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ABSTRACT

Error Analysis for Randomized Uniaxial Stretch Test
on High Strain Materials and Tissues. (May 2005)
Choon-Sik Jhun, B.S., Kon-Kuk University;
M.S., Texas A&M University

Chair of Advisory Committee: Dr. John C. Criscione

Many people have readily suggested different types of hyperelastic models for
high strain materials and biotissues since the 1940’s without validating them. But,
there is no agreement for those models and no model is better than the other because of
the ambiguity. The existence of ambiguity is because the error analysis has not been
done yet (Criscione, 2003). The error analysis is motivated by the fact that no physical
quantity can be measured without having some degree of uncertainties. Inelastic
behavior is inevitable for the high strain materials and biotissues, and validity of the
model should be justified by understanding the uncertainty due to it.

We applied the fundamental statistical theory to the data obtained by

randomized uniaxial stretch-controlled tests. The goodness-of-fit test (R *) and test of
significance (#-test) were also employed. We initially presumed the factors that give
rise to the inelastic deviation are time spent testing, stretch-rate, and stretch history.
We found that these factors characterize the inelastic deviation in a systematic way. A
huge amount of inelastic deviation was found at the stretch ratio of 1.1 for both

specimens. The significance of this fact is that the inelastic uncertainties in the low
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stretch ranges of the rubber-like materials and biotissues are primarily related to the
entropy. This is why the strain energy can hardly be determined by the experimentation
at low strain ranges and there has been a deficiency in the understanding of the
exclusive nature of the strain energy function at low strain ranges of the rubber-like
materials and biotissues (Criscione, 2003). We also found the answers for the
significance, effectiveness, and differences of the presumed factors above.

Lastly, we checked the predictive capability by comparing the unused deviation
data to the predicted deviation. To check if we have missed any variables for the
prediction, we newly defined the prediction deviation which is the difference between
the observed deviation and the point forecasting deviation. We found that the
prediction deviation is off in a random way and what we have missed is random which
means we didn’t miss any factors to predict the degree of inelastic deviation in our

fitting.
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CHAPTER1

INTRODUCTION

During the last half of the century, many people have readily suggested
different types of hyperelastic models for high strain materials and biotissues without
showing their validities. Even the well-known experts in this area such as Mullins,
Mooney, Rivlin, Fung, Ogden, and so on have published their own models without
discussing the uncertainties in them. They got the results without finding out what the
errors in the experimental data were. They also didn’t show how their models deviated
from the hyperelastic assumption. It should be noted that no hyperelastic models have
been suggested without doing experiments and none of the measurements can be made
without having some degree of uncertainties. This fact implies that it is extremely
important to know if there is an error in any model. We need to know the uncertainty
of a model if we are going to use it. A model is useful only if the uncertainty in it is
quantified and if the uncertainty is acceptable for the particular application of the
model. The particular application means if we are building some structures made out of
steels, the linear elastic model will be acceptable for building it even though the steel is
not perfectly elastic. We can accept that the uncertainty that comes from the
assumption of linear elasticity for the steel is insignificant. Note that no model is
acceptable for all applications. If the error analysis, which should have been done in
the 1940’s, is not performed, a model cannot be evaluated. In the study of

biomechanics (how the stress relates to the strain in biology or vice versa) and

The Journal of Biomechanics has been used as a model for style and format.



mechanobiology (how the stresses/strains influence the biological procedure), it is
crucial to develop a reliable constitutive model that quantifies the uncertainty in it. It is
understood that the strain guides the growth and remodeling of the tissues. It has been
also suggested that the strain pattern is atypical for unhealthy tissues and hence are the
growth and remodeling. To get a better understanding of the strain pattern, modeling of
a better constitutive relation is an essential requirement and this can be done by
characterizing the uncertainty in it. There may be some other factors that go unnoticed
and hence we may get underestimated uncertainties. Thus we have to carefully decide
and find all probable causes of errors and estimate their effects.

The error analysis is motivated by the fact that no physical quantity can be
measured without having some degree of uncertainties. Although many different types
of models for hyperelasticity have been developed since the 1940’s, there are very few
publications that discussed the errors in the data for the constitutive modeling. Since
having some degree of uncertainties is inevitable especially in experiments on high
strain material and biotissues, validity of the model should be justified by
understanding the uncertainty in the data. Every constitutive relation in hyperelasticity,
therefore, should be modeled after characterizing the uncertainties in the data. Only
after doing this, can the model be regarded as an appropriate one for an application.
The fundamental statistical theory, for this study, has been used to find the systematic
significant factors and random errors as well as to characterize the uncertainties. The
systematic factors that give rise to the deviation from hyperelasticity were presumed as

time spent testing, stretch-rate, and stretch history.



They gave rise to the deviation of elastomers and tissues from hyperelasticity as
evident in the randomized uniaxial stretch-controlled tests. By considering all
measurements that would make uncertainties such as measurement errors, instrument
errors, and extra randomized factors that make additional uncertainties, we found out
which ones are significant factors that make those uncertainties in the context of error
propagation. After we realized the significant factors that make the uncertainty, we
applied fundamental statistical theories such as multivariable linear regression analysis
to those factors to better understand the uncertainty in the data obtained by uniaxial
(randomized stretch-controlled protocols) stretch tests on high strain materials and
biotissues. This has been done for each stretch level A = 1.1, 1.3, 1.5, 1.7, and 1.9.
Since we have assumed that the highly suspected factors that deviate from the
hyperelasticity are time spent testing, stretch-rate, and stretch history, they have been
treated as independent variables and the deviation from hyperelasticity has been treated
as the dependent variable for the multivariable linear regression analysis. To test

whether the regression model is proper or not, the goodness-of-fit test by using

R*(coefficient of determination) and test of significance (¢-fest) have been employed.
Finally we have answered for the following three questions;

a) Are they (time spent testing, stretch-rate, and stretch history) really
significant factors that make considerable amount of uncertainties from
hyperelasticity?

b) Are they effective to all the stretch levels?

c) If not, how do they differ?



Lastly, we checked the predictive capability by comparing the unused
(deviation) data in the randomized stretch-controlled protocol to the predicted
deviation obtained by the regression models. The test of the predictability should be
involved in the final step in any regression model to evaluate how well the derived
regression model forecasts the intermediate or future values. It is important to note that
the best way to accomplish this work is to compare predicted result to data that were

not used in the formulation of the regression models.

Hyperelastic Models for Rubber-like Materials and Biotissues

Hyperelastic Models for Rubber-like Materials: Many people in the area of
the hyperelasticity have been struggling to find general constitutive relations in terms
of strain energy function W which is a scalar function. In spite of all their efforts, most
of the models are only fitted to the specified conditions and environments when they
were derived. Individual models can predict the stress/strain relations only within the
specified ranges of strain. They also applied huge assumptions such as isotropy,
hyperelasticity, or pseudoelasticity which ignores the hysteresis that is an inevitable
phenomenon in high strain materials and biotissues. While it is acceptable to use these
assumptions, the deviation from hyperelasticity that arises from these assumptions has
never been considered. It’s been suggested that the Mooney model (1940) shown in
equation (1.1) has good agreement with the expected value when the materials undergo
the stretch ratio A more than 1.4.

WzCl(/ll2 + 0,0+ A —3)+C2( 1 +L+L—3]

VAR

(1.1)
=C(,-3)+C,(1,-3)



where C;, i = 1, 2 is a material constant, /; = trC and I, = 1/2[(trC)2-trC2] are called the
first and second principal invariants, respectively. The right Cauchy-Green tensor C is
described with the deformation gradient F as C= F'F.
Treloar (1943, 1948) introduced the following form of strain energy function called
neo-Hookean model as
wW=C -3) (1.2)

where C is a material constant. For the biaxial swollen rubber sheet, he suggested the
stress/strain relations shown in equation (1.3) as

o, =G’ =A%), i=12 (1.3)
where o; is a stress and G is a material constant.

Mullins (1947) suggested the stress/strain relations for the simple tensile test as

o= G{A—GJZ} (1.4

where o is a stress and G is a material constant. Equation (1.4) is only valid for the
equilibrium state of stress/strain or low strain rate which can be regarded as quasi-
equilibrium state. Like other model developers, Mullins didn’t mention the difference
between loading and unloading stress/strain curves. The equation (1.5) suggested by
Rivlin and Saunders, 1951 mentioned that other forms of strain energy functions for

elastomers would be well-fitted while they suggested their own model.
W=C,, -3)+C,(I,-3)+C,(I, -3) (1.5)

In 1958, Treloar suggested the general form of stored strain energy function as

W:ig@—ﬂ@—w (1.6)

i,j=0



There are a few other models that have been as shown below, but there are too many to

introduce all of the models that have been developed since 1940’s.

o, = | A ow = | AW (4), i=1,2,3
7o T
where, W =w(4,)+w(4,)+w(4,) (1.7)

3
=24 A(In 2, -1)

i=1
Equation (1.7) was suggested by Valanis and Landel, 1967, and J = detF (= dv/dV)
which represents the ratio of volume changes of current and reference bodies and yis a
material constant. Obata et al (1970) also suggested the hyperelastic model for rubber-

like materials as following.

1 Jow [ 1 ow | .
o, =2| A | | 5 A ,i=1,2
ARAE el A, oI,

ow a a,(I, -3)
here, — =a, + L 22 1.8
B A ) S TS (-
GW_A A, 2a,

o, T (1,-3) 31, —3)°

Although many models for rubber-like materials and biotissues have been proposed so
far, there is no agreement for those models; no model is better than the other. This
means that there is ambiguity for developing the hyperelastic models of high strain
materials as well as of biotissues. The reason for this ambiguity is because the error
analysis has not been done yet (Criscione, 2003).

Hyperelastic Models for Biotissues: Experimentally developed hyperelastic
models for biotissues have also been developed by well-known experts in the area of
hyperelasticity. Again, those models have been fitted to only a certain range of strain.

Fung (1993) suggested that there are three regions of stretch ratio for a tendon. They



are toe region, fairly linear region, and nonlinear region. The toe region is defined as
the region that the load is exponentially increasing over the stretch, i.e., the constitutive
relation is nonlinear. The fairly linear region is the region located in between the toe
region and nonlinear region. The stress/strain relationship in the region is regarded as
linear. The nonlinear region is the region where the stress and stretch relationship is not
linear and rupture occurs within that range of 10 to 15 % of stretch (Fung, 1993). Fung
suggested following equation to see the stress/strain relationship for the toe region of
the tendon.

T=Cle” —e*) 1<a<A, (1.9)
where T is a stress, « is an elastic stiffness and C is a material constant. Although, by
the inspection and assumption of Fung, a Hooke’s law or neo-Hookean law could be
used for the fairly linear region, Johnson et al (1992) suggested the following equation

for both the toe and fairly linear regions where Cy and x are material constants.

T:q@+y%I#—%}%1<ﬂs% (1.10)

A.Viidik (1987) introduces Wertheim’s constitutive relation (1847) for tendons by
following equation (1.11).

&’ =40’ +Bo (1.11)
where ¢ is strain, 4 and B are material constants. Morgan (1960), Kenedi et al (1964),
Ridge and Wright (1964) suggested the following constitutive relations shown in
equation (1.12), (1.13), and (1.14), respectively.

e=C,o" (1.12)



o=0C¢" (L.13)
0'=C3(e“e—1) .
e=K+Llno

(1.14)

e=C,+C,c’
where a, b, ¢, d, K and L are constants. Those empirically established equations again
are valid for the anticipation of material properties of the biotissues only under the
same experimental situations and limited ranges. In addition, many people ignore the
higher order terms in deriving the hyperelastic models without knowing that the
deviation comes from omission of the higher order terms. Here we considered all the
points of motion profile of stretch-controlled protocol and then averaged them which
means we didn’t omit the higher order terms so that we considered a preferably true
hyperelastic model but have a deviation provoked by the time spending, stretch-rate

and stretch history.

Why Such Hyperelastic Models are Useful for the High Strain
Materials/Biotissues

The usefulness of a model is in its providing of insights into the mechanisms
underlying the mechanical behavior of the materials. The reason that we are doing the
error analysis for the hyperelastic models of high strain materials and biotissues is that,
even though they are never perfectly correct, those models are comprehensively being
used and regarded as useful in the area of biomechanics and mechanobiology. The
elastic models are never exact but they are useful because they guide our directions. If
there is no model for a certain application, one may have to have some trial and error.

The elastic models help us look at what is the relationship between stress and strain,



how the materials respond relative to the stress and strain. For example, an elastic
model for steel is useful for building structures such as bridges and skyscrapers.
Although steel is not elastic and has some inelastic behavior (Kliman and Bily, 1984.,
Tong et al, 1989., Wittke et al, 1997., Ohno and Karim, 2000., Sablik et al, 2004), a
linear elastic model for steel gives mostly the right answer so that we can model steel
as an elastic material by the first order approximation. Although the linear elastic
model for steel gives mostly the right answer, it is not truly right. There are deviations
for second order and higher order models as well. We should look at the deviation and
include this deviation in the models. But it is not necessary to include the higher order
terms for steel for most applications because the first order model gets very close
enough to be used for the applications. It is the same with rubber and tissue. In this
case the hyperelastic models help us understand what is the relationship between stress

and strain, how they grow relative to the stress or strain.

Why We Need to Know the Uncertainty in the Models

If we have an infinite number of higher order terms, then the model would be
perfect under the assumption of that the Error-of-measurement is ignorable relative to
the Error-of-definition. In spite of that assumption, a perfect model is unfeasible
because we can’t have infinite number of data points. If we have only first order, or
second order terms, then it is approximation. We need to look for the uncertainty due
to the approximation or omission of the rest of the higher order terms. By considering
all points of motion profile of stretch-controlled protocol and then average, we

consider a perfect hyperelastic model but have a deviation caused by the time
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spending, stretch rate and stretch history. It will be great to have a perfect model for
tissue if we are looking at the role of stress in the growth and remodeling of a tissue.
But in lieu of perfect model, hyperelastic models would be the best choice for
biotissues. Since, for steels, the second and higher order terms are not used, it may not
be correct to say that the first order model for steel is linear elastic and the first order
model for biotissues is hyperelastic. But it is the first approximation. Approximation is
mostly useful but we need to know the error induced by the approximation (called
Error-of-Definition) or by neglecting the other terms so that we can estimate if it is
good enough. For steel, we already know that the error is small so that we can neglect
it for most applications. But, for biotissues, the error comes from the omission of
nonlinear terms that have never been specified. Most of the models introduced in prior
section have been developed within the high strain ranges where they have low
deviations. Even in the low range of low strain which has huge amount of deviation
from elasticity, they neglected it and just applied the assumption of hyperelasticity,
isotropy, or/and Fung used the pseudoelasticity for the biotissues which is false as the
name implies (Skalak and Chien, 1987). So if we use the hyperelastic models for the
biotissues, we need to know how it deviates from the hyperelasticity before we can say
whether we can neglect the deviation or not because we cannot neglect the deviation
prior to the understanding of the deviation. We need to know how the deviation
induced by neglected terms will affect our results. It should be answered what if we
didn’t know by this amount/how the approximation can be proposed to our uncertainty
in the final answer. The uncertainty will be looked at by the fundamental statistical

theory. It is good to know what degree of uncertainty the hyperelastic models for high
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strain materials and biotissues have. It is suggested that the degree of hyperelasticity

of rubber is very high, about 98% hyperelastic.

Why We Need a Random Protocol
The completely randomized stretch controlled protocol is indispensable for
error analysis. By the assumption that a hyperelastic model for the high strain materials
and biotissues is a function of three variables such as time 7, stretch-rate S and stretch
history H, the stress o can be described as
o=0(T,S,H) (1.15)
To satisfy equation (1.15), those three variables should be completely independent of
each other so that they are not coupled or correlated. Thus, the randomized uniaxial
stretch- controlled protocol enables us to look at the three variables as independent
variables as well as the major factors that cause the deviation from the hyperelasticity.
Since all randomized points that meet the stretch ratio 1.1, 1.3, 1.5, 1.7 and 1.9 of the
entire protocol have been used and averaged together, a hyperelastic model that can
potentially be made didn’t exclude the higher order terms, i.e., it didn’t force the
stress/strain relationship to be linear, quadratic, cubic or higher than that by allowing
all higher order terms. The deviation due to the time spent, stretch-rate and stretch

history has been found from the averaged stress.
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CHAPTER 11

METHODS

Preparation of Test Specimens

For this study, rubber fibers as high strain materials and longitudinal strips of
pulmonary artery from adult swine as tissues were used. The initial length of the rubber
specimen was chosen as 25.4 mm with radius of 0.3 mm. The maximum limit of stretch
ratio that the rubber can go up to is 1.9. The tissue specimen for this study was strips of

pulmonary artery of adult swine. The dimension of the tissue was 2.5 mm x 2 mm as

the width x the length. The tissue specimens have less collagen (“a protein consisting
of bundles of tiny reticular fibrils that combine to form the white glistening inelastic
fibers of the tendons, the ligaments, and the fascia, Mosby’s Medical, Nursing, &
Allied Health Dictionary”, Anderson, 1998) but have much elastin (“a protein that
forms the principal substance of yellow elastic tissue fibers”, Mosby’s Medical,
Nursing, & Allied Health Dictionary, Anderson, 1998) so that they experienced very
high strain. To use the same randomized stretch-controlled protocols for both the
rubber and tissue, we checked the maximum stretch ratio that the tissue can go without
over limiting the range of the force-transducer (Its maximum is 50 gram). According to
the preliminary test to ensure the maximum stretch ratio for the tissue, its maximum
stretch ratio was 1.97 at 10.25 voltage output of force-transducer. Thus, we decided the
maximum stretch ratio for the tissue as 1.9 and then used the same length of the tissue
to use the same randomized stretch-controlled protocol used for the rubber, i.e., we

used the same displacements for both the rubber and tissue.
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To use the same protocol, the length of the tissue can be calculated by using equation
(2.2). Since the maximum stretch ratio was the same as 1.9 for both the rubber and
tissue, the length of the tissue specimen was chosen as 1 inch. Figure 2.1 shows the

nonlinear behavior of the strips of pulmonary artery of adult swine.

Force[volt]

Stretch Ratio

Fig.2.1. Nonlinear behavior of the tissue (strips of pulmonary artery of adult swine). It
shows linear behavior until the stretch ratio 1.6 and then nonlinear behavior from the
stretch ratio 1.6. Since the force transducer used for this study can detect the force
range up to 50 gram, it didn’t detect the force of the corresponding stretch ratios which
is higher than 1.97.
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The tissues have been kept in a phosphate buffered saline (PBS). Although
most of the tissues are fixed by formalin, formaldehyde, or glutaraldehyde, elastin is
kept in a PBS to hold on to its elasticity (Fung, 1993). The fixation agents such as
formalin, formaldehyde, or glutaraldehyde change the property of tissue by cross
linking the collagens. It makes the tissue stiff and loses extensible. PBS was sprayed on
the tissues to keep them moist during the randomized uniaxial stretch-controlled test.
To keep bacteria from growing we kept them on ice. All the experiments have done at
room temperature which is around 23 °C.

Uniaxial randomized stretch-controlled tests were executed for both the rubber
fiber and tissues and the data obtained by the experiment were analyzed based on the
assumption that there are certain factors that cause the deviation from the
hyperelasticity. Highly suspected factors that cause the deviation were expected to be
strain-rate, strain history and time spent testing. For the stretch-controlled randomized
protocol, stretch ratios and stretch rates were randomly generated as for nodal values
and they were interpolated with the C' continuity by the custom codes. All codes were
developed by using LabVIEW. For each nodal interval, maximum and minimum slopes
meant by maximum and minimum velocities have been checked. If the maximum slope
was higher than the maximum velocity of the actuators then time-interval was
expanded to decrease the slope. Newport’s Universal Motion Controller/Driver
(ESP7000) and its compatible actuators (CMA-25CCCL) that have high precision have
been employed for the randomized stretch-controlled uniaxial stretch test. These CMA
actuators are capable of having minimum incremental motion of the order of sub-

micron (Resolution = 0.048828 um, Speed = 50 — 400 um/sec). These motions were
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controlled by the LabVIEW based algorithms developed by us. After the experiment, it
has shown how the error was looked at in 1-D. For each stretch level, it has been
checked what factors were the most effective to make the deviation from the
hyperelatsticity. It was highly suspected there would be different factors for the

different stretch levels that make uncertainties.

Randomized Stretch-Controlled Protocol

Ideal randomized stretch-controlled protocol has been achieved by using cubic
Hermite interpolation. Randomly generated nodal values for the interpolation were
defined as stretch ratio (displacement) and velocity of the actuators. We, first, got the
71 raw random points for both the stretch ratio and velocity. They were used as nodal
values for the interpolation. Figure 2.2 and figure 2.3 show the 71 raw random points
for the stretch ratio and interpolated protocol, respectively. Algorithm for cubic
Hermite interpolation and motion for the actuators were programmed by using software
language LabVIEW (National Instrument, Inc). Figure 2.4 and figure 2.5 show the 71
raw random points for the velocity of actuator and interpolated velocity protocol,
respectively. By following the stretch-controlled protocol as shown in figure 2.3 and
figure 2.5 below, the specimens (a rubber fiber and a strip of pulmonary artery of an
adult swine) were stretched with a specified velocity. Data has been acquired by using

Newport Universal Motion Controller/Driver (ESP 7000).
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Fig.2.2. Randomly generated raw data points of stretch ratio for the cubic Hermite
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Fig.2.3. Interpolated ideal stretch-controlled protocol.
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Fig.2.5. Interpolated ideal velocity protocol of an actuator (motor).
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Cubic Hermite Interpolation

In the area of numerical method of mechanics such as Finite Element Analysis,
a third-order curve called cubic Hermite polynomial which has C' continuity property
is widely being used. It is a spatial (interpolation with space, x, y, z) or temporal
(interpolation with time, f¢) interpolation of nodal values. It is a processing of
estimation of the nodal values that are unknown by using the nodal values that are
already given as, in this study, stretch ratios and velocities (as stretch-rate) within a

given range. The basic form of the cubic Hermite interpolation function for 1-D is

oA oA
ME)=Hy(&)A, +H (97 +Hy (&, +H (&)= 2.3)
1 5 N, 2 65 N,
OME) _ OHY(£) ] JOHIO A OHY©) | oHME) A o4
g o M o0& ogl, o5 08 g, '

where H (&), H! (&), H;(£), and H/ (&) are the interpolation functions or shape

functions. Cubic Hermite polynomial, as shown above, has the form that has two

prearranged points /I|N and /1|N and two prearranged tangents (—j

o (a&}
and| —
o¢ ), o0&

They are given at element nodes N; and N,. The element, therefore, has four degree of

N,

freedoms (i.e., two degree of freedom per node) and they are given by scalar values as

stretch ratios and velocities in this study. To get the cubic Hermite polynomials
H) (&), H (&), H (&), and H}(£), we applied the interpolation properties shown
below.

From A(¢&=0)= /1|N , we have
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H,(0)=1
H/(0)=0
H;(0)=0
H!(0)=0

(2.5)

From A(£ =1)= 4] , we have

H,1)=0
H!(1)=0
H () =1
Hi(1)=0

(2.6)

OA(E=0) _0A
o og,

From , we have

0H,(0) _
o

0H, (0) _
og

OH; (0)
s

OH (0)
oc

2.7)

oAE=1) _0aA
o og,

From , we have

am _,
o0&

OH, (1) _

o

OH, (1) _
o0&

OH! () _
0g

(2.8)
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The polynomials used to represent the H(E) must have all terms beginning with a
constant terms up to the highest order. Since there are four conditions (two per node)
for each H(&), a four-parameter polynomial should be chosen for H(&) which is a cubic
polynomial. These four values are given for setting the nodal conditions.

By using the four conditions above, we have

Hy(§)=1-3&"+2&°
H{(§)=&-25"+¢
Hy(§) =35 -2&°
Hi (&) =¢-¢

(2.9)

where & € [O, l].
If we consider an 1-D cubic Hermite interpolation function in the global coordinate ¢

which is the coordinate of the problem, it will be expressed as

(2.10)

e+

2=y, + 10

+H;(t)A

e

H, (1) :1—3[£j2 +2[£j3
H(t)= E(l_éJ

Hi ()= 3{}%]2 _ z(hjj @2.11)
S

2, 04
1 + Hl (t)a

e+l

where,

o
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and, 1 =1¢ —t,. Schematic for the derivation of cubic Hermite interpolation function is

shown in the figure 2.6. It shows the relationships between global, local and
generalized coordinates where e-1, e, et+l, and et+2 are global node numbers,

&= (t —te)/ h, ando& /ot =1/h,. The length of the element 4, is the scalar factor and

a
o

ot _94
L 0E ot

e"

used for chain rule such as %‘ =

e

A

A oWl
e oA
A, —

ﬂe+1 of . M’e+1 , a_ﬂ’

at e+l
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Fig.2.6. Schematic for the derivation of cubic Hermite interpolation function. It shows
the relationships between global, local and generalized coordinates where e-1, e, et+1,

and e+2 are global node numbers, & = (¢ —,)/ h, and0& /ot =1/h, . The length of the
element A, 1s the scalar factor and wused for chain rule such
WO oA oo

o0& ot|, 6& ot

e
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Verification of Randomness

The significance of randomness in this study is that it provides reliable results
from error analysis. It should be evident that there is no correlation amid the time
spent, stretch-rate and stretch history before we do the experiment of randomized
stretch-controlled protocol to guarantee, if there is any, the validity of the correlation
after the experiment. Thus it can be answered for the question of validity of
randomness of the original raw data which have obtained by random number
generation command in LabVIEW (National Instrument, Inc). The randomness is
defined by the ignorance of cause and effect, i.e., any event should be caused by
chance alone and uncontrollable if it can be regarded as random. Thus, a random signal,
also known as a white noise, doesn’t have any recurring of same patterns in the signal,
i.e., there is no correlation between the signal values. White noise, by definition ideally,
has all frequency components which have the same powers throughout a defined
frequency domain. Thus, by using the properties of white noise, the randomness of the
randomized stretch-controlled protocol can be verified by investigating the frequency
components and their amplitudes in the protocols. Discrete Fourier Transformation
(DFT) and Wavelet Transformation (WT) have been employed to see whether the
protocols satisfy the properties of the white noise. Figure 2.7, figure 2.8 and figure 2.9
show the DFT, WT (2-D) and WT (3-D) of the stretch protocol, respectively. Figure
2.10, figure 2.11 and figure 2.12 show the DFT, WT (2-D) and WT (3-D) of the
velocity protocol, respectively. The spectral analysis of the protocols by using wavelet
transformations (Time-Frequency domain) shown in figure 2.8, 2.9, 2.11, and 2.12

show the more detail distributions of the frequency components over time. If we see a
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specific frequency component, there is the highest pick of the frequency component.
The frequency components that we see in FFT (Frequency domain) are those that have
the highest picks for each frequency components. They show the every frequency
components that are consist of within the maximum frequency range (0.5Hz) and the
spectrums are fairly even. In other words, since there is no dominant frequency, most
of the frequencies are represented of similar magnitudes, and spectral representations
show that they have all spectrums in the range, they are affectively random. Thus, we
can conclude that we prohibited most of the factors that can possibly cause any
correlations before we conducted the experiment and error analysis. In reality, we can’t
have perfectly flat spectrums because it is impossible to have infinite number of points
to develop a perfectly flat spectral representation. If we execute the cyclic loading test,
we will have dominant spectrums.

If we have more random data, the resolution will get finer and it will seem to
mostly follow the properties of white noise for the spectrum analysis. The more
random points we have the higher spectral resolution will be achieved. At this moment,
we have 71 data points to be analyzed. Figure 2.13 and figure 2.14 show the frequency
spectrum of total interpolated stretch ratio and velocity of an actuator data points. They
show the much higher resolution of frequency spectrums because of involving a

number of data points (the number of total interpolated points is 3500).
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Fig.2.7. Fourier spectral representation of the randomized stretch ratio data points.
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Fig.2.8. Frequency spectrum of randomized stretch ratio data points viewed in time-
frequency domain (2-D) using wavelet transformation.
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Fig.2.9. Frequency spectrum of randomized stretch ratio data points viewed in time-
frequency domain (3-D) using wavelet transformation.
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Fig.2.10. Fourier spectral representation of the randomized velocity data points.
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Fig.2.11. Frequency spectrum of randomized velocity data points viewed in time-
frequency domain (2-D) using wavelet transformation.
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Data Acquisition and Conversion

The motions of actuators (CMA-25CCCL, Newport) were controlled and
monitored by the Newport’s Universal Motion Controller/Driver (ESP7000). The data
of the motions for the randomized stretch-controlled protocol also have been obtained
by the controller. It gets the time, position of the actuators for a corresponding time,
and analog output as data for every 0.1 second. An analog output in this study was a
voltage output for the corresponding force input whenever the specimens (rubber/
tissue) were stretched. The force transducer (Harvard Apparatus, Inc) was connected
between the specimens and the motion controller/driver through the data acquisition
board. It detected the voltage changes according to the motion variations. Figure 2.15
shows the experimental setup for the uniaxial randomized stretch-controlled protocol.
Because the controller/driver didn’t give the decimal configuration of the numbers for
the data, the data obtained by the controller/driver should be converted by proper gains
which have not been supported by the Newport. Table 2.1 shows the conversion table
for converting the non-decimal configuration of the data obtained by the
controller/driver to decimal configuration of the data. Because of the oscillation of the
signal (voltage) from the force transducer, a low-pass filter has been made and
employed into the experimental system to get more stable signal output from the force
transducer. 2" order Active Low-Pass Butterworth Filter of -40dB/decade has been
chosen as for the low-pass filter because it makes the closed-loop gain to be 1 as close
as possible within the pass band (Coughlin and Driscoll, 1982). To design the filter, we
chose the cutoff frequency f; as 5 Hz (note that a sampling frequency f;is 10 Hz) R] =

R2=R=10KkQ, and Rf=2R =20 kQ. By using following formula
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Cl

_ 0707 _ 0.707 208
£.R  5x10x10 (2.12)
C2=2Cl=4.5uF

we selected the proper capacitors and resistors for designing the filter. Figure 2.16

shows a basic circuit diagram for the 2" order Active Low-Pass Butterworth Filter of -

40dB/decade.

Table.2.1. Conversion table for non-decimal data of force, position of actuator, and
time.

Data Conversion

Analog Input Position Time

1 volt =3200 I mm = 20480 | 1sec=2560
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Computer

RS232

DAQ Board

Analog 1/0

ESP7000 Motion Controller/Driver
2nd Order Low-Pass

Force Transducer Active Butterworth Filter

Aluminum Sliding Rod

§ Iron Hook
CMA-25CCCL
Actuator Motion Direction

CMA-25CCCL
Actuator

Fig.2.15. Schematic of the experimental setup. Two CMA-25CCCL Actuators are
connected to the Aluminum sliding rod and the force transducer through the sliding
tables which are not shown in the figure.
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Fig.2.16. Circuit diagram of 2nd Order Low-Pass Active Butterworth Filter of
dB/decade.
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Stretch History

Since the change in mechanical properties of the rubber-like materials and
biotissues are highly dependent on the previous stretches, it is very important to
understand the stretch history for the materials. Stretch history tells us what has come
before. Thus stretch history says that what types of experiences the specimens have
undertaken before. One aspect of stretch history is a quantity that we refer to as
affective (or average) stretch history which is the average of the stretches for the prior
time interval of duration #; - a suitable chosen time constant obtained by the relaxation
spectrums. To get the relaxation spectrum, we have executed the stress relaxation tests
on the testing materials.

The reason that we have to perform the stress relaxation tests on them can be
explained that, for example, if there are three different stretch-controlled protocols,
even if the stretch ratio and stretch-rate are the same at a certain time, stretch histories
are different, i.e., the areas under the curves are different. Thus, by integrating the A(?)
and dividing it by the last amount of time #, that is a suitably chosen time constant
obtained from the relaxation spectrums by the stress relaxation tests, we got averaged
stretch ratio for #,. Figure 2.17 shows the basic concept of stretch history. From the
figure 2.17, we saw that it was very important to decide a reasonable #, for achieving
the reasonable stretch history. Because if #, gets smaller and smaller, H(?) approaches

to A(t) therefore it doesn’t give us much history. Equation (2.13) shows the relationship

between stretch history function H(?) and stretch ratio A(z) which is a function of time.

[ a@ar
t—t,
th

H(t) = (2.13)
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If #;, is zero, it doesn’t give any history. In contrast, as #; gets bigger and bigger, it gets
close to the average of whole stretch ratios of entire motion which is not consequential.
Thus finding reasonable #, is important to figure out the uncertainty due to the stretch
history. To find the #,, we performed the stress relaxation test for the specimens so that
we could capture the relaxation spectrum for the specimens and then figured out the

fast decay and slow decay of the stress relaxation.

A A(1),
(1),
A(1),
A(t)]
A(1),
/’i(t)z
0 ty {
th

Fig.2.17. Although the stretch ratio functions A(¢),, A(¢),, and A(¢), that are function

of time give the same value at time ¢y, the average stretch ratios for the time duration ¢,
for each of the functions are different.
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Stress Relaxation Tests

Rubber: A stretch history, as mentioned in prior section, tells what types of
experiences the specimens have for the previous times. To get the appropriate stretch
history which is an average stretch ratio for the specified time duration #,, we executed
the stress relaxation tests on the rubber. Figure 2.18 shows the stress relaxation data
curve and fitting curve for the rubber. By using the constrained nonlinear optimization
in the Matlab (Mathworks, Inc), we obtained the acceptable fitting curve corresponding
to the raw stress relaxation data for the rubber. The equation for the optimized fitting

curve could be expressed by a summation of two exponential functions as following.

t t

V()= A+ Be " +Ce " (2.14)
where 4 = 2.756, B = 0.097, C = 0.025, ¢t; = 403, t, = 8.99, and V is a voltage output
which is equivalently a force. For the rubber, the stress history cutoffs (or relaxation
spectrums), #,, have been chosen as ¢, = 10 sec and ¢, = 400 sec for early (fast) decay
and late (slow) decay, respectively.

It is very important to note that the stretch history obtaining by the history
cutoff, #, =10 sec is rely on the direction of approach because it is a relatively short
duration. If a stretch rate is positive at a certain point of time ¢y, the average stretch

ratio which is within relaxation spectrum ¢, = 10 sec will be less than the stretch ratio at
the point y. Since the slope (stretch rate A(7)) is changing gradually and acceleration
of stretch ratio A(¢) relatively low, stretch rate A(¢) tells what was immediately

happening before. In rubber case, what happens 10 seconds prior is given by the rate.



39

2.9
20 o —=— Raw data|- -
20 N - Fitdata | _

0 200 400 600 800 1000 1200 1400 1600 1800
Time[sec]

Fig.2.18. Stress relaxation test on the rubber fiber. Fitting shows that it is well-fitted by
summation of two exponential functions.
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This tells that the relationship between the stretch history scanned by the

relaxation spectrum #, =10 sec and the stretch-rate is exactly inverse. If stretch rate
A(1) is positive, it means the randomized stretch-controlled protocol move in positive

directions and vice versa. Thus, we can have following relationships described in

equation (2.15).

J':‘f'_t A(t)dt

h

it A >0, H(n= <A,

1,=10

(2.15)
[ At)dt

l

n

if /i(t)‘ty <0, H(t)= >’W)|z,v

1,=10
Moreover, the correlation coefficients for both the stretch-rate and stretch history
scanned by #, = 10 sec have exactly the same absolute values but opposite signs. For
the tissue, it can be understood likewise. Figure 2.19 shows the schematic of the

relationship between the stretch-rate and stretch history scanned by early decay of

relaxation spectrums.
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Fig.2.19. When the stretch rate is positive, the stretch history scanned by #, =10 sec is
less than the present stretch ratio. (b) When the stretch rate is negative, the stretch
history scanned by #, =10 sec is bigger than the present stretch ratio A(¢, ) .
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Biotissues: Unlikely to the rubber, the stress relaxation curve for the tissue was

well-fitted by the summation of four exponential functions as follows.
V()=55+1.5¢""*" +0.5¢7" +1.3e™""" +0.5¢”" (2.16)

For the tissue, #;, = 10 sec has been used chosen as fast decay of the relaxation
spectrums to get the rate-related stretch history function. Although the #, = 400 sec
would be the reasonable slow history cutoff of the relaxation spectrums to get the
stretch history function for a long decay, we figured out from the figure 2.20 that that
there is a longer relaxation spectrum that was ¢, = 1000 sec. So we employed one more
variable which was the new stretch history function H(?) scanned by history cut-off, #,
= 1000 sec, for the multivariable linear regression analysis for the tissue. But, it was

hardly affective to the deviation from the hyperelasticity as will be shown in the results.
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Fig.2.20. Stress relaxation test on the strip of pulmonary artery of the adult swine. Data
have been obtained at every 0.4 second for 1 hour. After a half an hour, it seems

asymptotically stable.
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Types of Uncertainties

There are two types of errors; random error and systematic error. Here the term
error is being regarded as an uncertainty. Random errors appear during the time of any
measurement in random manner so they are statistically unpredictable. This type of
error can be reduced by repeating the same procedure for all measurements under the
identical experimental situation. But systematic error cannot be reduced in this way.
Systematic errors affect the results in a systematic way, to be exact, they make a
certain degree of bias from the true value in the same way. They are, in general, hard to
detect and estimate. Here we defined the uncertainties due to the stretch-rate, stretch
history, and time spent testing as systematic errors because they behave systematically.
We have found that as stretch history and time get bigger the deviations get smaller.
But as stretch-rate gets bigger, deviation also gets bigger which intuitively make sense.

Because there is no hyperelastic material in the world, whenever we use the
hyperelastic model for a constitutive modeling of elastomers and biotissues, the error-
of-definition becomes an issue. Thus if the elastic constitutive relation is to be
determined by the experiment, the assumption of hyperelasticity should be considered
as a part of errors. Error-of-definition stands for a degree of uncertainty that we are
uncertain of the elastic stresses in rubber fibers and biotissues. This tells that we have
to consider the inelastic behavior as an experimental error. In contrast, an Error-of-
measurement is issued whenever the error comes from any measurement and
instrument. More specifically, hyperelastic assumption for the rubber fiber gives rise to
the Error-of-definition. The measuring of force (or voltage), radius of the rubber fiber,

resolution of force transducer, motion controller, and actuators will give rise to the
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Error-of-measurement. Note that the Error-of-Measurement sometimes includes the
Error-of-Definition. For example, let say we are measuring a temperature of the beaker
and the temperature of the beaker is, for example, 400 K. For measuring the
temperature, we normally take the average. By saying that the beaker has a
temperature, we expect that there is an Error-of-Definition. Now, if we think about the
thermometer, we may not be able to read the thermometer because of the unscaled part
of it. This gives rise to the instrument error which is a part of the Error-of-
Measurement. Another example is a measurement of the dimension of the specimens.
If we measure a width, a, of the tissue, we don’t have just one value for a. The
measurement of a certain specimen has both the Error-of-Definition and the Error-of-
Measurement. To get rid of the Error-of-Definition which is dependent on the location,
we measured many times on it and then averaged them. By doing this we got just one
value which was finally representing the Error-of-Measurement. The randomness goes
away if we measure a lot of times. If we have a specimen that has systematically
increasing width, we don’t have the Error-of-Definition any more.

Since the error-of-measurement is able to be reduced as much as possible as
long as we are using extremely accurate measuring devices, it won’t be consequential
for this study. Note that, however, a certain amount of error (deviation) comes from the
inelastic behavior can’t be reduced whatsoever as shown in later chapter. Now we
should figure out what causes this inelastic behavior by using the concept of error
analysis. By making the assumption that highly suspected factors causing this
inelasticity are stretch history, stretch- rate and time, the error analysis has been done

by focusing on these three factors. Note that stretch ratio and stretch-rate are
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instantaneous and they have nothing to do with history obtained by relatively long
relaxation spectrum. Some of the uncertainty could be caused by the edge effect. But
since we used the long specimens, the deviation due to the edge effect has been found

to be inconsequential.

Error Propagation
To quantify the uncertainty due to the inelasticity of rubber fiber and biotissue,
we assumed the following relation as
Fy=Fy+AF (2.17)
where F), is force measure at a certain stretch ratio. Fy is the average of the force
measures and it is a continuous function that satisfies the hyperelastic assumption.
Since the experiments were performed in 1-D and there was no symmetry group, we
didn’t need to assume the isotropy. If we assume hyperelasticity, there should be only
one value of force for each corresponding deformation or stretch ratio (one-to-one
mapping of stress and strain). The average uncertainty or standard deviation AF of Fy,
represents a degree of uncertainty that how much the measurements of forces are
deviated from the hyperelastic point of view. The fundamental question for finding AF
was where the deviation came from. It has been assumed that the deviation AF consists
of as following;
AF = AF;, + AFy, + AF; + AF,y (2.18)
where AF,, AFy, AF; and AF,r are uncertainties due to the stretch-rate, stretch history,

time spent testing, and extra random factors. Extra random factors would be random

noises and errors due to the inaccuracies of measurement of cross-sectional area
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(related to a measurement of a radius) of the rubber fiber, measurement of cross-
sectional area (related to a measurement of a width and a length) of a strip of
pulmonary artery of adult swine, voltage output for corresponding stretch levels,
reference weight, voltage output for the reference weight and stretch ratios. Because
the Cauchy stresses should be calculated after measuring a force, a radius of rubber
fiber, a width, and a length of the strip of pulmonary artery of adult swine, and stretch
ratios of specimens (rubber and tissue), those measurements have been done first. But
each measurement has their errors and hence there would be resulting error which
suggests the error propagation. Since, for a rubber specimen, we had principally three
measurements such as force f, radius of rubber fiber 7, and stretch ratio A, the Cauchy
stress was t = (f, r, A) for a certain function. In addition, the force measure can be f'=
fv, w, p) where v is a voltage output for each deformation (or stretch ratio) during the
motion period, w is a reference weight, and p is a corresponding voltage output for
reference weight. For the tissue specimen, we have primarily four measurements, force
/. a width a, a length b, and stretch ratio 4, therefore the Cauchy stress was ¢ = t(f, a, b,
A) for a certain function. To find an uncertainty due to the resolution of force
transducer, repeated measurements have been done and standard deviation was
obtained. Before we got the resulting error of the Cauchy stress measures, we had to
calculate the resulting error due to the process of force measurement. For a calculation
of error-propagation, we used the general formula shown by the equation (2.19) (John

R. Taylor, 1997) without proof.
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(225 4 i(P%2s)
@_\/[ax 5xj i +(62 &j (2.19)

= (g, ) ++(&.)

where, og is the uncertainty in g = g(x,..., z). The variables x,..., z are measured values
and ox,..., oz are uncertainties in measuring of x,..., z. Note that og,,..., dg. are the
uncertainties in a function g due to the ox alone and oz alone, respectively. Although
the equation (2.19) which is for calculating the absolute uncertainty in the function g is
not our interest, we used it to figure out how the relative uncertainty which is our true
interest affects the absolute uncertainty.

For rubber specimen, since the Cauchy stress is ¢ = #(f, r, A), the uncertainty in

function ¢ is expressed as

ot = [géfj +(g§rJ + [ﬁéft)
of or oA (2.20)
=l )+ (e, ) + (a1,

Again, dtris an uncertainty in ¢ due to the Jf alone, &, is an uncertainty in ¢ due to the

or alone, and ot is an uncertainty in ¢ due to the o4 alone. It is extremely important to
know that the uncertainty in ¢ due to the ¢f which is & includes the uncertainty due to
the inelastic behavior of the rubber and the biotissues. The uncertainties in the
measured forces are not related to any instrumentally measured values such as r, a, and
b for the rubber fiber. In other word, the inelastic behavior of the rubber fiber has
nothing to do with those measurements. They are just static measurement so that they
never vary. They are not independent variables. Again, we didn’t look at the absolute

error but relative error. For the tissue, it can be understood likewise.



49

For a strip of pulmonary artery of an adult swine, the Cauchy stress is a
function of four variables which is ¢ = #(f, a, b, 4). Thus the uncertainty in the function

t for biotissues is expressed as

&:J@gf} () o) + ()
of da ob oA (2.21)

- \/(5’1 )2 +(ar, ) + (o, )" + (o, )

Since the Cauchy stress is related to the 1% Piola-Kirchhoff as
t= lFP (2.22)
5 .

where, ¢t is a Cauchy stress, J is a volume change ratio which is
d(vol)current/d(V Ol )references and equivalently det(F), F' is a measure of finite deformation
called deformation gradient, and P is a 1% Piola-Kirchhoff stress which called nominal
or engineering stress and it is a force in deformed body on the area of undeformed
body. Since we were studying the uniaxial behaviors of nearly incompressible

materials, the equation (2.22) can be simplified as

r=al (2.23)

0

The force f'can be calculated by using the following equation.

r=v2 (2.24)
P

By combining the equation (2.23) and equation (2.24), we get
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Avw

Ayp

- ’sz (for rubber) (2.25)
m’p

= Avw (for biotissue)

abp
Note that the equation (2.25) includes both the uncertainty due to the measurements
which called the Error-of-measurement and the uncertainty due to the inelastic
behavior of the specimens which called the Error-of-definition.

With the equation (2.25) for a rubber, the uncertainty in function ¢ can be

2 2 2 2 2
ot = [at 5/1) +(@5vj (at a‘WJ +(@5rj + [ Lo
oA ov ow or op (2.26)

_ \/(5;1 (o, )+ (o, ) + (o, ) + (o N

expressed as

and
&, = sp = | JaVms |5y 2.27)
oA P
ot AweW
s, =|Dsy = | Faelaz g, (2.28)
ov ( avg) pavg
A
5. = I ot | P wgvzavg | (2.29)
8W| (ravg pavg
& =| %5 |7 Hhs Vs Wers | 5, (2.30)
r ( avg ) pavg ‘
ot | A v w
P L P AT TS 231)
! ap ‘ﬂ-( avg) (pavg )2 ‘
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The variables A, v, w, r, and p are measured values and these measured values are

expressed as

(2.32)

r=r_*or

avg

P=Pug TP
Therefore, we can get the uncertainty in ¢ for the rubber specimen by using the
equations (2.26) — (2.32). Again, the uncertainty includes both the uncertainty due to
the error-of-measurement and the uncertainty due to the error-of-definition. Similarly,

for the tissue specimen, the uncertainty in function ¢ can be expressed as

2 2 2 2 2 2
ot = (ﬂ&} +(g5vj +(ﬂ§wj +[g&zj +[géb) + gﬁp
oA ov ow oa ob op

=l o () + (o) + () + (o,

(2.33)
and
at vav WGV
o, =|—oAd = £ _15A (2.34)
6/1 aavg bavg pavg
A w
ot, @5‘, = e BE Sy (2.35)
8\/ aavg bavg pavg
A v
&, |01 5 = | PV |5w (2.36)
| aM}| aavg bavg pavg
A v w
o, g&z = avgz e s (2.37)
aa (aan) bavgpavg
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10t] | = A Vi W
B N -
5 |0 |—/1avgvavgwavg | & (2.39)

p

o

o =
P ‘ﬁ(ravg )2 (p avg )2 ‘

All the variables except the a and b are the same as for the rubber specimen. The
reference area can be obtained by using the measured width a and length b of the tissue

specimen.

(2.40)

Thus, the uncertainty in ¢ for the tissue specimen can be obtained by using the

equations (2.33) — (2.40).

Fundamental Statistical Approaches; Multiple Linear Regression Analysis

To check the assumption that the deviations are mostly caused by stretch rate,
stretch history and time spent, fundamental theory of statistics has been used.
Statistical theory included the multivariable regression analysis, goodness-of-fit test
and test of significance called #-test as shown in below. Throughout the experiments
we obtained the data of time spent and force for the corresponding stretch ratios 1.1,
1.3, 1.5, 1.7, and 1.9. By using those data we got groups of data such as the deviation,
time spent testing, stretch-rate, and stretch history.

Since the multivariable linear regression analysis is a linear regression tool, the
relationship between the deviated value of force measurements and independent

variables such as time spent, stretch history, and stretch-rate is only viewed by linearly.
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Note that, instead of using the stretch-rate calculated by simply dividing the change in
stretch ratio by change in time spent, we, for the error analysis of stretch history parts,

used the stretch history H, obtained by using the stress relaxation spectrum i

corresponding to the early exponential decay because the speed of the actuators was
not our control variable which means motor didn’t allow us to control the velocity. We

defined the H, as rate-related stretch history. The relaxation spectrums were obtained

after the stress relaxation tests for the specimens. The constrained nonlinear
optimization fitting has been used on the data of stress relaxation test to get the
relaxation spectrums. The variables that have been employed for the multivariable
linear regression analysis are the Deviation D, Time spent 7, rate-related Stretch

History H, which can be regarded as a stretch-rate, long-time Stretch history
H, obtained by using the stress relaxation spectrum #; corresponding to the long

exponential decay.
We also found out how strongly/weakly they were related. Note that we
assumed that there were linear relationships between them. We found out how the

deviation D which is dependent variable changes with independent variables T, H, ,
and H, . The existence of several variables forced us to use the multivariable linear

regression model for the error analysis. The linear regression model searches for the
first order functional relationship of the independent and dependent variables under

several assumptions for the residuals.
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The sample model for multivariable linear regression is

D =a+ BT +BlH, )+ B(H,) +e, @41
Where, D;represents the variables for a deviation, 7; represents the variables for a time,

(th )i represents the variables for a rate-related stretch history, (H X )i represents the

variables for a long-time stretch history and e; is called residual or regression error and
it represents a random error. Note that the deviation D; is identical to the AF in the

equation (2.17). Thus, the equation (2.17) can be rewritten as Fy, = F + D;. The
partial regression coefficients ,B,., i =1, 2 and 3 describe how the independent

variables T;, (H,2 )i, and (H,l )i affect the dependent variable D;. Specifically, the

partial regression coefficient f; describes how much the time variable 7 affect the D,
when the other variables are assumed to be constant and only 7 is varying. Other
partial regression coefficients can be understood likewise. The sample regression line

for the multivariable is given by

A

D, =a+pT + 5, (th )l. + f (Htl )i (2.42)
where @ and ﬁi, i=1, 2, and 3 are assumed to be the best guessed values obtained by

least square method (LSM). Then the sample model for multivariable regression can be

rewritten as

D.=D. +e. (2.43)
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From the equation (2.43), we get e, = D, —bi . It represents the difference between the

observed deviation D; and best guessed value ﬁi. To get @ and ﬁi ,i=1,2,and 3, we
have to minimize the regression error using LSM as following.

Minze,-2 = Mi"Z(Di _[)i )2
:MinZ(Di —-a —,bA’lT,- _ﬁz(th )l- _'5,3(Hf1 )i)2

82@2 ~ 6Zei2 B 6Zei2 B 82@2 o
oa op op, O

(2.45)

Using matrix notation, if we have n measures at least but preferably many more for

each variables, the equations above can be described as

D, 1 T, (H f )1 (H 4 )1 €
D, 1 T, )y (H 4 )2 €,
Dy|-a 1| =B|T; |- B, (th )3 -5 (Htl )3 =6 (2.46)
_Dn _ _1_ _Tn i _(th )n i _(Htl )n i _en i
—— ——
Deviation Intercept Time rate—related long—time
Stretch History Stretch History

These equations were used for each stretch level from A=1.1 to A=1.9 to determine

a and ,B , i =1, 2, 3. Actually it was trivial to find a value @ and regression

coefficients Bi ,1=1,2,3. After getting the partial regression coefficients there should
be two important questions to be asked. The first question is how well the derived

sample regression line for the multivariable 7, H, , and H, describes the observed

variable D which can be justified by the goodness-of-fit test. The second question is
how much the regression coefficients are significant which can be verified by the test

of significance called #-test.
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Goodness-of-fit Test: As mentioned above the goodness-of-fit test tells how
well the derived sample regression line explains the linear relationship between the

independent variables 7, H, ,and H, and the observed dependent variable D. For this

test, coefficient of determination R’ is being used. For this test, consider the following

identity that satisfies for all the observed data.

D, -D = (Di —ﬁi)+ (15 —5) (2.47)

1

=e; residual
The equation (2.47) shows the decomposition of the observed value. The value D, — D

says the difference between the observed value and the average of D,. The value

A

D, — D, represents the difference between the observed value and the best-guessed

1

value of D which called residual e; which is related to the unexplainable portion of the
deviation. The value ﬁi — D represents the difference between the best-guessed value

of D and the average of D which is related to the explainable portion of the deviation.
Figure 2.21 shows the basic concept of the decomposition.

Now, let’s define the variation of D, as

_D,f +3(D,-D) +23 (D, - b,)D, - D) (2.48)

~ 2 A —_—\2
=S, -bf+3(D,-Df (e =0)
Thus, we have noticed that D,,, is separated into two categories; residual variation (or
unexplained variation) and explained variation such that

>(,-Df =X (0, -] +> (5, -Df (2.49)

=SST =SSE =SSR
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where D, is the observed values, D is the average of D, ﬁi is the best guessed value

of D..

1

]

T,H, ,H,
Fig.2.21. Decomposition of the value which is the difference between the observed

value D; and the average of observed value D.

The equation (2.49) tells that squared sum of difference between the observed value of
D and the average of D is equal to sum of squared sum of residual e; and squared sum
of difference between best-guessed value of D and the average of D. Physically, it
describes the level of scattering of D; . The equation (2.49) can be rewritten as

SST = SSE + SSR (2.50)
SST, SSE, and SSR are abbreviations of sum of squared total, sum of squared error

which is related to the unexplained deviation, and sum of squared regression which is
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related to the explained deviation, respectively. If we normalize the equation (2.50) by

dividing by SST, then we have following equation.

1= SSE +—SSR (2.51)
SST SST
e

=R
From the equation (2.51), last term in right hand side SSR/SST is defined as R’ called
coefficient of determination. From the following equation (2.52), it can easily be seen
that the range of R’ is in value between 0 and 1.

, SSR _SST SSE

= = - =1-(1-R? 2.52
SST SST SST ( ) (252)
2
— e.
groSST=SSE_, SSE_, Qe (2.53)
SST SST Z(D,-—D)

Since R’ is representing the ratio of sum of squared regression in the sum of squared
total, the regression model can be regarded as good-fit as R’ closes to unity. The
obscurity arises, however, because of the degree of freedom, when the R’ is used to test
the goodness-of-fit. R’ is only related to explained (regression) and unexplained (error)

variation in D and hence it doesn’t justify the number of degree of freedom. To resolve
this problem, modified R-squared R, is being used using variances of e; and D; as

follows.

R PLCACYR n—k=1_ (2.54)
Var(D,) > (p,-D)

n—1
where, n 1s the number of data, & is the number of independent variables. Although we

have a sample regression model for the multivariable, independent variables 7;, H, ,
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and H, cannot describe the model perfectly because of four of the following major

reasons. First one is the random factors that cannot be explained whatsoever. Second
one is the measurement error. Third one is the omission of the significant variables.
Last one is the nonlinearity of the independent and dependent variables.

Test of Significance: #-test: Although the multivariable regression model has a

good fit, each independent variable 7, H 4 and H | has to be tested to check whether
they are significant enough for explaining the variation of dependent variable D or not.

If one of the partial regression coefficients ﬁA’[, i=1,2,3 is zero or statistically not

significant, then it means the regression model is not proper. For example, if ,31 is

zero, then it means that the independent variable 7 scarcely explain the variation of
dependent variable D and hence the time is not effective variable to cause the
deviation. For the #-test we generally set two hypotheses; Null-Hypothesis H, and
Alternative-Hypothesis H,. So we have done the hypothesis testing for these two
hypotheses by looking at the ¢ value. Let’s assume that we are looking at the
significance of the time variable 7. Then t value can be obtained by using the equation
(2.55). The t values for the other independent variables can be determined likewise.

tn—k—l — 131 _ﬁ — ﬁlS_ﬁ — ﬂl _ﬂ — 131 _ﬁ (2.55)
Sﬁl : —)2 \/Z(Di_[)z‘)z \/ SSE

ST -T 1 Nn—k-1_

S-7f 20T

where 7 is the number of samples, & is the number of independent variables, S 5 1S a

standard error of estimate for the partial regression coefficient ﬁl ,and S, is a standard
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error of estimate for the observed values D;. For testing the hypotheses, we first have

to set the confidence interval. The confidence interval is associated with the level of

significance a. The confidence interval (C.I) is calculated as
CI=100(1- @) (2.56)
This represents the probability that the partial regression coefficient ,5’[ is likely to be

contained within that interval. Confidence interval is used for testing the hypothesis
and evaluating the significance of the derived regression coefficients. The hypotheses

that we are using is

NH,: =0

iyH,:f#0 -57)

Null hypothesis H, represents no effect for a specific independent variable. On the
other hand, alternative hypothesis H, represents an effect for a specific independent

variable. Now we have to compare calculated z-value ¢, , , using equation (2.55) with

the critical value 7, obtained from the table by considering the degree of freedom (n-k-
1) and the level of significancea. If the null hypothesis is rejected, alternative
hypothesis is accepted which means the independent variable corresponding to the
partial regression coefficient is significant. It is important to know that the significance
level « should carefully be decided because it depends on the researchers and models
that are being developed. We can get 90 % confidence interval, for example, with a 10
% level of significance such that

prob{ t, < 'é;ﬂ < tCJ =09 (2.58)

S5

Thus, we can obtain the 90 % confidence interval for £ from equation (2.58) such that
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problf—1,5, < p< p+1,5,;)=09 (2.59)
B+t.S 5 (2.60)

It physically means that, for the unknown value £, the true value ,@ will fall into the
range of equation (2.60) 90 times out of the 100. Provided that the critical value ¢, of
the ¢ distribution is properly selected, the confidence interval can be decided for any
level of significance.

Basic Assumptions for Least Square Method: There are seven basic
assumptions that we can use the least square method to get a sample regression line.
These seven assumptions should be satisfied so that the goodness-of-fit test (R*) and
test of significance (#-test) can reasonably be applicable. These assumptions are

1) E[&]=0
2) E[giz] = o/ forall i
3) Eleg]=0,i#]

4) E[eX]= X, E[&]=0

5) & ~N(E(g), Var(g))) or & ~N(0, 5,”)
6) n>k+1
) pX X) %=l
First assumption means the average of error terms is zero. The second
assumption states that all error terms have same variances called homoscedasticity.
Third assumption states that all error terms are linearly independent for different error
terms. Fourth assumption is that X; is nonstochastic variable and can be treated as

constant. Fifth assumption is that the error term is normally distributed. Sixth
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assumption is that the number of observed variables should be bigger than one plus
number of independent variables. Seventh assumption is that correlation coefficients
between the independent variables shouldn’t be £1.

All the assumptions have been checked to see if they are satisfied. The first
assumption which is related to the linearity has been checked by seeing the scatter
plots of the variables. It is a basic condition for calculating process of LSM for one’s
convenience. For the second assumption, we have checked the scatter plot of residuals
with each independent variable. The physical meaning the homoscedasticity is that the
error terms have constant standard deviation, i.e., SD(e;) = o for all i. The third
assumption which is related to the autocorrelation has been confirmed by plotting the
residuals in order and checking the patterns. The autocorrelation may be at hand if
observations have a natural sequential order, for example, time. In general, however, it
can hardly be expected that this assumption is perfectly satisfied. The fourth
assumption is saying that the independent variable Xi will be treated as nonrandom
variable or constant. It is understood that this assumption is not problematic for using
the LSM. The fifth assumption has been checked by plotting the histogram of
residuals. The sixth assumption has been easily checked by seeing the number of data
and independent variables. The last assumption which is related to the multicollinearity
has been checked by seeing the correlation coefficients between the independent

variables.
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CHAPTER III

RESULTS FOR RUBBER

Error-of-Measurement and Error-of-Definition

In general, a stretch ratio of 2 of a certain material can be regarded as highly
deformed status. But for the experiment of the rubber fiber in this study, since the
stretch ratio of 2 was much lower than the maximum stretch ratio that the rubber fiber
can acquire without damaging or breaking the cross-linked polymer chains in it, there
was no spiky peak in the output protocol. This means the cross-linked polymer chains
in the rubber fiber didn’t go up to the states in a tight straight line. Approximately a
stretch ratio of 5 was the maximum stretch ratio that the rubber fiber could acquire
with no damage of it. The results obtained from the randomized uniaxial stretch-
controlled protocol and corresponding force output profiles are shown in the figure 3.1
and the figure 3.2. The output profile has smoothly followed the input stretch protocol.
It took about 5600 seconds to finish the entire protocol.

As we expected, the experiment of the randomized stretch-controlled motion of
the rubber specimen showed that there is a noticeable inelastic deviation from the
hyperelasticity. The figure 3.3 shows that there are behaviors of nonlinearity as well as
inelasticity. If the hyperelastic assumption is perfectly satisfied, there would be only
one point for each stretch ratio.

To find the uncertainty due to the measurements, all manual measurements
(radius r, reference weight w, voltage output p for a fixed weight) have been done for

10 times. It is important to note that the uncertainty due to the manual measurement
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can be reduced as much as possible as long as we use the extremely accurate
measuring devices or equipments. Since the uncertainty due to the manual
measurements is fixed or static for entire stretch levels, it can be ignored for the error
analysis which was focusing on the uncertainty due to the inelastic behaviors of the
specimen. Note that the uncertainty due to the inelastic behavior varies. It was
explained in detail in later chapter.

To check the absolute Cauchy stress, first, we measured the reference area of
the rubber fiber. The radius of the rubber specimen has been measured for 10 times. As
for the reference weight, the weight of the paper clip has been measured for 10 times.
To check the resolution of the force transducer, we dangled up a paper clip on the tip of
the force transducer and saw the voltage output, and with the same paper clip, we
checked the corresponding voltage output for 10 times. The results of those
measurements are shown in the table 3.1. It also shows the standard deviations and

fractional uncertainties for each measurement.
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Fig.3.3. Forces obtained by force transducer for each corresponding stretch ratio have
been grouped and averaged. It shows the inelastic and nonlinear behaviors.
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Table 3.1

A diameter of the rubber fiber, a reference weight obtained by using a paper clip, and a
voltage output corresponding to a paper clip's weight (used fixed weight) have been
measured for 10 times.

No. of Measure radius[mm] ref.weight[gram] | voltage output[volt]
1 0.1345 0.3938 0.3084
2 0.1375 0.3940 0.3067
3" 0.1360 0.3940 0.3058
4 0.1345 0.3940 0.3061
50 0.1345 0.3938 0.3085
6" 0.1415 0.3940 0.3054
7" 0.1400 0.3940 0.3063
" 0.1415 0.3940 0.3046
ot 0.1345 0.3939 0.3042
10" 0.1415 0.3939 0.3054
Average 0.1376 0.3939 0.3061
Standard deviation 0.0032 0.0001 0.0014
Fractional-
Uncertainty[%] 2.3286 0.0214 0.4666
M=Mue+AM | r=0.1376 £0.0032 | w=0.3939+ 0.0001 | p =0.3061+ 0.0014
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Stretch Ratio 1.1: The rubber data corresponding to the stretch ratio 1.1 is
shown in the table 3.2. It shows the times and stretch ratios obtained by the motion
controller, forces vy, obtained by the force transducer and calculated deviation, stretch-
rate, and stretch histories. The error analysis has been done on the data of the

Deviation versus Time, H, and H, . Again, the H, is a rate-related stretch history
function scanned by a history cut-off # = 10 sec, and H, is the long-time stretch

history function scanned by a history cut-off #, = 400 sec.

Table 3.2

The rubber data corresponding to the stretch ratio 1.1. It shows the times and stretch
ratios obtained by the motion controller, forces vy, obtained by the force transducer and
calculated deviation, stretch-rate, and stretch histories. The error analysis has been
done on the data of the Deviation versus Time, H, and H, .

Time ; Vm Vavg Deviation d/dt H, (1) H, (1)

[sec] [volt] [volt] | var- Vavg[Vvolt] [/sec] t,=10 sec | t,=400 sec
130.8 0.36812 0.06707 -0.00485 | 1.13068 1.07313
299.8 0.33656 0.03551 -0.00004 | 1.11956 1.21757
622.5 0.33844 0.03739 0.00130 1.09920 1.42234
700.4 0.35875 0.05770 -0.00004 | 1.10070 1.39949
989.8 0.30500 0.00395 -0.00552 | 1.14034 1.39676
1391.2 0.30125 0.00020 -0.00138 | 1.11561 1.47724
1466.3 0.32813 0.02708 -0.00460 | 1.11815 1.43617
1773.4 0.30406 0.00301 -0.00086 | 1.11279 1.42072
2157.1 | 1.1 | 0.28281 | 0.30105 -0.01824 -0.00181 | 1.11982 1.53323
2307.9 0.28625 -0.01480 -0.00248 | 1.12653 1.51722
2651.5 0.28313 -0.01792 -0.00048 | 1.11603 1.44743
3561.0 0.30500 0.00395 0.00618 1.08060 1.55591
3858.4 0.26281 -0.03824 -0.00106 | 1.12729 1.56106
4401.7 0.26281 -0.03824 0.00213 1.11483 1.46314
4858.6 0.27312 -0.02793 0.00472 1.10172 1.51438
4998.9 0.27469 -0.02636 0.00477 1.10422 1.48922
5584.5 0.24688 -0.05417 -0.00472 | 1.13489 1.54672




69

It is important to note that, instead of using the stretch-rate calculated by simply
dividing the change in stretch ratio by change in time spent testing, we, for the error

analysis of stretch history parts, have used the stretch history function /, obtained by

using the stress relaxation spectrum ¢, corresponding to the early (or fast) exponential
decay. It is because the stretch-rate is not our control variable for the experiments. The

stretch history function H, is obtained by using the stress relaxation spectrum ¢,
corresponding to the late (or slow) exponential decay. We defined the /, and H, as

rate-related stretch history function and long-time stretch history function, respectively.

The table 3.3 shows the average values and standard deviations of stretch ratios
and forces are used for calculating the absolute uncertainty and relative (or fractional)
uncertainty for the stretch ratio 1.1. They have also been used to calculate the
uncertainty in resulting Cauchy stresses. We originally expected that the more stretch-
rate we have the bigger deviation from the hyperelasticity we get. It’s been revealed as
true from our other experiments that the stretch-rate and the deviation from the

hyperelasticity have positive relationship.

Table 3.3

The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.1. They have also been used to calculate the uncertainty in resulting
Cauchy stresses.

Average Standard
g deviation
iavg Vavg Al Av
1.10002 | 0.30105 | 0.00008 | 0.03488
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In fact, for the stretch ratio 1.1, it has been discovered by the multivariable

linear regression analysis that the rate-related stretch history function A, is the most

significant factor that causes the deviation from hyperelasticity. The long-time stretch

history H, has been revealed that it is not significant parameter that causes the

deviation from hyperelasticity. These founds are explained in detail in the part of the

multivariable linear regression analysis that is in later section.

To get the uncertainty in the Cauchy stress due to o4, év, ow, or, and o the for

the stretch ratio 1.1, the equations (2.26) — (2.32) were employed as

az Vg Wan, | (0.30105)(0.3939) |
&, 0 |5) = 0.00008
7(r, F P ‘7[(0.1376)2(0.3061)‘( ) 3.1)
=521x10"*[g/mm*]
A
5 - a’5v | o o |5V:| (1.10002)50.3939) |(0.03488)
70 f Pue| |7(0.1376)(0.3061) (3.2)
=8300.67x10"*[g/mm*]
5 =|az|§W=| A Varg |5W:|(1.10002)(0.30105)|(0_0001)
"lowl T e S pue| |7(0.1376) (0.3061) (3.3)
=18.19x107*[g/mm*]
5, az o5 —2/1wnggwavg 5r_|— (1.10002)0.30105)(0.3939) |(0 0032)
| 2l pwe | | #(0.1376)(0.3061) | (3.4)
=3332.24x10""[g/mm*]
&, - |25 |~ AV Wi 5 — —( 110002)(0.3;0105)(0.3;939)|(0_001 2
opl" |alr Plpne P | #(01376)(03061)° | (3.5)

=327.67x107*[g/mm*]

Thus, the total uncertainty in ¢ for the stretch ratio 1.1 is
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&ﬁ( (3] () (5] - (59]
|

= (& (o, P+ () +a, P

—{5.21) +(830067) +(18.19) +(333224) +(327.67) }x (10~ ) (3.6)
=8950.57x10™"*

=0.90[g/mm*]

We have seen that the uncertainty in the Cauchy stress ¢ due to the o4 (average
deviation or standard deviation of A) has the lowest uncertainty among the other
uncertainties. It is because we used the actuators (CMA-25CCCL, Newport) that
provide quite precise motions (Resolution = 0.048828 xm, Speed = 50 — 400 zm/sec).
In addition, since the weight of a paper clip has been measured by the scale
(Ainsworth, Inc) that has very high resolution (Resolution = 0.0001g), the uncertainty
in the Cauchy stress ¢ due to the ow has also a quite low uncertainty. It is important to
note that the uncertainty in the Cauchy stress ¢ due to the ov which is standard
deviation of forces has the highest uncertainty of the other uncertainties. Thus we can
tell that there are huge amount of inelastic behavior in the rubber at a stretch level 1.1.
Although the uncertainty in the Cauchy stress ¢ due to the or alone seems to be
relatively high, again, it can be reduced as much as possible to the maximum resolution
range that the measuring devices would have. These absolute uncertainties are not our
interests because the measured values », w, and p are static variables and the
uncertainties due to them are always constants for both the absolute uncertainty and

fractional uncertainty.
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Note that, if a certain variable is a dynamic variable, the fractional uncertainty
due to the variable will never be constant. The example can be a dynamic variation of
force due to the inelastic behavior of a certain material. The figure 3.4 shows the
uncertainties in ¢ due to the o4, év, ow, dr, and dp. The uncertainty o, in ¢ which is due
to the ov alone is approximately 2.5 times bigger than the uncertainty of, in ¢ which is
due to the or alone.

Now, if we look at the fractional (or relative) uncertainties defined as

Fu="M" (3.7)
M

avg
where M, 1s the average of the measurements and oM is the standard deviation of M;,
i=1,...,N, and get the fractional uncertainties for each variables, we have

oA

A=4,,164=1.10002+0.00008, x100 =0.007 %

avg

v=v,, 6 =030105+0.03488, 2 x100=11.586 %

avg

w=w,, éw=0.39390+0.00010, M 100 =0.025 % (3.8)
Wavg
r=r,, = =0.13760 +0.00320, O 100 =2.326 %
ravg
p

D= Doy = =0.30610+0.00140, 100 = 0.457 %

pavg

Using equation (2.25) for the rubber specimen, the Cauchy stress ¢ for the stretch ratio

1.1 is obtained as

t=t,, o =716432%0.89506, i>< 100 =12.493 % (3.9)

avg

Summarized fractional uncertainties are shown in the table 3.4.
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Fractional uncertainties for the measured data », w, and p, and obtained data A and v by
the motion controller and the Cauchy stress ¢ for the stretch level 1.1.

Data A1 v[volt] w[gram] r[mm] plvolt] | {g/mm?]

Average 1.10002 | 0.30105 | 0.39390 | 0.13760 | 0.30610 | 7.164322
Standard deviation | 0.00008 | 0.03488 | 0.00010 | 0.00320 | 0.00140 | 0.895057

Fractional 0.007 | 11.586 | 0.025 2326 | 0457 | 12.493
uncertainty[%]

For calculating the (absolute) Cauchy stress, although the uncertainty o, in ¢
which is due to the 6v alone is approximately only 2.5 times bigger than the uncertainty
ot, in t which is due to the or alone, the fractional uncertainty for the force v is almost 5
times bigger than the fractional uncertainty for the radius measure r. In fact, the
calculation of the uncertainty in the (absolute) Cauchy stress is affected by the formula,
i.e., if the scale gets bigger, the uncertainty also gets bigger. But since the fractional
uncertainty is ratio-related value, it is not affected by the scale. In addition, if we look
at the fractional uncertainties due to the manual measurements such as the
measurements of w, r, and p, they are the same for all stretch levels. But, even though
we got the force data for the same stretch ratios over time, the fractional uncertainties
are changing in deceasing way. The error analysis, therefore, has been devoted to and
focused on the uncertainty due to the inelastic behavior of the rubber. The fractional
uncertainties in the Cauchy stress ¢ due to the obtained data A and v through the motion
controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured data w, r,
and p is shown in the figure 3.5. The fractional uncertainty for the force v is almost 5

times bigger than the fractional uncertainty for the radius measure .
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Fig.3.4. Uncertainties in the Cauchy stress ¢ due to the o4, v, ow, or, and Jdp. The
uncertainty o, in t which is due to the ov alone is approximately 2.5 times bigger than
the uncertainty o, in t which is due to the or alone.
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Fig.3.5. Fractional uncertainties in the Cauchy stress ¢ due to the obtained data A4 and v
through the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and
measured data w, r, and p. The fractional uncertainty for the force v is almost 5 times
bigger than the fractional uncertainty for the radius measure r.
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Stretch Ratio 1.3: The rubber data corresponding to the stretch ratio 1.3 is

shown in the table 3.5. It shows the fimes and stretch ratios obtained by the motion

controller, forces vy, obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the

Deviation versus Time, H, and H, . Again, the H, is a rate-related stretch history

function scanned by a history cut-off # = 10 sec, and H, is the long-time stretch

history function scanned by a history cut-off #;, = 400 sec.

Table 3.5

The rubber data corresponding to the stretch ratio 1.3. It shows the times and stretch
ratios obtained by the motion controller, forces obtained by the force transducer and
calculated deviation, stretch-rate, and stretch histories.

Time 5 Vi Vavg Deviation dA/dt H, (1) H, (1)
[sec] [volt] [volt] | var- Vavg[volt] [/sec] t,=10 sec | ;=400 sec
548.6 1.01281 0.01187 -0.00087 | 1.31439 1.4341
852.0 1.04281 0.04187 -0.00067 | 1.30578 1.35408
1086.2 1.06500 0.06406 -0.00331 | 1.31344 1.30078
2987.1 0.99156 -0.00938 0.00130 1.29646 1.49394
3278.9 0.96969 -0.03125 -0.00413 | 1.32786 1.55918
3605.5 | 1.3 | 1.03781 | 1.00094 0.03687 0.00074 1.28483 1.53925
4160.5 0.97844 -0.02250 -0.00252 | 1.31652 1.48771
4626.5 0.96688 -0.03406 -0.00071 | 1.31578 1.51952
4700.6 1.00719 0.00625 0.00535 1.27817 1.49356
5171.8 0.98875 -0.01219 0.00496 1.28458 1.45993
5439.5 0.94937 -0.05157 -0.00433 | 1.33973 1.55221

Again for the multivariable linear regression analysis, we have used the stretch

history function /, obtained by using the stress relaxation spectrum 7, corresponding

to the early (or fast) exponential decay instead of using the stretch-rate dA/dt calculated

by simply dividing the change in stretch ratio by change in time spent testing because
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the stretch-rate s not our control variable for the experiments. The table 3.6 shows the
average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.3. They have also been used to calculate the uncertainty in resulting

Cauchy stresses.

Table 3.6

The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.3. They have also been used to calculate the uncertainty in resulting
Cauchy stresses.

Average Stapdgrd
deviation
/,Lavg Vavg AL Av
1.30000 | 1.00094 | 0.00005 | 0.03597

To get the Cauchy stress for the stretch ratio 1.3, we again used the equations

(2.26) — (2.32) as

5, at | Vg W |5/1:|(1.00094)(0.3939) |(0 00005)
\m%  pue|  |7(0.1376)7(0.3061)] (3.10)
=10.83x107*[g/mm’]
. az _| g Wag |§V | (1.30000)(0.3939) |(0‘03597)
70 f Poe|  17(0.1376) (0.3061) (.11)
=10116.25x10"*[g/mm*]
5tw,=|6t|§w=| g Vare |§W:§ 130000)(1 00094)|(00001)

|owl 0.1376) (0.3061)| (3.12)

=71.47x107*[g/mm*]

7 f P
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5 | m avé Wl |2 130000)(1.(10094)(0.3939)| 0.0032)
\ Foe ) P \ | 701376 (03061) | (3.13)
=13093.29x10*[g/ mm*]
5 - ot ~ A Vasg W |—(1.30000)(1.00094)(0.3939)|0 0014)

R
apép_\n( i (pavg)z\gp | 2(0.1376) (030617 | (3.14)

=1287.51x107*[g/mm*]

Thus, the total uncertainty in ¢ for the stretch ratio 1.3 is

J (e (2] ol o]

= RCHE AR

- {1083 1011625) +(71.47) +(1309329) +(1287.51) fx (10 ] (3.15)

The uncertainty in the Cauchy stress ¢ due to the J4 (average deviation or
standard deviation of 1) has again the lowest uncertainty among the other uncertainties
by the same reason for the case of stretch ratio 1.1. The uncertainty in the Cauchy
stress ¢ due to the ow has also a quite low uncertainty. Although the uncertainty in the
Cauchy stress ¢ due to or is now higher than the uncertainty due to the 6v, as mentioned
above, the uncertainties due to the manual measurements can be easily reduced as
much as possible to the maximum resolution of the range of the measuring device (if it
is extremely accurate). Additionally, if we look at the fractional uncertainties below,
the fractional uncertainty for the force v is still higher than the fractional uncertainty
for the . It is still important to note that the uncertainty in the Cauchy ¢ due to the v

which is standard deviation of forces can not be reduced no matter what we do.



If we look at the fractional uncertainties for each variable, we have

A= A, £64=1300000.00005,
v=v,, £ =1.00094 +0.03597,
w=w,, £dw=0.39390£0.00010,
r=r,, £ =0.13760 +0.00320,
D= Doy £ =0.30610£0.00140,

t=t,,+ 8 =28.15058 +1.65963,

o x100 =0.004 %

avg

i><100 =3.594 %

vavg

M 100 =0.025 %
avg
O 100 =2326 %
ravg
P 100 = 0.457 %
pavg
5

—x100=15.896 %

avg

Summarized fractional uncertainties are shown in the table 3.7.

Table 3.7
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(3.16)

Fractional uncertainties for the measured data », w, and p, and obtained data A and v by
the motion controller and the Cauchy stress ¢ for the stretch level 1.3.

Data A3 v[volt] rlmm] | w[gram] | p[volt] t[g/mmz]
Average 1.30000 | 1.00094 | 0.13760 | 0.39390 | 0.30610 | 28.15058
Standard deviation | 0.00005 | 0.03597 | 0.00320 | 0.00010 | 0.00140 | 1.65963
Fractional 0.004 | 3594 | 2326 | 0.025 | 0457 | 5.896
uncertainty[ %]

For the calculation of the absolute Cauchy stress, the uncertainty of has

included all the measured variables such as a reference-weight measure w, voltage

output for the same weight measure p, and the radius measure » for the rubber

specimen. But the uncertainty arise from the Error-of-definition has nothing to do with

those variables because they are not varying and they are just static measured

variables. Thus, if we assume the uncertainties that come from those measurements are
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ignorable (or let say we use the extremely accurate measuring devices), the only factor
that we have to consider for the uncertainty that is causing the inelastic behavior is the
force v. In other words, those static variables such as », w, and p can never cause the
deviation from the hyperelasticity of the rubber specimen. The uncertainties in ¢ due to
the oA, ov, ow, or, and dp.are graphically shown in the figure 3.6. The uncertainty o, in
¢t which is due to the or alone is bigger than the uncertainty o, in ¢ which is due to the

ov alone. Although the uncertainty in the Cauchy stress ¢ due to Jor is now higher than

the uncertainty due to the ov, the uncertainty due to the or can be easily reduced as
much as possible to the maximum resolution of the range of the measuring device
(even if it is not extremely accurate, it can reasonably be assumed to be ignorable).

If we look at the fractional uncertainties in the figure 3.7 below, the fractional
uncertainty for the force v is still higher than the fractional uncertainty for the . The
figure 3.7 shows the fractional uncertainties in ¢ due to the obtained data A and v
through the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and
measured data w, r, and p. The fractional uncertainty for the force v is still bigger than
the fractional uncertainty for the radius measure . But the uncertainty arise from the
Error-of-definition has nothing to do with those variables. Thus, if we assume the
uncertainties that come from those measurements are ignorable (or let say we use the
extremely accurate measuring devices), the only factor that we have to consider for the

uncertainty that is causing the inelastic behavior is the force v.
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Fig.3.6. Uncertainties in ¢ due to the o4, ov, ow, or, and dp. The uncertainty o, in ¢
which is due to the dor alone is bigger than the uncertainty of, in ¢ which is due to the ov
alone. Although the uncertainty in the Cauchy stress # due to or is now higher than the
uncertainty due to the dv, the uncertainty due to the or can be easily reduced as much
as possible to the maximum resolution of the range of the measuring device (even if it
is not extremely accurate, it can reasonably be assumed to be ignorable).
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Fig.3.7. Fractional uncertainties in ¢ due to the obtained data A and v through the
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured
data w, r, and p. The fractional uncertainty for the force v is still bigger than the
fractional uncertainty for the radius measure . But the uncertainty arise from the Error-
of-definition has nothing to do with those variables.
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Stretch Ratio 1.5: The rubber data corresponding to the stretch ratio 1.5 is

shown in the table 3.8. It shows the times and stretch ratios obtained by the motion

controller, forces vy, obtained by the force transducer and calculated deviation, stretch-

rate, and stretch histories. The error analysis has been done on the data of the

Deviation versus Time, H, and H, where H, is a rate-related stretch history function

scanned by a history cut-off #, = 10 sec, and H, is the long-time stretch history

function scanned by a history cut-off #, = 400 sec.

Table 3.8

The rubber data corresponding to the stretch ratio 1.5. It shows the times and stretch
ratios obtained by the motion controller, forces obtained by the force transducer and

calculated deviation, stretch-rate, and stretch histories.

Time P Vi Vavg Deviation dA/dt H, (1) H, (1)
[sec] [volt] [volt] | v - Vavg[Vvolt] [/sec] t,=10 sec | ;=400 sec

68.1 1.64500 0.11366 0.00638 1.46415 1.04359
398.5 1.60219 0.07085 0.00386 1.47416 1.26212
758.2 1.60156 0.07022 0.00556 1.46095 1.39023
1317.1 1.51031 -0.02103 -0.00031 | 1.50652 1.49416
1617.8 1.52375 -0.00759 -0.00314 | 1.51439 1.48207
1698.3 1.52750 -0.00384 -0.00063 | 1.50438 1.49456
1999.5 1.50812 -0.02322 0.00481 1.48339 1.50564
2445.7 1.49531 -0.03603 -0.00497 | 1.53378 1.52627
2878.6 | 1.5 1.48219 | 1.53134 -0.04915 -0.00634 | 1.54106 1.5475
3075.0 1.52344 -0.00790 0.00023 1.49976 1.48492
3138.0 1.51719 -0.01415 -0.00130 | 1.50624 1.48684
3932.6 1.52937 -0.00197 -0.00315 | 1.50124 1.52586
4049.0 1.51437 -0.01697 -0.00217 | 1.51008 1.44632
4082.6 1.51594 -0.01540 0.00260 1.48832 1.44999
4245.6 1.51406 -0.01728 -0.00493 | 1.51756 1.4993
5223.9 1.51625 -0.01509 0.00051 1.49126 1.47043
5515.4 1.50625 -0.02509 0.00071 1.49273 1.53433
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For the multivariable linear regression analysis, we have used the stretch

history function //, obtained by using the stress relaxation spectrum #, corresponding

to the early (or fast) exponential decay instead of using the stretch-rate dA/dt calculated
by simply dividing the change in stretch ratio by change in time spent testing because
the stretch-rate is not our control variable for the experiments. The table 3.9 shows the
average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.5. They have also been used to calculate the uncertainty in resulting

Cauchy stresses.

Table 3.9

The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.5. They have also been used to calculate the uncertainty in resulting
Cauchy stresses .

Average Stal?dgrd
deviation
Zavg Vavg Al Av
1.50000 | 1.53134 | 0.00005 | 0.04300

Now, we have uncertainties ot;, ot,, o, o, and o, as

5, ar | Vg Wang |5 | (1.53134)(0.3939) |( 00005)
\m% Pue|  17(0.1376)*(0.3061) (3.17)
=16.56x10"*[g/mm’]
5 az | /t,vgvzavg |5V | (1.50000)0.3939) |(o.o43oo)
2lr f pae| | 7(0.1376)(0.3061) (3.18)

=13953.90x10*[g/mm*]
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&w:|az|§wz| g Vg |5W |(1.50000)(1. 53134)|(0‘0001)
owl " 2l P pue| 1(0.1376)(0.3061) (3.19)
=126.16x107*[g/mm*]
5 =] &:|—21avgvavgwavg &:|—2(1.50000)(1.53134)(0.3939)| 0.0032)
orl | alrfpwe || #(0.1376)(0.3061) | (3.20)
=23113.21x107*[g/mm*]
0| o |~ AV Ware | . |~(1.50000)(1.53134)0.3939)|
oy = apcS _\n(avg)(pavg)z\gp_\ 7(0.1376)°(0.3061)* \O'OOI) (3.21)

=2272.81x107*[g/mm*]

Thus, the total uncertainty in ¢ for the stretch ratio 1.5 is

o) (o] (o) o2 (2]
=@, ) + (&) +(,) +(&,) +(a,

= J{16.56) +(13953.90)" +(126.16) + (2311321 +(227281) (107 (3.22)
=27094.54x107"*
=2.71[g/mm*]

We can see the graphical result in the figure.3.8 which is showing the
uncertainties in ¢ due to the o4, ov, ow, or, and dp for the stretch ratio 1.5. The
fractional uncertainties in ¢ due to the obtained data A and v through the motion

controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured data w, r,
and p for the stretch ratio 1.5 have been calculated by following equations and are
shown in the figure.3.9.

If we calculate the fractional uncertainties, we have



A= Ay, £ 62 =1.50000 % 0.00005,
v =v,, +6v=1.53134%0.04300,
w=w,, +w=0.39390+0.00010,
r=r,, + & =0.13760 +0.00320,
D= Dy £ =0.30610+0.00140,

t=1,, +8=49.69341£2.70945,

2 x100 =0.003 %

avg

i><100 =2.808 %

avg

M 100 =0.025 %
Wavg
O 100 =2.326 %
ravg

P 100 =0.457 %
puvg

5t

—x100=5.452 %

avg
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(3.23)

Although the uncertainty in the Cauchy stress ¢ due to Jr is higher than the

uncertainty due to the Jv, the fractional uncertainty for the force v is still higher than

the fractional uncertainty for the ». The fractional uncertainties for the radius measure

as well as other manually measured values w and p for all stretch levels are constant.

The uncertainty causing the Error-of-definition has nothing to do with those variables.

The fractional uncertainties for the force v continuously decreased. The table 3.10

shows the summary of the averages, standard deviations, and fractional uncertainties of

the variables we have for stretch ratio 1.5.

Table 3.10

Fractional uncertainties for the measured data », w, and p, and obtained data A and v by
the motion controller and the Cauchy stress ¢ for the stretch level 1.5.

Data Ais v[volt] fimm] | w[gram] | p[volt] | {[g/mm’]
Average 1.50000 | 1.53134 | 0.13760 | 0.39390 | 0.30610 | 49.69341
Standard deviation | 0.00005 | 0.04300 | 0.00320 | 0.00010 | 0.00140 | 2.70945
Fractional 0.003 2.808 2.326 0.025 | 0457 | 5.452
uncertainty| %]
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Fig.3.8. Uncertainties in ¢ due to the o4, v, ow, dr, and dp for the stretch ratio 1.5.
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Fig.3.9. Fractional uncertainties in ¢ due to the obtained data A and v through the
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured

data w, r, and p for the stretch ratio 1.5.
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Stretch Ratio 1.7: The rubber data corresponding to the stretch ratio 1.7 is
shown in the table 3.11. It shows the times and stretch ratios obtained by the motion
controller, forces vy, obtained by the force transducer and calculated deviation, stretch-
rate, and stretch histories. The error analysis has been done on the data of the

Deviation versus Time, H, and H, where H, is a rate-related stretch history function
scanned by a history cut-off # = 10 sec, and H, is the long-time stretch history

function scanned by a history cut-off #, = 400 sec. The table 3.12 shows the average
values and standard deviations of stretch ratios and forces are used for calculating the
absolute uncertainty and relative (or fractional) uncertainty for the stretch ratio 1.7.

They have also been used to calculate the uncertainty in resulting Cauchy stresses ¢.

Table 3.11

The rubber data corresponding to the stretch ratio 1.7. It shows the times and stretch
ratios obtained by the motion controller, forces obtained by the force transducer and
calculated deviation, stretch-rate, and stretch histories.

Time 1 Vu Vavg Deviation dA/dt H, (1) H, (1)

[sec] [volt] [volt] | v - Vave[Volt] [/sec] t,=10 sec | t,=400 sec
910.9 2.00281 0.04930 0.00083 1.66228 1.39245
1240.7 1.94781 -0.00570 0.00284 1.68818 1.44272
1529.8 1.99750 0.04399 0.00602 1.65074 141311
1923.4 1.93813 -0.01538 0.00299 1.68751 1.44299
2082.0 1.93562 -0.01789 -0.00500 | 1.71875 1.56733
2232.2 1.96875 0.01524 0.00284 1.66541 1.51749
2740.2 | 1.7 | 1.96906 | 1.95351 0.01555 0.00268 1.66506 1.45485
3219.2 1.93781 -0.01570 -0.00594 | 1.72022 1.53906
3707.4 1.95563 0.00212 0.00126 1.67526 1.52407
4474.6 1.94344 -0.01007 -0.00331 | 1.69728 1.48998
4551.8 1.92719 -0.02632 -0.00023 | 1.70312 1.52069
4924.9 1.94562 -0.00789 0.00197 1.6724 1.46919
5297.4 1.92625 -0.02726 -0.00472 | 1.71694 1.51066
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Table 3.12

The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.7. They have also been used to calculate the uncertainty in resulting
Cauchy stresses .

Average Stal?dgrd
deviation

Zavg Vavg Al Av

1.70002 | 1.95351 | 0.00003 | 0.02463

We have calculated the uncertainties ot;, ot,, o, o, and o, for the stretch ratio

1.7 as
5, | 53 - | Vg Warg | 52 | (1.95351)(0.3939) | (0.00003)
70 P P | |7(01376)7 (0.3061) (3.24)
=12.68x107*[g/mm*]
5, = 8t5v | ﬂavgv?vg | _ | (1.70002)(0.3939) |(0_02463)
70 f P | [7(0.1376) (0.3061) (3.25)
=9058.46x10*[g/mm*]
&w:|az|5w:| Vg |5W | (1.70002) 195351)|(0.0001)
owl |zl P pue|  |7(0.1376)(0.3061) (3.26)
=182.4x107*[g/mm’]
5 az 5r_| ngvavgwavg . _|-2(1.70002)1.95351) 03939| 032)
| 2l S pe || 7(0.1376)'(0.3061) \ (3.27)
=33416.97x10"*[g/mm*]
—A _
& <[ Vs W |- (1.70002)(1.95351)0.3939)} )

S e o P K B TR E7 XT3 N EF 3

=3286.02x10*[g/mm*]

op
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Thus, the total uncertainty in ¢ for the stretch ratio 1.7 is

() (o) o (2o o(2a)+ (20]
=J(&ﬂ (o, ) +(ar, )+ (o, ) + (o, )

= J{12.68) +(9058.46) +(182.4)" +(33416.97) +(3286.02) }x (10 )’ (3.29)
=34779.03x10*
=3.48[g/mm’]

ot

, and the fractional uncertainties are

oA

A= A,, T4 =1.70002 £ 0.00003, x100 =0.002 %

avg

v=v,, 6 =195351+0.02463, 2 x100=1261%

avg

W =w,, + 6w =0.39390+0.00010, O 100 = 0.025 %
w
;g (3.30)
r=r,, 6 =0.13760 £ 0.00320, %100 =2.326 %
ravg
P
P =D, 3 =0.30610%0.00140, x100 = 0.457 %
pavg
t=t,, tot="71.84649 £3.47790, 100 = 4.841 %

ag

The absolute uncertainties in in ¢ due to the o4, ov, ow, dr, and dp for the stretch
ratio 1.7 and the fractional uncertainties in ¢ due to the obtained data A and v through
the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and
measured data w, r, and p for the stretch ratio 1.7 are shown in the figure.3.10 and
figure.3.11, respectively. The table 3.13 shows the summary of the averages, standard

deviations, and fractional uncertainties of the variables we have for stretch ratio 1.7.



Table 3.13
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Fractional uncertainties for the measured data », w, and p, and obtained data 4 and v by
the motion controller and the Cauchy stress ¢ for the stretch level 1.7.

Data A7 v[volt] rlmm] | w[gram] | p[volt] t[g/mmz]

Average 1.70002 | 1.95351 | 0.13760 | 0.39390 | 0.30610 | 71.84649

Standard deviation | 0.00003 | 0.02463 | 0.00320 | 0.00010 | 0.00140 | 3.47790
Fractional 0.002 1.261 2.326 0.025 0.457 4.841

uncertainty[%]
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Fig.3.10.Uncertainties in ¢ due to the o4, ov, ow, dr, and Jdp for the stretch ratio 1.7.
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Fig.3.11. Fractional uncertainties in ¢ due to the obtained data A and v through the

motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured
data w, r, and p for the stretch ratio 1.7.
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Stretch Ratio 1.9: The rubber data corresponding to the stretch ratio 1.9 is
shown in the table 3.14. It shows the times and stretch ratios obtained by the motion
controller, forces vy, obtained by the force transducer and calculated deviation, stretch-
rate, and stretch histories. The error analysis has been done on the data of the

Deviation versus Time, H, and H, where H, is a rate-related stretch history function
scanned by a history cut-off #, = 10 sec, and H, is the long-time stretch history

function scanned by a history cut-off #, = 400 sec. The table 3.15 shows the average
values and standard deviations of stretch ratios and forces are used for calculating the
absolute uncertainty and relative (or fractional) uncertainty for the stretch ratio 1.9.

They have also been used to calculate the uncertainty in resulting Cauchy stresses ¢.

Table 3.14

The rubber data corresponding to the stretch ratio 1.9. It shows the times and stretch
ratios obtained by the motion controller, forces obtained by the force transducer and
calculated deviation, stretch-rate, and stretch histories.

Time | , VM Vavg Deviation dA/dt H, (1) H, (1)
[sec] [volt] [volt] | v - Vavg[Vvolt] [/sec] t,=10 sec | ;=400 sec
221.8 2.39719 0.06688 0.00377 1.8644 1.14375
473.0 2.35969 0.02938 -0.00244 1.9009 1.35842
1167.5 2.35500 0.02469 0.00012 1.899 1.35769
1848.3 2.34531 0.01500 -0.00437 1.9031 1.40355
2386.8 2.33687 0.00656 -0.00303 1.8863 1.54094
2817.4 2.32063 -0.00968 0.00106 1.8852 1.49814
3379.4 | 1.9 | 2.32188 | 2.33031 -0.00843 0.00110 1.8817 1.50878
3461.6 2.30063 -0.02968 0.00299 1.8872 1.54695
3782.4 2.30969 -0.02062 0.00126 1.8866 1.54495
4324.1 2.31219 -0.01812 -0.00575 1.9082 1.49347
4775.4 2.31562 -0.01469 0.00236 1.8742 1.52669
5073.6 2.315%4 -0.01437 -0.00224 1.8873 1.47706
5371.8 2.30344 -0.02687 0.00398 1.8714 1.50703
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Table 3.15

The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.9. They have also been used to calculate the uncertainty in resulting
Cauchy stresses .

Average Stal?dgrd
deviation

Zavg Vavg Al Av

1.90001 | 2.33031 | 0.00003 | 0.02762

The uncertainties for the stretch level 1.9 are calculated as

5 az - Vo Yo 5 | 233031)(0.3939) [0.00003)
\mavg Pug|  |7(0.1376)*(0.3061)] (3.31)
=15.12x107*[g/mm*]
)
. az | o o |5V | (1.90001)0.3939) |(0‘02762)
7lr f Pag| | 7(0.1376)(0.3061) (3.32)
=11353.13x10"*[g/mm*]
A
5 = ot| s _ avgv;vg oo (1.90001)(22.33031) (0.0001)
owl " |alr, P P 7(0.1376)*(0.3061) (3.33)

avg

=243.18x107*[g/mm”]

5 - az 5r_| 2/1avéngwm &:|—2(1.90001)(2.333031)(0.3939)| 0032)
| 7l ) Do | 2(0.1376)(03061) | (3.34)
= 44551.98x10 *[g/mm*]
5 | ~ A Vasg W |—(1.90001)(2.33031)(0.3939|
e

L P L B T R

= 4380.97x10*[g/mm’]

op



Thus, the total uncertainty in ¢ for the stretch ratio 1.5 is

oo 5o (5)

a N (oY
*@ﬂ*@ﬂ

=l P P (e, e, + s,

94

=J{(15.12)2 +(11353.13)° +(243.18)* +(44551.98)° +(4380.97)2}><(10’4 J

=46184.68x107*
=4.62 [g/mm’]

, and the fractional uncertainties are
A=2,, £64=1.90001+0.00003,
v=v,, T =233031%£0.02762,
w=w,, *dw=0.39390+0.00010,
r=r,, £or=0.13760+0.00320,
P = P, T =0.30610+0.00140,

t=t,, ot =9578676+4.61847,

oA

x100 =0.002 %

avg

i><100=1.185 %
v

avg

ow

x100 =0.025 %

avg

i>< 100 =2.326 %
r

avg
p

p avg
o

t—xlOO =4.822 %

avg

x100=0.457 %

(3.36)

(3.37)

The absolute uncertainties in in ¢ due to the o4, v, ow, dr, and dp for the stretch

ratio 1.9 and the fractional uncertainties in ¢ due to the obtained data A and v through

the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and

measured data w, r, and p for the stretch ratio 1.9 are shown in the figure.3.12 and

figure.3.13, respectively. The table 3.16 shows the summary of the averages, standard

deviations, and fractional uncertainties of the variables we have for stretch ratio 1.9.



Table 3.16
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Fractional uncertainties for the measured data », w, and p, and obtained data A and v by
the motion controller and the Cauchy stress ¢ for the stretch level 1.9.

Data Aig v[volt] s[mm] | w[gram] | p[volt] | f[g/mm’]
Average 1.90001 | 2.33031 | 0.13760 | 0.39390 | 0.30610 | 95.78676
Standard deviation | 0.00003 | 0.02762 | 0.00320 | 0.00010 | 0.00140 | 4.618468
Fractional 0.002 1.185 2326 | 0025 | 0457 | 4.822
uncertainty[%]
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Fig.3.12.Uncertainties in ¢ due to the o4, év, ow, dr, and Jdp for the stretch ratio 1.9.
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Fig.3.13. Fractional uncertainties in ¢ due to the obtained data A and v through the
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured

data w, r, and p for the stretch ratio 1.9.
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For rubber fiber specimen, we have summarized the values of the absolute
uncertainties and fractional uncertainties for each stretch ratio in the table 3.17. Figure
3.14 shows the summarized absolute uncertainties in the Cauchy stress ¢ due to the
reference-weight measures w, the voltage measures p to check the resolution of the
force transducer, and the radius measures r. These values come from the manual
measurements. Figure 3.15 shows the summarized absolute uncertainties in the Cauchy
stress t due to the stretch ratio data A, and the force data v. These values are obtained
by the motion controller/driver (ESP7000, Newport, Inc).

The fractional uncertainties related to the manual measurements are same for
entire stretch levels. Note that the fractional uncertainty comes from inelastic behavior
noticed from the force data is significant but the fractional uncertainty comes from the
data of stretch ratio A is ignorable and the fractional uncertainties for the static

measured variables 7, w, and p are constants for all selected stretch levels.
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Table 3.17
The summary of absolute uncertainties and fractional uncertainties for each stretch
ratio.

1.1 1.3 1.5 1.7 1.9
Aavg 1.10002 | 1.30000 | 1.50000 | 1.70002 | 1.90001
1 AL 0.00008 | 0.00005 | 0.00005 | 0.00003 | 0.00003

A del%] | 0.007 | 0.004 | 0.003 | 0.002 | 0.002
&, [/mm?] | 0.00052 | 0.00108 | 0.00166 | 0.00127 | 0.00151

Vavg 0.30105 | 1.00094 | 1.53134 | 1.95351 | 2.33031
f Av 0.03488 | 0.03597 | 0.04300 | 0.02463 | 0.02762
[Volt] | Av/va.[%] | 11586 | 3594 | 2.808 | 1261 | 1.185
oty [g/mm®] | 0.83007 | 1.01163 | 1.39539 | 0.90585 | 1.13531

Favg 0.13760

r Ar 0.00320

[mm] 1 A/ ey [%] 2.326
J, [g/mm’] | 0.33322 | 130933 | 2.31132 | 3.34170 | 4.45520

Wavg 0.39390

w Aw 0.00010

(2] | Aw/ Wi [%] 0.025
S, [g/mm’] | 0.00182 | 0.00715 | 0.01262 | 0.01824 | 0.02432

Pavg 0.30610

p Ap 0.00140

[volt] AP/ Pavg [%6] 0.457
J, [g/mm’] | 0.03277 | 0.12875 | 0.22728 | 0.32860 | 0.43810
t tave 7.16432 | 28.1506 | 49.6934 | 71.8465 | 95.7868
[¢/mm2] At 0.89506 | 1.65963 | 2.70945 | 3.4779 | 4.61847
A 14 [%] | 12493 | 5896 | 5452 | 4.841 | 4.822
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Fig.3.14. The (absolute) uncertainties in the Cauchy stress ¢ due to the reference-weight
measures w, the voltage measures p to check the resolution of the force transducer, and
the radius measures . These values come from the manual measurements.
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Fig.3.15. The (absolute) uncertainties in the Cauchy stress ¢ due to the stretch ratio data

A, and the force data v. These values are obtained by the motion controller/driver
(ESP7000, Newport, Inc).



100

The reason that the uncertainty in the Cauchy stress ¢ due to o which is the
standard deviation of the radius measurements shown in figure 3.14 seems to increase
as the stretch ratio gets bigger is because of the calculation process to get the absolute
Cauchy stress. Unlikely to the fractional uncertainty, it is affected by the scale and
nothing to do with the deviation from the hyperelasticity. Again, any uncertainty due
to the physical (or manual) measurements can be reduced as much as to the negligible
levels, i.e., with proper assumption, it can be ignored for the error analysis. If we look
at the fractional uncertainties shown in figure 3.16, the fractional uncertainties related
to the manual measurements such as the reference-weight measures w, the voltage
measures p to check the resolution of the force transducer, and the radius measures r
are constant for all stretch levels. But the fractional uncertainty due to the force
measurements done by the experimental system decreased as the stretch level got
bigger. The fractional uncertainty due to the resolution of the motor was
inconsequential because we have used very high precision actuators (CMA 25CCCL
DC servo motor, Newport, Inc) for the experiments. It is important to note that, for the
force measurements, the fractional uncertainty for the stretch ratio 1.1 is approximately
3.2 times bigger than that of the stretch ratio 1.3 and almost 10 times bigger than that
of the stretch ratio 1.9. This reveals that the smaller amount of deformation we have

the more deviation from the hyperelasticity we get.
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Error-of-Definition

The error-of-definition is the uncertainty that comes from the assumption. In
this case, the assumption is that the rubber is hyperelastic which is, although it’s useful,
not truly correct. But many people use the assumption of hyperelasticity for the rubber-
like materials and biotissues without knowing the uncertainty due to the assumption.
Although the rubber-like materials and biotissues are not perfectly hyperelastic, they
predominantly behave like hyperelastic. Thus, the assumption would be useful as long
as we find the uncertainty in it. Since we initially assumed that the uncertainty caused
by the inelastic behavior of the rubber-like materials and biotissues is due to the 7Time,
Stretch-rate, and Stretch history, we have found their effects on the uncertainty by one
of the fundamental statistical theory called multivariable linear regression analysis.
This has included the goodness-of-fit test and test of significance called t-test as shown
in below. As we mentioned in prior chapter, we used the rate-related stretch history

H

, instead of using the stretch-rate values. Because the motor didn’t allow us to
control the velocity, the only controllable variable (input) is the stretch ratio. Note
again that the stretch-rate and rate-related stretch history are inversely related. Thus,
the partial regression coefficient corresponding to the rate-related stretch history
should be understood as opposite when we figure out the deviation due to the stretch

rate, 1.e., if we have a negative sign for the partial regression coefficient for the rate-

related stretch history H, , the sign for the partial regression coefficient for the stretch-

rate should be positive. To do the multivariable linear regression analysis, we have to

normalize or nondimensionalize both the dependent variable that is the Deviation D
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and the independent variables that are the 7ime T, rate-related Stretch History H, , and

the long-time Stretch History H, .

Multivariable Linear Regression Analysis

The existence of several variables forces to use the multivariable regression
model. The first order functional relationship of the independent and dependent
variables under several assumptions for the residuals was examined by the error
analysis. Note that we assumed that there are linear relationships between the

dependent variable D and independent variables 7, H, , and H, . We found out how

strongly/weakly they are related and which variable(s) can be disregarded for the final
regression model. We had to follow some steps to get the best-fitting regression model.
This is for getting the maximum effect with the minimum number of independent

variables. First, for the regression analysis, we used the whole data T, H, , and H, as

independent variables. Second, we checked the R* as well as calculated #-values that

are corresponding to the data 7, H, , and H, . Third, if there was an insignificant

0o
variable, we did the regression analysis without having the insignificant variable. It is
important to know that the excluding the insignificant independent variable doesn’t
mean that the excluded independent variable doesn’t affect the dependent variable.
There could be a reasonably high correlation coefficient between the independent
variables. If we include some independent variables that have high correlation
coefficient between them, we will have multicollinearity which causes the increasing

of standard errors and lower the goodness-of-fit. There is no loss of information even
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though one of the independent variable of the two that has high correlation coefficient
is vanished. Note again that the ideal regression model is the model that has the
maximum efficiency with the minimum number of independent variables. This means
the good model can predict the future values with the minimum number of the
independent variables.
We have set the level of significance « as 0.1 so that the confidence interval
(C.I) was
C.I=100(1-0.1)=90 % (3.38)
This represents the probability (90 % of probability) that the partial regression

coefficient ,Bi is likely to be contained within that interval. It physically means that,
for the unknown value £, the true value ﬁ will fall into the range of ﬁ +t,.S 5 for 90

times out of the 100 where S 5 is expressed as (for independent variable 7)

Z(Di_bz’)z

§ oSV n-k-l (3.39)

rf X7y

To carry out the multivariable linear regression analysis, we have nondimensionalized

=
=
g
=
|
~

the data to avoid the scale-dependency which cause the partial regression coefficients

to be nonsense. We have used L2-norm for nondimensionalization as

= 0

Stretch Ratio 1.1: The nondimensionalized data for the stretch ratio 1.1 of the

rubber specimen is shown in the table 3.18. The dependent variable is Deviation D and
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the independent variables are Time 7, rate-related stretch history function #, , and

long-time stretch history function 4, .

Table 3.18
Nondimensionalized data using L2-norm for the stretch ratio 1.1 of the rubber
specimen.

Dependent variable Independent variables

A D T th Htl
VM -~ Vavg th=10 th=400
0.48072 0.01058 0.24582 0.18016
0.25452 0.02424 0.24340 0.20441
0.26800 0.05034 0.23898 0.23879
0.41356 0.05664 0.23930 0.23495
0.02833 0.08004 0.24792 0.23449
0.00145 0.11250 0.24255 0.24801
0.19410 0.11857 0.24310 0.24111
0.02159 0.14340 0.24193 0.23852

1.1 -0.13071 0.17443 0.24346 0.25741
-0.10606 0.18663 0.24492 0.25472
-0.12842 0.21441 0.24264 0.24300
0.02833 0.28796 0.23493 0.26121
-0.27406 0.31200 0.24509 0.26208
-0.27406 0.35594 0.24238 0.24564
-0.20016 0.39288 0.23953 0.25424
-0.18891 0.40423 0.24007 0.25002
-0.38823 0.45158 0.24674 0.25967

Correlation Coefficients -0.87 -0.16 -0.76

Since the number of sample for the stretch ratiol.1 is 17, the degree-of-freedom

(DOF) for t is n-k-1 = 17-3-1 = 13. Thus, the critical 7 value for the stretch ratio 1.1 for

this case is ¢

Thus if we have the condition as

c(al2n—k=1) —

1| > 1771

fe00s.13) = 1.771 for two-tailed test.

(3.41)
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we reject the null hypothesis and accept the alternative hypothesis which means that
the specific independent variable(s) affect the dependent variable. The result of
multivariable linear regression analysis using entire independent variables 7,

H, and H, is shown in the table 3.19.

Table 3.19
Result of multivariable linear regression analysis for stretch ratio 1.1 of rubber
specimen with entire independent variables 7, H, and H, .

ﬁ’[ Se t-value R?
g 7.55 1.64 462
T 119 0.20 591
H, 27.14 6.34 428 0.88
H, 3.08 1.96 -1.58

Although the R? is high, the z-value of the long-time stretch history function H .
which is —1.58 didn’t satisfy the condition above. This means the long-time stretch
history H, is insignificant. Thus we have eliminated the H, and executed the
multivariable linear regression analysis again. Since the number of independent
variables are reduced to 2, 7., ., 1) =leoo0s14) =1.761, we should have a new
condition as

1, 4] >1.761 (3.42)

to reject the null hypothesis and accept the alternative hypothesis. The result of
multivariable linear regression analysis for stretch ratio 1.1 of rubber specimen with

independent variables 7, and H, is shown in the table 3.20.
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Table 3.20
Result of multivariable linear regression analysis for stretch ratio 1.1 of rubber
specimen with independent variables 7'and H, .

~

i3 Se t-value R?
& 6.66 1.62 411
T -1.40 0.15 -9.08 0.86
H, -26.37 6.68 -3.95

Thus the final regression model for the stretch ratio 1.1 of the rubber specimen can be

expressed as
lA)l'l =6.66-1.407 —26.37H (3.43)
The optimal independent variables that can predict the deviation D is T and H, . In

addition, their ability to explain the deviation is 86 %. The rest 14 % can’t be explained
by this model whatsoever. From the model, we have noticed that the time 7" and the

rate-related stretch history H, are the substantial factors that cause the deviation from
the hyperelasticity and the rate-related stretch history /, is more substantial than the
time 7. Note that the sign of the partial regression coefficient for the /, is exactly the

opposite of the stretch-rate.
Stretch Ratio 1.3: The nondimensionalized data for the stretch ratio 1.3 of the
rubber specimen is shown in the table 3.21. The dependent variable is deviation D and

the independent variables are time 7, rate-related stretch history function H - and

long-time stretch history function /, .



Table 3.21
Nondimensionalized data using L2-norm for the stretch ratio 1.3 of the rubber
specimen.
Dependent variable Independent variables
) D T H, H,
Vi - Vuvg t,=10 t,=400
0.10439 0.04449 0.30317 0.29330
0.36818 0.06910 0.30119 0.27693
0.56329 0.08810 0.30296 0.26603
-0.08245 0.24227 0.29904 0.30553
-0.27475 0.26593 0.30628 0.31888
1.3 0.32421 0.29242 0.29636 0.31480
-0.19781 0.33743 0.30367 0.30426
-0.29946 0.37523 0.30350 0.31077
0.05498 0.38123 0.29482 0.30546
-0.10716 0.41945 0.29630 0.29858
-0.45342 0.44116 0.30902 0.31745
Correlation Coefficients -0.71 -0.44 -0.77
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Since the number of sample for the stretch ratiol.3 is 11, the degree-of-freedom

(DOF) for ¢ is n-k-1 = 11-3-1 = 7. For this case, the critical ¢ value for the stretch ratio

L3138 2. 4 neiny = Leoos;7) =1.895 for two-tailed test.

Thus if we have following constraint as

| >1.895 (3.44)

we reject the null hypothesis and accept the alternative hypothesis which means that
the independent variable(s) is significant to predict the value of the dependent variable.
The result of multivariable linear regression analysis for the stretch ratio 1.3 of the

rubber specimen using entire independent variables 7, H, and H, is shown in the table

3.22.
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Result of multivariable linear regression analysis for stretch ratio 1.3 of rubber
specimen with entire independent variables 7, H, and H, .

ﬁ’i Se t-value R?
aQ 11.33 3.47 327
T 144 0.64 2.26
H, -30.79 11.65 .64 0.77
H, -5.43 4.76 114

Although the R? is reasonably high as 77 %, the t-value of the long-time stretch

history H, is -1.14 which means it is insignificant. So we have executed a regression
analysis without //, . Since the number of independent variables are reduced to 2 for

that case, 7, 5., 1) = Leoo0s;s) = 1.800, we should have a new constraint as

L] >1.860 (3.45)
to reject the null hypothesis and accept the alternative hypothesis. The result of
multivariable linear regression analysis for stretch ratio 1.3 of rubber specimen with

independent variables 7, and H, is shown in the table 3.23.

Table 3.23
Result of multivariable linear regression analysis for stretch ratio 1.3 of rubber
specimen with independent variables 7'and H, .

,él. Se t-value R?2
a 10.74 3.50 3.07
T -2.00 0.42 -4.79 0.76
th -33.74 11.60 291
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Thus the final regression model for the stretch ratio 1.3 of the rubber specimen can be

expressed as
ﬁm =10.74-2.007 —33.74H (3.46)

Again, the optimal independent variables that can anticipate the dependent variable is T’

and H, . This model can explain the deviation by 76% using the independent variables
Tand H, . The rest 24 % can’t be explained by this model no matter what we do. From

the model, for the stretch ratio 1.3, we have noticed again that the time 7 and the rate-

related stretch history H, are the substantial factors that cause the deviation from the
hyperelasticity and the rate-related stretch history /, is more substantial than the time
T. Note that the sign of the partial regression coefficient for the /, is exactly the

opposite of the stretch-rate.
Stretch Ratio 1.5: The nondimensionalized data for the stretch ratio 1.5 of the
rubber specimen is shown in the table 3.24. The dependent variable is deviation D and

the independent variables are time 7, rate-related stretch history function #, , and

long-time stretch history function #, .
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Table 3.24
Nondimensionalized data using L2-norm for the stretch ratio 1.5 of the rubber
specimen.

Dependent variable Independent variables

A Deviation Time Stretch History H(1)
Vi - Vavg t,=10 t,=400
0.66080 0.00522 0.23681 0.17400
0.41191 0.03058 0.23843 0.21044
0.40825 0.05819 0.23629 0.23180
-0.12227 0.10107 0.24366 0.24913
-0.04413 0.12415 0.24493 0.24711
-0.02233 0.13033 0.24332 0.24919
-0.13501 0.15344 0.23992 0.25104
-0.20948 0.18769 0.24807 0.25448

1.5 -0.28576 0.22091 0.24925 0.25802
-0.04594 0.23598 0.24257 0.24759
-0.08227 0.24081 0.24362 0.24791
-0.01146 0.30179 0.24281 0.25441
-0.09867 0.31072 0.24424 0.24115
-0.08954 0.31330 0.24072 0.24176
-0.10047 0.32581 0.24545 0.24998
-0.08774 0.40089 0.24119 0.24517
-0.14588 0.42325 0.24143 0.25582

Correlation Coefficients -0.65 -0.79 -0.92

Since the number of sample for the stretch ratiol.5 is 17, the degree-of-freedom

(DOF) for ¢ is n-k-1 = 17-3-1 = 13. In this case, the critical ¢ value for the stretch ratio

1.5 of the rubber specimen is ¢

e/ 2nk—t) = Leoos,13) = 1.771 for two-tailed test.

Thus if we have the following constraint as

tyi| >1.771 (3.47)

we reject the null hypothesis and accept the alternative hypothesis. This implies that
the independent variable(s) affect the dependent variable. The result of multivariable
linear regression analysis for the stretch ratio 1.5 of the rubber specimen using entire

independent variables 7, H, and H, is shown in the table 3.25.
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Table 3.25
Result of multivariable linear regression analysis for stretch ratio 1.5 of rubber

specimen with entire independent variables 7, H, and H, .

Iy

B Se t-value R?
a 7.50 1.67 4.49
T 2035 0.20 172
H, 22.13 8.26 2,68 0.82
H, 1848 2.67 3.17

Although the modified coefficient of determination R’ is high as 82%, the z-value of
the time 7 didn’t satisfy the above constraint which means the time 7 is
inconsequential to cause the deviation from the hyperelasticity. So we have

reperformed a regression analysis without 7. Since the number of independent

variables are reduced to 2, 1, ,,., 4y =l 0514 =1.701, we should have a new

constraint as

L] >1.761 (3.48)

to reject the null hypothesis and accept the alternative hypothesis. The result of
multivariable linear regression analysis for stretch ratio 1.5 of the rubber specimen

with independent variables /, and H, is shown in the table 3.26.
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Table 3.26
Result of multivariable linear regression analysis for stretch ratio 1.5 of rubber
specimen with independent variables H, and H, .

A

i3 Se t-value R?
a 7.41 1.79 4.14
H, -19.89 8.75 -2.27 0.80
H, -10.65 2.52 4.22

Thus, the final regression model for the stretch ratio 1.5 of the rubber specimen can be

expressed as

A

Dy, =741-19.89H, —10.65H, (3.49)

The optimal independent variables that can expect the dependent variable D is

H, and H, . Their ability of the regression model to explain the deviation is 80 %. The

rest 20 % can’t be explained by this model. From the model for the stretch ratio 1.5 of

the rubber specimen, the rate-related stretch history H, and the long-time stretch
history H, are the substantial factors that cause the inelastic deviation. The rate-related
stretch history /, is more substantial than the long-time stretch history /, . The sign
of the partial regression coefficient for the /7, is exactly the opposite of the stretch-rate.

Stretch Ratio 1.7: The nondimensionalized data for the stretch ratio 1.7 of the
rubber specimen is shown in the table 3.27. The dependent variable is deviation D and

the independent variables are time 7, rate-related stretch history function #, , and

long-time stretch history function 4, .
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Table 3.27
Nondimensionalized data using L2-norm for the stretch ratio 1.7 of the rubber
specimen.

Dependent variable Independent variables
A Deviation Time Stretch History H(1)
Vit - Vavg =10 t,=400
0.57784 0.07633 0.27336 0.26019
-0.06680 0.10397 0.27762 0.26958
0.51561 0.12819 0.27146 0.26405
-0.18026 0.16118 0.27751 0.26964
-0.20968 0.17447 0.28265 0.29287
0.17863 0.18705 0.27387 0.28356
1.7 0.18227 0.22963 0.27382 0.27185
-0.18401 0.26977 0.28289 0.28759
0.02486 0.31068 0.27549 0.28479
-0.11802 0.37497 0.27912 0.27842
-0.30848 0.38144 0.28008 0.28415
-0.09247 0.41271 0.27502 0.27453
-0.31950 0.44392 0.28235 0.28228
Correlation Coefficients -0.63 -0.84 -0.69

Since the number of sample for the stretch ratiol.7 is 13, the degree-of-freedom
(DOF) for ¢ is n-k-1 = 13-3-1 = 9. Thus, the critical ¢ value for this case for the stretch

ratio 1.7 1s ¢ te00s:9) = 1.833 for two-tailed test.

c(a) Lnk-1) —

Thus if we have the following constraint as

tya|>1.833 (3.50)
we reject the null hypothesis and accept the alternative hypothesis which means that
the specific independent variable affect the dependent variable. The result of
multivariable linear regression analysis for the stretch ratio 1.7 of the rubber specimen

using entire independent variables 7, H, and H, is shown in the table 3.28.
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Table 3.28
Result of multivariable linear regression analysis for stretch ratio 1.7 of rubber
specimen with entire independent variables 7, H, and H, .

Iy

i Se t-value R?
aQ 14.07 2.87 4.90
T 20.56 0.34 167
H, -53.66 13.04 4.12 0.75
H, 3.33 5.79 0.57

Although the R” is convincingly high as 75%, the z-values of the time 7 and the long-

time stretch history H, didn’t satisfy the above constraint. This means that the time T
and long-time stretch history H, don’t affect the deviation from the hyperelasticity.
The only independent variable that is significant is the rate-related stretch history #, .
So we have carried out a regression analysis only with /, . Since the number of
independent variables are reduced to 1, 7, , »., .\, = 051y = 1.796, we should have a

new constraint as
1, it >1.796 (3.51)
to reject the null hypothesis and accept the alternative hypothesis. The result of

multivariable linear regression analysis for stretch ratio 1.7 of the rubber specimen

with only independent variable /, is shown in the table 3.29.
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Table 3.29
Result of multivariable linear regression analysis for stretch ratio 1.7 of rubber
specimen with independent variable /, .

Iy

i Se t-value R?

a 15.06 2.77 5.43
0.72

th -54.41 9.98 -5.45

Thus the final regression model for the stretch ratio 1.7 of the rubber specimen can be

expressed as

A

Dy, =15.06-54.41H, (3.52)

and we found that the optimal independent variable that can expect the dependent

variable D is rate-related stretch history H, only. The ability of the acquired regression
model with independent variable /, to explain the deviation is 72 %. The rest 28 %

can’t be explained by this model. From the regression model for the stretch ratio 1.7 of

the rubber specimen, we have noticed that the rate-related stretch history H, is the

only factor that causes the substantial deviation from the hyperelasticity. Note that this
doesn’t mean that the other two independent variables are not causing the deviation
from the hyperelasticity at all; they are just insignificant relative to the stretch-rate. The
deviation D can be well-explained only by the rate-related stretch history function /, .

The sign of the partial regression coefficient for the /, is exactly the opposite of the

stretch-rate.
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Stretch Ratio 1.9: The nondimensionalized data for the stretch ratio 1.9 of the
rubber specimen is shown in the table 3.30. The dependent variable is deviation D and

the independent variables are time 7, rate-related stretch history function H - and

long-time stretch history function /, .

Table 3.30
Nondimensionalized data using L2-norm for the stretch ratio 1.9 of the rubber
specimen.

Dependent variable Independent variables

A Deviation Time Stretch History H(1)
Vi - Vavg t,=10 t,=400
0.69886 0.01796 0.27397 0.21749
0.30698 0.03830 0.27933 0.25831
0.25797 0.09454 0.27905 0.25817
0.15671 0.14967 0.27966 0.26689
0.06851 0.19328 0.27719 0.29302
-0.10120 0.22815 0.27702 0.28488

1.9 -0.08813 0.27366 0.27652 0.28690
-0.31020 0.28032 0.27732 0.29416
-0.21552 0.30630 0.27724 0.29378
-0.18939 0.35016 0.28041 0.28399
-0.15355 0.38671 0.27541 0.29031
-0.15021 0.41085 0.27734 0.28087
-0.28083 0.43500 0.27500 0.28657

Correlation Coefficients -0.89 -0.07 -0.93

Since the number of sample for the stretch ratiol.9 is 13, the degree-of-freedom
(DOF) for ¢ is n-k-1 = 13-3-1 = 9. Thus, the critical ¢ value for this case for the stretch

ratio 1.9 of rubber specimen is ¢ !e00s.9) = 1.833 for two-tailed test. Thus, if

c(al2n—k=1) —

we have a following constraint as

t, 4| >1.833 (3.53)
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we reject the null hypothesis and accept the alternative hypothesis. The result of
multivariable linear regression analysis for the stretch ratio 1.9 of the rubber specimen

using entire independent variables 7, H, and /, is shown in the table 3.31.

Table 3.31
Result of multivariable linear regression analysis for stretch ratio 1.9 of rubber

specimen with entire independent variables 7, H, and H, .

,Bi Se t-value R?
g 5.81 5.78 1.01
T 7100 0.29 348
H, -12.48 19.54 -0.64 0.84
H, 759 2.84 2.68

Although the R? is very high, the z-value for the rate-related stretch history A , didn’t

satisfy the above constraint. The significant independent variables are the time 7 and

the long-time stretch history function H, . Thus we have carried out a regression
analysis again without the rate-related stretch history //, . Since the number of

independent variables are reduced to 2, ¢ =1.812, we should have

c(a)2Zn—k-1) — L (0.05:10)

a new constraint as

fya| >1.812 (3.54)

to reject the null hypothesis and accept the alternative hypothesis. The result of
multivariable linear regression analysis for stretch ratio 1.9 of the rubber specimen

with independent variables 7"and /, is shown in the table 3.32.
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Table 3.32
Result of multivariable linear regression analysis for stretch ratio 1.9 of rubber
specimen with independent variables 7"and /, .

Iy

B, Se t-value R?
a 2.14 0.67 3.18
T -0.95 0.27 -3.56 0.85
H, -6.94 2.56 2.71

Thus the final regression model for the stretch ratio 1.9 of the rubber specimen can be

expressed as

A

Dy, =2.14-0.95T —6.94H, (3.55)

From the results, we have noticed that the optimal independent variables that can

expect the dependent variable D are T and H, . The ability of the regression model to

explain the deviation is 85 %. The rest 15 % can’t be explained by this model. In

addition, we have realized that the rate-related stretch history H, is not a significant

factor that causes the deviation from the hyperelasticity. The only factors that cause the

deviation from the hyperelasticity are the time 7" and long-time stretch history /, .

Nonsense of Correlation Coefficients
We have checked the correlation coefficients between the deviation D

(dependent variable) and independent variables 7, H, , and H, . The summary of the

correlation coefficients for each stretch ratio for the rubber is shown in the table 3.33.
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Table 3.33
The summary of correlation coefficients between the deviation D and the time 7, rate-

related stretch history /, , and long-time stretch history #, .

Correlation Coefficients: D between.

A T i, a,
=10 t,=400

1.1 -0.87 -0.16 -0.76
1.3 -0.71 -0.44 -0.77
1.5 -0.65 -0.79 -0.92
1.7 -0.63 -0.84 -0.69
1.9 -0.89 -0.07 -0.93

Generally, the correlation coefficient can be obtained by using the following equation

(mi - n_/l)(ni - ’7)
_Om_ _ z N _ Z(mz _”_/‘)(ni _ﬁ)
O R R

N N

(3.56)

where o, 1is the covariance which is a degree of covarying of two variables m and n,
o, 1s a standard deviation of m; and o, is a standard deviation of n;. The correlation

coefficient just shows whether there is a relationship between one variable and the
other or not. It is a relationship only between two variables. For this study, since we
have too many variables and scatterness, the assessment and ordering of the correlation
coefficients are not meaningful.

Indisputably, if the correlation coefficient between a certain dependent variable
and independent variable is high, then we naturally know there is high relationship
between them. But again, it merely tells a relationship between the two variables.

Additionally, since the correlation coefficient is a nonratio-related value, we cannot
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compare a certain value of a correlation coefficient to the other. For example, if there
are two variables 4 and B that have the correlation coefficients 0.4 and 0.8,
respectively, we cannot say that B is two times more related to a certain variable than 4
is. Besides, if there are many variables, correlation coefficient never tells which one is
significant, how intensively related and which one is more related to the other. This can
be told only by the multivariable (linear or nonlinear) regression analysis.

For example, despite the correlation coefficients between the deviation D and

rate-related stretch history A, are much lower than the others for the stretch ratios 1.1

and 1.3, the results of multivariable linear regression analysis for them showed that the
rate of the stretch is highly related to the deviation from the hyperelasticity. Moreover,
the rate of the stretch is the most substantial factor that causes the deviation from the

hyperelasticity for the stretch ratios 1.5 and 1.7 as well.
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CHAPTER 1V

RESULTS FOR TISSUES

Error-of-Measurement and Error-of-Definition

For the experiment of the biotissues, we have used the strips of pulmonary
artery of the adult swine in this study. Unlikely to the results of the experiment of the
rubber specimen, the stretch ratio of 2 of the biotissues was almost the maximum
stretch ratio that the biotissues can acquire without damaging or breaking the
substances of the tissues such as elastin.

If we look at the figure 4.1, wherever the stretch ratio is 2, there was no spiky
peak in the output protocol. This means the randomly-arranged elastin in the biotissues
went up to almost the maximum stretch ratio. Approximately a stretch ratio of 2 was
the maximum stretch ratio that the biotissues could acquire with no damage.

The figures 4.1 and 4.2 show the results of the randomized stretch-controlled
protocol and corresponding force output of the strip of the pulmonary artery of the
adult swine. The output profile showed the much higher nonlinearity than the rubber
did. The experiment of the randomized stretch-controlled motion of the tissue
specimen showed that there is a noticeable inelastic deviation from the hyperelasticity.
The figure 4.3 shows that there are behaviors of nonlinearity as well as inelasticity. If
the hyperelastic assumption is perfectly satisfied, there would be only one point for
each stretch ratio.

To find the uncertainty due to the manual measurements, all measurements

(width a and length b of the tissue specimen, reference weight w, and voltage output p
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for a fixed weight) have been done for 10 times. Again, it is important to note that the
uncertainty due to the measurement can be reduced as much as possible as long as we
use the extremely accurate measuring devices or equipments. The width @ and the
length b of the tissue specimen has been used to get a reference area of the tissue
sample. As for the values of reference weight w and voltage output p, we have used the
same values measured for the rubber experiment.

Since the uncertainty due to the manual measurements is fixed or static for
entire stretch levels, it can be ignored for the error analysis which was focusing on the
uncertainty due to the inelastic behaviors of the specimen. Note that the uncertainty
due to the inelastic behavior varies. The summarized manual measurements are shown
in the table 4.1. It shows the width a and length b of the tissue, a reference weight w, a
voltage output p for a fixed weight have been measured for 10 times. It also shows the

standard deviations and fractional uncertainties for each measurement.
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Fig.4.1. The randomized stretch-controlled protocol and corresponding force output
profile for the tissue specimen (0-3000 sec).

» Stretch ratio
Force

Stretch ratio & Foree [voll]

000 3500 ] 4500 SO0 5500

Time [zec)

Fig.4.2. The randomized stretch-controlled protocol and corresponding force output
profile for the tissue specimen (3000-5600).



125

10.0

° Measures
9.0 1| = e 51

* Average
8.0

70
6.0

5.0

Force [volt]

4.0 -
3.0 oo
2.0 -
1.0 - R

00 ° T T T T

1.0 1.2 1.4 1.6 1.8 2.0
Stretch Ratio

Fig.4.3. Forces obtained by force transducer for each corresponding stretch ratio of the
tissue specimen have been grouped and averaged. It shows the inelastic and nonlinear
behaviors.
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Table 4.1
The width a and length b of the tissue, a reference weight w, a voltage output p for a
fixed weight have been measured for 10 times.

No. of Measure | width[mm] length[mm] | ref.weight[gram] Ou:;ii?%gl {l
1 2.4950 2.0210 0.3938 0.3084
2 2.6220 2.1480 0.3940 0.3067
31 2.7490 1.8940 0.3940 0.3058
4 2.5966 2.0464 0.3940 0.3061
5 2.4950 2.1480 0.3938 0.3085
6" 2.6220 2.0210 0.3940 0.3054
7" 2.6220 1.8940 0.3940 0.3063
g™t 2.5966 1.9194 0.3940 0.3046
ot 2.7490 1.9194 0.3939 0.3042
10" 2.6220 1.8940 0.3939 0.3054
Average 2.6169 1.9905 0.3939 0.3061
AM 0.0853 0.1015 0.0001 0.0014
F.U [%] 3.2611 5.0971 0.0214 0.4666
M = M,y a=2.6169 b=1.9905 w=0.3939 p=0.3061
+ AM +0.0853 +0.1015 + 0.0001 +0.0014
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Stretch Ratio 1.1: For the error analysis, we grouped the data according to the
same stretch ratios. The table 4.2 shows the grouped data for the stretch ratio 1.1 for
the tissue. It shows the times, measured forces by the force transducer and calculated
deviation, stretch-rate, and stretch histories. The error analysis has been done on the

data of the deviation D versus time 7, rate-related stretch history function #, , long-
time stretch history function //, . Although we has found that there is one more stretss
relaxation spetrum that made the new stretch history function H, , it hasn’t been used

as one of the independent variable for the multivarible linear regression analysis

because there is high correlations between T and H, . If there is high correlation

between the independent variables, the problem of the multicollinearity will be
appeared and it causes the inceasing of the standard error so that it lowers the

goodness-of-fit. In the same way to the rubber experiments, H, is the rate-related
stretch history scanned by a history cut-off 7, = 10 sec, H, is the long-time stretch
history scanned by a history cut-off # = 400 sec, and H, is the new stretch history

scanned by a history cut-off z;, = 1000 sec.
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Table 4.2

The tissue data corresponding to the stretch ratio 1.1. It shows the times and stretch
ratios obtained by the motion controller, forces vy, obtained by the force transducer and
calculated deviation, stretch-rate, and stretch histories. The error analysis has been

done on the data of the Deviation versus Time, H, and H, .

Time ; Vi Vavg D dA/dt H, (1) H @) | H, )
[sec] [volt] [volt] [volt] [/sec] =10 t,=400 | £,=1000
130.8 0.11438 0.03035 | -0.00481 | 1.13068 | 1.07313 | 1.02925
299.8 0.10406 0.02003 | -0.00008 | 1.11956 | 1.21757 | 1.08703
622.5 0.10719 0.02316 | 0.00134 | 1.0992 | 1.42234 | 1.18387
700.4 0.11469 0.03066 | -0.00004 | 1.1007 | 1.39949 | 1.1899
989.8 0.09469 0.01066 | -0.00547 | 1.14034 | 1.39676 | 1.27413
1391.2 0.09844 0.01441 | -0.00134 | 1.11561 | 1.47724 | 1.41393
1466.3 0.10625 0.02222 | -0.00456 | 1.11815 | 1.43617 | 1.40516
1773.4 0.09156 0.00753 | -0.00082 | 1.11279 | 1.42072 | 1.42336
2157.1 | 1.1 | 0.08812 | 0.08403 | 0.00409 | -0.00185 | 1.11982 | 1.53323 | 1.47978
2307.9 0.09063 0.00660 | -0.00248 | 1.12653 | 1.51722 | 1.4774
2651.5 0.09406 0.01003 | -0.00040 | 1.11603 | 1.44743 | 1.46874
3561.0 0.07531 -0.00872 | 0.00622 | 1.0806 | 1.55591 | 1.52316
3858.4 0.06844 -0.01559 | -0.00102 | 1.12729 | 1.56106 | 1.52006
4401.7 0.06156 -0.02247 | 0.00213 | 1.11483 | 1.46314 | 1.51433
4858.6 0.04156 -0.04247 | 0.00468 | 1.10172 | 1.51438 | 1.48701
4998.9 0.04250 -0.04153 | 0.00472 | 1.10422 | 1.48922 | 1.48863
5584.5 0.03500 -0.04903 | -0.00472 | 1.13489 | 1.54672 | 1.51059

Note that, we have used the stretch history function /, obtained by using the

stress relaxation spectrum ¢, corresponding to the early (or fast) exponential decay
instead of using the stretch-rate calculated by simply dividing the change in stretch
ratio by change in time spent testing. Those two independent variables are rate-related
variables. However, the stretch-rate is not our control variable for the experiments. The

stretch history function H, is obtained by using the stress relaxation spectrum ¢,
corresponding to the late (or slow) exponential decay. We, again, defined the #, and
H, as rate-related stretch history function and long-time stretch history function,

respectively.



129

The table 4.3 shows the average values and standard deviations of stretch ratios
and forces. They have been used for calculating the absolute uncertainty and relative
(or fractional) uncertainty for the stretch ratio 1.1 of the tissue specimen. They have
also been used to calculate the uncertainty in resulting Cauchy stresses. Similarly to the
results of rubber experiment, the higher stretch-rate we got the bigger deviation from
the hyperelasticity we had. It’s been revealed as true from our other experiments that

the stretch-rate and the deviation from the hyperelasticity have positive relationship.

Table 4.3

The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.1 of tissue. They have also been used to calculate the uncertainty in
resulting Cauchy stresses.

Average Standard deviation

Aavg Vavg AA Av
1.10001 | 0.08403 0.00008 0.02572

To get the Cauchy stress for the stretch ratio 1.1, the equations (2.33) — (2.40)

were employed as

&, = Lsa= | |5z _|__(0.08403)039390) | (0.00008)
0/1 pbog Pg | |(2.61690)1.99050)(0.30610)) (4.1)
=1.66072x10°[g / mm”*]
& - ot | Aaetar || (110001)0.39390) (0.02572)
W |apybugPug|  1(2:61690)1.99050)0.30610 | (4.2)

= 0.00699[g/mm’]



5 :|8t|§wz| weVarg | _| (1.10001)0.08403) | 00010)
RET P 1(2.61690)(1.99050)0. 30610|
=5.7972x10°[g/mm”]
5 |2t 5a=| AavgVave Wave S | (1.10001)0.08403)(0. 39390| 0.08530)
“eal” |y S b P | |(2:61690)(1.99050)(0. 30610\
=0.00074[g/mm?]
5, o éb:| AavgVave Wave 5o |- (1.10001)0. 08403)(0 39390| 0.10150)
b ay, (o Pue|  |(2.61690)1.99050)(0.30610 \
=0.00116[g/mm”]
iy _
5 - o | o Vs Vg p=| (l.10001)(0.08403)(0.393902)|(O.001 1)
Pl @b (e | 1(2:61690)(1.99050)0.30610)° |

=0.00010[g/mm?]

Thus, the total uncertainty in ¢ for the stretch ratio 1.1 is

oo o B (] ]
= (6, ) (o, (e, o+ (e, )+ (o, o+, )

=0.00139[g/mm’]
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(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

Since the actuators (CMA-25CCCL, Newport) that we have used provide quite

precise motions (Resolution = 0.048828 pm, Speed = 50 — 400 pm/sec), the uncertainty

in the Cauchy stress ¢ due to the 04 (average deviation or standard deviation of 1) has

the lowest uncertainty among the other uncertainties. The uncertainty in the Cauchy

stress ¢ due to the ow is also quite low. Since the uncertainty in the Cauchy stress ¢ due

to the ov which is standard deviation of the forces has the highest uncertainty of the

other uncertainties, we can tell that there are huge amount of inelastic behavior in the
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tissue at a stretch level 1.1. Although the uncertainty in the Cauchy stress ¢ due to the
oa and ob seem to be relatively high, it can be reduced as much as possible to the

maximum resolution range that the measuring devices would have. The surface
roughness of the specimen also affects the increasing of uncertainty. Now, if we look at

the fractional uncertainties, we have

oA

A=A, T4 =1.10001%0.00008, x100 = 0.007 %

avg

v=v,, +06v=0.08403+0.02572, ix 100 = 30.608 %
avg
514} 0
w=w,, *ow=0.39390+0.00010, o 100 = 0.025 %
8 (4.8)
&
a=a,,+oa=261690+0.08530, ——x100=3.260 %
aavg
ob

b=b,, +db=199050%0.10150, b—><100=5.099%

avg
p
p avg

x100=0.457 %

P =P, £0p=0.30610+£0.00140,

The Cauchy stress ¢ for the stretch ratio 1.1 of the tissue, using equation (2.25) for the

tissue, we got

) =1, =& =0.02284+0.00139, 100 =6.069 %

avg

(4.9)

Summarized fractional uncertainties are shown in the table 4.4.

Table 4.4

Fractional uncertainties for the measured data a, b, w, and p, and obtained data A and v
by the motion controller and the Cauchy stress ¢ for the stretch level 1.1 of the tissue.

Data Al v[volt] | w[gram] | a[mm] b[mm] | p[volt] | fg/mm’]

Avg 1.10001 | 0.08403 | 0.39390 | 2.61690 | 1.99050 | 0.30610 | 0.02284

S.D 0.00008 | 0.02572 | 0.00010 | 0.08530 | 0.10150 | 0.00140 | 0.00139
F.U[%] | 0.007 30.608 0.025 3.260 5.099 0.457 6.069

*S.D = standard deviation, F.U = Avg/S.D
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For calculating the absolute Cauchy stress, the uncertainty o, in ¢ which is due
to the ov alone is approximately 9 times bigger than the uncertainty o, in ¢ which is
due to the da alone and 6 times bigger than the uncertainty o, in # which is due to the
ob alone. The figure 4.4 shows the uncertainties in ¢ due to the o4, ov, ow, oa, ob and
op. Since the uncertainties o, o, ot , and o, are due to the measuring process and the
resolution of the measuring devices, those can be reduced to the insignificant level of
uncertainties as long as we use the extremely accurate devices. In addition, they can be
assumed to be ignorable because the fractional uncertainties corresponding to them are
never changed for the whole stretch ranges. This means if we initially measured them
very accurately by using extremely accurate measuring devices, they would remain as
low amount of uncertainties. The error analysis, therefore, has been devoted to and
focused on the uncertainty due to the inelastic behavior of the tissue.

The fractional uncertainties in ¢ due to the obtained data A and v through the
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured
data w, a, b, and p are shown in the figure 4.5. Unlikely to the rubber case, the reason
that the ratio of the absolute uncertainty to the fractional uncertainty is same is that the

result of the ot,/0t, 1s same as (Av/Vay,)/ (Aa/aag). It can be easily shown as following.

ﬂ’avg Wavg
ﬁ _ aavgbavgpavg — aavg é‘V _ 5V/vavg (4 10)
5t” | - /Iavgvavg Wavg &l ) V”Vg &1 / a”Vg
5 oa
‘(aa\/g ) bavg pavg

Likewise, it can be understood that o,/0t, 1s same as (Av/Vae)/ (Ab/Dayg).
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Fig.4.4. Uncertainties in ¢ due to the o4, ov, ow, da, ob and Jdp for the stretch ratio 1.1
of the tissue specimen.
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Fig.4.5. Fractional uncertainties in ¢ due to the obtained data A and v through the
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured
data w, a, b, and p for the stretch ratio 1.1 of the tissue specimen.
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Stretch Ratio 1.3: The tissue data corresponding to the stretch ratio 1.3 is
shown in the table 4.5. It shows the times and stretch ratios obtained by the motion
controller, forces vy, obtained by the force transducer and calculated deviation, stretch-
rate, and stretch histories. The error analysis has been done on the data of the D versus

T, H, and H, . Again, the H, is a rate-related stretch history function scanned by a
history cut-off 7, = 10 sec, and H, is the long-time stretch history function scanned by

a history cut-off ¢, = 400 sec.

Table 4.5

The tissue data corresponding to the stretch ratio 1.3. It shows the times and stretch
ratios obtained by the motion controller, forces obtained by the force transducer and
calculated deviation, stretch-rate, and stretch histories.

Time N Vi Vavg D dvdt | H, (@) | H () | H, (t)
[sec] [volt] [volt] [volt] [/sec] =10 =400 | £=1000
548.6 0.40250 0.02489 | -0.00083 | 1.31439 | 1.4341 | 1.1742
852.0 0.41969 0.04208 | -0.00067 | 1.30578 | 1.35408 | 1.22832
1086.2 0.41531 0.03770 | -0.00335 | 1.31344 | 1.30078 | 1.28872
2987.1 0.36937 -0.00824 | 0.00130 | 1.29646 | 1.49394 | 1.50735
3278.9 0.36719 -0.01042 | -0.00417 | 1.32786 | 1.55918 | 1.50382
3605.5 | 1.3 | 0.38906 | 0.37761 | 0.01145 | 0.00074 | 1.28483 | 1.53925 | 1.50908
4160.5 0.36687 -0.01074 | -0.00248 | 1.31652 | 1.48771 | 1.52161
4626.5 0.36531 -0.01230 | -0.00071 | 1.31578 | 1.51952 | 1.51478
4700.6 0.35844 -0.01917 | 0.00535 | 1.27817 | 1.49356 | 1.50886
5171.8 0.35656 -0.02105 | 0.00496 | 1.28458 | 1.45993 | 1.4892
5439.5 0.34344 -0.03417 | -0.00429 | 1.33973 | 1.55221 | 1.51785

Again for the multivariable linear regression analysis, we have used the stretch

history function //, obtained by using the stress relaxation spectrum #, corresponding

to the early (or fast) exponential decay instead of using the stretch-rate dA/dt calculated

by simply dividing the change in stretch ratio by change in time spent testing because
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the stretch-rate is not our control variable for the experiments. The table 4.6 shows the
average values and standard deviations of stretch ratios and forces. They were used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.3 of the tissue. They have also been used to calculate the uncertainty in

resulting Cauchy stresses.

Table 4.6

The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.3 of the tissue. They have also been used to calculate the uncertainty in
resulting Cauchy stresses.

Average Standard deviation

Aavg Vavg AL Av
1.30000 | 0.37761 | 0.00005 | 0.02523

To get the Cauchy stress for the stretch ratio 1.3, we again have used the

equations (2.33) — (2.40) as

5 <[5 - | VawWar || (037761)0.39390) [0.00005)
o4 Doy g | 1(2.61690)1.99050)0.30610 | (4.11)
=4.6643x10°[g/mm*]

5 -] | At |o | (130000)0.39390) (0.02523)

W |ugbugPug|  (2.61690)(1.99050)(0.30610 | (4.12)
=0.00810[g/mm’]

L | Ao | | (130000(037761) [0.00010)

W] | gDy Parg 1(2.61690)(1.99050)(0.30610) | (4.13)

=3.07875x107[g/mm”]
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5 _lo :|—,1avgvavgwavg e |- (1.30000)(0.37761 o39390| 530)
“oal” (@ P b Pu | 1(2:61690) (1.99050)0.30610) \ (4.14)
= 0.00395[g/mm’]
5 _|o %=|—/1avgvavgwavg 5 |- (1.30000)(0. 37761 039390| 150)
" lob T ay, (b S Pae| |(261690)1.99050)(0.30610 \ (4.15)
= 0.00618[g/mm’]
A _
5 | s Voo | o | (1.30000)(0.37761)(0.393902)|(0.001 1)
ap Qb (P | 1(2:61690)(1.99050)(0.30610)’ |
=0.00055[g/mm”]
(4.16)

Thus, the total uncertainty in ¢ for the stretch ratio 1.3 is

S = \/( o &j +(@5vj + (@a‘wJ +[@5aJ +[ﬁébj (8’ §pJ
oA ov ow oa ob op
—\/ (&) P (on, ) + (o, )+ (o, ) + (o, P (4.17)
- 0.00736[g/mm 1

The uncertainty in the Cauchy stress ¢ due to the o4 (average deviation or
standard deviation of A) has again the lowest uncertainty among the other uncertainties
by the same reason to the case of stretch ratio 1.1. The uncertainty in the Cauchy stress
t due to the ow is also quite low. The uncertainty o, due to the inelastic behavior is
approximately 2 times bigger than the uncertainty of, and 1.3 times bigger than the
uncertainty of,. The absolute uncertainties in ¢ due to the o4, ov, ow, da, ob and Jdp are
shown in the figure 4.6. The uncertainty in the Cauchy stress ¢ due to the év which is

standard deviation of forces can not be reduced no matter what to do. For the fractional

uncertainties for each variable for the stretch ratio 1.3, we have
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oA

A=Ay, T4 =1.30000 = 0.00005, x100 =0.004 %

avg

i><100 =6.681 %

avg

v=v,, £6v=0.37761+0.02523,

w=w,, +6w=0.39390+0.00010, O 100 = 0.025 %
w
“;l (4.18)
a=a,, +o1=2.61690%0.08530, ——x100=23.260 %
aavg
b

b=b,, +ob=1.99050%0.10150, b—><100=5.099 %

avg
P
pqu

P = D £ =0.30610 £ 0.00140, %100 = 0.457 %

The Cauchy stress ¢ for the stretch ratio 1.3, using equation (2.25) for the tissue, we get

t=t,, ot =0.12127+0.00736, i><100 =6.069 %

avg

(4.19)

Summarized fractional uncertainties are shown in the table 4.7.

Table 4.7

Fractional uncertainties for the measured data a, b, w, and p, and obtained data A and v
by the motion controller and the Cauchy stress # for the stretch level 1.3.

Data A3 v[volt] | w[gram] | a[mm] b[mm] | p[volt] | f{g/mm’]

Avg 1.30000 | 0.37761 | 0.39390 | 2.61690 | 1.99050 | 0.30610 | 0.12127

S.D 0.00005 | 0.02523 | 0.00010 | 0.08530 | 0.10150 | 0.00140 | 0.00736
F.U [%] | 0.004 6.681 0.025 3.260 5.099 0.457 6.069

The fractional uncertainty due to the force is still the highest and the fractional

uncertainties measured by manually are constant. The fractional uncertainties in ¢ due

to the obtained data A and v through the motion controller and measured data w, a, b

and p is shown in the figure 4.7.




138

0.009
0.0081
0.007 1
0.006 7
0.005 1
0.004 1
0.003
0.002 1
0.001 1

Uncertainty [ g/mr%ﬂ

Data

Fig.4.6. Uncertainties in ¢ due to the o4, ov, ow, da, ob and Jp for the stretch ratio 1.3
of the tissue specimen.
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Fig.4.7. Fractional uncertainties in ¢ due to the obtained data A and v through the
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured
data w, a, b and p for the stretch ratio 1.3 of the tissue specimen.
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Stretch Ratio 1.5: The tissue data corresponding to the stretch ratio 1.5 is
shown in the table 4.8. It shows the fimes and stretch ratios obtained by the motion
controller, forces vy, obtained by the force transducer and calculated deviation, stretch-
rate, and stretch histories. The error analysis has been done on the data of the D versus

T, H, and H, where H, is a rate-related stretch history function scanned by a history
cut-off 7 = 10 sec, and H, is the long-time stretch history function scanned by a

history cut-off #, = 400 sec.

Table 4.8

The tissue data corresponding to the stretch ratio 1.5. It shows the times and stretch
ratios obtained by the motion controller, forces obtained by the force transducer and
calculated deviation, stretch-rate, and stretch histories.

Time N Vi Vavg D dvdt | H,() | H, () | H, (?)
[sec] [volt] [volt] [volt] [/sec] =10 =400 | #=1000

68.1 0.89219 0.08346 | 0.00634 | 1.46415 | 1.04359 | 1.01744
398.5 0.86656 0.05783 | 0.00386 | 1.47416 | 1.26212 | 1.10485
758.2 0.86844 0.05971 0.00552 | 1.46095 | 1.39023 | 1.20151
1317.1 0.80781 -0.00092 | -0.00031 | 1.50652 | 1.49416 | 1.39912
1617.8 0.81937 0.01064 | -0.00314 | 1.51439 | 1.48207 | 1.4188
1698.3 0.81937 0.01064 | -0.00059 | 1.50438 | 1.49456 | 1.41631
1999.5 0.79906 -0.00967 | 0.00477 | 1.48339 | 1.50564 | 1.43855
2445.7 0.79656 -0.01217 | -0.00496 | 1.53378 | 1.52627 | 1.50022
2878.6 | 1.5 | 0.76656 | 0.80873 | -0.04217 | -0.00634 | 1.54106 | 1.5475 | 1.52188
3075.0 0.79562 -0.01311 | 0.00023 | 1.49976 | 1.48492 | 1.50369
3138.0 0.79156 -0.01717 | -0.00130 | 1.50624 | 1.48684 | 1.51689
3932.6 0.80437 -0.00436 | -0.00311 | 1.50124 | 1.52586 | 1.51113
4049.0 0.79125 -0.01748 | -0.00213 | 1.51008 | 1.44632 | 1.52244
4082.6 0.79000 -0.01873 | 0.00260 | 1.48832 | 1.44999 | 1.53089
4245.6 0.78844 -0.02029 | -0.00497 | 1.51756 | 1.4993 | 1.49661
5223.9 0.78094 -0.02779 | 0.00048 | 1.49126 | 1.47043 | 1.47368
55154 0.77031 -0.03842 | 0.00075 | 1.49273 | 1.53433 | 1.51271
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For the multivariable linear regression analysis, we have used the stretch

history function /, obtained by using the stress relaxation spectrum #, corresponding

to the early (or fast) exponential decay instead of using the stretch-rate dA/dt calculated
by simply dividing the change in stretch ratio by change in time spent testing because
the stretch-rate is not our control variable for the experiments. The table 4.9 shows the
average values and standard deviations of stretch ratios and forces. They were used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.5 of the tissue specimen. They have also been used to calculate the

uncertainty in resulting Cauchy stresses.

Table 4.9

The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.5 of the tissue. They have also been used to calculate the uncertainty in
resulting Cauchy stresses .

Average Standard deviation

Aavg Vavg A4 Av
1.50000 | 0.80873 | 0.00005 | 0.03529

Now, we have uncertainties ot;, o, oy, Otq, Oty and O, as

5 <2 5/1=| Ve W | 5| (0.80873)0.39390) |(o.00005)
oA pobog Pug | |(2.61690)1.99050)(0.30610)) (4.20)
=9.99x10°[g/mm*]
y)
5 - Lo P L P (1.50000)(0.39390) |(o.03 520)
W |ugbugPag|  1(2:61690)1.99050)0.30610) (4.21)

=0.01308[g/mm?]
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L | P | | (1.30000)0.80873) [0.00010)
W | @gDug Parg 1(2.61690)1.99050)(0.30610) (4.22)
=7.61x107[g/mm”]
5 =|2 5a_| /’tavgszgwavg 54 — |~ (1:50000)(0.80873)0. 39390| 530)
0al " (ap, PbugPue| | (2.61690)(1.99050)0.30610) \ (4.23)
=0.00977[g/mm?]
0| o | = AV Ware | o |~ (1.50000)(0. 80873)(0 39390|
S, =|—ob = 5 = 150)
b ay, (bu f Pae|  |(2.61690)1.99050)° (0.30610 \ (4.24)
=0.01528[g/mm”]
-2 _
5 = ot | 5p_| av(nggwavg2 5p=| (1.50000)(0.80873)(0.393902)|(0.001 40)
" @b (P | [(2:61690)(1.99050)0.30610)’ |

=0.00137[g/mm?]

(4.25)

Thus, the total uncertainty in ¢ for the stretch ratio 1.5 is

J( &j {%) () (2] (o) 4 (2a)

oA ov ow Oa ob op
= (&, ) (0, ) + (o, ) + (o, )P + (o, f (4.26)
- 0.01819[g/mm 1

The uncertainties in ¢ due to the o4, ov, ow, da, ob and Jp for the stretch ratio
1.5 of the tissue is graphically shown in the figure 4.8. Although the uncertainty in the
Cauchy stress ¢ due to ob is now higher than the uncertainty due to the ov, the
uncertainty due to the ob can be easily reduced as much as possible to the maximum

resolution of the range of the measuring device. Again, the uncertainty causing the

Error-of-definition has nothing to do with those measuring variables. Thus, if we
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assume the uncertainties that come from those measurements are ignorable, the only
factor that causes the deviation from the hyperelasticity is the inelastic behavior of the

tissue shown in the data of force v. The fractional uncertainties have been obtained as

A=Ay £ 64 =1.50000 £ 0.00005, fi x 100 = 0.003 %
avg
5‘} 0
v=v,, T =080873£0.03529, ——x100=4.364 %
avg
5‘4} 0
w=w,, *w=0.39390+0.00010, x 100 = 0.025 %
“;; (4.27)
a=a,,+d1=2.61690%0.08530, ——x100=23.260 %
a

avg

b&xloo =5.099 %

avg
p
p avg

b=b,, + b =199050+0.10150,

D= D £ =0.30610+0.00140, x100 = 0.457 %

The Cauchy stress ¢ for the stretch ratio 1.5, using equation (2.25) for the tissue, we got

i><100 =6.069 %

avg

t=t,, £o=0.29969+0.01819, (4.28)

The results of the fractional uncertainties for the stretch ratio 1.5 of the tissue is shown
in the figure 4.9. The table 4.10 shows the summary of the averages, standard

deviations, and fractional uncertainties of the variables we have for stretch ratio 1.5.

Table 4.10
Fractional uncertainties for the measured data w, a, b, and p and obtained data A and v
by the motion controller and the Cauchy stress ¢ for the stretch level 1.5 of the tissue.

Data Ais v[volt] | w[gram] | a[mm] b[mm] | p[volt] | g/ mm?®]

Avg 1.50000 | 0.80873 | 0.39390 | 2.61690 | 1.99050 | 0.30610 | 0.29969

S.D 0.00005 | 0.03529 | 0.00010 | 0.08530 | 0.10150 | 0.00140 | 0.01819
F.U[%] | 0.003 4.364 0.025 3.260 5.099 0.457 6.069




143

0.0161

00141 | m
ICI N

oott | M
o008t LM
o006t LN
T
0.0021

L P

Data

2

Uncertainty [g/mm]

Fig.4.8.Uncertainties in ¢ due to the o4, ov, ow, oa, 6b and dp for the stretch ratio 1.5 of
the tissue specimen.
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Fig.4.9. Fractional uncertainties in ¢ due to the obtained data A and v through the
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured
data w, a, b and p for the stretch ratio of the tissue specimen.
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Stretch Ratio 1.7: The tissue data corresponding to the stretch ratio 1.7 is
shown in the table 4.11. It shows the times and stretch ratios obtained by the motion
controller, forces vy, obtained by the force transducer and calculated deviation, stretch-
rate, and stretch histories. The error analysis has been done on the data of the D versus

T, H, and H, where H, is a rate-related stretch history function scanned by a history
cut-off 7 = 10 sec, and H, is the long-time stretch history function scanned by a

history cut-off #;, = 400 sec. The table 4.12 shows the average values and standard
deviations of stretch ratios and forces. They were used for calculating the absolute
uncertainty and relative (or fractional) uncertainty for the stretch ratio 1.7 of the tissue.

They have also been used to calculate the uncertainty in resulting Cauchy stresses ¢.

Table 4.11

The tissue data corresponding to the stretch ratio 1.7. It shows the times and stretch
ratios obtained by the motion controller, forces obtained by the force transducer and
calculated deviation, stretch-rate, and stretch histories.

Time . Yy Vavg D dA/dt H f () H 4 (?) H f (®)
[sec] [volt] [volt] [volt] [/sec] =10 t,=400 | #,=1000
910.9 1.62344 0.11019 | 0.00083 | 1.66228 | 1.39245 | 1.24823
1240.7 1.50469 -0.00856 | 0.00280 | 1.68818 | 1.44272 | 1.36554
1529.8 1.59719 0.08394 | 0.00602 | 1.65074 | 1.41311 | 1.40768
19234 1.48406 -0.02919 | 0.00299 | 1.68751 | 1.44299 | 1.42215
2082.0 1.49719 -0.01606 | -0.00496 | 1.71875 | 1.56733 | 1.47176
2232.2 1.55531 0.04206 | 0.00284 | 1.66541 | 1.51749 | 1.47697
2740.2 | 1.7 | 1.55938 | 1.51325 | 0.04613 0.00264 | 1.66506 | 1.45485 | 1.46351
3219.2 1.48469 -0.02856 | -0.00591 | 1.72022 | 1.53906 | 1.51388
3707.4 1.50906 -0.00419 | 0.00126 | 1.67526 | 1.52407 | 1.51703
4474.6 1.48344 -0.02981 | -0.00331 | 1.69728 | 1.48998 | 1.51296
4551.8 1.46656 -0.04669 | -0.00023 | 1.70312 | 1.52069 | 1.52312
49249 1.46312 -0.05013 | 0.00197 | 1.6724 | 1.46919 | 1.47641
5297.4 1.44406 -0.06919 | -0.00472 | 1.71694 | 1.51066 | 1.49391
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The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.7 of the tissue. They have also been used to calculate the uncertainty in

resulting Cauchy stresses .

Average Standard deviation

Aavg Vavg AA Av
1.70002 | 1.51325 | 0.00003 0.05437

The uncertainties ots, ot,, Otw, Ots, Oty and o, for the stretch ratio 1.7 of the

tissue have been obtained as

(1.51325)0.39390)

5Z—| g Vg |6/1 | | 0.00003)

St
) @ pyDog Prg 1(2.61690)(1.99050 0. 30610|
=1.12x107[g/mm”]
5 Ot o | AW _| (1:70002)(0.39390) |(0.05 437)
W |dpgbugPug|  1(2:61690)(1.99050)(0.30610)
=0.02283[g/mm?]
5 |05, | Awever | | (170002)(1.51325) | 0.00010)
RET P 1(2.61690)(1.99050)(0.30610 |
=0.00016[g / mm*]
5 _ Q&J FaVass W | _ |-(1.70002)(1.51325)(0.39390) |( 0.08530)
“oal” |ay, b, pavg ~1(2.61690)*(1.99050)(0.30610)|
=0.02072[g/mm”]
5 |2 5b=|—/1avgvavgwavg 5 — |~ (1.70002)(1.51325)(0.39390 |(0.101 50)
b ay, (o) Pug|  1(2:61690)1.99050)(0.30610)|

=0.03241[g/mm?]

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)
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-2 _
5 = ot & :| anngwavgz p:| (1.70002)(1.51325)(0.393902)|(0‘001 10)
P @b (P | 1(2:61690)1.99050)0.30610)’ |
=0.00291[g/mm?]
(4.34)

Thus, the total uncertainty in ¢ for the stretch ratio 1.7 is

&:J@&j (2] (2 +(Za) (2] - (%pj

oA ov ow oa ob op
= \/(5% Y+ (o) +(ot,) +(o,) +(ot,) + (5zp )2 (4.35)
=0.03857[g/mm?]

, and the fractional uncertainties are

A= Ay, + 84 =1.70002 +0.00003, fi x100 = 0.002 %
avg
5\} o
V=V, £V =151325£005437,  —=x100=3.593 %
avg
5‘4} 0
w=w,, £w=0.39390£0.00010, x100 = 0.025 %
avg
&l 0
a=a,, +82=261690+0.08530, —=x100=3.260 % (4.36)

avg

b=b,, *ob=1.99050+0.10150, b&x100:5.099%

avg

D= Dy £ =0.30610+0.00140, P 100 = 0.457 %
puvg
t=t,,+d =0.63553+0.03857, 100 = 6.069 %

avg
The absolute uncertainties in in ¢ due to the o4, ov, ow, da, ob, and Jdp for the
stretch ratio 1.7 and the fractional uncertainties in ¢ due to the obtained data A and v

through the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and

measured data w, a, b, and p for the stretch ratio 1.7 are shown in the figure 4.10 and
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figure 4.11, respectively. The table 4.13 shows the summary of the averages, standard

deviations, and fractional uncertainties of the variables for the stretch ratio 1.7 of the

tissue.

Table 4.13

Fractional uncertainties for the measured data w, a, b, and p and obtained data A and v
by the motion controller and the Cauchy stress # for the stretch level 1.7 of the tissue.

Data A7 v[volt] | w[gram] | a[mm] b[mm] | p[volt] | f[g/mm’]

Avg 1.70002 | 1.51325 | 0.39390 | 2.61690 | 1.99050 | 0.30610 | 0.63553

S.D 0.00003 | 0.05437 | 0.00010 | 0.08530 | 0.10150 | 0.00140 | 0.03857
F.U[%] | 0.002 3.593 0.025 3.260 5.099 0.457 6.069

Although the fractional uncertainties due to the manually measuring process

were constant, the fractional uncertainty due to the force v continuously decreased even

though we got the data for the same displacements (stretch ratios). This tells that there

is inelastic behavior on the tissue. Again, we don’t need to consider the uncertainties

due to the manual measurements such as w, a, b, and p.
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Fig.4.10.Uncertainties in ¢ due to the o4, ov, ow, da, ob and dp for the stretch ratio 1.7

of the tissue specimen.

Fractional uncertainty [%]
—_ \S) w B~ W
| | | | |

|

|

|

|

|

|

|

|

_ |

|

|

|

|

|

|

|

|

. ‘

|

|

|

|

|

|

|

_ |

|

|

|

|

| | | |

|

| | | |

|

_

|

|

|

1

|

|

|

. |

|

|

|

|

|

|

|

P
O Ay VIV, —~Swiw, dala,, Oblb,, BIP,,

g avg avg avg

Fig.4.11. Fractional uncertainties in ¢ due to the obtained data A and v through the
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured

data w, a, b, and p for the stretch ratio 1.7 of the tissue specimen.
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Stretch Ratio 1.9: The tissue data corresponding to the stretch ratio 1.9 is
shown in the table 4.14. It shows the times and stretch ratios obtained by the motion
controller, forces vy, obtained by the force transducer and calculated deviation, stretch-
rate, and stretch histories. The error analysis has been done on the data of the D versus

T, H, and H, where H, is a rate-related stretch history function scanned by a history
cut-off 7 = 10 sec, and H, is the long-time stretch history function scanned by a

history cut-off #;, = 400 sec. The table 4.15 shows the average values and standard
deviations of stretch ratios and forces. They were used for calculating the absolute
uncertainty and relative (or fractional) uncertainty for the stretch ratio 1.9. They have

also been used to calculate the uncertainty in resulting Cauchy stresses .

Table 4.14

The tissue data corresponding to the stretch ratio 1.9. It shows the times and stretch
ratios obtained by the motion controller, forces obtained by the force transducer and
calculated deviation, stretch-rate, and stretch histories.

Time Yy Vavg D dA/dt H f () H 4 (?) H f ()
A _ _ 14,=100
[sec] [volt] [volt] [volt] [/sec] =10 t,=400 0
221.8 8.89437 1.54074 | 0.00377 | 1.86438 | 1.14375 | 1.0575
473.0 7.92938 0.57575 | -0.00244 | 1.90088 | 1.35842 | 1.14337
1167.5 7.79125 0.43762 | 0.00012 | 1.89895 | 1.35769 | 1.326
1848.3 7.43750 0.08387 | -0.00437 | 1.90309 | 1.40355 | 1.42373
2386.8 7.49844 0.14481 | -0.00303 | 1.8863 | 1.54094 | 1.47655
2817.4 7.38219 0.02856 | 0.00106 | 1.88516 | 1.49814 | 1.50159
3379.4 | 1.9 | 7.28531 | 7.35363 | -0.06832 | 0.00110 | 1.88173 | 1.50878 | 1.49897
3461.6 7.01875 -0.33488 | 0.00303 | 1.88716 | 1.54695 | 1.51145
3782.4 7.06625 -0.28738 | 0.00126 | 1.8866 | 1.54495 | 1.51905
4324.1 6.67469 -0.67894 | -0.00579 | 1.90822 | 1.49347 | 1.50724
4775.4 6.93156 -0.42207 | 0.00240 | 1.87418 | 1.52669 | 1.51081
5073.6 6.82406 -0.52957 | -0.00224 | 1.88732 | 1.47706 | 1.50052
5371.8 6.86344 -0.49019 | 0.00398 | 1.87136 | 1.50703 | 1.51033
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The average values and standard deviations of stretch ratios and forces are used for
calculating the absolute uncertainty and relative (or fractional) uncertainty for the
stretch ratio 1.9. They have also been used to calculate the uncertainty in resulting

Cauchy stresses .

Average Standard deviation

ﬂavg Vavg AA Ay
1.90001 | 7.35363 | 0.00003 0.59756

The uncertainties for the stretch level 1.9 have been calculated as

ot

_5,1:| avg Wavg |5;L | (7.35363)0.39390)

&, = | (0.00003)
o4 @ pDog Parg 1(2.61690)(1.99050)(0.30610)|
=5.45x10"[g/mm”]
5. = 0|5 _ | Ao Wars | (1.90001)0. 39390) |059756
v |y pavg 1(2.61690)(1.99050)(0.30610 |
=(0.28049[g/mm” ]
N _|a |§W:| weVarg | | (1.90001)7.35363) |( 0.00010)
W] | gDy Prg 1(2.61690)1.99050)(0.30610)
= 0.00088[g / mm®]
5. = g&l:|— avgVave Wave | 190001)(7 35363)0.39390 |(0.08530)
al - |(ay, )V bug pavg ~1(2.61690)*(1.99050)(0.30610)|
=0.11251[g/mm"]
)
& 1% |~ Vi Wi 5 — |~ (1:90001)(7.35363)(0.39390 |(0_1 0150)
b ay, (o f Pue|  1(2.61690)1.99050)(0.30610)|

=0.17601[g/mm?]

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
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-2 _
5 s, :| oo Vg p:| (1.90001)(7.35363)(0.393902)|(0‘001 )
P @b (P | 1(2:61690)1.99050)0.30610)’ |
= 0.01579[g/mm”]
(4.42)

Thus, the total uncertainty in ¢ for the stretch ratio 1.9 is

&:J@&j (2] o (Za) o[ Za) (o) 4 (2a)

oA ov ow oa ob op
= \/(5% Y+ (o) +(ot,) +(o,) +(ot,) + (5zp 3 (4.43)
=0.209494[g/mm?]

, and the fractional uncertainties are

A= Ay £ 62 =1.90001+0.00003, fl x100 = 0.002 %
avg
5‘) 0
V=V 00 =7.35363£0.59756, =100 =8.126 %
avg
5‘4} 0,
w=w,, & =0.39390+0.00010, ~——x100 = 0.025 %
avg
a=a,, +8=261690+008530, -2 x100=3.260 % (4.44)
a

avg

b=b,, *ob=1.99050%0.10150, b&x100:5.099%

avg

5
D= Dy £ =0.30610+0.00140, pp 100 = 0.457 %
avg

t=t,, T =3.45168%0.20949, i>< 100 = 6.069 %

avg
The absolute uncertainties in in ¢ due to the o4, ov, ow, da, ob, and Jdp for the
stretch ratio 1.9 and the fractional uncertainties in ¢ due to the obtained data A and v

through the motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and

measured data w, a, b, and p for the stretch ratio 1.9 are shown in the figure 4.12 and
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figure 4.13, respectively. The table 4.16 shows the summary of the averages, standard

deviations, and fractional uncertainties of the variables for the stretch ratio 1.9 of the

tissue.

Note that the fractional uncertainty due to the force v has increased. Although

the fractional uncertainty due to the force v has been decrease as stretch ratio got

bigger, the fractional uncertain due to the force v for the stretch ratio 1.9 has increased.

This is due to the tremendous nonlinear behavior of the tissue.

Table 4.16

Fractional uncertainties for the measured data w, a, b, and p, and obtained data A and v
by the motion controller and the Cauchy stress ¢ for the stretch level 1.9 of the tissue.

Data A9 v[volt] | w[gram] | a[mm] b[mm] | p[volt] | fg/mm?’]

Avg 1.90001 | 7.35363 | 0.39390 | 2.61690 | 1.99050 | 0.30610 | 3.45168

S.D 0.00003 | 0.59756 | 0.00010 | 0.08530 | 0.10150 | 0.00140 | 0.20949
F.U[%] | 0.002 8.126 0.025 3.260 5.099 0.457 6.069
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Fig.4.12.Uncertainties in ¢ due to the o4, ov, ow, da, ob and dp for the stretch ratio 1.9
of the tissue specimen.
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Fig.4.13. Fractional uncertainties in ¢ due to the obtained data A and v through the
motion controller (ESP 7000 Motion Controller/Driver, Newport, Inc) and measured
data w, a, b, and p for the stretch ratio 1.9 of the tissue specimen.
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For tissue specimen, we have summarized the values of the absolute
uncertainties and fractional uncertainties for each stretch ratio in the table 4.17. The
absolute uncertainties are graphically shown in the figure 4.14 and figure 4.15. The
fractional uncertainties are graphically shown in the figure 4.16. Note that the
fractional uncertainty comes from inelastic behavior noticed from the force data is
significant but the fractional uncertainty comes from the data of stretch ratio A is
ignorable. The fractional uncertainties for the static measured variables w, a, b, and p
are constants for all selected stretch levels.

Because of the calculation process to get the absolute Cauchy stress, the
uncertainties in the Cauchy stress ¢ due to ot; , o, , o , Ota , Ot , and O, increase as
the stretch ratio gets bigger. If we look at the fractional uncertainties shown in figure
4.16, the fractional uncertainties related to the manual measurements such as the
reference-weight measures w, the voltage measures p to check the resolution of the
force transducer, and the width and the length measures a and b, respectively are
constant for all stretch levels. The fractional uncertainty due to the measurement of the
force measured by force transducer is decreasing until the stretch level 1.7 even though
we got the data at the same amount of the displacements. Thus, we can conclude that
the uncertainty is due to the inelastic behavior. If the uncertainty is totally due to the
uncertainty due to the noise or resolution of the force transducer, it won’t have any
systematic trend, that is, there would be no decreasing or increasing trends of the
fractional uncertainty due to the force v. Note, again, that any uncertainty due to the
physical measurements can be reduced as much as the negligible levels, i.e., with

proper assumption, it can be ignored for the error analysis.
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The summary of absolute uncertainties and fractional uncertainties for each stretch
ratio of the tissue specimen.

1.1 1.3 1.5 1.7 1.9
Aavg 1.10001 | 1.30000 | 1.50000 | 1.70002 1.90001
AL 0.00008 | 0.00005 | 0.00005 | 0.00003 | 0.00003
4 AN Aavg 0.007 0.004 0.003 0.002 0.002
&, [g/mm?] | 0.000002 | 0.000005 | 0.000010 | 0.000011 | 0.000054
Varg 0.08403 | 0.37761 | 0.80873 | 1.51325 | 7.35363
f Ay 0.02572 | 0.02523 | 0.03529 | 0.05437 | 0.59756
[volt] | Av/vu,[%] | 30.608 6.681 4.364 3.593 8.126
S [g/mm?] | 0.00699 | 0.00810 | 0.01308 | 0.02283 | 0.28049
Wag 0.3939
w Aw 0.0001
(2] | AW/ Wag [%] 0.025
Sty [g/mm?] | 0.000006 | 0.00003 0.00008 | 0.00016 | 0.00088
Qavg 2.6169
a Aa 0.0853
[mm] | Aq /a4, [%] 3.260
S, [g/mm*] | 0.00074 1.30933 231132 | 3.34170 |4.45520
bavg 1.9905
b Ab 0.1015
[mm] | Ab /byg [%] 5.099
Sy [g/mm?*] | 0.00116 0.00618 0.01528 | 0.03241 |0.17601
Pavg 0.30610
» Ap 0.00140
[VOIt] | Ap/ pave[%] 0.457
8, [g/mm’] | 0.00010 0.00055 0.00137 | 0.00291 |0.01579
Lavg 0.02284 0.12127 0.29969 | 0.63553 | 3.45168
[g/ntlmz] At 0.00139 0.00736 0.01819 | 0.03857 | 0.20949
At/ tayg [%0] 6.069 6.069 6.069 6.069 6.069
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Fig.4.14. The (absolute) uncertainties in the Cauchy stress ¢ due to the reference-weight

measures w, the width a, the length b, and the voltage measures p to check the
resolution of the force transducer.
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Fig.4.15. The (absolute) uncertainties in the Cauchy stress ¢ due to the stretch ratio data

A, and the force data v of the tissue specimen. These values are obtained by the motion
controller/driver (ESP7000, Newport, Inc).
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Fig.4.16. Fractional uncertainties in the data of the A, v, w, a, b, p, and ¢ of the tissue

specimen.
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As mentioned in the prior chapter, like the rubber-like materials, biotissues
have randomly arranged long chain molecules called elastin. Thus, whenever the tissue
is stretched, there must be rearrangements of elastin, i.e., the randomly arranged elastin
gets close to the ordered configuration so that it causes the decrease of entropy. The
reason that the uncertainties especially in the low stretch ranges are important for the
rubber-like materials and biotissues, although the stretch ratio A = 1.3 is not a low
strain range for none rubber-like materials, is that their behaviors in the low strain
range are primarily related to the entropy. The energy storage at the low range of stain
is mostly due to the entropy alone. Thus, in the low stretch range, the strain energy can
hardly be determined by the experimentation. That’s why there has been a deficiency
in understanding of the exclusive nature of the stain energy function for the low strain
ranges of those materials. At the higher strain ranges, the energy storage is due to both
the entropy and the molecular chemical bonds. That is, if we stretch to the higher strain
ranges, we make the long chain molecules rearranged in more ordered manner as well
as we stretch the chemical bonds, too. Thus, the energy storage is due to both the
entropy and the molecular chemical bonds. (John C. Criscione, 2003). Unlikely to the
rubber case, the fractional uncertainties in the total Cauchy stress ¢ for stretch ratio
from 1.1 to 1.9 are the same as 6.07 %. It is also because of the difference of the

calculation process of the Cauchy stress z.
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Error-of-Definition

The approximation of hyperelasticity for modeling the biotissues or rubber-like
materials causes the uncertainty. It is called the Error-of-Definition. Because the
biotissues mostly behave like hyperelastic, most people use the hyperelastic
assumption even though it’s not truly hyperelastic. Although there is no perfect elastic
or hyperelastic material in the world, the assumption would be useful as long as we
quantify the uncertainty in it. Again, similarly to rubber, we have assumed that the
uncertainty due to the inelastic behavior of the tissue is due to the Time, Stretch-Rate,
and Stretch- History. These have been checked by the multivariable linear regression
analysis. The multivariable regression analysis, goodness-of-fit test and test of
significance called #-test have been used for the analysis. As we mentioned in prior

chapter, we have used the rate-related stretch history H, instead of using the stretch-

rate obtained by simple calculation. Note again that the stretch rate and rate-related
stretch history are inversely related which means the sign of the rate-related stretch
history is exactly the opposite of the sign of the stretch-rate. To do the multivariable
linear regression analysis, we have to normalize or nondimensionalize both the
dependent variable that is the deviation D and the independent variables that are the

time 7, rate-related stretch history #, , and long-time stretch history #, . Although

123
the new stretch history /, data has been also normalized, it hasn’t been used for the

multivariable linear regression analysis because there is high correlation between the

time 7 and the new stretch history /, that can give rise to the multicollinearity.
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Multivariable Linear Regression Analysis

The multivariable linear regression analysis enables us to employ the multiple
variables. Since it is a linear analysis, the first order functional relationship of the
independent and dependent variables was investigated. Note that we assumed that there
are linear relationships between them. Actually, one of the purposes of the regression
model is to get the maximum effect with the minimum number of independent
variables. Thus, the ideal regression model should predict the future values or unknown
values between the known values with the minimum errors and the minimum number
of independent variables.

For the regression analysis, there were several steps we should follow; first, we

used the whole independent variables 7, H b and H - Secondly, we checked the R*?
as well as calculated z-values that are corresponding to the T, H, , and H, . Lastly, if

there was an insignificant variable, we carriedout regression analysis again without the
insignificant variable. It is important to know that the excluding the insignificant
independent variable doesn’t mean that the excluded independent variable doesn’t
affect the dependent variable. There would be a moderate correlation coefficient
between the independent variables. To avoid the multicollinearity which causes the
increasing of standard errors and lower the goodness-of-fit, we have checked the
correlation coefficients between the independent variables.

Similarly, we have set the level of significance « as 0.1 so that the confidence
interval (C.I) was

C.I1=100(1-0.1)=90 % (4.45)
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This represents the probability (90 % of probability) that the partial regression

coefficient ﬁi is likely to be contained within that interval. It physically means that,
for the unknown value £, the true value ﬁ’ will fall into the range of ,@ = S\ 5 90

times out of the 100 where S 5 is expressed as (for example, independent variable 7T)

Z(Di_[)z‘)z

§ oSV n-k-l (4.46)

SN R S BN

To carry out the multivariable linear regression analysis, we have

nondimensionalized the data to avoid the scale-dependency which cause the partial
regression coefficients to be nonsense. We have used L2-norm for

nondimensionalization as

||x||=[i|xi| j @

Stretch Ratio 1.1: The nondimensionalized data for the stretch ratio 1.1 of the
rubber specimen is shown in the table 4.18. The dependent variable is deviation D and

the independent variables are time 7, rate-related stretch history function H . and
long-time stretch history function /, . Since the correlation coefficients between the T
and H, is very high as 0.81 and the correlation coefficient between the H, and H, is
also very high as 0.89, although the correlation coefficient between the D and H, is
fairly high, we only use the 7, H, , and H, as independent variables for the multiple

linear regression analysis.



Table 4.18

Nondimensionalized data using L2-norm for the stretch ratio 1.1 of the tissue

specimen.
Dependent variable Independent variables
A D T H, H, H,
VM - Vavg =10 t,=400 t=1000
0.29500 0.01058 | 0.24582 | 0.18016 | 0.17959
0.19470 0.02424 | 0.24340 | 0.20441 | 0.18968
0.22512 0.05034 | 0.23898 | 0.23879 | 0.20657
0.29801 0.05664 | 0.23930 | 0.23495 | 0.20763
0.10364 0.08004 | 0.24792 | 0.23449 | 0.22232
0.14008 0.11250 | 0.24255 | 0.24801 | 0.24672
0.21598 0.11857 | 0.24310 | 0.24111 | 0.24519
0.07322 0.14340 | 0.24193 | 0.23852 | 0.24836
1.1 0.03979 0.17443 | 0.24346 | 0.25741 | 0.25821
0.06418 0.18663 | 0.24492 | 0.25472 | 0.25779
0.09752 0.21441 | 0.24264 | 0.24300 | 0.25628
-0.08471 0.28796 | 0.23493 | 0.26121 | 0.26578
-0.15147 0.31200 | 0.24509 | 0.26208 | 0.26524
-0.21833 0.35594 | 0.24238 | 0.24564 | 0.26424
-0.41270 0.39288 | 0.23953 | 0.25424 | 0.25947
-0.40357 0.40423 | 0.24007 | 0.25002 | 0.25975
-0.47646 0.45158 | 0.24674 | 0.25967 | 0.26358
Correlation Coefficients -0.96 0.06 -0.59 -0.70
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Since the number of sample for the stretch ratiol.1 is 17, the degree-of-freedom
(DOF) for ¢ is n-k-1 = 17-3-1 = 13. Thus, the critical ¢ value for the stretch ratio 1.1 is

t =1.771 (for two-tailed test).

c(alLn—k-1) — L0.05,13)

Thus if we have the following condition as

by > 1771 (4.48)

we reject the null hypothesis and accept the alternative hypothesis which means that
the specific independent variable affect the dependent variable. The result of
multivariable linear regression analysis using entire independent variables 7,

H, and H, is shown in the table 4.19.
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Table 4.19
Result of multivariable linear regression analysis for stretch ratio 1.1 of tissue

specimen with entire independent variables 7, H, and H, .

A

i3 Se t-value R?
g 0.70 137 0.51
T 1189 0.17 111,30
H, 411 5.30 -0.78 0.93
H, 2.78 1.63 170

Although the R? is high, the ¢-values of H , and H, didn’t satisfy the above condition,

that is they are insignificant to cause the deviation. In addition, the sign of the partial

regression coefficient of the H, is positive which is unexpected result; we already

know from the results for whole stretch levels that as the stretch history function gets
bigger, the deviation gets smaller. It should be negative. So we execute a regression

analysis without H, and H, . Since the number of independent variables are reduced

to 1, we have a new critical z-value as ¢ fe00s:1s) = 1.753 and we should

c(a/2;n—k-1) =

have a following new constraint as

tys| >1.753 (4.49)

to reject the null hypothesis and accept the alternative hypothesis. The result of
multivariable linear regression analysis for stretch ratio 1.1 of tissue specimen with

independent variable 7' is shown in the table 4.20.
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Result of multivariable linear regression analysis for stretch ratio 1.1 of tissue

specimen with independent variable 7.

,éi Se t-value R?
aQ 0.34 0.03 10.44
.92
T -1.70 0.13 -13.09 0.9

Thus the final regression model for the stretch ratio 1.1 can be expressed as

D,, =0.34-1.70T

(4.50)

The optimal independent variables that can expect the dependent variable is 7" and the

ability to explain the deviation is 92 %. The rest 8 % can’t be explained by this model.

From the model, we have noticed that the time 7 is the substantial factor that causes the

deviation from the hyperelasticity. Note that this doesn’t mean that the time is the only

factor that causes the deviation.

Stretch Ratio 1.3: The nondimensionalized data for the stretch ratio 1.3 of the

tissue specimen is shown in the table 4.21. The dependent variable is deviation D and

the independent variables are time 7, rate-related stretch history function #/, , and

long-time stretch history function /, . Since the correlation coefficient between 7" and

H, is very high as 0.9, we excluded the H, for the multiple linear regression analysis.
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Table 4.21
Nondimensionalized data using L2-norm for the stretch ratio 1.3 of the tissue specimen.
Dependent variable Independent variables
y) D r H, H, H,
VM = Vave t,=10 t,=400 t,=1000
0.31197 0.04449 | 0.30317 | 0.29330 | 0.24609
0.52745 0.06910 | 0.30119 | 0.27693 | 0.25743
0.47255 0.08810 | 0.30296 | 0.26603 | 0.27009
-0.10333 0.24227 | 0.29904 | 0.30553 | 0.31591
-0.13065 0.26593 | 0.30628 | 0.31888 | 0.31517
1.3 0.14350 0.29242 | 0.29636 | 0.31480 | 0.31627
-0.13466 0.33743 | 0.30367 | 0.30426 | 0.31889
-0.15422 0.37523 | 0.30350 | 0.31077 | 0.31746
-0.24034 0.38123 | 0.29482 | 0.30546 | 0.31622
-0.26390 0.41945 | 0.29630 | 0.29858 | 0.31210
-0.42837 0.44116 | 0.30902 | 0.31745 | 0.31811
Correlation Coefficients -0.93 -0.06 -0.79 -0.85

In this case, the number of sample for the stretch ratiol.3 is 11 and the degree-
of-freedom (DOF) for ¢ is n-k-1 = 11-3-1 = 7. Thus, the critical ¢ value for the stretch

ratio 1.3 1s ¢ fe00s.7y = 1.895 (for two-tailed test).

c(a)2n—k=1) —
Thus if we have a z-value that satisfies the following constraint as

1, 41| >1.895 (4.51)

we reject the null hypothesis and accept the alternative hypothesis which means that
the specific independent variable affect the dependent variable. The result of
multivariable linear regression analysis for the stretch ratio 1.3 of the tissue specimen

using entire independent variables 7, H, and /, is shown in the table 4.22.
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Result of multivariable linear regression analysis for stretch ratio 1.3 of tissue
specimen with entire independent variables 7, H, and H, .

A

i3 Se t-value R?
a 3.63 2.55 1.42
T 2.01 0.47 428
H, 7.36 8.57 -0.86 0.86
H, 2.85 3.50 -0.81

Although the R? is reasonably high, the #-values of # , and H, didn’t satisfy the above

constraint. So we execute a regression analysis only with the 7. Since the number of

independent variables are reduced to 1, ¢ fe00s:9) = 1.833, we should have a

c(al2;n—k-1) =

new constraint as

ty 4| >1.833 (4.52)

to reject the null hypothesis and accept the alternative hypothesis. The result of
multivariable linear regression analysis for stretch ratio 1.3 of tisse specimen with

independent variable T is shown in the table 4.23.

Table 4.23
Result of multivariable linear regression analysis for stretch ratio 1.3 of tissue
specimen with independent variables 7T .

,Bi Se t-value R?
a 0.64 0.09 6.79
T -2.29 0.30 -7.72 0.87

Thus the final regression model for the stretch ratio 1.3 can be expressed as

A

D,, =0.64—2.29T

(4.53)
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Again, the optimal independent variable that can expect the dependent variable is 7. In
addition, its ability to explain the deviation is 87 %. The rest 13 % can’t be explained
by this model whatsoever. From the regression results and the model, we figured out
that the rate-related stretch history and long-time stretch history are not effective
factors that cause the deviation from hyperelasticity for the stretch ratio 1.1 and 1.3 of
the tissue.

Stretch Ratio 1.5: The nondimensionalized data for the stretch ratio 1.5 of the
tissue specimen is shown in the table 4.24. The dependent variable is deviation D and

the independent variables are time 7, rate-related stretch history function H - and
long-time stretch history function H, . Since the correlation coefficient between the T
and H, is high enough as 0.8 to cause the multicollinearity and also the correlation
coefficient between the /, and H, is very high as 0.9, we carried out the multiple

linear regression analysis with the 7, H, , and H, . Since the number of sample for the

stretch ratiol.5 is 17, the degree-of-freedom (DOF) for ¢ is n-k-1 = 17-3-1 = 13. Thus,

the critical ¢ value for the stretch ratio 1.5 is ¢ Looosazy = 1771 (for two-

c(a)n—k-1)

tailed test).

Thus if z-value corresponding to a certain variable satisfies the following condition as
|t,ia| > 1.771 (4.54)

we reject the null hypothesis and accept the alternative hypothesis which means that

the specific independent variable affect the dependent variable.
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Nondimensionalized data using L2-norm for the stretch ratio 1.5 of the tissue specimen.

Dependent variable

Independent variables

) D T H, H, H,
VM - Vave t,=10 t,=400 t,=1000
0.59127 0.00522 | 0.23681 | 0.17400 | 0.17317
0.40969 0.03058 | 0.23843 | 0.21044 | 0.18805
0.42301 0.05819 | 0.23629 | 0.23180 | 0.20450
-0.00652 0.10107 | 0.24366 | 0.24913 | 0.23814
0.07538 0.12415 | 0.24493 | 0.24711 | 0.24149
0.07538 0.13033 | 0.24332 | 0.24919 | 0.24106
-0.06851 0.15344 | 0.23992 | 0.25104 | 0.24485
-0.08622 0.18769 | 0.24807 | 0.25448 | 0.25534

1.5 -0.29875 0.22091 | 0.24925 | 0.25802 | 0.25903
-0.09288 0.23598 | 0.24257 | 0.24759 | 0.25593
-0.12164 0.24081 | 0.24362 | 0.24791 | 0.25818
-0.03089 0.30179 | 0.24281 | 0.25441 | 0.25720
-0.12384 0.31072 | 0.24424 | 0.24115| 0.25913
-0.13269 0.31330 | 0.24072 | 0.24176 | 0.26056
-0.14374 0.32581 | 0.24545 | 0.24998 | 0.25473
-0.19688 0.40089 | 0.24119 | 0.24517 | 0.25083
-0.27218 0.42325 | 0.24143 | 0.25582 | 0.25747

Correlation Coefficients -0.83 -0.69 -0.85 -0.95

The result of multivariable linear regression analysis for the stretch ratio 1.5 of

the tissue specimen using entire independent variables 7, H, and H, is shown in the

table 4.25.

Table 4.25

Result of multivariable linear regression analysis for stretch ratio 1.5 of tissue
specimen with entire independent variables 7, H, and H, .

A

b, Se t-value R?
g 5.85 1.65 3.55
T 7100 0.20 5.02
H, -17.48 8.15 2.15 0.85
H -5.75 2.63 2.18
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For the stretch ratio 1.5 of the tissue, the deviation is caused by most of the

independent variables, say, T, H 0 and H - The most effective independent variable
is H, , that is, the deviation is mostly caused by the rate of stretch. The second
effective factor that causes the deviation is H s and lastly, the time 7. Thus, the final
regression model for the stretch ratio 1.5 can be expressed as

D,s=585-T-1748H, —5.75H, (4.55)

Their ability to explain the deviation is 85 %. The rest 15 % can’t be explained by this
model.

Stretch Ratio 1.7: The nondimensionalized data for the stretch ratio 1.7 of the
tissue specimen is shown in the table 4.26. The dependent variable is deviation D and

the independent variables are time 7, rate-related stretch history function #/, , and
long-time stretch history function H, . Since the correlation coefficient between the
H, and H, is high as 0.8 and the correlation coefficient between the T and H, is
reasonably high as 0.75, we have performed the error analysis based on the data T, H#,_,

and H, . In this case, since the number of sample for the stretch ratiol.7 is 13, the

degree-of-freedom (DOF) for ¢ is n-k-1 = 13-3-1 = 9. Thus, the critical ¢ value for the

stretch ratio 1.7 is ¢ fe00s:9) = 1.833 for two-tailed test.

c(a/2;n—k-1) =

Thus if we have a #-value that satisfies the following condition as

tya|>1.833 (4.56)

we reject the null hypothesis and accept the alternative hypothesis which means that

the specific independent variable affect the dependent variable.
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Nondimensionalized data using L2-norm for the stretch ratio 1.7 of the tissue specimen.

Dependent variable

Independent variables

A Deviation Time Stretch History H(1)
VM - Vave t,=10 t,=400 t,=1000
0.58510 0.07633 | 0.27336 | 0.26019 | 0.23790
-0.04543 0.10397 | 0.27762 | 0.26958 | 0.26026
0.44572 0.12819 | 0.27146 | 0.26405 | 0.26829
-0.15497 0.16118 | 0.27751 | 0.26964 | 0.27105
-0.08525 0.17447 | 0.28265 | 0.29287 | 0.28050
0.22335 0.18705 | 0.27387 | 0.28356 | 0.28149

1.7 0.24496 0.22963 | 0.27382 | 0.27185 | 0.27893
-0.15162 0.26977 | 0.28289 | 0.28759 | 0.28853
-0.02222 0.31068 | 0.27549 | 0.28479 | 0.28913
-0.15826 0.37497 | 0.27912 | 0.27842 | 0.28835
-0.24788 0.38144 | 0.28008 | 0.28415 | 0.29029
-0.26615 0.41271 | 0.27502 | 0.27453 | 0.28139
-0.36735 0.44392 | 0.28235 | 0.28228 | 0.28472

Correlation Coefficients -0.74 -0.75 -0.60 -0.68

The result of multivariable linear regression analysis for the stretch ratio 1.7 of

the tissue specimen using entire independent variables 7, H, and H, is shown in the

table 4.27.

Table 4.27

Result of multivariable linear regression analysis for stretch ratio 1.7 of tissue
specimen with entire independent variables 7, H, and H, .

,Bi Se t-value R?
aQ 11.28 2.95 3.82
T 21,05 0.35 13.03
H, 47.23 13.40 3.52 0.73
H, 7.42 5.95 1.25
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According to the #-value, the effective independent variables that are significant are 7

and H, . So we have carried out a regression analysis again with the 7’and H, . Since

the number of independent variables are reduced to 2, ¢, ., ;1) =Ze0o0s10) = 1-812,

we should have a new constraint as

ty | >1.812 (4.57)
to reject the null hypothesis and accept the alternative hypothesis. The result of
multivariable linear regression analysis for stretch ratio 1.7 of the tissue specimen with

independent variables T'and H, is shown in the table 4.28.

Table 4.28
Result of multivariable linear regression analysis for stretch ratio 1.7 of tissue
specimen with independent variables 7'and H, .

ﬁ; Se t-value R?
a 10.42 2.96 3.52
T -0.97 0.35 -2.77 0.71
th -36.77 10.76 -3.42

Thus the regression model for the stretch ratio 1.7 of the tissue can be expressed as

A

D,, =1042-097T -36.77H (4.58)
The regression result says that the ability of the independent variables 7 and H, to

explain the deviation is 71 %. The rest 29 % can’t be explained by this model. In
addition, we found that the optimal independent variables that can expect the

dependent variable D are T"and H, . Note again that this doesn’t mean that the long-
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time stretch history doesn’t give rise to the deviation from the hyperelasticity; it is just

insignificant relative to the significant independent variables 7" and H, . Note that the

sign of the partial regression coefficient for the H, is exactly the opposite of the

stretch-rate.
Stretch Ratio 1.9: The nondimensionalized data for the stretch ratio 1.9 of the
tissue specimen is shown in the table 4.29. The dependent variable is deviation D and

the independent variables are time 7, rate-related stretch history function H - and
long-time stretch history function /, . Because the correlation coefficient between the
Tand H, is very high as 0.84 and also the correlation coefficient between the /, and
H, is quite high as 0.93, we considered the independent variables as 7, H, , and H,

only for the multiple linear regression analysis. Since the number of sample for the

stretch ratiol.9 is 13, the degree-of-freedom (DOF) for ¢ is n-k-1 = 13-3-1 = 9. Thus,

the critical ¢ value for the stretch ratio 1.9 is ¢ Le00s:0) = 1.833 (for two-

(o) Ln—k-1)
tailed test).

Thus if we have a t-value that satisfies the following condition as

| >1.833 (4.59)
we reject the null hypothesis and accept the alternative hypothesis which means that
the specific independent variable affect the dependent variable. The result of
multivariable linear regression analysis for the stretch ratio 1.9 of the tissue specimen

using the entire independent variables 7, H, and /, is shown in the table 4.30.
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Nondimensionalized data using L2-norm for the stretch ratio 1.9 of the tissue specimen.

Dependent variable Independent variables

A Deviation Time Stretch History H(1)
VM - Vavg t,=10 t,=400 t,=1000
0.74432 0.01796 | 0.27397 | 0.21749 0.20515
0.27814 0.03830 | 0.27933 | 0.25831 0.22181
0.21141 0.09454 | 0.27905 | 0.25817 0.25724
0.04052 0.14967 | 0.27966 | 0.26689 0.27620
0.06996 0.19328 | 0.27719 | 0.29302 0.28644
0.01380 0.22815 | 0.27702 | 0.28488 0.29130

1.9 -0.03300 0.27366 | 0.27652 | 0.28690 0.29079
-0.16178 0.28032 | 0.27732 | 0.29416 0.29321
-0.13883 0.30630 | 0.27724 | 0.29378 0.29469
-0.32799 0.35016 | 0.28041 | 0.28399 0.29240
-0.20390 0.38671 | 0.27541 | 0.29031 0.29309
-0.25583 0.41085 | 0.27734 | 0.28087 0.29109
-0.23681 0.43500 | 0.27500 | 0.28657 0.29300

Correlation Coefficients -0.90 -0.23 -0.88 -0.91

Table 4.30

Result of multivariable linear regression analysis for stretch ratio 1.9 of rubber
specimen with entire independent variables 7, H, and H, .

,Bi Se t-value R?
a 13.56 1.91 7.10
T 1158 0.09 1672
H, 4476 6.46 .6.93 0.98
H, 277 0.94 2.96

For the stretch level 1.9, the deviation is quite depend on the whole independent

variables such as 7, H b and H - Since the R? is very high as 98 %, the model is

very good to predict the deviation for the stretch level 1.9 and this model can explain
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most of the deviation as 98 %. The rest 2 % can’t be explained by this model. The final

regression model for the stretch ratio 1.9 can be expressed as

Dy, =13.56-1.58T —44.76H, —2.77H, (4.60)

The most significant factor that causes the deviation from the hyperelasticity is the
rate-related stretch history which is directly related to the rate of stretch. The second

effective factor is the long-time stretch history, and lastly the time.

Nonsense of Correlation Coefficients
We have checked the correlation coefficients between the deviation D

(dependent variable) and independent variables 7, H, , H, , and H, . The summary of

the correlation coefficients for each stretch ratio for the tissue is shown in the table

4.31.

Table 4.31
The summary of correlation coefficients between the deviation D and the time 7, rate-
related stretch history /, , long-time stretch history /, , and the new stretch history

[

H, .
Correlation Coefficients: D between
/1 H’z Htl Hfo
T
t,=10 t,=400 t,=400
1.1 -0.96 0.06 -0.59 -0.70
1.3 -0.93 -0.06 -0.79 -0.85
1.5 -0.83 -0.69 -0.85 -0.95
1.7 -0.74 -0.75 -0.60 -0.68
1.9 -0.90 -0.23 -0.88 -0.91
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Indisputably, if the correlation coefficient between a certain dependent variable and
independent variable is high, then we naturally know there is high relationship between
them. But again, it merely tells a relationship between the two variables. The
correlation coefficient just shows whether there is a relationship between one variable
and the other or not. It is a relationship between only two variables. Since we have too
many variables and scattering in the data, the assessment and ordering of the
correlation coefficients are not meaningful. If we compare the results obtained by the
multiple linear regression analysis and the correlation coefficients shown in the table
4.31, they don’t have dependency between them. Again, it says that, in this kind of

study, the correlation coefficient is meaningless.
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CHAPTER V

PREDICTABILITY

Basic Principle

The test of the predictability should be involved in the final step for any
regression analysis to evaluate how well the derived regression model forecasts the
intermediate or future values. The best way to accomplish this work is to compare the
predicted result to the data that were not used for the formulation of the regression
models. We have checked the predictive capability by comparing the unused
(deviation) data in the randomized stretch-controlled protocol of the rubber and tissue
to the predicted deviation obtained by the regression models. The following equation

(5.1) has been used for the interval prediction.

A A

D D Lewiom—i-1) " Sy (5.1)
where ZA)fC is an interval forecasting critical value for the ﬁf. with a 100(1-a)

confidence, D 1s the predicted value on a certain point, ¢, ,,.,, ., is a critical  value
with a degree of freedom n-k-1, sy is a standard deviation which is consist of the
variance of e; and the variance of ﬁi . It can be shown as

= JVar(e,)

\/Var(e )+ Var(D )
= (s, +Var(D,) (5.2)

Z(D _ } +Var(l§i)

n—k-1
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Rubber

Stretch Ratio 1.1: For A = 1.1 of rubber specimen, we have ¢, ,,., , ,= 1.761,

where a=0.1, n =17, k=2 (for T'and H, ). We used the regression model for A = 1.1

which is D, =6.66 —1.40T —26.37H , to obtain the [)f which is a point forecasting
value. By using the equation (5.2), we got s,= 0.02906 and ¢,,,,., , -5, = 0.05117 for

A = 1.1 of the rubber specimen. The table 5.1 shows the unused data for the stretch
ratio 1.1 of the rubber specimen. It also shows the time 7 and rate-related stretch

history /, that mainly affect the deviation from the hyperelasticity and inelastic

A

deviation D, , point forecasting lA)f and prediction deviation D, — D .

We have redefined the deviation from the hyperelasticity as inelastic deviation
which is, as we have used above, the difference between the measured (by force
transducer) and averaged force. If the rubber specimen was truly elastic, all the
measurements would be equal to the average so that the inelastic deviation would be

zero. To check if we missed any variables for the prediction, we have newly defined

the D, —lA)f as prediction deviation which 1s difference between the observed

deviation D; and the point forecasting lA)f. Although we have found that the inelastic

deviation varies systematically and quantified it, the models that we have derived can
never be perfect; there could be any missed variables. The question is “Is the prediction

deviation random or systematic?”’.
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Table 5.1
Unused data for the stretch ratio 1.1 of the rubber specimen. It shows the time 7 and

rate-related stretch history A, that mainly affect the deviation from the hyperelasticity

and inelastic deviation D, , point forecasting D , and prediction deviation D, — D Iz

T H, D, D, D,-D,

A unused - -

[sec] t,=10 Vit - Vavg[VOlt] [volt] [volt]
13.6 1.06411 0.18645 0.07771 0.10874
146.9 1.08978 0.09457 0.05507 0.03950
297.9 1.12984 0.03239 0.02064 0.01175
300.7 1.11385 0.03739 0.03339 0.00401
307.1 1.10001 0.04614 0.04436 0.00178
3243 1.09918 0.06051 0.04475 0.01576
612.2 1.11363 0.02458 0.02864 -0.00406
697.3 1.10144 0.05770 0.03705 0.02065
989.9 1.13942 0.00207 0.00205 0.00003
1.1 1011.2 | 1.08977 0.04301 0.04143 0.00158
1409.8 | 1.09719 0.02364 0.02920 -0.00556
1473.8 | 1.10285 0.03864 0.02366 0.01498
2161.9 1.1065 -0.01136 0.00987 -0.02123
23159 | 1.10143 -0.00511 0.01149 -0.01660
2669.0 | 1.09958 -0.00199 0.00740 -0.00938
3536.5 | 1.15257 -0.05699 -0.04870 -0.00829
3863.7 1.1079 -0.02761 -0.01813 -0.00948
4849.7 1.139 -0.05136 -0.05858 0.00723
49914 | 1.13732 -0.04386 -0.05948 0.01562
5600.0 | 1.08945 -0.04417 -0.03079 -0.01337

According to the result shown in the table 5.1 and the figure 5.1, the prediction
deviation looks quite random because the trends of the observed deviation and
predicted deviation are almost the same. This tells what we have missed is random and
we don’t perfectly predict every point. Those points are off in a random way. If those
points are off in a systematic way, we would have possibly missed a certain variable
that gives rise to the inelastic deviation. The prediction deviation is shown in the figure
5.2. All points for the stretch ratio of the rubber specimen are near zero but they are off

in a random way.
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Fig.5.1. It shows the inelastic deviation D; obtained from the unused data and point
forecasting ﬁf using the regression model. For A = 1.1 of the rubber specimen,

iy S, = 0.05117.
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Fig.5.2. It shows the prediction deviation for the stretch ratio 1.1 of the rubber
specimen. Note that all points are gathered at near zero but off in a random way.
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Stretch Ratio 1.3: For A = 1.3 of rubber specimen, we have ¢, ,,., , ,= 1.860,

where ¢ =0.1, n =11, k=2 (for Tand H, ). We used the regression model for A = 1.3

which is D, ; =10.74 —2.00T —33.74H , to obtain the lA)f which is a point forecasting
value. We have s, = 0.03551 and ¢,,,,,, 4, -5, = 0.06605 for A = 1.3 of the rubber

specimen. The table 5.2 shows the unused data for the stretch ratio 1.3 of the rubber

specimen. It also shows the time 7" and rate-related stretch history #, that mainly
affect the deviation from the hyperelasticity and inelastic deviation D, , point

forecasting value 15_/ and prediction deviation D, —lA)f. We have adopted a new

terminology as inelastic deviation which is, as we have used in previous chapters, the

difference between the measured (by force transducer) and averaged force. To check if
we missed any variables for the prediction, we have used the D, -D , as prediction
deviation which is difference between the observed deviation D; and the point
forecasting D - Since there is no perfect regression model to predict and there could be

a certain variable that we would have missed, we had to look at the prediction
deviation to see if it is random or systematic. According to the result shown in the table
5.2 and the figure 5.3, the prediction deviation looks quite random because the trends
of the observed deviation and predicted deviation are almost the same. This tells what
we have missed is random and we don’t perfectly predict every point. If those points
are off in a systematic way, we would have possibly missed a certain variable. The
prediction deviation is shown in the figure 5.4. All points for the stretch ratio of the

rubber specimen are near zero but they are off in a random way.
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Unused data for the stretch ratio 1.3 of the rubber specimen. It shows the time 7 and
rate-related stretch history A, that mainly affect the deviation from the hyperelasticity

and inelastic deviation D,, point forecasting value D , and prediction deviation D, — D Iz

T H, D, D, -D,
i_unused -
[sec] t,=10 Vit - Vag[VOIL] [volt]
40.8 1.26413 0.17312 0.10183
99.5 1.36032 0.07531 0.01561
169.0 1.21431 0.14156 0.14356
275.2 1.41162 0.01437 -0.03303
362.3 1.24918 0.11062 0.10914
731.1 1.23324 0.11094 0.11644
966.0 1.38238 0.00312 -0.01990
1059.4 1.27895 0.08156 0.06993
1094.4 1.30153 0.06719 0.04929
1353.5 1.35634 -0.01438 -0.00400
1494.7 1.21026 0.09312 0.12269
1733.8 1.3552 -0.00907 -0.01000
1794.7 1.20368 0.07250 0.12298
2125.6 1.37257 -0.03563 -0.03261
2189.0 1.2253 0.05937 0.09657
2281.1 1.38594 -0.02250 -0.04731
2336.3 1.20586 0.06562 0.11106
2617.7 1.36514 -0.02813 -0.03511
1.3 2696.8 1.22554 0.05968 0.08699
2965.2 1.31938 -0.02469 -0.00101
3307.1 1.29023 -0.00813 0.01848
3630.8 1.30153 0.03000 0.00251
3638.9 1.2998 0.02750 0.00389
3834.3 1.40472 -0.05157 -0.09258
3893.2 1.23404 0.03906 0.05740
4169.5 1.30037 -0.01563 -0.00641
4373.2 1.39515 -0.05438 -0.09405
4426.2 1.21825 0.03625 0.06154
4626.2 1.31702 -0.03282 -0.02957
4827.6 1.40265 -0.05531 -0.10907
4881.8 1.21903 0.03125 0.05245
4967.9 1.39037 -0.04313 -0.10079
5019.8 1.20907 0.03281 0.05872
5147.7 1.33891 -0.03844 -0.05856
5171.7 1.28437 -0.01531 -0.01073
54474 1.30282 -0.03844 -0.03215
5555.9 1.36397 -0.04969 -0.08827
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Fig.5.3. It shows the inelastic deviation D; obtained from the unused data and point
forecasting lA)f using the regression model. For A = 1.3 of the rubber specimen,

brarsnisy -5 = 0.06605.
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Fig.5.4. It shows the prediction deviation for the stretch ratio 1.3 of the rubber
specimen. Note that all points are gathered at near zero but off in a random way.
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Stretch Ratio 1.5: For A = 1.5 of rubber specimen, we have ¢, ,,., , ,= 1.761,

where = 0.1, n =17, k=2 (for H, and H, ). We used the regression model for A =

1.5 which is D, = 7.41-19.89H, —10.65H, to obtain the lA)f which is a point
forecasting value. We have s,=0.04673 and ¢, 5., 4 1, -5, = 0.08230 for A = 1.5 of the

rubber specimen. The table 5.3 shows the unused data for the stretch ratio 1.5 of the

rubber specimen. It also shows the time 7, rate-related stretch history #, , and long-
time stretch history #, . The major factors for the stretch ratio 1.5 of the rubber that

affect the deviation from the hyperelasticity are rate-related stretch history H, and
long-time stretch history H, . The inelastic deviation D,, point forecasting value D P

and prediction deviation D, — D , are also shown in the table. We have adopted a new

terminology as inelastic deviation which is, as we have used in previous chapters, the

difference between the measured (by force transducer) and averaged force. To check if
we missed any variables for the prediction, we have used the D, —lA)f as prediction
deviation which is difference between the observed deviation D; and the point
forecasting D /- Since there is no perfect regression model to predict and there could be

a certain variable that we would have missed, we had to look at the prediction
deviation to see if it is random or systematic. According to the result shown in the table
5.3 and the figure 5.5, the prediction deviation looks quite random because the trends
of the observed deviation and predicted deviation are almost the same. This tells what
we have missed is random and we don’t perfectly predict every point. If those points

are off in a systematic way, we would have possibly missed a certain variable. The



prediction deviation is shown in the figure 5.6. All points for the stretch ratio of the

rubber specimen are near zero but they are off in a random way.

Table 5.3

Unused data for the stretch ratio 1.5 of the rubber specimen. It shows the time 7, rate-
related stretch history A, and long-time stretch history #, . The inelastic deviation D,,

point forecasting value 15_/ and prediction deviation D, — lA)f

are also shown.

A

A

; T H, H, D; D, D,-D,
= T see]l | =10 | 03=400 | v- vagvol] | [vol] [volt]
73.0 | 1.46487 | 1.04371 0.11241 0.14521 | -0.03280
182.6 | 1.39386 | 1.09219 0.11772 0.16969 | -0.05197
2627 | 1.62443 | 120121 | -0.00103 0.00882 | -0.00985
5172 | 157725 | 141416 | -0.01728 | -0.03012 | 0.01284
7754 | 151383 | 1.38047 0.05022 0.01526 0.03496
883.6 | 143266 | 1.36893 0.05897 0.06370 | -0.00473
9494 | 1.58119 | 1.41597 0.00179 20.03285 | 0.03464
1117.1 | 1.41748 | 1.30227 0.05991 0.09246 | -0.03255
1317.0 | 1.50673 | 1.49416 | -0.02103 | -0.01553 | -0.00550
15092 | 1.40302 | 1.40458 0.06710 0.06921 | -0.00211
16712 | 149463 | 1.49856 | -0.00197 | -0.01018 | 0.00821
18063 | 1.37534 | 1.3959 0.05116 0.08718 | -0.03602
1978.6 | 1.53097 | 1.49202 | -0.03697 | -0.02829 | -0.00868
21072 | 157193 | 156377 | -0.04415 | -0.07287 | 0.02872
22065 | 1421 | 151153 0.02928 0.02660 0.00268
LS 2648 | 158104 | 152559 | -0.02728 | -0.06625 | 0.03897
2348.0 | 137787 | 1.52318 0.03835 0.04691 | -0.00856
25759 | 1.48769 | 148314 | -0.01790 | -0.00163 | -0.01627
2590.6 | 1.50916 | 147753 | -0.02071 | -0.01180 | -0.00891
27145 | 14225 | 1.45058 0.03272 0.04439 | -0.01167
28978 | 1.48558 | 1.53595 | -0.03540 | -0.01659 | -0.01881
29225 | 151815 | 1.52018 | -0.03571 | -0.02980 | -0.00591
3151.0 | 1.49865 | 148718 | -0.01446 | -0.00893 | -0.00553
32462 | 155972 | 1.56096 | -0.04384 | -0.06525 | 0.02141
33315 | 14243 | 151916 0.00803 0.02244 | -0.01441
36733 | 1.44308 | 1.51717 0.01616 0.01266 0.00350
38214 | 1.61723 | 1.56414 | -0.06322 | -0.09805 | 0.03483
3923.0 | 1.47094 | 1.53235 0.00554 20.00739 | 0.01293
4007.1 | 1.47982 | 1.47094 | -0.00665 0.00645 | -0.01310
41049 | 1.50881 | 1.46627 | -0.01603 | -0.00816 | -0.00787
42133 | 147016 | 1.49475 | -0.00165 0.00452 | -0.00617




Table 5.3 continued

185

A

T H, H, D, D D -D
/1 unused 2 ! A i A
[sec] t,=10 1,=400 | vy - Vay[volt] [volt] [volt]
4358.4 | 1.60887 1.48455 -0.06196 -0.06911 0.00715
44421 | 1.41232 1.47242 0.01116 0.04335 -0.03219
4588.2 | 1.55532 1.52805 -0.05447 -0.05277 -0.00170
4726.3 | 1.42957 1.4964 0.00303 0.02648 -0.02345
4814.4 | 1.61745 1.54292 -0.06728 -0.09169 0.02441
15 4898.3 | 1.41618 1.47224 0.00866 0.04127 -0.03261
' 4952.7 | 1.58455 1.48444 -0.04322 -0.05562 0.01240
5032.5 | 1.38449 1.47171 0.01679 0.05896 -0.04217
5121.2 1.5719 1.47999 -0.06228 -0.04726 -0.01502
5417.1 | 1.59402 1.54177 -0.07259 -0.07837 0.00578
5515.3 | 1.49255 1.53434 -0.02540 -0.01996 -0.00544
5524.8 | 1.50027 1.53476 -0.02697 -0.02436 -0.00261
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Fig.5.5. It shows the inelastic deviation D; obtained from the unused data and point
forecasting lA)f using the regression model. For A = 1.5 of the rubber specimen,

toarmsry -5 = 0.08230.

0.06

=

S

I
!
o

=

=

S}
!
o

° 1000 2G00 ° 23000 4000 5000 6000
0.02 t s

Prediction dev[volt]
=]
=
(e
o
O
o

H0.04 fo

-0.06

Time[sec]

Fig.5.6. It shows the prediction deviation for the stretch ratio 1.5 of the rubber
specimen. Note that all points are gathered at near zero but off in a random way.
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Stretch Ratio 1.7: For A = 1.7 of rubber specimen, we have ¢, ,,., , ,= 1.796,

where ¢=0.1,n=13, k=1 (for H, ). We used the regression model for A = 1.7 which

is D,, =15.06—54.41H , to obtain the lA)f which is a point forecasting value. We have
sy=0.01790 and ¢,,,,., 1, - S, = 0.03215 for A = 1.7 of the rubber specimen. The table

5.4 shows the unused data for the stretch ratio 1.7 of the rubber specimen. It also shows

the time 7" and rate-related stretch history #, that mainly affect the deviation from the
hyperelasticity and inelastic deviation D,, point forecasting value D  and prediction

deviation D, — D - We have adopted a new terminology as inelastic deviation which is,

as we have used in previous chapters, the difference between the measured (by force

transducer) and averaged force. To check if we missed any variables for the prediction,

we have used the D, —lA)f as prediction deviation which is difference between the

observed deviation D; and the point forecasting D - Since there is no perfect regression

model to predict and there could be a certain variable that we would have missed, we
had to look at the prediction deviation to see if it is random or systematic. According to
the result shown in the table 5.4 and the figure 5.7, the prediction deviation looks quite
random because the trends of the observed deviation and predicted deviation are almost
the same. This tells what we are missing is random and we don’t perfectly predict
every point. If those points are off in a systematic way, we would have possibly missed
a certain variable. The prediction deviation is shown in the figure 5.8. All points for the

stretch ratio of the rubber specimen are near zero but they are off in a random way.
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Unused data for the stretch ratio 1.7 of the rubber specimen. It shows the time 7 and
rate-related stretch history A, that mainly affect the deviation from the hyperelasticity

and inelastic deviation D,, point forecasting value D , and prediction deviation D, — D Iz

A

) T H, D; D, D,-D,
=" T sec] | =10 | var- vagvolt) | [vold] [volt]

197.8 | 1.60838 |  0.10493 0.05706 | 0.04787
251.1 | 179576 |  0.01430 | -0.08599 | 0.10029
4294 | 1.64134 | 0.05961 0.03190 | 0.02771
499.4 | 1.77385 | -0.00320 | -0.06926 | 0.06606
9103 | 1.66142 | 0.04899 0.01657 | 0.03242
9278 | 17122 | 0.03180 | -0.02220 | 0.05400
1132.6 | 1.61229 | 0.05774 0.05408 | 0.00366
1221.1 | 1.72378 | -0.01070 | -0.03104 | 0.02034
12614 | 1.71154 | -0.00882 | -0.02169 | 0.01287
15424 | 1.70843 | 0.02680 | -0.01932 | 0.04612
18185 | 1.58761 | 0.04368 0.07292 | -0.02924
18972 | 1.72034 | -0.01695 | -0.02841 | 0.01146
18973 | 1.7199 | -0.01757 | -0.02807 | 0.01051
19382 | 1.70649 | -0.01570 | -0.01784 | 0.00214
20432 | 1.67517 | -0.00320 | 0.00607 | -0.00927
22417 | 1.70034 | 0.00805 | -0.01314 | 0.02119
2361.0 | 1.59056 | 0.03305 0.07066 | -0.03761
1.7 724164 | 176288 | -0.02601 | -0.06089 | 0.03488
2853.4 | 177011 | -0.03882 | -0.06641 | 0.02759
3195.1 | 1.66976 | -0.00132 | 0.01020 | -0.01152
3349.1 | 1.6215 | 0.00461 0.04704 | -0.04243
3480.0 | 1.7897 | -0.05038 | -0.08136 | 0.03098
3808.8 | 1.79063 | -0.04976 | -0.08207 | 0.03231
42845 | 1.6278 |  0.00368 0.04224 | -0.03855
43452 | 1.78685 | -0.04663 | -0.07919 | 0.03256
44672 | 1.6681 | -0.00382 | 0.01147 | -0.01529
45318 | 1.69439 | -0.02289 | -0.00860 | -0.01429
47454 | 1.62806 | -0.00226 | 0.04204 | -0.04430
4801.8 | 1.79074 | -0.04663 | -0.08216 | 0.03553
49297 | 1.68925 | -0.01038 | -0.00468 | -0.00570
5045.6 | 1.59771 | 0.00712 0.06521 | -0.05809
5102.1 | 1.76869 | -0.04601 | -0.06532 | 0.01931
5273.6 | 1.67274 | -0.01476 | 0.00793 | -0.02269
53280 | 1.68212 | -0.02820 | 0.00077 | -0.02897
5402.4 | 1.78701 | -0.05789 | -0.07931 | 0.02142
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Fig.5.7. Tt shows the inelastic deviation D; obtained from the unused data and point
forecasting ﬁf using the regression model. For A = 1.7 of the rubber specimen,

lowrnsy S, = 0.03215.
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Fig.5.8. It shows the prediction deviation for the stretch ratio 1.7 of the rubber
specimen. Note that all points are gathered at near zero but off in a random way.
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Stretch Ratio 1.9: For A = 1.9 of rubber specimen, we have ¢, ,,., , ,= 1.812,

where ¢ =0.1, n =13, k=1 (for Tand H, ). We used the regression model for A = 1.9

which is D,, =2.14—-0.95T —6.94H, to obtain the [)f which is a point forecasting
value. We have sy = 0.0253 and ¢,,,,,, ;,, s, = 0.04584 for A = 1.9 of the rubber

specimen. The table 5.5 shows the unused data for the stretch ratio 1.9 of the rubber

specimen. It also shows the time 7" and long-time stretch history /, that mainly affect
the deviation from the hyperelasticity and inelastic deviation D,, point forecasting

value ﬁf and prediction deviation D, -D ;- We have adopted a new terminology as

inelastic deviation which is, as we have used in previous chapters, the difference

between the measured (by force transducer) and averaged torce. To check if we missed

any variables for the prediction, we have used the D, -D , as prediction deviation

which is difference between the observed deviation D; and the point forecastingf)f.

Since there is no perfect regression model to predict and there could be a certain
variable that we would have missed, we had to look at the prediction deviation to see if
it is random or systematic. According to the result shown in the table 5.5 and the figure
5.9, the prediction deviation looks quite random because the trends of the observed
deviation and predicted deviation are almost the same. This tells what we are missing
is random and we don’t perfectly predict every point. If those points are off in a
systematic way, we would have possibly missed a certain variable. The prediction
deviation is shown in the figure 5.10. All points for the stretch ratio of the rubber

specimen are near zero but they are off in a random way.
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Unused data for the stretch ratio 1.9 of the rubber specimen. It shows the time 7 and
long-time stretch history H, . It also shows the inelastic deviation D;, point forecasting

value D , and prediction deviation D, — D Iz

A

T H, D D, D,-D,
A unused - -
[sec] 1, =400 | V- Vay[volt] [volt] [volt]

221.8 | 1.14375 0.06688 0.05871 0.00816
231.5 | 1.16136 0.05469 0.05642 -0.00173
463.5 | 1.34284 0.03750 0.03179 0.00570
473.0 | 1.35842 0.02938 0.02976 -0.00038
1167.4 | 1.35749 0.02500 0.02476 0.00024
1838.4 | 1.39815 0.02625 0.01469 0.01156
1848.3 | 1.40355 0.01500 0.01393 0.00106
2382.4 | 1.54002 0.01032 -0.00723 0.01755
2386.8 | 1.54094 0.00656 -0.00738 0.01394
2817.4 | 1.49814 -0.00968 -0.00515 -0.00454
1.9 28264 | 1.5114 -0.01312 -0.00689 -0.00624
3379.4 | 1.50878 -0.00843 -0.01063 0.00219
3383.4 | 1.50886 -0.01031 -0.01067 0.00035
3461.6 | 1.54695 -0.02968 -0.01605 -0.01363
3467.3 | 1.55062 -0.02875 -0.01656 -0.01220
3782.4 | 1.54495 -0.02062 -0.01816 -0.00246
4310.6 | 1.49177 -0.00906 -0.01533 0.00627
4324.1 | 1.49347 -0.01812 -0.01565 -0.00248
4775.4 | 1.52669 -0.01469 -0.02317 0.00847
5070.0 | 1.47555 -0.01125 -0.01888 0.00762
5371.8 | 1.50703 -0.02687 -0.02507 -0.00180
5381.4 | 1.51279 -0.03187 -0.02587 -0.00600
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Fig.5.9. It shows the inelastic deviation D; obtained from the unused data and point
forecasting ﬁf using the regression model. For A = 1.7 of the rubber specimen,

w5, = 0.04584.
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Fig.5.10. It shows the prediction deviation for the stretch ratio 1.9 of the rubber
specimen. Note that all points are gathered at near zero but off in a random way.
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Tissue

Stretch Ratio 1.1: For A = 1.1 of tissue specimen, we have ¢..,,,., , ,,= 1.753,

where o = 0.1, n = 17, and k = 1 (for 7). We used the regression model for A = 1.1
which is lA)“ =0.34-1.70T to obtain the [)f which is a point forecasting value. We
have s, = 0.0251 and 7,5, 4, -5, = 0.04400 for A = 1.1 of the tissue specimen. The

table 5.6 shows the unused data for the stretch ratio 1.1 of the tissue specimen. It also

shows the time 7' that mainly affects the inelastic deviation D,, point forecasting

value lA)f and prediction deviation D, —15].. We have adopted a new terminology as

inelastic deviation which is, as we have used in previous chapters, the difference

between the measured (by force transducer) and averaged force. To check if we missed

any variables for the prediction, we have used the D, —ﬁf as prediction deviation

which is difference between the observed deviation D; and the point forecasting D Iz

Since there is no perfect regression model to predict and there could be a certain
variable that we would have missed, we had to look at the prediction deviation to see if
it is random or systematic. According to the result shown in the table 5.6 and the figure
5.11, the prediction deviation looks quite random because the trends of the observed
deviation and predicted deviation are almost the same. This tells what we are missing
is random and we don’t perfectly predict every point. Those points are off in a random
way. If those points are off in a systematic way, we would have possibly missed a
certain variable. The prediction deviation is shown in the figure 5.12. All points for the

stretch ratio of the rubber specimen are near zero but they are off in a random way.
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Table 5.6
Unused data for the stretch ratio 1.1 of the tissue specimen. It shows the time 7 which
is the only major factor that gives rise to the inelastic deviation D;. It also shows the

point forecasting value D , and prediction deviation D, — D Iz

i T D D, D, -D,
- [sec] Vit = Vang[VOIL] [volt] [volt]

13.6 0.06910 0.03479 0.03431

146.9 0.03316 0.03291 0.00026

297.9 0.02003 0.03077 -0.01074

300.7 0.02034 0.03073 -0.01039

307.1 0.02222 0.03064 -0.00842

324.3 0.02441 0.03040 -0.00598

612.2 0.02097 0.02633 -0.00535

697.3 0.03035 0.02512 0.00523

989.9 0.01066 0.02098 -0.01032
1.1 1011.2 0.01878 0.02068 -0.00190
1409.8 0.01941 0.01504 0.00437

1473.8 0.02253 0.01414 0.00840

2161.9 0.00441 0.00440 0.00001

2315.9 0.00753 0.00223 0.00531

2669.0 0.01347 -0.00277 0.01624

3536.5 -0.01997 -0.01504 -0.00493

3863.7 -0.01403 -0.01967 0.00564

4849.7 -0.04747 -0.03362 -0.01385
4991.4 -0.04590 -0.03562 -0.01028

5600.0 -0.04934 -0.04423 -0.00511
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Fig.5.11. It shows the inelastic deviation D; obtained from the unused data and point
forecasting ﬁf using the regression model. For A = 1.1 of the tissue specimen,

tC(a/2;n—k—1) ST 0.04400.
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Fig.5.12. It shows the prediction deviation for the stretch ratio 1.1 of the tissue
specimen. Note that all points are gathered at near zero but off in a random way.
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Stretch Ratio 1.3: For A = 1.3 of tissue specimen, we have ¢..,,,., , ,,= 1.833,

where o= 0.1, n =11, and k = 1 (for 7). We used the regression model for A = 1.3
which is 1513 =0.64—-2.29T to obtain the lA)f which is a point forecasting value. We
have s,=0.02617 and ¢, ,,,., s, -5, = 0.04797 for A = 1.3 of the tissue specimen. The

table 5.7 shows the unused data for the stretch ratio 1.3 of the tissue specimen. It also

shows the time 7' that mainly affects the inelastic deviation D,, point forecasting

value lA)f and prediction deviation D, —15].. We have adopted a new terminology as

inelastic deviation which is, as we have used in previous chapters, the difference

between the measured (by force transducer) and averaged force. To check if we missed

any variables for the prediction, we have used the D, —ﬁf as prediction deviation

which is difference between the observed deviation D; and the point forecasting D Iz

Since there is no perfect regression model to predict and there could be a certain
variable that we would have missed, we had to look at the prediction deviation to see if
it is random or systematic. According to the result shown in the table 5.7 and the figure
5.13, the prediction deviation looks quite random because the trends of the observed
deviation and predicted deviation are almost the same. This tells what we are missing
is random and we don’t perfectly predict every point. If those points are off in a
systematic way, we would have possibly missed a certain variable. The prediction
deviation is shown in the figure 5.14. All points for the stretch ratio of the rubber

specimen are near zero but they are off in a random way.
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Unused data for the stretch ratio 1.3 of the tissue specimen. It shows the time 7 which
is the only major factor that gives rise to the inelastic deviation D;. It also shows the

point forecasting value D , and prediction deviation D, — D Iz

A

A

i T D; D, D, -D,
- [sec] Vit - Vavg[ VOIL] [volt] [volt]
40.8 0.09427 0.05045 | 0.04382
99.5 0.04895 0.04958 | -0.00063
169.0 0.06520 0.04855 | 0.01665
362.3 0.05301 0.04569 | 0.00732
731.1 0.05770 0.04022 | 0.01748
1059.4 0.04270 0.03536 | 0.00734
1094.4 0.03864 0.03484 | 0.00380
1353.5 0.01676 0.03100 | -0.01424
1733.8 0.01333 0.02537 | -0.01204
1794.7 0.03395 0.02446 | 0.00949
2125.6 0.00208 0.01956 | -0.01748
2189.0 0.03145 0.01862 | 0.01283
2617.7 0.01270 0.01227 | 0.00043
2696.8 0.03395 0.01110 | 0.02285
1.3 2965.2 -0.01324 0.00712 | -0.02036
3307.1 -0.00324 0.00206 | -0.00530
3630.8 0.01208 -0.00274 | 0.01482
3638.9 0.01052 -0.00286 | 0.01338
3834.3 -0.01449 20.00575 | -0.00874
3893.2 0.01489 -0.00663 | 0.02152
4169.5 -0.00917 0.01072 | 0.00155
4373.2 -0.02198 -0.01374 | -0.00824
4426.2 0.00739 20.01452 | 0.02191
4626.2 -0.01167 0.01749 | 0.00582
4827.6 -0.04199 20.02047 | -0.02152
4967.9 -0.03824 -0.02255 | -0.01569
5147.7 -0.03074 20.02521 | -0.00553
5171.7 -0.02105 20.02557 | 0.00452
5447.4 -0.03011 -0.02965 | -0.00046
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Fig.5.13. It shows the inelastic deviation D; obtained from the unused data and point
forecasting ﬁf using the regression model. For A = 1.3 of the tissue specimen,

tc(a/z;nfkfl) : Sf =0.04797.
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Fig.5.14. It shows the prediction deviation for the stretch ratio 1.3 of the tissue
specimen. Note that all points are gathered at near zero but off in a random way.
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Stretch Ratio 1.5: For A = 1.5 of tissue specimen, we have ¢..,,,., , ,,= 1.771,

where ¢ =0.1,n =17, and k = 3 (for 7, H, and H, ). We used the regression model for

A= 1.5 whichis D,, =5.85-T — 17.48H, —5.75H, to obtain the lA)f which is a point

forecasting value. We have s,=0.03638 and ¢, 5., ;1) * 5, = 0.06443 for L = 1.5 of the

tissue specimen. The table 5.8 shows the unused data for the stretch ratio 1.5 of the

tissue specimen. It also shows the time 7 that mainly affects the inelastic deviation D, ,

point forecasting value D , and prediction deviation D, -D - We have adopted a new

terminology as inelastic deviation which is, as we have used in previous chapters, the

difference between the measured (by force transducer) and averaged force. To check if
we missed any variables for the prediction, we have used the D, —lA)f as prediction
deviation which is difference between the observed deviation D; and the point
forecasting D /- Since there is no perfect regression model to predict and there could be

a certain variable that we would have missed, we had to look at the prediction
deviation to see if it is random or systematic. According to the result shown in the table
5.8 and the figure 5.15, the prediction deviation looks quite random because the trends
of the observed deviation and predicted deviation are almost the same. This tells what
we are missing is random and we don’t perfectly predict every point. If those points are
off in a systematic way, we would have possibly missed a certain variable. The
prediction deviation is shown in the figure 5.16. All points for the stretch ratio of the

rubber specimen are near zero but they are off in a random way.
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Unused data for the stretch ratio 1.5 of the tissue specimen. It shows the time 7', rate-
related stretch history H, , long-time stretch history 4, , and the inelastic deviation D;.

It also shows the point forecasting value lA)f and prediction deviation D, — lA)f .

A

1 r H, H, D; D, D, - lA)f
=" T secl | 6=10 | 6=400 | vir- vaglvolt] | [vol] [volt]
73.0 | 146487 | 1.04371 |  0.08346 0.09913 -0.01567
5172 | 1.57725 | 1.41416 | 0.00190 | -0.00065 |  0.00255
775.4 | 1.51383 | 1.38047 | 0.04783 0.02642 0.02141
883.6 | 1.43266 | 1.36893 | 0.05690 0.05920 | -0.00230
1117.1 | 1.41748 | 1.30227 | 0.04658 0.07175 | -0.02517
1317.0 | 1.50673 | 149416 | -0.00092 | 0.00800 | -0.00892
16712 | 1.49463 | 1.49856 | 0.01190 0.00839 0.00351
18063 | 1.37534 | 1.3959 | 0.03533 0.06843 20.03310
1978.6 | 1.53097 | 149202 | -0.01811 | -0.00855 | -0.00956
21072 | 157193 | 1.56377 | -0.01748 | -0.03600 | 0.01852
22065 | 1421 | 1.51153 | 0.02439 0.03022 | -0.00583
2575.9 | 1.48769 | 1.48314 | 0.00190 0.00345 | -0.00155
2590.6 | 1.50916 | 147753 | 0.00564 | -0.00452 | 0.01016
27145 | 1.4225 | 1.45058 | 0.03065 0.03237 | -0.00172
2897.8 | 1.48558 | 1.53595 | -0.03279 | -0.00634 | -0.02645
5 | 29225 | 151815 | 1.52018 | -0.03217 | -0.01747 | -0.01470
3151.0 | 1.49865 | 1.48718 | -0.01748 | -0.00770 | -0.00978
32462 | 155972 | 1.56096 | -0.02904 | -0.04309 | 0.01405
33315 | 14243 | 151916 | -0.00154 | 0.01569 | -0.01723
36733 | 1.44308 | 151717 | 0.00783 0.00476 0.00307
38214 | 1.61723 | 1.56414 | -0.04310 | -0.07270 | 0.02960
3923.0 | 1.47094 | 1.53235 | -0.00092 | -0.01112 | 0.01020
4007.1 | 1.47982 | 1.47094 | -0.00560 | -0.00726 | 0.00166
41049 | 1.50881 | 1.46627 | -0.01811 | -0.01926 | 0.00115
42133 | 1.47016 | 149475 | -0.01123 | -0.00886 | -0.00237
43584 | 1.60887 | 148455 | -0.04810 | -0.06441 0.01631
44421 | 141232 | 147242 | -0.00404 | 0.01476 | -0.01880
47263 | 142957 | 14964 | -0.02592 | 0.00156 | -0.02748
50325 | 1.38449 | 147171 | -0.02061 0.01957 | -0.04018
5417.1 | 1.59402 | 1.54177 | -0.06560 | -0.07769 | 0.01209
55153 | 1.49255 | 1.53434 | -0.03842 | -0.03726 | -0.00116
55248 | 1.50027 | 1.53476 | -0.04092 | -0.04050 | -0.00042
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Fig.5.15. It shows the inelastic deviation D; obtained from the unused data and point
forecasting ﬁf using the regression model. For A = 1.5 of the tissue specimen,

tC(a/Z;n—k—l) . Sf =0.06443.
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Fig.5.16. It shows the prediction deviation for the stretch ratio 1.5 of the tissue
specimen. Note that all points are gathered at near zero but off in a random way.
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Stretch Ratio 1.7: For A = 1.7 of tissue specimen, we have ¢..,,,., , ,,= 1.812,

where ¢=0.1,n =13, and k=2 (for T’and H, ). We used the regression model for A =

1.7 which is D,, = 10.42-0.97T -36.37H, to obtain the lA)f which is a point
forecasting value. We have s, = 0.041690 and ¢, ,,., ., s, = 0.07554 for L = 1.7 of

the tissue specimen. The table 5.9 shows the unused data for the stretch ratio 1.7 of the

tissue specimen. It also shows the time 7 that mainly affects the inelastic deviation D, ,

point forecasting value D , and prediction deviation D, -D - We have adopted a new

terminology as inelastic deviation which is, as we have used in previous chapters, the

difference between the measured (by force transducer) and averaged force. To check if
we missed any variables for the prediction, we have used the D, —lA)f as prediction
deviation which is difference between the observed deviation D; and the point
forecasting D /- Since there is no perfect regression model to predict and there could be

a certain variable that we would have missed, we had to look at the prediction
deviation to see if it is random or systematic. According to the result shown in the table
5.9 and the figure 5.17, the prediction deviation looks quite random because the trends
of the observed deviation and predicted deviation are almost the same. This tells what
we are missing is random and we don’t perfectly predict every point. If those points are
off in a systematic way, we would have possibly missed a certain variable. The
prediction deviation is shown in the figure 5.18. All points for the stretch ratio of the

rubber specimen are near zero but they are off in a random way.
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Table 5.9
Unused data for the stretch ratio 1.7 of the tissue specimen. It shows the time 7, rate-
related stretch history H, , and the inelastic deviation D;. It also shows the point

ty ?

forecasting value D , and prediction deviation D, — D Iz

. T H, D D, D, -D,
= T el 0=10 | Vi vaglvolt] | [volt] [volt]

197.8 | 1.60838 0.21706 0.12777 | 0.08929

2511 | 1.79576 0.00769 -0.08644 | 0.09413

4294 | 1.64134 0.13175 0.08669 | 0.04506

4994 | 177385 | -0.01669 20.06529 | 0.04860

9103 | 1.66142 0.10987 0.05646 | 0.05341

9278 17122 0.07331 20.00164 | 0.07495

1132.6 | 1.61229 0.12175 0.10901 0.01274

12211 | 172378 | -0.02794 | -0.01932 | -0.00862

12614 | 171154 | -0.01481 20.00599 | -0.00882

15424 | 1.70843 0.05175 20.00675 | 0.05850

18972 | 1.72034 | -0.04262 20.02575 | -0.01687

18973 | 1.7199 -0.04387 20.02525 | -0.01862

L7 | 19382 | 1.70649 | -0.02669 20.01060 | -0.01609

20432 | 1.67517 0.01363 0.02346 | -0.00983

22417 | 1.70034 0.03175 20.00825 | 0.04000

24164 | 176288 | -0.05075 -0.08214 | 0.03139

28534 | 1.77011 -0.08512 20.09707 | 0.01195

33491 | 1.6215 0.01300 0.06459 | -0.05159

43452 | 1.78685 | -0.10825 20.13897 | 0.03072

44672 | 1.6681 -0.02044 | -0.00560 | -0.01484

4531.8 | 1.69439 | -0.04481 -0.03653 | -0.00828

49297 | 1.68925 | -0.05356 20.03677 | -0.01679

5045.6 | 1.59771 20.03356 0.06571 | -0.09927

5102.1 | 1.76869 | -0.11981 20.12988 | 0.01007

5273.6 | 1.67274 | -0.04200 | -0.02323 | -0.01877

53280 | 1.68212 | -0.06169 20.03475 | -0.02694




204

0.25
. ¢ Observed Deviation

020 1T 4 Predicted Deviation ||
0.15

0.10

oo Lk [ b -
005 0-1--[--1000 lj%l)o[ 3000 40001 ~5p004L -~ 6000

0.10 +-J-f--F--

Inelastic dev[volt]

-0.15
-0.20

-0.25

Time[sec]

Fig.5.17. It shows the inelastic deviation D; obtained from the unused data and point
forecasting lA)f using the regression model. For A = 1.7 of the tissue specimen,

tc(a/Z;n—k—l) : Sf =0.07554.
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Fig.5.18. It shows the prediction deviation for the stretch ratio 1.7 of the tissue
specimen. Note that all points are gathered at near zero but off in a random way.
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Stretch Ratio 1.9: For A = 1.9 of tissue specimen, we have ¢..,,,., , ,,= 1.833,

where = 0.1, n =13, and k = 3 (for T, H, _, andH,l ). We used the regression model

for A = 1.9 which is D, , = 13.56 -1.587 —44.76H, —2.77H, to obtain the lA)f which

is a point forecasting value. We have s,=0.56092 and ¢,,,., 4, s, = 1.02816 for A =

1.9 of the tissue specimen. The table 5.10 shows the unused data for the stretch ratio

1.9 of the tissue specimen. It shows the time 7, rate-related stretch history H, , long-

time stretch history A, , and the inelastic deviation D; It also shows the point

[
forecasting value [)f and prediction deviation D, —ﬁ_f. We have adopted a new

terminology as inelastic deviation which is, as we have used in previous chapters, the

difference between the measured (by force transducer) and averaged force. To check if
we missed any variables for the prediction, we have used the D, -D , as prediction
deviation which is difference between the observed deviation D; and the point
forecasting lA)f . Since there is no perfect regression model to predict and there could be

a certain variable that we would have missed, we had to look at the prediction
deviation to see if it is random or systematic. According to the result shown in the table
5.10 and the figure 5.19, the prediction deviation looks quite random because the
trends of the observed deviation and predicted deviation are almost the same. This tells
what we are missing is random and we don’t perfectly predict every point. If those
points are off in a systematic way, we would have possibly missed a certain variable.
The prediction deviation is shown in the figure 5.20. All points for the stretch ratio of

the rubber specimen are near zero but they are off in a random way.
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Unused data for the stretch ratio 1.9 of the tissue specimen. It shows the time 7, rate-
related stretch history /, , long-time stretch history /| , and the inelastic deviation D;.

It also shows the point forecasting value lA)f and prediction deviation D, — D .

A

A

T H, H, D, D, D, -D,
A unused - -
[sec] t,=10 1, =400 | Vi - Vgl volt] [volt] [volt]

221.8 1.86438 | 1.14375 1.54074 1.37910 | 0.16164
231.5 1.90128 | 1.16136 0.97012 0.85491 | 0.11521
463.5 1.87667 | 1.34284 0.97668 0.93068 | 0.04600
473.0 1.90088 1.35842 0.57575 0.58154 | -0.00579
1167.4 1.89889 | 1.35749 0.43887 0.42573 | 0.01314
1838.4 1.85157 | 1.39815 0.60481 0.84797 | -0.24316
1848.3 1.90309 | 1.40355 0.08387 0.13800 | -0.05413
2382.4 1.86404 | 1.54002 0.27699 0.37941 | -0.10242
2386.8 1.8863 1.54094 0.14481 0.07418 | 0.07063
2817.4 1.88516 | 1.49814 0.02856 0.02233 | 0.00623
1.9 2826.4 1.89999 1.5114 -0.16988 -0.19643 | 0.02655
3379.4 1.88173 1.50878 -0.06832 -0.09143 | 0.02311
3383.4 1.89349 | 1.50886 -0.14238 -0.25268 | 0.11030
3461.6 1.88716 | 1.54695 -0.33488 -0.22876 | -0.10612
3467.3 1.89543 1.55062 -0.37426 -0.34686 | -0.02740
3782.4 1.8866 1.54495 -0.28738 -0.30391 | 0.01653
4310.6 1.86266 | 1.49177 -0.25176 -0.05985 | -0.19191
4324.1 1.90822 | 1.49347 -0.67894 -0.68562 | 0.00668
4775.4 1.87418 | 1.52669 -0.42207 -0.37790 | -0.04417
5070.0 1.86994 | 1.47555 -0.45644 -0.34242 | -0.11402
5371.8 1.87136 | 1.50703 -0.49019 -0.47602 | -0.01417
5381.4 1.90098 | 1.51279 -0.77707 -0.88812 | 0.11105
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Fig.5.19. It shows the inelastic deviation D; obtained from the unused data and point
forecasting lA)f using the regression model. For A = 1.9 of the tissue specimen,

w5, = 1.02816.
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Fig.5.20. It shows the prediction deviation for the stretch ratio 1.9 of the tissue
specimen. Note that all points are gathered at near zero but off in a random way.
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CHAPTER VI

DISCUSSION

The hyperelastic models for the rubber-like materials and biotissues are never
exact but they are useful because they guide our directions. The efficacy of a model is
in its providing of insights into the mechanisms underlying the mechanical behavior of
the materials. In lieu of the perfect models, hyperelastic models are currently most
common choice for the high strain materials and the biotissues. In addition, the usage
of those models reduces the trial and error. The reason that we have done the error
analysis for the hyperelastic models of high strain materials and biotissues is that, even
though they are never perfectly correct, those models are comprehensively being used
and regarded as useful in the area of biomechanics and mechanobiology. If we have all
infinite number of higher order terms, then the model would be perfect. But a perfect
model is unfeasible because we can’t have infinite number of data points. Thus, we
need to look for the uncertainty due to the approximation.

Although, so far, many different types of the hyperelastic models for the
rubber-like materials and biotissues have been enthusiastically developed since the
1940’s, it is understood that no model is superior to the other and there is no agreement
for those models. There is an ambiguity for developing the hyperelastic models of high
strain materials as well as of biotissues. Since the error analysis that should been done
in 1940’s has not been tried so far, the ambiguity is being appeared by the lack of
understanding the uncertainty due to the approximation. The approximation is

equivalently the assumption of hyperelasticity of the rubber-like materials and
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biotissues. A model can be regarded as useful only if the uncertainty in the model is
quantified and acceptable for the particular application of the model. If the error
analysis is not executed on it, a model cannot be evaluated.

Even the well-known experts in this area such as Mullins, Mooney, Rivlin,
Y.C. Fung, Holzapfel, Gasser and Ogden (2000), and so on have published their own
models without discussing the uncertainties in them; they didn’t show how their
models deviated from the hyperelastic assumption. They got the results without finding
out what the errors in the experimental data were. It should be noted that no
hyperelastic models have been suggested without doing experiments and none of the
measurement can be made without having some degree of uncertainties. This implies
that it is extremely important to know if there is an error in any model.

The completely randomized stretch controlled protocol is indispensable for the
error analysis. By the assumption that a hyperelastic model for the high strain materials
and biotissues is a function of three variables such as time 7, stretch-rate S and stretch
history H, those three variables should be completely independent of each other so that
they are not coupled or correlated. The randomized stretch- controlled protocol,
therefore, enabled us to look at the three suspicious variables as independent variables.

The error analysis is motivated by the fact that no physical quantity can be
measured without having some degree of uncertainties. Although many different types
of models for hyperelasticity have been developed since the 1940’s, there are very few
models that discussed the errors in the data for the constitutive modeling. Since having
some degree of uncertainties is inevitable especially in experiments on high strain

material and biotissues, validity of the model should be justified by understanding the
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uncertainty in the data. Every constitutive relation in hyperelasticity, therefore, should
be modeled after characterizing the uncertainties in the data. The fundamental
statistical theory called multivariable linear regression analysis has been used to find
the significant factors that cause the deviation from the hyperelasticity as well as to
characterize the uncertainties. We initially suspected that the factors which cause the
deviation from the hyperelasticity are the time, stretch-rate, and stretch history. Finally,
the error analysis has revealed that they underlie the deviation of rubber and tissues
from hyperelasticity as evident in a uniaxial (randomized stretch-controlled protocols)
stretch test. We used the dependent parameter as the deviation D and independent

parameters as the time 7, rate-related stretch history function #, , and stretch
history H, . Although there was one more independent variable for the tissue which
is H, , it hasn’t been employed for the multiple linear regression analysis because there
was high correlation between the time 7' and H, . If we use the independent variables

which have high correlation, then we will have a trouble with the multicollinearity
which causes the increasing of standard error of the partial regression coefficients and
decreasing the goodness-of-fit of the model. Excluding one of the variable that has
high correlation to another never cause the loss of the predictability of the model.

After obtaining the regression models for each stretch level, we have tested the

model with the goodness-of-fit test by using R” called coefficient of determination
and test of significance called #-test. The table 6.1 and the table 6.2 show the

regression models and z-values for each stretch level for rubber and tissue.
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Table 6.1

Multiple linear regression models for each stretch ratio for the rubber specimen. The
critical values of ¢ for two-tailed test and #-values for each independent variable are
also shown.

P Regression Model of Le(at2inbe1)s t-value of 7?
Rubber a=0.1 T H, H,
1.1 ]A):6.66—1.407'—26.37]-42 1.761 -9.08 | -3.95 0.86
1.3 D= 10.74—2.00T—33.74Ht2 1.860 -4.79 | -2.91 0.76
1.5 | D=741-1989H, ~1065H, | 1.761 227 | -422 | 0.80
1.7 D= 15.06—54.41Ht2 1.796 -5.45 0.72
1.9 IA):2.14—().95T—6.94H[I 1.812 -3.56 -2.71 | 0.85
Table 6.2

Multiple linear regression models for each stretch ratio for the tissue specimen. The
critical values of ¢ for two-tailed test and #-values for each independent variable are
also shown.

A Regression Model of Tissue tc(;”i’(”)'.ki” ’ ; t-valll_l[i()f H, R?
1.1 D=034-1.70T 1.753 -13.09 0.92
1.3 | D=064-229T 1.833 -7.72 0.87
1.5 15:5.85—T—17.48H,2 —-5.75H, 1.771 -5.02 | -2.15|-2.18 | 0.85
1.7 IA):1().42—0.971“—36L771—It2 1.812 2,77 | -3.42 0.71
1.9 ]A):13.56—1.587”—44.76]—1,2 —2.77Ht] 1.833 -16.72 | -6.93 | -2.96 | 0.98
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Rubber

If we look at the multiple linear regression models of the rubber summarized in
the table 6.1, not all of the independent variables were employed for the final
regression models. This doesn’t mean that all the unemployed variables were not
giving rise to the deviation from the hyperelasticity. Note again that the ideal
regression model is the model that has the maximum efficiency with the minimum
number of independent variables. The good model should predict the future or
intermediate values as close as possible with the minimum number of the independent
variables.

According to the results shown in the table 6.1, the independent variable H, is

mostly related to the deviation D for most of the stretch ratios. This tells that the rate of
the stretch is highly effective to give rise to the inelastic deviation which is deviation
from the hyperelasticity. If we look at the regression model for stretch ratio 1.1 of the
rubber, the considerable amount of the deviation D is determined by the rate-related

stretch history function H, . It, again, means the stretch-rate is highly related to the

inelastic deviation. For the stretch ratio A = 1.1, we have found that both the

independent variables 7'and H, are optimal and significant variables to anticipate the
inelastic deviation D. Note that the rate-related stretch history function A, is almost

19 times more effective than the time 7 to give rise to the inelastic deviation D.

For the stretch ratio A = 1.3, the rate-related stretch history function H, is

almost 17 times more effective than the time 7 to give rise to the inelastic deviation D.
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For the stretch ratio A = 1.5, the rate-related stretch history function #, is the

most significant factor that induce the inelastic deviation from the hyperelasticity.

There is no 7 term here and H, has involved instead. This is because there is a certain
amount of correlation between the independent variables 7"and /, , and the correlation

coefficient between D and H, is higher than the correlation coefficient between D and

T.
For the stretch ratio A = 1.7, the inelastic deviation D can mostly be determined

by the rate-related stretch history function /, .
The only stretch level where the rate-related stretch history function H, has

nothing to do with the inelastic deviation D is A = 1.9. For the stretch ratio A = 1.9, the
inelastic deviation D is affected by the time T and the long-time stretch history

function H, . The rate-related stretch history function H, is the most significant factor

to give rise to the inelastic deviation from the hyperelasticity for the stretch ranges
from A = 1.1, 1.3, 1.5, and 1.7. But it is not inconsequential to cause the inelastic

deviation for the stretch ratio 1.9.

Tissue

Again, the multiple linear regression models of the tissue didn’t show all of the
independent variables in the final regression models; this doesn’t imply that all the
unemployed variables are not giving rise to the deviation from the hyperelasticity. Note
again that the ideal regression model is the model that has the maximum efficiency

with the minimum number of independent variables. The good model should predict
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the future and intermediate values as close as possible with the minimum number of
the independent variables. According to the results shown in the table 6.2 for the tissue,
the independent variable 7 is entirely related to the inelastic deviation D for the all
selected stretch ratios. This says that the deviation is progressing with time. So there
must be a creep that is a time-dependent deformation for the same amount of stretch.
For the stretch ratios 4 = 1.1 and 1.3, we have found that the independent
variables 7 only is the optimal and significant variable to anticipate the deviation D.

Interestingly, it has been found that the rate-related stretch history function H, is not

significant factor for inducing the inelastic deviation D for the stretch ratios 4 = 1.1
and 1.3. If we compare the regression models for the tissue and rubber for the stretch
ratio A= 1.1 and 1.3, the effects of the time T for the prediction of the D are reasonably
identical. For example, for the rubber, if the 7 is changing one unit, the D is changing
1.4 units, and, for the tissue, if the 7 is changing one unit the D is changing 1.7 units. It
can be understood likewise for the stretch ratio 4 = 1.3. This tells that the time is
almost equally effective to give rise to the inelastic deviation for the rubber and tissue.
For the stretch ratio A = 1.5, the independent variables that induce the inelastic
deviation from the hyperelasticity are the time 7, rate-related stretch history

function H, and long time stretch history H, . The rate-related stretch history function
H,_ is the most significant factor, and secondly, the long-time stretch histories function

H, and lastly, the time 7.
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For the stretch ratio A = 1.7, the inelastic deviation D can mostly be determined

by the rate-related stretch history function //, and the time 7. In addition, the
regression model is dominated by the rate-related stretch history function H, .

For the stretch ratio A = 1.9, the regression model has all the independent

variables such as 7, H, , and H, . This implies that the inelastic deviation D is

t, ?
affected by the all independent variables and is well-determined by them.
From the regression models, for the stretch ranges 1.5, 1.7, and 1.9 of the

tissue, we figured out that the rate-related stretch history function H, is the most

significant factor to give rise to the inelastic deviation from the hyperelasticity.

Finally, we can apply those models as

Ay = Lol + D], (6.1)

where, f'is the force for a specific stretch ratio Ay, and f.., is the average of the forces
corresponding to the Ay. Equivalently, if we use the same notation that we have used

for this study, the equation (5.1) can be written as

+D

Ao

v

(6.2)

Vg

A
It is known that the rubber-like materials have randomly arranged long chain

molecules. Thus, whenever the materials are stretched, there must be rearrangements of
those molecular chains, i.e., the randomly arranged molecular chains get close to the
ordered configuration so that it causes the decrease of entropy. In addition, whenever
the rubber is deformed, it is likely to go back to its original configuration by the force
that is generated by the constant thermal activity of the long chain molecules (L.

Mullins, 1947). The reason that the uncertainties especially in the low stretch ranges
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are important, although the stretch ratio 4 = 1.3 is not a low strain range for none
rubber-like materials, is that the behavior of the rubber in the low strain range is
primarily related to the entropy. The energy storage at the low range of stain is mostly
due to the entropy alone. Thus, in the low stretch range, the strain energy can hardly be
determined by the experimentation. That’s why there has been a deficiency in
understanding of the exclusive nature of the stain energy function for the low strain
ranges of the rubber. At the higher strain ranges, the energy storage is due to both the
entropy and the molecular chemical bonds. That is, if we stretch to the higher strain
ranges, we make the long chain molecules rearranged in more ordered manner as well
as we stretch the chemical bonds, too. Thus, the energy storage is due to both the
entropy and the molecular chemical bonds. (John C. Criscione, 2003).

The test of the predictability has been involved in the final step for any
regression analysis to evaluate how well the derived regression model forecasted the
intermediate or future values. We have checked the predictive capability by comparing
the unused (deviation) data in the randomized stretch-controlled protocol of the rubber
and tissue to the predicted deviation obtained by the regression models.

We have redefined the deviation from the hyperelasticity as inelastic deviation
which is the difference between the measured (by force transducer) and averaged
force. If the testing specimens were truly elastic, all the measurements would be equal

to the average so that the inelastic deviation would be zero. To check if we have
missed any variables for the prediction, we have newly defined the D, —lA)f as
prediction deviation which is difference between the observed deviation D; and the

point forecasting ﬁ_f. Although we have found that the inelastic deviation varies
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systematically and we have quantified it, the models that we have derived can never be
perfect; there could be any missed variables. According to the results, we have realized
that the prediction deviation is random because the trends of the observed deviation
and predicted deviation were almost the same. This tells what we have missed is
random and we don’t perfectly predict every point. Those points are off in a random
way. If those points are off in a systematic way, we would have possibly missed a
certain variable that gives rise to the inelastic deviation. Therefore we could conclude
that we never missed any significant factors that give rise to the inelastic deviation

from the hyperelasticity for the fitting.

Future Works and Limitations

To get more strict predictive capability, the non-randomized cyclic loading tests
are needed. Although it seemed that there are mostly linear relationships between them,
we need a much longer motion protocol to get enough number of data points be to sure
of the linearity. We assumed that there are linear relationships between the dependent

variable D and the independent variables T, /, , and H, to get the regression models.

But, there could be nonlinear relationships between them, and in such case, a nonlinear
regression models should be needed to get more accurate predictability of the deviation
from the hyperelasticity.

For the future works, we suggest the biaxial test of the high strain materials and
biotissues to get a reliable constitutive model which has a specified uncertainty

obtained by multivariable nonlinear regression analysis. It can be much more
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practically useful because most of the high strain material and biotissues are treated as

the membranes and, in fact, they are mostly anisotropic.
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