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ABSTRACT

Compactness of the ∂-Neumann Problem

and Stein Neighborhood Bases. (May 2006)

Sönmez Şahutoğlu, B.S., Middle East Technical University;

M.S., Middle East Technical University

Chair of Advisory Committee: Dr. Emil J. Straube

This dissertation consists of two parts. In the first part we show that for 1 ≤

k ≤ n−1, a complex manifold M of dimension at least k in the boundary of a smooth

bounded pseudoconvex domain Ω in Cn is an obstruction to compactness of the ∂-

Neumann operator on (p, q)-forms for 0 ≤ p ≤ k ≤ n, provided that at some point

of M , the Levi form of bΩ has the maximal possible rank n − 1 − dim(M) (i.e. the

boundary is strictly pseudoconvex in the directions transverse to M). In particular,

an analytic disc is an obstruction to compactness of the ∂-Neumann operator on

(p, 1)-forms, provided that at some point of the disc, the Levi form has only one

vanishing eigenvalue (i.e. the eigenvalue zero has multiplicity one). We also show

that a boundary point where the Levi form has only one vanishing eigenvalue can

be picked up by the plurisubharmonic hull of a set only via an analytic disc in the

boundary.

In the second part we obtain a weaker and quantified version of McNeal’s Prop-

erty (P̃ ) which still implies the existence of a Stein neighborhood basis. Then we give

some applications on domains in C2 with a defining function that is plurisubharmonic

on the boundary.



iv

To my family.



v

ACKNOWLEDGMENTS

I would like to take this opportunity to thank Mijoung Kim, Samangi Munas-
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CHAPTER I

INTRODUCTION

This dissertation concerns compactness of the ∂-Neumann problem and the existence

of Stein neighborhood bases for the closure of smooth bounded pseudoconvex do-

mains.

Pseudoconvex domains are central objects in several complex variables as they are

natural domains of existence of holomorphic functions. It is known that a domain is

pseudoconvex if and only if there exists a holomorphic function that is not extendable

through any boundary point of the domain. It turns out that boundaries of domains

play a leading role in the theory of several complex variables. In particular, it is

important to study the interplay of the complex geometry of Cn with the geometry of

the boundary of a domain. The ∂-Neumann problem, via its boundary conditions, is

very much connected to this interplay. For example, Catlin([12, 13, 14]) showed that a

smooth bounded pseudoconvex domain is of finite type in the sense of D’Angelo([20])

if and only if the ∂-Neumann problem of the domain satisfies a subelliptic estimate.

Global regularity properties of the ∂-Neumann problem are important from the

partial differential equations perspective as well as from that of several complex vari-

ables. The reason is that many function theoretic problems reduce to solving the

∂-Neumann problem with some regularity properties. In the last couple of decades

it has become clear that global regularity is very subtle [9, 16]. Compactness, on the

other hand, is known to be more robust than global regularity. For example, com-

pactness is a local property whereas global regularity is not. Another motivation for

studying the compactness of the ∂-Neumann problem comes from its connections to

The journal model is Transactions of the American Mathematical Society.
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Toeplitz operators ([31] and its references), semiclassical analysis of Schrödinger op-

erators [17, 32], and kernels solving ∂ [35]. Our motivation for studying compactness

of the ∂-Neumann problem, however, comes from its connections to the geometry of

the boundaries of pseudoconvex domains. To be more precise, we would like to know

if it is possible to have an analytic disc (or plurisubharmonic hulls in general) in the

boundary of a smooth bounded pseudoconvex domain when the ∂-Neumann operator

is compact. This problem has been solved by Catlin in C2, but the problem is still

open in general.

Let 0 ≤ p ≤ n, 1 ≤ q ≤ k ≤ n − 1 and Ω be a smooth bounded pseudoconvex

domain whose Levi form of has at most k vanishing eigenvalues. (That is, the Levi

form is of rank at least n − k − 1 at every point on bΩ.) We show that when

the ∂-Neumann operator of Ω on (p, q)-forms is compact there cannot be a complex

manifold of dimension k in bΩ. In particular, if the Levi form has at most one vanishing

eigenvalue and the ∂-Neumann operator of Ω on (p, 1)-forms is compact then there

cannot be an analytic disc in bΩ. Although we believe that the conclusion of the

theorem should not depend on the rank of the Levi form, our methods do not give

a more general result. We also show that in case the Levi form has at most one

vanishing eigenvalue, absence of analytic discs in bΩ is equivalent to K̂∩bΩ = K∩bΩ

for any compact set K ⊂ Ω, where K̂ is the plurisubharmonic hull of K.

The second part of the thesis deals with the existence of a Stein neighborhood

basis for the closure of a smooth bounded pseudoconvex domain in Cn. Let Ω be

a domain in Cn. Then Ω is said to have a Stein neighborhood basis if for every

neighborhood V of Ω there exists another pseudoconvex domain ΩV such that Ω ⊂

ΩV ⊂ V. That is, Ω has a neighborhood basis that consists of pseudoconvex domains.

The problem of whether the closure of every smooth bounded pseudoconvex domain

has a Stein neighborhood basis first appeared in the literature in [4]. It is motivated
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in part by the fact that any pseudoconvex domain can be exhausted by smooth

pseudoconvex domains. Approximation from outside, however, is not always possible.

For example, neither the closed Hartogs triangle nor the closure of the worm domain

of Diederich and Fornæss([21]), a smooth bounded pseudoconvex domain in C2, have

a Stein neighborhood basis. Therefore it is interesting to know when the closure of a

domain has a Stein neighborhood basis.

Existence of a Stein neighborhood basis for Ω is known to be connected to global

regularity of the ∂-Neumann problem [55] and the Mergelyan approximation prop-

erty [19]. In fact, all classes of smooth domains whose closure is known to have a

Stein neighborhood basis have the Mergelyan approximation property. On the other

hand, it is still open whether some sort of approximation property, like Mergelyan or

Runge, implies the existence of a Stein neighborhood basis for the closure of a smooth

bounded pseudoconvex domain.

One way to get a Stein neighborhood basis for the closure is through McNeal’s

property (P̃ ). Sibony([53, 54]) showed that if a smooth bounded pseudoconvex do-

main satisfies property (P̃ ) then there exists a plurisubharmonic function f that

vanishes on the domain and stays strictly positive outside of the domain. Hence one

can get a Stein neighborhood basis out of level sets of f . In fact, Ω is uniformly

H-convex. On the other hand, McNeal([46]) showed that property (P̃ ) is sufficient

for compactness of the ∂-Neumann problem. This suggests that there might be some

connections between compactness of the ∂-Neumann problem and existence of a Stein

neighborhood basis for the closure. Examining the proof of Sibony one can see that

property (P̃ ) is much stronger than what is needed. We will introduce a weaker and

a quantitative version of property (P̃ ) that still implies the existence of a Stein neigh-

borhood basis for the closure. Additionally, we will give an application on domains

in C2 with a defining function that is plurisubharmonic on the boundary.
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CHAPTER II

BACKGROUND

A domain Ω in Cn is said to have Ck-smooth boundary, 1 ≤ k ≤ ∞, if there exists a

neighborhood U of Ω and a real valued Ck-smooth function ρ defined on U such that

Ω = {z ∈ U : ρ(z) < 0}, bΩ = {z ∈ U : ρ(z) = 0}, U \ Ω = {z ∈ U : ρ(z) > 0}, and

the gradient of ρ does not vanish on the boundary bΩ of Ω. In this case ρ is called

a defining function for Ω. In case ρ is a C2-smooth defining function we define the

complex Hessian of ρ at z ∈ bΩ as follows:

Lρ(z;A,B) =
n∑

j,k=1

∂2ρ(z)

∂zj∂z̄k

aj b̄k,

where A and B are vectors of type (1, 0) in Cn with A =
∑n

j=1 aj
∂

∂zj
, and B =∑n

j=1 bj
∂

∂zj
. For convenience we will denote Lr(z;A,A) by Lr(z;A) and suppress z

when it is not confusing.

A function is said to be plurisubharmonic on an open set V if its restriction on

any complex line that passes through V is subharmonic. One can check that a C2-

smooth function f is plurisubharmonic on V if and only if Lf (z;W ) ≥ 0, for z ∈ V

and any vector W of type (1, 0).

Definition 1. A domain Ω ⊂ Cn is said to be pseudoconvex if there exists a contin-

uous plurisubharmonic function ρ on Ω such that {z ∈ Ω : ρ(z) < c} is a precompact

subset of Ω for any real number c ≥ 0.

Notice that in this definition no smoothness is assumed. When the domain

has at least twice continuously differentiable boundary it is a well known fact that

pseudoconvexity can be defined using the Levi form. We refer the reader to the

books [42, 50] for a proof of the following theorem and other equivalent definitions of
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pseudoconvexity.

Theorem 1. A domain Ω with C2-smooth boundary in Cn, n ≥ 2, is pseudoconvex

if and only if it has a defining function ρ such that Lρ(z;W ) ≥ 0 for z ∈ bΩ and

W (ρ)(z) =
∑n

j=1
∂ρ(z)
∂zj

wj = 0 where W =
∑n

j=1wj
∂

∂zj
.

A vector W of type (1, 0) is called complex tangential to bΩ at q if W (ρ)(q) = 0

for a defining function ρ of Ω. One can check that, in the above theorem, the complex

Hessian of any defining function is non-negative on complex tangential vectors of type

(1, 0) on the boundary. Therefore, pseudoconvexity is independent of the defining

function. The restriction of the complex Hessian on the space of complex tangential

vectors is called the Levi form.

A. The ∂-Neumann Problem

Studying the ∂-Neumann problem was proposed by Garabedian and Spencer([33]) in

order to study the ∂-problem. Morrey([47]) proved an a priori estimate on (0, 1)-forms

and later Kohn([40]) generalized the a priori estimates, proved the existence of the

∂-Neumann operator on (p, q)-forms and showed the boundary regularity on strongly

pseudoconvex domains. Hörmander([37]) used weighted L2-theory to solve the ∂-

problem (and hence the ∂-Neumann problem) in L2 (without weights) on bounded

pseudoconvex domains.

In this section we sketch the setup of the ∂-Neumann problem. We refer the

reader to the books [15, 24] and a survey [9] for a more detailed treatment of the

topic.

Let Ω be a bounded domain in Cn, n ≥ 2, and 0 ≤ p, q ≤ n. We denote the space

of square integrable and smooth (p, q)-forms by L2
(p,q)(Ω) and C∞

(p,q)(Ω), respectively.

Let z = (z1, . . . , zn) denote the complex coordinates for Cn. Any square integrable
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(p, q)-form f can be written as

f =
′∑

I,J

fIJdzI ∧ dz̄J

where I = (i1, . . . , ip) and J = (j1, . . . , jq) are multiindices, dzI = dzi1 ∧ . . . ∧ dzip ,

dz̄J = dz̄j1 ∧ . . . ∧ dz̄jq and
∑′ denotes the summation over strictly increasing multi-

indices.

For the sake of simplicity we will drop the indices from ∂(p,q) and just write ∂.

L2
(p,q)(Ω) is a Hilbert space with the inner product coming from the following norm:

‖f‖2 =
′∑

I,J

∫
Ω

|fIJ |2dV

where dV is the volume element on Cn. When f is a smooth (p, q)-form we define the

action of ∂ as follows:

∂f =
′∑

I,J

∑
k

∂fIJ

∂z̄k

dz̄k ∧ dzI ∧ dz̄J .

Then we extend ∂ to its weak closure and still denote it by ∂. Hence u ∈ Dom(∂) if

u ∈ L2
(p,q)(Ω) and ∂u ∈ L2

(p,q+1)(Ω) where ∂u is defined in the distribution sense. One

can check that ∂ is a linear, closed, and densely defined operator. Then the Hilbert

space adjoint ∂
∗

: L2
(p,q+1)(Ω) → L2

(p,q)(Ω) is linear, closed and densely defined. A

square integrable (p, q)-form f belongs to Dom(∂
∗
) if there exists g ∈ L2

(p,q)(Ω) such

that 〈
f, ∂ϕ

〉
= 〈g, ϕ〉 for ϕ ∈ Dom(∂) ∩ L2

(p,q)(Ω)

where 〈., .〉 is the inner product on the corresponding Hilbert spaces. When Ω is a

bounded domain one can easily see that C∞
(p,q)(Ω) ⊂ Dom(∂). But for a (p, q)-form

f to be in Dom(∂
∗
) it must satisfy a boundary condition in the weak sense. In

case Ω has C1 boundary, using integration by parts, one can show that a C1-smooth
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(p, q)-form f is in the domain of ∂
∗

if and only if it satisfies the following:

∑
k

fI,kK
∂ρ

∂zk

= 0 on bΩ

for all strictly increasing multiindices I,K such that |I| = p and |K| = q − 1.

Let ∧ denote the exterior product of forms. One can show that f ∈ C1
(p,q)(Ω) ∩

Dom(∂
∗
) if and only if ∂ρ ∨ f = 0 on bΩ where the interior product ∨ is defined as

follows: 〈
g ∧ ∂ρ, f

〉
=
〈
g, ∂ρ ∨ f

〉
for any (p, q)-form f and a smooth (p, q− 1)-form g. Now we will define the complex

Laplacian �(p,q).

Definition 2. �(p,q) = ∂(p,q−1)∂
∗
(p,q) + ∂

∗
(p,q+1)∂(p,q) is a linear operator defined on

L2
(p,q)(Ω) such that a square integrable (p, q)-form f is in Dom(�(p,q)) if and only if

f ∈ Dom(∂(p,q)) ∩Dom(∂
∗
(p,q)) and ∂f ∈ Dom(∂

∗
(p,q+1)), ∂

∗
f ∈ Dom(∂(p,q−1)).

One can check that �(p,q) is a densely defined closed (unbounded) linear operator

on L2
(p,q)(Ω). The ∂-Neumann problem is defined as finding a solution to �(p,q)f = g

on D for f ∈ Dom(�(p,q)). Existence of a solution for the ∂-Neumann problem on

pseudoconvex domains is guarantied by the following theorem. We refer the reader

to [15] for a proof.

Theorem 2 (Hörmander). Let Ω be a bounded pseudoconvex domain in Cn, n ≥ 2,

and e be the base of the natural logarithm. For each 0 ≤ p ≤ n, 1 ≤ q ≤ n, there exists

a bounded operator, called the ∂-Neumann operator, N(p,q) : L2
(p,q)(Ω) → L2

(p,q)(Ω) such

that

(1) Range(N(p,q)) ⊂ Dom(�(p,q)), and

N(p,q)�(p,q) = �(p,q)N(p,q) = I on Dom(�(p,q)).
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(2) For any f ∈ L2
(p,q)(Ω), f = ∂∂

∗
N(p,q)f ⊕ ∂

∗
∂N(p,q)f.

(3) ∂N(p,q) = N(p,q+1)∂ on Dom(∂), 1 ≤ q ≤ n− 1.

(4) ∂
∗
N(p,q) = N(p,q−1)∂

∗
on Dom(∂

∗
), 2 ≤ q ≤ n.

(5) Let δ be the diameter of Ω. The following estimates hold for any f ∈ L2
(p,q)(Ω) :

‖N(p,q)f‖ ≤
eδ2

q
‖f‖,

‖∂N(p,q)f‖ ≤

√
eδ2

q
‖f‖,

‖∂∗N(p,q)f‖ ≤

√
eδ2

q
‖f‖.

We note that N(p,0) has a similar existence theorem. The main difference between

N(p,0) and N(p,q) for q ≥ 1 is that �(p,0) is not onto. We refer the reader to [15] for

more information on this matter. Using the above theorem one can show that when

Ω is bounded and pseudoconvex, an L2 solution to the ∂-problem exists. In fact,

the solution operator with minimal norm in the L2 sense is ∂
∗
N(p,q), as the following

corollary shows.

Corollary 1. Let Ω be a bounded pseudoconvex domain in Cn, n ≥ 2. Assume that

0 ≤ p ≤ n, 1 ≤ q ≤ n, g ∈ L2
(p,q)(Ω), and ∂g = 0. Then f = ∂

∗
N(p,q)g satisfies ∂f = g

and

‖f‖ ≤

√
eδ2

q
‖g‖. (2.1)

f is the unique solution to ∂u = g that is orthogonal to Ker(∂).

∂
∗
N(p,q) is called the canonical solution operator for the ∂-problem.
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B. Compactness of the ∂-Neumann Problem

In this section we introduce compactness of the ∂-Neumann problem. We refer the

reader to [30, 31, 32, 46] for more information.

We will use the notation W s
(p,q)(Ω) for (p, q)-forms with coefficient functions from

the Sobolev space W s(Ω). The norm on W s(Ω) is denoted by ‖.‖s. Compactness of

the ∂-Neumann problem can be formulated in several useful ways:

Lemma 1. Let Ω be a bounded pseudoconvex domain, 0 ≤ p ≤ n, 1 ≤ q ≤ n. Then

the following are equivalent:

i) The ∂-Neumann operator, N(p,q), is compact from L2
(p,q)(Ω) to itself.

ii) The embedding of the space Dom(∂) ∩Dom(∂
∗
), provided with the graph norm

u→ ‖∂u‖+ ‖∂∗u‖, into L2
(p,q)(Ω) is compact.

iii) For every ε > 0 there exists a constant Cε > 0 such that

‖u‖ ≤ ε(‖∂u‖+ ‖∂∗u‖) + Cε‖u‖−1, for u ∈ Dom(∂
∗
) ∩Dom(∂).

iv) The canonical solution operators ∂
∗
N(p,q) : L2

(p,q)(Ω) → L2
(p,q−1)(Ω) and ∂

∗
N(p,q+1) :

L2
(p,q+1)(Ω) → L2

(p,q)(Ω) are compact.

The statement in (iii) is called a compactness estimate. The equivalence of (ii)

and (iii) is a result of Lemma 1.1 in [41]. The general L2-theory and the fact that

L2
(p,q)(Ω) embeds compactly into W−1

(p,q)(Ω) shows that (i) is equivalent to (ii) and

(iii). Finally, the equivalence of (i) and (iv) follows from the formula

N(p,q) = (∂
∗
N(p,q))

∗∂
∗
N(p,q) + ∂

∗
N(p,q+1)(∂

∗
N(p,q+1))

∗

(see [24], p.55, [49]). We refer the reader to [46] for similar calculations.



10

The following lemma is well known but has not appeared in the literature. So

we will give a proof for the convenience of the reader.

Lemma 2. Let Ω1 and Ω2 be two bounded pseudoconvex domains in Cn, n ≥ 2, and

F : Ω1 → Ω2 be a biholomorphism that is smooth up to the boundary. Then the

∂-Neumann problem on (p, q)-forms on Ω1 is compact if and only if the ∂-Neumann

problem on (p, q)-forms on Ω2 is compact for 0 ≤ p ≤ n, 1 ≤ q ≤ n.

Proof. The proof of this lemma is implicit in [30]. N(p,q) is compact if and only if

∂
∗
N(p,q) and ∂

∗
N(p,q+1) are compact. (See iv) in Lemma 1). Therefore it is enough

to show that compactness of ∂
∗
N(p,q) and ∂

∗
N(p,q+1) are invariant under biholomor-

phisms. Let Ω1 and Ω2 be two pseudoconvex domains and F : Ω1 → Ω2 be a biholo-

morphism. Let {fj} be a sequence of bounded ∂-closed forms in L2
(p,q)(Ω2). Since F is

holomorphic, F ∗, which pulls back forms, and ∂ commute. Therefore {F ∗(fj)} is a se-

quence of bounded ∂-closed forms in L2
(p,q)(Ω1). If ∂

∗
N(p,q) : L2

(p,q)(Ω1) → L2
(p,q−1)(Ω1)

is compact then {∂∗N(p,q)F
∗(fj)} has a convergent subsequence in L2

(p,q−1)(Ω1). By

passing to a subsequence if necessary we may assume that {∂∗N(p,q)F
∗(fj)} is con-

vergent. Since F is a biholomorphism {(F−1)∗∂
∗
N(p,q)F

∗(fj)} is convergent too. One

can check that

∂(F−1)∗∂
∗
N(p,q)F

∗(fj) = (F−1)∗∂∂
∗
N(p,q)F

∗(fj) = fj

Therefore (F−1)∗∂
∗
N(p,q)F

∗ is a compact solution operator for ∂ on (p, q)-forms on

Ω2. We get ∂
∗
N(p,q) on Ω2 by applying the projection on the complement of the

kernel of ∂ to this solution operator (see 1). Hence the operator ∂
∗
N(p,q) on Ω2 is

compact. Similarly one can show that compactness of ∂
∗
N(p,q+1) is invariant under

biholomorphisms.

Now we will introduce another characterization for compactness that has not
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appeared in the literature before.

Let Ω be a smooth bounded domain in Cn, K ⊂ bΩ and U be an open neighbor-

hood of K. Define

C∞
0,(p,q)(U) =

{
′∑

|I|=p,|J|=q

fIJdzI ∧ dz̄J : fIJ ∈ C∞
0 (U)

}

for 0 ≤ q ≤ n where C∞
0 (U) denotes the space of smooth functions with compact

support in U . Define λ(p,q)(U) as follows: For 0 ≤ p ≤ n, 1 ≤ q ≤ n

λ(p,q)(U) = inf

{
‖∂f‖2 + ‖∂∗f‖2

‖f‖2
: f ∈ Dom(∂

∗
) ∩ C∞

0,(p,q)(U), f 6= 0

}
,

where Dom((∂
∗
) refers to the domain of ∂

∗
on Ω, and

λ(p,0)(U) = inf

{
‖∂f‖2

‖f‖2
: f ∈ (Ker∂)⊥ ∩ C∞

0,(p,0)(U), f 6= 0

}
where (Ker∂)⊥ is the orthogonal complement of (Ker∂) in L2

(p,q)(Ω). Notice that

λ(p,q)(U) ≤ λ(p,q)(V ) if V ⊂ U.

Theorem 3. Let Ω be a smooth bounded pseudoconvex domain in Cn. Let 0 ≤ p, q ≤

n, be given. Then the following are equivalent:

(i) The ∂-Neumann operator N(p,q) of Ω is compact on square integrable (p, q)-forms

on Ω

(ii) for all K ⊂ bΩ and M > 0 there exists an open neighborhood U of K such that

λ(p,q)(U) > M,

(iii) for all M > 0 there exists an open neighborhood U of the set of infinite type

points in bΩ such that λ(p,q)(U) > M.

Proof. We’ll show the equivalences for 0 ≤ p ≤ n, 1 ≤ q ≤ n. The proof can be

mimicked for the case q = 0 using the following: Compactness of N0 is equivalent to
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the following compactness estimate: ∀ε > 0,∃Dε > 0 such that

‖g‖2 ≤ ε‖∂g‖2 +Dε‖g‖2
−1 for g ∈ (Ker∂)⊥ ∩Dom(∂)

(i) ⇒ (ii) : Assume that the ∂-Neumann operator of Ω is compact, and there exist

K ⊂ bΩ and M > 0 such that λ(p,q)(U) < M for all open neighborhoods U of K.

We may assume that there exist a sequence of open neighborhoods {Uk} of K, and a

sequence of nonzero (p, q)-forms {fk} such that

Uk+1 ⊂⊂ Uk, K ⊂
∞⋂

k=1

Uk ⊂ bΩ, fk ∈ Dom(∂
∗
) ∩ C∞

0,(p,q)(Uk),

‖fk‖ = 1, and ‖∂fk‖2 + ‖∂∗fk‖2 < M for k = 1, 2, 3, · · ·

Let’s choose fk1 = f1. Since K ⊂
⋂∞

k=1 Uk, Uk+1 ⊂⊂ Uk, ‖fk‖ = 1, and fk ∈

C∞
0,(p,q)(Uk) there exists k2 such that

∫
Ω\Uk

|fk1|2 > 1/2. So ‖fk1 − fk2‖2 ≥ 1/2.

Similarly, we can choose a subsequence {fkj
} so that ‖fks −fkt‖2 ≥ 1/2 for s 6= t. We

denote this subsequence by {fk}. Compactness of the ∂-Neumann operator is equiva-

lent to the following so called compactness estimate (see Lemma 1): ∀ε > 0,∃Dε > 0

such that

‖g‖2 ≤ ε(‖∂g‖2 + ‖∂∗g‖2) +Dε‖g‖2
−1 for g ∈ Dom(∂

∗
) ∩Dom(∂) (2.2)

Choose ε = 1
16M

. Since Dom(∂
∗
) ∩ C∞

0,(p,q)(Uk) ⊂ Dom(∂
∗
) ∩Dom(∂) using (2.2) we

get

‖fk − fl‖2
−1 ≥

1

4Dε

> 0 for k 6= l (2.3)

The imbedding from L2(Ω) to W−1(Ω) is compact and {fk} is a bounded sequence

in L2
(p,q)(D). Hence {fk} has a convergent subsequence in W−1

(p,q)(Ω). This contradicts

(2.3).

(ii) ⇒ (iii) : This part is obvious because the set of infinite type points is compact.
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(iii) ⇒ (i) : LetK be the set of infinite type points in bΩ and u ∈ Dom(∂
∗
)∩C∞

(p,q)(Ω).

Assume that λ(p,q)(Uk) > k where {Uk} is a sequence of open neighborhoods of K

such that Uk+1 ⊂⊂ Uk, K ⊂
⋂∞

k=1 Uk ⊂ bΩ. Let ϕk ∈ C∞
0 (Uk) such that 0 ≤ ϕk ≤ 1

and ϕk ≡ 1 in a neighborhood of K. Define ψk = 1−ϕk. Notice that ψk is supported

away from K. We will use general constants in the following estimates. That is the

constants we use won’t depend on u but they might change at each step. Away from

K we have subelliptic estimates as bΩ\K is the set of finite type points. Hence, there

exists s > 0 such that ∀ε > 0 ∃Dε > 0 such that

‖ψku‖2 ≤ ε‖ψku‖2
s +Dε‖ψku‖2

−1

≤ εCk(‖∂(ψku)‖2 + ‖∂∗(ψku)‖2) + CkDε‖u‖2
−1 (2.4)

≤ εCk(‖∂u‖2 + ‖∂∗u‖2 + ‖u‖2) + CkDε‖u‖2
−1

The first inequality follows because L2 imbedds compactly into W s for s > 0. We

used the subelliptic estimate for the second inequality. If we use λ(p,q)(Uk) > k we

get:

‖ϕku‖2 ≤ 1

k
(‖∂(ϕku)‖2 + ‖∂∗(ϕku)‖2)

≤ 1

k
(‖∂u‖2 + ‖∂∗u‖2) +

Ck

k
‖ξku‖2 (2.5)

where ξk ≡ 0 in a neighborhood of K and ξk ≡ 1 in a neighborhood of support of ψk.

Calculations that are similar to ones in (2.4) show that

‖ξku‖2 ≤ ε′C̃k(‖∂u‖2 + ‖∂∗u‖2 + ‖u‖2) + C̃kDε′‖u‖2
−1 (2.6)

By choosing ε, ε′ small enough and combining (2.4) and (2.6)we get: For all k =

1, 2, 3, · · · there exists Dk > 0 such that

‖u‖2 ≤ 2

k
(‖∂u‖2 + ‖∂∗u‖2 + ‖u‖2) +Dk‖u‖2

−1 for u ∈ Dom(∂
∗
) ∩ C∞

(p,q)(Ω) (2.7)
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Dom(∂
∗
) ∩ C∞

(p,q)(Ω) is dense in Dom(∂
∗
) ∩ Dom(∂). Therefore, the above estimate

(2.7) holds on Dom(∂
∗
)∩Dom(∂). That is, the ∂-Neumann operator of Ω is compact

on (p, q)-forms for 0 ≤ p ≤ n, 1 ≤ q ≤ n.

One of the nice properties of compactness is that it localizes.

Lemma 3 ([31]). Let Ω be a bounded pseudoconvex domain in Cn, n ≥ 2, and N(p,q)

be the ∂-Neumann operator on L2
(p,q)(Ω) where 0 ≤ p ≤ n, 1 ≤ q ≤ n.

1) If for every boundary point p there exists a pseudoconvex domain U that contains

p such that the ∂-Neumann operator on (the domain) U ∩ Ω is compact, then

N(p,q) is compact.

2) If U is smooth bounded and strictly pseudoconvex and U ∩Ω is a domain, then

if N(p,q) is compact, so is the corresponding ∂-Neumann operator on U ∩ Ω.

In the introduction we mentioned that compactness of the ∂-Neumann problem

is weaker than global regularity. Actually more is true:

Theorem 4 ([41]). Let Ω be a bounded pseudoconvex domain in Cn with smooth

boundary. If N(p,q) is compact on L2
(p,q)(Ω), then N is compact (in particular, contin-

uous) as an operator from W s
(p,q)(Ω) to itself, for all s ≥ 0.

We would like to remark that in the above theorem, the implication in the other

direction is valid as well. That is, if N(p,q) is a compact operator on W s
(p,q)(Ω) for some

s ≥ 0, then N(p,q) is compact in L2
(p,q)(Ω). This implication follows from a theorem

about compact operators over Banach spaces, symmetric with respect to a scalar

product (see, e.g., [43], Corollary 2).

In case of convex domains, compactness of the ∂-Neumann problem is completely

understood:
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Theorem 5 ([30]). Let Ω be a bounded convex domain in Cn. Let 1 ≤ q ≤ n. The

following are equivalent:

1) There exists a compact solution operator for ∂ on (p, q)-forms.

2) The boundary of Ω does not contain any affine variety of dimension greater than

or equal to q.

3) The boundary of Ω does not contain any analytic variety of dimension greater

than or equal to q.

4) The ∂-Neumann operator N(p.q) is compact.

C. Stein Neighborhood Bases

In this section we will discuss existence of a Stein neighborhood basis for the closure of

a smooth bounded pseudoconvex domain in Cn. There are two sources of existence of

Stein neighborhood bases for the closure. The first is through existence of transversal

holomorphic vector fields on a neighborhood of the weakly pseudoconvex points on

the boundary. This method has been developed by Fornæss and Nagel in [26] (see

also [2]).

Theorem 6 ([26]). Let Ω be a C3-smooth bounded pseudoconvex domain in Cn with a

defining function ρ, and let K be the set of weakly pseudoconvex points in bΩ. Assume

that there exist an open neighborhood U of K and a vector field F = (F1, . . . , Fn) on

U such that Fj is holomorphic for j = 1, . . . , n and Re
(∑n

j=1 Fj
∂ρ
∂zj

)
> 0 on U ∩ bΩ.

Then Ω has a Stein neighborhood basis.

The condition Re
(∑n

j=1 Fj
∂ρ
∂zj

)
> 0 enables us to push the boundary out. More-

over, since F has holomorphic components the pseudoconvexity of the boundary is
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preserved. We give a proof simpler than the one in [26] for the convenience of the

reader.

Proof. Choose open sets V1, V2 in Cn such that K ⊂⊂ V1 ⊂⊂ V2 ⊂⊂ U and a smooth

compactly supported function φ on V2 such that 0 ≤ φ ≤ 1, and φ ≡ 1 on V1. We may

choose a neighborhood U1 of bΩ and a defining function r of Ω such that Lr(z; τ) > 0

for z ∈ U1 \ V1, τ ∈ Cn \ {0}. Let

H(z) = φ(z)F (z) + (1− φ(z))

(
∂r

∂z̄1

, · · · , ∂r
∂z̄n

)
.

Now we define rε such that r(z) = rε(A
ε(z)) for Aε(z) = z + εH(z). Notice that H

pushes the boundary out and so rε is a defining function for a domain that includes

Ω. We have

∂r

∂zk

=
n∑

s=1

∂rε

∂ws

∂Aε
s

∂zk

+
n∑

s=1

∂rε

∂w̄s

∂Āε
s

∂zk

and

∂2r

∂z̄l∂zk

=
n∑

s,t=1

∂2rε

∂wt∂ws

∂Aε
t

∂z̄l

∂Aε
s

∂zk

+
n∑

s,t=1

∂2rε

∂w̄t∂ws

∂Āε
t

∂z̄l

∂Aε
s

∂zk

+
n∑

s,t=1

∂2rε

∂wt∂w̄s

∂Aε
t

∂z̄l

∂Āε
s

∂zk

+
n∑

s,t=1

∂2rε

∂w̄t∂w̄s

∂Āε
t

∂z̄l

∂Āε
s

∂zk

+
n∑

s=1

∂rε

∂ws

∂2Aε
s

∂z̄l∂zk

+
n∑

s=1

∂rε

∂w̄s

∂2Āε
s

∂z̄l∂zk

Let f be a differentiable function from an open set in Cn into Cn and J∂(f) denote

the matrix
{

∂fj

∂zk

}
jk
. Therefore, we have

Lr(z; τ) =
n∑

s,t=1

∂2rε(A
ε(z))

∂wt∂ws

(J∂(A
ε)τ̄)t(J∂(A

ε)τ)s + Lrε(A
ε(z); J∂(A

ε)τ)

+ Lrε(A
ε(z); J∂(A

ε)τ̄) +
n∑

s,t=1

∂2rε(A
ε(z))

∂w̄t∂w̄s

(J∂(Ā
ε)τ̄)t(J∂(Ā

ε)τ)s

+
n∑

s,l,k=1

∂rε(A
ε(z))

∂ws

∂2Aε
s(z)

∂z̄l∂zk

τ̄lτk +
n∑

s,l,k=1

∂rε(A
ε(z))

∂w̄s

∂2Āε
s(z)

∂z̄l∂zk

τ̄lτk
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Notice that ∂Aε
s

∂z̄k
, ∂2Aε

s(z)
∂z̄l∂zk

, and ∂2Āε
s(z)

∂z̄l∂zk
are of order ε for 1 ≤ s, l, k ≤ n. Therefore, every

term on the right hand side of the equality above is of order ε except the second one.

Namely we get the following formulas:

Lr(z; τ) = Lrε(z + εH(z); τ + εJ∂(H)τ) +O(ε) for z ∈ U1 \ V1

Lr(z; τ) = Lrε(z + εH(z); τ + εJ∂(H)τ) for z ∈ V1

Using Sard’s theorem, one can choose a positive decreasing sequence {an} that con-

verges to 0 such that the domains Un = {z ∈ Cn : ran(z) < 0} have smooth boundary.

Moreover, Ω ⊂⊂ Un, and

Lran
(z; τ) ≥ 0 for z ∈ bUn, and

n∑
j=1

∂ran(z)

∂zj

τj = 0.

Therefore Ω has a Stein neighborhood basis.

The second source of existence of a Stein neighborhood basis for the closure is

property (P̃ ).

Definition 3 ([13, 46]). A domain Ω ⊂ Cn is said to satisfy property (P )
(
property

(P̃ )
)

if for every M > 0 there exists φM ∈ C2(Ω) such that for every vector W =∑n
j=1wj

∂
∂zj

of type (1, 0) the following inequalities are satisfied:

i) 0 ≤ φM ≤ 1 on Ω
(
|W (φM)(z)|2 ≤ LφM

(z;W ) for z ∈ Ω
)

ii) LφM
(z;W ) ≥M

∑n
j=1 |wj|2 for z ∈ bΩ.

By exponentiating and scaling the functions one can show that property (P )

implies property (P̃ ). As mentioned in the introduction, Sibony showed that for a

smooth bounded pseudoconvex domain, property (P̃ ) implies the existence of a Stein

neighborhood basis for the closure. Although he stated the theorem for property (P )

his proof shows that only property (P̃ ) is needed:
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Theorem 7 ([53]). Let Ω be a smooth bounded pseudoconvex domain in Cn. Assume

that Ω satisfies property (P̃ ). Then Ω has a Stein neighborhood basis.

When a pseudoconvex domain has a “well behaving” vector field it does not

necessarily satisfy property (P̃ ). For example, any convex domain with an analytic

disc in its boundary has a holomorphic vector field that is transversal to the boundary.

However, because of the disc in the boundary it does not satisfy property (P̃ ) (see

[57], section 2.2). It will be interesting to know if and how these two methods are

connected.
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CHAPTER III

COMPACTNESS OF THE ∂-NEUMANN PROBLEM∗

Basic definitions and results about compactness of the ∂-Neumann problem have

already been discussed in the previous chapter. In this chapter we will state and

prove our results.

Throughout this chapter by the ∂-Neumann problem we mean the ∂-Neumann

problem on (0, 1)-forms unless otherwise specified. There have been two different

approaches for compactness of the ∂-Neumann problem. The first is a potential theo-

retic approach. Catlin in [13] introduced property (P ) and showed that it implies the

compactness of the ∂-Neumann problem. Later, Sibony([53]) undertook a systematic

study of property (P ) under the name B-regularity. He showed that it is equivalent

to the property that any continuous function on the boundary of the domain can

be extended to a function that is continuous on the closure and plurisubharmonic

on the domain. Recently, McNeal introduced property (P̃ ), and showed that it still

implies compactness of the ∂-Neumann problem. While it is easy to see that prop-

erty (P ) implies property (P̃ ), the precise relations between the two properties is not

understood. The second approach is geometric in nature. Recently, Straube([56])

introduced a geometric condition that implies compactness of the ∂-Neumann oper-

ator on domains in C2. We still do not know how property (P ) or (P̃ ) interact with

Straube’s geometric condition.

It is well known that analytic discs in the boundary of a smooth bounded pseu-

doconvex domain are a violation of all sufficient conditions for compactness discussed

∗This chapter is reprinted with kind permission of Springer Science and Business
Media from “Analytic discs, plurisubharmonic hulls, and non-compactness of the ∂-
Neumann operator” by Sönmez Şahutoğlu and Emil J. Straube, 2006. Mathematische
Annalen (Accepted). 2006 by Springer-Verlag.
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in the previous paragraph. So it will be interesting to know whether analytic discs

in the boundary cause an obstruction for compactness of the ∂-Neumann problem as

well. Catlin, in his unpublished result, showed that presence of an analytic disc in the

boundary is an obstruction for compactness in case the domain is in C2. A proof for

the case of domains with Lipschitz boundary is in [31]. It is folklore that the methods

that work in C2 also show that, in any dimension n, if the ∂-Neumann operator is

compact, then the boundary cannot contain an (n−1)-dimensional complex manifold.

Matheos, on the other hand, showed that absence of analytic discs in the boundary is

not sufficient for compactness of the ∂-Neumann operator. He constructed a smooth

bounded complete Hartogs domain without an analytic disc in the boundary, with a

noncompact ∂-Neumann operator [31, 45]. The problem is still open in general. That

is, it is still open whether presence of an analytic disc in the boundary is a violation

of compactness of the ∂-Neumann operator in Cn, n > 2. However, we show that

the answer is still yes if the disc contains a point at which the Levi form is of rank

n− 2. That is, the boundary is strictly pseudoconvex in the directions transversal to

the disc. More generally, we show that it is enough to have a complex manifold of

dimension equal to the number of vanishing eigenvalues of the Levi form.

Theorem 8. Let Ω be a smooth bounded pseudoconvex domain in Cn, n ≥ 2; and

0 ≤ p ≤ n, 1 ≤ q ≤ k ≤ n − 1. Let z0 ∈ bΩ and assume that the Levi form of bΩ

at z0 has at most k vanishing eigenvalues. (That is, the Levi form is of rank at least

n− k − 1 at z0). If there exists a compact solution operator for ∂ on (p, q)-forms (in

particular, if the ∂-Neumann operator on (p, q)-forms is compact), then bΩ does not

contain a k-dimensional complex manifold through z0.

We would like to note that the above theorem generalizes Theorem 1.1 in [39],

where the domains are fibered over a Reinhardt domain in C2. In case the Levi form
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has at most one vanishing eigenvalue on the boundary, compactness of the ∂-Neumann

operator implies that there isn’t any analytic disc in the boundary. It is a well known

result that if the set of Levi flat boundary points (where all the eigenvalues are zero)

has nonempty interior with respect to relative topology on the boundary, then it is

foliated by (n − 1)-dimensional complex manifolds. So, this is an obstruction for

compactness of the ∂-Neumann operator. It is an easy consequence of Theorem 8

that this result holds for the (in general much bigger) set of weakly pseudoconvex

points.

Corollary 2. Let Ω be a smooth bounded pseudoconvex domain in Cn, n ≥ 2. If

there exists a compact solution operator for ∂ on (0, 1)-forms (in particular, if the

∂-Neumann operator on Ω is compact), then the set of weakly pseudoconvex points in

bΩ has empty (relative) interior.

We would like to remark that the higher the number of vanishing eigenvalues

the “flatter” the boundary is. In general, one would expect this situation to be

even more favorable to noncompactness of the ∂-Neumann operator. However, our

present methods do not give this. The reason is that having a zero eigenvalue in the

transversal direction to the complex manifold allows for complications in the geometry

of the boundary.

Let Ω be a smooth bounded pseudoconvex domain in Cn, n ≥ 2, and P (Ω) denote

the plurisubharmonic functions on Ω that are continuous up to the boundary of Ω.

Define the plurisubharmonic hull, K̂, of a compact set K ⊂ Ω as follows:

K̂ =

{
z ∈ Ω : f(z) ≤ sup

w∈K
f(w) for all f ∈ P (Ω)

}
We get exactly the same hull as K̂ if we define it with respect to any of the following:

plurisubharmonic functions that are smooth up to the boundary, the absolute value
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of holomorphic functions that are smooth up to the boundary, or the absolute value

of holomorphic functions that are continuous up to the boundary (see for example

[10, 11, 34]). We say that Ω satisfies the hull condition if K̂ ∩ bΩ = K ∩ bΩ for every

compact set K ⊂ Ω. Catlin in his thesis [10] showed that in C2 a smooth bounded

pseudoconvex domain Ω satisfies the hull condition if and only if there is no analytic

disc in the boundary of Ω. He also showed that this is not true in higher dimensions.

So for smooth bounded pseudoconvex domains in C2 compactness of the ∂-Neumann

problem implies the hull condition. We will generalize this result to Cn under the

restriction that the Levi form has at most one vanishing eigenvalue on the boundary.

Theorem 9. Let Ω be a smooth bounded pseudoconvex domain in Cn, n ≥ 2. Let p

be a boundary point where the Levi form of bΩ has at most one vanishing eigenvalue.

Then there is a compact subset K of Ω with p ∈ K̂ \K if and only if bΩ contains an

analytic disc through p.

The proof of Theorem 9 will be along the lines of the proof for the C2 case given

in [10], but some additional work is needed. The details will be given in Section B of

this chapter.

Sibony([52]) showed that in Cn the hull condition is equivalent to the L2
loc-

hypoellipticity of the ∂-problem. That is, the ∂-problem can be solved in L2
loc topol-

ogy preserving the singular support on the closure of the domain. Therefore, L2
loc-

hypoellipticity of the ∂-problem follows from compactness of the ∂-Neumann problem

under the restriction that the Levi form has at most one vanishing eigenvalue. At

present there is no direct proof, even in C2. Such a direct proof would be very

interesting to have.



23

A. Proofs of Theorem 8 and Corollary 2

Using the following lemma we will be able to simplify the boundary locally near a

point of a complex manifold in the boundary.

Lemma 4. Let Ω be a smooth bounded pseudoconvex domain in Cn, M a complex

manifold of dimension k in bΩ, and p ∈ M. Then there is a ball B centered at p, a

biholomorphic map G : B → G(B) such that

(i) G(p) = 0

(ii) G(M ∩B) = {w ∈ G(B)|wk+1 = · · · = wn = 0}

(iii) the real normal to G(bΩ∩B) at points of G(M ∩B) is given by the Re(wn)-axis.

In other words, there is a local holomorphic change of coordinates so that in the

new coordinates, M is affine and the (real) unit normal to the boundary is constant

on M .

Proof of Lemma 4 . Using holomorphic change of coordinates we may assume that

p = 0, andM is locally given by {z|zk+1 = · · · = zn = 0}. In these coordinates, let ρ be

a defining function for bΩ near 0 such that ∂ρ/∂zn 6= 0. There exists a real-valued C∞

function h in a neighborhood of 0 such that the normal eh
(
0, · · · , 0, ∂ρ

∂z̄k+1
, · · · , ∂ρ

∂z̄n

)
is

conjugate holomorphic on M (each component is conjugate holomorphic). This can

be shown by adapting the argument in the proof of Lemma 1 in [3] where the same

result is shown in case M is an analytic disc. Alternatively, the statement is a special

case of the theorem in [58], specifically the equivalence of (ii) and (iv). Note that the

form α appearing in (iv) of that theorem is real, and its restriction to M is closed by

the lemma in section 2 of [8]. Therefore, there is a real valued function h such that

d(−h) = α on M (near 0). The proof of (ii) ⇔ (iv) in [58] shows that any real-valued

C∞ extension of h to a full neighborhood of 0 will do.
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We now define a biholomorphic change of coordinates (near 0) by

Ĝ(z1, · · · , zn) =

(
z1, · · · , zn−1,

n∑
j=k+1

zje
h(z1,···,zk,0,···,0) ∂ρ

∂zj

(z1, · · · , zk, 0, · · · , 0)

)

Then Ĝ(M) ⊂ {zk+1 = · · · = zn = 0}, and the complex tangent space to bΩ is

mapped onto the complex hypersurface {zn = 0} by the the complex derivative of

Ĝ at points of M . Notice that the image of the complex normal is not necessarily

parallel to the vector (0, · · · , 0, 1). In these new coordinates (which we again denote

by (z1, · · · , zn)), M is of the same form as before, but the complex tangent space to

bΩ is constant, namely it is the hyperplane {zn = 0}. Consider now the real unit

normal to bΩ. Since it is perpendicular to complex tangential space its restriction to

M is of the form (0, · · · , 0, eiθ). Using Lemma 1 from [3] once more shows that the

function θ is harmonic on each disc in M , i.e. it is pluriharmonic on M. Denote by

h1 a pluriharmonic conjugate. The final coordinate change

(z1, · · · , zn) →
(
z1, · · · , zn−1, zne

−h1(z1,···,zk,0,···,0)−iθ(z1,···,zk,0,···,0))
keeps the complex tangential space the same and rotates the real normal so that

the unit normal becomes constant on M . Combining the three local biholomorphic

coordinate changes gives the map G with the properties required in Lemma 4.

The following lemma will be essential in the proof of Theorem 8. Let A(D)

denote the Hilbert space of square integrable holomorphic functions on D.

Lemma 5. Let Ω be a bounded pseudoconvex domain in Cn, smooth near the strictly

pseudoconvex boundary point p. Assume the pseudoconvex domain Ω1 is contained in

Ω, shares the boundary point p, and is smooth near p. Then the restriction operator

from A(Ω) to A(Ω1) is not compact.
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Proof of Lemma 5. The proof of the lemma uses ideas from [30], p. 637. First we

construct a sequence of norm 1 functions in A(Ω) which has no convergent subse-

quence in A(Ω1). Let {pj}∞j=1 be a sequence of points on the common interior normal

to bΩ and bΩ1 at p such that limj→∞ pj = p. Let fj(z) = KΩ(z, pj)/KΩ(pj, pj)
1/2,

where KΩ denotes the Bergman kernel of Ω. Notice that ‖ fj ‖L2(Ω)= 1 for all j. For

z ∈ Ω fixed, the function KΩ(z, ·) is smooth up to the boundary near p (in fact, the

subelliptic estimates for the ∂-Neumann problem near p have considerably stronger

consequences for the kernel function [5, 6]), and KΩ(pj, pj) →∞ as j →∞ (see e.g.

[37], Theorem 3.5.1). Consequently, fj(z) → 0 for all z ∈ Ω. On the other hand,

‖ fj ‖2
L2(Ω1)=

‖ KΩ(·, pj) ‖2
L2(Ω1)

KΩ(pj, pj)
≥ KΩ(pj, pj)

KΩ1(pj, pj)
≥ C > 0 .

The first inequality follows by applying the reproducing property of KΩ1 to the func-

tionKΩ(·, pj) viewed as an element of A(Ω1) together with an argument using Hölder’s

inequality. The second inequality follows from the fact that both Ω and Ω1 are strictly

pseudoconvex at p, and hence the kernel asymptotics at p are the same ([37], The-

orem 3.5.1), and the second inequality follows. We conclude that {fj}∞j=1 has no

subsequence that converges in A(Ω1), and the proof of Lemma 5 is complete.

Proof of Theorem 8. Since the theory of (p, q)-forms and (0, q)-forms is the same for

the ∂-Neumann problem we will prove the theorem for p = 0. If ∂ has a compact

solution operator on (0, q)-forms then ∂
∗
N(0,q) is compact. We will show that if the

boundary contains a k-dimensional complex manifold through z0 and the rank of the

Levi form at z0 is n − k − 1, then the ∂-Neumann operator on (0, q)-forms on Ω is

not compact for 1 ≤ q ≤ k. The following facts will be useful in simplifying the

proof: Compactness of the ∂-Neumann problem on (0, q)-forms is invariant under

biholomorphisms (Lemma 1); and it is a local property (Lemma 3). First we will
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use Lemma 4 to pass to a coordinate system where the boundary geometry is simple

around z0. Then we will construct a sequence of ∂-closed (0, q)-forms that will lead

to a contradiction when combined with compactness of the ∂
∗
N(0,q) on Ω. A very

similar argument appeared in [30], section 4, and [31], proof of Proposition 4.1. In

turn, those arguments draw substantially on ideas from [12] and [23]. Using Lemma

1, Lemma 3, Lemma 4, and scaling if necessary we may assume that M = {(z′, z′′, 0) :

|z′| + |z′′| < 2} ⊂ bΩ, where z′ = (z1, . . . , zq), z
′′ = (zq+1, . . . , zk), and the unit (real)

normal to the boundary is (0, . . . , 0, 1) along M . Let z′′′ = (zk+1, . . . , zn) and Ω1 be

the (n − k)-dimensional slice of Ω in z′′′ variables. We note that when k = q the

variable z′′ is not defined and z = (z′, z′′′). Since the normal to bΩ is constant along

M we can choose a ball Ω2 in Cn−k (in z′′′ variables) centered at (0, . . . , 0,−δ) with

radius δ > 0 such that {(z′, z′′) ∈ Ck : |z′| < 1/2, |z′′| < 1/2}×Ω2 ⊂ Ω. Since the rank

of the Levi form is preserved under biholomorphisms Ω1 is strongly pseudoconvex at

0. Therefore Lemma 5 shows that we can choose a sequence of holomorphic functions

{fj} in A(Ω1) without any convergent subsequence in A(Ω2). The rest of the proof

is essentially the same as the proof of (1) ⇒ (2) of Theorem 1.1 in [30]. We put the

details here for the convenience of the reader.

We use the Ohsawa-Takegoshi extension theorem [48] to extend fj to get a

bounded sequence {Fj} in A(Ω). Let αj = Fj(z
′, z′′, z′′′)dz̄1 ∧ · · · ∧ dz̄q. Then {αj}

is a ∂-closed bounded sequence in L2
(0,q)(Ω). Let gj = ∂

∗
N(0,q)αj and ĝj denote the

form obtained from gj by omitting the terms containing dz̄j with q + 1 ≤ j ≤ n. We

still have ∂z′ ĝj = αj for fixed (z′′, z′′′) where ∂z′ is the ∂ in z′ variables. Let 〈., .〉

denote the standard pointwise inner product in z′ variables and χ ∈ C∞
0 (−∞,∞) be

a cut-off function such that 0 ≤ χ ≤ 1, χ(t) = 1 when |t| ≤ 1/4 and χ(t) = 0 when

|t| ≥ 2/5. Let β(z) = χ(|z′|)dz̄1 ∧ · · · ∧ dz̄q. In the following equalities we will use the

mean value properties of holomorphic functions. There exists C,D > 0 such that for
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|z′′| ≤ 1/2 and z′′′ ∈ Ω2 fixed we have

|Fj(0, z
′′, z′′′)− Fk(0, z

′′, z′′′)| = C

∣∣∣∣∫
|z′|<1/2

〈αj − αk, β〉dV (z′)

∣∣∣∣
= C

∣∣∣∣∫
|z′|<1/2

〈ĝj − ĝk, ϑz′β〉dV (z′)

∣∣∣∣
≤ CD

{∫
|z′|<1/2

|ĝj − ĝk|2dV (z′)

}1/2

.

We apply the submean value property for the plurisubharmonic functions |Fj(0, z
′′, z′′′)−

Fk(0, z
′′, z′′′)|2. So there exists E > 0 such that

|fj(z
′′′)− fk(z

′′′)|2 ≤ E2

∫
|z′′|≤1/2

|Fj(0, z
′′, z′′′)− Fk(0, z

′′, z′′′)|2dV (z′′)

If we integrate out z′′′ and combine the previous estimates we get:

‖fj − fk‖L2(Ω2) ≤ CDE‖ĝj − ĝk‖L2
(0,q−1)

(Ω) ≤ CDE‖gj − gk‖L2
(0,q−1)

(Ω)

{fj} has no convergent subsequence therefore neither does {gj}. This is a contradic-

tion to compactness of ∂
∗
N(0,q).

The idea of slicing a domain arises in other contexts too. For example, it can

be used to analyze the asymptotic behavior of the Bergman kernel in terms of the

distance to the boundary.

Let dbΩ(z) be the function defined on Ω that measures the (minimal) distance

from z ∈ Ω to bΩ. The Bergman kernel function of Ω on the diagonal can be defined

by

KΩ(z, z) = sup{|f(z)|2 : f ∈ L2
h(Ω), ‖f‖L2

h(Ω) ≤ 1}

For more information on the Bergman kernel function we refer the reader to [38].

Proposition 1. Let Ω be a bounded pseudoconvex domain in Cn with C2 boundary

near p ∈ bΩ. If the Levi form has rank k at p then there exist a constant C > 0 and
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a neighborhood U of p such that

KΩ(z, z) ≥ C

dk+2
bΩ (z)

for z ∈ U ∩ Ω.

Fu ([29]) proved the above proposition when Ω is a weakly pseudoconvex domain

in Cn (i.e., k = 0). One can give a proof for this case by following the same proof

except that at the last step, one should use the asymtotics of the Bergman kernel for

strongly pseudoconvex domains [37], (rather than for planar domains, as in [29]). We

next prove Corollary 2.

Proof of Corollary 2. Let V be a nonempty open subset of bΩ contained in the set

of weakly pseudoconvex points. Define m to be the maximum rank of the Levi form

on V and let p ∈ V be a point where the Levi form has rank m (such a point exists,

since the rank assumes only finitely many values on V ). Then near p, the rank is at

least m, hence equal to m. Therefore, bΩ is foliated, near p, by complex manifolds of

dimension n− 1−m (see for example [28]). Theorem 8 (for k = n− 1−m) implies

that the ∂-Neumann operator on Ω is not compact. This contradicts the assumption

in Corollary 2.

B. Proof of Theorem 9

The following simple lemma appears in [44] as Lemma 2.1. We give a proof of it for

the convenience of the reader.

Lemma 6. Let Ω be a smooth bounded pseudoconvex domain in Cn, n ≥ 3 and ρ be

a defining function. Assume that the Levi form Lρ(., .) has at least n − 2 positive

eigenvalues at p ∈ bΩ. Then there exist a neighborhood U of p and complex tangent

vector fields X1, · · · , Xn−1 of type (1, 0) defined on U such that Lρ(Xj, Xk) = 0 if

j 6= k and j, k = 1, 2, · · · , n− 1, and Lρ(Xj) = 1 for j = 2, 3, · · · , n− 1.
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Proof. Without loss of generality we may assume that ∂r
∂zn

= 1 at p = 0, |∇(r)| = 1

on bΩ, Lρ(
∂

∂zj
) > 0 for j = 2, 3, · · · , n− 1, and Lρ(

∂
∂z1

) = 0. Let

Yj =
∂

∂zj

−
(
∂r

∂zn

)−1
∂r

∂zj

∂

∂zn

for j = 1, 2, · · · , n− 1.

Then the Levi form is positive definite on the space spanned by {Y2, Y3, · · · , Yn−1} at

p. By continuity there exists a neighborhood U of p such that the Levi form Lρ(., .)

is positive definite on the space spanned by {Y2, Y3, · · · , Yn−1} on U. Using Gram-

Schmidt orthogonalization process with the inner product coming from the Levi form

we get an orthonormal frame consisting of vector fields {X2, X3, · · · , Xn−1} on U such

that Lρ(Xj, Xk) = δjk for 2 ≤ j, k ≤ n− 1 where δjk is the Kronecker delta function.

Define X1 = Y1 − Lρ(Y1, X2)X2 − · · · − Lρ(Y1, Xn−1)Xn−1. Then Lρ(X1, Xj) = 0 for

j 6= 1.

Let J denote the complex structure map of (the tangent bundle of) Cn and

Aθ = cos(θ)A + sin(θ)J(A). We will denote the flow generated by the (real) vector

field A by F t
A(p). Namely, F t

A(p) is the point that is reached by flowing along A for

a time t.

Proof of Theorem 9. Assume that r is a defining for Ω. If there is an analytic disc in

the boundary one can choose K to be the boundary of the disc and p to be the center.

Then K̂ is the disc, and K̂ ∩ bΩ 6= K ∩ bΩ. For the other direction we may assume

that there exists a weakly pseudoconvex point p ∈ bΩ and a compact set K ⊂ Ω such

that p ∈ K̂ \K. Using Lemma 6 we can diagonalize the Levi form locally around p.

That is, we can choose an open neighborhood V of p and complex tangential smooth

vector fields X1, X2, ..., Xn−1 of type (1, 0) that diagonalize the Levi form on V ∩ bΩ.

Furthermore, we can choose the vector fields such that the Levi form vanishes only
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in X1 direction. Let’s define A = Re(X1) and

Ms =
{
F t

Aθ(p) : 0 ≤ t < s, 0 ≤ θ ≤ 2π
}

for 0 < s

Then Ms is a two dimensional smooth manifold.

Claim 1. Let’s choose s0 > 0 such that Ms0 ⊂⊂ V ∩bΩ. Then either Ms is a complex

manifold for some 0 < s < s0 or there exist sequences {sj}∞j=1 and {θj}∞j=1 of positive

numbers such that limj→∞ sj = 0, θj ∈ [0, 2π] and the Levi form of r is positive at

F
sj

Aθj
(p) in the direction X1 = A− iJ(A).

Proof of the Claim 1. Assume that there exists s > 0 such that the Levi form of

r is zero at F t
Aθ(p) in the direction X1 = A − iJ(A) for 0 ≤ t ≤ s and θ ∈ [0, 2π].

We will show that the real two-dimensional manifold Ms is a complex manifold. We

follow [10] and indicate the necessary modifications. It suffices to show that the

tangent space of Ms is spanned by A and J(A) because an even dimensional smooth

manifold is a complex manifold if and only if at each point the (real) tangent space

is J invariant(see for example Proposition 1.3.19 in [1]). Let f(t, θ) = F t
Aθ(p). Using

the chain rule we get the following ordinary differential equation in t with parameter

θ: 
(

∂f
∂θ

)′
= ∂Aθ

∂x
∂f
∂θ

+ ∂Aθ

∂θ

∂f
∂θ

(0) = 0
(3.1)

where ∂Aθ

∂x
is the Jacobian of Aθ. One can check that (3.1) is equivalent to the following

system: 
(

∂f
∂θ

)′
= D ∂f

∂θ
Aθ + ∂Aθ

∂θ

∂f
∂θ

(0) = 0
(3.2)

where D ∂f
∂θ
Aθ is the Lie derivative of Aθ by ∂f

∂θ
. We will find a solution to (3.2) in

the form a(t)A + b(t)J(A). Then ∂f
∂θ

, the unique solution of (3.2), is of this form.
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Therefore, both ∂f
∂t

and ∂f
∂θ

are linear combinations of A and J(A). This will complete

the proof of Claim 1. If we substitute a(t)A+ b(t)J(A) for ∂f
∂θ

into (3.2) use the fact

that DVW −DWV = [V,W ] we get:

0 = a′(t)A+ (a(t) sin(θ)− b(t) cos(θ))[J(A), A] (3.3)

+b′(t)J(A) + sin(θ)A− cos(θ)J(A)

0 = a(0) = b(0)

Suppose that we can show that [J(A), A] is a linear combination of A and J(A) at

points of Ms with smooth coefficient functions. Then after collecting terms containing

A and J(A), respectively, (3.3) becomes an initial value problem for (a(t), b(t)) that

has a (unique) solution, and we are done. Cartan’s formula shows that if X is complex

tangential vector field of type (1, 0) then Lρ(X) gives the component of [X,X] that

is not complex tangential. Therefore, [J(A), A] is complex tangential at points of Ms

because A− iJ(A) is a Levi null direction. In C2, this means that it is a (real) linear

combination of A and J(A). The argument so far comes entirely from [10]. In higher

dimensions, some additional work is needed.

Since X1 = A − iJ(A) the commutator we are interested in is
[
X1, X1

]
=

2i[A, J(A)]. If X1 is a Levi null field in a full neighborhood of p, then [X1, X1]

would likewise be ([28]). However, we only know that Lρ(X1, X1) = 0 on Ms. What

we can assert is that
[
X1, X1

]
= Y − Y + ϕ(Ln − Ln), where Y is a smooth complex

tangential field of type (1, 0), Ln is the complex normal to the boundary, and ϕ is a

smooth, nonnegative function that vanishes on Ms. The nonnegativity of ϕ is a con-

sequence of the pseudoconvexity of Ω. What we need is that on Ms, Y is a multiple

of X1. The Jacobi identity for X1, X1, and Xk gives

[
Y − Y + ϕ(Ln − Ln), Xk

]
+
[
[X1, Xk], X1

]
+
[
[Xk, X1], X1

]
= 0, (3.4)
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for k = 1, · · · , n−1.We have replaced
[
X1, X1

]
in the first term by Y −Y +ϕ(Ln−Ln).

We will use the the following fact : let X and Y be two complex tangential vector

fields of type (1, 0). Then [X,Y ] is complex tangential at q if X or Y is in Levi null

direction at q. The second and third commutators in (3.4) are complex tangential

at points of Ms if k ≥ 2. To see this, note that X1 is in the nullspace of the Levi

form at points of Ms and that both the commutators [Xk, X1] and
[
X1, Xk

]
are

complex tangential in a full neighborhood of p in bΩ (the latter because X1, · · · , Xn−1

diagonalize the Levi form near p). Consequently, the first commutator is complex

tangential at points of Ms as well. Since ϕ is nonnegative in a neighborhood of Ms

in bΩ and vanishes on Ms its first order tangential derivatives vanish at points of

Ms. Therefore,
[
ϕ(Ln − Ln), Xk

]
is zero, and

[
Y − Y ,Xk

]
and

[
Y ,Xk

]
are complex

tangential at points of Ms. It follows that at points of Ms, Y is in the nullspace of

the Levi form and thus is a multiple of X1. This completes the proof of Claim 1. We

remark that a similar use of the Jacobi identity occurs in [28].

Once Lemma 6 and Claim 1 are in hand, the proof of Theorem 9 can be completed

as in [10], with only small modifications. Assume that there is a compact subset K

of Ω and a boundary point p ∈ K̂ \K and there is no analytic disc in the boundary

through p. Then p is a weakly pseudoconvex point and by assumption zero is an

eigenvalue (with multiplicity one) of the Levi form at p. By Lemma 6 take V to be

a neighborhood of p small enough so that V ∩K = ∅ and so that there are complex

tangential fields X1, · · · , Xn−1 of type (1, 0) which diagonalize the Levi form in a

neighborhood of bΩ ∩ V , with Lr(X1, X1)(p) = 0. By Claim 1, there exist θ and

t0 > 0 such that F t0
Aθ(p) ∈ V and F t0

Aθ(p) is a strongly pseudoconvex point, where

A = X1 + X1. Near p, choose a boundary coordinate system (t1, t2, · · · , t2n−1, r)

such that Aθ = ∂
∂t1
. Without loss of generality we may assume that V is contained

in this coordinate patch. We will follow [10] to show that the integral curve of Aθ
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from t1 = 0 to t1 = t0, and hence p, can be separated by the level set of a strictly

plurisubharmonic function from any compact subset of Ω \ V . This contradiction (to

p ∈ K̂ \ K for some compact K) will complete the proof. As in [10], consider the

auxiliary function

g(t1, t2, · · · , t2n−1, r) =
t1 + 1

m

1 +m2(t22 + · · ·+ t22n−1)

and the sets Sc = {(t1, t2, · · · , t2n−1, 0) : g(t1, t2, · · · , t2n−1, 0) = c, 0 ≤ t1 ≤ t0}.

Choose m sufficiently large such that Sc ⊂⊂ V ∩bΩ for all c with 1/m ≤ c ≤ t0+1/m.

By shrinking V if necessary we may assume that any point in the set {z ∈ bΩ ∩ V :

t1(z) ≥ t0} is strongly pseudoconvex. In [10], g is modified, but the modification is

specified to be of order r2. Here, it is important to also have a term that is of order

r. Specifically, set h = g+ µr+ νr2 for µ, ν positive numbers to be determined. Now

we want to calculate the Levi form of the hypersurface {z ∈ V : h(z) = ζ} on bΩ.

Lh(M) = Lg(M) + 2ν|αn|2 + µ
n−1∑
j=1

|αj|2Lr(Xj)

+ 2µRe

(
n−1∑
j=1

αnαjLr(Xn, Xj)

)
+ µ|αn|2Lr(Xn)

where M =
∑n

j=1 αjXj and M(h) =
∑n

j=1 αjXj(g) + µαn = 0,
∑n

j=1 |αj|2 = 1. Using

the inequality 2ab ≤ εa2 + 1
ε
b2 for ε > 0 and M(h) = 0 we get the following: There

exists C > 0 such that |Lg(M)|, |Lr(Xj, Xk)| < C for j, k = 1, · · · , n. Hence we have

Lh(M)≥Lg(M) + (2ν − µC)|αn|2 + µ

n−1∑
j=1

(|αj|2Lr(Xj)− 2C|αnαj|)

≥−C +

(
2ν − µC − (n− 2)µC2

ε

)
|αn|2 + µ

n−1∑
j=2

|αj|2(Lr(Xj)− ε)

−2µC|αnα1|
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Using M(h) =
∑n

j=1 αjXj(g) + µαn = 0 we get

Lh(M)≥−C +

(
2ν − µC − (n− 2)µC2

ε

)
|αn|2 + µ

n−1∑
j=2

|αj|2(Lr(Xj)− ε)

− 2µC

|X1(g)|

n−1∑
j=2

|αn|.|αj|.|Xj(g)| −
(

2µ2C

|X1(g)|
+

2µC|Xn(g)|
|X1(g)|

)
|αn|2

≥−C + 2ν|αn|2 + µ

n−1∑
j=2

(
Lr(Xj)− ε− εC|Xj(g)|2

|X1(g)|

)
|αj|2

−
(
µC +

(n− 2)µC2

ε
+

2µ2C

|X1(g)|
+

2µC|Xn(g)|
|X1(g)|

+
(n− 2)µC

ε|X1(g)|

)
|αn|2

Notice that |X1(g)| > 0 on U and Lr(Xj) = 1 for j = 2, · · · , n − 1. So by choosing

sufficiently small ε > 0 and sufficiently large µ, ν we get

Lh(M) ≥ −C +
µ

2

n∑
j=2

|αj|2

There exists 0 < δ < 1 such that |α1| < 1− δ. Hence If we choose µ sufficiently large

we get a smooth function whose level surfaces are strongly pseudoconvex on V ∩ bΩ.

Let ψs be a smooth real valued function such that ψs(t1) = 1 for t1 ≤ t0, ψs(t1) = 0

for t1 ≥ s. Choose s > 0 such that

{(t1, t2, · · · , t2n−1, 0) : ψs(t1)g(t1, t2, · · · , t2n−1, 0) ≥ 1/m} ⊂⊂ V ∩ bΩ.

Let λ(z) = eτh(z) where τ is a real number. For sufficiently large τ the function λ(z)

is strongly plurisubharmonic in a neighborhood of V ∩bΩ. The function ψs(t1(z))λ(z)

is strongly plurisubharmonic at all points z ∈ V ∩ bΩ where t1(z) ≤ t0.

From here on, the argument is exactly as in [10], p. 54-55; we only sketch it.

To deal with the direction transverse to the boundary, Catlin applies his construc-

tion in [10], Theorem 3.1.6 (see also [11], Proposition 3.1.6). In our situation, this

construction yields a strictly plurisubharmonic function on a neighborhood V1 of p
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with {F t
Aθ(p) : 0 ≤ t ≤ t0} ⊂⊂ V1 ⊂⊂ V , whose superlevel set determined by p

is a compact subset of V1. Composition with a suitable convex increasing function

finally results in a plurisubharmonic function defined on all of Ω (by extension by 0)

that separates p from any compact subset of Ω \ V . This completes the proof of (the

nontrivial direction of) Theorem 9.



36

CHAPTER IV

STEIN NEIGHBORHOOD BASES

In this chapter we state and prove our main result about the existence of a Stein

neighborhood basis for the closure. We finish the chapter with some applications.

We first introduce some notation. We identify Cn with the (1, 0) tangent bundle

of Cn. Namely, (a1, . . . , an) is identified with
∑n

j=1 aj
∂

∂zj
. We denote

∑n
j=1 |wj|2 by

‖W‖2, where W = (w1, . . . , wn) ∈ Cn. Let ~n(z) ∈ R2n (∼= Cn by the standard

identification) be the unit outward normal vector of bΩ at z. We denote the directional

derivative in the direction ~n(z) at the point z by d
d~n(z)

. We define

d

dr(z)
=

1

‖∇r(z)‖
d

d~n(z)
.

Here, r is a defining function for the domain. Therefore, the gradient of r, ∇r(z),

does not vanish on the boundary. We define

ΓΩ = {(z,W ) ∈ bΩ× Cn : W (r)(z) = 0, ‖W‖ = 1,Lr(z;W ) = 0}.

For a vector (of type (1, 0)) A ∈ Cn and z ∈ bΩ we will denote

Cr(z;A) =
dLr(z;A)

dr(z)
,

Dr(z;A) = |A(ln ‖∇r‖)(z)|,

Nr =
n∑

j=1

∂r

∂z̄j

∂

∂zj

, and

Er(z;A) =
4

‖∇r(z)‖2
|Lr(z;A,N r)|,

where r is a defining function for Ω. We note that Cr, Er and Dr are not independent

of the defining function r. However, Dr ≡ 0 for a defining function r with the property

that ‖∇r(z)‖ = 1 for z ∈ bΩ. Now we can state the main theorem of the chapter.
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Theorem 10. Let Ω be a C3-smooth bounded pseudoconvex domain in Cn, n ≥ 2.

Assume that there exist ε > 0, h ∈ C2(Ω) and a defining function r of Ω with the

property that:

i) |W (h)(z)|2 ≤ Lh(z;W )

ii) Lh(z;W ) > 4(1 + ε)

(
2Er(z;W )Dr(z;W ) +

(Er(z;W ))2

ε
− Cr(z;W )

)
for (z,W ) ∈ ΓΩ. Then Ω has a Stein neighborhood basis.

The conditions we have in Theorem 10 may be viewed as a quantified version of

property (P̃ ) in that the eigenvalues of the complex Hessians are only required to have

a lower bound depending on the defining function of the domain. In the literature, the

inequality i) in Theorem 10 is referred to as having self-bounded complex gradient.

We will construct a defining function for the domain such that the level sets that

are sufficiently close to the closure will be boundaries of pseudoconvex domains.

Proof of Theorem 10. Assume that Ω satisfies the conditions in Theorem 10. Then

Ω has a defining function, r, and there exists a function h ∈ C2(Ω) and ε > 0 such

that i) and ii) in Theorem 10 are satisfied. We extend h to Cn as a C2 function and

call the extension h. We scale h, if necessary, so that there is a neighborhood of Ω on

which the conditions of the theorem are still satisfied. We define ρ(z) = r(z)eλh(z),

where 2λ(1 + ε) = 1. We will build a Stein neighborhood basis as follows: we will

show that there exists a neighborhood V of Ω such that ∇ρ is nonvanishing on V \Ω,

and the Levi form of ρ is nonnegative on vectors complex tangential to the level sets

of ρ in V \ Ω. Since Ω is bounded and ‖∇ρ‖ is continuous and strictly positive on

bΩ, the first part of the above argument follows immediately. Since Ω is bounded it

suffices to argue near a boundary point q.

Using translation and rotation we can move any point, q ∈ bΩ, to the origin such

that the yn-axis is the outward normal direction at 0. There exists a neighborhood
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Ũ of 0 on which ∂ρ
∂zn

does not vanish. If W = (w1, . . . , wn) is a complex tangential

vector to the level set of ρ at z ∈ Ũ \ Ω (i.e. W (ρ)(z) = 0) then

wn = −

((
∂ρ(z)

∂zn

)−1
)

n−1∑
j=1

∂ρ(z)

∂zj

wj. (4.1)

We introduce an auxiliary real valued function f to show the level sets of ρ are

pseudoconvex locally. We define f on (Ũ \ Ω)× Cn−1 as follows:

f(z,W ′) = e−λh(z)Lρ(z;W ),

where W = (w1, . . . , wn) and W ′ = (w1, . . . , wn−1), with wn given by (4.1).

Claim 2. To satisfy the local property above it is enough to have

df(z,W ′)

d~n(p)

∣∣∣
z=p

> 0 (4.2)

for any (p,W ) ∈ ((Ũ ∩ bΩ)× Cn) ∩ ΓΩ.

Proof of Claim 2. The localization can be phrased in terms of f as follows: for every

p ∈ Ũ ∩ bΩ there exists a neighborhood, Up, of p such that f(z,W ′) ≥ 0 for z ∈ Up \Ω

andW ′ ∈ Cn−1.Due to the continuity of the Levi form this is always true for a strongly

pseudoconvex point p ∈ Ũ ∩ bΩ. So we only need to consider weakly pseudoconvex

points in p ∈ Ũ ∩ bΩ. We choose an open neighborhood U of 0 such that U ⊂⊂ Ũ .

Let S = {W ′ ∈ Cn−1 : ‖W ′‖ = 1}. Notice that (U ∩ bΩ) × S is compact; and it

is enough to show that f(z,W ′) ≥ 0 for z ∈ U \ Ω and W ′ ∈ S. Assume that the

conditions in Claim 2 are satisfied for (p,Wp) ∈ ((Ũ ∩ bΩ) × Cn) ∩ ΓΩ. Then there

exist a neighborhood Up of p and an εp > 0 such that f(z,W ′) ≥ 0 for z ∈ Up \ Ω

and ‖W ′
p −W ′‖ < εp. This follows because f is nonnegative on (Ũ ∩ bΩ)×Cn−1, the

variable W ′ is independent of the variable of differentiation z and the left hand side

of (4.2) is continuous. Then we can cover the compact set (U ∩ bΩ) × S by finitely
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many sets open in Cn × Cn−1. We now choose an open set U1 ⊃⊃ U ∩ bΩ such that

f(z,W ′) ≥ 0 for (z,W ′) ∈ U1 × S.

Let z ∈ Ũ \ Ω, and W ∈ Cn, be a complex tangential vector to the level set of ρ

at z. Namely,

W (ρ)(z) = eλh(z)
(
W (r)(z) + λr(z)W (h)(z)

)
= 0. (4.3)

Now we will calculate the Levi form of ρ at z in the direction W . So first we differ-

entiate ρ with respect to zj to get

∂ρ

∂zj

(z) = eλh(z) ∂r

∂zj

(z) + λr(z)eλh(z) ∂h

∂zj

(z) (4.4)

and if we differentiate (4.4) with respect to z̄k we get

∂2ρ

∂z̄k∂zj

(z) = eλh(z) ∂2r

∂z̄k∂zj

(z) + λeλh(z) ∂h

∂z̄k

(z)
∂r

∂zj

(z) + λeλh(z) ∂r

∂z̄k

(z)
∂h

∂zj

(z)

+ λ2r(z)eλh(z) ∂h

∂z̄k

(z)
∂h

∂zj

(z) + λr(z)eλh(z) ∂2h

∂z̄k∂zj

(z)

Using (4.3) in the last equality we get

Lρ(z;W ) = eλh(z)
(
λr(z)Lh(z;W ) + Lr(z;W )− λ2r(z)|W (h)(z)|2

)
.

Therefore

f(z,W ′) = λr(z)Lh(z;W ) + Lr(z;W )− λ2r(z)|W (h)(z)|2 (4.5)

for z ∈ Ũ \ Ω and W = (W ′, wn) where wn is defined by (4.1). We will examine the

vector field W = (W ′, wn) with W ′ ∈ Cn−1 fixed and wn given by (4.1). Recall that

(p,W (p)) ∈ ΓΩ. Differentiate f(z,W ′) with respect to r(z) at p ∈ bΩ. Using (4.5) we

get:

λLh(p;W ) + Cr(p;W ) + 2Re
(
Lr(p;W, dW/dr)

)
− λ2|W (h)(p)|2. (4.6)
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Since W is a weakly pseudoconvex direction we only need to compute the complex

normal component of dW
dr(p)

at p to estimate the third term of the above expression.

Hence, we need to compute dW
dr(p)

(r)(p) which represents the following: first we differ-

entiate W by d
dr(p)

at p then apply the result to r and evaluate at p. If we differentiate

the left hand side of

W (r)(z) + λr(z)W (h)(z) = 0

we get:

d{W (r)(z) + λr(z)W (h)(z)}
dr(p)

∣∣∣
z=p

=
dW

dr(p)
(r)(p) +

n∑
j=1

wj
∇r(p)

‖∇r(p)‖2
· ∇
(
∂r

∂zj

)
(p)

+λW (h)(p)

=
dW

dr(p)
(r)(p) +

1

2
W
(
ln ‖∇r‖2

)
(p) + λW (h)(p)

=
dW

dr(p)
(r)(p) +W (ln ‖∇r‖)(p) + λW (h)(p).

We note that the second term in the first equality consists of a summation of dot

product of vectors. Thus we have:

dW

dr(p)
(r)(p) +W (ln ‖∇r‖)(p) + λW (h)(p) = 0. (4.7)

If Y = τNr + ξ where ξ is the complex tangential component of Y then

τ =
Y (r)(p)

Nr(r)(p)
=

4Y (r)(p)

‖∇r(p)‖2
.

Then using the above observation with (4.7) we conclude that the absolute value of

the third term in (4.6) is bounded from above by

2Er(p;W )
(
Dr(p;W ) + λ|W (h)(p)|

)
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Hence we want

λLh(p;W )− λ2|W (h)(p)|2 − 2Er(p;W )
(
λ|W (h)(p)|+Dr(z;W )

)
+ Cr(p;W ) (4.8)

to be positive for (p,W ) ∈ ΓΩ. Using the following inequalities

2λEr(p;W )|W (h)(p)| ≤ ελ2|W (h)(p)|2 +
(Er(p;W ))2

ε
,

2λ(1 + ε)|W (h)(p)|2 ≤ Lh(p;W ),

and

λLh(p;W ) > 2
(
2Er(z;W )Dr(z;W ) +

(Er(z;W ))2

ε
− Cr(p;W )

)
with 2λ(1 + ε) = 1 one obtains that (4.8) is positive for (p,W ) ∈ ΓΩ.

Remark 1. We cannot expect to obtain a plurisubharmonic defining function because

even a bounded pseudoconvex domain with real analytic boundary need not have

a plurisubharmonic defining function (see for example [25]). Regardless, when we

have a function h satisfying the conditions of Theorem 10 we can produce a defining

function whose level sets give a Stein neighborhood basis. In that case we get a

uniformly H-convex domain, which also has the Mergelyan approximation property

[18]. Indeed, all examples of smooth domains whose closures are known to have a

Stein neighborhood basis are uniformly H-convex. It would be interesting to know

if it is possible for a closure of a smooth domain to have a Stein neighborhood basis

without being uniformlyH-convex or without satisfying the Mergelyan approximation

property.

We denote the diameter of a set S by τS. For a defining function r we define

Cr = inf{Cr(z;W ) : (z;W ) ∈ ΓΩ},

Dr = sup{Dr(z;W ) : (z;W ) ∈ ΓΩ},
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Er = sup{Er(z;W ) : (z;W ) ∈ ΓΩ}

Corollary 3. Let Ω be a smooth bounded pseudoconvex domain in Cn, n ≥ 2, with

defining function r and K be the set of weakly pseudoconvex points in bΩ. Assume

that one of the following properties is satisfied:

Er = 0 and Cr > − 1

4τ 2
K

, (4.9)

Er > 0 and 2ErDr − Cr < 0, or (4.10)

Er > 0, 2ErDr − Cr ≥ 0 and
(
Er +

√
2ErDr − Cr

)2

<
1

4τ 2
K

. (4.11)

Then Ω has a Stein neighborhood basis.

Proof. Without loss of generality we may assume thatK is contained in a ball centered

at the origin with radius of τK . Let h(z) = 1
τ2
K
‖z‖2. Then

|W (h)(z)|2 ≤ 1

τ 4
K

∣∣∣∣∣
n∑

j=1

z̄jwj

∣∣∣∣∣
2

≤ ‖W‖2

τ 2
K

= Lh(z;W )

for (z,W ) ∈ Ω× Cn. So the first condition in Theorem 10 is satisfied. Additionally,

sup
(z;W )∈ΓΩ

{
2Er(z;W )Dr(z;W ) +

(Er(z;W ))2

ε
− Cr(z;W )

}
≤ 2ErDr +

(Er)
2

ε
− Cr.

We will show that if one of (4.9), (4.10), or (4.11) is satisfied, then there exists ε > 0

such that

(1 + ε)

(
2ErDr +

(Er)
2

ε
− Cr

)
<

1

4τ 2
K

(4.12)

That is, the second condition in Theorem 10 is satisfied. It is easy to see that (4.12) is

satisfied for small enough ε > 0 if (4.9) holds. If (4.10) is satisfied then one can choose

ε > 0 large enough so that the left hand side of (4.12) is negative. If (4.11) is satisfied

with 2ErDr−Cr = 0, one can choose ε > 0 large enough so that (1+1/ε)(Er)
2 <

1

4τ 2
K

.

On the other hand, if (4.11) is satisfied with 2ErDr − Cr > 0, the minimum of the
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left hand side of (4.12) is
(
Er +

√
2ErDr − Cr

)2

and it is attained when

ε =
Er√

2ErDr − Cr

> 0.

Thus one can choose ε > 0 so that (4.12) is satisfied.

Remark 2. We would like to note that when the defining function r is plurisubhar-

monic at z the Levi form (complex Hessian) is a positive semi-definite, self-adjoint

matrix. Then we can use Cauchy-Schwarz inequality to get Er = 0 when the do-

main has a defining function r that is plurisubharmonic on the boundary. This class

of domains has recently been studied in connection with global regularity of the ∂-

Neumann problem and the Bergman projection. See for example [7, 9, 36].

A. Applications

Let 4
‖∇ρ‖2Nρ = n+ iT where T is the “bad” (real tangential) direction, n is the unit

outward real normal vector, and ρ is a defining function. For X =
∑n

j=1 ξj
∂

∂zj
and a

vector field Y we define: DYX =
∑n

j=1 Y (ξj)
∂

∂zj
and DYX =

∑n
j=1 Y (ξ̄j)

∂
∂z̄j

.

Theorem 11. Let Ω be a smooth bounded pseudoconvex domain in C2. Assume that

there exists a defining function ρ that is plurisubharmonic on K and K = K1 such

that for any p ∈ K1 there exist two sequences {xj} and {yj} of K that converge to p

and two smooth one real dimensional curves γ and γ̃ (in Cn) with linearly independent

complex tangential (real) vectors at p such that xj ∈ γ, yj ∈ γ̃. Then Ω has a Stein

neighborhood basis.

Proof. Since Ω is pseudoconvex we have T (Lρ(z;X)) = 0 for a complex tangential

vector field X of type (1, 0) and z ∈ K. Therefore

‖∇ρ‖2

4
Cρ(z,X) = Nρ(Lρ(z;X)) = Nρ(Lρ(z;X)) = nρ(Lρ(z;X)) ∈ R
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for z ∈ K. For a vector field W of type (1, 0) one can easily check that:

X(Lρ(z;X,W )) = W (Lρ(z;X,X)) + Lρ(z;DXX,W ) + Lρ(z;X,DXW )

−Lρ(z;DWX,X)− Lρ(z;X,DWX).

Also DXX(ρ)(z) = X(X(ρ))(z)−Lρ(z;X). Since X is complex tangential (X(ρ) = 0

on bΩ) we have DXX(ρ)(z) = −Lρ(z;X). Let’s take Wρ = 4
‖∇ρ‖2Nρ. Therefore DXX

is complex tangential at weakly pseudoconvex points and Lρ(z;X,Nρ) = 0 implies

that

Cρ(z,X) = X(Lρ(z;X,W ρ)) ∈ R (4.13)

for z ∈ K. We will show that Cρ(z,X) > −1
4τ2

K
for z ∈ K. By Corollary 3 that is

sufficient to get a Stein neighborhood basis (recall that Eρ = 0, since ρ is plurisub-

harmonic on K1). Let X = A − iJ(A), X̃ = B − iJ(B) for A = γ′ and B = γ̃′ and

Lρ(z;X,W ρ) = α + iβ. By assumption α = β = 0 on {xj} ∪ {yj}. Then by smooth-

ness of ρ and the mean value theorem applied to α and β on γ and γ̃ respectively we

get A(α) = A(β) = B(α) = B(β) = 0 at p. Since A and B are linearly independent

and complex tangential at p we can write J(A) as a linear combination of A and B.

Therefore using (4.13) we conclude that Cρ(p,X) = A(α) + J(A)(β) = 0 on K2.

If a domain has a plurisubharmonic defining function and the set of weakly

pseudoconvex points is the closure of a set foliated by complex manifolds then it

satisfies the conditions in the above theorem. And hence has a Stein neighborhood

basis. Therefore, we have the following corollary.

Corollary 4. Let Ω be a smooth bounded pseudoconvex domain in C2 and K be a

subset of bΩ such that for any p ∈ K there exists an analytic disc Dp ⊂ bΩ that passes

through p. Assume that ρ is a defining function of Ω that is plurisubharmonic on bΩ

and every point in bΩ\K is strongly pseudoconvex. Then Ω has a Stein neighborhood
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basis.

Remark 3. When the set of weakly pseudoconvex points K is very thin (for example

if K = ∅) or very thick (if K is an open set in the boundary foliated by complex

manifolds) existence of a defining function that is plurisubharmonic on the boundary

is sufficient for the existence of a Stein neighborhood basis for the closure. Therefore

we expect that existence of a Stein neighborhod basis should be independent of the

size and geometry of the set of weakly pseudoconvex points under the assumption

that the defining function is plurisubharmonic on the boundary.

Remark 4. Existence of a Stein neighborhood basis for the closure when K1 is

foliated by complex manifolds has been studied by many authors including Bed-

ford and Fornæss([2]), Straube and Sucheston([58]), and Forstneric and Laurent-

Thiebaut([27]). They all use the method of “transversal holomorphic vector field”

developed by Fornæss and Nagel in [26] to get a Stein neighborhood basis for the

closure (See Theorem 6). In all those results to guarantee the existence of the vec-

tor field some restrictions on the “geometry” of the foliation are required. However,

in our case we have no condition on the foliation whatsoever. In fact, Theorem 11

does not require any foliation at all. In case K1 is foliated by complex manifolds

but the domain does not have a defining function that is plurisubharmonic on the

boundary there may not be any Stein neighborhood basis. For example, using a sim-

ilar construction as in [21], Bedford and Fornæss([2, page 21]) constructed a smooth

bounded pseudoconvex domain in C2 with the following properties: weakly pseudo-

convex points constitute a Levi flat hypersurface in C2 foliated by complex manifolds,

and the closure of the domain does not have a Stein neighborhood basis.

Corollary 5. Let Ω be a smooth bounded pseudoconvex domain in Cn, n ≥ 2, with

a plurisubharmonic (on Ω) defining function ρ. Assume that for any weakly pseudo-
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convex direction on the boundary (z,W ) (i.e. (z,W ) ∈ ΓΩ) there exists a sequence

{(zj,Wj)} in Ω×Cn that converges to (z,W ) such that Lρ(zj;Wj) = 0 for all j. Then

Ω has a Stein neighborhood basis.

Proof. Using plurisubharmonicity of ρ on bΩ one can check that Eρ = 0. To satisfy

the first condition in Corollary 3 we only need to show that Cρ = 0. Let f(z,W ) =

Lρ(z;W ). Then f is a nonnegative real valued function on Ω × Cn and hence any

first derivative of it vanishes on (zj,Wj) for all j. Since f is smooth on Ω × Cn we

conclude that Cρ = 0.

The following proposition is useful in producing examples of domains whose

closures have Stein neighborhod bases. In theory, it could happen that the set of

weakly pseudoconvex points is the finite union of disjoint compact sets such that

each is “good” for the purpose of having a pseudoconvex surface sufficiently close to

the closure. In that case we show that the closure of the domain still has a Stein

neighborhood basis. The idea is to “glue” the defining functions away from the set

of weakly pseudoconvex points.

Proposition 2. Let Ω be a smooth bounded pseudoconvex domain in Cn, n ≥ 2.

Assume that the set of weakly pseudoconvex points in the boundary is the finite union

of pairwise disjoint compact sets {K1, . . . , Kk}. Assume further that for every j ∈

{1, . . . , k} there exist a neighborhood Uj of Kj and ρj ∈ C2(Uj) such that

i) Uj ∩ Ω = {z ∈ Cn : ρj(z) < 0}, Uj ∩ bΩ = {z ∈ Cn : ρj(z) = 0}, Uj \ Ω = {z ∈

Cn : ρj(z) > 0} and the gradient of ρj does not vanish on Uj ∩ bΩ.

ii) Lρj
(z;W ) ≥ 0 for z ∈ Uj \ Ω and W (ρj)(z) = 0.

Then Ω has a Stein neighborhood basis.
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Proof. Since there are only finitely many of them, we shrink each Uj, if necessary,

to get a finite collection of pairwise disjoint open sets {U1, . . . , Uk}. For every j ∈

{1, . . . , k} we choose open neighborhoods Ũj,
˜̃
U j of Kj and φj ∈ C∞

0 (Uj) such that

i) Kj ⊂⊂
˜̃
U j ⊂⊂ Ũj ⊂⊂ Uj and,

ii) 0 ≤ φj ≤ 1, φj ≡ 1 on
˜̃
U j and φj = 0 out of Ũj

We also choose a defining function ρ for Ω and define φ = 1−
∑k

j=1 φj, and

r = φρ+
n∑

j=1

φjρj.

One can easily check that r is a defining function for Ω. Since r = ρj on
˜̃
U j we have

W (r)(z) = W (ρj)(z) and Lr(z;W ) = Lρj
(z;W ) on

˜̃
U j. Therefore, by assumption the

level sets of r give pseudoconvex surfaces in

(
∪k

j=1
˜̃
U j

)
\ Ω. Since

S = bΩ \

(
k⋃

j=1

˜̃
U j

)

is compact and any z ∈ S is strongly pseudoconvex, by continuity of the Levi form

there exists a neighborhood V of S such that Lr(z;W ) > 0 for z ∈ V andW (r)(z) = 0.

Therefore

bΩ ⊂ U = V ∪

(
k⋃

j=1

˜̃
U j

)
and for any z ∈ U and W (r)(z) = 0 we have Lr(z;W ) ≥ 0. By Sard’s theorem we

can choose a Stein neighborhood basis for Ω out of the level sets of r.
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CHAPTER V

SUMMARY

In chapter I we gave some motivation for studying the compactness of the ∂-Neumann

problem and Stein neighborhood bases for the closure of a smooth domain in Cn.

In the first part of chapter II we gave the set-up of the ∂-Neumann problem. Then

we defined the compactness property and gave basic properties of the compactness

of the ∂-Neumann problem. We also we gave a “potential theoretic” characterization

of compactness. In the second part we gave some background as well as sufficient

conditions for Stein neighborhood bases for the closure of a smooth domain in Cn.

In chapter III we stated the main theorems about compactness and gave the

proofs. We showed that a complex manifold M of dimension at least q for 1 ≤ q ≤

n − 1 in the boundary of a smooth bounded pseudoconvex domain Ω in Cn is an

obstruction to compactness of the ∂-Neumann operator on (p, q)-forms for 0 ≤ p ≤ n,

on Ω, provided that at some point of M , the boundary is strictly pseudoconvex in the

directions transverse to M . Although we believe that the conclusion of the theorem

should not depend on the rank of the Levi form our methods do not give a more

general result. We also showed that a boundary point where the Levi form has only

one vanishing eigenvalue can be picked up by the plurisubharmonic hull of a set only

via an analytic disc in the boundary.

In chapter IV we obtained a weaker and quantified version of McNeal’s Property

(P̃ ) which still implies the existence of a Stein neighborhood basis. Then we give some

applications on domains in C2 with a defining function that is plurisubharmonic on

the boundary.
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[37] L. Hörmander, L2 estimates and existence theorems for the ∂̄ operator, Acta

Math. 113 (1965), 89–152.

[38] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis,

de Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin,

1993.

[39] M. Kim, Inheritance of noncompactness of the ∂-Neumann problem, J. Math.

Anal. Appl. 302 (2005), no. 2, 450–456.

[40] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. II, Ann. of

Math. (2) 79 (1964), 450–472.

[41] J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm.

Pure Appl. Math. 18 (1965), 443–492.

[42] S. G. Krantz, Function Theory of Several Complex Variables, AMS Chelsea Pub-

lishing, Providence, RI, 2001, Reprint of the 1992 edition.

[43] P. D. Lax, Symmetrizable linear transformations, Comm. Pure Appl. Math. 7

(1954), 633–647.
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