 0.00699 0.00810 0.01308 0.02283 0.28049 

wavg 0.3939 
∆w 0.0001 

∆w/ wavg [%] 0.025 
w 
[g] 

δtw [g/mm2] 0.000006 0.00003 0.00008 0.00016 0.00088

aavg 2.6169 
∆a 0.0853 

∆a /aavg [%] 3.260 
a 

[mm] 

δta [g/mm2] 0.00074 1.30933 2.31132 3.34170 4.45520

bavg 1.9905 
∆b 0.1015 

∆b /bavg [%] 5.099 
b 

[mm] 

δtb [g/mm2] 0.00116 0.00618 0.01528 0.03241 0.17601

pavg 0.30610 
∆p 0.00140 

∆p/ pavg [%] 0.457 
p 

[volt] 

δtp [g/mm2] 0.00010 0.00055 0.00137 0.00291 0.01579

tavg 0.02284 0.12127 0.29969 0.63553 3.45168

∆t 0.00139 0.00736 0.01819 0.03857 0.20949t 
[g/mm2] 

∆t/ tavg [%] 6.069 6.069 6.069 6.069 6.069 
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Fig.4.14. The (absolute) uncertainties in the Cauchy stress t due to the reference-weight 
measures w, the width a, the length b, and the voltage measures p to check the 
resolution of the force transducer. 
 

 
Fig.4.15. The (absolute) uncertainties in the Cauchy stress t due to the stretch ratio data 
λ, and the force data v of the tissue specimen. These values are obtained by the motion 
controller/driver (ESP7000, Newport, Inc).  
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Fig.4.16. Fractional uncertainties in the data of the λ, v, w, a, b, p, and t of the tissue 
specimen. 
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As mentioned in the prior chapter, like the rubber-like materials, biotissues 

have randomly arranged long chain molecules called elastin. Thus, whenever the tissue 

is stretched, there must be rearrangements of elastin, i.e., the randomly arranged elastin 

gets close to the ordered configuration so that it causes the decrease of entropy. The 

reason that the uncertainties especially in the low stretch ranges are important for the 

rubber-like materials and biotissues, although the stretch ratio λ = 1.3 is not a low 

strain range for none rubber-like materials, is that their behaviors in the low strain 

range are primarily related to the entropy. The energy storage at the low range of stain 

is mostly due to the entropy alone. Thus, in the low stretch range, the strain energy can 

hardly be determined by the experimentation. That’s why there has been a deficiency 

in understanding of the exclusive nature of the stain energy function for the low strain 

ranges of those materials. At the higher strain ranges, the energy storage is due to both 

the entropy and the molecular chemical bonds. That is, if we stretch to the higher strain 

ranges, we make the long chain molecules rearranged in more ordered manner as well 

as we stretch the chemical bonds, too. Thus, the energy storage is due to both the 

entropy and the molecular chemical bonds. (John C. Criscione, 2003). Unlikely to the 

rubber case, the fractional uncertainties in the total Cauchy stress t for stretch ratio 

from 1.1 to 1.9 are the same as 6.07 %. It is also because of the difference of the 

calculation process of the Cauchy stress t. 
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Error-of-Definition 

The approximation of hyperelasticity for modeling the biotissues or rubber-like 

materials causes the uncertainty. It is called the Error-of-Definition. Because the 

biotissues mostly behave like hyperelastic, most people use the hyperelastic 

assumption even though it’s not truly hyperelastic. Although there is no perfect elastic 

or hyperelastic material in the world, the assumption would be useful as long as we 

quantify the uncertainty in it. Again, similarly to rubber, we have assumed that the 

uncertainty due to the inelastic behavior of the tissue is due to the Time, Stretch-Rate, 

and Stretch- History. These have been checked by the multivariable linear regression 

analysis. The multivariable regression analysis, goodness-of-fit test and test of 

significance called t-test have been used for the analysis. As we mentioned in prior 

chapter, we have used the rate-related stretch history instead of using the stretch-

rate obtained by simple calculation. Note again that the stretch rate and rate-related 

stretch history are inversely related which m  the rate-related stretch 

history is exactly the opposite of the sign of the stretch-rate. To do the multivariable 

linear regression analysis, we have to norma ensionalize both the 

dependent variable that is the deviation D and the independent variables that are the 

time T, rate-related stretch history , and long-time stretch history . Although 

the new stretch history data has been also normalized, it hasn’t been used for the 

multivariable linear regression analysis because there is high correlation between the 

time T and the new stretch history  that can give rise to the multicollinearity. 

 

 

2t
H  

eans the sign of

lize or nondim
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0t
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Multivariable Linear Regression Analysis 

The multivariable linear regression analysis enables us to employ the multiple 

variables. Since it is a linear analysis, the first order functional relationship of the 

independent and dependent variables was investigated. Note that we assumed that there 

are linear relationships between them. Actually, one of the purposes of the regression 

model is to get the maximum effect with the minimum number of independent 

variables. Thus, the ideal regression model should predict the future values or unknown 

values between the known values with the minimum errors and the minimum number 

of independent variables. 

For the regression analysis, there were several steps we should follow; first, we 

used the whole independent variables T , and . Secondly, we checked the , 
2t

H
1t

H 2R  

as well as calculated t-values that are corresponding to the T, , and . Lastly, if 

there was an insignificant variable, we carriedout regression analysis again without the 

insignificant variable. It is important to know that the excluding the insignificant 

independent variable doesn’t mean that the excluded independent variable doesn’t 

affect the dependent variable. There would be a moderate correlation coefficient 

between the independent variables. To avoid the multicollinearity which causes the 

increasing of standard errors and lower the goodness-of-fit, we have checked the 

correlation coefficients between the independent variables. 

Similarly, we have set the level of significance α as 0.1 so that the confidence 

interval (C.I) was 

      C.I = 100(1- 0.1) = 90 %                                (4.45) 

2t
H

1t
H
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This represents the probability (90 % of probability) that the partial regression 

coefficient is likely to be contained within that interval. It physically means that, iβ̂  

for the unknown value β , the true value  will fall into the range of  90 

times out of the 100 where is expressed as (for example, independent variable T) 

β̂   
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ˆ Stc±
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                           (4.46) 

To carry out the multivariable linear regression analysis, we have 

nondimensionalized the data to avoid the scale-dependency which cause the partial 

regression coefficients to be nonsense. We have used  L2-norm for 

nondimensionalization as 

2/12
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ixx                                                (4.47) 

Stretch Ratio 1.1: The nondimensionalized data for the stretch ratio 1.1 of the 

rubber specimen is shown in the table 4.18. The dependent variable is deviation D and 

the independent variables are time T, rate-related stretch history function , and 

long-time stretch history function . Since the correlation coefficients between the T 

and is very high as 0.81 and the correlation coefficient between the and is 

also very high as 0.89, although the correlation coefficient between the D and is 

fairly high, we only use the T, , and as independent variables for the m

linear regression analysis. 

 

2t
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1t
H
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H
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H

2t
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Table 4.18 
Nondimensionalized data using L2-norm for the stretch ratio 1.1 of the tissue 
specimen. 
 

Dependent variable Independent variables 
D 2t

H  
1t

H  
0t

H  λ 
vM - vavg 

T 
th=10 th=400 th=1000 

0.29500 0.01058 0.24582 0.18016 0.17959 
0.19470 0.02424 0.24340 0.20441 0.18968 
0.22512 0.05034 0.23898 0.23879 0.20657 
0.29801 0.05664 0.23930 0.23495 0.20763 
0.10364 0.08004 0.24792 0.23449 0.22232 
0.14008 0.11250 0.24255 0.24801 0.24672 
0.21598 0.11857 0.24310 0.24111 0.24519 
0.07322 0.14340 0.24193 0.23852 0.24836 
0.03979 0.17443 0.24346 0.25741 0.25821 
0.06418 0.18663 0.24492 0.25472 0.25779 
0.09752 0.21441 0.24264 0.24300 0.25628 
-0.08471 0.28796 0.23493 0.26121 0.26578 
-0.15147 0.31200 0.24509 0.26208 0.26524 
-0.21833 0.35594 0.24238 0.24564 0.26424 
-0.41270 0.39288 0.23953 0.25424 0.25947 
-0.40357 0.40423 0.24007 0.25002 0.25975 

1.1 

-0.47646 0.45158 0.24674 0.25967 0.26358 
Correlation Coefficients -0.96 0.06 -0.59 -0.70 

 

Since the number of sample for the stretch ratio1.1 is 17, the degree-of-freedom 

(DOF) for t is n-k-1 = 17-3-1 = 13. Thus, the critical t value for the stretch ratio 1.1 is 

 (for two-tailed test). 

Thus if we have the following condition as 

771.1)13;05.0()1;2/( ==−− cknc tt α

771.11 >−−knt                                             (4.48) 

we reject the null hypothesis and accept the alternative hypothesis which means that 

the specific independent variable affect the dependent variable. The result of 

multivariable linear regression analysis using entire independent variables T, 

and is shown in the table 4.19. 
2t

H
1t

H
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Table 4.19 
Result of multivariable linear regression analysis for stretch ratio 1.1 of tissue 
specimen with entire independent variables T, and
 

 se t-value 

2t
H

1t
H . 

iβ̂  2R  
α̂  0.70 1.37 0.51 
T -1.89 0.17 -11.30 

2t
H  -4.11 5.30 -0.78 

1t
H  2.78 1.63 1.70 

0.93 

 

Although the 2R  is high, the t-values of and didn’t satisfy the above condition, 

that is they are insignificant to cause the deviation. In addition, the sign of the partial 

regression coefficient of the is positive which is unexpected result; we already 

know from the results for whole stretch levels that as the stretch history function gets 

bigger, the deviation gets smaller. It should be negative. So we execute a regression 

analysis without and . Since the number of independent variables are reduced 

to 1, we have a new critical t-value as 

2t
H

1t
H  

1t
H

2t
H

1t
H

753.1)15;05.0()1;2/( ==−− cknc tt α  and we should 

have a following new constraint as 

753.11 >−−knt                                            (4.49) 

to reject the null hypothesis and accept the alternative hypothesis. The result of 

multivariable linear regression analysis for stretch ratio 1.1 of tissue specimen with 

independent variable T  is shown in the table 4.20. 
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Table 4.20 
Result of multivariable linear regression analysis for stretch ratio 1.1 of tissue 
specimen with independent variable T. 
 

 se t-value iβ̂  2R  
α̂  0.34 0.03 10.44 
T -1.70 0.13 -13.09 

0.92 

 

Thus the final regression model for the stretch ratio 1.1 can be expressed as 

TD 70.134.0ˆ
1.1 −=                                       (4.50) 

The optimal independent variables that can expect the dependent variable is T and the 

ability to explain the deviation is 92 %. The rest 8 % can’t be explained by this model. 

From the model, we have noticed that the time T is the substantial factor that causes the 

deviation from the hyperelasticity. Note that this doesn’t mean that the time is the only 

factor that causes the deviation. 

Stretch Ratio 1.3: The nondimensionalized data for the stretch ratio 1.3 of the 

tissue specimen is shown in the table 4.21. The dependent variable is deviation D and 

the independent variables are time T, rate-related stretch history function , and 

long-time stretch history function . Since the correlation coefficient between T and 

is very high as 0.9, we excluded the or the multiple linear regression analysis. 
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Table 4.21 
Nondimensionalized data using L2-norm for the stretch ratio 1.3 of the tissue specimen. 
 

Dependent variable Independent variables 
D 2t

H  
1t

H  
0t

H  λ 
vM - vavg 

T 
th=10 th=400 th=1000 

0.31197 0.04449 0.30317 0.29330 0.24609 
0.52745 0.06910 0.30119 0.27693 0.25743 
0.47255 0.08810 0.30296 0.26603 0.27009 
-0.10333 0.24227 0.29904 0.30553 0.31591 
-0.13065 0.26593 0.30628 0.31888 0.31517 
0.14350 0.29242 0.29636 0.31480 0.31627 
-0.13466 0.33743 0.30367 0.30426 0.31889 
-0.15422 0.37523 0.30350 0.31077 0.31746 
-0.24034 0.38123 0.29482 0.30546 0.31622 
-0.26390 0.41945 0.29630 0.29858 0.31210 

1.3 

-0.42837 0.44116 0.30902 0.31745 0.31811 
Correlation Coefficients -0.93 -0.06 -0.79 -0.85 

 

In this case, the number of sample for the stretch ratio1.3 is 11 and the degree-

of-freedom (DOF) for t is n-k-1 = 11-3-1 = 7. Thus, the critical t value for the stretch 

ratio 1.3 is 895.1)7;05.0()1;2/( ==−− cknc tt α  (for two-tailed test). 

Thus if we have a t-value that satisfies the following constraint as 

895.11 >−−knt                                            (4.51) 

we reject the null hypothesis and accept the alternative hypothesis which means that 

the specific independent variable affect the dependent variable. The result of 

multivariable linear regression analysis for the stretch ratio 1.3 of the tissue specimen 

using entire independent variables T and is shown in the table 4.22. 

 
 
 
 
 
 

, 
2t

H
1t

H
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Table 4.22 
Result of multivariable linear regression analysis for stretch ratio 1.3 of tissue 
specimen with entire independent variables T, and
 

 se t-value 

2t
H

1t
H . 

iβ̂  2R  
α̂  3.63 2.55 1.42 
T -2.01 0.47 -4.28 

2t
H  -7.36 8.57 -0.86 

1t
H  -2.85 3.50 -0.81 

0.86 

 

Although the 2R  is reasonably high, the t-values of and didn’t satisfy the above 

constraint. So we execute a regression analysis only with the T. Since the number of 

independent variables are reduced to 1, 

2t
H

1t
H  

833.1)9;05.0()1;2/( ==−− cknc tt α , we should have a 

new constraint as 

833.11 >−−knt                                            (4.52) 

to reject the null hypothesis and accept the alternative hypothesis. The result of 

multivariable linear regression analysis for stretch ratio 1.3 of tisse specimen with 

independent variable T is shown in the table 4.23. 

 

Table 4.23 
Result of multivariable linear regression analysis for stretch ratio 1.3 of tissue 
specimen with independent variables T . 
 

 se t-value iβ̂  2R  
α̂  0.64 0.09 6.79 
T -2.29 0.30 -7.72 

0.87 

 

 

Thus the final regression model for the stretch ratio 1.3 can be expressed as 

TD 29.264.0ˆ
3.1 −=                                          (4.53) 
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Again, the optimal independent variable that can expect the dependent variable is T. In 

addition, its ability to explain the deviation is 87 %. The rest 13 % can’t be explained 

by this model whatsoever. From the regression results and the model, we figured out 

that the rate-related stretch history and long-time stretch history are not effective 

factors that cause the deviation from hyperelasticity for the stretch ratio 1.1 and 1.3 of 

the tissue. 

Stretch Ratio 1.5: The nondimensionalized data for the stretch ratio 1.5 of the 

tissue specimen is shown in the table 4.24. The dependent variable is deviation D and 

the independent variables are time T, rate-related stretch history function , and 

long-time stretch history function . Since the correlation coefficient between the T 

and is high enough as 0.8 to cause the multicollinearity and also the correlation 

coefficient between the and is very high as 0.9, we carried out the multiple 

linear regression analysis with the , and . Since the number of sample for the 

stretch ratio1.5 is 17, the degree-of-freedom t is n-k-1 = 17-3-1 = 13. Thus, 

the critical t value for the stretch ratio 1.5 is 

2t
H

1t
H

0t
H

1t
H

0t
H  

T, 
2t

H
1t

H

 (DOF) for 

771.1)13;05.0()1;2/( ==−− cknc tt α  (for two-

tailed test). 

Thus if t-value corresponding to a certain variable satisfies the following condition as  

771.11 >−−knt                                          (4.54) 

we reject the null hypothesis and accept the alternative hypothesis which means that 

the specific independent variable affect the dependent variable. 
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Table 4.24 
Nondimensionalized data using L2-norm for the stretch ratio 1.5 of the tissue specimen. 
 

Dependent variable Independent variables 
D 2t

H  
1t

H  
0t

H  λ 
vM - vavg 

T 
th=10 th=400 th=1000 

0.59127 0.00522 0.23681 0.17400 0.17317
0.40969 0.03058 0.23843 0.21044 0.18805
0.42301 0.05819 0.23629 0.23180 0.20450
-0.00652 0.10107 0.24366 0.24913 0.23814
0.07538 0.12415 0.24493 0.24711 0.24149
0.07538 0.13033 0.24332 0.24919 0.24106
-0.06851 0.15344 0.23992 0.25104 0.24485
-0.08622 0.18769 0.24807 0.25448 0.25534
-0.29875 0.22091 0.24925 0.25802 0.25903
-0.09288 0.23598 0.24257 0.24759 0.25593
-0.12164 0.24081 0.24362 0.24791 0.25818
-0.03089 0.30179 0.24281 0.25441 0.25720
-0.12384 0.31072 0.24424 0.24115 0.25913
-0.13269 0.31330 0.24072 0.24176 0.26056
-0.14374 0.32581 0.24545 0.24998 0.25473
-0.19688 0.40089 0.24119 0.24517 0.25083

1.5 

-0.27218 0.42325 0.24143 0.25582 0.25747
Correlation Coefficients -0.83 -0.69 -0.85 -0.95 

 
 
 

The result of multivariable linear regression analysis for the stretch ratio 1.5 of 

the tissue specimen using entire independent variables T, and is shown in the 

table 4.25. 
 

Table 4.25 
Result of multivariable linear regression analysis for stretch ratio 1.5 of tissue 
specimen with entire independent variables T, and
 

 se t-value 

2t
H

1t
H

2t
H

1t
H . 

iβ̂  2R  
α̂  5.85 1.65 3.55 
T -1.00 0.20 -5.02 

2t
H  -17.48 8.15 -2.15 

1t
H  -5.75 2.63 -2.18 

0.85 
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For the stretch ratio 1.5 of the tissue, the deviation is caused by most of the 

independent variables, say, T, , and . The most effective independent variable 

is , that is, the deviation is mostly caused by the rate of stretch. The second 

effective factor that causes the deviation is , and lastly, the time T. Thus, the final 

regression model for the stretch ratio 1.5 can be expressed as 

2t
H

1t
H

2t
H

1t
H

12
75.548.1785.5ˆ

5.1 tt HHTD −−−=                         (4.55) 

Their ability to explain the deviation is 85 %. The rest 15 % can’t be explained by this 

model. 

Stretch Ratio 1.7: The nondimensionalized data for the stretch ratio 1.7 of the 

tissue specimen is shown in the table 4.26. The dependent variable is deviation D and 

the independent variables are time T, rate-related stretch history function , and 

long-time stretch history function . Since the correlation coefficient between the 

and is high as 0.8 and the correlation coefficient between the T and is 

reasonably high as 0.75, we have performed the error analysis based on the data T,

and . In this case, since the number of sample for the stretch ratio1.7 is 13, the 

degree-of-freedom (DOF) for t is n-k-1 = 13-3-1 = 9. Thus, the critical t value for the 

stretch ratio 1.7 is 

2t
H

1t
H

1t
H

0t
H

0t
H

2t
H , 

1t
H

833.1)9;05.0()1;2/( ==−− cknc tt α  for two-tailed test. 

Thus if we have a t-value that satisfies the following condition as 

833.11 >−−knt                                             (4.56) 

we reject the null hypothesis and accept the alternative hypothesis which means that 

the specific independent variable affect the dependent variable. 
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Table 4.26 
Nondimensionalized data using L2-norm for the stretch ratio 1.7 of the tissue specimen. 
 

Dependent variable Independent variables 
Deviation Stretch History H(t) λ 
vM - vavg 

Time th=10 th=400 th=1000 
0.58510 0.07633 0.27336 0.26019 0.23790
-0.04543 0.10397 0.27762 0.26958 0.26026
0.44572 0.12819 0.27146 0.26405 0.26829
-0.15497 0.16118 0.27751 0.26964 0.27105
-0.08525 0.17447 0.28265 0.29287 0.28050
0.22335 0.18705 0.27387 0.28356 0.28149
0.24496 0.22963 0.27382 0.27185 0.27893
-0.15162 0.26977 0.28289 0.28759 0.28853
-0.02222 0.31068 0.27549 0.28479 0.28913
-0.15826 0.37497 0.27912 0.27842 0.28835
-0.24788 0.38144 0.28008 0.28415 0.29029
-0.26615 0.41271 0.27502 0.27453 0.28139

1.7 

-0.36735 0.44392 0.28235 0.28228 0.28472
Correlation Coefficients -0.74 -0.75 -0.60 -0.68 

 

 

The result of multivariable linear regression analysis for the stretch ratio 1.7 of 

the tissue specimen using entire independent variables T, and is shown in the 

table 4.27. 

 

Table 4.27 
Result of multivariable linear regression analysis for stretch ratio 1.7 of tissue 
specimen with entire independent variables T, and
 

 se t-value 

2t
H

1t
H

2t
H

1t
H . 

iβ̂  2R  
α̂  11.28 2.95 3.82 
T -1.05 0.35 -3.03 

2t
H  -47.23 13.40 -3.52 

1t
H  7.42 5.95 1.25 

0.73 
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According to the t-value, the effective independent variables that are significant are T 

and . So we have carried out a regression analysis again with the T and . Since 

the number of independent variables are reduced to 2, , 

we should have a new constraint as 

2t
H

2t
H

812.1)10;05.0()1;2/( ==−− cknc tt α

812.11 >−−knt                                            (4.57) 

to reject the null hypothesis and accept the alternative hypothesis. The result of 

multivariable linear regression analysis for stretch ratio 1.7 of the tissue specimen with 

independent variables T and is shown in the table 4.28. 

 

Table 4.28 
Result of multivariable linear regression analysis for stretch ratio 1.7 of tissue 
specimen with independent variables T and . 
 

 se t-value 

2t
H

2t
H

iβ̂  2R  
α̂  10.42 2.96 3.52 
T -0.97 0.35 -2.77 

2t
H  -36.77 10.76 -3.42 

0.71 

 

 

Thus the  regression model for the stretch ratio 1.7 of the tissue can be expressed as 

2
77.3697.042.10ˆ

7.1 tHTD −−=                                 (4.58) 

The regression result says that the ability of the independent variables T and  to 

explain the deviation is 71 %. The rest 29 % can’t be explained by this m

addition, we found that the optimal independent variables that can expect the 

dependent variable D are T and . Note again that this doesn’t mean that the long-

2t
H

odel. In 

2t
H
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time stretch history doesn’t give rise to the deviation from the hyperelasticity; it is just 

insignificant relative to the significant independent variables T and . Note that the 

sign of the partial regression coefficient for the is exactly the opposite of the 

stretch-rate. 

Stretch Ratio 1.9: The nondimensionalized data for the stretch ratio 1.9 of the 

tissue specimen is shown in the table 4.29. The dependent variable is deviation D and 

the independent variables are time T, rate-related stretch history function , and 

long-time stretch history function . Because the correlation coefficient between the 

T and is very high as 0.84 and also the correlation coefficient between the and 

is quite high as 0.93, we considered the independent variables as T, , and 

only for the multiple linear regression analysis. Since the number of sample fo

stretch ratio1.9 is 13, the degree-of-freedom (DOF) for t is n-k-1 = 13-3-1 = 9. Thus, 

the critical t value for the stretch ratio 1.9 is 

2t
H

2t
H

2t
H

1t
H

0t
H

1t
H

0t
H

2t
H

1tH  

r the 

833.1)9;05.0()1;2/( ==−− cknc tt α  (for two-

tailed test). 

Thus if we have a t-value that satisfies the following condition as 

833.11 >−−knt                                               (4.59) 

we reject the null hypothesis and accept the alternative hypothesis which means that 

the specific independent variable affect the dependent variable. The result of 

multivariable linear regression analysis for the stretch ratio 1.9 of the tissue specimen 

using the entire independent variables T and is shown in the table 4.30. 

 

, 
2t

H
1t

H
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Table 4.29 
Nondimensionalized data using L2-norm for the stretch ratio 1.9 of the tissue specimen. 
 

Dependent variable Independent variables 
Deviation Stretch History H(t) λ 
vM - vavg 

Time th=10 th=400 th=1000 
0.74432 0.01796 0.27397 0.21749 0.20515 
0.27814 0.03830 0.27933 0.25831 0.22181 
0.21141 0.09454 0.27905 0.25817 0.25724 
0.04052 0.14967 0.27966 0.26689 0.27620 
0.06996 0.19328 0.27719 0.29302 0.28644 
0.01380 0.22815 0.27702 0.28488 0.29130 
-0.03300 0.27366 0.27652 0.28690 0.29079 
-0.16178 0.28032 0.27732 0.29416 0.29321 
-0.13883 0.30630 0.27724 0.29378 0.29469 
-0.32799 0.35016 0.28041 0.28399 0.29240 
-0.20390 0.38671 0.27541 0.29031 0.29309 
-0.25583 0.41085 0.27734 0.28087 0.29109 

1.9 

-0.23681 0.43500 0.27500 0.28657 0.29300 
Correlation Coefficients -0.90 -0.23 -0.88 -0.91 

 

 

Table 4.30 
Result of multivariable linear regression analysis for stretch ratio 1.9 of rubber 
specimen with entire independent variables T, and
 

 se t-value 

2t
H

1t
H . 

iβ̂  2R  
α̂  13.56 1.91 7.10 
T -1.58 0.09 -16.72 

2t
H  -44.76 6.46 -6.93 

1t
H  -2.77 0.94 -2.96 

0.98 

 

For the stretch level 1.9, the deviation is quite depend on the whole independent 

variables such as T , and . Since the , 
2t

H
1t

H 2R  is very high as 98 %, the model is 

very good to predict the deviation for the stretch level 1.9 and this model can explain 
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most of the deviation as 98 %. The rest 2 % can’t be explained by this model. The final 

regression model for the stretch ratio 1.9 can be expressed as 

12
77.276.4458.156.13ˆ

9.1 tt HHTD −−−=                         (4.60) 

The most significant factor that causes the deviation from the hyperelasticity is the 

rate-related stretch history which is directly related to the rate of stretch. The second 

effective factor is the long-time stretch history, and lastly the time. 

 

Nonsense of Correlation Coefficients 

We have checked the correlation coefficients between the deviation D 

(dependent variable) and independent variables T , and  The summary of 

the correlation coefficients for each stretch ratio for the tissue is shown in the table 

4.31.  

 

Table 4.31 
The summary of correlation coefficients between the deviation D and the time T, rate-
related stretch history , long-time stretch history , and the new stretch history 

. 
 

Correlation Coefficients: D between 

, 
2t

H , 
1t

H
0t

H .

2t
H

1t
H

0t
H

2t
H  

1t
H  

0t
H  λ T 

th=10 th=400 th=400 
1.1 -0.96 0.06 -0.59 -0.70 
1.3 -0.93 -0.06 -0.79 -0.85 
1.5 -0.83 -0.69 -0.85 -0.95 
1.7 -0.74 -0.75 -0.60 -0.68 
1.9 -0.90 -0.23 -0.88 -0.91 
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Indisputably, if the correlation coefficient between a certain dependent variable and 

independent variable is high, then we naturally know there is high relationship between 

them. But again, it merely tells a relationship between the two variables. The 

correlation coefficient just shows whether there is a relationship between one variable 

and the other or not. It is a relationship between only two variables. Since we have too 

many variables and scattering in the data, the assessment and ordering of the 

correlation coefficients are not meaningful. If we compare the results obtained by the 

multiple linear regression analysis and the correlation coefficients shown in the table 

4.31, they don’t have dependency between them. Again, it says that, in this kind of 

study, the correlation coefficient is meaningless. 
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CHAPTER V 

PREDICTABILITY 

 

Basic Principle 

The test of the predictability should be involved in the final step for any 

regression analysis to evaluate how well the derived regression model forecasts the 

intermediate or future values. The best way to accomplish this work is to compare the 

predicted result to the data that were not used for the formulation of the regression 

models. We have checked the predictive capability by comparing the unused 

(deviation) data in the randomized stretch-controlled protocol of the rubber and tissue 

to the predicted deviation obtained by the regression models. The following equation 

(5.1) has been used for the interval prediction. 

                                  (5.1) 

where  is an interval forecasting critical value for the with a 100(1-α) 

confidence,  is the predicted value on a certain point, is a critical t value 

with a degree of freedom n-k-1, sf

variance of ei and the variance of . It can be shown as 

fkncffc stDD ⋅±= −− )1;2/(
ˆˆ

α

fcD̂ fD̂

fD̂ )1;2/( −−knct α  
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Rubber 

Stretch Ratio 1.1: For λ = 1.1 of rubber specimen, we have = 1.761, 

where α = 0.1, n = 17, k = 2 (for T and ). We used the regression model for λ = 1.1 

which is to obtain the which is a point forecasting 

value. By using the equation (5.2), we got sf = 0.02906 and = 0.05117 for 

λ = 1.1 of the rubber specimen. The table 

ratio 1.1 of the rubber specimen. It also shows the tim  and rate-related stretch 

history that mainly affect the deviation from the hyperelasticity and inelastic 

deviation , point forecasting  and prediction deviation

We have redefined the deviation from the hyperelasticity as inelastic deviation 

which is, as we have used above, the difference between the measured (by force 

transducer) and averaged force. If the rubber specimen was truly elastic, all the 

measurements would be equal to the average so that the inelastic deviation would be 

zero. To check if we missed any variables for the prediction, we have newly defined 

the  as prediction deviation which is difference between the observed 

 and the point forecasting . Although we have found that the inelastic 

deviation varies systematically and quantified it, the models that we have derived can 

never be perfect; there could be any missed variables. The question is “Is the prediction 

deviation random or systematic?”. 

 

 

)1;2/( −−knct α

2t
H

2
37.2640.166.6ˆ

1.1 tHTD −−= fD̂  

fknc st ⋅−− )1;2/(α

5.1 shows the unused data for the stretch 

e T

2t
H

iD fD̂ fi DD ˆ− . 

fi DD ˆ−

deviation Di fD̂
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Table 5.1 
Unused data for the stretch ratio 1.1 of the rubber specimen. It shows the time T and 
rate-related stretch history that mainly affect the deviation from the hyperelasticity 

and inelastic deviation , point forecasting  and prediction deviation . 
 

T 

2t
H

iD fD̂ fi DD ˆ−

fD̂  fi DD ˆ−  
2t

H  iD  
λ_unused 

[sec] th=10 vM - vavg[volt] [volt] [volt] 
13.6 1.06411 0.18645 0.07771 0.10874 

146.9 1.08978 0.09457 0.05507 0.03950 
297.9 1.12984 0.03239 0.02064 0.01175 
300.7 1.11385 0.03739 0.03339 0.00401 
307.1 1.10001 0.04614 0.04436 0.00178 
324.3 1.09918 0.06051 0.04475 0.01576 
612.2 1.11363 0.02458 0.02864 -0.00406 
697.3 1.10144 0.05770 0.03705 0.02065 
989.9 1.13942 0.00207 0.00205 0.00003 

1011.2 1.08977 0.04301 0.04143 0.00158 
1409.8 1.09719 0.02364 0.02920 -0.00556 
1473.8 1.10285 0.03864 0.02366 0.01498 
2161.9 1.1065 -0.01136 0.00987 -0.02123 
2315.9 1.10143 -0.00511 0.01149 -0.01660 
2669.0 1.09958 -0.00199 0.00740 -0.00938 
3536.5 1.15257 -0.05699 -0.04870 -0.00829 
3863.7 1.1079 -0.02761 -0.01813 -0.00948 
4849.7 1.139 -0.05136 -0.05858 0.00723 
4991.4 1.13732 -0.04386 -0.05948 0.01562 

1.1 

5600.0 1.08945 -0.04417 -0.03079 -0.01337 
 

According to the result shown in the table 5.1 and the figure 5.1, the prediction 

deviation looks quite random because the trends of the observed deviation and 

predicted deviation are almost the same. This tells what we have missed is random and 

we don’t perfectly predict every point. Those points are off in a random way. If those 

points are off in a systematic way, we would have possibly missed a certain variable 

that gives rise to the inelastic deviation. The prediction deviation is shown in the figure 

5.2. All points for the stretch ratio of the rubber specimen are near zero but they are off 

in a random way. 
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Fig.5.1. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting   using the regression model. For λ = 1.1 of the rubber specimen, 

= 0.05117. 
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Fig.5.2. It shows the prediction deviation for the stretch ratio 1.1 of the rubber 
specimen. Note that all points are gathered at near zero but off in a random way.  
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Stretch Ratio 1.3: For λ = 1.3 of rubber specimen, we have = 1.860, 

where α = 0.1, n = 11, k = 2 (for T and ). We used the regression model for λ = 1.3 

which is to obtain the which is a point forecasting 

value. We have sf = 0.03551 and 

)1;2/( −−knct α

2t
H

2
74.3300.274.10ˆ

3.1 tHTD −−= fD̂  

fknc st ⋅−− )1;2/(α

e T

= 0.06605 for λ = 1.3 of the rubber 

specimen. The table 5.2 shows the unused data for the stretch ratio 1.3 of the rubber 

specimen. It also shows the tim  and rate-related stretch history that mainly 

affect the deviation from the hyperelasticity and inelastic deviation , point 

forecasting value  and prediction deviation . We have adopted a new 

terminology as inelastic deviation which is, as we have used in previous chapters, the 

difference between the measured (by force transducer) and averaged force. To check if 

we missed any variables for the  as prediction 

deviation which is difference between the observed deviation  and the point 

forecasting . Since there is no perfect regression model to predict and there could be 

a certain variable that we would have missed, we had to look at the prediction 

deviation to see if it is random or systematic. According to the result shown in the table 

5.2 and the figure 5.3, the prediction deviation looks quite random because the trends 

of the observed deviation and predicted deviation are almost the same. This tells what 

we have missed is random and we don’t perfectly predict every point. If those points 

are off in a systematic way, we would have possibly missed a certain variable. The 

prediction deviation is shown in the figure 5.4. All points for the stretch ratio of the 

rubber specimen are near zero but they are off in a random way. 

2t
H

iD

fD̂ fi DD ˆ−

prediction, we have used the fi DD ˆ−

Di

fD̂
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Table 5.2 
Unused data for the stretch ratio 1.3 of the rubber specimen. It shows the time T and 
rate-related stretch history that mainly affect the deviation from the hyperelasticity 

and inelastic deviation , point forecasting value and prediction deviation
 

T 

2t
H

iD fD̂  fi DD ˆ− . 

fi DD ˆ−  
2t

H  iD  
λ_unused 

[sec] th=10 vM - vavg[volt] [volt] 
40.8 1.26413 0.17312 0.10183 
99.5 1.36032 0.07531 0.01561 

169.0 1.21431 0.14156 0.14356 
275.2 1.41162 0.01437 -0.03303 
362.3 1.24918 0.11062 0.10914 
731.1 1.23324 0.11094 0.11644 
966.0 1.38238 0.00312 -0.01990 

1059.4 1.27895 0.08156 0.06993 
1094.4 1.30153 0.06719 0.04929 
1353.5 1.35634 -0.01438 -0.00400 
1494.7 1.21026 0.09312 0.12269 
1733.8 1.3552 -0.00907 -0.01000 
1794.7 1.20368 0.07250 0.12298 
2125.6 1.37257 -0.03563 -0.03261 
2189.0 1.2253 0.05937 0.09657 
2281.1 1.38594 -0.02250 -0.04731 
2336.3 1.20586 0.06562 0.11106 
2617.7 1.36514 -0.02813 -0.03511 
2696.8 1.22554 0.05968 0.08699 
2965.2 1.31938 -0.02469 -0.00101 
3307.1 1.29023 -0.00813 0.01848 
3630.8 1.30153 0.03000 0.00251 
3638.9 1.2998 0.02750 0.00389 
3834.3 1.40472 -0.05157 -0.09258 
3893.2 1.23404 0.03906 0.05740 
4169.5 1.30037 -0.01563 -0.00641 
4373.2 1.39515 -0.05438 -0.09405 
4426.2 1.21825 0.03625 0.06154 
4626.2 1.31702 -0.03282 -0.02957 
4827.6 1.40265 -0.05531 -0.10907 
4881.8 1.21903 0.03125 0.05245 
4967.9 1.39037 -0.04313 -0.10079 
5019.8 1.20907 0.03281 0.05872 
5147.7 1.33891 -0.03844 -0.05856 
5171.7 1.28437 -0.01531 -0.01073 
5447.4 1.30282 -0.03844 -0.03215 

1.3 

5555.9 1.36397 -0.04969 -0.08827 



  182

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 1000 2000 3000 4000 5000 6000

Time[sec]

In
el

as
tic

 d
ev

[v
ol

t]
Observed Deviation
Predicted Deviation

 
Fig.5.3. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting   using the regression model. For λ = 1.3 of the rubber specimen, 

= 0.06605. 
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Fig.5.4. It shows the prediction deviation for the stretch ratio 1.3 of the rubber 
specimen. Note that all points are gathered at near zero but off in a random way. 
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Stretch Ratio 1.5: For λ = 1.5 of rubber specimen, we have = 1.761, 

where α = 0.1, n = 17, k = 2 (for and ). We used the regression model for λ = 

1.5 which is to obtain the  which is a point 

forecasting value. We have sf = 0.04673 and 

)1;2/( −−knct α

2t
H

1t
H

12
65.1089.1941.7ˆ

5.1 tt HHD −−= fD̂

fknc st ⋅−− )1;2/(α

 , rate-related stretch history 

= 0.08230 for λ = 1.5 of the 

rubber specimen. The table 5.3 shows the unused data for the stretch ratio 1.5 of the 

rubber specimen. It also shows the time T , and long-

time stretch history . The major factors for the stretch ratio 1.5 of the rubber that 

affect the deviation from the hyperelasticity are rate-related stretch history and 

long-time stretch history . The inelastic deviation , point forecasting value

and prediction deviation are also shown in the table. We have adopted a new 

terminology as  which is, as we have used in previous chapters, the 

difference between the  (by force transducer) and averaged force. To check if 

we missed any variables for the prediction, we have used the  as prediction 

deviation which is difference between the observed deviation  and the point 

forecasting . Since there is no perfect regression model to predict and there could be 

a certain variable that we would have missed, we had to look at the prediction 

deviation to see if it is random or systematic. According to the result shown in the table 

5.3 and the figure 5.5, the prediction deviation looks quite random because the trends 

of the observed deviation and predicted deviation are almost the same. This tells what 

we have missed is random and we don’t perfectly predict every point. If those points 

are off in a systematic way, we would have possibly missed a certain variable. The 

2t
H

1t
H

2t
H

1t
H iD fD̂  

fi DD ˆ−  

inelastic deviation

measured

fi DD ˆ−

Di

fD̂
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prediction deviation is shown in the figure 5.6. All points for the stretch ratio of the 

rubber specimen are near zero but they are off in a random way. 

 

Table 5.3 
Unused data for the stretch ratio 1.5 of the rubber specimen. It shows the time T, rate-
related stretch history and long-time stretch history . The inelastic deviation

point forecasting value  and prediction deviation  are also shown. 
  

T Di 

2t
H

1t
H iD , 

fD̂ fi DD ˆ−

fD̂  fi DD ˆ−  
2t

H  
1t

H  
λ_unused 

[sec] th=10 th=400 vM - vavg[volt] [volt] [volt] 
73.0 1.46487 1.04371 0.11241 0.14521 -0.03280 

182.6 1.39386 1.09219 0.11772 0.16969 -0.05197 
262.7 1.62443 1.20121 -0.00103 0.00882 -0.00985 
517.2 1.57725 1.41416 -0.01728 -0.03012 0.01284 
775.4 1.51383 1.38047 0.05022 0.01526 0.03496 
883.6 1.43266 1.36893 0.05897 0.06370 -0.00473 
949.4 1.58119 1.41597 0.00179 -0.03285 0.03464 

1117.1 1.41748 1.30227 0.05991 0.09246 -0.03255 
1317.0 1.50673 1.49416 -0.02103 -0.01553 -0.00550 
1509.2 1.40302 1.40458 0.06710 0.06921 -0.00211 
1671.2 1.49463 1.49856 -0.00197 -0.01018 0.00821 
1806.3 1.37534 1.3959 0.05116 0.08718 -0.03602 
1978.6 1.53097 1.49202 -0.03697 -0.02829 -0.00868 
2107.2 1.57193 1.56377 -0.04415 -0.07287 0.02872 
2206.5 1.421 1.51153 0.02928 0.02660 0.00268 
2264.8 1.58104 1.52559 -0.02728 -0.06625 0.03897 
2348.0 1.37787 1.52318 0.03835 0.04691 -0.00856 
2575.9 1.48769 1.48314 -0.01790 -0.00163 -0.01627 
2590.6 1.50916 1.47753 -0.02071 -0.01180 -0.00891 
2714.5 1.4225 1.45058 0.03272 0.04439 -0.01167 
2897.8 1.48558 1.53595 -0.03540 -0.01659 -0.01881 
2922.5 1.51815 1.52018 -0.03571 -0.02980 -0.00591 
3151.0 1.49865 1.48718 -0.01446 -0.00893 -0.00553 
3246.2 1.55972 1.56096 -0.04384 -0.06525 0.02141 
3331.5 1.4243 1.51916 0.00803 0.02244 -0.01441 
3673.3 1.44308 1.51717 0.01616 0.01266 0.00350 
3821.4 1.61723 1.56414 -0.06322 -0.09805 0.03483 
3923.0 1.47094 1.53235 0.00554 -0.00739 0.01293 
4007.1 1.47982 1.47094 -0.00665 0.00645 -0.01310 
4104.9 1.50881 1.46627 -0.01603 -0.00816 -0.00787 

1.5 

4213.3 1.47016 1.49475 -0.00165 0.00452 -0.00617 
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Table 5.3 continued 

T Di fD̂  fi DD ˆ−  
2t

H  
1t

H  
λ_unused 

[sec] th=10 th=400 vM - vavg[volt] [volt] [volt] 
4358.4 1.60887 1.48455 -0.06196 -0.06911 0.00715 
4442.1 1.41232 1.47242 0.01116 0.04335 -0.03219 
4588.2 1.55532 1.52805 -0.05447 -0.05277 -0.00170 
4726.3 1.42957 1.4964 0.00303 0.02648 -0.02345 
4814.4 1.61745 1.54292 -0.06728 -0.09169 0.02441 
4898.3 1.41618 1.47224 0.00866 0.04127 -0.03261 
4952.7 1.58455 1.48444 -0.04322 -0.05562 0.01240 
5032.5 1.38449 1.47171 0.01679 0.05896 -0.04217 
5121.2 1.5719 1.47999 -0.06228 -0.04726 -0.01502 
5417.1 1.59402 1.54177 -0.07259 -0.07837 0.00578 
5515.3 1.49255 1.53434 -0.02540 -0.01996 -0.00544 

1.5 

5524.8 1.50027 1.53476 -0.02697 -0.02436 -0.00261 
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Fig.5.5. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting   using the regression model. For λ = 1.5 of the rubber specimen, 

= 0.08230. 
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Fig.5.6. It shows the prediction deviation for the stretch ratio 1.5 of the rubber 
specimen. Note that all points are gathered at near zero but off in a random way. 
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Stretch Ratio 1.7: For λ = 1.7 of rubber specimen, we have = 1.796, 

where α = 0.1, n = 13, k = 1 (for ). We used the regression model for λ = 1.7 which 

is to obtain the which is a point forecasting value. We have 

sf = 0.01790 and = 0.03215 for λ = 1.7 of the rubber specimen. The table 

 1.7 of the rubber specimen. It also shows 

the time T that mainly affect the deviation from the 

hyperelasticity and inelastic deviation , point forecasting value  and prediction 

deviation . We have adopted a new terminology as inelastic deviation which is, 

as we have used in previous chapters, the difference between the measured (by force 

transducer) and averaged force. To check if we missed any variables for the prediction, 

 as prediction deviation which is difference between the 

observed deviation  and the point forecasting . Since there is no perfect regression 

model to predict and there could be a certain variable that we would have missed, we 

had to look at the prediction deviation to see if it is random or systematic. According to 

the result shown in the table 5.4 and the figure 5.7, the prediction deviation looks quite 

random because the trends of the observed deviation and predicted deviation are almost 

the same. This tells what we are missing is random and we don’t perfectly predict 

every point. If those points are off in a systematic way, we would have possibly missed 

a certain variable. The prediction deviation is shown in the figure 5.8. All points for the 

stretch ratio of the rubber specimen are near zero but they are off in a random way. 

 

)1;2/( −−knct α

2t
H

2
41.5406.15ˆ

7.1 tHD −= fD̂  

fknc st ⋅−− )1;2/(α

5.4 shows the unused data for the stretch ratio

 and rate-related stretch history 
2t

H

iD fD̂

fi DD ˆ−

we have used the fi DD ˆ−

Di fD̂
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Table 5.4 
Unused data for the stretch ratio 1.7 of the rubber specimen. It shows the time T and 
rate-related stretch history that mainly affect the deviation from the hyperelasticity 

and inelastic deviation , point forecasting value and prediction deviation
 

T Di 

2t
H

iD fD̂  fi DD ˆ− . 

fD̂  fi DD ˆ−  
2t

H  
λ_unused 

[sec] th=10 vM - vavg[volt] [volt] [volt] 
197.8 1.60838 0.10493 0.05706 0.04787 
251.1 1.79576 0.01430 -0.08599 0.10029 
429.4 1.64134 0.05961 0.03190 0.02771 
499.4 1.77385 -0.00320 -0.06926 0.06606 
910.3 1.66142 0.04899 0.01657 0.03242 
927.8 1.7122 0.03180 -0.02220 0.05400 

1132.6 1.61229 0.05774 0.05408 0.00366 
1221.1 1.72378 -0.01070 -0.03104 0.02034 
1261.4 1.71154 -0.00882 -0.02169 0.01287 
1542.4 1.70843 0.02680 -0.01932 0.04612 
1818.5 1.58761 0.04368 0.07292 -0.02924 
1897.2 1.72034 -0.01695 -0.02841 0.01146 
1897.3 1.7199 -0.01757 -0.02807 0.01051 
1938.2 1.70649 -0.01570 -0.01784 0.00214 
2043.2 1.67517 -0.00320 0.00607 -0.00927 
2241.7 1.70034 0.00805 -0.01314 0.02119 
2361.0 1.59056 0.03305 0.07066 -0.03761 
2416.4 1.76288 -0.02601 -0.06089 0.03488 
2853.4 1.77011 -0.03882 -0.06641 0.02759 
3195.1 1.66976 -0.00132 0.01020 -0.01152 
3349.1 1.6215 0.00461 0.04704 -0.04243 
3489.0 1.7897 -0.05038 -0.08136 0.03098 
3808.8 1.79063 -0.04976 -0.08207 0.03231 
4284.5 1.6278 0.00368 0.04224 -0.03855 
4345.2 1.78685 -0.04663 -0.07919 0.03256 
4467.2 1.6681 -0.00382 0.01147 -0.01529 
4531.8 1.69439 -0.02289 -0.00860 -0.01429 
4745.4 1.62806 -0.00226 0.04204 -0.04430 
4801.8 1.79074 -0.04663 -0.08216 0.03553 
4929.7 1.68925 -0.01038 -0.00468 -0.00570 
5045.6 1.59771 0.00712 0.06521 -0.05809 
5102.1 1.76869 -0.04601 -0.06532 0.01931 
5273.6 1.67274 -0.01476 0.00793 -0.02269 
5328.0 1.68212 -0.02820 0.00077 -0.02897 

1.7 

5402.4 1.78701 -0.05789 -0.07931 0.02142 
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Fig.5.7. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting   using the regression model. For λ = 1.7 of the rubber specimen, 

= 0.03215. 
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Fig.5.8. It shows the prediction deviation for the stretch ratio 1.7 of the rubber 
specimen. Note that all points are gathered at near zero but off in a random way. 
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Stretch Ratio 1.9: For λ = 1.9 of rubber specimen, we have = 1.812, 

where α = 0.1, n = 13, k = 1 (for T and ). We used the regression model for λ = 1.9 

which is to obtain the  which is a point forecasting 

value. We have sf = 0.0253 and 

)1;2/( −−knct α

1t
H

1
94.695.014.2ˆ

9.1 tHTD −−= fD̂

fknc st ⋅−− )1;2/(α

T and long-tim

= 0.04584 for λ = 1.9 of the rubber 

specimen. The table 5.5 shows the unused data for the stretch ratio 1.9 of the rubber 

specimen. It also shows the time e stretch history that mainly affect 

the deviation from the hyperelasticity and inelastic deviation , point forecasting 

value  and prediction deviation . We have adopted a new terminology as 

inelastic deviation previous chapters, the difference 

between the measured averaged force. To check if we missed 

any variables for the prediction, we have used the prediction deviation 

which is difference between the observed deviation Di and the point forecasting

Since there is no perfect regression model to predict and there could be a certain 

variable that we would have missed, we had to look at the prediction deviation to see if 

it is random or systematic. According to the result shown in the table 5.5 and the figure 

5.9, the prediction deviation looks quite random because the trends of the observed 

deviation and predicted deviation are almost the same. This tells what we are missing 

is random and we don’t perfectly predict every point. If those points are off in a 

systematic way, we would have possibly missed a certain variable. The prediction 

deviation is shown in the figure 5.10. All points for the stretch ratio of the rubber 

specimen are near zero but they are off in a random way. 

1t
H

iD

fD̂ fi DD ˆ−

 which is, as we have used in 

 (by force transducer) and 

fi DD ˆ−  as 

fD̂ . 
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Table 5.5 
Unused data for the stretch ratio 1.9 of the rubber specimen. It shows the time T and 
long-time stretch history . It also shows the inelastic deviation Di, point forecasting 

value  and prediction deviation
 

T Di 

1t
H

fD̂ fi DD ˆ− . 

fD̂  fi DD ˆ−  
1t

H  
λ_unused 

[sec] th=400 vM - vavg[volt] [volt] [volt] 
221.8 1.14375 0.06688 0.05871 0.00816 
231.5 1.16136 0.05469 0.05642 -0.00173 
463.5 1.34284 0.03750 0.03179 0.00570 
473.0 1.35842 0.02938 0.02976 -0.00038 

1167.4 1.35749 0.02500 0.02476 0.00024 
1838.4 1.39815 0.02625 0.01469 0.01156 
1848.3 1.40355 0.01500 0.01393 0.00106 
2382.4 1.54002 0.01032 -0.00723 0.01755 
2386.8 1.54094 0.00656 -0.00738 0.01394 
2817.4 1.49814 -0.00968 -0.00515 -0.00454 
2826.4 1.5114 -0.01312 -0.00689 -0.00624 
3379.4 1.50878 -0.00843 -0.01063 0.00219 
3383.4 1.50886 -0.01031 -0.01067 0.00035 
3461.6 1.54695 -0.02968 -0.01605 -0.01363 
3467.3 1.55062 -0.02875 -0.01656 -0.01220 
3782.4 1.54495 -0.02062 -0.01816 -0.00246 
4310.6 1.49177 -0.00906 -0.01533 0.00627 
4324.1 1.49347 -0.01812 -0.01565 -0.00248 
4775.4 1.52669 -0.01469 -0.02317 0.00847 
5070.0 1.47555 -0.01125 -0.01888 0.00762 
5371.8 1.50703 -0.02687 -0.02507 -0.00180 

1.9 

5381.4 1.51279 -0.03187 -0.02587 -0.00600 
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Fig.5.9. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting   using the regression model. For λ = 1.7 of the rubber specimen, 

= 0.04584. 
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Fig.5.10. It shows the prediction deviation for the stretch ratio 1.9 of the rubber 
specimen. Note that all points are gathered at near zero but off in a random way. 
 



  193

Tissue 

Stretch Ratio 1.1: For λ = 1.1 of tissue specimen, we have = 1.753, 

where α = 0.1, n = 17, and k = 1 (for T). We used the regression m λ = 1.1 

which is to obtain the which is a point forecasting value. We 

have sf = 0.0251 and 

)1;2/( −−knct α

odel for 

TD 70.134.0ˆ
1.1 −=  fD̂  

fknc st ⋅−− )1;2/(α

table 5.6 shows the unused data for the stretc

 that mainly aff

= 0.04400 for λ = 1.1 of the tissue specimen. The 

h ratio 1.1 of the tissue specimen. It also 

shows the time T ects the inelastic deviation , point forecasting 

value  and prediction deviation . We have adopted a new terminology as 

inelastic deviation previous chapters, the difference 

between the measured averaged force. To check if we missed 

any variables for the prediction, we have used the  as prediction deviation 

which is difference between the observed deviation  and the point forecasting

Since there is no perfect regression model to predict and there could be a certain 

variable that we would have missed, we had to look at the prediction deviation to see if 

it is random or systematic. According to the result shown in the table 5.6 and the figure 

5.11, the prediction deviation looks quite random because the trends of the observed 

deviation and predicted deviation are almost the same. This tells what we are missing 

is random and we don’t perfectly predict every point. Those points are off in a random 

way. If those points are off in a systematic way, we would have possibly missed a 

certain variable. The prediction deviation is shown in the figure 5.12. All points for the 

stretch ratio of the rubber specimen are near zero but they are off in a random way. 

iD

fD̂ fi DD ˆ−

 which is, as we have used in 

 (by force transducer) and 

fi DD ˆ−

Di fD̂ . 
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Table 5.6 
Unused data for the stretch ratio 1.1 of the tissue specimen. It shows the time T which 
is the only major factor that gives rise to the inelastic deviation Di. It also shows the 
point forecasting value  and prediction deviation
 

T Di 

fD̂ fi DD ˆ− . 

fD̂  fi DD ˆ−  
λ_unused 

[sec] vM - vavg[volt] [volt] [volt] 
13.6 0.06910 0.03479 0.03431 

146.9 0.03316 0.03291 0.00026 
297.9 0.02003 0.03077 -0.01074 
300.7 0.02034 0.03073 -0.01039 
307.1 0.02222 0.03064 -0.00842 
324.3 0.02441 0.03040 -0.00598 
612.2 0.02097 0.02633 -0.00535 
697.3 0.03035 0.02512 0.00523 
989.9 0.01066 0.02098 -0.01032 

1011.2 0.01878 0.02068 -0.00190 
1409.8 0.01941 0.01504 0.00437 
1473.8 0.02253 0.01414 0.00840 
2161.9 0.00441 0.00440 0.00001 
2315.9 0.00753 0.00223 0.00531 
2669.0 0.01347 -0.00277 0.01624 
3536.5 -0.01997 -0.01504 -0.00493 
3863.7 -0.01403 -0.01967 0.00564 
4849.7 -0.04747 -0.03362 -0.01385 
4991.4 -0.04590 -0.03562 -0.01028 

1.1 

5600.0 -0.04934 -0.04423 -0.00511 
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Fig.5.11. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting   using the regression model. For λ = 1.1 of the tissue specimen, 

= 0.04400. 
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Fig.5.12. It shows the prediction deviation for the stretch ratio 1.1 of the tissue 
specimen. Note that all points are gathered at near zero but off in a random way. 
 



  196

Stretch Ratio 1.3: For λ = 1.3 of tissue specimen, we have = 1.833, 

where  α = 0.1, n = 11, and k = 1 (for T). We used the regression m λ = 1.3 

which is to obtain the which is a point forecasting value. We 

have sf = 0.02617 and 

)1;2/( −−knct α

odel for 

TD 29.264.0ˆ
3.1 −=  fD̂  

fknc st ⋅−− )1;2/(α

table 5.7 shows the unused data for the stretc

 that mainly aff

= 0.04797 for λ = 1.3 of the tissue specimen. The 

h ratio 1.3 of the tissue specimen. It also 

shows the time T ects the inelastic deviation , point forecasting 

value  and prediction deviation . We have adopted a new terminology as 

inelastic deviation previous chapters, the difference 

between the measured averaged force. To check if we missed 

any variables for the prediction, we have used the  as prediction deviation 

which is difference between the observed deviation  and the point forecasting

Since there is no perfect regression model to predict and there could be a certain 

variable that we would have missed, we had to look at the prediction deviation to see if 

it is random or systematic. According to the result shown in the table 5.7 and the figure 

5.13, the prediction deviation looks quite random because the trends of the observed 

deviation and predicted deviation are almost the same. This tells what we are missing 

is random and we don’t perfectly predict every point. If those points are off in a 

systematic way, we would have possibly missed a certain variable. The prediction 

deviation is shown in the figure 5.14. All points for the stretch ratio of the rubber 

specimen are near zero but they are off in a random way. 

 

iD

fD̂ fi DD ˆ−

 which is, as we have used in 

 (by force transducer) and 

fi DD ˆ−

Di fD̂ . 
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Table 5.7 
Unused data for the stretch ratio 1.3 of the tissue specimen. It shows the time T which 
is the only major factor that gives rise to the inelastic deviation Di. It also shows the 
point forecasting value  and prediction deviation
 

T Di 

fD̂ fi DD ˆ− . 

fD̂  fi DD ˆ−  
λ_unused 

[sec] vM - vavg[volt] [volt] [volt] 
40.8 0.09427 0.05045 0.04382 
99.5 0.04895 0.04958 -0.00063 

169.0 0.06520 0.04855 0.01665 
362.3 0.05301 0.04569 0.00732 
731.1 0.05770 0.04022 0.01748 

1059.4 0.04270 0.03536 0.00734 
1094.4 0.03864 0.03484 0.00380 
1353.5 0.01676 0.03100 -0.01424 
1733.8 0.01333 0.02537 -0.01204 
1794.7 0.03395 0.02446 0.00949 
2125.6 0.00208 0.01956 -0.01748 
2189.0 0.03145 0.01862 0.01283 
2617.7 0.01270 0.01227 0.00043 
2696.8 0.03395 0.01110 0.02285 
2965.2 -0.01324 0.00712 -0.02036 
3307.1 -0.00324 0.00206 -0.00530 
3630.8 0.01208 -0.00274 0.01482 
3638.9 0.01052 -0.00286 0.01338 
3834.3 -0.01449 -0.00575 -0.00874 
3893.2 0.01489 -0.00663 0.02152 
4169.5 -0.00917 -0.01072 0.00155 
4373.2 -0.02198 -0.01374 -0.00824 
4426.2 0.00739 -0.01452 0.02191 
4626.2 -0.01167 -0.01749 0.00582 
4827.6 -0.04199 -0.02047 -0.02152 
4967.9 -0.03824 -0.02255 -0.01569 
5147.7 -0.03074 -0.02521 -0.00553 
5171.7 -0.02105 -0.02557 0.00452 

1.3 

5447.4 -0.03011 -0.02965 -0.00046 
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Fig.5.13. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting   using the regression model. For λ = 1.3 of the tissue specimen, 

= 0.04797. 
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Fig.5.14. It shows the prediction deviation for the stretch ratio 1.3 of the tissue 
specimen. Note that all points are gathered at near zero but off in a random way. 
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Stretch Ratio 1.5: For λ = 1.5 of tissue specimen, we have = 1.771, 

where α = 0.1, n = 17, and k = 3 (for T and ). We used the regression model for 

λ = 1.5 which is  to obtain the  which is a point 

forecasting value. We have sf = 0.03638 and 

)1;2/( −−knct α

,
2t

H
1t

H

12
75.548.1785.5ˆ

5.1 tt HHTD −−−= fD̂

fknc st ⋅−− )1;2/(α

 that mainly aff

= 0.06443 for λ = 1.5 of the 

tissue specimen. The table 5.8 shows the unused data for the stretch ratio 1.5 of the 

tissue specimen. It also shows the time T ects the inelastic deviation

point forecasting value and prediction deviation . We have adopted a new 

terminology as inelastic deviation

difference between the measured (by force transducer) and averaged force. To check if 

we missed any variables for the prediction, we have used the  as prediction 

deviation which is difference between the observed deviation  and the point 

forecasting . Since there is no perfect regression model to predict and there could be 

a certain variable that we would have missed, we had to look at the prediction 

deviation to see if it is random or systematic. According to the result shown in the table 

5.8 and the figure 5.15, the prediction deviation looks quite random because the trends 

of the observed deviation and predicted deviation are almost the same. This tells what 

we are missing is random and we don’t perfectly predict every point. If those points are 

off in a systematic way, we would have possibly missed a certain variable. The 

prediction deviation is shown in the figure 5.16. All points for the stretch ratio of the 

rubber specimen are near zero but they are off in a random way. 

 

iD , 

fD̂  fi DD ˆ−

 which is, as we have used in previous chapters, the 

fi DD ˆ−

Di

fD̂
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Table 5.8 
Unused data for the stretch ratio 1.5 of the tissue specimen. It shows the time T , rate-
related stretch history , long-time stretch history , and the inelastic deviation Di. 

It also shows the point forecasting value  and prediction deviation . 
 

T Di 

2t
H

1t
H

fD̂ fi DD ˆ−

fD̂  fi DD ˆ−  
2t

H  
1t

H  
λ_unused 

[sec] th=10 th=400 vM - vavg[volt] [volt] [volt] 
73.0 1.46487 1.04371 0.08346 0.09913 -0.01567 

517.2 1.57725 1.41416 0.00190 -0.00065 0.00255 
775.4 1.51383 1.38047 0.04783 0.02642 0.02141 
883.6 1.43266 1.36893 0.05690 0.05920 -0.00230 

1117.1 1.41748 1.30227 0.04658 0.07175 -0.02517 
1317.0 1.50673 1.49416 -0.00092 0.00800 -0.00892 
1671.2 1.49463 1.49856 0.01190 0.00839 0.00351 
1806.3 1.37534 1.3959 0.03533 0.06843 -0.03310 
1978.6 1.53097 1.49202 -0.01811 -0.00855 -0.00956 
2107.2 1.57193 1.56377 -0.01748 -0.03600 0.01852 
2206.5 1.421 1.51153 0.02439 0.03022 -0.00583 
2575.9 1.48769 1.48314 0.00190 0.00345 -0.00155 
2590.6 1.50916 1.47753 0.00564 -0.00452 0.01016 
2714.5 1.4225 1.45058 0.03065 0.03237 -0.00172 
2897.8 1.48558 1.53595 -0.03279 -0.00634 -0.02645 
2922.5 1.51815 1.52018 -0.03217 -0.01747 -0.01470 
3151.0 1.49865 1.48718 -0.01748 -0.00770 -0.00978 
3246.2 1.55972 1.56096 -0.02904 -0.04309 0.01405 
3331.5 1.4243 1.51916 -0.00154 0.01569 -0.01723 
3673.3 1.44308 1.51717 0.00783 0.00476 0.00307 
3821.4 1.61723 1.56414 -0.04310 -0.07270 0.02960 
3923.0 1.47094 1.53235 -0.00092 -0.01112 0.01020 
4007.1 1.47982 1.47094 -0.00560 -0.00726 0.00166 
4104.9 1.50881 1.46627 -0.01811 -0.01926 0.00115 
4213.3 1.47016 1.49475 -0.01123 -0.00886 -0.00237 
4358.4 1.60887 1.48455 -0.04810 -0.06441 0.01631 
4442.1 1.41232 1.47242 -0.00404 0.01476 -0.01880 
4726.3 1.42957 1.4964 -0.02592 0.00156 -0.02748 
5032.5 1.38449 1.47171 -0.02061 0.01957 -0.04018 
5417.1 1.59402 1.54177 -0.06560 -0.07769 0.01209 
5515.3 1.49255 1.53434 -0.03842 -0.03726 -0.00116 

1.5 

5524.8 1.50027 1.53476 -0.04092 -0.04050 -0.00042 
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Fig.5.15. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting   using the regression model. For λ = 1.5 of the tissue specimen, 

= 0.06443. 
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Fig.5.16. It shows the prediction deviation for the stretch ratio 1.5 of the tissue 
specimen. Note that all points are gathered at near zero but off in a random way. 
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Stretch Ratio 1.7: For λ = 1.7 of tissue specimen, we have = 1.812, 

where α = 0.1, n = 13, and k = 2 (for T and ). We used the regression model for λ = 

1.7 which is  to obtain the  which is a point 

forecasting value. We have sf = 0.041690 and 

)1;2/( −−knct α

2t
H

2
37.3697.042.10ˆ

7.1 tHTD −−= fD̂

fknc st ⋅−− )1;2/(α

ainly aff

= 0.07554 for λ = 1.7 of 

the tissue specimen. The table 5.9 shows the unused data for the stretch ratio 1.7 of the 

tissue specimen. It also shows the time T that m ects the inelastic deviation

point forecasting value and prediction deviation . We have adopted a new 

terminology as inelastic deviation

difference between the measured (by force transducer) and averaged force. To check if 

we missed any variables for the prediction, we have used the  as prediction 

deviation which is difference between the observed deviation  and the point 

forecasting . Since there is no perfect regression model to predict and there could be 

a certain variable that we would have missed, we had to look at the prediction 

deviation to see if it is random or systematic. According to the result shown in the table 

5.9 and the figure 5.17, the prediction deviation looks quite random because the trends 

of the observed deviation and predicted deviation are almost the same. This tells what 

we are missing is random and we don’t perfectly predict every point. If those points are 

off in a systematic way, we would have possibly missed a certain variable. The 

prediction deviation is shown in the figure 5.18. All points for the stretch ratio of the 

rubber specimen are near zero but they are off in a random way. 

 

iD , 

fD̂  fi DD ˆ−

 which is, as we have used in previous chapters, the 
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Table 5. 9 
Unused data for the stretch ratio 1.7 of the tissue specimen. It shows the time T, rate-
related stretch history 

2t
H , and the inelastic deviation Di. It also shows the point 

forecasting value fD̂  and prediction deviation fi DD ˆ− . 
 

T 
2t

H  Di fD̂  fi DD ˆ−  
λ_unused 

[sec] th=10 vM - vavg[volt] [volt] [volt] 
197.8 1.60838 0.21706 0.12777 0.08929 
251.1 1.79576 0.00769 -0.08644 0.09413 
429.4 1.64134 0.13175 0.08669 0.04506 
499.4 1.77385 -0.01669 -0.06529 0.04860 
910.3 1.66142 0.10987 0.05646 0.05341 
927.8 1.7122 0.07331 -0.00164 0.07495 

1132.6 1.61229 0.12175 0.10901 0.01274 
1221.1 1.72378 -0.02794 -0.01932 -0.00862 
1261.4 1.71154 -0.01481 -0.00599 -0.00882 
1542.4 1.70843 0.05175 -0.00675 0.05850 
1897.2 1.72034 -0.04262 -0.02575 -0.01687 
1897.3 1.7199 -0.04387 -0.02525 -0.01862 
1938.2 1.70649 -0.02669 -0.01060 -0.01609 
2043.2 1.67517 0.01363 0.02346 -0.00983 
2241.7 1.70034 0.03175 -0.00825 0.04000 
2416.4 1.76288 -0.05075 -0.08214 0.03139 
2853.4 1.77011 -0.08512 -0.09707 0.01195 
3349.1 1.6215 0.01300 0.06459 -0.05159 
4345.2 1.78685 -0.10825 -0.13897 0.03072 
4467.2 1.6681 -0.02044 -0.00560 -0.01484 
4531.8 1.69439 -0.04481 -0.03653 -0.00828 
4929.7 1.68925 -0.05356 -0.03677 -0.01679 
5045.6 1.59771 -0.03356 0.06571 -0.09927 
5102.1 1.76869 -0.11981 -0.12988 0.01007 
5273.6 1.67274 -0.04200 -0.02323 -0.01877 

1.7 

5328.0 1.68212 -0.06169 -0.03475 -0.02694 
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Fig.5.17. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting  fD̂  using the regression model. For λ = 1.7 of the tissue specimen, 

fknc st ⋅−− )1;2/(α = 0.07554. 
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Fig.5.18. It shows the prediction deviation for the stretch ratio 1.7 of the tissue 
specimen. Note that all points are gathered at near zero but off in a random way. 
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Stretch Ratio 1.9: For λ = 1.9 of tissue specimen, we have )1;2/( −−knct α = 1.833, 

where α = 0.1, n = 13, and k = 3 (for T,
2t

H , and
1t

H ). We used the regression model 

for λ = 1.9 which is 
12

77.276.4458.156.13ˆ
9.1 tt HHTD −−−=  to obtain the fD̂  which 

is a point forecasting value. We have sf = 0.56092 and fknc st ⋅−− )1;2/(α = 1.02816 for λ = 

1.9 of the tissue specimen. The table 5.10 shows the unused data for the stretch ratio 

1.9 of the tissue specimen. It shows the time T, rate-related stretch history
2t

H , long-

time stretch history
1t

H , and the inelastic deviation Di. It also shows the point 

forecasting value fD̂  and prediction deviation fi DD ˆ− . We have adopted a new 

terminology as inelastic deviation which is, as we have used in previous chapters, the 

difference between the measured (by force transducer) and averaged force. To check if 

we missed any variables for the prediction, we have used the fi DD ˆ−  as prediction 

deviation which is difference between the observed deviation Di and the point 

forecasting fD̂ . Since there is no perfect regression model to predict and there could be 

a certain variable that we would have missed, we had to look at the prediction 

deviation to see if it is random or systematic. According to the result shown in the table 

5.10 and the figure 5.19, the prediction deviation looks quite random because the 

trends of the observed deviation and predicted deviation are almost the same. This tells 

what we are missing is random and we don’t perfectly predict every point. If those 

points are off in a systematic way, we would have possibly missed a certain variable. 

The prediction deviation is shown in the figure 5.20. All points for the stretch ratio of 

the rubber specimen are near zero but they are off in a random way. 
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Table 5.10 
Unused data for the stretch ratio 1.9 of the tissue specimen. It shows the time T, rate-
related stretch history

2t
H , long-time stretch history

1t
H , and the inelastic deviation Di. 

It also shows the point forecasting value fD̂  and prediction deviation fi DD ˆ− . 
 

T 
2t

H  
1t

H  Di fD̂  fi DD ˆ−  
λ_unused 

[sec] th=10 th=400 vM - vavg[volt] [volt] [volt] 
221.8 1.86438 1.14375 1.54074 1.37910 0.16164 
231.5 1.90128 1.16136 0.97012 0.85491 0.11521 
463.5 1.87667 1.34284 0.97668 0.93068 0.04600 
473.0 1.90088 1.35842 0.57575 0.58154 -0.00579 

1167.4 1.89889 1.35749 0.43887 0.42573 0.01314 
1838.4 1.85157 1.39815 0.60481 0.84797 -0.24316 
1848.3 1.90309 1.40355 0.08387 0.13800 -0.05413 
2382.4 1.86404 1.54002 0.27699 0.37941 -0.10242 
2386.8 1.8863 1.54094 0.14481 0.07418 0.07063 
2817.4 1.88516 1.49814 0.02856 0.02233 0.00623 
2826.4 1.89999 1.5114 -0.16988 -0.19643 0.02655 
3379.4 1.88173 1.50878 -0.06832 -0.09143 0.02311 
3383.4 1.89349 1.50886 -0.14238 -0.25268 0.11030 
3461.6 1.88716 1.54695 -0.33488 -0.22876 -0.10612 
3467.3 1.89543 1.55062 -0.37426 -0.34686 -0.02740 
3782.4 1.8866 1.54495 -0.28738 -0.30391 0.01653 
4310.6 1.86266 1.49177 -0.25176 -0.05985 -0.19191 
4324.1 1.90822 1.49347 -0.67894 -0.68562 0.00668 
4775.4 1.87418 1.52669 -0.42207 -0.37790 -0.04417 
5070.0 1.86994 1.47555 -0.45644 -0.34242 -0.11402 
5371.8 1.87136 1.50703 -0.49019 -0.47602 -0.01417 

1.9 

5381.4 1.90098 1.51279 -0.77707 -0.88812 0.11105 
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Fig.5.19. It shows the inelastic deviation Di obtained from the unused data and point 
forecasting fD̂  using the regression model. For λ = 1.9 of the tissue specimen, 

fknc st ⋅−− )1;2/(α = 1.02816. 
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Fig.5.20. It shows the prediction deviation for the stretch ratio 1.9 of the tissue 
specimen. Note that all points are gathered at near zero but off in a random way. 
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CHAPTER VI 

DISCUSSION 

 

The hyperelastic models for the rubber-like materials and biotissues are never 

exact but they are useful because they guide our directions. The efficacy of a model is 

in its providing of insights into the mechanisms underlying the mechanical behavior of 

the materials. In lieu of the perfect models, hyperelastic models are currently most 

common choice for the high strain materials and the biotissues. In addition, the usage 

of those models reduces the trial and error. The reason that we have done the error 

analysis for the hyperelastic models of high strain materials and biotissues is that, even 

though they are never perfectly correct, those models are comprehensively being used 

and regarded as useful in the area of biomechanics and mechanobiology. If we have all 

infinite number of higher order terms, then the model would be perfect. But a perfect 

model is unfeasible because we can’t have infinite number of data points. Thus, we 

need to look for the uncertainty due to the approximation.  

Although, so far, many different types of the hyperelastic models for the 

rubber-like materials and biotissues have been enthusiastically developed since the 

1940’s, it is understood that no model is superior to the other and there is no agreement 

for those models. There is an ambiguity for developing the hyperelastic models of high 

strain materials as well as of biotissues. Since the error analysis that should been done 

in 1940’s has not been tried so far, the ambiguity is being appeared by the lack of 

understanding the uncertainty due to the approximation. The approximation is 

equivalently the assumption of hyperelasticity of the rubber-like materials and 
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biotissues. A model can be regarded as useful only if the uncertainty in the model is 

quantified and acceptable for the particular application of the model. If the error 

analysis is not executed on it, a model cannot be evaluated. 

Even the well-known experts in this area such as Mullins, Mooney, Rivlin, 

Y.C. Fung, Holzapfel, Gasser and Ogden (2000), and so on have published their own 

models without discussing the uncertainties in them; they didn’t show how their 

models deviated from the hyperelastic assumption. They got the results without finding 

out what the errors in the experimental data were. It should be noted that no 

hyperelastic models have been suggested without doing experiments and none of the 

measurement can be made without having some degree of uncertainties. This implies 

that it is extremely important to know if there is an error in any model. 

The completely randomized stretch controlled protocol is indispensable for the 

error analysis. By the assumption that a hyperelastic model for the high strain materials 

and biotissues is a function of three variables such as time T, stretch-rate S and stretch 

history H, those three variables should be completely independent of each other so that 

they are not coupled or correlated. The randomized stretch- controlled protocol, 

therefore, enabled us to look at the three suspicious variables as independent variables. 

The error analysis is motivated by the fact that no physical quantity can be 

measured without having some degree of uncertainties. Although many different types 

of models for hyperelasticity have been developed since the 1940’s, there are very few 

models that discussed the errors in the data for the constitutive modeling. Since having 

some degree of uncertainties is inevitable especially in experiments on high strain 

material and biotissues, validity of the model should be justified by understanding the 
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uncertainty in the data. Every constitutive relation in hyperelasticity, therefore, should 

be modeled after characterizing the uncertainties in the data. The fundamental 

statistical theory called multivariable linear regression analysis has been used to find 

the significant factors that cause the deviation from the hyperelasticity as well as to 

characterize the uncertainties. We initially suspected that the factors which cause the 

deviation from the hyperelasticity are the time, stretch-rate, and stretch history. Finally, 

the error analysis has revealed that they underlie the deviation of rubber and tissues 

from hyperelasticity as evident in a uniaxial (randomized stretch-controlled protocols) 

stretch test. We used the dependent parameter as the deviation D and independent 

parameters as the time T, rate-related stretch history function
2t

H , and stretch 

history
1t

H . Although there was one more independent variable for the tissue which 

is
0t

H , it hasn’t been employed for the multiple linear regression analysis because there 

was high correlation between the time T and
0t

H . If we use the independent variables 

which have high correlation, then we will have a trouble with the multicollinearity 

which causes the increasing of standard error of the partial regression coefficients and 

decreasing the goodness-of-fit of the model. Excluding one of the variable that has 

high correlation to another never cause the loss of the predictability of the model.  

After obtaining the regression models for each stretch level, we have tested the 

model with the goodness-of-fit test by using 2R  called coefficient of determination 

and test of significance called t-test. The table 6.1 and the table 6.2 show the 

regression models and t-values for each stretch level for rubber and tissue. 
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Table 6.1 
Multiple linear regression models for each stretch ratio for the rubber specimen. The 
critical values of t for two-tailed test and t-values for each independent variable are 
also shown. 
 

t-value of 
λ Regression Model of 

Rubber 
tc(α/2;n-k-1), 

α=0.1 T 2t
H  

1t
H  

2R  

1.1 
2

37.2640.166.6ˆ
tHTD −−=  1.761 -9.08 -3.95  0.86

1.3 
2

74.3300.274.10ˆ
tHTD −−=  1.860 -4.79 -2.91  0.76

1.5 
12

65.1089.1941.7ˆ
tt HHD −−=  1.761  -2.27 -4.22 0.80

1.7 
2

41.5406.15ˆ
tHD −=  1.796  -5.45  0.72

1.9 
1

94.695.014.2ˆ
tHTD −−=  1.812 -3.56  -2.71 0.85

 

Table 6.2 
Multiple linear regression models for each stretch ratio for the tissue specimen. The 
critical values of t for two-tailed test and t-values for each independent variable are 
also shown. 
 

t-value of 
λ Regression Model of Tissue tc(α/2;n-k-1), 

α=0.1 T 2t
H  

1t
H  

2R  

1.1 TD 70.134.0ˆ −=  1.753 -13.09   0.92

1.3 TD 29.264.0ˆ −=  1.833 -7.72   0.87

1.5 
12

75.548.1785.5ˆ
tt HHTD −−−=  1.771 -5.02 -2.15 -2.18 0.85

1.7 
2

77.3697.042.10ˆ
tHTD −−=  1.812 -2.77 -3.42  0.71

1.9 
12

77.276.4458.156.13ˆ
tt HHTD −−−= 1.833 -16.72 -6.93 -2.96 0.98
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Rubber 

If we look at the multiple linear regression models of the rubber summarized in 

the table 6.1, not all of the independent variables were employed for the final 

regression models. This doesn’t mean that all the unemployed variables were not 

giving rise to the deviation from the hyperelasticity. Note again that the ideal 

regression model is the model that has the maximum efficiency with the minimum 

number of independent variables. The good model should predict the future or 

intermediate values as close as possible with the minimum number of the independent 

variables. 

According to the results shown in the table 6.1, the independent variable 
2t

H  is 

mostly related to the deviation D for most of the stretch ratios. This tells that the rate of 

the stretch is highly effective to give rise to the inelastic deviation which is deviation 

from the hyperelasticity. If we look at the regression model for stretch ratio 1.1 of the 

rubber, the considerable amount of the deviation D is determined by the rate-related 

stretch history function
2t

H . It, again, means the stretch-rate is highly related to the 

inelastic deviation. For the stretch ratio λ = 1.1, we have found that both the 

independent variables T and 
2t

H are optimal and significant variables to anticipate the 

inelastic deviation D. Note that the rate-related stretch history function 
2t

H is almost 

19 times more effective than the time T to give rise to the inelastic deviation D. 

For the stretch ratio λ = 1.3, the rate-related stretch history function 
2t

H is 

almost 17 times more effective than the time T to give rise to the inelastic deviation D. 
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For the stretch ratio λ = 1.5, the rate-related stretch history function 
2t

H is the 

most significant factor that induce the inelastic deviation from the hyperelasticity. 

There is no T term here and 
1t

H has involved instead. This is because there is a certain 

amount of correlation between the independent variables T and
1t

H , and the correlation 

coefficient between D and 
1t

H is higher than the correlation coefficient between D and 

T. 

For the stretch ratio λ = 1.7, the inelastic deviation D can mostly be determined 

by the rate-related stretch history function
2t

H . 

The only stretch level where the rate-related stretch history function 
2t

H  has 

nothing to do with the inelastic deviation D is λ = 1.9. For the stretch ratio λ = 1.9, the 

inelastic deviation D is affected by the time T and the long-time stretch history 

function
1t

H . The rate-related stretch history function 
2t

H is the most significant factor 

to give rise to the inelastic deviation from the hyperelasticity for the stretch ranges 

from λ = 1.1, 1.3, 1.5, and 1.7. But it is not inconsequential to cause the inelastic 

deviation for the stretch ratio 1.9. 

 

Tissue 

Again, the multiple linear regression models of the tissue didn’t show all of the 

independent variables in the final regression models; this doesn’t imply that all the 

unemployed variables are not giving rise to the deviation from the hyperelasticity. Note 

again that the ideal regression model is the model that has the maximum efficiency 

with the minimum number of independent variables. The good model should predict 
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the future and intermediate values as close as possible with the minimum number of 

the independent variables. According to the results shown in the table 6.2 for the tissue, 

the independent variable T is entirely related to the inelastic deviation D for the all 

selected stretch ratios. This says that the deviation is progressing with time. So there 

must be a creep that is a time-dependent deformation for the same amount of stretch.  

For the stretch ratios λ = 1.1 and 1.3, we have found that the independent 

variables T only is the optimal and significant variable to anticipate the deviation D. 

Interestingly, it has been found that the rate-related stretch history function
2t

H is not 

significant factor for inducing the inelastic deviation D for the stretch ratios λ = 1.1 

and 1.3. If we compare the regression models for the tissue and rubber for the stretch 

ratio λ = 1.1 and 1.3, the effects of the time T for the prediction of the D are reasonably 

identical. For example, for the rubber, if the T is changing one unit, the D is changing 

1.4 units, and, for the tissue, if the T is changing one unit the D is changing 1.7 units. It 

can be understood likewise for the stretch ratio λ = 1.3. This tells that the time is 

almost equally effective to give rise to the inelastic deviation for the rubber and tissue. 

  For the stretch ratio λ = 1.5, the independent variables that induce the inelastic 

deviation from the hyperelasticity are the time T, rate-related stretch history 

function
2t

H and long time stretch history
1t

H . The rate-related stretch history function 

2t
H is the most significant factor, and secondly, the long-time stretch histories function 

1t
H and lastly, the time T.  
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For the stretch ratio λ = 1.7, the inelastic deviation D can mostly be determined 

by the rate-related stretch history function
2t

H and the time T. In addition, the 

regression model is dominated by the rate-related stretch history function
2t

H .  

For the stretch ratio λ = 1.9, the regression model has all the independent 

variables such as T, 
2t

H , and 
1t

H . This implies that the inelastic deviation D is 

affected by the all independent variables and is well-determined by them.  

From the regression models, for the stretch ranges 1.5, 1.7, and 1.9 of the 

tissue, we figured out that the rate-related stretch history function 
2t

H is the most 

significant factor to give rise to the inelastic deviation from the hyperelasticity. 

Finally, we can apply those models as  

000

ˆ
λλλ

Dff avg +=                                             (6.1) 

where, f is the force for a specific stretch ratio λ0, and favg is the average of the forces 

corresponding to the λ0. Equivalently, if we use the same notation that we have used 

for this study, the equation (5.1) can be written as 

000

ˆ
λλλ

Dvv avg +=                                             (6.2) 

It is known that the rubber-like materials have randomly arranged long chain 

molecules. Thus, whenever the materials are stretched, there must be rearrangements of 

those molecular chains, i.e., the randomly arranged molecular chains get close to the 

ordered configuration so that it causes the decrease of entropy. In addition, whenever 

the rubber is deformed, it is likely to go back to its original configuration by the force 

that is generated by the constant thermal activity of the long chain molecules (L. 

Mullins, 1947). The reason that the uncertainties especially in the low stretch ranges 
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are important, although the stretch ratio λ = 1.3 is not a low strain range for none 

rubber-like materials, is that the behavior of the rubber in the low strain range is 

primarily related to the entropy. The energy storage at the low range of stain is mostly 

due to the entropy alone. Thus, in the low stretch range, the strain energy can hardly be 

determined by the experimentation. That’s why there has been a deficiency in 

understanding of the exclusive nature of the stain energy function for the low strain 

ranges of the rubber. At the higher strain ranges, the energy storage is due to both the 

entropy and the molecular chemical bonds. That is, if we stretch to the higher strain 

ranges, we make the long chain molecules rearranged in more ordered manner as well 

as we stretch the chemical bonds, too. Thus, the energy storage is due to both the 

entropy and the molecular chemical bonds. (John C. Criscione, 2003). 

The test of the predictability has been involved in the final step for any 

regression analysis to evaluate how well the derived regression model forecasted the 

intermediate or future values. We have checked the predictive capability by comparing 

the unused (deviation) data in the randomized stretch-controlled protocol of the rubber 

and tissue to the predicted deviation obtained by the regression models. 

We have redefined the deviation from the hyperelasticity as inelastic deviation 

which is the difference between the measured (by force transducer) and averaged 

force. If the testing specimens were truly elastic, all the measurements would be equal 

to the average so that the inelastic deviation would be zero. To check if we have 

missed any variables for the prediction, we have newly defined the fi DD ˆ−  as 

prediction deviation which is difference between the observed deviation Di and the 

point forecasting fD̂ . Although we have found that the inelastic deviation varies 
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systematically and we have quantified it, the models that we have derived can never be 

perfect; there could be any missed variables. According to the results, we have realized 

that the prediction deviation is random because the trends of the observed deviation 

and predicted deviation were almost the same. This tells what we have missed is 

random and we don’t perfectly predict every point. Those points are off in a random 

way. If those points are off in a systematic way, we would have possibly missed a 

certain variable that gives rise to the inelastic deviation. Therefore we could conclude 

that we never missed any significant factors that give rise to the inelastic deviation 

from the hyperelasticity for the fitting. 

 

Future Works and Limitations 

To get more strict predictive capability, the non-randomized cyclic loading tests 

are needed. Although it seemed that there are mostly linear relationships between them, 

we need a much longer motion protocol to get enough number of data points be to sure 

of the linearity. We assumed that there are linear relationships between the dependent 

variable D and the independent variables T,
2t

H , and 
1t

H to get the regression models. 

But, there could be nonlinear relationships between them, and in such case, a nonlinear 

regression models should be needed to get more accurate predictability of the deviation 

from the hyperelasticity.  

For the future works, we suggest the biaxial test of the high strain materials and 

biotissues to get a reliable constitutive model which has a specified uncertainty 

obtained by multivariable nonlinear regression analysis. It can be much more 
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practically useful because most of the high strain material and biotissues are treated as 

the membranes and, in fact, they are mostly anisotropic. 
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