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ABSTRACT 
 
 

Mathematical Modeling of Evaporative Cooling of 

Moisture Bearing Epoxy Composite Plates.  (May 2006) 

Gregory Steven Payette, B.S., University of Idaho 

Co-Chairs of Advisory Committee: Dr. R. Morgan 
                                                       Dr. J. Reddy 

 

Research is performed to assess the potential of surface moisture evaporative 

cooling from composite plates as a means of reducing the external temperature of 

military aircraft.  To assess the feasibility of evaporative cooling for this application, a 

simplified theoretical model of the phenomenon is formulated.  The model consists of a 

flat composite plate at an initial uniform temperature, T0.  The plate also possesses an 

initial moisture (molecular water) content, M0.  The plate is oriented vertically and at t=0 

s, one surface is exposed to a free stream of air at an elevated temperature.  The other 

surface is exposed to stagnant air at the same temperature as the plate’s initial 

temperature. 

The equations associated with energy and mass transport for the model are 

developed from the conservation laws per the continuum mechanics hypothesis.  

Constitutive equations and assumptions are introduced to express the two nonlinear 

partial differential equations in terms of the temperature, T, and the partial density of 

molecular water, ρw.  These equations are approximated using a weak form Galerkin 

finite element formulation and the α–family of time approximation.  An algorithm and 
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accompanying computer program written in the Matlab programming language are 

presented for solving the nonlinear algebraic equations at successive time steps.  The 

Matlab program is used to generate results for plates possessing a variety of initial 

moisture concentrations, M0, and diffusion coefficients, D. 

Surface temperature profiles, over time, of moisture bearing specimens are 

compared with the temperature profiles of dry composite plates.  It is evident from the 

results that M0 and D affect the surface temperature of a moist plate.  Surface 

temperature profiles are shown to decrease with increasing M0 and/or D.  In particular, 

dry and moist specimens are shown to differ in final temperatures by as much as 30°C 

over a 900 s interval when M0 = 30% and D is on the order of 10–8m2/s (T0 = 25°C, 

h = 60 W/m2°C, T∞ = 90°C). 
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CHAPTER I 

INTRODUCTION 

 

OVERVIEW 

Limiting the external temperature of current stealth aircraft is of major concern to 

the United States Air Force.  As the name suggests, a primary function of stealth 

vehicles is to avoid detection.  Detection is often associated with the visibility of an 

aircraft to radar signature devices.  The design of current stealth aircraft is such that they 

have extremely small radar signatures which are often comparable to those of small 

birds.  However, stealth aircraft are becoming more vulnerable to detection due to recent 

improvements in the IR signature detection devices of land–to–air missile systems.  If an 

aircraft deviates from its surroundings by only 1°C, detection can be achieved at military 

useful ranges [1].  Present stealth aircraft utilize cooling pipes within the wings and 

engine exhausts to limit external temperatures and thereby the associated IR signatures.  

However, more efficient fast, instantaneous cooling mechanisms are needed.  Several 

alternative methods for reducing external temperatures have been proposed.  In the 

present work the feasibility of one such method is mathematically assessed; namely the 

utilization of evaporative moisture surface cooling via the embedding of inorganic 

hydrate and moisture bearing fiber and particulate fillers into the surface layers of stealth 

aircraft. 

 
This thesis follows the style of Journal of Composite Materials. 
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EVAPORATIVE COOLING 

Evaporative cooling is deemed to be an appropriate alternative mechanism for 

the cooling of stealth aircraft due to its simplicity, as well as its success as a cooling 

mechanism in other applications.  Evaporative cooling of liquid water occurs when the 

surface of a body of water or moist object is exposed to an open environment which is 

commonly air.  Under these conditions the water will begin to evaporate.  This is due to 

the natural tendency of liquid water to seek to achieve phase equilibrium with the 

moisture content of the environment [2].  As water evaporates the latent heat of the 

vaporized water, or heat of vaporization, is absorbed from the body and the surrounding 

environment.  In the absence of other mechanisms of heat transfer (i.e., convection and 

radiation), a net cooling effect of the body’s surface is experienced.  This phenomenon 

has been utilized for cooling for thousands of years in biological systems and 

engineering designs. 

 

Figure 1.  The structure of skin. 
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In biological systems the eccrine sweat gland in the skin executes the primary 

function of evaporative moisture cooling (see Figures 1 and 2).  These sweat glands are 

simple coils of colloidal epithelium, which produce 0.5-10 liters/day of 99% pure water.  

Engineering systems that have successfully utilized evaporative cooling include 

evaporative coolers (swamp coolers), cooling towers, sweat cooling devices, and 

processes associated with the cooling and drying of food products just to name a few.  In 

each of these systems evaporative cooling has been demonstrated to be a very useful 

mechanism for cooling. 

 

Figure 2.  Eccrine sweat gland. 

 

In addition to the aforementioned applications of evaporative cooling, it is 

believed that high moisture bearing fibers (up to 30 wt% moisture) of 

polyamidobenzimidazole were used by the former Soviet Union in their intercontinental 
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ballistic missile rocket motor casings.  The purpose of these composites was to limit 

thermal–induced damage from laser threats by countering the potential heat of lasers 

with the latent heat of the imbedded moisture [3].  Subsequent studies have 

demonstrated that such composites can dissipate up to an order of magnitude greater 

thermal energy compared to dry composites [4]. 

 

OBJECTIVE 

It has been proposed that high moisture particulate fillers be incorporated into 

high temperature polyimides, namely AFR-PEPA-N polyimides.  It is anticipated that 

these polyimides will be able to be utilized as outer surfaces at critical locations 

(locations of high heat exposure) on military stealth aircraft.  When these sections are 

exposed to high temperature airflows, the imbedded molecular moisture will be 

transported by diffusion to the outer surface of the composite where evaporation will 

occur.  It is expected that the latent heat released due to evaporation will tend to reduce 

the effects of the high temperature airflows on the surface temperatures of stealth 

aircraft. 

The main objective of the present study, therefore, is to mathematically evaluate 

the proposed alternative method for reducing the external temperatures of military 

aircraft.  This is accomplished by 

1. Formulating a simplified physical model of the evaporative cooling 

phenomenon. 
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2. Deriving the governing differential equations describing the energy and 

mass transfer per the simplified model from the conservation laws of 

continuum mechanics. 

3. Simplifying the governing equations through appropriate assumptions and 

constitutive relationships. 

4. Developing Galerkin weak form finite element models of the governing 

equations. 

5. Creating a computer algorithm for solving the governing equations. 

6. Utilizing the computer algorithm to generate results for dry composite 

specimens and moisture bearing composite specimens. 

7. Evaluating the results to assess the potential of surface moisture 

evaporative cooling of moisture bearing composites as a means of 

reducing the external temperature of military aircraft. 
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CHAPTER II 

DEVELOPMENT OF GOVERNING EQUATIONS 

 

PHYSICAL MODEL 

To address the potential of evaporative cooling as a means of reducing the 

external temperature of stealth aircraft, it is first necessary to develop a physical model 

of the phenomena and the corresponding governing equations associated with that 

model.  In the interest of computational time it is convenient to develop a model which is 

as simple as possible yet complex enough to accurately assess the potential of 

evaporative cooling for the current application.  Since subsequent experimental research 

will also be performed to assess the feasibility of the present study it also important to 

produce a model whose predictions may be compared with experimental data. 

 

 

Figure 3.  Thin flat plate where PL L . 
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The model chosen for the present study is a flat plate of dimensions LP×LP×L.  

An illustration of this model is presented in Figure 3.  The plate possesses a uniform 

initial temperature and molecular moisture content.  At a given time, t=0, the plate is 

exposed on both surfaces to streams of air containing known free stream temperatures 

and moisture contents.  As a result heat and moisture will begin to transfer through the 

plate (see Figure 4). 

 

 
 

Figure 4.  Heat and moisture transport. 

 

ASSUMPTIONS 

It is necessary to impose assumptions upon the physical model to simplify the 

mathematical equations that will be formulated.  The overall effect of these assumptions 

on the behavior of the plate is considered to be negligible in the analysis.  The 

assumptions are as follows: 

z 

x 

Energy Flux 

Energy Flux 

Moisture Flux 

Moisture Flux 

L 
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1. The moisture bearing composite plate is isotropic.  This allows for the use 

of Fourier’s law of heat conduction. 

2. The convective heat and mass transfer coefficients on both sides of the 

plate are uniform.  Thus at any z location within the plate and for all 

values of time, t, the temperature and molecular moisture content will be 

uniform in the x and y directions (i.e., independent of x or y).  This 

reduces the governing equations to one dimensional form. 

3. Heat transfer at the plate surfaces due to radiation is negligible. 

4. Diffusion of molecular moisture within the composite plate may be 

described by Fick’s Law of Diffusion. 

5. The rate of evaporation is small and does not significantly affect the 

boundary layer of the air flowing over the plate.  As a result the 

convective heat and mass transfer coefficients are considered to be 

independent of the rate of mass transfer. 

6. The temperature of the free stream air is less than 100°C.  In addition, 

evaporation is assumed to occur at the plate surface and not within the 

plate. 

7. The density of the water vapor at the surface of the plate is approximated 

as 

 ( )s sat s wT mρ ρ=  (2.1) 
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where mw is the mass fraction of water just below the plate surface (inside 

the plate) and ρs is the partial density of water vapor just above (or below) 

the plate surface.  In addition Ts is the surface temperature. 

8. The thickness of the plate (z-direction) is unaffected by changes in 

molecular moisture content. 

9. Surface tension, stress tensor components, and capillary forces are 

negligible (i.e., zero). 

With the preceding physical model and assumptions, it is possible to derive the 

equations governing the behavior of the flat plate depicted in Figure 3 from the laws of 

physics.  In the context of the present work the “laws of physics” is considered to be 

synonymous with the conservation axioms and entropy inequality per the continuum 

mechanics hypothesis.  In formulating the equations governing the evaporative cooling 

of composite plates, it is necessary to consider two fundamental laws, namely 

conservation of energy and conservation of mass. 

 

FIRST AXIOM OF THERMODYNAMICS 

For many physical phenomena the heat equation is sufficient for performing heat 

transfer analysis.  Its applicability, however, is generally restricted to modeling physical 

occurrences where heat is transferred in the absence of other forms of energy transport 

(i.e., mass diffusion) [5].  For phenomena involving coupled heat and mass transfer, the 

standard heat equation can be modified to account for the transfer of energy by diffusion. 
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The first axiom of thermodynamics which is also known as the first law of 

thermodynamics or conservation of energy principle may be used to derive the 

governing energy equation.  This axiom applied to a continuum is the assertion that the 

time rate of change in internal and kinetic energies is equal to the rates of heat addition 

and work of the applied forces.  This is expressed mathematically over an arbitrary 

region as [6,7] 

 ( ) ( )21
2R S R

D dR dS r dR
Dt

ρ ε ρ⎛ ⎞+ = ⋅ ⋅ − ⋅ + ⋅ +⎜ ⎟
⎝ ⎠∫ ∫ ∫v v σ n q n v b  (2.2) 

In Eq. (2.2) the quantities ρ, ε, v, σ , q, b, r, and n are defined as density, internal energy, 

velocity, stress, heat flux, body force, heat supply density and unit normal vector.  

Bolded quantities denote vectors.  Double arrows above bolded quantities signify second 

order tensors.  Furthermore, in Eq. (2.2), R and S refer to the arbitrary region (volume) 

and the closed surface of that region respectively.  The derivative operator per Eq. (2.2) 

represents the substantial derivative or material derivative operator that is commonly 

used in the Lagrangian frame of reference. 

 Applying Leibniz’s rule [6] allows Eq. (2.2) to be rewritten in the Eulerian frame 

of reference as 

 
( )

( )

2 21 1
2 2R S S

R

dR dS dS
t

r dR

ρ ε ρ ε

ρ

⎧ ⎫ ⎧ ⎫∂ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ + + ⋅ = ⋅ ⋅ − ⋅⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

+ ⋅ +

∫ ∫ ∫

∫

v v v n v σ n q n

v b
 (2.3) 

Gauss’s divergence theorem [6] is next used to write Eq. (2.3) as a single integral 

statement over the arbitrary region R. 
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 ( ) ( )2 21 1 0
2 2R

r dR
t
ρ ε ρ ε ρ

⎧ ⎫∂ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ +∇ ⋅ + −∇ ⋅ ⋅ − − ⋅ + =⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭
∫ v v v v σ q v b  (2.4) 

Requiring body forces, heat supply density and all stress tensor components to be zero 

allows the above equation to be simplified considerably.  The result is 

 2 21 1 0
2 2R

dR
t
ρ ε ρ ε

⎧ ⎫∂ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ +∇⋅ + +∇ ⋅ =⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭
∫ v v v q  (2.5) 

 Order of magnitude analysis allows for one final simplification of Eq. (2.5).  If 

the mass average velocity of the material is small (i.e., 1v ), the kinetic energy terms 

are negligible as they are determined from the square of the velocity.  These terms are 

therefore higher order and may be neglected in the analysis.  Under this condition, Eq. 

(2.5) simplifies to 

 ( ) ( ) 0
R

dR
t
ρε

ρε
∂⎡ ⎤

+∇ ⋅ +∇ ⋅ =⎢ ⎥∂⎣ ⎦
∫ v q  (2.6) 

Since the region chosen in Eq. (2.2) was arbitrary it follows that the integrand of Eq. 

(2.6) must be zero.  Thus the differential energy equation becomes 

 ( ) ( ) 0
t
ρε

ρε
∂

+∇⋅ +∇ ⋅ =
∂

v q  (2.7) 

which is a common form of the energy equation in the literature [5,8,9]. 

 

AXIOM OF CONSERVATION OF MASS 

 The conservation of mass principle may be utilized to derive the governing 

differential equation describing mass transport.  Conservation of mass states that the 

time rate of change of mass is constant.  This principle may be applied to the total mass 
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or the individual masses of species in a mixture [10].  The conservation of mass 

principle applied to molecular water imbedded in an epoxy composite in an arbitrary 

region implies that [6] 

 0w
R

D dR
Dt

ρ =∫  (2.8) 

It should be noted that Eq. (2.8) assumes that there is no generation of molecular 

water from chemical reactions.  This is reasonable for the present analysis.  Applying 

Leibniz’s rule allows Eq. (2.8) to be rewritten as 

 0w
w

R S

dR dS
t
ρ ρ∂

+ ⋅ =
∂∫ ∫ v n  (2.9) 

Gauss’s divergence theorem is next used to write Eq. (2.9) as a single integral statement 

over the region. 

 ( ) 0w
w w

R

dR
t
ρ ρ∂⎡ ⎤+∇ ⋅ =⎢ ⎥∂⎣ ⎦∫ v  (2.10) 

Since the region chosen in Eq. (2.8) is arbitrary it follows that the integrand of Eq. (2.10) 

must be zero.  This implies that 

 ( ) 0w
w wt

ρ ρ∂
+∇⋅ =

∂
v  (2.11) 

 

CONSTITUTIVE RELATIONSHIPS 

In their present forms Eqs. (2.7) and (2.11) are indeterminate as there are more 

unknowns than equations.  For this reason it is necessary to introduce constitutive 
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relationships to allow these equations to be solved.  The first constitutive relationship 

that will be introduced relates internal energy to enthalpy, pressure and density as [11] 

 ˆ phε
ρ

= −  (2.12) 

where the quantities ĥ , and p represent the enthalpy and pressure of the mixture 

respectively. 

The material studied in this analysis is treated as a binary mixture of molecular 

water imbedded in a solid epoxy composite plate.  The product ĥρ v  may therefore be 

expressed as a summation of contributions of the individual species of the mixture [10].  

This is written as 

 
1

ˆ ˆ
n

i i i
i

h hρ ρ
=

=∑v v  (2.13) 

Eq. (2.13) is applicable to a mixture composed of n species.  The quantity iρ  in 

the above equation is the partial density of a particular species [10].  Partial density is 

defined as the mass of constituent i in a small volume of a mixture divided by the 

volume of that mixture.  The quantities îh  and iv  are the enthalpy and absolute velocity 

of the ith species of the mixture.  In the present study n=2 and Eq. (2.13) reduces to 

 ˆ ˆ ˆ
e e e w w wh h hρ ρ ρ= +v v v  (2.14) 

where the subscripts e and w refer to the epoxy matrix and the imbedded molecular 

water respectively.  Since the epoxy is stationary, Eq. (2.14) further reduces to 

 ˆ ˆ
w wh hρ ρ= wv v  (2.15) 
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In the literature [10,11], the mass average velocity, v, of a binary system is 

defined by the following equation 

 e wρ ρ ρ= +e wv v v  (2.16) 

Since the epoxy composite matrix is stationary Eq. (2.16) reduces to 

 wρ ρ ′′= =w wv v n  (2.17) 

Eq. (2.17) illustrates that in the current study the mass average velocity 

multiplied by the density, ρv, is equivalent to the mass flux of the molecular water, ′′
wn , 

in the epoxy.  The mass flux of the molecular water relative to the average mass velocity 

of the binary mixture is denoted by jw.  It is defined as [10,11] 

 ( )wρ= −w wj v v  (2.18) 

Eqs. (2.17) and (2.18) may be combined to relate ′′
wn  to jw as 

 1
1 wm

′′ =
−w wn j  (2.19) 

where mw is the mass fraction of water in the mixture.  It is the ratio of the partial density 

of molecular water to the total density of the mixture.  It is expressed as 

 w w
w

e w

m ρ ρ
ρ ρ ρ

= =
+

 (2.20) 

It is next important to introduce a constitutive relationship for jw.  Under the 

condition of material symmetry (i.e., isotropic material) coupled with the assumption 

that water molecules diffuse in epoxy composites due to species concentration gradients, 

Fick’s Law of Diffusion applies.  Fick’s Law is expressed as [10,11] 
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 wD mρ= − ∇wj  (2.21) 

Fick’s Law of Diffusion is a large assumption as mass diffusion may result from 

the combination of many factors including temperature and pressure gradients, as well as 

external forces [5,9].  Assuming Fick’s Law to be adequate allows for the following 

assertion 

 1
1 1w w

w w

D m
m m

ρρ = = − ∇
− −w wv j  (2.22) 

The next constitutive relationship that will be introduced is Fourier’s Law of 

Heat Conduction [5] which relates the components of the heat flux vector, q, to 

temperature, T.  This set of equations is applicable to isotropic materials and is written as 

 k T= − ∇q  (2.23) 

Enthalpy may also be related to the temperature by 

 ˆ
Ph c T=  (2.24) 

where cp is the effective specific heat of the mixture of epoxy / molecular moisture. 

 

ENERGY EQUATION 

By utilizing the constitutive relationships developed in the preceding section, the 

energy equation may be expressed in terms of just two dependent variables, namely the 

temperature, T, and the partial density of the molecular water, wρ .  Inserting Eq. (2.12) 

into the energy equation, Eq. (2.7), and neglecting the effects of pressure variations 

results in 
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( ) ( )

ˆ
ˆ 0

h
h

t

ρ
ρ

∂
+∇ ⋅ +∇ ⋅ =

∂
v q  (2.25) 

Applying Eq. (2.15) allows the above to be rewritten as 

 
( ) ( )

ˆ
ˆ 0w w

h
h

t

ρ
ρ

∂
+∇ ⋅ +∇⋅ =

∂ wv q  (2.26) 

Substituting the results of Eqs. (2.17) and (2.19) into Eq. (2.26) results in 

 
( )ˆ 1ˆ 0

1w
w

h
h

t m

ρ∂ ⎛ ⎞
+∇ ⋅ +∇ ⋅ =⎜ ⎟∂ −⎝ ⎠

wj q  (2.27) 

Finally, by utilizing the constitutive relationships per Eqs. (2.21), (2.23) and (2.24) 

allows the energy equation to be expressed as 

 ( ) ( ) , 1P P w w
w

Dc T k T c T m
t m

ρρ
⎛ ⎞∂

= ∇ ⋅ ∇ +∇⋅ ∇⎜ ⎟∂ −⎝ ⎠
 (2.28) 

where cP,w is the specific heat of water. 

If heat transfer in one or more directions can be considered negligible then the 

energy equation simplifies considerably.  For the case of the flat plate depicted in Figure 

3, the thickness of the component is very small in comparison to the other two 

dimensions (i.e., PL L ).  Under these circumstances Eq. (2.28) reduces to the 

following one dimensional form 

 ( ) , 1
w

P P w
w

mT Dc T k c T
t z z z m z

ρρ
⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ − ∂⎝ ⎠ ⎝ ⎠

 (2.29) 

Equations similar to Eq. 2.29 have been presented and used in the literature [5,12]. 
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Eq. (2.29) represents the governing nonlinear energy equation for the present 

study of coupled heat and mass transfer.  It should be noted that this equation possesses 

two dependent variables, namely T and wρ .  As a result the transport of energy is 

coupled to the mass transport of the molecular water.  In the absence of mass transport, 

the governing three-dimensional form of the energy equation reduces to 

 ( ) ( )Pc T k T
t
ρ∂

= ∇⋅ ∇
∂

 (2.30) 

which is the classical heat diffusion equation [11]. 

 

MASS TRANSPORT EQUATION 

As was mentioned previously the energy equation, Eq. (2.28), on its own is 

indeterminate as it contains two dependent variables, namely temperature, T, and partial 

density of molecular water, wρ .  This is expected as this equation was derived to include 

the effects of mass transfer.  It is for this reason that the conservation of mass principle is 

also needed for the present analysis. 

The mass transport equation is produced by using the result of Eq. (2.17).  This 

allows Eq. (2.11) to be written in terms of the mass flux of the water.  This results in 

 0w

t
ρ∂ ′′+∇ ⋅ =
∂ wn  (2.31) 

Using the result of Eq. (2.19) allows Eq. (2.31) to be written as 

 1 0
1

w

wt m
ρ ⎛ ⎞∂

+∇ ⋅ =⎜ ⎟∂ −⎝ ⎠
wj  (2.32) 
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The constitutive relationship employed to allow for the solving of Eq. (2.32) is 

Fick’s Law of Diffusion which was presented in Eq. (2.21).  Inserting this relationship 

into Eq. (2.32) results in  

 
1

w
w

w

D m
t m
ρ ρ⎛ ⎞∂

= ∇ ⋅ ∇⎜ ⎟∂ −⎝ ⎠
 (2.33) 

which reduces to the following one–dimensional form for the case of a thin flat plate 

 
1

w w

w

mD
t z m z
ρ ρ⎛ ⎞∂ ∂∂

= ⎜ ⎟∂ ∂ − ∂⎝ ⎠
 (2.34) 

which is the classical mass transport equation [11]. 
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CHAPTER III 

FINITE ELEMENT MODEL OF GOVERNING EQUATIONS 

 

The energy and mass transport equations, Eqs. (2.29) and (2.34), developed in 

Chapter II are nonlinear and coupled.  The material properties (k, cP and D) of these 

equations are functions of z, T and wρ  and thus produce nonlinearity.  Equation (2.29) 

contains the product of T and the derivative of wρ  which further contributes to the 

nonlinear nature of the equations.  Coupling is obvious as the energy equation contains 

derivatives of wρ .  It is further demonstrated later in this chapter that coupling is also 

exhibited in the boundary conditions of Eqs. (2.29) and (2.34). 

Unlike special cases of the classical heat and mass transfer equations, Eqs. (2.29) 

and (2.34) do not posses known analytical solutions.  It is therefore necessary to seek 

approximate solutions of these equations that will yield sensible results.  Several 

approximation methods for solving differential equations are available including Finite 

Differences, Weighted Residuals, Finite Elements, etc [13,14].  In the present work the 

governing equations are approximated using a weak form Galerkin finite element 

formulation [14]. 

 

WEAK FORM OF ENERGY EQUATION 

The first step in creating the finite element model is to develop the weak forms of 

Eqs. (2.29) and (2.34).  The explicit form of an equation accompanied by that equation’s 
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boundary conditions (essential and natural) is often denoted as the strong form of an 

equation.  The weak form of an equation (which is equivalent to the strong form) on the 

other hand is a single equation containing the natural boundary terms as well as a 

relaxation in the differentiability requirements of the dependent variable(s).  As a result, 

the weak form is a suitable building block of a finite element model [13]. 

The weak form of Eq. (2.29) is constructed by first moving all terms of the 

equation to the left hand side.  Since the approximate solution to be introduced will be 

incapable of satisfying the differential equation exactly, it follows that the equation will 

equal a residual value.  The residual Rh may be written as 

 ( ) , 1
w

h P P w
w

mT DR c T k c T
t z z z m z

ρρ
⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞= − − ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ − ∂⎝ ⎠ ⎝ ⎠

 (3.1) 

Eq. (3.1) is next multiplied by a weighting function w and integrated over the physical 

domain.  The integral of this weighted residual is required to be zero.  This is expressed 

mathematically as 

 ( ) , 0
1

w
P P w

w

mT Dw c T w k w c T d
t z z z m z

ρρ
Ω

⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞− − Ω =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ − ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫  (3.2) 

where Ω represents the volume of the body which is in this case a thin flat plate. 

The physical domain is next discretized into a set of finite elements.  An 

illustration of this process is presented in Figure 5.  In this figure L is the thickness of the 

plate, e is the integer assigned to the eth element, NN is the number of nodes and NE is 

the number of elements in the finite element model.  Figure 5 also illustrates the manner
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Figure 5.  Thin flat plate discretized into a set of one dimensional finite elements. 
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in which the local coordinate ez  per element e is related to the global coordinate z.  In 

addition, the quantity eL  is the length of element e. 

With the domain discretized as depicted in Figure 5, Eq. (3.2) may be written for 

the eth element of the model as 

 ( ) , 0
1

e
b

e
a

z
w

P P w
wz

mT Dw c T w k w c T dz
t z z z m z

ρρ
⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞− − =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ − ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫  (3.3) 

Eq. (3.3) is thus applicable to each element of the model.  The limits of integration e
az  

and e
bz  are the boundaries of the eth element of the model in the z direction as is shown 

in Figure 5. 

The next step in creating the weak form of the energy equation is to perform 

integration by parts on the second and third terms of the integrand of Eq. (3.3).  This 

operation relaxes the differentiability requirements of the approximate solution (from 

second order to first) while producing the natural boundary terms associated with the 

equation. 

 

( ) ,

,

1

0
1

e
b

e
a

ee bb

e ea a

z
w

P P w
wz

zz
w

P w
wz z

mw T w Dw c T k c T dz
t z z z m z

mT Dw k w c T
z m z

ρρ

ρ

⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞+ +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ − ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂⎡ ∂ ⎤⎛ ⎞− − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥∂ − ∂⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

∫
 (3.4) 

Eq. (3.4) may be further reduced to 

 
( )

( ) ( )

,

1 2

1

ˆ ˆ 0

e
b

e
a

z
w

P P w
wz

e e e e
a b

mw T w Dw c T k c T dz
t z z z m z

w z Q w z Q

ρρ
⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂⎛ ⎞+ +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ − ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

− − =

∫  (3.5) 
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where 

 1 , 2 ,
ˆ ˆ

1 1e e
a b

e ew w
P w P w

w wz z

m mT D T DQ k c T Q k c T
z m z z m z

ρ ρ⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂
= − − = +⎜ ⎟ ⎜ ⎟∂ − ∂ ∂ − ∂⎝ ⎠ ⎝ ⎠

 (3.6) 

The quantities 1
ˆ eQ  and 2

ˆ eQ  per Eq. (3.6) are the secondary variables [13] associated with 

the energy equation.  They are flux quantities representing the energy convecting from 

the boundaries of element e.  Equation (3.5) is therefore the weak form of Eq. (2.29). 

 

WEAK FORM OF MASS TRASPORT EQUATION 

 The development of the weak form of the mass transport equation follows the 

same steps used to develop the weak form of the energy equation.  Since Eq. (2.34) 

cannot be satisfied exactly, it will instead be equal to some residual value Rm.  This is 

expressed as 

 
1

w w
m

w

mDR
z m z t

ρρ⎛ ⎞∂ ∂∂
= − +⎜ ⎟∂ − ∂ ∂⎝ ⎠

 (3.7) 

Multiplying Eq. (3.7) by the weighting function w and requiring that the integral of the 

weighted residual be zero results in 

 0
1

w w

w

mDw w d
z m z t

ρρ

Ω

⎡ ⎤⎛ ⎞∂ ∂∂
− + Ω =⎢ ⎥⎜ ⎟∂ − ∂ ∂⎝ ⎠⎣ ⎦

∫  (3.8) 

Discretizing the domain into the same set of finite element used to approximate the 

energy equation results in 

 0
1

e
b

e
a

z
w w

wz

mDw w dz
z m z t

ρρ⎡ ⎤⎛ ⎞∂ ∂∂
− + =⎢ ⎥⎜ ⎟∂ − ∂ ∂⎝ ⎠⎣ ⎦

∫  (3.9) 
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Integration by parts is next performed on the first term of the integrand of Eq. (3.9).  

This operation results in 

 0
1 1

ee bb

e e
a a

zz
w w w

w wz z

m mw D Dw dz w
z m z t m z

ρρ ρ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂
+ − =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ − ∂ ∂ − ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫  (3.10) 

which may be further reduced to 

 ( ) ( )3 4
ˆ ˆ 0

1

e
b

e
a

z
e e e ew w

a b
wz

mw D w dz w z Q w z Q
z m z t

ρρ⎡ ⎤⎛ ⎞∂ ∂∂
+ − − =⎢ ⎥⎜ ⎟∂ − ∂ ∂⎝ ⎠⎣ ⎦

∫  (3.11) 

where 

 3 4
ˆ ˆ

1 1e e
a b

e ew w

w wz z

m mD DQ Q
m z m z

ρ ρ⎛ ⎞ ⎛ ⎞∂ ∂
= − =⎜ ⎟ ⎜ ⎟− ∂ − ∂⎝ ⎠ ⎝ ⎠

 (3.12) 

 Equation (3.11) is therefore the weak form of the nonlinear mass transport 

equation, Eq. (2.34).  It should be noted that the quantities 3
ˆ eQ  and 4

ˆ eQ  per Eq. (3.11) 

are the secondary variables of the mass transport equation.  They represent the mass 

diffusing from the boundaries of element e. 

 It should be obvious that the developed weak forms, Eqs. (3.5) and (3.11), share 

common attributes.  Both possess primary variables and flux terms.  Because of these 

similarities a general schematic is presented via Figure 6 that is applicable for both Eqs. 

(3.5) and (3.11).  This figure depicts an enlarged version of the eth element previously 

presented in Figure 5.  In Figure 6 u is the primary dependent variable and the quantities 

ˆ e
aQ  and ˆ e

bQ  are the secondary variables of a particular equation.  In the case of Eq. (3.5) 

u T= , 1
ˆ ˆe e

aQ Q=  and 2
ˆ ˆe e

bQ Q= .  For Eq. (3.11) wu ρ= , 3
ˆ ˆe e

aQ Q=  and 4
ˆ ˆe e

bQ Q= .  It 
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should be noted that the node numbers per Figure 3 are the local node numbers of 

element e. 

 

 

Figure 6.  One dimensional linear finite element with primary and secondary variables. 

 

FINITE ELEMENT MODEL OF ENERGY EQUATION 

 The finite element model of the energy equation is formulated directly from Eq. 

(3.5).  As opposed to some approximation techniques, the finite element model is 

developed such that the unknown parameters are the dependent variables of the system 

at discrete locations (i.e., the nodes) [13,15].  In the present analysis, the variables are 

the temperature, T, and the partial density of molecular water, wρ .  The solution 

introduced via the finite element method for each element is assumed to be of the 

following form [15] 

 ( ) ( ) ( )
1

,
n

e e
j j

j

T z t T t zψ
=

=∑  (3.13) 

 ( ) ( ) ( )
1

,
j

n
e e

w w j
j

z t t zρ ρ ψ
=

=∑  (3.14) 

ˆ e
aQ  ˆ e

bQ  
1 2 

( ) 2
e e

bu z u=  ( ) 1
e e

au z u=  

Le
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where n denotes the number of nodes of a given finite element.  The superscript e per 

Eqs. (3.13) and (3.14) signifies the element number of the finite element model.  The 

quantities ψj
e are often called shape functions or interpolation functions. 

 In order to create a system of n linearly independent equations for each element, 

a set of weighting functions, w, are chosen to be equal to the shape functions (Galerkin 

approach [13]). 

 ( )e
iw zψ=  (3.15) 

 

 

Figure 7.  Shape functions of linear one–dimensional finite element. 

 

The Lagrange shape functions for the one–dimensional linear finite element expressed in 

local coordinates are given as [15] 

 ( )1 1e
e

zz
L

ψ = −  (3.16) 

Le 

( )e zψ  

z  

ψ1
e ψ2

e 

ψ=1 
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 ( )2
e

e

zz
L

ψ =  (3.17) 

where Le is the length of an element and is given by 

 e e e
b aL z z= −  (3.18) 

The interpolation functions per Eqs. (3.16) and (3.17) are depicted graphically in local 

coordinates in Figure 7. 

Prior to the creation of the finite element model, it should first be noted from Eq. 

(2.29) that the time derivative term may be rewritten via the product rule of differential 

calculus as 

 ( ) ( ) ( ), , , , ,
w

P e P e w P w e P e w P w P w
Tc T c c T c c c T

t t t t
ρρ ρ ρ ρ ρ ∂∂ ∂ ∂⎡ ⎤= + = + +⎣ ⎦∂ ∂ ∂ ∂

 (3.19) 

The above result combined with Eqs. (3.13), (3.14) and (3.15) allows Eq. (3.5) to be 

approximated for an arbitrary finite element as 

 

, , ,
1 1 1 10

1
,

1

11

e

j

j

j

j

eeL n n n n
wje e

i e P e w j P w j P w j j j
j j j j

n
e e

e w jn jei
P w j j n

j e
w j

j

T
c c c T dz

t t

D
c T

z

ρ
ψ ρ ρ ψ ψ ψ ψ

ρ ρ ψ
ψ ψ

ρ ψ

= = = =

=

=

=

⎧ ⎫⎡ ⎤⎛ ⎞∂⎛ ⎞⎛ ⎞∂⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟+ +⎜ ⎟⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟

⎛ ⎞∂ ⎢ ⎥⎝ ⎠⎣ ⎦+ ⎜ ⎟∂ ⎛ ⎞⎝ ⎠
⎜
⎝ ⎠−

∑ ∑ ∑ ∑∫

∑
∑

∑

( ) ( )
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0

1

1

1 2
10

ˆ ˆ0 0

e
j

j

j

e

n
e

w jL
j

n
e

e w j
j

n
e

e w j
j

L n
je e ei

j i i
j

dz
z

k T dz Q L Q
z z

ρ ψ

ρ ρ ψ

ρ ρ ψ

ψψ ψ ψ

=

=

=

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎡ ⎤⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟

∂⎪ ⎪⎝ ⎠⎢ ⎥⎨ ⎬⎢ ⎥∂ ⎛ ⎞⎪ ⎪⎢ ⎥+⎟ ⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪
⎛ ⎞⎪ ⎪+ ⎜ ⎟⎪ ⎪
⎝ ⎠⎩ ⎭

⎡ ⎤∂⎛ ⎞∂
+ − − =⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑
∫

∑

∑

∑∫

(3.20) 
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The quotient rule of differential calculus may next be employed to simplify Eq. (3.20).  

Through the application of this rule it follows that 

 1 1
2

1 1

j j

j j

n n
je e

w j e w
j j

n ne e
e w j e w j

j j

z
z

ψ
ρ ψ ρ ρ

ρ ρ ψ ρ ρ ψ

= =

= =

⎡ ⎤ ∂⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟∂∂ ⎝ ⎠ ⎝ ⎠⎢ ⎥ =⎢ ⎥∂ ⎛ ⎞ ⎡ ⎤⎛ ⎞⎢ ⎥+ ⎜ ⎟ +⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑
 (3.21) 

Eq. (3.21) allows Eq. (3.20) to be rewritten as 
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∑
∫

∑

∑

∑∫

(3.22) 

A careful examination of Eq. (3.22) allows for drastic simplification.  Carrying out the 

necessary algebraic steps allows Eq. (3.22) to be written as 
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+⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞∂⎢ ⎥⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

∂∂
+

∂ ∂

∑ ∑∫

∑ ∑ ∑ ∑∫

( ) ( )1 2
0

ˆ ˆ0 0
eL

e
i idz Q L Qψ ψ

⎡ ⎤⎛ ⎞
− − =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑∫

 (3.23) 

It should be apparent that Eq. (3.20) is a set of n nonlinear equations that 

approximate the temperature field across a single element.  These equations may be 

written in matrix form as 

 { } { } { }e e e e e
h h hC T K T f⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦  (3.24) 

where { }eT  is the time derivative of the nodal temperature vector.  The matrices e
hC⎡ ⎤⎣ ⎦ , 

e
hK⎡ ⎤⎣ ⎦  and column vector { }e

hf  may be expressed in index notation as 

 
, , ,

10

e

i j m

L n
e e

h i j e P e w m P w
m

C c c dzψψ ρ ρ ψ
=

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑∫  (3.25) 

 
, , ,

1 10

e

m

i j m

eL n n
wje e e ei i

h P w i j m P w w m j
m m

K k c c D dz
z z t z

ρψψ ψψψ ψ ρ ψ ψ
= =

⎡ ⎤⎛ ⎞∂∂∂ ∂⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑∫  (3.26) 

 ( ) ( )1 2
ˆ ˆ0

i

e e
h i if Q L Qψ ψ= +  (3.27) 

Eqs. (3.25) and (3.26) may also be expressed in matrix form by introducing the 

n×1 column vectors { }eψ , { }eB , { }e
wρ  and { }eρ .  By definition the jth row of { }eψ  

contains the jth interpolation function or ψj
e.  Likewise, the jth row of { }eB , { }e

wρ  and 
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{ }e
wρ  contain 

e
jd

dz
ψ

, e
jρ  and e

jρ  respectively.  Using these definitions allows the 

matrices of Eq. (3.24) to be written as 

 { }{ } { } { }( ), ,
0

eL
T Te e e e e

h e P e P w wC c c dzψ ψ ρ ρ ψ⎡ ⎤ = +⎣ ⎦ ∫  (3.28) 

 
{ }{ } { } { }( ){ }{ }

{ } { }( ){ }{ }

,
0

,
0

e

e

L
T T Te e e e e e e e

h P w w

L
T Te e e e

P w w

K k B B c dz

c D B B dz

ρ ψ ψ ψ

ρ ψ

⎡ ⎤⎡ ⎤ = +⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤+ ⎢ ⎥⎣ ⎦

∫

∫
 (3.29) 

The matrix form of Eqs. (3.25), (3.26) and (3.27) may next be created for a 

particular element type (i.e., linear, quadratic, cubic, etc.).  Selecting the linear element 

(n=2) depicted in Figure 7 with shape functions defined in Eqs. (3.16) and (3.17) allows 

the previously defined column vectors { }eψ , { }eB , { }e
wρ  and { }e

wρ  to be written as 

 { } { } { } { }1 1

2 2

11

1

e ee e w we e e e
w we e

w w
e e

z
L LB

z
L L

ρ ρ
ψ ρ ρ

ρ ρ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.30) 

Inserting the vectors of Eq. (3.30) into Eqs. (3.28) and (3.29) and requiring that the 

material properties be constant for each element results in 

 1 2 1 2

1 2 1 2

, , 32 1
1 26 12 3

e e e ee e e e e
w w w we P e P we

h e e e e
w w w w

c L c L
C

ρ ρ ρ ρρ
ρ ρ ρ ρ

⎛ ⎞+ +⎛ ⎞⎡ ⎤ = + ⎜ ⎟⎜ ⎟⎣ ⎦ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 (3.31) 
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+ ⎜ ⎟

⎝ ⎠

 (3.32) 

 { } 1

2

ˆ

ˆ
e

h

Q
f

Q

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.33) 

 

FINITE ELEMENT MODEL OF MASS TRANSPORT EQUATION 

 Like the energy equation the finite element model of the mass transport equation 

is formed directly from, Eq. (2.34), the governing differential equation of mass transfer.  

The methodology utilized to form the finite element model is akin to the process 

employed in the previous section for the energy equation.  The assumed form of the 

solution is given by Eq. (3.14).  In addition, the weighting functions are also specified by 

Eq. (3.15).  It is important to note that n possesses the same numerical value for both the 

energy and mass transfer finite element models.  This insures that the same elements are 

used for both models (i.e., linear, quadratic, cubic, etc.).  These specifications allow the 

weak form given by Eq. (3.11) to be written in local coordinates for an arbitrary element 

as 
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− −
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∑ ∑

∑

0=

(3.34) 

Eq. (3.34) may be simplified via the quotient rule by using the result of Eq. 

(3.21).  Inserting this result into Eq. (3.34) allows the finite element model of element e 

to be expressed as 
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∑ ∑

∑

 (3.35) 

which simplifies to 

 ( ) ( )3 4
1 10

ˆ ˆ0 0
e

j
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eL n n
wje e ei

w i j i i
j j

D dz w Q w L Q
z z t

ρψψ ρ ψ ψ
= =

⎡ ⎤⎛ ⎞∂∂⎛ ⎞∂⎢ ⎥⎜ ⎟+ − − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑∫  (3.36) 
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 As was the case with Eq. (3.20), Eq. (3.36) is also a set of n nonlinear equations 

that approximate the partial density of molecular water across a single element as a 

function of position and time.  These equations may be written in matrix form as 

 { } { } { }e e e e e
m w m w mC K fρ ρ⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦  (3.37) 

These matrices may be expressed in index notation as 

 
,

0

e

i j

L
e e e

m i jC dzψ ψ= ∫  (3.38) 

 
,

0

e

i j

eL e
je e i

mK D dz
z z

ψψ ∂∂
=

∂ ∂∫  (3.39) 

 ( ) ( )3 4
ˆ ˆ0

i

e e e e e e
m i if Q L Qψ ψ= +  (3.40) 

 Eqs. (3.38) and (3.39) may also be written in matrix form by utilizing the 

previously defined column vectors { }eψ  and { }eB . 

 { }{ }
0

eL
Te e e

mC dzψ ψ⎡ ⎤ =⎣ ⎦ ∫  (3.41) 

 { }{ }
0

eL
Te e e e

mK D B B dz⎡ ⎤ =⎣ ⎦ ∫  (3.42) 

The matrix form of Eqs. (3.25), (3.26) and (3.27) may next be created for a 

particular element type (i.e., linear, quadratic, cubic, etc.).  To be consistent with the 

energy equation, the linear element (n=2) is also selected for the mass transport finite 

element model.  Utilizing the column vectors defined by Eq. (3.30) allows e
mC⎡ ⎤⎣ ⎦ , 

e
mK⎡ ⎤⎣ ⎦  and { }e

mf  to be expressed as 
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2 1
1 26

e
e

m
LC ⎛ ⎞⎡ ⎤ = ⎜ ⎟⎣ ⎦ ⎝ ⎠

 (3.43) 

 
1 1
1 1

e
e

m e

DK
L

−⎛ ⎞⎡ ⎤ = ⎜ ⎟⎣ ⎦ −⎝ ⎠
 (3.44) 

 { } 3

4

ˆ

ˆ
e

m

Q
f

Q

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.45) 

where De is considered to be constant for element e. 

 

ELEMENT ASSEMBLY 

The governing equations of energy and mass transfer have been approximated for 

each element of the finite element models.  It is next necessary to assemble the 

approximate energy and mass transfer equations of the individual elements into two sets 

of global equations for the entire plate; one set approximating the energy equation and 

the other approximating the mass transport equation.  Each set of equations is assembled 

by requiring continuity of the primary variables (i.e., temperature, T, and partial density 

of molecular water, wρ ) and by balance of the secondary variables (i.e., heat and mass 

flux) [15].  Enforcing these conditions results in the following sets of nonlinear algebraic 

equations 

 [ ]{ } [ ]{ } { }h h hC T K T f+ =  (3.46) 

 [ ]{ } [ ]{ } { }m w m w mC K fρ ρ+ =  (3.47) 
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 If the global node numbering is in a consecutive order from the bottom of the 

plate to the top (i.e., follows the numbering scheme presented in Figure 5), then the 

matrices of Eqs. (3.46) and (3.47) will be of the form 

[ ]
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 (3.48) 
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 (3.53) 

 

BOUNDARY CONDITIONS 

 The next step in creating the finite element model is to evaluate the boundary 

conditions of Eqs. (3.52) and (3.53).  It should be noted that all boundary conditions 

involve secondary variables.  Boundary conditions associated with secondary variables 
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are often called natural boundary conditions and represent flux values.  The secondary 

variables associated with a one dimensional linear finite element ( ˆ
aQ  and ˆ

bQ ) are 

depicted in Figure 6. 

 Since there are no sources or sinks within the plate providing heat or mass flux it 

follows that 

 
( ) ( )
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ˆ ˆ 0
1 1
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i i

i i

Q Q
i NE

Q Q

+
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⎫+ = ⎪ ≤ ≤ −⎬
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 (3.54) 

 

 
Figure 8.  Energy flux through top and bottom surfaces of a flat plate. 
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As a result Eqs. (3.52) and (3.53) simplify to 
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 (3.55) 

In order to evaluate the quantities ( )1
1Q̂ , ( )

2
ˆ NEQ , ( )1

3Q̂  and ( )
4

ˆ NEQ  it is necessary to 

perform energy and mass flux balances on the top and bottom surfaces of the flat plate.  

Figure 8 depicts the energy flux through control volumes that surround the top and 

bottom surfaces of the flat plate.  In this figure q and r denote the surfaces of the control 

volume surrounding the bottom surface, sb, of the flat plate.  Likewise, u and v signify 

the control volume surfaces that encompass the top surface, st, of the flat plate.  The 

distance between q and r is taken to be small (i.e., nearly zero).  This is also the case for 

surfaces u and v. 

The quantities ,s tT  and ,s bT  are the temperature values at the top and bottom 

surfaces of the plate.  Likewise ,tT∞  and ,bT∞  are free stream air temperatures above and 

below the flat plate.  In addition qm′′ , rm′′ , um′′  and vm′′  are scalar quantities that represent 

the mass fluxes through the q, r, u and v control surfaces respectively.  The quantities ht 

and hb are the convection coefficients of air above and below the plate.  The 

conservation of energy principle applied to the control volume encompassing the bottom 

surface of Figure 8 leads to the following equation [12]: 

 ( ),
0

ˆ ˆ
r r q q b b b

z

Tk m h m h h T T
z ∞

=

∂ ′′ ′′+ = + −
∂

 (3.56) 
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It should be noted that Eq. (3.56) assumes there is no net storage of moisture in the 

control volume. 

 The mass flux rm′′  may next be related to the z component of the mass flux of 

moisture ′′
wn  by 

 
0

0
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w
r w z

z w z

mDm n
m z

ρ
=

=

∂′′′′ = − =
− ∂

 (3.57) 

and 

 ( ),, q bq m b w wm h ρ ρ
∞

′′ = −  (3.58) 

where hm,b is the convective mass transfer coefficient below the plate.  The quantities 

qwρ  and 
,bwρ ∞

 are the partial densities of water vapor at the surface q and in the free 

stream below the plate.  Utilizing the relationships developed above and setting 

, ,r̂ p w s bh c T=  allows Eq. (3.56) to be written as 

 ( ) ( )
,, , , , ,

0

ˆ
1 q b

w
p w s b m b q w w s b b b

w z

mT Dk c T h h h T T
z m z

ρ ρ ρ
∞ ∞

=

⎡ ⎤∂∂
+ = − + −⎢ ⎥∂ − ∂⎣ ⎦

 (3.59) 

A comparison of Eq. (3.6) with Eq. (3.59) allows boundary term ( )1
1Q̂  to be written as 

 ( ) ( ) ( )
,

1
1 , , 1 ,

ˆˆ
q bm b q w w s b bQ h h h T Tρ ρ

∞ ∞= − − − −  (3.60) 

( )
2

ˆ NEQ  may next be evaluated using the same process that was employed to determine 

( )1
1Q̂ .  An energy balance through the control surfaces u and v results in the following 

equation 
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 ( ),
ˆ ˆ

u u v v t t t
z L

Tk m h m h h T T
z ∞

=

∂ ′′ ′′− + = + −
∂

 (3.61) 

The mass flux quantities are given by 

 
1

w
u w z

z L w z L

mDm n
m z

ρ
=

=

∂′′′′ = = −
− ∂

 (3.62) 

 ( ),, v tv m t w wm h ρ ρ
∞

′′ = −  (3.63) 

Setting , ,û p w s th c T=  and using the above relations allows (3.61) to be written as 

 ( ) ( )
,, , , ,

ˆ
1 v t

w
p w s t m t v w w t t t

w z L

mT Dk c T h h h T T
z m z

ρ ρ ρ
∞

∞

=

⎡ ⎤∂∂
− − = − + −⎢ ⎥∂ − ∂⎣ ⎦

 (3.64) 

Comparing Eq. (3.6) with Eq. (3.64) allows boundary term ( )
2

ˆ NEQ  to be written as 

 ( ) ( ) ( )
,2 , ,

ˆˆ
v t

NE
m t v w w t NN tQ h h h T Tρ ρ

∞
∞= − − − −  (3.65) 

To determine ( )1
3Q̂  and ( )

4
ˆ NEQ  it is necessary to perform a balance of mass fluxes 

similar to the energy balance performed previously.  Figure 9 depicts the mass flux 

through control volumes bounding the top and bottom surfaces of the flat plate.  The 

notation of Figure 9 is identical to the notation used in Figure 8.  Thus Figure 9 leads to 

the following equations describing the mass transfer from the top and bottom surfaces 

 ( ),,

0
1 q b

w
m b w w

w z

mD h
m z

ρ ρ ρ
∞

=

⎡ ⎤∂
= −⎢ ⎥− ∂⎣ ⎦

 (3.66) 

 ( ),,1 v t

w
m t w w

w z L

mD h
m z

ρ ρ ρ
∞

=

⎡ ⎤∂
− = −⎢ ⎥− ∂⎣ ⎦

 (3.67) 



 

 

41

By comparing Eqs. (3.66) and (3.67) with Eq. (3.12) is follows that the boundary 

terms ( )1
3Q̂  and ( )

4
ˆ NEQ  may be expressed as 

 ( ) ( ),

1
3 ,

ˆ
q bm b w wQ h ρ ρ

∞
= − −  (3.68) 

 ( ) ( ),4 ,
ˆ

v t

NE
m t w wQ h ρ ρ

∞
= − −  (3.69) 

 

 
Figure 9.  Mass flux through top and bottom surfaces of a flat plate. 

 

Thus the column vectors { }hf  and { }mf  per Eq. (3.55) may be expressed as 
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x

( ),, v tm t w wh ρ ρ
∞

−  

( ),, q bm b w wh ρ ρ
∞

−  

,, tt wT ρ
∞∞  

,, bb wT ρ
∞∞  

1
w

w z L

mD
m z

ρ

=

∂
−

− ∂
 

0
1

w

w z

mD
m z

ρ
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− ∂
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 { }

( ) ( )

( ) ( )

,

,

, 1 ,

, ,

ˆ

0

0
ˆ

q b

v t

m b q w w b b

h

m t v w w t NN t

h h h T T

f

h h h T T

ρ ρ

ρ ρ

∞

∞

∞

∞

⎛ ⎞− − − −
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

 (3.70) 

 { }

( )

( )

,

,

,

,

0

0

q b

v t

m b w w

m

m t w w

h

f

h

ρ ρ

ρ ρ

∞

∞

⎛ ⎞− −
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− −⎝ ⎠

 (3.71) 

 It is necessary to address one final matter in regards to the developed boundary 

conditions.  In Figures 8 and 9 the temperature is expected to behave as a continuous 

function.  In other words there are no discontinuities in the temperature field and 

 , 1r q s bT T T T= = =  (3.72) 

 ,u v s t NNT T T T= = =  (3.73) 

 

 

Figure 10.  Partial density profile of water, ρw, in the vicinity of the plate surface [5]. 
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Eqs. (3.72) and (3.73) simply assert that the temperature field is continuous between the 

surfaces of the flat plate and the atmosphere.  Unlike temperature, however, partial 

densities are not necessarily continuous functions across gas-liquid or gas-solid 

interfaces [5,9].  Instead there exists a jump in the partial density of moisture at both 

interfaces of the flat plate.  Figure 10 depicts a general plot of partial density in the 

vicinity of an interface of a flat plat.  This figure is presented to illustrate the fact that a 

discontinuity exists and not as a means of determining wρ  across the interface.  Unlike 

the results of Eqs. (3.72) and (3.73) it should therefore be noted that 

 
r qw wρ ρ≠  (3.74) 

 
u vw wρ ρ≠  (3.75) 

 Since mass transfer is driven on the fluid side by evaporation it follows from 

thermodynamic phase equilibrium [2] that the partial densities 
qwρ  and 

vwρ  are related 

to the densities of saturated water vapor.  These quantities are therefore approximated 

via Assumption 7 as 

 ( ) ( ) 1
1 1

1
qw sat w sat

e

T m T ρρ ρ ρ
ρ ρ

= =
+

 (3.76) 

 ( ) ( )
v

NN
w sat NN w sat NN

e NN

T m T ρρ ρ ρ
ρ ρ

= =
+

 (3.77) 

where ρsat is the saturated density of water vapor at a given temperature.  This quantity 

may be expressed as a function of temperature via curve fitting the thermodynamic data.  

From Eqs. (3.76) and (3.77) it is evident that the saturation density of the water vapor is 

a function of the surface temperature of the plate. 
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 The enthalpy values q̂h  and v̂h  of the superheated water vapor may next be 

written as 

 ( ), 1 , , 1q̂ P w fg p s bh c T h c T T∞= + + −  (3.78) 

 ( ), , ,v̂ P w NN fg p s t NNh c T h c T T∞= + + −  (3.79) 

where hfg is the latent heat or heat of vaporization of water and cp,s is the specific heat of 

water vapor.  Using the results of Eqs. (3.78) and (3.79) allows the boundary conditions 

to be written as 

 

{ }

( ) ( ) ( )

( ) ( ) ( )

1
, , 1 , , 1 1 , 1 ,

1

, , , , , ,

0

0

h

m b P w fg p s b sat b b b
e

NN
m t P w NN fg p s t NN sat NN t t NN t

e NN

f

h c T h c T T T h T T

h c T h c T T T h T T

ρρ ρ
ρ ρ

ρρ ρ
ρ ρ

∞ ∞ ∞

∞ ∞ ∞

=

⎛ ⎞⎡ ⎤
⎡ ⎤− + + − − − −⎜ ⎟⎢ ⎥⎣ ⎦ +⎣ ⎦⎜ ⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎡ ⎤

⎡ ⎤− + + − − − −⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟+⎣ ⎦⎝ ⎠

(3.80) 

 { }

( )

( )

1
, 1 ,

1

, ,

0

0

m b sat b
e

m

NN
m t sat NN t

e NN

h T

f

h T

ρρ ρ
ρ ρ

ρρ ρ
ρ ρ

∞

∞

⎛ ⎞⎡ ⎤
− −⎜ ⎟⎢ ⎥+⎣ ⎦⎜ ⎟

⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎡ ⎤
− −⎜ ⎟⎢ ⎥⎜ ⎟+⎣ ⎦⎝ ⎠

 (3.81) 

 It should be noted that Eqs. (3.80) and (3.81) contain the quantities T1, TNN, ρ1 

and ρNN.  It is therefore necessary to rearrange the global matrix equations, Eqs. (3.46) 

and (3.47), such that the coefficients of T1, TNN, ρ1 and ρNN per Eqs. (3.80) and (3.81) are 
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added into the global [ ]hK  and [ ]mK  matrices.  Performing the necessary rearrangement 

results in 

 { }

( )

( )

1
, , , 1 , ,

1

, , , , ,

0

0

m b fg p s b sat b b b
e

h

NN
m t fg p s t sat NN t t t

e NN

h h c T T h T

f

h h c T T hT

ρρ ρ
ρ ρ

ρρ ρ
ρ ρ

∞ ∞ ∞

∞ ∞ ∞

⎛ ⎞⎡ ⎤
⎡ ⎤− + − +⎜ ⎟⎢ ⎥⎣ ⎦ +⎣ ⎦⎜ ⎟

⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎡ ⎤

⎡ ⎤− + − +⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟+⎣ ⎦⎝ ⎠

 (3.82) 

 { }

, ,

, ,

0

0

m b b

m

m t t

h

f

h

ρ

ρ

∞

∞

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.83) 

 ( ) ( )
1,1 1,1

1
, , , 1 ,

1
h h m b P w p s sat b b

e

K K h c c T hρρ ρ
ρ ρ ∞

⎡ ⎤
= + − − +⎢ ⎥+⎣ ⎦

 (3.84) 

 ( ) ( )
, , , , , ,NN NN NN NN

NN
h h m t P w p s sat NN t t

e NN

K K h c c T hρρ ρ
ρ ρ ∞

⎡ ⎤
= + − − +⎢ ⎥+⎣ ⎦

 (3.85) 

 
( )

1,1 1,1

, 1

1

m b sat
m m

e

h T
K K

ρ
ρ ρ

= +
+

 (3.86) 

 
( )

, ,

,
NN NN NN NN

m t sat NN
m m

e NN

h T
K K

ρ
ρ ρ

= +
+

 (3.87) 

where 
1,1hK  and 

,NN NNhK  are the new 1,1 and NN,NN elements of [ ]hK ; and 
1,1mK  and 

,NN NNmK  are the new 1,1 and NN,NN elements of [ ]mK . 
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CONVECTIVE HEAT TRANSFER COEFFICIENTS 

 The convective heat transfer coefficients hb and ht may be determined by 

analytical methods or through empirical formulas.  For laminar, turbulent and mixed 

flows over a flat plate, convective heat transfer coefficients are readily available in the 

literature [5,10,11].  For laminar parallel flow, h is derived from the Blasius solution of 

the Faulkner-Skan Equation [8].  For mixed and turbulent flows, empirical formulas are 

utilized [10,11].  To determine the value of h for parallel flows it is convenient to the 

define the following quantities [10,11] 

 x
a

U xRe
ν
∞≡  (3.88) 

 ,a a P a

a

c
Pr

k
ν ρ

≡  (3.89) 

where Rex and Pr are the local Reynold and Prandtl numbers at location x along the flat 

plate.  U∞ is the free stream velocity of the air flowing over the plate.  The quantities ν, 

ρ, cP and k are kinematic viscosity, density, specific heat and thermal conductivity 

respectively.  The subscript a conveys to the reader that the preceding properties are that 

of the air.  As these properties are functions of temperature it is important that they be 

evaluated at the film temperature Tf  which is approximated as [11] 

 ( )1
2f sT T T∞= +  (3.90) 

 It is next useful to define the local Nusselt number as 

 x
a

hxNu
k

≡  (3.91) 
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The Reynold and Nusselt numbers may also be expressed as average values along the x 

direction of the plate as [11] 

 P

a

U LRe
ν
∞≡  (3.92) 

 P

a

hLNu
k

≡  (3.93) 

where LP is the length of the flat plate as per Figure 3.  The average and local Nusselt 

numbers may be determined analytically for laminar flow over a flat plate as [11] 

 1 2 1 30.332 0.6x xNu Re Pr Pr= ≥  (3.94) 

 1 2 1 30.664 0.6L LNu Re Pr Pr= ≥  (3.95) 

Since Pr for air is always greater than 0.7 in the present study, Eqs. (3.94) and (3.95) 

may be utilized for determining h.  For turbulent flow the local Nusselt number is 

calculated from the following empirical equation [11] 

 4 5 1 30.0296 0.6 60x xNu Re Pr Pr= ≤ ≤  (3.96) 

Transition between laminar and turbulent flows is assumed to occur when Rex is 

greater than the critical Reynolds number Rex,c.  For mixed flows where the flow is part 

laminar and turbulent the following empirical relationship may be used to approximate 

the average Nusselt number [11] 

 
( )4 5 1 3

5
,

0.037 871 0.6 60

5 10

L L

x c

Nu Re Pr Pr

Re

= − ≤ ≤

≅ ×
 (3.97) 
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 Values for h are also available in the literature for gas flows across a surface due 

to impinging jets.  In the case of a single round nozzle discharging a fluid against a flat 

surface the following Reynolds and average Nusselt numbers are defined as [11] 

 h

a

hdNu
k

=  (3.98) 

 h

a

VdRe
ν

=  (3.99) 

where dh is the inner diameter of the nozzle from which the gas stream is flowing.  The 

average Nusselt number Nu  in the vicinity of the stagnation point of the flow against 

the flat plat is determined empirically by the formula [11] 

 0.42
1Nu Pr GF=  (3.100) 

where 

 ( )1 21 2 0.55
1 2 1 0.005F Re Re= +  (3.101) 

 
( )

1 1.1
1 0.1 6

h h

h h

d d rG
r H d d r

−
=

+ −
 (3.102) 

The above relations allow the average convection heat transfer coefficient to be 

expressed as 

 
( )( )

( )( )

1 21 2 0.42 0.552 1 1.1 1 0.005
1 0.1 6

a h

h h

k Re Pr d r Re
h

r H d d r
− +

=
+ −

 (3.103) 

Equation (3.103) may therefore be used to estimate the average convection heat transfer 

coefficient h  in the vicinity of the stagnation point of the flow.  The quantity r per Eq. 

(3.102) is the radial distance from the stagnation point to an arbitrary distance on the 
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surface of the plate over which h  is averaged.  The quantity H is the distance from the 

exit plane of the nozzle to the surface of the flat plate.  It is important to note that Eq. 

(3.100) is only valid in the following ranges [11] 

 
2,000 400,000
2 12
2.5 7.5

h

h

Re
H d

r d

≤ ≤
≤ ≤
≤ ≤

 (3.104) 

 It is also necessary to present solutions for the average convective heat transfer 

coefficient, h , for free convection of a vertical flat plate.  Free convection occurs from 

buoyancy driven flow arising from temperature differences.  For free convection the 

Nusselt number is the same as for parallel flows as was presented in Eq. (3.93).  The 

Rayleigh number, RaL, is next defined as [11] 

 
3

,a P a s P
L

a a f

g c T T L
Ra

k T
ρ

ν
∞−

=  (3.105) 

where g is the gravitational constant.  The Nusselt number may next be calculated as 

[11] 

 
( )

1 4
9

4 99 16

0.6700.68 10
1 0.492

L
L L

RaNu Ra
Pr

= + <
⎡ ⎤+⎣ ⎦

 (3.106) 

The average convective heat transfer coefficient, h , for free convection may therefore 

be determined by Eqs. (3.105), (3.106) and (3.93). 
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CONVECTIVE MASS TRANSFER COEFFICIENTS 

It is next necessary to determine the convective mass transfer coefficients hm,b 

and hm,t.  To do so it is important to introduce some additional non–dimensional 

quantities.  The Schmidt number Sc is defined as [11] 

 a

a

Sc
D
ν

≡  (3.107) 

For parallel flow over a flat plate local and average Sherwood numbers are defined as 

[11] 

 m
x

a

h xSh
D

≡  (3.108) 

 m P

a

h LSh
D

≡  (3.109) 

where the quantity Da is the diffusivity of water vapor in air.  In the case of a single 

impinging jet, the average Schmidt number is expressed as [11] 

 m h

a

h dSh
D

≡  (3.110) 

It has been observed that there are strong analogies between heat and mass 

transfer.  The governing equations and boundary conditions are often of a similar nature.  

As a result it has also been shown that there often exists a similarity between the 

convective transfer coefficients.  This correspondence has been experimentally verified 

and is of the form [5,10,11] 

 n n

Nu Sh
Pr Sc

=  (3.111) 
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where the terms of Eqs. (3.111) may be local or average quantities.  Thus if one 

convective transfer coefficient is known, the other may be determined from Eq. (3.111). 

It is important to note that the above analogy only holds for low rates of mass 

transfer [5,10].  This is because the transfer coefficients are dependent upon the flow 

field across the plate.  One of the boundary conditions of the Blasius solution is that the 

fluid flow orthogonal to the plate (z direction) is zero at the plate surface.  In other 

words, if evaporation occurs at a rate that significantly affects the flow field over the 

plate, the Blasius solution is no longer valid.  It also follows that the empirical formulas 

for turbulent parallel flow as well as for flows from impinging jets will also be invalid 

under these conditions.  It is therefore assumed that mass transfer from the plate imparts 

a negligible variation in the velocity field of the air. 

Inserting Eqs. (3.91) and (3.108) into Eq. (3.111) results in 

 m
n n

a a

hh
k Pr D Sc

=  (3.112) 

which may be rewritten as 

 1 na
Pn

m a

kh c Le
h D Le

ρ −= =  (3.113) 

where the Lewis Number, Le, is defined as [11] 

 a

a

ScLe
Pr D

α
≡ =  (3.114) 

and the thermal diffusivity, αa, is  

 
,

a
a

a P a

k
c

α
ρ

=  (3.115) 
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The convective mass transfer coefficient is therefore determined to be of the form 

 1m n

P
P

hh
kc
c D

ρ
ρ

−=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.116) 

For parallel flow over a flat plate it has been shown that n = 1/3 [11].  For the case of 

flow from impinging jets it has been suggested that n=0.42 [11].  Therefore, once the 

convective heat transfer coefficient, h, has been calculated, hm may then be determined 

for parallel flow as 

 2 3m

P
P

hh
kc
c D

ρ
ρ

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.117) 

For the case of an impinging jet the convective mass transfer coefficient is 

 0.58m

P
P

hh
kc
c D

ρ
ρ

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.118) 

It should be noted that all material properties in Eqs. (3.117) and (3.118) are properties 

of air and are evaluated at the film temperature Tf. 

 

MATERIAL PROPERTIES 

Many of the material properties and coefficients introduced in this work are not 

constant.  In fact some of these quantities vary significantly with variations in 

temperature and/or pressure.  In the present study it is convenient to represent these 

quantities as functions of temperature only (i.e., isobaric conditions). 
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The following equations have been generated via polynomial curve fits of the 

published data [11] for properties of air at atmospheric pressure. 

 
( ) ( ) ( )
( )

14 5 11 4 -8 3
a

-5 2

= 7.9282 10  + 9.5330 10   5.0164 10

      + 1.68472 10   0.0047  + 1.2770

f f f

f f

T T T

T T

ρ − −− −

−
 (3.119) 

 
( ) ( ) ( )

( )

14 6 11 5 -8 4
,

6 3 2

=  8.8889 10  + 9.9528 10   4.2892 10

       + 8.2319 10   0.0002  + 0.0153  + 1006.5729

P a f f f

f f f

c T T T

T T T

− −

−

− −

−
 (3.120) 

 
( ) ( ) ( )

( ) ( ) ( )

19 5 16 4 13 3
a

10 2 8 5

=  4.1026 10  + 3.1179 10   1.3269 10

      + 1.2036 10  + 8.8727 10  + 1.3414 10

f f f

f f

T T T

T T

ν − − −

− − −

− −
 (3.121) 

 
( ) ( ) ( )

( ) ( )

15 5 12 4 10 3
a f f f

8 2 5
f f

= 1.8461 10 T   1.4637 10 T  + 3.6606 10 T

       5.7872 10 T  + 7.93825 10 T  + 0.0242

k − − −

− −

−

−
 (3.122) 

 
( ) ( ) ( )

( ) ( ) ( )

15 6 12 5 10 4

8 3 6 2 -4

= 1.3778 10   1.2822 10  + 4.3350 10

         6.31081 10  + 3.8276 10   2.3383 10  + 0.7117

a f f f

f f f

Pr T T T

T T T

− − −

− −

−

− −
(3.123) 

It should be noted that Eqs. (3.119) through (3.123) are valid between -23°C and 300°C.  

Furthermore, the film temperature Tf in these equations must be in units of Celsius (not 

Kelvin).  The diffusion coefficient of water vapor in air may also be calculated from the 

literature [16] as 

 ( )( )2.07210= 1.87 10 273a fD T− +  (3.124) 

The latent heat of vaporization may be determined by the following polynomial fit of the 

published data [2] 

 
( ) ( ) ( )10 6 7 5 5 4

3 2

= 2.750 10   2.9275 10  + 7.67128 10

        0.0211  + 0.9009   2372.6057 + 2501365.4834
fg f f f

f f f

h T T T

T T T

− − −−

− −
 (3.125) 
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The thermal conductivity and specific heat of each element are calculated for each 

element of the finite element model as 

 
e

e e e w w
e

k kk ρ ρ
ρ
+

=  (3.126) 

 , ,
e

e P e w P we
P e

c c
c

ρ ρ
ρ
+

=  (3.127) 

 

TIME STEP APPROXIMATIONS 

It has been previously established that the matrix form of the energy and mass 

transfer equations of the finite element models are transient, nonlinear and coupled.  

These characteristics present distinct challenges to the solution process.  These 

challenges, however, can be overcome and the equations solved.  This is accomplished 

by first addressing the transient nature of Eqs. (3.46) and (3.47).  An examination of 

these equations reveals that the finite element models of the energy and mass transfer 

equations are of the form 

 [ ]{ } [ ]{ } { }C u K u f+ =  (3.128) 

with initial conditions 

 { } { }00t
u u

=
=  (3.129) 

The column vector { }0u  per Eq. (3.129) represents the known dependent variables at the 

nodes at t=0 s.  These dependent variables are the initial temperatures and the partial 

densities of molecular water. 
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To solve Eq. (3.128) with the above initial conditions it is convenient to 

introduce a time approximation scheme.  The α–family of time approximation [14,15] 

allows time derivatives of dependent variables { }u  in a set of matrix equations to be 

approximated between two successive time steps as 

 
{ } { } ( ){ } { }1

1
1

1s s
s s

s

u u
u u

t
α α+

+
+

−
= − +

Δ
 (3.130) 

where 0≤α≤1.  Quantities per Eq. (3.130) containing a subscript s are to be evaluated a 

time t=ts.  It should also be noted that Δts+1 is the sth time step and 

 1 1s s st t t+ +Δ = −  (3.131) 

where ts+1 and ts are the time values at time step (s+1) and s respectively.  It is next 

necessary to consider Eq. (3.128) at two successive time steps [14] 

 [ ] { } { } [ ] { }s s ss s
C u f K u= −  (3.132) 

 [ ] { } { } [ ] { }1 1 11 1s s ss s
C u f K u

+ + ++ +
= −  (3.133) 

It is important to note that Eqs. (3.132) and (3.133) allow for variations in [ ]C , [ ]K  and 

{ }f  between time steps. Solving Eq. (3.133) for { } 1s
u

+
 results in 

 { } [ ] { } [ ] { }( )1

1 1 11 1s s ss s
u C f K u−

+ + ++ +
= −  (3.134) 

 It is next necessary for Eq. (3.130) to be multiplied by [ ]s
C .  Performing this 

operation and rearranging terms results in 

 ( )[ ] { } [ ] { } [ ] { } { }( )1 1 1 1
1s ss s s ss s s

t C u t C u C u uα α+ + + +
Δ − + Δ = −  (3.135) 
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The ultimate objective of Eq. (3.135) is to be able to eliminate the quantities { }s
u  and 

{ } 1s
u

+
.  This is achieved through the use of Eqs. (3.132) and (3.134).  Substituting the 

right hand sides of the equations for [ ] { }ss
C u  and { } 1s

u
+

 into Eq. (3.135) results in 

 
( ) { } [ ] { }( ) [ ] [ ] { } [ ] { }( )

[ ] { } { }

1
1 1 11 1

1

1s s s s ss s s s

s ss

t f K u C C f K u

C u u

α α −
+ + ++ +

+

⎡ ⎤Δ − − + −⎣ ⎦
⎡ ⎤= −⎣ ⎦

 (3.136) 

Performing the necessary linear algebra steps allows Eq. (3.136) to be rewritten in a 

more concise and convenient form as 

 
[ ] [ ] [ ] [ ]( ){ } [ ] ( )[ ] { }

( ){ } [ ] [ ] { }

1
1 111 1

1
1 11

1

1

s ss ss s s s s s

s s ss s

C t C C K u C t K u

t f C C f

α α

α α

−
+ +++ +

−
+ ++

⎡ ⎤+ Δ = −Δ −⎣ ⎦

⎡ ⎤+Δ − +⎣ ⎦

 (3.137) 

Eq. (3.137) represents the time approximation of Eq. (3.128) using the α-family of time 

approximation.  It is a very general equation as no restrictions were placed upon the 

elements of [ ]C , [ ]K , and { }f  and thus they may vary between time steps. 

It should be noted that solving Eq. (3.137) can prove to be an onerous process for 

large systems of equations as it requires the inversion of several large matrices.  There 

are some additional conditions that may lead to a simplification of this set of matrix 

equations.  In the event that 

 [ ] [ ] [ ] 1s s
C C C

+
= =  (3.138) 

it should be intuitive that 

 [ ] [ ] [ ] 1

1s s
I C C −

+
=  (3.139) 
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where [ ]I  is the NN×NN identity matrix.  Under these conditions Eq. (3.137) simplifies 

to [15] 

 
[ ] [ ]( ){ } [ ] ( )[ ] { }

( ){ } { }
1 111

1 1

1

1

s ss ss s

s s s

C t K u C t K u

t f f

α α

α α

+ +++

+ +

⎡ ⎤+ Δ = −Δ −⎣ ⎦
⎡ ⎤+ Δ − +⎣ ⎦

 (3.140) 

whose solution only requires the inversion of [ ] [ ]( )1 1s s
C t Kα+ +

+ Δ .  In the event that [ ]C  

is not constant between time steps, Eq. (3.140) may be generalized by defining [ ]C  

through the α-family of approximation as 

 [ ] ( )[ ] [ ] 1
1

s s
C C Cα α

+
≅ − +  (3.141) 

Inserting Eq. (3.141) into Eq. (3.140) results in 

 

( )[ ] [ ] [ ] { }
( )[ ] [ ] ( )[ ] { }

( ){ } { }

1 11 1

11

1 1

1

1 1

1

s ss s s

s ss s s

s s s

C C t K u

C C t K u

t f f

α α α

α α α

α α

+ ++ +

++

+ +

⎡ ⎤− + + Δ =⎣ ⎦
⎡ ⎤− + −Δ −⎣ ⎦

⎡ ⎤+ Δ − +⎣ ⎦

 (3.142) 

Although Eq. (3.137) is sufficient for performing approximate time step solutions of Eq. 

(3.128), it is more convenient and time efficient to use Eq. (3.140) for the mass transport 

equation and Eq. (3.142) for the energy equation.  Thus it is these equations that are 

utilized for the finite element model.  Also, the Crank-Nicolson numerical integration 

scheme is utilized by letting α=½ [15] and the energy and mass transfer equations are 

written explicitly as 

 

( )[ ] [ ] [ ] { }
( )[ ] [ ] ( )[ ] { }

( ){ } { }

1 11 1

11

1 1

1

1 1

1

h h s h ss s s

h h s h ss s s

s h hs s

C C t K T

C C t K T

t f f

α α α

α α α

α α

+ ++ +

++

+ +

⎡ ⎤− + + Δ =⎣ ⎦
⎡ ⎤− + −Δ −⎣ ⎦

⎡ ⎤+ Δ − +⎣ ⎦

 (3.143) 
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[ ] [ ]( ){ } [ ] ( )[ ] { }

( ){ } { }
1 111

1 1

1

1

m s m w m s m ws ss s

s m ms s

C t K C t K

t f f

α ρ α ρ

α α

+ +++

+ +

⎡ ⎤+ Δ = −Δ −⎣ ⎦
⎡ ⎤+ Δ − +⎣ ⎦

 (3.144) 

 

ALGORITHM FOR SOLVING THE NONLINEAR EQUATIONS 

It has been shown that the transient nature of the energy and mass transfer 

equations necessitates that they be solved approximately at successive time steps via 

Eqs. (3.143) and (3.144).  As these equations are nonlinear and coupled, they cannot be 

solved by conventional Gaussian elimination.  Instead the solution procedure 

necessitates the use of iteration techniques in order to calculate { } 1s
T

+
 and { } 1w s

ρ
+

 [14].  

The magnitude of the task of solving Eqs. (3.143) and (3.144) is such that it is 

impracticable without the aid of the digital computer.  It is therefore necessary to create 

an algorithm that may be implemented in the form of a computer program that allows for 

the solving of these nonlinear coupled equations.  The necessary algorithm is developed 

and summarized in this section.  Appendix B contains a computer program created in 

Matlab that utilizes the algorithm to solve Eqs. (3.143) and (3.144). 

In order to create a general computer program for solving Eqs. (3.143) and 

(3.144) it is first necessary to specify the parameters of the system.  These parameters 

include the initial conditions (i.e., partial density of water, { }0wρ , and temperature, 

{ }0
T , throughout the plate at t=0), the physical dimensions of the plate and the material 

properties of the system (i.e., plate and free steam air properties). 
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In addition it is necessary to specify the conditions of the finite element model, 

namely the number of elements, the simulation time, and the time step to be utilized.  As 

the solution procedure is iterative it is also crucial to specify an error criteria.  The 

purpose of this criteria will soon become apparent.  For a complete list of parameters 

needed refer to Appendices A and B. 

With the above parameters specified it is possible to create the individual nodes 

and elements of the model.  Since the steepest gradients (i.e., molecular moisture 

concentration and temperature gradients) are expected near the boundaries of the plate it 

is not appropriate for the elements to be of equal lengths in the FE model.  The following 

loop is therefore convenient, as it automates the process of creating the nodes of the FE 

model. 

 

( )

( ) ( )

,1 ;
for 1:1:

1
,1 1 cos ;

2 1

end

z zeros NN
i NN

iLz i
NN
π

=

=

⎧ ⎫−⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

 (3.145) 

The first line of Eq. (3.145) zeros out an NN×1 column vector z whose elements will 

correspond to nodal positions.  The for loop that follows assigns a spatial coordinate to 

each node.  It should be noted that Eq. (3.145) assigns spatial coordinates such that the 

spacing between nodes is not constant.  Instead the nodes near the plate boundaries are 

much closer together than are the nodes near the center of the plate.  With the nodal 

positions specified, the element lengths and connectivity may also be formed via simple 
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additional for loops.  If the number of nodes in the model were specified as 20, then the 

non-dimensional nodal coordinates would be given by Figure 11. 
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Figure 11.  Non-dimensional nodal plot (NN=20). 

 

Once the nodes, elements and connectivity of the elements have been well 

defined it is possible to begin the iterative solution procedure.  The initial conditions at 

t=0 s are utilized to enter the first time step by requiring that 

 { } { }1 0s
T T

+
=  (3.146) 

 { } { }1 0w ws
ρ ρ

+
=  (3.147) 
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Utilizing Eqs. (3.146) and (3.147) it is possible to proceed to the first time step t=ts.  In 

this case ts=0.  Upon entering this time step, the computer creates the following column 

vectors 

 { } { } 1s s
T T

+
=  (3.148) 

 { } { } 1w ws s
ρ ρ

+
=  (3.149) 

where the terms { }s
T  and { }w s

ρ  are known from the initial conditions (i.e., not 

guessed).  With Eqs. (3.148) and (3.149) it is possible to calculate the convective heat 

and mass transfer coefficients, the thermodynamic properties of air at the film 

temperatures, and the material properties.  The local matrices e
h s

C⎡ ⎤⎣ ⎦ , e
h s

K⎡ ⎤⎣ ⎦ , e
m s

C⎡ ⎤⎣ ⎦ , 

and e
m s

K⎡ ⎤⎣ ⎦  may next be formed.  These may then be assembled to form the global 

matrices [ ]h s
C , [ ]h s

K , [ ]m s
C , [ ]m s

K  as well as the forcing vectors { }h s
f  and { }m s

f .  It 

is necessary to next assume values of { } 1s
T

+
 and { } 1w s

ρ
+

 before advancing into the next 

time step.  It is convenient (but not necessary) to guess that these new vectors will be 

 { } { }1
1.01

s s
T T

+
=  (3.150) 

 { } { }1
1.01w ws s

ρ ρ
+
=  (3.151) 

It is now possible to begin the next time step t=ts+1 where ts+1=ts+Δts+1.  The 

quantities of { } 1s
T

+
 and { } 1w s

ρ
+

 per Eqs. (3.150) and (3.151) are utilized to calculate the 

convective heat and mass transfer coefficients, the thermodynamic properties at the film 

temperatures, and the material properties.  These values are then used to form the local 
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matrices 
1

e
h s

C
+

⎡ ⎤⎣ ⎦ , 
1

e
h s

K
+

⎡ ⎤⎣ ⎦ , 
1

e
m s

C
+

⎡ ⎤⎣ ⎦ , and 
1

e
m s

K
+

⎡ ⎤⎣ ⎦ .  These local element matrices are 

then assembled into the global matrices and vectors [ ] 1h s
C

+
, [ ] 1h s

K
+

, { } 1h s
f

+
, [ ] 1m s

C
+

, 

[ ] 1m s
K

+
 and { } 1m s

f
+

. 

With the global matrices defined and assembled at t=ts and t=ts+1 it is next 

possible to solve Eqs. (3.143) and (3.144) for the quantities { } 1s
T

+
 and { } 1w s

ρ
+

.  Since it 

was necessary to know these quantities a priori in order to form the t=ts+1 matrices, it is 

not expected that the results obtained from solving Eqs. (3.143) and (3.144) will be the 

true solution of these equations.  Thus iteration is necessary. 

The iterative process proceeds in the following manner.  The error between the 

calculated and assumed values of { } 1s
T

+
 and { } 1s

ρ
+

 is compared to an allowable error, ε, 

between iterations.  This error is defined mathematically as [14] 

 

( ) ( )( )
( )( )

21

1
2

1

NN
r r

i i
i

NN
r

i
i

u u
error

u

−

=

=

−
=
∑

∑
 (3.152) 

where r refers to the iteration number and u is the dependent variable (i.e., temperature 

or partial density of molecular water).  Thus Eq. (3.152) must be evaluated for the 

temperature and the partial density of molecular water.  In the event that error>ε, it is 

necessary to perform another iteration by beginning time step t=ts+1 anew and utilizing 

the most recently solved quantities { } 1s
T

+
 and { } 1w s

ρ
+

 as the new guess values.  This 

process is repeated until either both error values are less than ε or the number of 

iterations exceeds a limiting number.  Once convergence has been reached (i.e., error<ε)
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Figure 12. Flow chart for FE model of nonlinear coupled heat and mass transfer analysis. 
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it is possible to progress to the next time step by returning to t=ts.  For more complete 

details on the time step process used to solve Eqs. (3.143) and (3.144) refer to Figure 12 

and Appendix B. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

 In this chapter the algorithm presented in Chapter III is utilized to determine 

surface temperature profiles vs. time of a flat plate for various initial conditions, and 

diffusion coefficients.  To assess the effects of surface moisture evaporation, the surface 

temperature profiles of moist plates are compared with the surface temperature profiles 

of dry plates.  The programs utilized for this analysis are contained in Appendices A and 

B; where Appendix A performs dry plate analysis and Appendix B performs analyses 

associated with moisture bearing plates (i.e., coupled energy and mass transfer). 

 Since it is desirable to compare numerical results with values obtained through 

experiment, only results for impinging flow are presented in this chapter.  Eq. (3.118) is 

therefore used to determine the convective mass transfer coefficients in the analysis. 

 

SYSTEM PARAMETERS PER NUMERICAL RESULTS 

 The initial and boundary conditions for the analyses and results of this chapter 

are as follows: 

1. The plate possesses an initial temperature of 25°C. 

2. The plate possesses an initial molecular moisture content at t=0 s.  The 

results in this chapter are for initial moisture contents of 0%, 5%, 10%, 

15%, 20%, 25% and 30%. 
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3. The plate is oriented vertically and at the surface z=0 the plate is exposed 

to stagnant air.  Heat and mass transfer from this surface occur due to 

buoyancy effects (i.e., free convection). 

4. At the surface z=L the plate is exposed to a single stream of air flowing 

orthogonal to the plate from a round impinging nozzle. 

The results of this chapter rely in part on diffusion coefficient data contained in 

the literature for moisture diffusion in epoxy composite plate structures.  Results are also 

generated for arbitrary diffusion coefficients.  In the literature it has been shown that the 

diffusion coefficient for molecular water in epoxy composites is temperature dependent 

and obeys the following relationship [17,18] 

 ( )273
0

bE k TD D e− +=  (4.1) 

A curve fit of the data collected by Browning [17] for diffusion coefficients produces 

values for the constants per Eq. (4.1).  These are tabulated in Table 1. 

 

Table 1.  Curve fit of diffusion coefficient data [17]. 

Material Properties 

E/kb 9,177.9 [K] 

D0 0.5269 [m2/s] 

 

 The figures contained in this chapter are generated using the E/kb value per Table 

1 [17].  To allow for the comparison of different diffusion coefficient functions, 

however, different D0 values are utilized to assess the effect of the plate’s diffusion 

coefficient on the surface temperature at z=L of a flat plate.  The values utilized for D0 
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are contained in Table 2.  Plots of the diffusion coefficient vs. temperature are also 

provided via Figure 13. 

 

Table 2.  Diffusion constants utilized for numerical results. 

Diffusion constants 

D0 0.5269 [m2/s] 

D0 52.69 [m2/s] 

D0 5,269 [m2/s] 
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Figure 13.  Diffusion coefficients vs. temperature. 
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Table 3 contains the parameters used to create the finite element models for the 

analysis.  All results of this chapter are generated using the values contained in this table 

as they insure convergence of the numerical results.  Since the surface temperature vs. 

time plots are nearly linear on a logarithmic time scale, a constant logarithmic time step 

is employed.  As a result, the (s+1)th time step is calculated as 

 ( )( ) ( )1
1 1 1s STEPS s STEPS

s F Ft t t+
+Δ = + − +  (4.2) 

 

Table 3.  Parameters associated with the finite element models. 

Finite Element Parameters 

Number of Elements (NE) 100 

Number of Nodes (NN) 101 

Error Criteria (ε) 10–6 [kg/m3 or °C] 

Simulation Time (tF) 900 [s] 

Number of Time Steps (STEPS) 10,000 

 

Table 4.  Dimensions and properties of plate and nozzle. 

Dimensions / Properties 

Plate Thickness (L) 1.0 [cm] 

Distance from Nozzle to Plate (H) 5.1 [cm] 

Radial Distance for Averaging (r) 6.0 [cm] 

Inner Nozzle Diameter (dh) 0.95 [cm] 

Density (ρe) 1,130 [kg/m3] 

Specific heat (cP,e) 1,000 [J/kg°C] 

Thermal conductivity (ke) 0.16 [W/m°C] 
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 The material properties, plate dimensions and impinging nozzle dimensions used 

in the analysis are listed in Table 4.  These values are constant for all the analysis 

presented in this chapter.  The thermodynamic properties of liquid water used in the 

analysis are contained in Table 5.  These values are also constant in the analysis and 

results. 

 

Table 5.  Properties of liquid water and water vapor [11]. 

Dimensions / Properties 

Specific heat – liquid (cP,w) 4,181 [J/kg°C] 

Specific heat – vapor (cP,s) 1,900 [J/kg°C] 

Thermal conductivity – liquid (kw) 0.606 [W/m°C] 

 

In addition to the quantities contained in the preceding tables, the velocity of the 

air leaving the nozzle is maintained at 9.94 m/s in the analysis.  This produces a 

convective heat transfer coefficient h approximately equal to 60 W/m2°C.  The moisture 

content in the air surrounding the plate is also specified as zero.  All other material and 

thermodynamic properties not specified in this section are calculated as a function of 

temperature via the curve fits presented in Chapter III. 

 

DRY FLAT PLATE 

 In this section the surface temperature results (at z=L) of a dry plate (0% initial 

moisture content or M0=0) with the previously specified material properties, initial 

conditions and boundary conditions are presented via Figure 14.  From this figure it is 
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evident that the surface temperature increases rapidly in the early stages ( 0s 100st< < ) 

of the plate’s exposure to hot air.  After this point the temperature continues to increase, 

but at a much slower rate which is shown to decay with time.  This is expected as heat 

transfer at the surface depends on the difference in plate surface and free stream 

temperatures.  The results of Figure 14 are used in subsequent sections to assess the 

effect of moisture content, M0, and diffusion coefficients (more specifically D0) on the 

surface temperature of moisture bearing epoxy plates. 
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Figure 14.  Surface temperature (z=L) vs. time (T∞=90°C, h=60 W/m2°C, M0=0%). 
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FLAT PLATE WITH 5 % INITIAL MOISTURE CONTENT 

 In this section the temperature and energy transfer results (at z=L) are presented 

for plates where M0=5% and all other conditions are as specified in the beginning of the 

chapter.  In Figure 15 surface temperature vs. time profiles are provided for plates with 

three different D0 values as per Table 2.  The temperature vs. time profile of a dry plate 

is also presented in this figure. 
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Figure 15.  Surface temperature (z=L) vs. time (T∞=90°C, h=60 W/m2°C, M0=5%). 
 

From Figure 15 it is apparent that an increase in D0 results in a reduction of 

surface temperature.  This is because the resistance of molecular moisture diffusion in 
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the plate decreases with increasing D0.  Thus, as D0 increases moisture is able to diffuse 

more rapidly through the plate to the surface where it is able to evaporate. 
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Figure 16.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=0.5269 m2/s, M0=5%). 

 

 It should be noted from the energy equation, Eq. (2.29), that an increase in D0 

(and thus evaporation) is not the only factor affecting the surface temperature profile.  A 

careful examination of this equation makes it apparent that an increase in the specific 

heat, cP, of the plate will result in a reduction of the surface temperature vs. time profile.  

Since the specific heat of moisture is greater than the specific heat of a dry plate, moist 
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plates will posses lower temperature values over time than will dry plates.  This is 

simply because a moist plate possesses a larger specific heat value than does a dry plate. 
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Figure 17.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=52.69 m2/s, M0=5%). 

 

 To assess the effect of evaporation on the surface temperature profiles of Figure 

15 it is convenient to examine the contributions of the rate of energy entering or leaving 

the plate.  Figures 16, 17 and 18 provide plots that allow for this assessment.  Each 

figure contains three heat flux or rate of energy transfer curves.  The Evaporation curve 

is a plot of the rate of energy flux from the surface due to evaporation.  This quantity is 

positive indicating that heat due to evaporation is leaving the plate and entering the 
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environment.  The Convection curve depicts the heat flux entering the plate from the 

environment due to the difference between the plate surface and air temperatures.  This 

quantity is negative indicating that heat is entering the plate.  The Total curve represents 

the total heat flux entering the plate due to both evaporation and convection.  These three 

curves allow the effects of evaporation to be compared with the effects of convection on 

the overall surface temperature of a plate. 
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Figure 18.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=5,269 m2/s, M0=5%). 

 

 It should be noted from Figure 16 that for D0=0.5269 m2/s, heat transfer due to 

evaporation is negligible.  This specimen however is observed to possess a lower 
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temperature profile than a dry plate.  This distinction is thus attributed to differences in 

specific heats rather than the effects of evaporation.  From Figure 17 it is evident that the 

D0=52.69 m2/s specimen produces a very small amount of evaporation.  As a result the 

temperature profile is very similar to the D0=0.5269 m2/s specimen.  For the D0=5,269 

m2/s specimen, however, the effect of evaporation is much more pronounced as is 

evident in Figure 18.  As a result, this specimen is shown to have a much lower 

temperature profile than the other two (D0=0.5269 m2/s and D0=52.69 m2/s). 

 

FLAT PLATE WITH 10 % INITIAL MOISTURE CONTENT 

In this section the temperature and energy transfer results (at z=L) are presented 

for plates where M0=10% and all other conditions are as specified in the beginning of the 

chapter.  In Figure 19 surface temperature vs. time profiles are provided for plates with 

three different D0 values as per Table 2.  The temperature vs. time profile of a dry plate 

is also presented in this figure. 

As was the case in the previous section, it is apparent from Figure 19 that an 

increase in D0 results in a reduction of surface temperature.  This is again attributed to 

the fact that the resistance of molecular moisture diffusion in the plate decreases with 

increasing D0.  Thus, as D0 increases moisture is able to diffuse more rapidly through the 

plate to the surface where it is able to evaporate. 

It should again be noted from the energy equation, that an increase in D0 (and 

thus evaporation) is not the only factor affecting the surface temperature profile.  The 

change in specific heat of the plate due to the presence of molecular moisture also plays 



 

 

76

an important role on the surface temperature profile.  This effect is enhanced as M0 

increases. 
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Figure 19.  Surface temperature (z=L) vs. time (T∞=90°C, h=60 W/m2°C, M0=10%). 
 

To assess the effect of evaporation on the surface temperature profiles of Figure 

19 it is once again convenient to examine the contributions of the rate of energy entering 

or leaving the plate.  Figures 20, 21 and 22 provide plots that allow for this assessment. 
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Figure 20.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=0.5269 m2/s, M0=10%). 

 

It should be noted from Figure 20 that for D0=0.5269 m2/s, heat transfer due to 

evaporation is negligible.  This specimen however is observed to possess a lower 

temperature profile than a dry plate.  This distinction is again attributed to differences in 

specific heats rather than the effects of evaporation.  From Figure 21 it is evident that the 

D0=52.69 m2/s specimen produces a very small amount of evaporation.  As a result the 

temperature profile is very similar to the D0=0.5269 m2/s specimen.  For the D0=5,269 

m2/s specimen, however, the effect of evaporation is much more pronounced as is 
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evident in Figure 22.  As a result, this specimen is shown to have a much lower 

temperature profile than the other two (D0=0.5269 m2/s and D0=52.69 m2/s). 

0 100 200 300 400 500 600 700 800 900
-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

Time [s]

H
ea

t f
lu

x 
[W

/m
2 ]

Total
Convection
Evaporation

 

Figure 21.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=52.69 m2/s, M0=10%). 
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Figure 22.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=5,269 m2/s, M0=10%). 

 

 

FLAT PLATE WITH 15 % INITIAL MOISTURE CONTENT 

In this section the temperature and energy transfer results (at z=L) are presented 

for plates where M0=15% and all other conditions are as specified in the beginning of the 

chapter.  In Figure 23 surface temperature vs. time profiles are provided for plates with 

three different D0 values as per Table 2.  The temperature vs. time profile of a dry plate 

is also presented in this figure. 
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Figure 23.  Surface temperature (z=L) vs. time (T∞=90°C, h=60 W/m2°C, M0=15%). 
 

As was the case in the previous sections, it is apparent from Figure 23 that an 

increase in D0 results in a reduction of surface temperature.  This is again attributed to 

the fact that the resistance of molecular moisture diffusion in the plate decreases with 

increasing D0.  Thus, as D0 increases moisture is able to diffuse more rapidly through the 

plate to the surface where it is able to evaporate. 

It should again be noted from the energy equation, that an increase in D0 

(increased evaporation rate) is not the only factor affecting the surface temperature 

profile.  The change in specific heat of the plate due to the presence of molecular 
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moisture also plays an important role on the surface temperature profile.  This effect is 

enhanced as M0 increases. 
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Figure 24.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=0.5269 m2/s, M0=15%). 

 

To assess the effect of evaporation on the surface temperature profiles of Figure 

23 it is once again convenient to examine the contributions of the rate of energy entering 

or leaving the plate.  Figures 24, 25 and 26 provide plots that allow for this assessment. 
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Figure 25.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=52.69 m2/s, M0=15%). 

 

It should be noted from Figure 24 that for D0=0.5269 m2/s, heat transfer due to 

evaporation is once again negligible.  This specimen however is observed to possess a 

lower temperature profile than a dry plate.  This distinction is again attributed to 

differences in specific heats rather than the effects of evaporation.  From Figure 25 it is 

evident that the D0=52.69 m2/s specimen produces a very small amount of evaporation.  

As a result the temperature profile is once again very similar to the D0=0.5269 m2/s 

specimen.  For the D0=5,269 m2/s specimen, however, the effect of evaporation is much 

more pronounced as is evident in Figure 26.  As a result, this specimen is again shown to 
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have a much lower temperature profile than the other two (D0=0.5269 m2/s and 

D0=52.69 m2/s). 
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Figure 26.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=5,269 m2/s, M0=15%). 

 

 

FLAT PLATE WITH 20 % INITIAL MOISTURE CONTENT 

In this section the temperature and energy transfer results (at z=L) are presented 

for plates where M0=20% and all other conditions are as specified in the beginning of the 

chapter.  In Figure 27 surface temperature vs. time profiles are provided for plates with 
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three different D0 values as per Table 2.  The temperature vs. time profile of a dry plate 

is also presented in this figure. 
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Figure 27.  Surface temperature (z=L) vs. time (T∞=90°C, h=60 W/m2°C, M0=20%). 
 

As was the case in the previous sections, it is apparent from Figure 27 that an 

increase in D0 results in a reduction of surface temperature.  This is again attributed to 

the fact that the resistance of molecular moisture diffusion in the plate decreases with 

increasing D0.  Thus, as D0 increases moisture is able to diffuse more rapidly through the 

plate to the surface where it is able to evaporate. 
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Figure 28.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=0.5269 m2/s, M0=20%). 

 

It should again be noted from the energy equation, that an increase in D0 

(increased evaporation rate) is not the only factor affecting the surface temperature 

profile.  The change in specific heat of the plate due to the presence of molecular 

moisture also plays an important role on the surface temperature profile.  This effect is 

enhanced as M0 increases. 

To assess the effect of evaporation on the surface temperature profiles of Figure 

27 it is once again convenient to examine the contributions of the rate of energy entering 

or leaving the plate.  Figures 28, 29 and 30 provide plots that allow for this assessment. 
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Figure 29.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=52.69 m2/s, M0=20%). 

 

It should be noted from Figure 28 that for D0=0.5269 m2/s, heat transfer due to 

evaporation is once again negligible.  This specimen however is observed to possess a 

lower temperature profile than a dry plate.  This distinction is again attributed to 

differences in specific heats rather than the effects of evaporation.  From Figure 29 it is 

evident that the D0=52.69 m2/s specimen produces a slightly more significant amount of 

evaporation.  As a result the temperature profile is slightly less than the D0=52.69 m2/s 

specimen.  For the D0=5,269 m2/s specimen, however, the effect of evaporation is much 

more pronounced as is evident in Figure 30.  As a result, this specimen is again shown to 
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have a much lower temperature profile than the other two (D0=0.5269 m2/s and 

D0=52.69 m2/s). 
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Figure 30.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=5,269 m2/s, M0=20%). 

 

 

FLAT PLATE WITH 25 % INITIAL MOISTURE CONTENT 

In this section the temperature and energy transfer results (at z=L) are presented 

for plates where M0=25% and all other conditions are as specified in the beginning of the 

chapter.  In Figure 31 surface temperature vs. time profiles are provided for plates with 
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three different D0 values as per Table 2.  The temperature vs. time profile of a dry plate 

is also presented in this figure. 
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Figure 31.  Surface temperature (z=L) vs. time (T∞=90°C, h=60 W/m2°C, M0=25%). 
 

As was the case in the previous sections, it is apparent from Figure 31 that an 

increase in D0 results in a reduction of surface temperature.  This is again attributed to 

the fact that the resistance of molecular moisture diffusion in the plate decreases with 

increasing D0.  Thus, as D0 increases moisture is able to diffuse more rapidly through the 

plate to the surface where it is able to evaporate. 
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Figure 32.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=0.5269 m2/s, M0=25%). 

 

It should again be noted from the energy equation, that an increase in D0 

(increased evaporation rate) is not the only factor affecting the surface temperature 

profile.  The change in specific heat of the plate due to the presence of molecular 

moisture also plays an important role on the surface temperature profile.  This effect is 

enhanced as M0 increases. 

To assess the effect of evaporation on the surface temperature profiles of Figure 

31 it is once again convenient to examine the contributions of the rate of energy entering 

or leaving the plate.  Figures 32, 33 and 34 provide plots that allow for this assessment. 
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Figure 33.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=52.69 m2/s, M0=25%). 

 

It should be noted from Figure 32 that for D0=0.5269 m2/s, heat transfer due to 

evaporation is once again negligible.  This specimen however is observed to possess a 

lower temperature profile than a dry plate.  This distinction is again attributed to 

differences in specific heats rather than the effects of evaporation.  From Figure 33 it is 

evident that the D0=52.69 m2/s specimen produces a slightly more significant amount of 

evaporation.  As a result the temperature profile is slightly less than the D0=0.5269 m2/s 

specimen.  For the D0=5,269 m2/s specimen, however, the effect of evaporation is much 

more pronounced as is evident in Figure 34.  As a result, this specimen is again shown to 
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have a much lower temperature profile than the other two (D0=0.5269 m2/s and 

D0=52.69 m2/s). 
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Figure 34.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=5,269 m2/s, M0=25%). 

 

 

FLAT PLATE WITH 30 % INITIAL MOISTURE CONTENT 

In this section the temperature and energy transfer results (at z=L) are presented 

for plates where M0=30% and all other conditions are as specified in the beginning of the 

chapter.  In Figure 35 surface temperature vs. time profiles are provided for plates with 
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three different D0 values as per Table 2.  The temperature vs. time profile of a dry plate 

is also presented in this figure. 

0 100 200 300 400 500 600 700 800 900

30

40

50

60

70

80

90

Time [s]

Te
m

pe
ra

tu
re

 [C
]

Dry flat plate
D0 = 0.5269
D0 = 52.69
D0 = 5,269

 

Figure 35.  Surface temperature (z=L) vs. time (T∞=90°C, h=60 W/m2°C, M0=30%). 
 

As was the case in the previous sections, it is apparent from Figure 35 that an 

increase in D0 results in a reduction of surface temperature.  This is again attributed to 

the fact that the resistance of molecular moisture diffusion in the plate decreases with 

increasing D0.  Thus, as D0 increases moisture is able to diffuse more rapidly through the 

plate to the surface where it is able to evaporate. 
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Figure 36.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=0.5269 m2/s, M0=30%). 

 

It should again be noted from the energy equation, that an increase in D0 

(increased evaporation rate) is not the only factor affecting the surface temperature 

profile.  The change in specific heat of the plate due to the presence of molecular 

moisture also plays an important role on the surface temperature profile.  This effect is 

enhanced as M0 increases. 

To assess the effect of evaporation on the surface temperature profiles of Figure 

35 it is once again convenient to examine the contributions of the rate of energy entering 

or leaving the plate.  Figures 36, 37 and 38 provide plots that allow for this assessment. 
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Figure 37.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=52.69 m2/s, M0=30%). 

 

It should be noted from Figure 36 that for D0=0.5269 m2/s, heat transfer due to 

evaporation is once again negligible.  This specimen however is observed to possess a 

lower temperature profile than a dry plate.  This distinction is again attributed to 

differences in specific heats rather than the effects of evaporation.  From Figure 37 it is 

evident that the D0=52.69 m2/s specimen produces a slightly more significant amount of 

evaporation.  As a result the temperature profile is slightly less than the D0=0.5269 m2/s 

specimen.  For the D0=5,269 m2/s specimen, however, the effect of evaporation is much 

more pronounced as is evident in Figure 38.  As a result, this specimen is again shown to 
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have a much lower temperature profile than the other two (D0=0.5269 m2/s and 

D0=52.69 m2/s). 
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Figure 38.  Heat flux contributions at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=5,269 m2/s, M0=30%). 

 

 

COMPARISON OF RESULTS 

 In this section the results of the preceding sections (M0=0%, M0=5%, M0=10%, 

M0=15%, M0=20%, M0=25% and M0=30%) are compared.  In these preceding sections, 

figures are provided which allow for the comparison of the results of plates with varying 

D0 at a given M0.  For the sake of completeness Figures 39 through 44 and Table 6 are 
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provided in this section as a means of comparing the results of different M0 for a given 

D0. 
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Figure 39.  Surface temperature at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=0.5269 m2/s). 

 

Figure 39 provides the results for plate specimens where D0=0.5269 m2/s.  The 

heat transfer figures contained in the preceding sections make it evident that the 

temperature profiles of the specimens presented in Figure 39 are unaffected by moisture 

transport since the corresponding evaporation rates are nearly zero..  It may be 

concluded nevertheless, that the initial moisture content, M0, exhibits a significant affect 

upon the surface temperature profile of these plates.  This effect is attributed to the 
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change in the overall specific heat of a plate due to the presence of molecular moisture.  

It is apparent from Figure 39 that the magnitude of this effect increases with increased 

initial moisture content, M0. 
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Figure 40.  Surface temperature at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=52.69 m2/s). 

 

A comparison of Figures 39 and 40 reveals that plate samples with D0=52.69 

m2/s experience slightly lower temperature profiles than specimens where D0=0.5269 

m2/s.  The difference, however, is only on the order of about 1°C to 3°C (see Table 6).  

The order of the difference increases with increasing M0. 
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The temperature profiles of the plate specimens as per Figure 41 (D0=5,269 m2/s) 

exhibit significant improvements over the samples previously presented in Figures 39 

and 40.  The temperature curves are much lower as energy transfer due to evaporation is 

of similar magnitude to the convection heat transfer. 
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Figure 41.  Surface temperature at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=5,269 m2/s). 



 

 

99

In addition to Figures 39, 40 and 41; Figures 42, 43 and 44 are also provided to 

represent more clearly the surface temperature profiles during the early stages of the 

plate’s exposure to the environment. 
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Figure 42.  Surface temperature at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=0.5269 m2/s). 
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Figure 43.  Surface temperature at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=52.69 m2/s). 
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Figure 44.  Surface temperature at plate surface (z=L) vs. time 
(T∞=90°C, h=60 W/m2°C, D0=5,269 m2/s). 
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Table 6.  A comparison of final temperature values (t=900 s). 

M0 D0=0.5269 m2/s D0=52.69 m2/s D0=5,269 m2/s 

0% 85.5 [C] 85.5 [C] 85.5 [C] 

5% 81.9 [C] 81.0 [C] 76.5 [C] 

10% 79.6 [C] 78.0 [C] 70.7 [C] 

15% 77.1 [C] 75.1 [C] 65.9 [C] 

20% 74.6 [C] 72.2 [C] 61.8 [C] 

25% 72.0 [C] 69.4 [C] 58.0 [C] 

30% 69.5 [C] 66.6 [C] 54.7 [C] 

 

 Table 6 provides a summary of temperature values at t=900 s as per Figures 39, 

40 and 41.  From this Table it is further evident that surface temperature is a function of 

both M0 and D0.  As initial moisture content and diffusion coefficients increases the 

surface temperature profile decreases. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

SUMMARY AND CONCLUDING REMARKS 

In this work evaporative cooling of composite plate structures was 

mathematically studied as a potential for reducing the external temperatures of military 

aircraft.  A simplified model of the phenomena was developed and the governing 

equations for the coupled energy and mass transfer were derived from the conservation 

laws (mass and energy) per the continuum mechanics hypothesis.  Constitutive 

relationships and additional assumptions were introduced to provide two governing 

equations containing two dependent variables (T and ρw).  These coupled nonlinear 

partial differential equations were then approximated using a weak form Galerkin finite 

element formulation and solved at discrete time steps through the α–family of time 

approximation using the Crank–Nicolson scheme. 

Temperature profiles versus time were presented in Chapter IV for a variety of 

initial molecular moisture contents, M0, and diffusion coefficients, D.  From the results it 

is evident that evaporative cooling possesses a potential for reducing the surface 

temperatures of plate structures that are exposed to external airflows at elevated 

temperatures.  To achieve a significant reduction in surface temperature over time it is 

necessary for the plate structure to possess a molecular moisture diffusion coefficient, D, 

on the order of about 10–8 m2/s (D0=5,269 in the present study).  The initial moisture 

content, M0, is also shown to reduce the surface temperature. 
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In conclusion, evaporative cooling of molecular moisture bearing composite 

plates possesses the potential for reducing the external temperature of military aircraft.  

It should, however, be emphasized from the results of the present study that evaporative 

cooling only reduces the temperature versus time profile of flat plate structures.  It does 

not eliminate the increase of surface temperatures due to exposures to external flows.  

For the findings of the present work to be useful it is necessary that the selected moisture 

bearing epoxy composite (i.e., high moisture particular fillers incorporated into high 

temperature AFR–PEPA–N polyimides) possesses the properties shown to be favorable 

in the present study.  There are two necessary criteria.  First the material must possess a 

diffusion coefficient, D, on the order of 10–8 m2/s.  In addition it is important that the 

material be capable of absorbing a significant amount of moisture (i.e., allows for a 

favorable value for M0). 

 

FUTURE RESEARCH 

The model used in the present study relied on several key assumptions which 

were presented in Chapter II.  The validity of the numerical results presented in Chapter 

IV therefore, depend significantly upon the validity of these assumptions.  It may 

therefore be of interest to revisit several of these assumptions to refine the model. 

It should be noted that in the 4th assumption of Chapter II it was presumed that 

the diffusion of molecular moisture may be described by Fick’s law of diffusion.  Many 

studies [17,18,19] of molecular moisture transport in epoxy plate specimens have 

utilized this relationship with some success to describe the phenomenon.  However, 



 

 

105

some of this research [18,19] has demonstrated that moisture transport does deviate to 

some degree from Fick’s law.  In fact the diffusion coefficients, D, in the literature are 

often shown to vary with a change in boundary conditions [17,18].  The reason that 

Fick’s law suffers in such a manner may be attributed to the fact that diffusion is a much 

more complex form of transport than heat transfer as it may depend upon more than just 

the concentration gradient of a single dependent variable.  As a result several models 

have been proposed for more accurately describing the diffusion process of molecular 

moisture in epoxy composites [18].  One of these theories might therefore be utilized in 

the future to develop a more accurate set of governing equations than what is presented 

in this work. 

The 6th and 7th assumptions presented in Chapter II may also need to be 

reevaluated.  Eq. (2.1) presents a theorized assumption relating the partial densities of 

moisture within the plate (at the surface) and the water vapor (just above the plate 

surface).  This assumption follows from Assumption 6, which assumes that evaporation 

does not occur within the plate.  The validity of these assumptions (along with improved 

correlations) will have to be inferred by the subsequent experimental results.  These 

results will allow the boundary conditions to be expressed more accurately and thus 

provide for more accurate numerical simulations. 

It is also worth noting an additional implication implied by Assumption 6.  Since 

evaporation is assumed to occur at the plate surfaces, the model is limited to the study of 

external flows that do not produce temperatures within the plate that will exceed the 

boiling temperature of water (i.e., T∞,t<100°C and T∞,b<100°C).  It may therefore be of 
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interest to refine the present model such that evaporation is allowed to occur inside the 

plate.  This type of model would be much more complicated as it would allow the 

molecular water/water vapor interface to move from the surface into the plate as a 

function of time.  At this moving interface a discontinuity would exist in the partial 

density of water.  In addition values for two separate diffusion coefficients, D, within the 

plate would need to be defined and quantified.  One coefficient would describe the 

diffusion of water in its molecular liquid form (as in the case of the present study) and 

the other would describe the diffusion process of the molecular water vapor. 

In addition to reevaluating some of the assumptions utilized in the present work it 

is also of interest to perform experimental work to obtain results that may be compared 

with the results of the present study.  This will allow for the validation of the present 

model and provide additional insight into which assumptions may need to be 

reevaluated. 
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APPENDIX A 

 

This appendix contains a Matlab computer program for solving transient one–

dimensional linear heat transfer problems.  It is applicable to flat plate analysis with 

forced convection boundary conditions (at z=0 and z=L). 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%Linear Element FE Code for Cartesian 1-D Transient Heat Transfer%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Clear Workspace and Command Window% 
clear; 
clc; 
  
%Finite Element Parameters% 
NE = 100;       %Number of elements in model% 
Time = 100;     %Run time [s]% 
DeltaT = 0.001; %Time step [s]% 
NPLOT = 10;     %Number of temperature field solutions to be plotted% 
  
%Physical Parameters of System% 
t = 0.02;       %Thickness of plate [m]% 
rho = 1200;     %Density of plate [kg/m^3]% 
Cp = 1000;      %Specific heat of plate at constant temperature 
[J(kg*K)]% 
k = 0.16;       %Thermal conductivity [W/(m*K)]% 
  
Ti = 25;        %Initial plate temperature [K]% 
Tinf_b = 30;    %Farfield temperature on bottom side of plate [K]% 
Tinf_t = 150;   %Farfield temperature on top side of plate [K]% 
  
h_bot = 17.2304;%Conv. coef. on bottom side of plate [W/(m^2*K)]% 
h_top = 12.2333;%Conv. coef. on top side of plate [W/(m^2*K)]% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%Finite Element Calculations%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Begin calculation timer% 
tic 
  
%Number of nodes in the model% 
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NN = NE + 1; 
  
%Nodal coordinates% 
z = zeros(NN,1); 
for i=1:1:NN 
    z(i,1) = t/2*(1 - cos(4*atan(1)/(NN-1)*(i-1))); 
end 
  
%Length of each element% 
L = zeros(NE,1); 
for i=1:1:NE 
    L(i,1) = z(i+1,1) - z(i,1); 
end 
  
%Element connectivity matrix% 
con1 = zeros(1,NE); 
con2 = con1; 
for j = 1:1:NE 
    con1(1,j) = j; 
    con2(1,j) = j + 1; 
end 
econ = [con1 ; con2]; 
  
%Local [K] matrices% 
k_temp = [1 -1 ; -1 1]; 
K_local = zeros(2,2,NE); 
for n = 1:1:NE 
    for i = 1:1:2 
        for j = 1:1:2 
            K_local(i,j,n) = k/L(n,1)*k_temp(i,j); 
        end 
    end 
end 
  
%Global [K] matrix% 
K = zeros(NN,NN); 
for n = 1:1:NE 
    for i = 1:1:2 
        for j = 1:1:2 
            ii = econ(i,n); 
            jj = econ(j,n); 
            K(ii,jj) = K(ii,jj) + K_local(i,j,n); 
        end 
    end 
end 
K(1,1) = K(1,1) + h_bot; 
K(NN,NN) = K(NN,NN) + h_top; 
  
%Local [C] matrices% 
c_temp = [1/3 1/6 ; 1/6 1/3]; 
C_local = zeros(2,2,NE); 
for n = 1:1:NE 
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    for i = 1:1:2 
        for j = 1:1:2 
            C_local(i,j,n) = rho*Cp*L(n,1)*c_temp(i,j); 
        end 
    end 
end 
  
%Global [C] matrix% 
C = zeros(NN,NN); 
for n = 1:1:NE 
    for i = 1:1:2 
        for j = 1:1:2 
            ii = econ(i,n); 
            jj = econ(j,n); 
            C(ii,jj) = C(ii,jj) + C_local(i,j,n); 
        end 
    end 
end 
  
  
%%%%%%%%%%%%%%%Time Dependent [Time-step] Calculations%%%%%%%%%%%%%%%%% 
  
%Alpha-Family of Approximation (Crank-Nicolson scheme)% 
alpha = 0.5; 
  
%Global [Beta] matrix% 
Beta = zeros(NN,NN); 
Beta = C + DeltaT*alpha*K; 
  
%Inverse of global [Beta] matrix% 
Beta_In = inv(Beta); 
  
%Global [Gamma] matrix% 
Gamma = zeros(NN,NN); 
Gamma = C - DeltaT*(1 - alpha)*K; 
  
%Global {f} matrix% 
f = zeros(NN,1); 
f(1,1) = DeltaT*alpha*h_bot*Tinf_b + DeltaT*(1 - alpha)*h_bot*Tinf_b; 
f(NN,1) = DeltaT*alpha*h_top*Tinf_t + DeltaT*(1 - alpha)*h_top*Tinf_t; 
  
%Temperature calculations% 
T = Ti*ones(NN,1); 
T_plot = zeros(NN,NPLOT); 
for i = 1:1:ceil(Time/DeltaT) 
    T = Beta_In*(Gamma*T + f); 
    for j = 1:1:NPLOT 
        if i == ceil(Time/DeltaT*(j/NPLOT)) 
            T_plot(:,j) = T; 
        end 
    end 
end 
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T_plot = [Ti*ones(NN,1)' ; T_plot']'; 
  
%Temperature plots% 
Plot_Times = zeros(NPLOT + 1,1); 
for i = 1:1:NPLOT 
    Plot_Times(i + 1,1) = (i/NPLOT)*Time; 
end 
Plot_Times 
plot(z,T_plot,'b') 
  
%End calculation timer% 
toc 
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APPENDIX B 

 

 This appendix contains code for a Matlab computer program for solving 

nonlinear coupled heat and mass transfer problems for a vertical flat plat with free 

convection at one surface (z=0) and forced convection at the other surface (z=L). 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%% LINEAR ELEMENT FINITE ELEMENT CODE FOR 1-D CARTESIAN %%%%%%%%% 
%%%%%%%% NON-LINEAR COUPLED CONVECTIVE HEAT AND MASS TRANSFER %%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Clear Workspace and Command Window% 
clear; 
clc; 
  
%Finite Element Parameters% 
NE = 100;           %Number of elements in model% 
NN = NE + 1;        %Number of nodes in model% 
Time_F = 900;       %Run time [s]% 
STEPS = 10000;      %Total number of time steps% 
ERROR = 10^(-6);    %Allowable error between iterations% 
  
%Physical Parameters of System% 
t = 0.01;           %Thickness of plate [m]% 
Lp = 0.06;          %Length of plate [m]% 
H = 0.051;          %Distance from exit of nozzle to flat plate [m]% 
d_h = 9.525*10^-3;  %Inner diameter of nozzle [m]% 
r = 0.06;           %Radial distance for averaging of h [m]% 
  
V_t = 9.935;        %Free stream velocity of air (top of plate) [m/s]% 
  
rho_e = 1130;       %Mass density of epoxy [kg/m^3]% 
rho_w = 125;        %Initial mass density of liquid water [kg/m^3]% 
rho_w_b = 0;        %Free stream mass density of water vapor [kg/m^3]% 
rho_w_t = 0;        %Free stream mass density of water vapor [kg/m^3]% 
  
Cp_e = 1000;        %Specific heat of epoxy [J/(kg*K)]% 
Cp_w = 4181;        %Specific heat of liquid water [J/(kg*K)]% 
Cp_s = 1900;        %Specific heat of water vapor [J/(kg*K)]% 
  
k_e = 0.16;         %Thermal conductivity of epoxy [W/(m*K)]% 
k_w = 0.606;        %Thermal conductivity of water [W/(m*K)]% 
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Ti = 25;            %Initial plate temperature [C]% 
Tinf_b = 25;        %Farfield temperature on bottom side of plate [C]% 
Tinf_t = 90;        %Farfield temperature on top side of plate [C]% 
g = 9.81;           %Gravitational constant [m/s^2]% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%Finite Element Calculations%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Initiate calculation timer% 
tic 
  
%Initial Conditions - Temperature and Partial Density of Water% 
T_s = Ti*ones(NN,1); 
rho_s = rho_w*ones(NN,1); 
rho = rho_s; 
  
%Nodal coordinates% 
z = zeros(NN,1); 
for i=1:1:NN 
    z(i,1) = t/2*(1 - cos(4*atan(1)/(NN-1)*(i-1))); 
end 
  
%Length of each element% 
L = zeros(NE,1); 
for i=1:1:NE 
    L(i,1) = z(i+1,1) - z(i,1); 
end 
  
%Element connectivity matrix% 
con1 = zeros(1,NE); 
con2 = con1; 
for j = 1:1:NE 
    con1(1,j) = j; 
    con2(1,j) = j + 1; 
end 
econ = [con1 ; con2]; 
  
%Matrices for creating local [C] and [K]% 
matrix_K = [1 -1 ; -1 1]; 
matrix_C = [1/3 1/6 ; 1/6 1/3]; 
  
%Initialize temperature plotting matrix% 
T_plot = zeros(NN,STEPS); 
  
%Initialize heat flux quantities% 
Heat_Flux_Plate = zeros(STEPS,1); 
Heat_Flux_Fluid = zeros(STEPS,1); 
Heat_Flux_Convection = zeros(STEPS,1); 
Heat_Flux_Evaporation = zeros(STEPS,1); 
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%Zero out time step data output% 
STEP_SIZE = zeros(STEPS,1); 
TIME = zeros(STEPS,1); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%Time Step Calculations%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for ALPHA = 1:1:STEPS 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%% Time Step t = ts %%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    %Time step% 
    DeltaT = (Time_F + 1)^((ALPHA+1)/STEPS) - (Time_F + 
1)^(ALPHA/STEPS); 
    STEP_SIZE(ALPHA,1) = DeltaT; 
    TIME(ALPHA,1) = (Time_F + 1)^(ALPHA/STEPS) - 1; 
     
    %Time derivative of partial water density vector (Finite 
difference)% 
    rho_dot = (rho_s - rho)/DeltaT; 
     
    %Time derivative of partial water density of each element% 
    rho_dot_elem = zeros(NE,1); 
    for i = 1:1:NE 
        rho_dot_elem(i,1) = 1/2*(rho_dot(i,1) + rho_dot(i+1,1)); 
    end 
     
    %Temperature at beginning of time step% 
    T = T_s; 
    rho = rho_s; 
     
    %Film temperatures of air% 
    T_f_b = 1/2*(Tinf_b + T(1,1)); 
    T_f_t = 1/2*(Tinf_t + T(NN,1)); 
     
    %Thermodynamic properties of air evaluated at film temperatures% 
    if T_f_b >= -23 
        rho_a_b = abs(-0.0000000000000792820513011733*T_f_b^5 + 
0.0000000000953301165563686*T_f_b^4 - 0.000000050163723735009*T_f_b^3 + 
0.0000168472016369276*T_f_b^2 - 0.00470217379842505*T_f_b + 
1.27700146883161); 
        Cp_b = abs(-0.0000000000000888888902465953*T_f_b^6 + 
0.0000000000995282070684165*T_f_b^5 - 0.0000000428916587677406*T_f_b^4 
+ 0.00000823194089532104*T_f_b^3 - 0.000200457865622728*T_f_b^2 + 
0.0152668183846889*T_f_b + 1006.57290237493); 
        nu_b = abs(-0.000000000000000000410256409748*T_f_b^5 + 
0.000000000000000311794871941306*T_f_b^4 - 
0.000000000000132687738890731*T_f_b^3 + 
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0.000000000120357440778083*T_f_b^2 + 0.000000088726868752095*T_f_b + 
0.0000134143539102198); 
        k_therm_b = abs(0.00000000000000184615384607424*T_f_b^5 - 
0.00000000000146368298360735*T_f_b^4 + 
0.000000000366064521972289*T_f_b^3 - 0.0000000578723621039552*T_f_b^2 + 
0.0000793825265292941*T_f_b + 0.0241661248040929); 
        Pr_b = abs(0.00000000000000137777778150272*T_f_b^6 - 
0.00000000000128217436277489*T_f_b^5 + 
0.000000000433497624824249*T_f_b^4 - 0.0000000631080565622911*T_f_b^3 + 
0.00000382756694647818*T_f_b^2 - 0.00023382828946905*T_f_b + 
0.711681203873734); 
    else 
        rho_a_b = 1.3947; 
        Cp_b = 1006; 
        nu_b = 1.144*10^-5; 
        k_therm_b = 0.0223; 
        Pr_b = 0.720; 
    end     
     
    if T_f_t >= -23 
        rho_a_t = abs(-0.0000000000000792820513011733*T_f_t^5 + 
0.0000000000953301165563686*T_f_t^4 - 0.000000050163723735009*T_f_t^3 + 
0.0000168472016369276*T_f_t^2 - 0.00470217379842505*T_f_t + 
1.27700146883161); 
        Cp_t = abs(-0.0000000000000888888902465953*T_f_t^6 + 
0.0000000000995282070684165*T_f_t^5 - 0.0000000428916587677406*T_f_t^4 
+ 0.00000823194089532104*T_f_t^3 - 0.000200457865622728*T_f_t^2 + 
0.0152668183846889*T_f_t + 1006.57290237493); 
        nu_t = abs(-0.000000000000000000410256409748*T_f_t^5 + 
0.000000000000000311794871941306*T_f_t^4 - 
0.000000000000132687738890731*T_f_t^3 + 
0.000000000120357440778083*T_f_t^2 + 0.000000088726868752095*T_f_t + 
0.0000134143539102198); 
        k_therm_t = abs(0.00000000000000184615384607424*T_f_t^5 - 
0.00000000000146368298360735*T_f_t^4 + 
0.000000000366064521972289*T_f_t^3 - 0.0000000578723621039552*T_f_t^2 + 
0.0000793825265292941*T_f_t + 0.0241661248040929); 
        Pr_t = abs(0.00000000000000137777778150272*T_f_t^6 - 
0.00000000000128217436277489*T_f_t^5 + 
0.000000000433497624824249*T_f_t^4 - 0.0000000631080565622911*T_f_t^3 + 
0.00000382756694647818*T_f_t^2 - 0.00023382828946905*T_f_t + 
0.711681203873734); 
    else 
        rho_a_t = 1.3947; 
        Cp_t = 1006; 
        nu_t = 1.144*10^-5; 
        k_therm_t = 0.0223; 
        Pr_t = 0.720; 
    end 
     
    %Saturated water (latent heat and vapor density% 
    if T(1,1) >= 0.01 
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        h_fg_b = abs(0.000000000275007280836626*T(1,1)^6 - 
0.000000292752383970474*T(1,1)^5 + 0.000076712800163433*T(1,1)^4 - 
0.0211024525112885*T(1,1)^3 + 0.900861539092667*T(1,1)^2 - 
2372.60570828709*T(1,1)+ 2501365.48344311); 
        rho_sat_b = abs(0.0000000000000169776180498343*T(1,1)^6 - 
0.00000000000180312677530523*T(1,1)^5 + 
0.00000000432345585705831*T(1,1)^4 - 0.0000000458238910035912*T(1,1)^3 
+ 0.0000185770214578365*T(1,1)^2 + 0.000213313865582776*T(1,1) + 
0.00515858825086024); 
    else 
        h_fg_b = 2501300; 
        rho_sat_b = 0.004851; 
    end 
     
    if T(NN,1) >= 0.01 
        h_fg_t = abs(0.000000000275007280836626*T(NN,1)^6 - 
0.000000292752383970474*T(NN,1)^5 + 0.000076712800163433*T(NN,1)^4 - 
0.0211024525112885*T(NN,1)^3 + 0.900861539092667*T(NN,1)^2 - 
2372.60570828709*T(NN,1)+ 2501365.48344311); 
        rho_sat_t = abs(0.0000000000000169776180498343*T(NN,1)^6 - 
0.00000000000180312677530523*T(NN,1)^5 + 
0.00000000432345585705831*T(NN,1)^4 - 
0.0000000458238910035912*T(NN,1)^3 + 0.0000185770214578365*T(NN,1)^2 + 
0.000213313865582776*T(NN,1) + 0.00515858825086024); 
    else 
        h_fg_t = 2501300; 
        rho_sat_t = 0.004851; 
    end 
     
    %Diffusion coefficients of water vapor in air% 
    if T_f_b >= 7 
        D_a_b = abs(1.87*10^-10*(abs(T_f_b + 273))^2.072); 
    else 
        D_a_b = 2.19965*(10^-05); 
    end 
     
    if T_f_t >= 7 
        D_a_t = abs(1.87*10^-10*(abs(T_f_t + 273))^2.072); 
    else 
        D_a_t = 2.19965*(10^-05); 
    end 
     
    %%%%%%%%%%%%%%%Convective heat transfer coefficients%%%%%%%%%%%%%%% 
    Ra_L = g*(1/(T_f_b + 273))*abs(T(1,1) - 
Tinf_b)*Lp^3/(nu_b*(k_therm_b/(rho_a_b*Cp_b))); 
    Nu_L = 0.68 + 0.670*Ra_L^(1/4)/(1 + (0.492/Pr_b)^(9/16))^(4/9); 
     
    Re_t = V_t*d_h/nu_t; 
     
    h_bot = Nu_L*k_therm_b/Lp; 
    h_top = (2*k_therm_t*Re_t^(0.5)*Pr_t^(0.42)*(1 - 1.1*d_h/r)*(1 + 
0.005*Re_t^(0.55))^(0.5))/(r*(1 + 0.1*(H/d_h - 6)*d_h/r)); 
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    %%%%%%%%%%%%%%%Convective mass transfer coefficients%%%%%%%%%%%%%%% 
    h_m_bot = 
h_bot/(rho_a_b*Cp_b*(k_therm_b/(rho_a_b*Cp_b*D_a_b))^(2/3)); 
    h_m_top = 
h_top/(rho_a_t*Cp_t*(k_therm_t/(rho_a_t*Cp_t*D_a_t))^(0.58)); 
     
    %Mass density of water of each element% 
    rho_w_elem = zeros(NE,1); 
    for i=1:1:NE 
        rho_w_elem(i,1) = 1/2*(rho(i,1) + rho(i+1,1)); 
    end 
     
    %Mass density of each element% 
    rho_elem = zeros(NE,1); 
    for i=1:1:NE 
        rho_elem(i,1) = rho_w_elem(i,1) + rho_e; 
    end 
     
    %Thermal conductivity of each element% 
    k_therm_elem = zeros(NE,1); 
    for i = 1:1:NE 
        k_therm_elem(i,1) = 1/rho_elem(i,1)*(rho_e*k_e + 
rho_w_elem(i,1)*k_w); 
    end 
     
    %Specific heat of each element% 
    Cp_elem = zeros(NE,1); 
    for i = 1:1:NE 
        Cp_elem(i,1) = 1/rho_elem(i,1)*(rho_e*Cp_e + 
rho_w_elem(i,1)*Cp_w); 
    end 
     
    %Mass diffusion coefficient of each element% 
    D_n = zeros(NN,1); 
    for i = 1:1:NN 
        if T(i,1) >= 37.8 
            D_n(i,1) = abs(0.526913365598052*exp(-
9177.934261262040000000000000000000*(1/(T(i,1) + 273)))); 
        else 
            D_n(i,1) = 7.93*10^-14; 
        end 
    end 
    D_elem = zeros(NE,1); 
    for i = 1:1:NE 
        D_elem(i,1) = 1/2*(D_n(i,1) + D_n(i+1,1)); 
    end 
     
    %%%%%%%%%%%%%%%Construction of Heat Transfer Matrices%%%%%%%%%%%%%% 
     
    %Local [K] matrices% 
    K_h_local = zeros(2,2,NE); 
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    for k = 1:1:NE 
        for i = 1:1:2 
            for j = 1:1:2 
            K_h_local(i,j,k) = k_therm_elem(k,1)/L(k,1)*matrix_K(i,j); 
            end 
        end 
    end 
    for k = 1:1:NE 
        K_h_local(1,1,k) = -Cp_w*D_elem(k,1)*(rho(k+1,1) - 
rho(k,1))/(2*L(k,1)) + Cp_w*L(k,1)/12*(3*rho_dot(k,1) + rho_dot(k+1,1)) 
+ K_h_local(1,1,k); 
        K_h_local(1,2,k) = -Cp_w*D_elem(k,1)*(rho(k+1,1) - 
rho(k,1))/(2*L(k,1)) + Cp_w*L(k,1)/12*(rho_dot(k,1) + rho_dot(k+1,1)) + 
K_h_local(1,2,k); 
        K_h_local(2,1,k) = Cp_w*D_elem(k,1)*(rho(k+1,1) - 
rho(k,1))/(2*L(k,1)) + Cp_w*L(k,1)/12*(rho_dot(k,1) + rho_dot(k+1,1)) + 
K_h_local(2,1,k); 
        K_h_local(2,2,k) = Cp_w*D_elem(k,1)*(rho(k+1,1) - 
rho(k,1))/(2*L(k,1)) + Cp_w*L(k,1)/12*(rho_dot(k,1) + 3*rho_dot(k+1,1)) 
+ K_h_local(2,2,k); 
    end 
     
    %Global [K] matrix% 
    K_h = zeros(NN,NN); 
    for n = 1:1:NE 
        for i = 1:1:2 
            for j = 1:1:2 
                ii = econ(i,n); 
                jj = econ(j,n); 
                K_h(ii,jj) = K_h(ii,jj) + K_h_local(i,j,n); 
            end 
        end 
    end 
     
    K_h(1,1) = K_h(1,1) + h_m_bot*(Cp_w - 
Cp_s)*(rho_sat_b*rho(1,1)/(rho_e + rho(1,1)) - rho_w_b) + h_bot; 
    K_h(NN,NN) = K_h(NN,NN) + h_m_top*(Cp_w - 
Cp_s)*(rho_sat_t*rho(NN,1)/(rho_e + rho(NN,1)) - rho_w_t) + h_top; 
     
    %Local [C] matrices% 
    C_h_local = zeros(2,2,NE); 
    for k = 1:1:NE 
        for i = 1:1:2 
            for j = 1:1:2 
                C_h_local(i,j,k) = 
rho_elem(k,1)*Cp_elem(k,1)*L(k,1)*matrix_C(i,j); 
            end 
        end 
    end 
    for k = 1:1:NE 
        C_h_local(1,1,k) = Cp_w*L(k,1)/12*(3*rho(k,1) + rho(k+1,1)) + 
C_h_local(1,1,k); 
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        C_h_local(1,2,k) = Cp_w*L(k,1)/12*(rho(k,1) + rho(k+1,1)) + 
C_h_local(1,2,k); 
        C_h_local(2,1,k) = Cp_w*L(k,1)/12*(rho(k,1) + rho(k+1,1)) + 
C_h_local(2,1,k); 
        C_h_local(2,2,k) = Cp_w*L(k,1)/12*(rho(k,1) + 3*rho(k+1,1)) + 
C_h_local(2,2,k); 
    end 
     
    %Global [C] matrix% 
    C_h = zeros(NN,NN); 
    for n = 1:1:NE 
        for i = 1:1:2 
            for j = 1:1:2 
                ii = econ(i,n); 
                jj = econ(j,n); 
                C_h(ii,jj) = C_h(ii,jj) + C_h_local(i,j,n); 
            end 
        end 
    end 
     
    %Global {f} vector% 
    f_h = zeros(NN,1); 
    f_h(1,1) = -h_m_bot*(h_fg_b + 
Cp_s*Tinf_b)*(rho_sat_b*rho(1,1)/(rho_e + rho(1,1)) - rho_w_b) + 
h_bot*Tinf_b; 
    f_h(NN,1) = -h_m_top*(h_fg_t + 
Cp_s*Tinf_t)*(rho_sat_t*rho(NN,1)/(rho_e + rho(NN,1)) - rho_w_t) + 
h_top*Tinf_t; 
     
    %%%%%%%%%%%%%%%Construction of Mass Transfer Matrices%%%%%%%%%%%%%% 
     
    %Local [K] matrices% 
    K_m_local = zeros(2,2,NE); 
    for k = 1:1:NE 
        for i = 1:1:2 
            for j = 1:1:2 
                K_m_local(i,j,k) = (D_elem(k,1)/L(k,1))*matrix_K(i,j); 
            end 
        end 
    end 
     
    %Global [K] matrix% 
    K_m = zeros(NN,NN); 
    for n = 1:1:NE 
        for i = 1:1:2 
            for j = 1:1:2 
                ii = econ(i,n); 
                jj = econ(j,n); 
                K_m(ii,jj) = K_m(ii,jj) + K_m_local(i,j,n); 
            end 
        end 
    end 
    K_m(1,1) = K_m(1,1) + h_m_bot*rho_sat_b/(rho_e + rho(1,1)); 
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    K_m(NN,NN) = K_m(NN,NN) + h_m_top*rho_sat_t/(rho_e + rho(NN,1)); 
     
    %Local [C] matrices% 
    C_m_local = zeros(2,2,NE); 
    for k = 1:1:NE 
        for i = 1:1:2 
            for j = 1:1:2 
                C_m_local(i,j,k) = L(k,1)*matrix_C(i,j); 
            end 
        end 
    end 
     
    %Global [C] matrix% 
    C_m = zeros(NN,NN); 
    for n = 1:1:NE 
        for i = 1:1:2 
            for j = 1:1:2 
                ii = econ(i,n); 
                jj = econ(j,n); 
                C_m(ii,jj) = C_m(ii,jj) + C_m_local(i,j,n); 
            end 
        end 
    end 
     
    %Global {f} vector% 
    f_m = zeros(NN,1); 
    f_m(1,1) = h_m_bot*rho_w_b; 
    f_m(NN,1) = h_m_top*rho_w_t; 
     
    %Iteration criteria% 
    T_s = 1.01*T; 
    rho_s = 1.01*rho; 
    ER = 1; 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%Iterative Calculations%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%% Time Step t = ts+1 %%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    while ERROR < ER 
         
        %Vectors for iteration criteria% 
        T_temp = T_s; 
        rho_temp = rho_s; 
         
        %Film temperatures of air% 
        T_f_b_s = 1/2*(Tinf_b + T_s(1,1)); 
        T_f_t_s = 1/2*(Tinf_t + T_s(NN,1)); 
         
        %Thermodynamic properties of air evaluated at film temps% 
        if T_f_b_s >= -23 
            rho_a_b_s = abs(-0.0000000000000792820513011733*T_f_b_s^5 + 
0.0000000000953301165563686*T_f_b_s^4 - 
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0.000000050163723735009*T_f_b_s^3 + 0.0000168472016369276*T_f_b_s^2 - 
0.00470217379842505*T_f_b_s + 1.27700146883161); 
            Cp_b_s = abs(-0.0000000000000888888902465953*T_f_b_s^6 + 
0.0000000000995282070684165*T_f_b_s^5 - 
0.0000000428916587677406*T_f_b_s^4 + 0.00000823194089532104*T_f_b_s^3 - 
0.000200457865622728*T_f_b_s^2 + 0.0152668183846889*T_f_b_s + 
1006.57290237493); 
            nu_b_s = abs(-0.000000000000000000410256409748*T_f_b_s^5 + 
0.000000000000000311794871941306*T_f_b_s^4 - 
0.000000000000132687738890731*T_f_b_s^3 + 
0.000000000120357440778083*T_f_b_s^2 + 0.000000088726868752095*T_f_b_s 
+ 0.0000134143539102198); 
            k_therm_b_s = abs(0.00000000000000184615384607424*T_f_b_s^5 
- 0.00000000000146368298360735*T_f_b_s^4 + 
0.000000000366064521972289*T_f_b_s^3 - 
0.0000000578723621039552*T_f_b_s^2 + 0.0000793825265292941*T_f_b_s + 
0.0241661248040929); 
            Pr_b_s = abs(0.00000000000000137777778150272*T_f_b_s^6 - 
0.00000000000128217436277489*T_f_b_s^5 + 
0.000000000433497624824249*T_f_b_s^4 - 
0.0000000631080565622911*T_f_b_s^3 + 0.00000382756694647818*T_f_b_s^2 - 
0.00023382828946905*T_f_b_s + 0.711681203873734); 
        else 
            rho_a_b_s = 1.3947; 
            Cp_b_s = 1006; 
            nu_b_s = 1.144*10^-5; 
            k_therm_b_s = 0.0223; 
            Pr_b_s = 0.720; 
        end 
         
        if T_f_t_s >= -23 
            rho_a_t_s = abs(-0.0000000000000792820513011733*T_f_t_s^5 + 
0.0000000000953301165563686*T_f_t_s^4 - 
0.000000050163723735009*T_f_t_s^3 + 0.0000168472016369276*T_f_t_s^2 - 
0.00470217379842505*T_f_t_s + 1.27700146883161); 
            Cp_t_s = abs(-0.0000000000000888888902465953*T_f_t_s^6 + 
0.0000000000995282070684165*T_f_t_s^5 - 
0.0000000428916587677406*T_f_t_s^4 + 0.00000823194089532104*T_f_t_s^3 - 
0.000200457865622728*T_f_t_s^2 + 0.0152668183846889*T_f_t_s + 
1006.57290237493); 
            nu_t_s = abs(-0.000000000000000000410256409748*T_f_t_s^5 + 
0.000000000000000311794871941306*T_f_t_s^4 - 
0.000000000000132687738890731*T_f_t_s^3 + 
0.000000000120357440778083*T_f_t_s^2 + 0.000000088726868752095*T_f_t_s 
+ 0.0000134143539102198); 
            k_therm_t_s = abs(0.00000000000000184615384607424*T_f_t_s^5 
- 0.00000000000146368298360735*T_f_t_s^4 + 
0.000000000366064521972289*T_f_t_s^3 - 
0.0000000578723621039552*T_f_t_s^2 + 0.0000793825265292941*T_f_t_s + 
0.0241661248040929); 
            Pr_t_s = abs(0.00000000000000137777778150272*T_f_t_s^6 - 
0.00000000000128217436277489*T_f_t_s^5 + 
0.000000000433497624824249*T_f_t_s^4 - 
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0.0000000631080565622911*T_f_t_s^3 + 0.00000382756694647818*T_f_t_s^2 - 
0.00023382828946905*T_f_t_s + 0.711681203873734); 
        else 
            rho_a_t_s = 1.3947; 
            Cp_t_s = 1006; 
            nu_t_s = 1.144*10^-5; 
            k_therm_t_s = 0.0223; 
            Pr_t_s = 0.720; 
        end 
         
        %Saturated water (latent heat and vapor density% 
        if T_s(1,1) >= 0.01 
            h_fg_b_s = abs(0.000000000275007280836626*T_s(1,1)^6 - 
0.000000292752383970474*T_s(1,1)^5 + 0.000076712800163433*T_s(1,1)^4 - 
0.0211024525112885*T_s(1,1)^3 + 0.900861539092667*T_s(1,1)^2 - 
2372.60570828709*T_s(1,1)+ 2501365.48344311); 
            rho_sat_b_s = abs(0.0000000000000169776180498343*T_s(1,1)^6 
- 0.00000000000180312677530523*T_s(1,1)^5 + 
0.00000000432345585705831*T_s(1,1)^4 - 
0.0000000458238910035912*T_s(1,1)^3 + 0.0000185770214578365*T_s(1,1)^2 
+ 0.000213313865582776*T_s(1,1) + 0.00515858825086024); 
        else 
            h_fg_b_s = 2501300; 
            rho_sat_b_s = 0.004851; 
        end 
         
        if T_s(NN,1) >= 0.01 
            h_fg_t_s = abs(0.000000000275007280836626*T_s(NN,1)^6 - 
0.000000292752383970474*T_s(NN,1)^5 + 0.000076712800163433*T_s(NN,1)^4 
- 0.0211024525112885*T_s(NN,1)^3 + 0.900861539092667*T_s(NN,1)^2 - 
2372.60570828709*T_s(NN,1)+ 2501365.48344311); 
            rho_sat_t_s = 
abs(0.0000000000000169776180498343*T_s(NN,1)^6 - 
0.00000000000180312677530523*T_s(NN,1)^5 + 
0.00000000432345585705831*T_s(NN,1)^4 - 
0.0000000458238910035912*T_s(NN,1)^3 + 
0.0000185770214578365*T_s(NN,1)^2 + 0.000213313865582776*T_s(NN,1) + 
0.00515858825086024); 
        else 
            h_fg_t_s = 2501300; 
            rho_sat_t_s = 0.004851; 
        end 
         
        %Diffusion coefficients of water vapor in air% 
        if T_f_b_s >= 7 
            D_a_b_s = abs(1.87*10^-10*(abs(T_f_b_s + 273))^2.072); 
        else 
            D_a_b_s = 2.19965*(10^-05); 
        end 
         
        if T_f_t_s >= 7 
            D_a_t_s = abs(1.87*10^-10*(abs(T_f_t_s + 273))^2.072); 
        else 
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            D_a_t_s = 2.19965*(10^-05); 
        end 
         
        %%%%%%%%%%%%%Convective heat transfer coefficients%%%%%%%%%%%%% 
        Ra_L_s = g*(1/(T_f_b_s + 273))*abs(T_s(1,1) - 
Tinf_b)*Lp^3/(nu_b_s*(k_therm_b_s/(rho_a_b_s*Cp_b_s))); 
        Nu_L_s = 0.68 + 0.670*Ra_L_s^(1/4)/(1 + 
(0.492/Pr_b_s)^(9/16))^(4/9); 
         
        Re_t_s = V_t*d_h/nu_t_s; 
         
        h_bot_s = Nu_L_s*k_therm_b_s/Lp; 
        h_top_s = (2*k_therm_t_s*Re_t_s^(0.5)*Pr_t_s^(0.42)*(1 - 
1.1*d_h/r)*(1 + 0.005*Re_t_s^(0.55))^(0.5))/(r*(1 + 0.1*(H/d_h - 
6)*d_h/r)); 
         
        %%%%%%%%%%%%%Convective mass transfer coefficients%%%%%%%%%%%%% 
        h_m_bot_s = 
h_bot_s/(rho_a_b_s*Cp_b_s*(k_therm_b_s/(rho_a_b_s*Cp_b_s*D_a_b_s))^(2/3
)); 
        h_m_top_s = 
h_top_s/(rho_a_t_s*Cp_t_s*(k_therm_t_s/(rho_a_t_s*Cp_t_s*D_a_t_s))^(0.5
8)); 
         
        %Mass density of water of each element% 
        rho_w_elem_s = zeros(NE,1); 
        for i=1:1:NE 
            rho_w_elem_s(i,1) = 1/2*(rho_s(i,1) + rho_s(i+1,1)); 
        end 
         
        %Mass density of each element% 
        rho_elem_s = zeros(NE,1); 
        for i=1:1:NE 
            rho_elem_s(i,1) = rho_w_elem_s(i,1) + rho_e; 
        end 
         
        %Thermal conductivity of each element% 
        k_therm_elem_s = zeros(NE,1); 
        for i = 1:1:NE 
            k_therm_elem_s(i,1) = 1/rho_elem_s(i,1)*(rho_e*k_e + 
rho_w_elem_s(i,1)*k_w); 
        end 
         
        %Specific heat of each element% 
        Cp_elem_s = zeros(NE,1); 
        for i = 1:1:NE 
            Cp_elem_s(i,1) = 1/rho_elem_s(i,1)*(rho_e*Cp_e + 
rho_w_elem_s(i,1)*Cp_w); 
        end 
         
        %Mass diffusion coefficient of each element% 
        D_n_s = zeros(NN,1); 
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        for i = 1:1:NN 
            if T_s(i,1) > 37.8 
                D_n_s(i,1) = abs(0.526913365598052*exp(-
9177.934261262040000000000000000000*(1/(T_s(i,1) + 273)))); 
            else 
                D_n_s(i,1) = 7.93*10^-14; 
            end 
        end 
         
        D_elem_s = zeros(NE,1); 
        for i = 1:1:NE 
            D_elem_s(i,1) = 1/2*(D_n_s(i,1) + D_n_s(i+1,1)); 
        end 
         
        %%%%%%%%%%%%Construction of Heat Transfer Matrices%%%%%%%%%%%%% 
        %Local [K] matrices% 
        K_h_local_s = zeros(2,2,NE); 
        for k = 1:1:NE 
            for i = 1:1:2 
                for j = 1:1:2 
                K_h_local_s(i,j,k) = 
(k_therm_elem_s(k,1)/L(k,1))*matrix_K(i,j); 
                end 
            end 
        end 
        for k =1:1:NE 
            K_h_local_s(1,1,k) = -Cp_w*D_elem_s(k,1)*(rho_s(k+1,1) - 
rho_s(k,1))/(2*L(k,1)) + Cp_w*L(k,1)/12*(3*rho_dot(k,1) + 
rho_dot(k+1,1)) + K_h_local_s(1,1,k); 
            K_h_local_s(1,2,k) = -Cp_w*D_elem_s(k,1)*(rho_s(k+1,1) - 
rho_s(k,1))/(2*L(k,1)) + Cp_w*L(k,1)/12*(rho_dot(k,1) + rho_dot(k+1,1)) 
+ K_h_local_s(1,2,k); 
            K_h_local_s(2,1,k) = Cp_w*D_elem_s(k,1)*(rho_s(k+1,1) - 
rho_s(k,1))/(2*L(k,1)) + Cp_w*L(k,1)/12*(rho_dot(k,1) + rho_dot(k+1,1)) 
+ K_h_local_s(2,1,k); 
            K_h_local_s(2,2,k) = Cp_w*D_elem_s(k,1)*(rho_s(k+1,1) - 
rho_s(k,1))/(2*L(k,1)) + Cp_w*L(k,1)/12*(rho_dot(k,1) + 
3*rho_dot(k+1,1)) + K_h_local_s(2,2,k); 
        end 
         
        %Global [K] matrix% 
        K_h_s = zeros(NN,NN); 
        for n = 1:1:NE 
            for i = 1:1:2 
                for j = 1:1:2 
                    ii = econ(i,n); 
                    jj = econ(j,n); 
                    K_h_s(ii,jj) = K_h_s(ii,jj) + K_h_local_s(i,j,n); 
                end 
            end 
        end 
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        K_h_s(1,1) = K_h_s(1,1) + h_m_bot_s*(Cp_w - 
Cp_s)*(rho_sat_b_s*rho_s(1,1)/(rho_e + rho_s(1,1)) - rho_w_b) + 
h_bot_s; 
        K_h_s(NN,NN) = K_h_s(NN,NN) + h_m_top_s*(Cp_w - 
Cp_s)*(rho_sat_t_s*rho_s(NN,1)/(rho_e + rho_s(NN,1)) - rho_w_t) + 
h_top_s; 
         
        %Local [C] matrices% 
        C_h_local_s = zeros(2,2,NE); 
        for k = 1:1:NE 
            for i = 1:1:2 
                for j = 1:1:2 
                    C_h_local_s(i,j,k) = 
rho_elem_s(k,1)*Cp_elem_s(k,1)*L(k,1)*matrix_C(i,j); 
                end 
            end 
        end 
        for k = 1:1:NE 
            C_h_local_s(1,1,k) = Cp_w*L(k,1)/12*(3*rho_s(k,1) + 
rho_s(k+1,1)) + C_h_local_s(1,1,k); 
            C_h_local_s(1,2,k) = Cp_w*L(k,1)/12*(rho_s(k,1) + 
rho_s(k+1,1)) + C_h_local_s(1,2,k); 
            C_h_local_s(2,1,k) = Cp_w*L(k,1)/12*(rho_s(k,1) + 
rho_s(k+1,1)) + C_h_local_s(2,1,k); 
            C_h_local_s(2,2,k) = Cp_w*L(k,1)/12*(rho_s(k,1) + 
3*rho_s(k+1,1)) + C_h_local_s(2,2,k); 
        end 
         
        %Global [C] matrix% 
        C_h_s = zeros(NN,NN); 
        for n = 1:1:NE 
            for i = 1:1:2 
                for j = 1:1:2 
                    ii = econ(i,n); 
                    jj = econ(j,n); 
                    C_h_s(ii,jj) = C_h_s(ii,jj) + C_h_local_s(i,j,n); 
                end 
            end 
        end 
         
        %Global {f} vector% 
        f_h_s = zeros(NN,1); 
        f_h_s(1,1) = -h_m_bot_s*(h_fg_b_s + 
Cp_s*Tinf_b)*(rho_sat_b_s*rho_s(1,1)/(rho_e + rho_s(1,1)) - rho_w_b) + 
h_bot_s*Tinf_b; 
        f_h_s(NN,1) = -h_m_top_s*(h_fg_t_s + 
Cp_s*Tinf_t)*(rho_sat_t_s*rho_s(NN,1)/(rho_e + rho_s(NN,1)) - rho_w_t) 
+ h_top_s*Tinf_t; 
         
        %%%%%%%%%%%%%Construction of Mass Transfer Matrices%%%%%%%%%%%% 
         
        %Local [K] matrices% 
        K_m_local_s = zeros(2,2,NE); 
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        for k = 1:1:NE 
            for i = 1:1:2 
                for j = 1:1:2 
                    K_m_local_s(i,j,k) = 
(D_elem_s(k,1)/L(k,1))*matrix_K(i,j); 
                end 
            end 
        end 
         
        %Global [K] matrix% 
        K_m_s = zeros(NN,NN); 
        for n = 1:1:NE 
            for i = 1:1:2 
                for j = 1:1:2 
                    ii = econ(i,n); 
                    jj = econ(j,n); 
                    K_m_s(ii,jj) = K_m_s(ii,jj) + K_m_local_s(i,j,n); 
                end 
            end 
        end 
        K_m_s(1,1) = K_m_s(1,1) + h_m_bot_s*rho_sat_b_s/(rho_e + 
rho_s(1,1)); 
        K_m_s(NN,NN) = K_m_s(NN,NN) + h_m_top_s*rho_sat_t_s/(rho_e + 
rho_s(NN,1)); 
         
        %The [C] matrix does not vary between time steps% 
         
        %Global {f} vector% 
        f_m_s = zeros(NN,1); 
        f_m_s(1,1) = h_m_bot_s*rho_w_b; 
        f_m_s(NN,1) = h_m_top_s*rho_w_t; 
         
        %Alpha-family of approximation% 
        alpha = 0.5; 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %%%%%%%%%%%%%%%Heat Equation Solution At Time Step%%%%%%%%%%%%% 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        K_h_1 = (1 - alpha)*C_h + alpha*C_h_s + DeltaT*alpha*K_h_s; 
        K_h_2 = (1 - alpha)*C_h + alpha*C_h_s - DeltaT*(1 - alpha)*K_h; 
        f_h_1 = K_h_2*T; 
        f_h_2 = DeltaT*((1-alpha)*f_h + alpha*f_h_s); 
        f_h_3 = f_h_1 + f_h_2; 
        T_s = K_h_1\f_h_3; 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %%%%%%%%%%%%%%%Mass Equation Solution At Time Step%%%%%%%%%%%%% 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        K_m_1 = C_m + DeltaT*alpha*K_m_s; 
        K_m_2 = C_m - DeltaT*(1 - alpha)*K_m; 
        f_m_1 = K_m_2*rho; 
        f_m_2 = DeltaT*((1 - alpha)*f_m + alpha*f_m_s); 
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        f_m_3 = f_m_1 + f_m_2; 
        rho_s = K_m_1\f_m_3; 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %%%%%%%%%%%%%%%%Iteration Termination Criteria%%%%%%%%%%%%%%%%% 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        ER_h_1 = 0; 
        ER_h_2 = 0; 
        ER_m_1 = 0; 
        ER_m_2 = 0; 
        for d=1:1:NN 
            ER_h_1 = (T_s(d,1) - T_temp(d,1))^2 + ER_h_1; 
            ER_h_2 = T_s(d,1)^2 + ER_h_2; 
            ER_m_1 = (rho_s(d,1) - rho_temp(d,1))^2 + ER_m_1; 
            ER_m_2 = rho_s(d,1)^2 + ER_m_2; 
        end 
        ER_h = (ER_h_1/ER_h_2)^(0.5); 
        ER_m = (ER_m_1/ER_m_2)^(0.5);         
        ER = max(ER_h,ER_m); 
         
        %Output data% 
        T_plot(:,ALPHA) = T_s; 
        Heat_Flux_Plate(ALPHA,1) = -k_therm_elem_s(NE,1)*(T_s(NN,1) - 
T_s(NN-1,1))/L(NE,1) - Cp_w*T(NN,1)*D_elem_s(NE,1)*(rho_s(NN,1) - 
rho_s(NN-1,1))/L(NE,1); 
        Heat_Flux_Fluid(ALPHA,1) = h_m_top*(Cp_w*T_s(NN,1) + h_fg_t_s + 
Cp_s*(Tinf_t - T(NN)))*(rho_sat_t_s*rho_s(NN,1)/(rho_e + rho_s(NN,1)) - 
rho_w_t) + h_top*(T(NN,1) - Tinf_t); 
        Heat_Flux_Convection(ALPHA,1) = h_top*(T(NN,1) - Tinf_t); 
        Heat_Flux_Evaporation(ALPHA,1) = h_m_top*(Cp_w*T_s(NN,1) + 
h_fg_t_s + Cp_s*(Tinf_t - T(NN)))*(rho_sat_t_s*rho_s(NN,1)/(rho_e + 
rho_s(NN,1)) - rho_w_t); 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%% SOLUTION OUTPUT %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Heat flux quantities% 
Heat_Flux_Plate = [0 ; Heat_Flux_Plate]; 
Heat_Flux_Fluid = [0 ; Heat_Flux_Fluid]; 
Heat_Flux_Convection = [0 ; Heat_Flux_Convection]; 
Heat_Flux_Evaporation = [0 ; Heat_Flux_Evaporation]; 
Heat_Flux_Comparison = [Heat_Flux_Fluid' ; Heat_Flux_Convection' ; 
Heat_Flux_Evaporation']'; 
  
%%%%%%%%%%%%%%%%%%%%Check solution for convergence%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%Flux values at interface should be nearly equal%%%%%%%%%%%% 
Percent_Difference = zeros(STEPS+1,1); 
for i = 2:1:(STEPS+1) 
    Percent_Difference(i,1) = abs((Heat_Flux_Plate(i,1) - 
Heat_Flux_Fluid(i,1))/Heat_Flux_Plate(i,1))*100; 
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end 
  
%Nodal temperatures and time values at time steps% 
T_plot = [Ti*ones(NN,1)' ; T_plot']'; 
TIME = [0 ; TIME]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%PLOTS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
plot(z,T_plot); 
plot(TIME,T_plot(NN,:)'); 
plot(TIME,Heat_Flux_Comparison); 
  
%Terminate calculation timer% 
toc 
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