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ABSTRACT 

Resource Intensification in Pre-Contact Central California: A Bioarchaeological 

Perspective on Diet and Health Patterns Among Hunter-Gatherers from the Lower 

Sacramento Valley and San Francisco Bay.  (May 2006) Eric John Bartelink, B.S., 

Central Michigan University; 

M.A., California State University, Chico 

Chair of Advisory Committee: Dr. Lori Wright 
 
 

In this study, I use bioarchaeological data derived from human burials to evaluate 

subsistence change in mid-to-late Holocene central California (circa 4950-200 B.P.).  

Previous investigations in the region have proposed two competing models to account 

for changes in subsistence patterns.  The seasonal stress hypothesis argues that the 

increased reliance on acorns and small seeds during the late Holocene led to improved 

health status, since these resources could be stored and used as a “buffer” against 

seasonal food shortages.  In contrast, resource intensification models predict temporal 

declines in health during the late Holocene, as measured by a decline in dietary quality 

and health status, increased population crowding, and greater levels of sedentism.  I test 

the hypothesis that health status, as measured by childhood stress and disease indicators, 

declined during the late Holocene in central California.   

I analyzed 511 human skeletons from ten archaeological sites in the Sacramento 

Valley and San Francisco Bay area to investigate temporal and spatial variability in diet 

and health.  I analyzed a subset (n = 111) of this sample to evaluate prehistoric dietary 
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patterns using carbon and nitrogen stable isotope ratios.  Indicators of health status show 

significant temporal and regional variation.  In the Valley, tibial periosteal reactions, 

porotic hyperostosis, and enamel hypoplasias significantly increased through time, 

implying a decline in health status.  In the Bay, health indicators show little temporal 

variability.  However, inter-regional comparisons indicate a higher prevalence of stress 

and disease indicators among Bay Area skeletons than in the Valley skeletal series.  The 

stable isotope data from human bone collagen and apatite also indicate significant inter-

regional differences in prehistoric diets between the Bay and the Valley.  In the Bay, 

diets shifted from high trophic level marine foods to a more terrestrially focused diet 

over time.  In the Valley, there are no significant dietary trends observed in the data.  

Dental caries and antemortem tooth loss are significantly more prevalent in the Valley 

than in the Bay, and closely match the isotopic findings.  The paleopathological findings 

provide support for late Holocene resource intensification models posited for the Valley, 

but not for the Bay Area.
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CHAPTER I   

INTRODUCTION 

California prehistory has long been resistive to interpretation, and 
promises to remain so.  Many factors contribute to this condition: absence 
of pottery and of permanent structures; a limited cultural inventory; 
quantitative meagerness of remains in most sites; paucity of ethnographic 
data where archaeological ones are most accessible, and vice versa; 
unusual sessility, from all indications, of population; and conservative 
stability, in the large, of culture.  The nut will be hard to crack; this must 
be frankly admitted in advance.  What the situation above all calls for is 
described by a phrase which I learned from Boas, as he from Virchow: 
“icy enthusiasm” [Kroeber 1936:115]. 

— Alfred E. Kroeber 

In the above passage Alfred Kroeber voiced a rather dismal view of California 

prehistory.  His “icy enthusiasm” for California archaeology had much to do with his 

experience in other regions, such as the American Southwest, where “culture change” 

was evident in pottery styles and domestic architecture.  Although Kroeber’s colleague 

at University of California at Berkeley, Max Uhle, found evidence of cultural differences 

within the deeply stratified Emeryville shellmound site from San Francisco Bay, 

Kroeber discounted most of his findings (Bennyhoff 1986).  Despite his pessimism, 

Kroeber did recognize some of the major challenges of hunter-gatherer archaeology, and 

aptly noted that scholars would have to work harder to find evidence of culture change in 

California than in many other places.    

With an estimated population of 310,000 individuals, California was among the 

most densely settled landscapes in North America at the time of European contact (Cook 
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1976).  It has been of the subject of considerable interest that such high population 

numbers could exist among non-agricultural societies.  Early theorists attributed this 

demographic anomaly to California’s natural resource abundance of large game, fish, 

shellfish, and plant foods (Bean and Lawton 1976; Kroeber 1939).  The abundant food 

supply was cited as the reason why agriculture failed to develop; it was simply not 

needed.  Others argued that the intensive focus on stored food staples by native groups, 

acorns in particular, could be considered a type of “proto-agriculture” (Bean and Lawton 

1976).  These perspectives advanced the notion that indigenous peoples had little impact 

on their natural environment, and produced an archaeological record that was essentially 

“static” (Jones and Raab 2004).  Many ethnographers were influenced by early European 

accounts that described large game herds throughout San Francisco Bay and the Central 

Valley of California.  It received little mention that the resource abundance observed 

during the contact period may have been due to a rebound in game populations, 

following significant declines in human population caused by the spread of introduced 

foreign diseases (Broughton 1999; Erlandson and Bartoy 1995; Erlandson et al. 2001; 

Preston 1996, 2002a, 2002b). 

However, evidence for resource abundance in California’s archaeological record 

has been seriously challenged by a number of recent studies (Basgall 1987; Beaton 1991; 

Broughton 1994a, 1994b, 1997, 1999, 2001; Hildebrandt and Jones 1992, 2002; Jones 

and Raab 2004a, 2004b).  For instance, recent archaeofaunal studies have found 

evidence of resource depression, as measured by the temporal decline in low-cost, large 

game relative to higher-cost, smaller fauna during the late Holocene (Broughton 1994a, 
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1994b, 1997, 1999, 2001; Hildebrandt and Jones 1992, 2002; Simons 1992).  

Additionally, many archaeologists have linked the widespread abundance of mortar and 

pestle technology, beginning circa 4500 B.P., to the intensified use of high-cost vegetal 

resources, such as acorns (Basgall 1987).   

These approaches fall under the rubric of resource intensification models, which 

predict temporal declines in foraging efficiency during the late Holocene.  Resource 

intensification is defined as “a process by which the total productivity per areal unit of 

land is increased at the expense of overall decreases in foraging efficiency” (Broughton 

1994b).  Intensification theorists attribute the decline in high-ranked prey, and the 

increased focus on more costly, smaller fauna and plant staples, to resource imbalances 

caused by overpopulation during the late Holocene (Broughton 1994b).  The prehistoric 

record in central California suggests that human populations were growing, and 

becoming more sedentary and culturally circumscribed throughout the late Holocene 

(Basgall 1987; Beaton 1991; Broughton 1999).   

In central California, subsistence patterns have been reconstructed through the 

study of stone tool technology, archaeofaunal remains, and most recently, plant 

macrobotanical remains (Basgall 1987; Broughton 1999; Schulz 1981; Simons 1992; 

Wohlgemuth 2004).  In this dissertation, I use data gleaned from human skeletal remains 

to investigate changes in diet and health during the middle and late Holocene in central 

California (circa 4950-200 B.P.).  I draw on predictions from resource intensification 

theory to develop hypotheses aimed at understanding the health consequences of 

subsistence change in the prehistoric lower Sacramento Valley and San Francisco Bay of 
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central California.  Resource intensification models predict reduced foraging efficiency, 

associated with population-resource imbalances, territorial circumscription, and higher 

levels of sedentism during the late Holocene.  As argued by Broughton and O’Connell 

(1999:156): 

…lower foraging efficiency implies greater foraging effort required to 
meet minimum caloric requirements and an increased risk of 
malnutrition.  Undernourished foragers should experience higher levels of 
morbidity and mortality, slower growth rates, and reduced adult body 
size.  The long-term decline in foraging efficiency documented in late 
Holocene California should be associated with higher levels of morbidity 
and mortality and smaller body size and stature among human consumers. 

If resource intensification models accurately characterize subsistence change in 

California, then it follows that these patterns should be recognized in diet and health 

indicators observed on the bones and teeth of human skeletons. 

Research Design 

The archaeological chronology used for central California divides the middle to 

late Holocene into three discrete time periods: the Early period (circa 4500-2500 B.P.), 

the Middle period (circa 2500-1300 B.P.), and the Late period (circa 1300-200 B.P.).  I 

use this framework to evaluate temporal changes in diet and health patterns in the lower 

Sacramento Valley and San Francisco Bay area.    

In this study, I address the following research questions to investigate resource 

intensification models in prehistoric central California:  

1. Were subsistence changes during the middle to late Holocene in central 
California characterized by the increased consumption of low trophic level fauna 
and plant resources, such as acorns, seeds, and root foods? 

2. Were these subsistence changes associated with a decline in health status? 
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3.  Did these changes result in greater inequality between the sexes, reflected in 
differences in both diet and the quality of health? 

To test the predictions of resource intensification models, I use several 

independent lines of evidence.  Stable carbon and nitrogen bone isotope values are 

commonly used in the reconstruction of prehistoric diets, and can be used to distinguish 

between marine and terrestrial diets in coastal settings (Schwarcz and Schoeninger 

1991).  To evaluate paleodietary change in central California, I examine human stable 

carbon and nitrogen isotopes of bone collagen, and stable carbon isotopes of bone 

apatite.  I hypothesize that the shift toward greater consumption of lower-trophic level 

faunal resources and vegetal staples through time should be evident in the carbon and 

nitrogen stable isotope signatures.  Although stable isotope values often cannot identify 

the specific food resources consumed, these data provide a means through which to 

evaluate the relative contribution of proteins and carbohydrates to diet, and also the 

respective contribution of different macronutrients that are derived from marine versus 

terrestrial ecosystems.   

Dental disease provides an additional line of evidence that can be used to make 

inferences about prehistoric diet and oral health.  I hypothesize that the prevalence of 

dental caries, antemortem tooth loss, and abscesses of the jaws should increase through 

time, concomitant with greater consumption of carbohydrate-rich foods, such as acorns, 

seeds, and root foods during the Middle and Late periods.  Because San Francisco Bay 

populations had greater access to protein-rich marine foods that protect against caries 

development, I expect to find fewer carious lesions in these samples than in those from 

the lower Sacramento Valley.     
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To evaluate temporal changes in health status, I examine the following 

osteological indicators: 1) tibial periostoses; 2) mean femoral length, 3) porotic 

hyperostosis, and 4) linear enamel hypoplasia.  I hypothesize that the prevalence of tibial 

periostoses (which are often used to infer general levels of infectious disease) should 

increase through time, associated with greater population crowding and sedentism during 

the late Holocene.  I hypothesize that childhood health status, as measured by mean 

femoral length, porotic hyperostosis, and linear enamel hypoplasia, will decline through 

time.  Because the purported changes in subsistence pattern originated between the Early 

and Middle periods, I expect to find greater declines in health associated with this 

transition than between the Middle and Late periods.   

Sex differences in access to food resources may be the result of gendered status 

differences, or may simply be the unintended result of sexual division of labor practices 

(Grauer and Stuart-Macadam 1998).  For instance, if males spent extended periods of 

time fishing and hunting away from the village, they would be expected to consume 

higher proportions of protein-rich foods.  Similarly, females would be expected to 

consume higher proportions of plant foods, such as acorns, roots, seeds, and berries, 

since these foods are generally collected and processed by women.  In central California, 

most lines of evidence suggest that sexual division of labor patterns became more 

demarcated through time, beginning with the Middle period, when acorns became a 

dietary mainstay (McGuire and Hildebrandt 1994).  This is consistent with the 

predictions of intensification models, as greater sex segregation in labor organization 

may develop in response to population-resource imbalances (Cohen 1989a, 1989b).  To 
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evaluate evidence of sexual division of labor, I compare bone stable isotope values and 

the prevalence of dental disease between male and female skeletons. 

Organization of the Dissertation 

In Chapter II, I describe the environmental and archaeological context of the 

project area, and provide descriptions of the archaeological sites used in the present 

study.  Chapter III contains a critical review of resource intensification models that have 

been posited for prehistoric central California, as well as a summary of the 

bioarchaeological literature regarding subsistence transitions in southern and central 

California.  In Chapter IV, I describe the demographic composition of the skeletal series, 

the methods used to estimate sex and age, and the justification for the dating scheme I 

used to place the skeletal series within a temporal framework.  I address biases in the sex 

and age distribution of the samples, and also discuss taxonomic issues in California 

archaeology. 

Chapter V provides a paleodietary reconstruction using stable carbon and 

nitrogen isotopes of bone collagen and carbon isotopes of bone apatite.  I use 

archaeological and ethnographic evidence to first define the isotopic parameters of the 

prehistoric food resources, and then compare these expectations with the human bone 

isotope data.  In Chapter VI, I examine the prevalence of dental caries, antemortem tooth 

loss, and alveolar abscessing to evaluate differences in diet and oral health through time, 

between regions, and between the sexes.  

Chapter VII examines the prevalence of periosteal bone lesions of the tibia 

(lower leg).  Although these lesions are considered non-specific indicators of health, 
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they are commonly linked with general levels of infection; hence, the prevalence of 

tibial lesions through time is expected to change with demographically-influenced 

factors, such as population density and sedentism, as well as other indicators of declining 

health status.  

Chapters VIII through X focus on non-specific indicators of nutritional stress and 

health status that occur during growth and development.  In Chapter VIII, I use femoral 

length as a proxy measure for adult stature.  Stature shows a strong correlation with 

morbidity and mortality in modern developing nations, and is a commonly used measure 

of overall health status.  Chapter IX examines the prevalence of porotic hyperostosis in 

prehistoric crania from central California.  Porotic hyperostosis manifests as lesions on 

the orbital roof and vault of the skull, and is most commonly linked with iron-deficiency 

anemia.  However, lesions may result from iron-deficient diets, or from loss of 

absorbable iron due to chronic intestinal bleeding or diarrheal disease resulting from 

infection or parasitism.  In Chapter X, I examine the prevalence and timing of dental 

enamel hypoplasias.  Hypoplasias are defects in enamel tissue that are caused by 

nutritional stress or infection during dental development.   

Finally, in Chapter XI, I evaluate the resource intensification models discussed in 

Chapter III in light of the dietary, nutritional, and paleopathological results.  I compare 

these findings with published research from southern California to evaluate temporal and 

spatial variability in diet and health patterns.  In addition to the specified goals of this 

research, my expectation is that this study will demonstrate the value of human skeletal 

data in testing the predictions of archaeological models.     
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CHAPTER II   

CENTRAL CALIFORNIA ARCHAEOLOGY   

In this chapter, I describe the environmental and cultural context for prehistoric 

cultures from the lower Sacramento Valley and San Francisco Bay.  I then discuss the 

Central California Taxonomic System, which provides the framework from which I 

examine temporal and spatial variability in diet and health patterns.  Finally, I provide an 

overview of the archaeological sites used in this study.  For this study, I define central 

California as the region between Sacramento County to the north and Santa Clara 

County to the south, and between the Pacific Ocean to the west and the Sierra Nevada 

foothills to the east.  This region falls within Kroeber’s “California Culture Area”, and 

includes physiographic provinces of the North and South Pacific Coastal Ranges, the 

Central Valley, and the Sierra Nevada foothills (Kroeber 1925; Moratto 1984).  

Although encompassing more than half a dozen tribelet territories and numerous 

language groups, the project area corresponds to the ethnographically-known Ohlone 

(Costanoan) peoples of San Francisco Bay and the Plains Miwok (Interior Miwok) of the 

lower Sacramento Valley (Moratto 1984).  Linguistic reconstructions indicate that 

Miwok and Ohlone peoples belonged to the Utian language family, one of four families 

of the Penutian language stock.   

Paleoenvironment and Physiography  

A number of methods are used to reconstruct past ecosystems, including pollen 

profiles, stable isotopes analysis, plant macrofossils, habitat-specific fauna, and 
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geomorphology.  Despite some limitations, these approaches generally provide sufficient 

detail for documenting environmental trends over broad time scales.  However, attempts 

to directly link environmental change with patterns in the archaeological record are 

hindered by the coarse-grained nature of most proxy measures of climate change 

(Basgall 1999; Bettinger 1999; Byrne 1979).  Despite these limitations, it is recognized 

that substantial changes in temperature and climate would have had an impact on the 

abundance of flora and fauna, and thus would have influenced the availability of food 

resources to prehistoric societies (Aikens 1983; Arnold 1992, Arnold et al. 1997; 

Glassow et al. 1994; Jones et al. 1999; Kennett and Kennett 2000).  Additionally, 

climate change has played a major role in the visibility of the archaeological record, as 

observed by geomorphological records of sea level changes and floodplain development 

(see Atwater et al. 1977; Bickel 1978; Moss and Erlandson 1995; White 2003).   

It is well known that significant changes in the earth’s climate occurred during 

the late Pleistocene and early Holocene.  Warmer ambient temperatures caused melting 

of glacial ice and resulted in a rapid rise in global sea level (Atwater et al. 1979; Bickel 

1978).  Between 8,000 and 10,000 years ago, rising sea level flooded the “Golden Gate” 

and submerged an interior river valley, creating the San Francisco Bay estuary (Atwater 

et al. 1977; Atwater et al. 1979; Axelrod 1981).  By 6000 B.P., the rate of sea level rise 

subsided and was counterbalanced by sedimentation rates in the Sacramento-San 

Joaquin Delta (Atwater et al. 1979).  Modern marshland communities were established 

by 6000 B.P. near the Delta and by 2000 B.P. in the southern reaches of San Francisco 

Bay.  Pollen records from the North and South Coast Ranges indicate that late 
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Pleistocene-early Holocene transition (circa 12,800-7,000 B.P.) was a period marked by 

warmer and drier climate.  The presence of drought-tolerant plants circa 8500 to 4500 

B.P. also indicate warmer temperatures and drier climate, and marks the period known 

as the Altithermal or Hypsithermal (Anderson 1990:485; Antevs 1948; Barron et al. 

2003; West 1993:231, 2002).   

During the late Holocene, circa 3000 B.P., most modern vegetation communities 

were established and local environmental conditions became more stable (West 1993).  

The development of more maritime conditions between 5200 and 3500 years B.P. in 

northern California indicates a shift toward milder winters and cooler summers, and less 

extreme seasonality compared with the early Holocene (Barron et al. 2003:16).  Pollen 

and stable isotope records indicate that the San Francisco Bay area experienced 

relatively stable climate throughout much of the late Holocene, although changes in 

pollen species and salinity suggest alternating periods of wet and dry conditions (Adam 

1975; Byrne et al. 2001; Goman and Wells 2000; Ingram and DePaolo 1993; Ingram et 

al. 1996; Malamud-Roam and Ingram 2004).   

Byrne et al. (2001) identified two major periods of reduced freshwater inflow 

into San Francisco Bay from the Sacramento-San Joaquin Delta, circa 3000 to 2500 cal 

yr B.P., and circa 1750 to 750 cal yr B.P.  The second period is associated with a marked 

reduction in waterflow into the Delta, possibly by as much as 44 percent below modern 

levels (Byrne et al. 2001:75).  This period (1200 and 600 B.P.) roughly corresponds to 

drought conditions identified in other areas of the world, known alternately as the 

Medieval Climatic Anomaly (MCA) or Medieval Warm period (Benson et al. 2002; 
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Hughes and Diaz 1994; Hughes and Graumlich 1995; Ingram et al. 1996; Jones et al. 

1999; Meko et al. 2001:1035; Stine 1994).  Evidence for multi-decadal drought 

conditions in California is based on radiocarbon dates of submerged and re-exposed tree 

stumps in Sierra Nevada lakes, bristlecone pine tree-ring sequences in the White 

Mountains, and by declines in freshwater inflow into San Francisco Bay from the 

Sacramento-San Joaquin drainage, as measured by changes in salinity and stable isotope 

ratios (e.g., Byrne et al. 2001; Hughes and Graumlich 1995; Ingram et al. 1996; Jones et 

al. 1999; LaMarche 1974; Stine 1994).  Although there appears to be strong evidence of 

epic drought during the MCA, these conditions varied in periodicity and amplitude 

between regions.  Recent debates among scholars have focused on the impact of the 

MCA on resource productivity in southern California, and specifically whether changes 

in social complexity during this period are the result of declining productivity of marine 

resources (Arnold 1992, Arnold et al. 1997; Colten and Arnold 1998) or severe drought 

conditions (Boxt et al. 1999; Jones et al. 1999; Raab and Larson 1997; Raab et al. 1995).  

Although the impact of the MCA on prehistoric settlement patterns in central California 

has not been systematically evaluated, there is some of evidence of population changes 

during this period.  Ingram (1998) and Lightfoot and Luby (2002) note that the MCA 

coincides with the abandonment of several shell mound sites in the San Francisco Bay 

area, and may have marked a period of elevated resource stress.  However, in the lower 

Sacramento Valley, Wohlgemuth (2005) notes a significant increase in the number of 

site components dating to the MCA (corresponding to Late period, phases 1 and 2).  

Using data from Schulz (1981), Wohlgemuth (2005) hypothesized that population 
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increase during the MCA may have been the result of human migration into the 

Sacramento Valley from the nearby Sierra Nevada foothills.  This hypothesis would 

account for the scarcity of Late period, phase 1 site components in the foothills, as well 

as the increase in dated site components in the Valley during this period.  

Central Valley 

The dominant feature of interior California is the Central Valley, an elongated 

depression spanning 800 km in length and 30 to 80 km in width, and covering 

approximately 50,000 km2 (see Figure 2.1; Schoenherr 1992).  Valley floor elevation 

ranges from just below sea level east of San Francisco Bay to around 120 m along its 

northern and southern borders.  The Central Valley is bisected at its center by the 

Mokelumne River, with the Sacramento Valley to the north and the San Joaquin Valley 

to the south.  Meltwater from the Sierra and Cascade Mountains drains into the 

Sacramento-San Joaquin watershed through a series of smaller rivers.  The main riverine 

systems include the Sacramento River, which flows from the north to the southeast for 

260 km, and the San Joaquin River, which flows from the south to the northwest for 440 

km.  Both rivers swing westward near the Central Valley’s center and merge at the 

Sacramento-San Joaquin Delta, which drains approximately 40 percent of California’s 

landmass into the San Francisco Bay estuary (Jassby and Cloern 2000; Schoenherr 

1992).  The pristine Delta encompassed approximately 1900 km2, although most of it has 

been drained for agricultural use over the past century.   
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Despite the abundance of fresh water from the Sacramento and San Joaquin 

Rivers and their many tributaries, the Central Valley – with less than 25 cm of annual 

 

Figure 2.1.  Map of central California showing the locations of archaeological sites from the lower 
Sacramento Valley and San Francisco Bay Area (adapted from Beaton 1991:947). 
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rainfall – is arid enough to be considered a desert (Roberts et al. 1980; Schoenherr 

1992:16).  Annual rainfall varies with latitude, with an average of 46 cm of precipitation 

in the lower Sacramento Valley and 25 cm in the San Joaquin Valley (Moratto 

1984:171; Schoenherr 1992:518).  Average temperatures range from 33.3 to 39°C in 

July and 4.4 to 10°C in January.  Prior to recent anthropogenic disturbance, the Central 

Valley consisted of three overlapping biotic zones: valley grassland, freshwater marsh, 

and riparian woodland (Schoenherr 1992).  Historic maps indicate that the lower 

Sacramento Valley was once dominated by perennial bunchgrasses, such as 

needlegrasses, triple-awned grasses, bluegrasses, and rye grasses.  Annual grasses and 

herbs and perennial geophytes (e.g., Liliaceae and Amaryllidaceae) were also abundant 

in pristine plant communities (Schoenherr 1992). 

Recent draining of the Sacramento-San Joaquin Delta for agricultural activities 

has resulted in the loss of nearly 94 percent of the freshwater marsh and 89 percent of 

the riparian woodland habitats of the Central Valley (Schoenherr 1992).  Freshwater 

marsh communities are dominated by rushes, bulrushes (tules), sedges, and cattails 

(Külcher 1977; Schoenherr 1992).  Riparian woodland communities existed along the 

major rivers and tributaries of the Valley, often extending up to 16 km in width (Roberts 

et al. 1980; Schoenherr 1992:533-534).  These communities support several types of 

shrub as well as sycamore, willow, box elder, fremont cottonwood, and valley oak.  

The Valley was home to a variety of mammals, including tule elk, black-tailed 

deer, pronghorn, grizzly bear, coyote, jackrabbit, mink, weasel, raccoon, river otter, and 

beaver.  Avifauna included a variety of migratory waterfowl, such as ducks, geese, and 
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swans, as well as resident birds, such as white pelicans, herons, ibis, cranes, cormorants, 

and eagles (Moratto 1984:170; Schoenherr 1992:532).  Riverine resources included 

freshwater mussel, and anadromous (acipenserids, salmonids) and resident fishes (e.g., 

cyprinids and catostomids).  Ethnohistoric accounts suggest that salmon were especially 

important dietary items for native peoples during the fall and spring spawning runs, as 

were smaller resident fishes, which were available throughout the year (Broughton 

1994a; Gobalet et al. 2004; Moratto 1984:170; Schulz 1995; Yoshiyama 1999).  

San Francisco Bay Area  

The Delta waters flow westward from the Central Valley into Suisun Bay, 

through the Carquinez Strait, and then enter San Pablo and San Francisco Bay, where 

freshwater mixes with saltwater from the Pacific Ocean.  Collectively, these waters and 

their associated channels and marshland comprise California’s largest estuarine system, 

which formed over the past 10,000 years (Moratto 1984:218).  The San Francisco and 

Marin peninsulas meet at the Golden Gate along the western border of the Bay, and 

mark the division of the northern and southern coastal mountain ranges.  The Berkeley 

Hills divide the San Ramon and Livermore Valleys and comprise the eastern reaches of 

the Bay Area (Moratto 1984:219).  Although the San Francisco Bay estuary covers 

approximately 1100 km2 today, heavy silting from dam and landfill projects has 

contributed to the loss of nearly 50 percent of pristine marshland habitats (Moratto 

1984:219; Schoenherr 1992:687).  Compared to the Central Valley, the Bay Area is 

much wetter and cooler, with an average of 56.8 cm of rainfall annually.  Average 



 

 

17 

 

temperatures along the Bay range from 16.4°C in July to 9.1°C in January (McBride 

1974:317-318).  

The Bay Area comprises a mosaic of biological communities, including saltwater 

and freshwater marshes, mudflats, sandy beaches, open waters, grasslands, and 

woodlands (Schoenherr 1992:672-687).  Saltwater marsh communities along the east 

Bay are dominated by Pacific cordgrass, interspersed with annual pickleweed, salt grass, 

and salt-tolerant shrubs (Atwater et al. 1979; Schoenherr 1992).  Inundated with salt 

water from tidal flushing, this habitat supports aquatic invertebrates, shorebirds, 

waterfowl, and several species of fish.  In the more brackish areas of the estuary, cattails, 

bulrush, and tule infiltrate the tidal marsh and mudflats.  Mudflats and sandy beaches 

support shellfish, shorebirds, waterfowl, and dungeness crab.  Submerged mudflat 

habitats also support numerous species of anadromous (e.g., salmon, sturgeon) and 

estuarine fish (e.g., surf perch, jacksmelt, white seabass, bat ray, leopard sharks).  The 

open waters of the Bay follow a typical aquatic food chain, with planktonic feeding fish 

at the bottom and predatory fish, birds, and marine mammals feeding at the top 

(Schoenherr 1992).  The marshlands and mudflats provide the primary source of 

shellfish, such as clams, oysters, mussels, and abalone (Broughton 1997; Follett 1974, 

1975; Lightfoot and Luby 2002). 

Plant communities along the east Bay once consisted of blue oak-digger pine 

forest, valley oak savannah, and the California prairie, the latter of which was dominated 

by perennial and annual grasses, coast shrubs, and geophytes (Broughton 1999; Külcher 

1977; McBride 1974:319).  These communities were home to a number of mammals, 
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including elk, black-tailed deer, pronghorn, jackrabbit, and brush rabbit (Lightfoot and 

Luby 2002).   

Settlement pattern studies in central California indicate that prehistoric village 

sites were often situated in close proximity to freshwater rivers and streams in areas 

located above the floodplain (Moratto 1984).  The riparian, riverine, marsh, and 

grassland communities of the lower Sacramento Valley and San Francisco Bay provided 

local access to key resources, such as wood for fuel, river cobbles for ground stone, tule 

and reeds for basketry, boats, and fishing equipment, and also a number of food 

resources, including acorns, berries, root foods, seeds, aquatic animals, and terrestrial 

game.  However, ethnographic accounts indicate that many northern and central 

California societies set up temporary camps far away from the village during the month-

long fall acorn harvest, which suggests that local stands of oak did not provide sufficient 

acorn supplies for some groups (McCarthy 1993). 

Because the Central Valley is devoid of major rock formations, native peoples 

procured much of their raw stone materials through trade networks or through extended 

trips to obsidian and basalt quarries (Moratto 1984).  Lithic sourcing studies suggest that 

most obsidian artifacts from the lower Sacramento Valley were acquired from the Clear 

Lake and Napa Valley region (Fagan 2003:163).  Although cobble mortars and pestles 

are common in archaeological sites from the lower Sacramento Valley, wooden mortars 

and pestles are also known from ethnohistoric contexts (Moratto 1984).  The presence of 

baked clay balls and fragments with basketry impressions suggests that these items may 

have been used as substitute “cooking stones” for boiling acorn mush and other foods 
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(Heizer and Beardsley 1943; Moratto 1984:171).  In contrast to the Valley, rocky 

outcrops are abundant around San Francisco Bay and provided suitable raw materials for 

“cooking stones”, ground stone, and non-obsidian flaked-stone tools.  Bedrock mortars 

are also known from some sites around the southern reaches of San Francisco Bay, as 

well as from inland sites in the nearby Livermore Valley to the east (Bocek 1991; 

Parkman 1994).  Raw material for making obsidian stone tools was acquired either 

through trade or by extended trips to quarry sites to the north (Wilson 1993).  

Ethnographic Setting  

The basic political unit in California was the “tribelet”, a term coined by Alfred 

Kroeber to describe the distinct social organization of the California Indians (Kroeber 

1925).  The tribelet was a self-governing, politically autonomous entity, and “consisted 

of the aggregation of people living in two or more (often up to a dozen) separate 

villages, acknowledging the leadership of a chief who usually resided in the largest and 

most important of the several settlements” (Heizer 1978:5).  Ethnohistoric records 

suggest that tribelets varied in size from as few as 20 members to several hundred.   

Although Sir Francis Drake’s ship sailed passed the Golden Gate in 1578, dense 

fog obscured the inlet into San Francisco Bay (Moratto 1984).  Gaspar de Portolá led the 

first land expedition to the Bay Area in 1769 and was among the first Europeans to come 

into contact with the Ohlone (Costanoan) Indians (Milliken 1995).  Spanish accounts 

indicate that Indians living around San Francisco Bay subsisted on fish, shellfish, deer, 

acorns, geophytes, and a variety of other plants (Milliken 1995:18).  Although the 

Spanish noted a number of Indian villages in the east Bay, these accounts do not depict 
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settlements on top of large shell mound sites; instead, most villages are described as 

small settlements located along low lying marshland and woodland communities 

(Lightfoot and Luby 2002:276).  However, abandonment of larger shell mound sites may 

have occurred in response to European presence, or may have been due to population 

decline resulting from the early spread of Old World diseases from the south prior to 

A.D. 1769 (Luby and Lightfoot; Preston 1996, 2002a, 2002b).  Although studies of 

faunal remains from many shell mound sites of the Bay Area suggest year-round 

occupation (see Broughton 1994b; 1997, 1999; 2002a, 2002b; Howard 1929), some 

researchers have argued that the abandonment of some mounds during the late 

prehistoric period indicates a shift toward greater seasonal use of interior localities 

(Gould 1964; Lightfoot 1997; Lightfoot and Luby 2002:276-279).  This hypothesis 

suggests that groups shifted toward a seasonal round pattern between the Bay and the 

interior, beginning with the Middle-Late period transition, circa A.D. 700 to 1000 

(Parkman 1994; Lightfoot and Luby 2002:281).  Ingram (1998) and Lightfoot and Luby 

(2002) note that the Middle-Late period transition roughly coincides with drought 

conditions of the Medieval Climatic Anomaly, which may have impacted local 

settlement patterns.  

From 1770 to 1836, native groups from the Bay Area and interior central 

California were incorporated into the Spanish Mission system.  In the immediate vicinity 

of San Francisco Bay, five missions were built, including Mission Dolores (San 

Francisco de Asís), Mission Santa Clara, Mission San Jose, Mission San Francisco 

Solano, and Mission San Rafael de Asís (Milliken 1995).  Milliken (1994, 1995) 
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reconstructed familial relationships using mission records and attempted to define 

tribelet boundaries throughout the Bay Area.  His reconstructions suggest that the upper 

east Bay, near the Richmond-Oakland area, was occupied by the Huchiun and Saclan 

Ohlone tribelets, while the Tuibun Ohlone tribelet occupied areas along the southeastern 

reaches of the Bay near the city of Fremont.  Although precise locations of villages are 

unknown, Milliken (1995) found that approximately 45 independent tribelets co-existed 

throughout the Bay Area during the contact period.   

This Mission Period (A.D. 1770-1836) marked the rapid decline of the native 

population, as unsanitary conditions in mission settlements promoted the spread of 

infectious disease, such as tuberculosis, syphilis, and measles.  By 1810, most 

indigenous groups from the southern and eastern reaches of San Francisco Bay had been 

incorporated into the Spanish Mission system.  Although the Ohlone suffered the highest 

losses initially, interior groups (mostly Miwok and Yokuts) from the Central Valley 

were also heavily impacted by missionization, conflicts with white settlers, and epidemic 

disease (Cook 1976).  In 1833, a measles epidemic decimated native populations 

throughout the Central Valley, including numerous Plains Miwok villages (Bennyhoff 

1977). 

Using ethnohistoric and ethnographic records, Cook (1978) estimated the pre-

contact population of Alta California as 310,000, more than twice the number originally 

estimated by Kroeber (1925).  Cook‘s (1955, 1976) estimate of the eighteenth century 

Central Valley population was 105,000, split nearly evenly between the Sacramento and 

San Joaquin Valleys.  These numbers suggest a population density of approximately 93 
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individuals per 100 km2, or roughly 20 times the average for precontact North America 

(Kroeber 1939:143).  For the Ohlone (Costanoan), who occupied territories from 

northern San Francisco Bay to the southern Monterey coast, Kroeber (1925:464) 

estimated the eighteenth century population at 7,000; however, Levy’s (1978) more 

recent estimates suggest population numbers of around 10,200 individuals.   

Central California Archaeology 

Between 1906 and 1908, Nels C. Nelson surveyed the shorelines of Marin, 

Alameda, and Contra Costa counties, and documented approximately 425 shell mounds 

in the San Francisco Bay area (Nelson 1909).  Excavations were undertaken at several of 

these sites, including the massive Emeryville Shellmound located along the eastern 

shoreline of San Francisco Bay.  In 1902, Max Uhle of U.C. Berkeley excavated a large 

trench 9.8 m deep at Emeryville, and identified ten discrete stratigraphic levels (Moratto 

1984:227-229).  In the lower levels Uhle found flexed burials that were stained with red 

ochre, bone tools, perforated “charmstones”, non-obsidian flaked stone tools, and a high 

percentage of bay oyster shell.  In the upper levels of the trench Uhle discovered 

cremated burials, polished stone artifacts, obsidian projectile points, and a high 

percentage of clam shell.  Although Uhle interpreted these differences as evidence of 

temporal change at Emeryville, Alfred Kroeber – who held the notion that prehistoric 

California societies were essentially static – did not accept his findings (Moratto 1984).   

Beginning in 1931, J.B. Lillard and W.K. Purves of Sacramento Junior College 

excavated three sites in the lower Sacramento Valley near the confluence of Deer Creek 

and the Cosumnes River (Lillard and Purves 1936).  Using artifact seriation of grave 
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lots, Lillard and Purves developed the first archaeological chronology for central 

California.  Having found evidence for cultural differences between their Early, 

Intermediate, and Recent periods, they challenged Kroeber’s notion that California 

cultures were static through time (Moratto 1984:179).  Additional excavation in the area 

led to an extended report, in which the cultural sequence was renamed to the Early, 

Transitional, and Late periods (Lillard et al. 1939).   

Lillard et al. (1939) noted that Early period burials were almost always fully 

extended and ventral (face down), with the head oriented toward the west (Moratto 

1984:180).  Grave goods accompanied the majority of the burials and often consisted of 

large projectile points made of chert or slate, Haliotis and Olivella shell beads and 

ornaments, quartz crystals, and perforated “charmstones”.  Lillard et al. (1939) also 

noted a few fragments of baked clay, which may have substituted for cooking stones, 

and a small number of mortars, pestles, and millingstones.  During the Transitional 

period, a flexed burial position replaced the extended burial pattern and bodies were 

interred without regard to cardinal orientation; the use of red ochre on burials also 

became more common.  Although grave goods were less abundant than in the Early 

period, some individuals were interred with large projectile points, non-perforated 

“charmstones”, bone awls, fish spear tips, and a variety of shell bead ornaments 

(Moratto 1984:180).  The abundance of cobble mortars and pestles, millingstones, and 

baked clay fragments in midden and burial contexts suggests greater importance of plant 

resources.  In the Late period, the flexed burial pattern is maintained, although cremation 

and preinterment grave pit burning became common for the first time.  Burials often 
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contained obsidian points, incised bird bone tubes, Haliotis and Olivella shell ornaments 

and beads, and flat-bottom stone mortars.  

The earliest known occupation along San Francisco Bay dates to circa 5000 B.P. 

and includes the eastern bayshore West Berkeley Village site (CA-ALA-307) and the 

southern bayshore University Village site (CA-SMA-77).  Isolated skeletons discovered 

during various construction projects suggest an even earlier Bay Area occupation, 

although older settlements may have been inundated by rising sea level during the early 

Holocene (Atwater et al. 1977; Bickel 1978).  R.K. Beardsley (1948, 1954a, 1954b) of 

U.C. Berkeley compared artifact and grave-lot assemblages from a number of sites 

throughout central California and concluded that the tripartite chronological sequence 

developed by Lillard et al. (1939) for the Sacramento Valley could also be extended to 

the San Francisco Bay area.  Beardsley failed to recognize Early period occupation at the 

West Berkeley Village and University Village sites, although radiocarbon dating later 

confirmed that the Bay Area and lower Sacramento Valley were occupied 

contemporaneously as early as 5000 B.P.  Beardsley (1948) also renamed the Early, 

Transitional, and Late periods identified by Lillard et al. (1939) as the Early (3000-200 

BC), Middle (200 BC-AD 700), and Late Horizons (AD 700-1800).  Since “horizons” 

represent cultural traditions that lasted for different lengths of time, central California 

archaeologists generally prefer the term “period” to denote chronological time, while 

“pattern” is used to describe continuity of cultural traditions independent of time 

(Bennyhoff and Fredrickson 1994; Bennyhoff 1994a, 1994b).   
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Over the past several decades, J.A. Bennyhoff, D.A. Fredrickson, and R.E. 

Hughes have attempted to construct a cultural chronology for central California and have 

worked out much of the taxonomic system in detail through a series of publications 

(Bennyhoff and Fredrickson 1994; Bennyhoff and Hughes 1987).  Using the grave lot as 

the primary unit of analysis, Bennyhoff and Hughes (1987) devised scheme B1, which 

divides archaeological time into a series of cultural phases bracketed chronologically 

within three major time periods.  Similar to Beardsley, they defined an Early period 

(circa 3000-500 B.C.), a Middle period (circa 200 B.C.-A.D. 700), and a Late period 

(circa A.D. 900-1800).  In addition, they defined an Early-Middle period transition (circa 

500-200 B.C.) and a Middle-Late period transition (circa A.D. 700-900).  The 

justification for scheme B1 over earlier chronologies was made primarily on the basis of 

time-diagnostic Olivella shell bead types derived from burial contexts in conjunction 

with a large series of radiocarbon dates.  Although scheme B1 has received much 

criticism, most archaeologists working in central California continue to use this 

chronology – despite its limitations – for lack of a better framework.  In Chapter IV, I 

provide a more detailed discussion of scheme B1 and my justification for its use in the 

present study.   

Bennyhoff and Fredrickson (1994) proposed that the early Bay Area culture be 

called the “Lower Berkeley pattern”, contemporaneous with the “Windmiller pattern” in 

the lower Sacramento Valley.  Archaeologists have argued that cultural differences were 

greater between the Bay and the lower Sacramento Valley at an early date, and that the 

two cultures converged to a greater degree during the Middle and Late periods (Gerow 
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and Force 1968).  For example, while the mortuary complexes were distinctly different, 

groups from the Bay and Valley shared similarities in perforated “charmstones”, heavy 

flaked stone points made of non-obsidian material, notched and grooved net sinkers, and 

various Olivella and Haliotis beads and ornaments (Moratto 1984).  The main 

differences relate to subsistence practices, with a greater abundance of portable mortars, 

pestles, bone tools, net sinkers, and shell refuse found in Bay Area sites than in sites of 

the lower Sacramento Valley (W. Wallace 1978:34).   

Early period Valley (Windmiller) groups had a unique mortuary complex, in 

which the corpse was buried in a fully extended position and placed on its ventral 

surface, with the head oriented toward the west (Heizer 1949; Lillard et al. 1939).  

Eighty-five percent of interments contained grave goods compared with 33 percent of 

burials from the Bay (Wallace and Lathrap 1975).  The dearth of midden refuse, 

abundance of grave goods, and presence of more organized cemeteries in Windmiller 

sites contrasts with Bay Area sites, where mounds served a dual purpose as cemeteries 

and villages and contained an abundance of faunal remains and artifacts.  Some 

researchers have argued that Windmiller groups used mounds primarily as specialized 

mortuary sites, and that the habitation sites are now buried under meters of alluvium 

from seasonal flooding of the Mokelumne and Cosumnes Rivers (Meighan 1987; Schulz 

1981; W. Wallace 1978).  Because large, chipped-stone points are common Windmiller 

sites, Heizer (1949) originally suggested that Early period economies were focused 

primarily on hunting; however, the presence of ground stone fragments led him to later 
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conclude that seeds and acorns might also have been important resources  (Heizer 1974; 

Ragir 1972).   

During the Middle period (Upper Berkeley pattern), Bay Area groups appear to 

have exerted greater influence on cultures from the Valley.  In sites from the lower 

Valley, interment patterns were similar to the Bay, in that there were fewer grave 

offerings and corpses were buried in a flexed position with little consistency for cardinal 

direction (Bennyhoff and Fredrickson 1994).  New types of Olivella and Haliotis shell 

beads and ornaments were also introduced during this period (Moratto 1984:209).  A 

bone tool industry that developed in the Bay Area appears to have spread into the Valley 

and may be linked to the early use of coiled basketry.  The presence of grave goods 

among a smaller percentage of the burial population and the increased practice of 

cremation suggests a higher degree social differentiation during this period (Moratto 

1984).  Mortars and pestles also became widespread throughout much of California 

during the Middle period, which suggests more intensified use of plant resources, such 

as acorns, seeds, and root foods (Basgall 1987; Wohlgemuth 2004).   

Late period (Augustine pattern) life ways focused on intensive acorn 

exploitation, fishing, and hunting (Moratto 1984:211-213).  Archaeological evidence 

from this period shows cultural continuity with ethnographically known Plains Miwok 

and Ohlone tribelets of the lower Sacramento Valley and San Francisco Bay, 

respectively (Bennyhoff 1977; Fredrickson 1973).  Preinterment grave pit burning, 

cremation, and the presence of rare and ornate items associated with a small segment of 

the burial population suggest greater levels of social differentiation (Lightfoot and Luby 
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2002; Luby 1992, 2004; Luby and Gruber 1999).  New technologies, including the bow 

and arrow and harpoon, were introduced during this period and may be linked with 

southward intrusion of Wintuan groups into the lower Sacramento Valley (Bennyhoff 

and Fredrickson 1994; Moratto 1984).  

Archaeological Site Background 

Skeletal samples were selected primarily from sites that had suitable sample 

sizes, available chronological information (e.g., radiocarbon dates, burial seriation 

information), and published site reports.  Although many of the sites were excavated 

under less than ideal circumstances, they are among the most intensively studied from 

central California, and all played a major role in defining the Central California 

Taxonomic System, or CCTS (Bennyhoff and Hughes 1987).  I also selected sites that 

spanned the known archaeological sequence in the lower Sacramento Valley and San 

Francisco Bay, representing the period from 4950 to 200 B.P.  These sites have well-

preserved skeletal samples that are suitable for detailed osteological data collection and 

for dietary reconstruction using stable isotope analysis.  Archaeological sites in 

California use a trinomial system that designates the state, the county, and site number.  

For example, CA-SJO-68 is located in San Joaquin County and is the 68th site to have 

been recorded for that county.  I provide site descriptions and chronological information 

below.  A map that shows the locations of the archaeological sites used in this study is 

presented in Figure 2.1.  
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Lower Sacramento Valley Sites (San Joaquin and Sacramento Counties) 

Blossom Mound.  The Blossom Mound (CA-SJO-68) is a Windmiller site located 

1.9 km south of the big bend in the Mokelumne River and 2.4 km northwest of the town 

of Thornton (Heizer 1949; Ragir 1972).  Located on an alluvial plain, the earthen mound 

is situated within a swampy marsh containing tule and brushy vegetation (Ragir 1972).  

E.J. Dawson excavated the mound in the early 1920s and reported its dimensions as 20 

by 40 m with an elevation of 1 m above the valley floor; however, auger samples 

indicate that much of the mound was buried under alluvial sediments (Schenck and 

Dawson 1929).  From 1938 to 1956, U.C. Berkeley archaeologists excavated the site 

under the direction of R.F. Heizer (Ragir 1972).  The site was 1.5 to 1.8 m deep, with 

burials located between 15 and 168 cm from the mound’s surface (Ragir 1972).  At least 

four strata were present, consisting of loose topsoil underlain by a calcareous hardpan 

layer, a thick layer of brown midden material, and sterile red-yellow clay at the base of 

the mound.  Over the course of several field seasons, approximately 177 burials were 

removed from the site.  Although most burials represented primary inhumations, five 

cremations and several skull caches were discovered, the latter of which were interpreted 

as possible war trophies or sacrifices (Heizer 1949:26).  The vast majority of the burials 

were fully extended, with the corpse placed on its ventral surface and the head oriented 

toward the west (Ragir 1972:47).  Fifty-three percent of the burials had grave 

accompaniments, usually consisting of shell beads and ornaments, “charmstones”, quartz 

crystals, and large projectile points.  Based on the concentration of ash and the presence 

of faunal remains, projectile points, and baked clay fragments, archaeologists originally 
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interpreted the mound as both a village site midden and cemetery (Heizer 1949; Ragir 

1972).  

More recently, archaeologists have questioned the mound as a village site 

because artifacts, hearth features, and faunal remains were not recovered in any great 

quantity (Meighan 1987; Schulz 1981).  Meighan (1987) argued that the mound 

consisted of redeposited midden material since it contained less than one artifact was per 

cubic yard of soil.  Radiocarbon dates and time-sensitive artifacts indicate that the site 

was occupied from 4350 to 3000 B.P., placing it firmly within the Early period (Ragir 

1972).  Of the six main sites with Windmiller components, the Blossom Mound appears 

to be the oldest known burial mound in the lower Sacramento Valley.   

McGillivray 1 Mound.  The McGillivray 1 Mound (CA-SJO-142) is a 

Windmiller site located 915 m south of the Mokelumne River and lies within the 

periphery of a swampy depression of tules and sedges known as Fog Lake (Heizer 1949; 

Lillard et al. 1939).  Geological evidence suggests that – at the time of its use – the site 

was located directly along the banks of the Mokelumne River.  This site is one of three 

burial mounds in the vicinity and is located 1 km away from the Blossom Mound 

(Lillard et al. 1939).  Although the site dimensions are unknown, the mound was 

elevated 30 cm above the ground surface at the time of its excavation; similar to other 

mounds in the vicinity, much of the site was buried under alluvial sediments.  Since 

there was little midden refuse in the mound, Heizer (1949) suggested that the village 

settlement was located nearby but was buried under several meters of alluvium from 

seasonal flooding of the Mokelumne River.  From 1937 to 1938, U.C. Berkeley 
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archaeologists excavated the site and removed 44 burials.  Similar to other Windmiller 

sites, the majority of burials were fully extended with the corpse placed on its ventral 

surface and with the head oriented to the west; 82 percent of the burials had grave 

accompaniments (Heizer 1949).  The cemetery dates to the late phase of the Early period 

through the Early-Middle period transition (circa 2800 to 2200 B.P.).   

Brazil Mound.  The Brazil Mound (CA-SAC-43) is located near a major bend in 

the Sacramento River, approximately 16 km south of downtown Sacramento and 2.4 km 

northwest of Freeport.  F. Fenenga and students of Sacramento Junior College excavated 

the mound in 1939 and reported its dimensions as 61 m (east to west) by 30.5 m (north 

to south), with an elevation of 30.5 cm from the ground surface (Bouey 1995:5-7).  

Seventy burials were removed in 1939, although the landowner removed an additional 

six the following year.  In 1968, P. Johnson, J. Nance, and students from the University 

of California at Davis continued excavation at the site.  Smaller scale excavations were 

undertaken by Peaks and Associates in the 1980s, but were primarily concerned with 

identifying the spatial boundaries of the site (Bouey 1995).  During the early 1990s, the 

U.S. Army Core of Engineers covered up the mound during a levee reconstruction 

project along the Sacramento River.  As part of a mitigation project, archaeologists have 

recently reexamined all existing collections from the site and have produced a 

comprehensive site report (Bouey 1995).  

Since the mound contained an abundance of projectile points, ground stone, 

baked clay fragments, faunal remains, hearths, ash lenses, and burials, the site is 

interpreted as both a cemetery and as a village site (Bouey 1995:57-63).  Burials were 
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interred in a flexed position, on either the left or right side, and about one-half contained 

grave goods (Ravesloot 1995).  Although several individuals were interred with Olivella 

and Haliotis ornaments, most burials contained common utilitarian items, such as 

projectile points, bifaces, and pestles.  

Archaeobotanical remains recovered from the site are representative of local 

grassland, riparian woodland, and marshland communities, and are dominated by acorn, 

berry, brodiaea, clover, fescue, goosefoot, grasses, maygrass, tule, and wild cucumber 

(Wohlgemuth 1995:285-288).  The faunal assemblage consisted primarily of 

artiodactyls, medium-sized terrestrial carnivores, waterfowl, and a number of freshwater 

resident fish species (Schulz 1995; Simons 1995).  Based on the floral and faunal 

evidence, Bouey (1995:348) suggested that the site was most likely occupied year-round 

rather than seasonally.  A series of radiocarbon dates place the site between 2350 and 

600 B.P., which includes both Middle and Late period occupation (Bouey 1995:84-85).  

Hicks 1 Mound.  The Hicks 1 Mound (CA-SAC-60) is located near the west bank 

of the Sacramento River, 1.6 km to the northeast of the town of Hood.  Lillard et al. 

(1939:49-53) described the site as an ovate mound, measuring 23 by 43 m, with the long 

axis oriented from north to south.  Although the mound had a maximum depth of 1.63 m, 

it rose only 50 cm from ground surface at the time of its excavation, due to deposition of 

alluvial sediments from the Sacramento River.  During the 1930s and 1940s, Sacramento 

Junior College excavated the site and removed approximately 92 burials.  Seventy-three 

burials were assigned to the Middle period and 12 were assigned to phase 2 of the Late 

period.  Middle period burials were tightly flexed and showed no consistent pattern with 
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respect to orientation or cardinal direction.  Artifacts were associated with 41 percent of 

the burials and two cremations.  Twelve Late period burials were oriented in a westerly 

direction, and many showed evidence of preinterment grave pit burning.  Time-sensitive 

artifacts and radiocarbon dates suggest that the mound was used beginning around 1550 

B.P., placing the site firmly within the Middle period, with brief reoccupation during 

phase 2 of the Late period.  

Cardinal Mound.  The Cardinal Mound (CA-SJO-154) is located in the northern 

San Joaquin Valley, in proximity to the Calaveras and San Joaquin Rivers.  J.A. 

Bennyhoff and R.E. Hughes excavated the site in 1976, as it was being disturbed during 

a construction project.  Since only burial records are available for the site, the precise 

location and dimensions of the mound are unknown.  Despite the salvage nature of the 

excavation, archaeologists managed to recover approximately 36 burials and numerous 

artifacts from a portion of the site (Hoffman 1987).  Common grave goods included 

Haliotis ornaments, Olivella beads, pestles, awls, bone harpoons, fish spears, flaked 

stone tools, and baked clay fragments (Hoffman 1987).  Seventy percent of the burials 

had grave-good associations, and most were interred in a flexed position.  Bennyhoff 

identified two periods of occupation, the first dating to the terminal phase of the Middle 

period, circa 1500 to 1300 B.P., and the second dating to phase 1a of the Late period, 

circa 1100 to 900 B.P. (Bennyhoff 1994a, Figure 6.4; Hoffman 1987:4).   

Johnson Mound.  Despite intensive excavation during the 1920s and 1930s, a site 

report was not published for the Johnson Mound (CA-SAC-06).  Unpublished site 

records indicate that mound measured 11 m in length, with a maximum depth of 1.37 m.  
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Lillard et al. (1939) provide brief mention of the site and described its location as along 

the west bank of the Cosumnes River north of its confluence with the Mokelumne River.  

Late period villages from the lower Sacramento Valley are described as “circular 

mounds comprised of unstratified black, ashy dirt with accumulation refuse such as 

animal bones, shell and stone fragments scattered throughout” (Heizer and Fenenga 

1939:382).  Bennyhoff (1977) provides historical and archaeological evidence that 

suggests affiliation with the Cosumnes Tribelet, an ethnohistorically known group of 

Plains Miwok.  Bennyhoff’s (1977) analysis of artifacts suggests that the site was used 

year-round rather than on seasonal basis.  The presence of glass “trade beads” in some 

grave lots indicates that the site continued to be used into the contact period (Heizer and 

Fenenga 1939:383). 

The Johnson Mound appears to have been a major center of the baked-clay 

industry of the lower Sacramento Valley, and produced hundreds of baked clay artifacts 

that were probably used in place of “cooking stones” (Heizer 1937; Schenck and 

Dawson 1929:350-360).  Shell beads were found in all of the excavated burials, although 

other artifacts such as shell ornaments, arrow points, charred acorns, and bone awls were 

also common.  Individuals were buried in a flexed position with the head oriented to the 

north or south, but consistently in a westerly direction.  Time-sensitive artifacts and 

radiocarbon dates indicate that the site was occupied between the phase 1b of the Late 

period and the historic period, circa 900 to 100 B.P.  Ethnohistoric accounts suggest that 

the Cosumnes Tribelet suffered high mortality due to violent altercations with the 
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Europeans and a measles epidemic that swept through the Central Valley in 1833 

(Bennyhoff 1977; Cook 1976).  

San Francisco Bay Sites, Upper East Bay (Alameda County) 

West Berkeley Village.  The West Berkeley Village (CA-ALA-307) is a shell 

mound located on the northeastern shore of San Francisco Bay in the city of Berkeley.  

Located on a broad, sloping plain, the site lies adjacent to Strawberry Creek, which 

provided a year round supply of freshwater to the site’s inhabitants (Wallace and Lathrap 

1975:1-3).  The mound measured 14 by 31 m at the time of excavation, although its 

original dimensions were estimated as 107 by 183 m prior to the leveling of the northern 

portion of the mound.  The mound rose 6.1 m above ground surface with a subsurface 

deposit of approximately one meter.  

The first scientific investigation of the site began in 1902 by E.L. Furlong under 

the direction of J.C. Merriam of U.C. Berkeley.  In 1904, J. Peterson conducted a limited 

excavation at the site’s northeast corner.  Archaeologists at U.C. Berkeley excavated the 

remaining portions of the site in the 1950s before the mound was leveled (Wallace and 

Lathrap 1975).  Analyses of the mound’s composition indicate that it was composed of 

50 percent shell, 45 percent ash, and 5 percent stone.  Of the 95 burials recovered, 33 

percent were associated with grave goods.  The most common burial position was a 

loose flexure with the hands toward the face, although burial orientations were highly 

variable.  Recently, archaeologists have detected intact subsurface deposits in sediment 

core samples, supporting the original spatial boundaries of the site reported by Nelson 

(1909) in his survey of Bay Area shell mounds (Dore et al. 2004).   
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Although Beardsley (1948) incorporated West Berkeley into his “Middle 

Horizon”, radiocarbon dates later demonstrated that the lower 3.7 m (12 feet) of the site 

date to the Early period, and the upper 1.8 m (6 feet) date to the Middle period.  Initial 

radiocarbon dates placed the site between 3860 and 2700 B.P., representing the earliest 

occupation along San Francisco Bay (Breschini et al. 1996; Wallace and Lathrap 1975).  

However, recent AMS dating of charcoal-shell pairs taken from 15 stratigraphic levels of 

the mound indicate that the site was occupied from 5700 to 1200 cal yr B.P. (Ingram 

1998).  The original dates provided by Wallace and Lathrap (1975) were from mixed 

charcoal and shell lens deposits, and apparently did not encompass the entire 

occupational history of the mound.  Ingram (1998) reports that the abandonment of West 

Berkeley Village and at least four other shell mounds in the vicinity (1300 to 1100 cal yr 

B.P.) coincides with MCA drought conditions and low freshwater inflow into San 

Francisco Bay, which may have negatively impacted the Bay Area ecosystem.  

Emeryville Shellmound.  The Emeryville Shellmound (CA-ALA-309) is perhaps 

the best-known archaeological site from San Francisco Bay.  Located along the eastern 

bayshore in the city of Emeryville, the site lies within a diverse ecosystem of open 

estuary, saltwater marsh, tidal mudflats, riparian and oak woodland, and grassland 

(Broughton 1994b).  Temescal Creek, located approximately 60 m from the site, 

provided the nearest supply of fresh water (Uhle 1907:3).  Schenck (1926:156) reported 

that the creek had active salmon runs into the late 1800s, before it was diverted from its 

course to form Temescal Lake.  
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In 1902, M. Uhle and J.C. Merriam of U.C. Berkeley conducted the first 

scientific investigation of the Emeryville Mound.  Uhle reported the site dimensions as 

100 by 300 m, with a height of 9.8 m above ground surface.  However, large portions of 

the site were destroyed in the late 1800s for the construction of a railway system and 

racetrack.  Schenck’s (1926) study of survey maps and oral accounts suggests that the 

mound may have been interconnected with at least three other large mounds in the 

immediate vicinity.  Uhle’s stratigraphically controlled excavation revealed evidence of 

culture change between the upper and lower levels of the site, represented by distinct 

differences in artifact types, dietary refuse, and mortuary practices.  In 1906, N.C. 

Nelson conducted a second investigation on the opposite side of the mound from where 

Uhle excavated (Broughton 1996).  This excavation provided support for most of Uhle’s 

interpretations of temporal change, although Nelson failed to find evidence of cremation 

in the upper levels of the mound.   

Between 1876 and 1924, the mound was the site of Shellmound Park, a tourist 

attraction that included a holiday resort and dance pavilion.  In 1924, W.E. Schenck and 

colleagues at U.C. Berkeley salvaged artifacts and human remains from the site as it was 

being leveled to build a factory.  Although nearly 700 burials were noted during the 

salvage operation, less than 400 were recovered.  The highest concentration of burials 

occurred within the central portion of the mound, with a smaller number of burials 

located along the periphery (Schenck 1926).  Several burials appear to have been 

interred below house floors in close proximity to hearth features.  Although many infant 

burials may have been missed by the steam shovel, Schenck (1926:204) hypothesized 
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that infants and children may often have been buried separately from adults.  Analyses of 

mound constituents indicate that the site contained more than 50 percent shell (e.g., 

clams, mussels, oysters, and cockleshells), with the remainder comprising soil, ash 

lenses, fire-cracked rock, and worked artifacts (Schenck 1926).  Like Kroeber, Schenck 

minimized evidence of culture change at the site, and attributed any differences to 

changes in the seasonal use of the site or to sampling bias (Bennyhoff 1986).  However, 

Howard’s (1929) detailed analysis of the avifauna from Emeryville suggests that the 

mound was occupied year-round rather than on a seasonal basis.  Radiocarbon dates 

indicate that the site was occupied from 2600 to 700 14C year B.P., spanning the entire 

Middle period through phase 1 of the Late period (Broughton 2002b:76).   

San Francisco Bay Sites, Lower East Bay (Coyote Hills Area, Alameda County)  

The Patterson Mound (CA-ALA-328) and Ryan Mound (CA-ALA-329) are 

located approximately 3.2 km from the eastern shore of San Francisco Bay, near the 

cities of Newark and Union City (Bickel 1981).  Located on an alluvial plain 1.2 to 1.8 

m above sea level, the sites lie to the northeast of the Coyote Hills and to the south of 

Alameda Creek and Coyote Slough.  With the addition of CA-ALA-12 and CA-ALA-13, 

these sites collectively form a distinct cluster of mounds often referred to as the “Coyote 

Hills sites”, all located within 1.6 km of one another.  Although currently situated a few 

kilometers from the Bay, at the time of their use, the mounds were adjacent to the shore 

and would have been inundated periodically by seasonal flooding (Bickel 1981; Wilson 

1999).  The nearest major freshwater source was Alameda Creek, located 4.8 km away, 

although freshwater springs were noted historically in the immediate vicinity (Bickel 
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1981).  Unlike Bay Area sites to the north, the Coyote Hills sites are mostly earthen 

mounds that contain about 15 percent shell (Wilson 1999:3).  Bickel (1981) and Wilson 

(1999) have suggested that these mounds were used as both village sites and cemeteries, 

although Leventhal (1993) has argued that the mounds served as specialized mortuary 

sites for elite individuals.  Although faunal studies suggest year-round residence of the 

Coyote Hills (see Broughton 1994b), Parkman (1994) proposes that groups may have set 

up seasonal camps in the interior during the fall and spring.  Wilson’s (1999:51) obsidian 

hydration profiles suggest that, during the Late period, as many as seven or eight sites 

may have been occupied contemporaneously within the Coyote Hills area.  

Patterson Mound.  Nelson (1909) documented the Patterson Mound (ALA-328) 

in his survey of San Francisco Bay shellmounds, although the site was not excavated 

until several years later.  The mound measured 107 m north-to-south by 76 m east-to-

west, with a maximum depth of 4 m at the center (Davis and Treganza 1959).  In 1935, 

W.R. Wedel of U.C. Berkeley carried out the first excavation of the mound and removed 

a small number of burials and artifacts (Wilson 1999:6).  From 1949 to 1968, A.E. 

Treganza and students from San Francisco State University excavated the site as part of 

a field school.  C.E. Smith of Hayward State University completed the last major 

excavation of site from 1966 to 1968.  Between the numerous excavation projects, 

approximately 517 burials were removed from the site.   

Bickel (1981) found that 33 percent of the burials had grave accompaniments.  

Most burials were in flexed or semi-flexed position on the left or right side, with a slight 

preference for westerly orientation (Bickel 1981; Luby 2004).  Although the vast 
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majority of the burials were primary interments, a small number of cremations were 

found throughout all levels of the mound.  Luby’s (1992) multivariate analysis of burial 

attributes from the basal cemetery (Component C) indicates that a tightly flexed burial 

position corresponds to the presence of burial goods, while a loosely flexed position 

indicates the lack of burial goods.  Haliotis shell beads were only found in association 

with Olivella beads and are interpreted as markers of status.  Expanding upon his earlier 

study, Luby (2004) also found a greater number of ornate, non-local items among the 

basal cemetery group than among burials deposited in the mound matrix, suggesting a 

change in social inequality through time.  Luby (2004) hypothesized that funerary 

objects may have been increasingly exchanged or redistributed during mortuary feasts 

and funerals instead of being interred with the dead.   

Davis and Treganza (1959:61) identified three cultural levels within the site, 

designated Components A (0-30 inches), B (31-79 inches), and C (80-156 inches).  

Component C, identified as a “basal cemetery” by Bickel (1981), dates to the end of the 

Early period (3000-2500 B.P.), and is coeval with the lower levels of the West Berkeley 

Village site (Davis and Treganza 1959).  Component B demarcates the beginning of the 

mounded portion of the site and spans from about 2500 to 500 B.P.  The final occupation 

of the mound, designated as Component A, dates from about 500 to 200 B.P.  (Wilson 

1999).  The site may have been abandoned during phase 1 of the Late period, but 

appears to have been briefly reoccupied during phase 2 (Bickel 1981; Coberly 1973).  

European trade items have not been found in the Coyote Hills sites, so it is unclear 

whether the Patterson Mound was in use when the Spanish arrived in 1769 (Bickel 
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1981).  Wilson’s (1999) obsidian hydration profiles suggest that the entire occupation of 

the mound spans from about 2800 to 600 B.P.  Original radiocarbon dates on mixed shell 

from base of the mound suggest the site was first settled by 2558±200 B.P. (Bickel 

1981).   

Ryan Mound.  The Ryan Mound (ALA-329) is as an ovate mound, measuring 91 

by 122 m at its base and 31 by 61 m at its precipice, with a height of approximately 3 m 

(Wilson 1993).  The mound was partially disturbed by the landowners, who built a house 

and reservoir on a portion of the site (Coberly 1973).  W.R. Wedel of U.C. Berkeley 

excavated the mound in 1935 and 1948, and removed several burials and artifacts.  From 

1959 through 1968, B. Gerow of Stanford University, and from 1962 through 1968, D. 

Pritchard of San Jose State University, removed approximately 500 burials from the site 

(Wilson 1999).  C.E. Smith of Hayward State University completed the final excavation 

in 1972.  The large number of abalone “banjo” pendants recovered from the mound has 

attracted significant interest, as these items may be associated with the Kuksu religious 

cult documented in ethnographic accounts.   

Leventhal (1993:86-91) divides the mound into three components based on 

radiocarbon dates, obsidian hydration profiles, and time sensitive artifacts.  Middle 

period occupation includes depths below 1.7 m and dates from about 2400 to 1800 B.P.  

Phase 2 of the Late period corresponds to depths from .79 to 1.75 m (1800 to 500 B.P.), 

and Late period phase 1 occupation from 0 to .79 m (500 to 200 B.P.).  The earliest 

radiocarbon date suggests that the mound was occupied by 2080±90 B.P.  Wilson (1993) 

found a high degree of correspondence between radiocarbon dates, obsidian hydration 
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dates, and seriated Olivella beads derived from the same grave lot.  Since the burials 

excavated by Stanford University have been repatriated, I used skeletal collections from 

the Wedel and Smith excavations for this study.   

Summary  

Central California prehistory is represented by a diverse archaeological record 

spanning more than five millennia.  Although early anthropologists viewed prehistoric 

central California cultures as essentially “static”, the archaeological record has provided 

convincing evidence of culture change in the lower Sacramento Valley and San 

Francisco Bay during the Holocene.  The development of the Central California 

Taxonomic System (CCTS) provided a key first step for examining change in culture 

and subsistence across different environmental zones.  Many of the archaeological sites 

included in this study were pivotal to defining the CCTS, and provide the most 

appropriate skeletal samples for examining diet and health patterns in prehistoric central 

California.  
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CHAPTER III  

THEORETICAL ORIENTATION 

In this chapter, I discuss the theoretical orientation I use to evaluate diet and 

health patterns in prehistoric central California.  I begin by discussing applications of 

human behavioral ecology, including the diet breadth, prey rank, and central place 

foraging models, and then review recent literature that addresses the relationship 

between population pressure, sedentism, and territoriality.  Next, I link these approaches 

with resource intensification models posited for California and address some of the 

criticisms of these approaches.  With these models in mind, I then review pertinent 

bioarchaeological literature on subsistence change and draw parallels between the 

transition to agriculture in North America and the emergence of acorn storage economies 

in California.  Finally, I present my hypotheses and predictions regarding changes in diet 

and health during the late Holocene in central California. 

Archaeological Applications of Human Behavioral Ecology 

Since the 1980s, human behavioral ecology (HBE) approaches have gained favor 

by many anthropologists and have been successful in evaluating dietary preferences 

among human societies in both modern and archaeological contexts (Broughton and 

O’Connell 1999; Ugan 2005).  HBE is grounded in neo-evolutionary principles, which 

link predictions of human behavior to natural selection theory (Winterhalder and Smith 

2000).  HBE further offers a number of models that can be empirically tested with 

ethnographic and archaeological data, providing a means with which to evaluate 
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economic decision-making behavior in different ecological settings.  One productive 

avenue of research is the use of resource intensification models in archaeology, which 

derive predictions from optimal foraging theory.   

Optimal foraging theory (OFT) predicts that, with respect to foraging behavior, 

individuals will attempt to maximize the amount of calories extracted from the 

environment relative to the amount of energy expended in acquiring them (Broughton 

and O’Connell 1999; Kelly 1995; Winterhalder 1987; Winterhalder and Smith 2000).  

The model assumes that natural selection has designed organisms to “maximize average 

net rate of energy gain while foraging”, which can be evaluated through proxy measures 

such as foraging efficiency (Broughton 1999:9).  Foraging efficiency is determined by 

the net-acquisition rate (NAR), or simply the energy gained in kcal during foraging 

minus labor input, divided by the total residence time spent foraging within a resource 

patch (Smith 1991).  In general, this requires an estimate of prey encounter rates (search 

costs) and handling costs, which may vary between different patches and prey species 

(Kelly 1995:78).  The advantage of using NAR as a proxy for foraging efficiency is that 

it can be directly measured among living hunter-gatherer societies and can be 

approximated for archaeological contexts.  Post-encounter return rates have been 

calculated from a number of recent ethnographic and experimental studies, and provide 

the basis for archaeological applications of optimal foraging models (see Table 3.1). 

OFT models most commonly used in ethnographic and archaeological research 

include the diet breadth model and the patch use model.  The diet breadth model,  
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Table 3.1.  Post-Encounter Return Rates for Various Terrestrial  
Plant and Animal Resources from the Western United States. 
Resource Scientific Name Cal/Person/Hour 

mule deer Odocoileus hemionus 17,971-31,450 
mountain sheep Ovis canadensis 17,971-31,450 
antelope Antilocapra americana 15,725-31,450 
bearded seal Erignathus barbatus 15,000-25,680 
jackrabbit Lepus sp. 13,475-15,400 
gopher Thomomys sp. 8,983-10,780 
rabbit Sylvilagus sp. 8,983-9,800 
pollen, cattail Typha latifolia 2,750-9,360 
large ground squirrel Spermophilus sp. 5,390-6,341 
elder duck Somateria mollissima 3,180-5,160 
small ground squirrel Spermophilus citellus 2,837-3,593 
Canada goose Branta canadensis 1,720-3460 
waterbird, ducks Anas sp. 1,975-2,709 
springparsley/biscuitroot Cymopterus bulbosas 1,867-1626 
seeds, gambel oak Quercus gambelli 1,488 
Seeds, oak Quercus 1,073  
seeds, pinyon pine Pinus monophylla 841-1,408 
seeds, tansymustard Descurainia pinnata 1,307 
seeds, salina wild rye Elymus salinas 921-1,238 
roots, bitterroot Lewisia rediviva 1,237 
seeds, bulrush Scirpus sp. 301-1,699 
seeds, shadscale Atriplex nuttalli 1,200 
seeds, shadscale Atriplex confertifolia 1,033 
seeds, barnyard grass Echinochloa crusgalli 702 
seeds, peppergrass Lepidium fremontii 537 
seeds, sunflower Helianthus annuus 467-504 
seeds, bluegrass Poa sp. 91-418 
seeds, wild rye Elymus cinereus 266-473 
seeds, ricegrass Oryzopsis hymenoides 92-301 
seeds, reed canary grass Phalaris arundinacea 261-321 
seeds, scratchgrass Muhlenbergia asperifolia 162-294 
seeds, foxtail barley Hordeum jubatum 138-273 
seeds, sedge Carex sp. 202 
roots, cattail Typha latifolia 128-267 
roots, bulrush Scirpus sp. 160-257 
seeds, saltgrass Distichlis stricta 60-146 
seeds, pickleweed Allenrolfa occidentalis 90-150 

Note: (Data compiled from Simms 1987; Smith 1991; Smith and McNees 2005). 
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originally used to describe the prey selection behavior of insects (Charnov 1976), 

predicts that predators will select prey based on net-acquisition rate.  The model predicts 

that post-encounter return rates will be most closely scaled with prey body size for large 

prey captured within relatively homogenous resource patches (Alvard 1993; Simms 

1987; Winterhalder 1981).  All other things equal, low cost, high return packages (e.g., 

large game) should always be taken when encountered, regardless of the relative 

abundance of other higher cost, lower return resources.  Since smaller packages (e.g., 

small fauna, many types of plants) are generally more costly to acquire and have lower 

caloric return rates relative to energy expenditure, they should be taken only when the 

abundance of higher-ranked resources are significantly depleted.    

According to the diet breadth model, lower-ranked resources should be 

incorporated sequentially in order of decreasing rank when encounter rates with the next 

highest-ranked taxon become depleted (Broughton 2002b; Stephens and Krebs 1986:17-

24).  As human foragers consume high-ranked prey over time, resource depression may 

result, defined as a “reduction in the densities and/or capturability of prey resources 

within patches” (Broughton 2002a:47).  Resource depression should be most evident for 

patches in the vicinity of densely settled village communities (Broughton 1999; 

Winterhalder and Smith 2000).  Thus, the increased use of higher-cost, lower-ranked 

resources signifies an increase in diet breadth and a reduction in foraging efficiency as 

predicted by OFT models.    

Although prey size is often considered a good proxy measure for faunal resource 

ranking, it may be misleading in some cases.  For example, some marine mammals have 
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high handling costs, which may offset return rates despite prey body size.  Smaller prey 

encountered in aggregate, such as small fishes and grasshoppers, may also have higher 

return rates if acquired through mass capture (e.g., fishing weirs, seines, and nets; see 

Lindström 1996; Ugan 2005:79-82), although return rates for small mammals and 

waterfowl remain low regardless of procurement method.  However, Ugan (2005:83) 

notes that the high return rates reported for many small prey items captured en masse are 

offset by high processing costs.  Under some circumstances, shellfish may be within the 

optimal diet since they require relatively little technology and labor investment, provide 

a good source of protein, and can be collected by different segments of society (e.g., 

women, men, children and elderly; Erlandson 1988, 1991, 2001; Yesner 1980).  Sexual 

division of labor may further alter the ranking of some food resources, since foraging 

goals between men and women may conflict (Jochim 1988:134; Zeanah 2004).  Despite 

these challenges, OFT models should be suitable in many archaeological settings for 

testing predictions of the diet breadth model.  

Recent criticisms of HBE approaches have also highlighted issues with 

optimality models, especially in instances where human behavior appears contradictory.  

For example, recent ethnographic research on hunter-gatherer societies suggests that 

males often pass over easily exploited, high-return plant foods for more costly-to-acquire 

game, despite the lower return rates (Bird 1999; Hawkes and Bird 2002; Hawkes and 

O’Connell 1992).  These studies suggest that, in many cases, foraging goals may also be 

directed toward prestige and access to mating partners in addition to caloric benefits.  

Despite these challenges, HBE models are founded on widely demonstrated principles of 
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evolutionary and economic theory that can be empirically tested in ethnographic, 

experimental, and archaeological contexts.  The degree to which the model and data fit 

should be a reasonable measure of the variation explained by the model.  Careful 

applications of OFT consider the effects of technology, sexual division of labor, and the 

behavior of prey-species on measures of foraging efficiency.   

The patch use model, as described by Charnov (1976:129), assumes that food 

resources are encountered in homogenous patches across the landscape.  According to 

the model, the return rates for the selected prey species will decline with foraging time 

as the abundance of optimal resources decline due to harvest pressure.  The marginal 

value theorem (MVT) further adds that the “predator should leave the patch it is 

presently in when the marginal capture rate of the patch drops to the average capture 

rate for the habitat” (Charnov 1976:132, emphasis in original).  The importance of the 

MVT is that it makes explicit when a resource patch will suffer from diminishing 

returns, and when it is more profitable to move to a new patch (Charnov et al. 1976).  In 

archaeology, the patch use model and MVT can be used to measure different aspects of 

foraging behavior, including foraging time, travel distance, and changing use of resource 

patches.  As low cost, high-ranked resources are consumed and decline significantly in 

patches surrounding the residential base, greater foraging effort should be invested in the 

acquisition of high-ranked resources from more distant patches (Broughton 1999).  

Taken together, evidence of resource depression and the increased use of distant patches 

can both be indicators of declining foraging efficiency.  Patch use will also vary between 
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groups that practice different mobility and food procurement strategies, as explained 

below.         

Binford (1980) introduced the forager-collector dichotomy as a conceptual tool 

for investigating variability in the archaeological record caused by different mobility 

strategies.  Foragers follow a residential mobility strategy that involves moving between 

resource patches according to seasonal availability in key resources.  Collectors, on the 

other hand, reside at a central place and use logistical task groups to procure specific 

resources, which are transported back to the residence.  In general, collector societies 

that transport resources to a central place tend to be more sedentary, are more reliant on 

food storage, and have higher population densities (Bettinger et al. 1997).  Although not 

intended as a strict classification scheme, Binford’s (1980) dichotomy can be integrated 

with central place foraging models to predict optimal traveling distance, search and 

handling costs for different resources, and the use of distant resource patches (Bettinger 

et al. 1997).   

Population Pressure, Sedentism, and Territoriality  

Population pressure has frequently been invoked as “prime mover” for 

explaining changes in subsistence patterns and social organization, such as the transition 

to agriculture and the origins of social inequality (Boserup 1965; Carneiro 1970; Cohen 

1977, 1989).  Boserup (1965) was among the first to suggest that population pressure 

was the driving force behind technological change, and used this to explain why 

societies adopted agriculture in different areas of the world.  Boserup (1965) argued that, 

as populations grow and put pressure on their food supply, individuals are forced to 
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increase labor inputs to produce more food per areal unit of land.  Population pressure 

was first discussed in the writings of Thomas Malthus, who used the concept to describe 

the tendency for animal populations to outgrow available food supply, leading to 

resource imbalances.  The model provided an important component of natural selection 

theory, in that it described how the resource base regulates mortality and fertility rates.  

Cohen (1977) has been a leading proponent of “push” models that view population-

resource imbalances as a causal mechanism for the development of agriculture.  For 

instance, he argued: 

…human population has been growing throughout its history, and that 
such a growth is the cause, rather than simply the result, of much human 
“progress” or technological change, particularly in the subsistence sphere.  
While hunting and gathering is an extremely successful mode of 
adaptation for small human groups, it is not well adapted to the support of 
large or dense human populations.  I suggest therefore that the 
development of agriculture was an adjustment which human populations 
were forced to make in response to their own increasing numbers [Cohen 
1977:14].     

Developing his argument further for the archaeological record, Cohen stated: 

I called attention in particular to combinations of the following events: 
the enlargement of the territory exploited by individual groups or by the 
population of a region as a whole, including expansion into biologically 
stressful environments; the exploitation of new ecological zones or 
microniches; the broadening of the range or “spectrum” of food resources 
exploited; the increased use of aquatic resources; the shift toward low 
trophic-level (vegetable) consumption, and particularly toward 
consumption of calorically prolific vegetable starches which are often 
poor in  other nutrients; the decline in the exploitation of big game; the 
shift toward the consumption of small animals; the decline or extinction 
of exploited species; and the increased prevalence of sub-climax 
vegetation resulting from human interference [Cohen 1981:278]. 

Despite initial excitement, population pressure models have fallen out of favor in 

recent years, and have been admittedly hard to test using archaeological data (Hayden 



 

 

51 

 

1992; Keeley 1988:374; Richerson et al. 2001).  Critics of these approaches contend that 

population growth is a poor causal mechanism for explaining subsistence change, and 

cite examples where populations failed to adopt agriculture in areas with high population 

numbers (Hayden 1995).  Richerson et al. (2001:396) have recently argued that the lag 

in the timing of population growth and evidence for intensified subsistence economies is 

far too great to be considered a viable explanation for the adoption of agriculture in 

different areas of the world during the Holocene.  Renewed interest in population 

pressure models, however, has provided a more unified theoretical perspective, linking 

population-resource imbalances with changes in residence patterns, territoriality, and the 

development of social inequality in hunter-gatherer societies (Binford 2001; Hammel 

and Howell 1987; Keeley 1988, 1995, 1999; Larson 1996; Lightfoot 1993; Wood 1998).  

Recent approaches have also become more cognizant of the critical distinction between 

population pressure and population growth: 

Population-pressure is not population growth; rather it is the latent 
potential for growth that is thwarted by some set of environmental or 
socio-demographic conditions (i.e., Malthusian penalties or their 
imminent threat) or cultural behavior (e.g., infanticide).  Thus, 
population-pressure is simply the latent unfavorable ratio of humans to 
resources that is inherent in humans’ reproductive capacity [Rosenberg 
1998:658, emphasis in original].   

Because population pressure stems from resource imbalance, it can result from in 

situ population growth, immigration, or a reduction in available food supply due to 

environmental and social factors (e.g., drought, failed trade relations between 

neighboring groups, loss of access rights to resources in an adjacent territory; Rosenberg 

1998; Wood 1998).  Rosenberg (1998:658-659) has proposed a model that links 
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population-resource imbalances with conditions that lead to greater sedentarism, 

particularly the increased investment in maintaining territorial resource defense.  The 

model predicts that societies will invest greater labor effort in the defense of predictable 

resource patches, especially under conditions of increased competition between 

neighboring groups (Cashdan 1983; Dyson-Hudson and Smith 1978; Rosenberg 1998).  

Rosenberg (1998) frames this hypothesis as follows:   

Specifically, what is being proposed here is that fully sedentary lifeways 
will evolve when (1) the risk of local resource depletion due to 
continuous use is outweighed by the risk of physical displacement from 
the most productive locales by competitors and (2) the cost of intensified 
exploitation (where feasible) is less than the cost of intensified defense 
[Rosenberg 1998:663].   

Sedentism has been a major issue of interest to archaeologists over past several 

decades, and has important implications for understanding the development of food 

storage economies, inter-group trade, territorial defense, sexual division of labor, and 

social inequality (Binford 2001; Kelly 1991, 1992, 1995; King 1974; Testart 1982, 

1988).  Hitchcock (1987:374) defines sedentism as a process “whereby human groups 

reduce their mobility to the point where they remain residentially stationary year-round”.  

Since mobility patterns are complex among human societies, many researchers have 

opted to view sedentism along a continuum rather than as a categorical variable (Eder 

1984; Kelly 1992:49, 1995).  Although population growth per se does not necessarily 

define conditions associated with sedentism, once sedentary, populations heavily reliant 

on stored foods may relax Malthusian checks to some degree and grow at a faster rate 

(Kelly 1992:58-59).    



 

 

53 

 

In a large ethnographic survey of hunter-gatherer societies, Keeley (1988, 1995, 

1999) identified robust correlations between population density, reliance on food 

storage, and evidence of wealth differentiation among groups that occupied a central 

residence for greater than five months of the year.  Population pressure was positively 

correlated with intensive seed and nut use, while reliance on large game was inversely 

correlated with intensified use of plant foods (especially seeds and nuts; Keeley 1999).  

Societies with high population density also stored more food and stayed in winter 

villages longer than societies with low population density (Keeley 1988:393-394).  

Testart (1982) argues that a specific set of conditions is needed in order for intensive 

storage economies to develop: 

Where some natural food resources are bountiful but seasonal, they can 
be gathered en masse while available and stored on a large scale once 
transformed through appropriate food preservation techniques, thus 
becoming the staple food year-round.  This possibility lies at the 
intersection of four conditions, two ecological (abundance and seasonality 
of resources) and two technical (efficient food-getting and food-storage 
techniques).  The presence of these four conditions determines an 
economy in which storage provides the bulk of food during the season of 
scarcity [Testart 1982:523-524, emphasis in original].  

Testart (1982:524-525) found that food storing hunter-gatherer societies tend to 

be more sedentary, to have higher population densities, and to show greater evidence of 

social inequality than non-storing societies.  For native Californians, reliance on food 

storage would have been a necessity for sustaining sedentary village communities during 

winter and early spring, when many key food resources would have been scarce 

(Baumhoff 1963; Bettinger 1987; Testart 1982:524, 1988:173).  Ethnographic research 

among some native California societies indicates that reliance on stored foods (e.g., 
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acorns, salmon) turned the season of scarcity into a time of leisure, and marked a time of 

important festivals and ceremonies (Testart 1988:171).  Once dependent on food storage, 

however, villages would have also been increasingly at risk for resource stress, as natural 

disasters (e.g., floods, fire) or intercommunity conflict could have resulted in the loss of 

critical stored food surpluses such as acorn caches.   

Reconstructions of pre-contact California suggest population numbers among the 

highest in North America (Baumhoff 1963; Cook 1955; Kroeber 1939).  Researchers 

have attributed this demographic phenomenon, maintained in the absence of agriculture, 

to the adoption of intensive acorn storage economies during the late Holocene (Bean and 

Lawton 1977; Heizer 1958; Kroeber 1925; Meighan 1959).  Baumhoff (1963) was the 

first to seriously consider the relationship between carrying capacity and available food 

resources in California, and proposed a unique acorn-game-fish adaptation for groups 

that lived along the Sacramento River and its tributaries within the north-central areas of 

the state.  For the Sacramento Valley, Baumhoff (1963:230) linked high population 

densities to the abundance of food staples, and suggested that populations had reached 

their maximum level of resource productivity, representing the upper limits of carrying 

capacity without the development of agriculture.   

Estimates of prehistoric population size generally incorporate settlement pattern 

data and the number of site components and phases per period, as measured by relative 

frequencies of radiocarbon and obsidian hydration dates (Basgall 1987; Bouey 1987:67; 

Broughton 1999; Cook and Heizer 1968; Glassow 1999; Schulz 1981:181-186).  While 

many indices provide support for substantial population growth during the late Holocene 
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in areas of California, population estimates need to be evaluated against a backdrop of 

geomorphologic perturbations that have biased the early to middle Holocene record 

(Bickel 1978; White 2003).  The loss of this record may have been substantial, since 

coastal sites have been subject to significant deterioration through wave action and sea 

level rise, and sites along the major waterways of the Central Valley have been affected 

by changes in floodplain development (Atwater et al. 1977; Bickel 1981; Erlandson 

1994a, 1994b; White 2003). 

Resource Intensification Models and Central California Prehistory 

Since the earliest historic descriptions, California has been perceived as a land of 

unlimited resource abundance.  Eighteenth century accounts by Spanish explorers 

described large herds of elk and deer that virtually blanketed the landscape throughout 

the San Francisco Bay area (Raab and Jones, ed. 2004).  The abundance of game and the 

vast array of plants used by native peoples impressed many of the first Europeans, and 

perpetuated the notion that aboriginal societies had little detrimental effect on the natural 

environment.  Alfred Kroeber, the so-called father of California anthropology, also 

maintained that the state’s rich and diverse resources provided an unlimited food supply 

to native peoples.  “The food resources of California were bountiful in their variety 

rather than in their overwhelming abundance…If one supply failed, there were a hundred 

others to fall back upon” (Kroeber 1925:524).  However, evidence for resource 

abundance in the prehistoric record has been seriously challenged by a number of recent 

archaeological investigations (Basgall 1987; Beaton 1991; Broughton 1994a, 1994b, 

1997, 1999, 2001; Hildebrandt and Jones 1992, 2002; Jones et al. 2004).  For example, 
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many archaeofaunal studies have found evidence of resource depression, as measured by 

the decline in large game relative to more costly, smaller fauna during the middle and 

late Holocene (Broughton 1994a, 1994b, 1997, 1999, 2001; Hildebrandt and Jones 1992, 

2002).  These studies have also identified similar patterns in the faunal record from 

different environmental contexts (e.g., Sacramento Valley, San Francisco Bay, and 

Pacific Coast of North America), perhaps influenced by similar demographic conditions, 

albeit, operating on different time scales.  Many researchers attribute the abundance of 

fauna observed during the contact period to a rebound in game populations, following 

significant declines in human population caused by the spread of introduced foreign 

diseases (Broughton 1999; Erlandson and Bartoy 1995; Erlandson et al. 2001; Preston 

1996, 2002a, 2002b).  If this is accurate, then human population may have been 

decimated by waves of introduced infectious disease beginning in the mid-to-late 1500s.   

The archaeological applications discussed above fall under the rubric of resource 

intensification models, which predict declines in foraging efficiency during the late 

Holocene in California.  As originally described by Esther Boserup (1965) and adopted 

by others, resource intensification is defined as “the sum of additional labour and 

material devoted to increasing the yield of currently exploited resources within the 

residential estate” (Beaton 1991:951).  Stated another way, intensification models 

predict an increase in overall productivity from a given patch of land, but “individuals 

must expend more energy, per unit time, in the process” (Broughton 1994b:372).   
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Archaeofaunal Studies 

Since the 1980s, archaeological applications of the diet breadth model in 

California have primarily focused on temporal changes in the relative abundance of 

different types of floral and faunal remains, projectile points, and ground stone 

assemblages (Basgall 1987; Beaton 1991; Broughton 1994a, 1994b; 1997, 1999; 

Hildebrandt and Jones 1992; Raab 1996; Wohlgemuth 1996, 2004).  Bayham (1979) 

provided the first quantitative application of the diet breadth model for evaluating long-

term faunal exploitation patterns throughout the Archaic period of North America.  

Following OFT principles, Bayham (1979, 1982) argued that prey rank should be most 

closely scaled with body size.  Following this logic, the ratio of large to small ranked 

taxa recovered from faunal assemblages can be used as a proxy measure for levels of 

foraging efficiency.  The simplicity of the diet breadth and patch use models has broad 

appeal and practical utility for archaeologists interested in foraging efficiency, as 

measured through analyses of faunal assemblages. 

Over the past few decades, HBE-based archaeological models have had 

measurable success in demonstrating examples of resource depression in different 

regions, including California (Botkin 1980; Broughton 1994a; 1994b, 1997,1999, 2001, 

2002a; Chatters 1987; Glassow 1992; Jones and Richman 1995; Kennett 2005; Porcasi 

et al. 2000; Raab 1992; Simons 1992), the Pacific Coast of North America (Butler 2000; 

Hildebrandt and Jones 1992, 2002; Jones et al. 2004), the Great Basin (Broughton and 

Grayson 1993; Grayson 1991; Janetski 1997), north-central Nevada (Ugan and Bright 

2001), the southwestern United States (Bayham 1982; Speth and Scott 1989), southern 
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New Zealand (Nagaoka 2002), and the Cook Islands of south-central Polynesia (Butler 

2001).  The vast majority of this research has provided support for late Holocene 

resource intensification models, and at a minimum, suggest that foraging societies have 

had significant impacts on animal populations in prehistory.  Many of these studies have 

also seriously questioned the notion of native resource conservation practices, at least 

with respect to the impact that prehistoric societies had on game populations (see 

Broughton 1999, 2002b; Raab and Jones, ed. 2004).   

Central California.  Faunal assemblages from sites within the lower Sacramento 

Valley and San Francisco Bay have recently been the focus of much research, and have 

important implications for evaluating diet and health trends in prehistoric central 

California (Broughton 1994a, 1994b, 1997, 1999, 2001, 2002a; Hildebrandt and Jones 

1992; Rogers and Broughton 2001; Schulz 1995; Simons 1992, 1995).  These studies 

have provided a more synthetic and hypothesis driven approach for evaluating temporal 

trends in animal exploitation patterns in California, and most have embraced HBE 

models. 

Broughton (1994a) analyzed vertebrate fauna from nine late Holocene sites in the 

north-central Sacramento Valley and found that the abundance of medium and large 

mammals declined through time relative to small, resident fish species.  After controlling 

for latitude and seasonal variability, Broughton (1994a) also found that large 

anadromous fish (e.g., salmon and sturgeon) declined in abundance relative to smaller, 

resident fish species (e.g., cyprinids and catostomids).  The effects of latitude were 

pronounced for anadromous fish, as high river discharge may have greatly reduced their 
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capturability for groups living in the Delta south of 39°N latitude (Broughton 

1994a:509-510).  Although most indices were consistent with declining foraging 

efficiency, the ratio of large to medium-sized mammals (e.g., artiodactyl/lagomorph 

index) failed to show a clear temporal trend. 

Simons (1992) examined prehistoric patterns of vertebrate exploitation in 11 late 

Holocene sites from the San Francisco Bay area, spanning the late Holocene (circa 3000-

200 B.P.).  He found an unexpectedly high marine mammal-to-artiodactyl ratio in the 

Early period assemblages, indicating greater importance of marine mammals at an 

earlier date than was found in previous Bay Area faunal studies.  During the Middle 

period, marine mammals declined in abundance relative to artiodactyls, although this 

trend was reversed during the Late period.  This Late period spike in marine mammal 

hunting, however, was the result of an increase in the hunting of sea otters.  While 

recognizing that these patterns were consistent with the predictions of the diet breadth 

model, Simons (1992) broadly interpreted this as evidence of resource intensification, 

but also factored in the effects of interannual environmental fluxes, seasonal exploitation 

of different habitats, and co-harvesting strategies that emphasized both pinnipeds and sea 

otters. 

Broughton (1994b) tested the diet breadth model using vertebrate fauna from 14 

late Holocene archaeological sites from San Francisco Bay, expanding upon the earlier 

research by Simons (1992).  Documenting similar trends, Broughton found dramatic 

declines in the ratio of artiodactyls (elk, black-tailed deer, pronghorn) to sea otters 

throughout the occupational histories of different regions of the Bay, and found little 
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correlation between the observed trends and changes in environment, technology, or 

seasonal availability of prey species.  Since artiodactyls and sea otters comprised 81.3 

percent of the mammalian vertebrate assemblage, Broughton (1994b:378) argued that 

the relative abundance of each prey type through time should be a good measure of 

foraging efficiency, since artiodactyls, on average, weigh at least twice as much as sea 

otters.  Broughton’s (1994b:391) analysis of resident and migratory fauna also suggested 

multi-season occupation for the shell mound sites used in his study.  The presence of 

certain species of migratory waterfowl suggested winter-spring occupation.  

Furthermore, the high number of bat rays and smoothhound sharks suggested spring and 

summer occupation, the seasons in which these fish species move from deeper areas of 

the estuary to more shallow waters closer to the shoreline (Gobalet et al. 2004:820). 

More recently, Broughton (1997, 1999, 2001, 2002a, 2002b) has produced a fine-

grained analysis of archaeofaunal remains from the enormous Emeryville Shellmound 

site, located along the eastern shore of San Francisco Bay (circa 2600-700 B.P.).  Since 

predictions of the diet breadth model are based on post-encounter return rates with prey 

species from more-or-less homogenous patches, Broughton (1999) compared the 

abundance of different faunal species by habitat type (e.g., aquatic versus terrestrial).  

Bracketing the faunal assemblage into stratigraphically controlled temporal units, he 

found significant declines in the abundance of low cost, high-ranked prey species 

relative to smaller, more costly fauna throughout the occupational history of the mound.   

Ninety-nine percent of the eight fish species represented at Emeryville comprised 

requiem shark, bat ray, salmon, and sturgeon, although smaller fishes were nearly absent 
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from the assemblage due to the screen recovery methods used in the original excavations 

(Broughton 1997:851, 1999:42).  Sturgeon, the largest fish taxon identified in the 

assemblage, declined significantly in abundance through time relative to all other 

identified fish species; mean dentary widths of sturgeon also showed significant declines 

through time, suggesting that predation pressure resulted in a lower mean age-at-death.  

Since sturgeon would have been available year-round (unlike requiem sharks, bat rays, 

and salmon) and are slow moving, benthic browsers, they would have been highly 

susceptible to resource depression (Broughton 1997, 1999).   

Examining the avifaunal record, Broughton (1999, 2001:265) found that 83.5 

percent of birds at Emeryville comprised ducks, geese, and cormorants.  Cormorants 

breed on offshore rookeries and could only have been exploited using watercraft, while 

ducks and geese could have been captured from near shore habitats.  Broughton (1999, 

2001) hypothesized that the abundance of cormorants relative to ducks and geese could 

be used as a proxy for resource depression.  Following the predictions of the diet breadth 

model, both ducks and geese in the assemblage declined in abundance through time 

relative to cormorants, suggesting greater investment in exploiting the latter from distant 

rookeries.     

The mammalian vertebrate fauna at Emeryville produced the most interesting 

trends through time.  Four taxonomic groups dominated this assemblage, and include sea 

otters, pinnipeds, artiodactyls, and small and medium-sized carnivores.  For sea 

mammals, the abundance of large migratory pinnipeds (e.g., Steller sea lion, California 

sea lion, fur seal) declined relative to smaller sea otters through time.  Since large 



 

 

62 

 

pinniped species aggregate on mainland haul outs and offshore rookeries during the 

breeding and birthing season, they would have been highly susceptible to resource 

depression (Broughton 2002b; Hildebrandt and Jones 1992).  The terrestrial faunal 

assemblage was dominated by artiodactyls, such as elk and black-tailed deer, and nine 

species of small and medium-sized carnivores (e.g., coyote, gray fox, raccoon, long-

tailed weasel, badger, spotted skunk, striped skunk, river otter, and bobcat; Broughton 

1999:51-52).  In general, the abundance of artiodactyls declined relative to terrestrial 

carnivores through time, although the number of deer elements significantly increased in 

the upper-most strata of the mound (circa 2000 to 700 B.P.).  After ruling out 

environmental causes, Broughton (1999:55-64) hypothesized that the dramatic increase 

in deer remains was due to the greater use of distant resource patches following the 

depression of local patches.  To test this hypothesis, he examined temporal differences in 

butchery patterns and anatomical part representation.  Since ethnographic and 

experimental data show that transport costs increase with distance from the home base, 

he argued that low-utility elements would have been removed more frequently in 

conjunction with a greater amount of field processing during the later occupation of the 

site (Broughton 1999:58; Rogers and Broughton 2001).  When compared by strata, 

butchery patterns and anatomical part representation data suggested higher levels of 

selective transport and field processing of artiodactyl remains, corresponding to the late 

spike in deer elements (Broughton 1999; Rogers and Broughton 2001).  Since sea otters 

and artiodactyls dominate the Emeryville vertebrate assemblages, but differ with respect 

to body size, Broughton (1999) calculated an index to compare the relative profitability 
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of each prey group.  The abundance of large artiodactyls significantly declined relative 

to lower-ranked sea otters, suggesting localized resource depression induced by human 

foragers.   

In a final test of the diet breadth model, Broughton (1999:70-71) calculated 

shellfish indices from data tabulated by Gifford (1916).  As noted by Gifford, larger 

shellfish species, such as oysters and mussels, were abundant in the lower levels of 

Emeryville, but later decreased through time relative to bent-nose clams.  Since oysters 

and mussels can be extracted with relatively little effort from the intertidal zone, they 

should have been preferred species over the clams, which would have required the use of 

a digging stick.  This shift in shellfish species has also been identified in a number of 

other Bay Area sites, although additional research is needed to determine whether 

overexploitation of larger shellfish species or environmental factors, such as changes in 

siltation levels in the Bay, are the primary cause (see discussions in Bickel 1981; 

Broughton 1999:71; Gould 1964; Greengo 1951, 1978; Ingram 1998). 

Pacific Coast of North America.  A number of studies have also applied HBE 

models to examine prehistoric exploitation patterns on marine mammal populations 

along the Pacific coast of North America during the Holocene (Hildebrandt and Jones 

1992, 2002; Jones and Hildebrandt 1995; Jones et al. 2004; Porcasi et al. 2000; Walker 

et al. 1999).  Archaeologists have long since noted the presence of marine mammal 

remains in areas where they no longer live today.  Researchers have commonly 

attributed this to overexploitation by Europeans during the historic period (Lyman 1989, 

1995), or to changes in sea surface temperature during the late Holocene (Colten 2002; 
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Colten and Arnold 1998).  Hildebrandt and Jones (1992, 2002) challenged these notions 

by suggesting that prehistoric human foragers had significant impacts on marine 

mammal populations in the past, which has affected their present distribution along the 

Pacific Coast. 

Based on faunal assemblages from archaeological sites between southern Oregon 

and southern California, Hildebrandt and Jones (1992, 2002) argued that early coastal 

populations overexploited migratory breeding marine mammals from mainland haul outs 

and near shore rookeries, and later intensified their efforts to hunt these species from 

more distant, offshore rookeries and islands.  Unlike the smaller resident species, such as 

the sea otter and harbor seal, migratory breeders (e.g., Steller sea lion, California sea 

lion, northern fur seal) cannot mate or give birth to young in open waters and instead 

must establish birthing and breeding colonies on mainland haul outs and rookeries 

(Hildebrandt and Jones 1992:366-367).  Males establish breeding territories in the late 

spring and form harems; these groups also include pregnant females and juveniles.  

About one month following birth, newborn pups are able to swim on their own, and the 

groups again disperse on their annual migration.  During this mating and birthing season, 

fur seal and sea lion colonies are highly susceptible to predation pressure, and respond 

behaviorally by moving their colonies farther from the shore.  Hildebrandt and Jones 

(1992, 2002) argue that as haul outs and near shore rookeries became increasingly 

depleted, more investment would have been placed in the development of technology 

needed to exploit marine mammals at these distant rookeries.  In particular, they link the 

development of the oceangoing canoe and composite harpoon during the late Holocene 
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to the greater use of offshore rookeries and islands for marine mammal hunting.  

Although the effects of environmental change and over-hunting during the contact 

period have not been fully resolved (see discussions in Colten 2002; Colten and Arnold 

1998; Lyman 1989, 1995) several studies of marine mammal exploitation patterns are 

consistent with predictions of intensification models (Broughton 1999; Hildebrandt and 

Jones 1992, 2002; Jones and Hildebrandt 1995; Jones et al. 2004; Porcasi et al. 2000; 

Walker et al. 1999). 

Criticisms of Resource Intensification Theory 

Despite recent interest in resource intensification theory, many researchers have 

taken issue with the ability of the model to explain socio-economic changes in 

prehistoric California, and also its failure to address the role of social factors on driving 

culture change (Arnold 1992, 1995a, 1995b, 1997; Arnold et al. 1997; Hildebrandt and 

McGuire 2002; White 1998a, 1998b, 2003, 2005).  Most recently, the factors that 

influenced the rise of chiefdom-level social complexity among the prehistoric Chumash 

of southern California has been the focus of contentious debate among archaeologists 

(Arnold 1992, 1995a, 1997; Arnold et al. 1997; Colten and Arnold 1998; Jones et al. 

1999; Lambert and Walker 1991; Raab 1996, 2004; Raab and Bradford 1997; Raab and 

Larson 1997; Raab et al. 1995; Walker and Lambert 1989).   

Although the archaeofaunal and bioarchaeological evidence is consistent with the 

predictions of intensification models in the southern California (Lambert and Walker 

1991; Raab 1996, 2004; Walker and Lambert 1989), the influence of climate change has 

also factored into the debate, and is focused primarily on whether the circumstances that 
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led to socioeconomic change in southern California were brought on by drought 

conditions of the Medieval Climatic Anomaly (MCA), circa A.D. 800 to 1350 (Jones et 

al. 1999), or by El Niño Southern Oscillation (ENSO) events that caused warmer sea 

surface temperatures and decimated the marine ecosystem (Arnold 1992, 1993, 1995a, 

1996, 2000; Arnold and Tissot 1993; Arnold et al. 1997; Colten and Arnold 1998).  

Arnold (1992, 1995a) and Colten and Arnold (1998) argue that warming sea surface 

temperatures during the MCA interval had detrimental effects on the availability of 

marine resources, which provided the impetus for the development of more complex 

social systems.  Under this model, elite “big men” acted as the primary medium for 

access to food resources between the Santa Barbara mainland and the Channel Islands, 

the latter of which exchanged shell beads and ornaments (made by craft specialists) for 

food resources (Arnold 1992, 1993, 1995a, 1995b, 1997, 2000; Arnold and Munns 1994; 

Arnold et al. 1997).  These “big men” were able to gain prestige and elite status through 

the manipulation of labor organization during periods of environment stress, stimulating 

the development of complex levels of social stratification   Arnold’s model further links 

the evolution of the Chumash political economy with the development of the plank 

canoe.  This new technology would have been critical for intensified fishing and marine 

mammal hunting, and also for transporting resources between the mainland and islands.  

While recognizing the late Holocene as period of resource stress, Arnold (1992, 1995a, 

1997) has argued that warming sea surface temperatures rather than drought conditions 

were primarily responsible for the development of social complexity in the Channel 

Island area of southern California.  This perspective contrasts with the intensification 
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models, which link these changes to population-resource imbalances, brought on by the 

over-exploitation of fauna by densely-packed foragers, and further exacerbated by 

drought conditions of the MCA (Jones et al. 1999; Raab 1996, 2004).  Kennett and 

Kennett (2000) have recently compiled a high-resolution oxygen isotope record on 

marine shell from the Santa Barbara Channel Island area, and found evidence for colder 

sea surface conditions during the MCA, contradicting the record upon which Arnold’s 

model is based.  Although these debates are far from resolved, the broad picture from the 

late Holocene Santa Barbara area is consistent with population pressure and economic 

intensification models; however, environmental factors appear to have greatly 

exacerbated already stressful conditions between the eighth and fourteenth centuries.   

Other recent studies from California have also found archaeofaunal evidence that 

appears inconsistent with the expectations of resource intensification models 

(Hildebrandt and McGuire 2002; White 1998a, 1998b, 2003, 2005).  For example, 

Hildebrandt and McGuire (2002) found evidence for a significant increase in deer 

exploitation during the middle to late Holocene (Middle Archaic) in California, and 

argue that intensification models cannot explain the patterns observed in the 

archaeofaunal record.  Drawing parallels with ethnographic research on modern foraging 

societies, they suggest that an increase in artiodactyl hunting was an expression of 

gender-differentiated fitness goals directed toward male prestige.  According to their 

model, as gender organization became increasingly differentiated during the Middle 

Archaic, males directed foraging efforts toward hunting large game as a means to gain 

prestige and greater access to mating partners.  Recent ethnographic research on forager 
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societies indicates that men often pass up low cost food resources (e.g., plant foods, 

shellfish) for large game, suggesting that social prestige may contribute to diet choice, in 

addition to simply providing calories (Bird 1999; Hawkes 1990, 1991; Hawkes and Bird 

2002).  Broughton and Bayham (2003) take issue with Hildebrandt and McGuire’s 

(2002) model, and instead argue that the increase in artiodactyls is more likely due to 

higher levels of terrestrial productivity, associated with the cooler and wetter conditions 

following the Altithermal.  Broughton and Bayham (2003) also contend that the trends 

identified by Hildebrandt and McGuire (2002) may be obfuscated by regional 

differences in environment, spatial variability in the settlement patterns, and through the 

increased use of distant resource patches.   

White (1998a, 1988b, 2003) has also recently challenged the logic of 

intensification models in explaining socio-economic change in central and northern 

California.  He argues that social competition was a more critical factor influencing 

intensification, and manifested under conditions of resource abundance rather than 

population-resource imbalances.  From this perspective, population growth and 

intensification were the outcome of competitive social relationships that were 

influenced, but not caused, by environmental change.  This model further links these 

competitive social relationships to increased social differentiation, inter-group resource 

exchange, and also multi-regional population movements during the late prehistoric 

period.  White (2005:28) extends this argument further to explain how changing 

sociopolitical organization could have resulted from the coordinated efforts of mass 

capture of game in the Clear Lake Basin of northern California: “intensification in 
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California was best understood as a product of technology and organization enabling 

mass capture via coordinated group harvest or employing technologies designed and 

built via capital.”  White’s (2003:187) analysis of archaeofaunal remains from the 

Colusa Basin of northern California indicates that small fauna were the focus of 

intensive exploitation during the Middle Archaic, but diets shifted toward artiodactyls 

later in time, suggesting increased foraging efficiency through time, contra the 

predictions of intensification models.   

Archaeobotanical Studies 

In addition to the faunal trends described above, resource intensification models 

have also been advanced to explain the development of intensive acorn economies 

during the late Holocene in California (Basgall 1987; Beaton 1991; Bouey 1987; 

Wohlgemuth 1996, 2004).  Although archaeological evidence of early acorn use in 

California is mounting (Schulz and Johnson 1980; White 2003; Wohlgemuth 2004:144), 

methods used to remove poisonous tannins appear to have differed from the 

ethnographically known leaching basin method.  Ethnographic accounts indicate that 

while acorns were sometimes buried in the mud for several weeks or months, or were 

mixed with clay to leach out tannins, these strategies most likely predate the use of the 

leaching basin (Driver 1952; Fredrickson 2003; Gifford 1936; Merriam 1918, 1965; 

White 2003; Wohlgemuth 2004).  Wohlgemuth (1997, 2004:144) has recently identified 

pits of unburned acorn caches in archaeological sites within the Los Vaqueros reservoir 

area east of San Francisco Bay and at CA-SOL-391, to the north of the Bay Area.  

Radiocarbon dates for acorn shell from SOL-391 suggest that earlier leaching methods 
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were in use 3740-4450 cal B.P. (Wohlgemuth 2004:144).  Fredrickson (2003) states that 

the leaching basin method probably developed alongside storage granaries and mortar 

and pestle technology, associated with more sedentary life ways of the late Holocene.  

Although many food items were processed using mortars and pestles, including nuts, 

seeds, berries, bulbs, meat, and fish (see Barrett and Gifford 1933:144-145), this toolkit 

was the most efficient method for processing acorns into a palatable food resource 

(Basgall 1987).   

Basgall (1987) has provided one of the most influential discussions of resource 

intensification models for explaining the emergence of late Holocene acorn storage 

economies in prehistoric California.  In many areas of the world, acorns have historically 

been viewed as famine food (see Mason 1995).  California scholars, however, have 

conventionally viewed acorns as a high-ranked, reliable resource that had obvious 

benefits as a buffer food, particularly during the lean winter and spring months (Heizer 

and Elsasser 1980; Schulz 1981).  Explanations for the lack of intensive acorn 

economies prior to the late Holocene have ranged from environmental factors that 

restricted oak tree distribution in the past, to technological ignorance of the leaching 

process, and to the time required for populations to “settle in” and become familiar with 

new ecological niches (Basgall 1987:39; Mayer 1976:16, 29; Schulz 1981).  Basgall 

(1987:39) rejected these explanations, in part, because of the implication that some 

societies are inherently less sophisticated than others.  Since ethnographic research 

indicates that mortars and pestles were used primarily for acorn processing, the relative 

abundance of these implements in archaeological sites has often been used as a crude 
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index of acorn reliance (Basgall 1987; Bouey 1987; Jones 1996; McCarthy 1993; Schulz 

1981).  Following this logic, Basgall (1987) noted that evidence for the acorn toolkit was 

scarce during the Early period (4500-2800 B.P.), but became more abundant in sites 

dating to the Middle (2800-1200 B.P.) and Late (1200-100 B.P.) periods.  He further 

noted a high degree of temporal and spatial disparity in the distribution and appearance 

of mortar and pestle technology throughout California.  This incongruity suggests that 

acorns were unlikely to have been considered a superior food resource in the past, since 

the efficient technology (i.e., mortars and pestles) used to process them failed to rapidly 

diffuse across different regions.   

Basgall (1987) calculated return rate estimates for acorn harvesting and 

processing using ethnographic and experimental data (see Dubois 1935; Gayton 1948).  

These estimates produced return rates of 1.0 kg/4.2 hr (1073 cal/hr), which included the 

costs of gathering, transport, shelling, pounding, leaching, and cooking of 2.72 kg (6 lbs) 

of acorns.  Based on these findings, Basgall (1987) concluded that acorns have 

substantially higher labor costs relative to many other food resources (cf. McCorriston 

1994:102).  In summarizing the archaeological and ethnographic evidence for acorn use, 

Basgall argued that the late introduction of mortar and pestle technology is best 

explained by food stress resulting from population-resource imbalances, “not because of 

some inherent quality of the resource itself” (Basgall 1987:40-41). 

Relatively little is known about prehistoric uses of different plant foods among 

California societies.  Ethnographic research by J.P. Harrington suggested that the Ohlone 

(Costanoan) Indians of central California gathered at least 157 different plant types, 63 
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of which were used as food (Bocek 1984).  Since few archaeobotanical samples were 

collected until the 1980s, researchers are only just beginning to understand trends in 

plant food intensification during the Holocene (Wohlgemuth 2004).  Wohlgemuth 

(1996) examined archaeobotanical data from 11 Holocene sites in the North Coast 

Ranges and Central Valley of California, and reported a shift between the Early and 

Middle period in the ratio of small seeds to acorns, suggesting that acorns became 

economically important during the Middle period (circa 2800 B.P.).  The Late period 

trend, however, was marked by an increase in small seed use, suggesting a greater 

diversification of plant foodstuffs.  Expanding upon this study, Wohlgemuth (2004) has 

recently examined 940 macrobotanical samples from dozens of archaeological sites 

throughout California.  Using Keeley’s (1999) ethnographic model, Wohlgemuth 

(2004:13) predicted that intensive plant use should have been less among groups that had 

direct access to aquatic resources, such as populations from San Francisco Bay and the 

interior Sacramento Valley.  Based on macrobotanical evidence from 48 sites in interior 

central California, Wohlgemuth (2004:72-83) found that acorn was the most ubiquitous 

taxa represented, regardless of time period.  Wild cucumber was the second most 

ubiquitous taxon during the Lower and Upper Archaic periods, but remained prominent 

into the protohistoric period.  Between the Middle (7000-2500 B.P.), Upper Archaic 

(2500-1200 B.P.) and Emergent periods (1200-200 B.P.), the abundance of acorn shell 

increased dramatically, providing support for the assertion that intensified acorn 

exploitation was primarily a late Holocene phenomenon (Wohlgemuth 2004:145).  

When compared by region, Wohlgemuth (2004:148-49) found some evidence for lower 
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diversity indices and fewer macrobotanical remains in sites from the San Francisco Bay 

area and the lower Sacramento Valley than areas that lacked significant aquatic 

resources, providing partial support for Keeley’s (1999) model.  Small seed assemblages 

were dominated primarily by farewell to spring, goosefoot, and maygrass, but were 

abundant only in sites from interior central California (Wohlgemuth 2004:135).  The 

dearth of small seeds during the Lower Archaic relative to later periods also supports 

Keeley’s hypothesis (also see Binford 2001) that seed intensification is correlated with 

significant population pressure (Wohlgemuth 2004:144).  The most dramatic temporal 

trend in small seed use occurred between the Upper Archaic (1500-1200 B.P.) and 

Lower Emergent (1200-500 B.P.) period, concomitant with other archaeological 

evidence for population increase (Basgall 1987).  Although small seed use declined 

between the Lower and Upper Emergent, seed use remained prominent into the 

protohistoric period (Wohlgemuth 2004:140).   

The Middle Archaic record was poorly represented in the eastern San Francisco 

Bay area, compared with the Upper Archaic and Emergent periods (Wohlgemuth 

2004:114).  Archaeobotanical samples showed a low ubiquity of nutshell, but were 

primarily represented by acorn and bay nut, followed by hazel and buckeye 

(Wohlgemuth 2004:114).  Interestingly, evidence of acorn use declined during the 

Lower Emergent period, while wild cucumber became the most ubiquitous taxon 

represented (Wohlgemuth 2004:114-117).  Berries appear to have been a more important 

food resource in the Bay Area than in the interior of central California, although they 

were not found in high frequency during any time period.  Wohlgemuth (2004:120) 
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argues that the changes in plant food exploitation in the Bay Area could reflect a shift 

toward greater seasonal site use during the late prehistoric period, as suggested by 

Lightfoot and Luby (2002:276-277).           

Todt (1997) notes that the broad usage by early ethnographers of the terms 

“Indian potatoes”, “Indian carrots”, or “wild onions” for the different edible root foods 

(i.e., geophytes, underground storage organs) used by native Californians has hindered 

the species identification of these plants.  Wohlgemuth reports that native groups in 

California used at least 58 different species of geophytes, primarily from the Liliaceae, 

Apiaceae, and Cyperaceae genera.    

Bulbs and corms were locally important but did not loom nearly so large 
as in the Northwest and Plateau.  …The most important Liliaceae include 
the Brodiaea group, the “Indian potatoes” of ethnography, comprising the 
related genera Brodiaea, Dichelostemma, Triteleia; mariposa lilies 
(Calochortus sp.); and onions (Allium sp.).  All were dug from April to 
July with a digging stick and cooked in earth ovens, and some were 
stored for winter (in houses rather than outdoor granaries; Barrett and 
Gifford 1933; Duncan 1963).   The most important of the Apiaceae was 
yampah (Perideridia sp), roots of which were gathered in the late spring 
(Barrett and Gifford 1933; Chestnut 1902) or fall (Goodrich et al. 1980), 
and eaten raw or stone-boiled.  The most important Cyperaceae, 
especially in wetland areas, were nut sedge (Cyperus esculentus) and tule 
(Scirpus sp.) [Wohlgemuth 2004:29].  

Wohlgemuth (2004:82) found that geophyte use in interior central California 

peaked during the Middle Archaic (7000-2500 B.P), marked by the increased ubiquity of 

Brodiaea sp. bulbs.  The decline in geophytes between the Middle and Upper Archaic 

period corresponded with an increase in acorn shell, suggesting that intensive use of root 

foods may have preceded large-scale acorn economies (Wohlgemuth 2004:82).  Unlike 
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sites from interior central California, archaeobotanical assemblages from the San 

Francisco Bay area show little evidence of geophyte use (Wohlgemuth 2004:117).      

Wohlgemuth’s (2004) study provides some of the first direct evidence for the 

prehistoric use of geophytes in central California, and indicates that several types of root 

foods were more significant to the native diet than was previously recognized.  It is of 

interest that the mortar and pestle—the tool kit used to process geophytes on the 

Columbia Plateau in the northwestern United States—may have played an important role 

in geophyte processing in central California (see Thoms 1989, 2006:13).  Another 

important contribution of Wohlgemuth’s (2004:140-141) pioneering study is that it 

demonstrates some major discrepancies between archaeological and ethnographic data 

regarding plant use, which may be due to a combination of factors, including sample 

preservation, and incomplete accounting of native plant use reported in early 

ethnographic accounts.  In summary, Wohlgemuth (2004:149-160) argues that the trends 

observed in the macrobotanical assemblages generally support predictions of late 

Holocene population pressure and resource intensification, although technological 

diffusion, population movements, and environmental change also played a significant 

role.   

A final point that should be considered with respect to prehistoric plant 

exploitation patterns in central California focuses on native land management practices, 

most notably the burning of grasslands described in early European accounts (Anderson 

2005).  Lewis (1973) was one of the first to suggest that the native burning practices 

would have increased herb and grass productivity.  Burning not only would have 
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increased the abundance of roots and berries in particular, but also would have attracted 

game to predictable resource patches.  Bean and Lawton (1976:39) have gone so far to 

call the burning of the grassbelt a form of “proto-agriculture”, and possibly even 

constituting a type of game management.  Anderson (1993:158, 1996, 2005; Anderson 

and Rowney 1999) has advanced the idea of native California societies as natural 

conservation managers, who used burning and soil tilling to enhance the productivity of 

grasses, forbs, and other economically important plants.  Grassland burning would have 

provided additional benefits, such as opening corridors to facilitate travel between 

regions (Anderson 1993:165; Keeley 2002; Lewis and Ferguson 1988).  Although 

substantial data has been generated in support of complex indigenous land management 

practices (e.g., Anderson 1992, 1996, 1999, 2005; Anderson and Rowney 1999), 

extensive grassland burning is consistent with the predictions of intensification models, 

in that increased effort is expended in the extraction of more resources from the same 

unit of land (Beaton 1991; Boserup 1965; Cohen 1977:80-81).    

The archaeobotanical research discussed above provides strong support for 

resource intensification models for late Holocene central California.  The high labor 

costs of acorns suggest that they were resorted to initially during times of food stress, but 

were later selected as a dietary staple since they were capable of sustaining large 

population numbers during the winter and spring when other resources were scarce.  The 

intensified use of acorns and other plant foods, such as small seeds and geophytes, also 

coincides with periods when large game populations suffered from high levels of 

resource depression in many areas of central California. 
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Sexual Division of Labor 

Although the use of ethnographic analogy based on specific case studies can be 

misleading, the richly documented ethnographic database from California and elsewhere 

can be used to generate hypotheses regarding sexual division of labor divisions in 

prehistory.  Ethnographic research on modern foraging societies also provides a rich data 

source for modeling sexual division of labor practices in the past (Bird 1999; Hawkes 

and Bird 2002; Zeanah 2004).  Among modern foraging societies, the sexual division of 

labor plays an important role in dictating mobility patterns, gender equality, and diet 

choice (Jochim 1988; Zeanah 2004).  During the ethnohistoric period in California, 

subsistence activities were well demarcated according to gender, with women’s 

subsistence activities focused on intensive processing of plant foods, such as acorns 

(Willoughby 1963).  Women were also primarily responsible for basket making and 

plant gathering, although all members of the community assisted in the gathering and 

transport of acorns during the fall harvest (Jackson 1991; Willoughby 1963:26).  Men’s 

subsistence activities focused primarily on large game hunting and fishing activities (E. 

Wallace 1978:683), and by all accounts, did so exclusively among Ohlone (Costanoan) 

and Miwok societies (Willoughby 1963:18-25).  For groups reliant on aquatic resources, 

men were most often responsible for making fishing nets, weirs, and hunting snares 

(Willoughby 1963:64).  In modern coastal foraging societies, women are the primary 

shellfish gatherers (Claassen 1991, 1998:223), an observation that has contributed to the 

notion that shellfish are unequivocally low-ranked resources (Osborn 1977).  

Ethnographic and ethnohistoric reports from southern California indicate that women 
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exploited shellfish from intertidal zones using pry bars and digging sticks, which could 

have been extracted with relatively low labor costs (Walker and Hollimon 1989:172; E. 

Wallace 1978:683).  Although there were some deviations, E. Wallace (1978:683) notes 

that the “pattern of sex dichotomy reveals a remarkable similarity from one end of the 

state to the other.”  Gender roles were not inflexible, however, and men and women did 

participate in one another’s work (E. Wallace 1978; Willoughby 1963).         

The most important staple food throughout most areas of California during the 

ethnohistoric period was undoubtedly the acorn (Kroeber 1925; Moratto 1984; Schulz 

1981).  Ethnographic descriptions indicate that acorns were collected between late 

October and early November by the entire community, and were transported back to the 

village site using burden baskets (E. Wallace 1978:683; Willoughby 1963).  Acorns 

were generally laid out to dry at the village site and then were stored in large granaries 

made of willow, deer brush, white fir, and pine needles (Bates 1984; Jackson 1991).  

Ethnographic research indicates that women were usually responsible for constructing 

and maintaining acorn granaries (Jackson 1991).  Granaries were large, often capable of 

storing more than 500 lbs of acorns, and were commonly raised above the ground to 

prevent insect infestation (Bates 1984).  The sides of the granary were tied together to 

prevent insects, animals, and mold from developing, but could easily be separated to 

access acorns when needed.     

Preparing acorns for consumption was entirely within the domain of women and 

involved the labor-intensive process of shelling, winnowing, pounding, leaching, and 

cooking to make a variety of breads and soups (Jackson 1991).  Acorns were shelled 
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with using a hammer stone and the skin was separated from the nutmeat using a 

winnowing basket.  The nutmeat was then pounded into fine flour using a stone mortar 

and pestle, a process that took several hours (Jackson 1991:305; Merriam 1918).  

Portable wooden mortars and pestles were also used in stone-poor areas, such as the 

Central Valley, while bedrock mortars were the primary toolkit in the Sierras (Hunt 

2004; Jackson 1991).  Once pounded into flour, the poisonous tannins were leached out 

using either hot or cold water poured into a sandy depression, known as a leaching basin.  

Among some northern groups, acorn dough was also mixed with clay to aid in the 

leaching process (Merriam 1918:130-131).  Experimental research indicates that clays 

can reduce tannic acid content of acorns up to 77 percent, via adsorption, catalysis, and 

cooking (Johns and Duquette 1991).  Leached acorn meal was cooked in watertight 

baskets using hot rocks (i.e., stone boiling), making a thick porridge (Driver 1952; 

Merriam 1918).  For bread making, acorn mush was baked on top of hot rocks, which 

were sometimes covered with earth.   

Although sexual division of labor practices have been documented for many 

native California societies, researchers generally rely on other evidence with respect to 

the archaeological record.  For instance, some archaeologists view the widespread 

increase in mortar and pestle technology, circa 2800-1200 B.P., as strong evidence for 

increased gender differentiation in subsistence activities (Hildebrandt and McGuire 

2002; Jones 1996; McGuire and Hildebrandt 1994).  In sites dated from about 6000 to 

4000 B.P., assemblages are dominated by milling stone tools used for seed processing 

(Erlandson 1994a).  It would be erroneous, however, to suggest that males did not 



 

 

80 

 

contribute in the acquisition of food resources based on the lack of flaked stone tools 

(McGuire and Hildebrandt 1994).  McGuire and Hildebrandt (1994) examined evidence 

of gender-specific items from 44 middle Holocene and 104 late Holocene burials from 

southern California.  They expected to find a higher frequency of projectile points and 

bifaces associated with male burials and a higher frequency of ground stone associated 

with female burials.  For the middle Holocene sample, 93.6 percent of the burials 

contained milling tools; the remaining eight burials were associated with projectile 

points and bifaces, two of which included female burials (McGuire and Hildebrandt 

1994:50).  Late Holocene males were also much more likely to be associated with 

projectile points and bifaces than females, while females were much more likely than 

males to be interred with milling equipment.  Based on these findings, McGuire and 

Hildebrandt (1994) linked the increase in gender-specific artifacts and grave goods after 

2500 B.P. to greater circumscription in sexual division of labor practices.  This is 

consistent with Hollimon’s (1991) study of southern California Chumash burials, which 

found that “gendered” grave items corresponded with biological sex to greater degree 

during the Late period than the Early and Middle periods.  These studies suggest that 

ethnographic analogy may not always provide an accurate representation of sexual 

division of labor in prehistory, since sex or gender-based subsistence practices in the 

past may have differed substantially from their ethnographic period counterparts.   

Resource Intensification and Skeletal Health in Prehistoric California  

A central research question in archaeology over the past twenty-five years has 

been the health consequences of the transition from hunting and gathering to agriculture 
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in many regions of the world (Larsen 1995).  Early theorists attributed the adoption of 

agriculture and a more sedentary life way to an improvement in the human condition, 

brought on by technological change and increased social complexity.  From this 

perspective, agriculture is believed to have provided a more reliable subsistence base 

that could better “buffer” societies against food shortages (Cohen 1977).  However, 

ethnographic data collected on hunter-gatherers during the 1970s and 1980s suggests 

that low population densities and high levels of mobility protect individuals from long-

term exposure to pathogens that cause infectious disease (Cohen 1977, Cohen 1989a; 

Hurtado and Hill 1990).  Studies of labor costs also indicate that foragers work fewer 

hours per day than agriculturalists and yet maintain relatively stable population numbers 

(Cohen 1989a).   

During the 1980s and 1990s, bioarchaeologists became increasingly interested in 

collecting data from human skeletons to examine the health consequences of the 

transition to agriculture in different areas of the world (Cohen 1981; Cohen and 

Armelagos 1984; Armelagos et al. 1991; Larsen 1995, 1997).  In the influential volume, 

Paleopathology at the Origins of Agriculture (Cohen and Armelagos 1984), studies in 

the Americas and elsewhere suggested that health conditions declined with the transition 

from foraging to farming.  More recent studies suggest that while health conditions 

declined for many prehistoric agriculturalists when compared to earlier hunter-gatherers 

from the same region, this was not a universal phenomenon (Larsen 1995,1997; Steckel 

et al. 2002a, 2000b).  In general, prehistoric hunter-gatherers tended to show lower 

frequencies of dental pathology (e.g., carious lesions, antemortem tooth loss, 
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periodontitis), non-specific indicators of stress (e.g., porotic hyperostosis; enamel 

hypoplasia, Harris lines), and periosteal reactions than prehistoric agriculturalists, and 

also attained a taller mean stature (Cohen and Armelagos 1984; Steckel et al. 2000a, 

2000b).  Although these trends are mirrored in many New World contexts, patterns 

reported for agricultural transitions in some parts of the Old World have been more 

variable (e.g., Kennedy 1984; Meiklejohn et al. 1984). 

Recently, some researchers have questioned conventional interpretations of 

health changes with agriculture.  For example, Wood et al. (1992) have argued that 

skeletons with lesions may actually represent healthier individuals than those without 

lesions, since many acute illnesses can cause death before an osseous response had time 

to develop (Wood et al. 1992).  Thus, skeletons with lesions may represent healthier 

individuals that survived bouts of stress or illness, while those without lesions may have 

been the non-survivors with more compromised health status.  Although the implications 

of this “osteological paradox” call into question aspects of traditional bioarchaeological 

inferences, recent studies are providing novel ways for addressing many of these issues 

(Usher 2000; Walker 1996; Wright and Yoder 2003).  Nonetheless, the bulk of the data 

provide strong support for bioarchaeological interpretations of health transitions for 

many archaeological contexts. 

Despite the successes of bioarchaeological research in understanding the health 

consequences of agricultural intensification, few studies have investigated health 

patterns among nonagricultural sedentary societies, such as prehistoric California.  

During the late Holocene, sedentary communities developed throughout many areas of 
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California, some of which formed complex levels of social organization comparable to 

that of agricultural societies (Arnold 1992, 1995a).  Recent studies have examined the 

biological consequences of sedentism, subsistence change, and population-resource 

imbalances in southern California, which has provided data on health and dietary 

patterns that can serve as a basis for comparison with prehistoric agricultural societies 

(Lambert and Walker 1991; Schulz 1981; Walker and DeNiro 1986). 

Bioarchaeological studies conducted in California have focused mainly on the 

Santa Barbara Channel Island area of southern California (Goldberg 1993; Lambert 

1994; Lambert and Walker 1991; Walker 1986, 1989; Walker and DeNiro 1986; Walker 

and Erlandson 1986; Walker and Hollimon 1989; Walker and Thornton 2002), the 

Central Valley (Brabender 1965; Dickel et al. 1984; Doran 1980; Hoffman 1987; 

Ivanhoe 1995; Ivanhoe et al. 1998; Kennedy 1960; McHenry 1968; McHenry et al. 

1978; Newman 1957; Schulz 1981; Wall 1991; Weiss 1998, 2002), and the San 

Francisco Bay area (Andrushko et al. 2005; Brabender 1965; Brooks 1975; Ivanhoe and 

Chu 1996; Jurmain 1990a, 1990b, 2001; Jurmain and Bellifemine 1997).  In this section, 

I review a number of studies from California, but focus primarily on those that have 

examined temporal changes in diet and health patterns. 

Southern California  

In southern California, bioarchaeologists have explored diet and health trends in 

prehistoric Chumash skeletons from the Santa Barbara Channel Islands and mainland 

(Lambert 1993, 1994; Lambert and Walker 1991; Titus and Walker 2000; Walker 1986, 

1989; Walker and Erlandson 1986).  One of the most striking patterns identified in the 
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region is evidence of interpersonal violence, recognized by the high frequency of healed, 

depressed cranial vault fractures and projectile points embedded in bones (Lambert 

1994, 1997; Lambert and Walker 1991; Walker 1989, 1997, 2001).  Walker (1989) 

examined 744 crania from the Channel Islands area and found abundant healed cranial 

trauma.  The prevalence of nonlethal injuries was significantly higher in crania from the 

northern Channel Islands (18.6 percent) than in mainland groups (7.5 percent).  The 

injuries are most often circular or ellipsoidal in shape, and are most common on the 

frontal and parietal bones (Walker 1989:316-317).  When compared by sex, males had a 

significantly higher prevalence of healed lesions than females (males, 24 percent; 

females, 10 percent).  The frequency of cranial injuries also increased through time, 

suggesting elevated levels of interpersonal violence.   

Lambert (1993, 1997) extended Walker’s study to include injuries to both cranial 

and postcranial remains.  Documenting similar trends, Lambert (1993, 1997) found that 

the prevalence of healed, depressed cranial trauma increased throughout the prehistoric 

period, with the highest levels in the early phase of the Middle period (circa 1490 B.C. to 

A.D. 580).  Sex differences in the distribution of vault lesions suggested that the 

behaviors that led to these injuries differed between males and females (Lambert 

1997:88).  The frequency of embedded projectile points in skeletal elements also showed 

interesting patterns.  Unlike nonlethal cranial vault trauma, projectile point injuries 

provide unambiguous evidence of interpersonal violence that was clearly aimed at 

causing death (Lambert 1997:90).  Lambert (1997:94-97) found that projectile point 

injuries were most often found in the thorax, followed by the pelvic region and the 
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cranium.  Seventy percent of the cases lacked evidence of healing, suggesting that these 

individuals had died as a result of their injuries.  Similar to the pattern identified for 

healed vault injuries, males showed a significantly higher frequency of projectile point 

injuries than females.  Although the frequency of projectile point injuries increased 

through time, the highest frequency occurred during the late phase of Middle period 

(A.D. 300-1150).  The different “peaks” in interpersonal conflict recorded by nonlethal 

cranial trauma versus lethal projectile point injuries suggest that the level of violence 

increased through time, since traumatic injuries became more lethal in nature (Lambert 

1993, 1997; Lambert and Walker 1991).  This unprecedented level of violence in 

southern California is consistent with resource intensification models, and indicates that 

the late Holocene was a time of significant sociopolitical stress.  Archaeological 

evidence and paleoclimatic records also suggest that this was a period marked by 

increasing population density, when sedentary village communities were experiencing 

drought conditions that would have negatively affected resource productivity and 

sources of potable drinking water (Jones et al. 1999; Lambert and Walker 1991; Walker 

1986).  The introduction of the bow and arrow to the region during the period may also 

have enabled the development of more complex patterns of warfare (Blitz 1988; 

Lambert 1997).          

Several studies show that health conditions declined during the late prehistoric 

period in the Channel Islands area (Lambert 1993, 1994; Lambert and Walker 1991; 

Walker and Hollimon 1989; Walker and Lambert 1989).  Walker (1986) examined 432 

crania for evidence of cribra orbitalia, a condition expressed in the superior roof of the 
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eye orbit and commonly attributed to childhood iron-deficiency anemia.  Walker (1986) 

found that the prevalence of cribra orbitalia was similar to that of maize-dependent 

agriculturalists, despite the fact that groups were heavily dependent on iron-rich marine 

foods, such as fish and marine mammals.  The occurrence of orbital lesions increased 

through time and peaked during the late phase of the Middle period (Lambert and 

Walker 1991:969; Walker 1991-1992:102).  Cribra orbitalia also differed significantly 

between regions, with islanders affected to a greater degree than mainlanders.  Among 

islanders, the number of lesions increased with distance from the mainland, with the 

highest rate at San Miguel Island and the lowest at Santa Cruz Island (Lambert and 

Walker 1991:969).  Resource productivity and the number of freshwater sources also 

differed between islands, suggesting that contaminated drinking water was a probable 

source of infection.  Since cribra orbitalia is commonly found among prehistoric 

agriculturalists, these lesions have been generally attributed to a heavy consumption of 

iron-deficient foods, such as maize, during early childhood  (Stuart-Macadam 1985).  

The high prevalence among southern California Channel Islanders suggests that bacterial 

infection from contaminated water sources may also have been a major cause of anemia 

in prehistory (Lambert and Walker 1991; Walker 1986).  Although diet would have 

influenced the frequency of cribra orbitalia, bacterial infection was probably a more 

important factor in southern California, as weanling diarrheal disease can cause 

significant loss of dietary iron in young children.  Helminth infestation, acquired through 

the consumption raw fish and marine mammals infested with parasites, may also have 

been a primary source of anemia in these groups (Walker 1986:351-352).   
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Tibial periosteal reactions were also relatively common in the Channel Islands 

area (Hollimon 1991; Lambert 1993, 1994).  Periosteal reactions are often the result of 

streptococcal and staphylococcal infection, but may also be caused by treponemal 

infection or localized trauma (Ortner 2003).  These lesions are often caused by infection 

through unsanitary living conditions, such as contaminated water sources, and can easily 

be spread through person-to-person contact (Cohen 1989; Lambert 1993).  Similar to the 

patterns identified for anemia and interpersonal violence, the prevalence of tibial 

periosteal reactions increased through time, and peaked between the early and late 

phases of the Middle period (Lambert 1993:515).  The trend was the same for both 

sexes, although males were slightly more affected than females.  Lambert (1993:517) 

also notes that periosteal reactions were few and small in the Early period skeletons, and 

may primarily reflect localized bone trauma; however, lesions from the Middle period 

sample were significantly larger and more numerous, suggesting that they may be due to 

unsanitary health conditions associated with densely populated village communities.  

Walker et al. (2005) have recently confirmed the earliest documented evidence of 

treponemal disease in the western United States in individuals from the Santa Barbara 

mainland.  Skeletons recovered from CA-SBA-52, an Early period site from the coast, 

show an unusually high prevalence of periosteal reactions (39 percent of 44 individuals 

affected; Walker et al. 2005:285).  Since the lesions are confined to the limb bones, the 

diagnosis is more consistent with endemic syphilis or yaws than with venereal syphilis; 

debate is ongoing whether the Europeans introduced the latter form of the disease during 

the contact period (Walker et al. 2005:286).  The identification of treponemal disease 
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was confirmed through detailed histological analysis of a sub-sample of the affected 

individuals, which showed evidence of chronic inflammation (Walker et al. 2005:287-

290).  This study further suggests that periosteal reactions identified in the long bones of 

southern California groups are most likely due to infection rather than to trauma-induced 

bone reactions.  Of particular interest is that burials from the post-contact period (circa 

A.D. 1542-1769) show caries sicca, a pathognomic lesion more often associated with 

venereal forms of treponemal disease (Walker et al. 2005:295-299).   

Lambert (1993, 1994) has also examined temporal changes in stature in skeletal 

samples from the Channel Island area.  Growth and development studies indicate that 

health status and diet contribute the most to stature, although genetic differences 

between populations account for some variation in height (Bogin 2005; Czerwinski and 

Towne 2004).  Since femur length is highly correlated with stature, Lambert (1993) used 

this to approximate changes in body height for the skeletal samples.  When compared, 

femur length showed significant declines in both sexes, between the early and late 

phases of the Early period, and between the late Middle and Late periods (Lambert 

1993:516-517).  The total loss in stature was approximately 10 cm between the earliest 

and latest periods, consistent with other evidence of declining health conditions during 

the late prehistoric period.  Lambert and Walker’s (1991) study of linear enamel 

hypoplasia (LEH) provides additional evidence for stressful conditions in the Channel 

Islands area.  LEH lesions are bands of defective enamel, generally attributed to 

malnutrition or infection, which develop during dental development in childhood 

(Larsen 1997).  Since these lesions are retained in adulthood but form in childhood, they 



 

 

89 

 

can be used as a measure of childhood health status.  The prevalence of LEH increased 

through time, with the highest levels associated with the Late period (Lambert and 

Walker 1991:968; Walker and Lambert 1989).       

Walker and Hollimon (1989) and Hollimon (1988) have also examined changes 

in osteoarthritis (OA) patterns as a proxy for functional stress levels among prehistoric 

populations from the Channel Islands area.  Using summed joint scores, Walker and 

Hollimon (1989) found a significant increase in OA between the Early and Late periods.  

The greatest increases were for joints of the lower limb, a trend that was more dramatic 

in males than females.  Early period females had a higher prevalence of OA of the knee 

and vertebral column, while males had greater involvement at the shoulder, elbow, and 

hand (Walker and Hollimon 1989:176).  These differences declined through time, as 

vertebral OA decreased in females and increased in males.  Walker and Hollimon (1989) 

attributed the increase in OA to higher functional demands associated with the 

intensified exploitation of marine resources during the Middle and Late periods, and the 

minimization of sex differences to a shift toward a more similar sexual division of labor.  

The increase in OA of the elbow and wrist in males may reflect the greater use of 

canoes, nets, and harpoons associated with intensive fishing during the Late period 

(Walker and Hollimon 1989:180).  For Early period females, the high degree of vertebral 

involvement may reflect the use of digging sticks for extracting tubers and shellfish, 

plant processing, and stresses encumbered from carrying burden baskets (Lambert and 

Walker 1991:967; Walker and Hollimon 1989:180). 
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Dietary change in the Channel Islands area has been examined through studies of 

dental wear, dental caries, and stable isotope analyses (Goldberg 1993; Harrison and 

Katzenberg 2003; Walker 1978; Walker and Deniro 1986; Walker and Erlandson 1986).  

These studies have provided the dietary context from which paleopathological trends 

have been examined, and have allowed researchers to evaluate the economic 

significance of carbohydrate and protein resources through time.  Walker’s (1978) study 

of dental wear in the Santa Barbara area found significant declines in attrition rates 

through time.  He attributed the higher attrition rates in the Early period samples to the 

consumption of marine foods, such as shellfish and dried fish, foods that would have 

introduced grit and sand in the diet.  Lambert and Walker (1991:966) later suggested that 

the consumption of abrasive roots and tubers may have been more important factors that 

contributed to the high attrition rates observed during the Early period.  Walker and 

Erlandson’s (1986) study of dental caries supports this interpretation since the 

prevalence of carious lesions declined through time, suggesting greater carbohydrate 

consumption (e.g., roots, tubers) during the Early period, and greater consumption of 

protein and fluorine-rich marine foods during the Late period.  Compared by sex, carious 

lesions were more abundant in females than males during the Early period, although 

these differences declined during the Late period (Walker and Erlandson 1986:380).  Sex 

differences in the Early period samples suggests differential access to protein between 

males and females, possibly due to more marked sexual division of labor practices 

(Walker 1988; Walker and Erlandson 1986).  This evidence is consistent with the 
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osteoarthritis patterns, which show that labor practices may have been become less sex-

specific through time (Walker and Hollimon 1989).   

The application of stable isotope analysis has provided unambiguous evidence of 

paleodietary change in the Channel Islands area of southern California (Goldberg 1993; 

Harrison and Katzenberg 2003; Walker and DeNiro 1986).  Comparisons have been 

facilitated by the lack of C4 plants in the region, which produce carbon isotope 

signatures that overlap with marine resources.  In a classic study, Walker and DeNiro 

(1986) analyzed carbon and nitrogen isotopes in bone collagen from 40 Chumash burials 

from the Santa Barbara mainland coast and Channel Islands.  Temporal comparisons 

indicate that the marine component of the diet increased through time, a trend that was 

most dramatic among northern Channel Island populations.  The contribution of 

terrestrial proteins to the diet also increased with proximity to the mainland.  This 

suggests that geographical location (e.g., mainland interior, mainland coast, island) is 

strongly correlated with dietary signatures, and that trade networks were ineffective in 

redistributing food resources between regions (Walker and DeNiro 1986).  The low 

diversity of terrestrial plant and animal resources on the islands is consistent with the 

heavier emphasis on marine foods.  While sample sizes did not permit comparisons by 

sex, some of the isotopic variation may have been due to changes in post-marital 

residence patterns between the interior and coast or to sex differences in access to 

marine resources (Walker and DeNiro 1986:60).   

Goldberg’s (1993) doctoral dissertation examined carbon and nitrogen isotopes 

in bone collagen from burials from the Channel Islands and the southern California 
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mainland coast and interior.  Goldberg (1993) found significant regional differences 

(mainland interior, mainland coast, northern Channel Islands, southern Channel Islands) 

for both the time periods examined  (< 3000 B.P. vs. >3000 B.P.).  Similar to Walker 

and DeNiro’s (1986) study, Goldberg (1993:149-150) found an increase in marine 

protein consumption with distance from the mainland.  The high degree of variability 

observed among males from the coast may be the result of intermarriage patterns 

between the mainland coast and interior, as described in Mission records from the 

region.  The southern Channel Island groups were also more reliant on marine foods than 

those from the northern islands, which Goldberg (1993:150) attributed to a less 

productive terrestrial resource base and the greater distance from the mainland.  

Goldberg (1993:150-151) also found evidence that indicated greater consumption of 

marine protein through time, although the pattern varied by region.  For example, carbon 

isotope values showed significant differences through time for sites in the mainland 

interior, although nitrogen isotope values did not.  Coastal sites showed no significant 

differences.  Among sites from the northern Channel Islands, carbon and nitrogen 

isotope values increased significantly through time; however, for the southern Channel 

Islands, carbon isotope values significantly declined through time.  When only San 

Clemente Island is considered, both carbon and nitrogen isotope values significantly 

declined through time, suggesting significant decreases in marine protein consumption.  

Goldberg (1993:151) attributed the latter trend to the increased consumption of 

terrestrial foods acquired through trade with the mainland.  In general, males tended to 

have higher carbon and nitrogen isotope values than females, suggesting unequal access 
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to marine foods between the sexes.  Harrison and Katzenberg (2003) analyzed carbon 

and nitrogen isotopes from bone collagen and carbon isotope values from bone apatite in 

33 samples from San Nicolas Island (southern Channel Islands).  Two sites dated to an 

early period (< 3000 B.P.) and one site to a later period (>3000 B.P.).  Since carbon 

isotope values from bone apatite provide a record of the composition of the whole diet, 

these values can be compared with carbon isotopes values from bone collagen to better 

understand the relative contribution of proteins and carbohydrates to the diet (Ambrose 

and Norr 1993; Tieszen and Fagre 1993).  Harrison and Katzenberg (2003:238) found 

that the protein component of the diet was more enriched than that of the whole diet, 

suggesting heavy marine protein consumption, but found no temporal or spatial 

variation.  

Two isotopic studies have also examined paleodietary change in the Monterey 

Bay area, located in-between Santa Barbara to the south and San Francisco Bay to the 

north (Jones 1996; Newsome et al. 2004).  Jones (1996) reported bone collagen carbon 

and nitrogen isotope values for six burials from four sites at Monterey Bay.  Of 

particular interest was the C3 dominated terrestrial signature, since the burials were 

excavated from shell midden contexts.  This may suggest that the dietary importance of 

shellfish has been overemphasized based on dietary reconstructions from shell midden 

accumulations (see Claassen 1998).  Newsome et al. (2004) have recently examined 

carbon and nitrogen isotope values in nine human burials from a site near Monterey Bay.  

Using a source-partitioning mixing model (Iso-Source), Newsome et al. (2004) 

compared dietary values between bone collagen samples dated to the early and middle 
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Holocene.  Based on the statistical constraints developed in their model, Newsome et al. 

(2004) concluded that the early Holocene group consumed approximately 75 percent 

marine proteins, while the middle Holocene group consumed around 55 percent marine 

proteins.  They suggested that the decline in the marine protein component was due to 

the reduced consumption of fish, but that marine mammal consumption remained 

important for both groups.  Although sample sizes are small, this study provides a novel 

attempt to model paleodiets that derive from multiple food sources that differ with 

respect to macronutrients.            

Central California—Sacramento and San Joaquin Valleys   

Despite ongoing interest in central California bioarchaeology (e.g., Andrushko et 

al. 2005; Bartelink 2001; Cordero 2001; Grady et al. 2001; Hollimon 1995; Ivanhoe 

1995; Ivanhoe and Chu 1996; Jurmain 2001; Jurmain and Bellifemine 1997; Richards 

1995; Weiss 1998, 2002), few studies have examined temporal changes in diet and 

health in the region.  In comparison with southern California, research in central 

California has produced somewhat conflicting results.  McHenry’s (1968) classic study 

of Harris lines in human femora from the lower Sacramento Valley was the first attempt 

to understand the effects of acorn subsistence on prehistoric health patterns.  Harris lines 

(i.e., transverse lines) develop in the long bone diaphyses of children in response to 

growth disruption, and signify a rebound from nutritional or disease-related stress 

(Larsen 1997).  McHenry (1968) found a significant decline in Harris line frequency 

between the Early, Middle, and Late periods, which he attributed to the benefits 

provided by more reliable acorn storage economies.  Schulz’s (1981) dissertation study 
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later confirmed the trend identified by McHenry, although some discrepancies occurred 

between the two studies, likely due to differences in the x-ray method, sample 

representation, and interobserver error.  For example, Schulz (1981) found an average of 

2.82 lines per bone compared to 8.01 found by McHenry.  Although the Harris line data 

suggests that health conditions improved through time in the lower Sacramento Valley, 

contradictory results were found in the enamel hypoplasia data from the same samples 

(McHenry and Schulz 1976, 1978; Schulz 1981).  The frequency of hypoplastic defects 

in canines decreased from 14 to 10 percent between the Early and Middle period, but 

increased to 18.5 percent with the Late period (Schulz 1981:121).  The latter trend was 

unexpected since enamel hypoplasias and Harris lines are both measures of 

developmental stress resulting from nutritional deficiencies or disease-related illness 

(McHenry and Schulz 1976:508).  Schulz (1981:121-122) hypothesized that this trend 

may have been the result of the spread of Old World infectious diseases by Europeans 

during phase 2 of the Late period.  One explanation for the divergent trends between the 

Harris line and LEH data is that the former may be recording acute growth interruptions 

caused by nutritional stress, while the latter may be the result of more severe and chronic 

childhood illness, such as infection (McHenry and Schulz 1978:45; Schulz 1981:124).   

Doran (1980) examined paleodemographic profiles in skeletal samples from the 

lower Sacramento Valley dated to the Early, Middle, and Late periods, and found an 

increase in population growth rates through time (i.e., lower mean age-at-death), with 

the most significant demographic changes occurring between the Early to Middle 

periods.  Doran suggested that the increased growth rates could have resulted from a 
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reduction in birth spacing and the age of first pregnancy.  He further hypothesized that 

elevated levels of infection may have caused the increased mortality rates through time 

in the 0 to 4 year old age-category.  For ages four to twelve years, however, mortality 

rates declined, suggesting an overall reduction in childhood stress (Doran 1980:94-97).  

The decline in mortality rates in four-year olds also suggested that transition from breast 

milk to solid foods became less disruptive through time.   

The aforementioned studies have been used in support of the seasonal-stress 

hypothesis, which predicts that the acorn and salmon-dependent populations of the 

Middle and Late periods were healthier than Early period populations from the lower 

Sacramento Valley (Dickel et al. 1984).  According to this model, the intensive acorn-

storage economies of the Middle and Late period provided a more reliable subsistence 

base that could buffer populations against seasonal food shortages.  Early period 

populations, in comparison, were subject to more episodic bouts of starvation, 

particularly during the late winter and early spring, when critical food resources would 

have been scarce (Dickel et al. 1984; Schulz 1981).  Schulz’s (1970, 1981) study of 

Early period (Windmiller) burial orientations found that nearly 80 percent fell between 

223 and 282 degrees (magnetic), corresponding to the position of the setting sun at the 

winter and summer solstices, respectively.  Based on this evidence, he argued that the 

vast majority of interments occurred between late spring and early winter, when 

Sacramento Valley populations would have experienced episodes of starvation.   

Although several studies indicate that health conditions actually improved 

through time in the Central Valley, other studies suggest that health declined in the 
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region (Ivanhoe 1995; Newman 1957; Weiss 2002).  For example, Ivanhoe (1995:239) 

examined cranial and postcranial changes in an extensive sample from the lower 

Sacramento Valley, and reported a significant decrease in body size, with a total stature 

reduction of 2.5 percent between the Early and Late period.  Ivanhoe (1995) attributed 

this reduction in stature to the increased consumption of protein-deficient acorns during 

the Middle and Late periods, with may have contributed to stunted growth.  Newman 

(1957) also reported a reduction in postcranial size and robusticity through time, 

although he attributed these changes to sequential population replacements.  

Furthermore, osteometric analyses of postcranial remains indicate larger humeral and 

femoral dimensions for the Early period samples compared with those from the Middle 

and Late periods (Dickinson-McDonald 1988; Dittrick and Suchey 1986).  A recent 

study by Weiss (2002) also reported a significant decline in mean femoral cortical 

thickness and an increase in skeletal lesions (unspecified) in two temporally distinct 

cemeteries from CA-SJO-91, located in the northern San Joaquin Valley.  Weiss (2002) 

suggested that the decline in health was due to increased nutritional stress and disease 

associated with the drought conditions of the Medieval Climatic Anomaly (circa 

1100±90 to 1220±200 years B.P.).   

Paleodietary studies in the Central Valley have been primarily limited to analyses 

of dental attrition and dental pathology (e.g., Kennedy 1960; Leigh 1928; Newman 

1957; Schulz 1981; Schmucker 1985).  Newman (1957) reported an increase in the 

prevalence of carious teeth between the Early, Middle, and Late periods.  In a later 

study, Kennedy (1960) compared the rate of dental disease between Early and Late 
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period samples, and also found that carious lesions were more prevalent in Late period 

groups.  Early period groups, in contrast, had higher levels of antemortem tooth loss, 

alveolar abscesses, and dental attrition.  These studies suggest that Middle and Late 

period diets were more cariogenic than those of the Early period, consistent with a diet 

that became more focused on carbohydrate rich foods, such as acorns.  However, 

Schulz’s (1981) more comprehensive examination of dental caries in samples from the 

lower Sacramento Valley found no temporal differences.  Females had a significantly 

higher caries rate than males, suggesting that they consumed greater amounts of 

carbohydrates-rich foods (Schulz 1981:148).  Males, in contrast, had higher rates of pulp 

exposure, particularly for the Middle and Late periods.  Schulz (1981:161) hypothesized 

that the lower prevalence of caries in males would have made non-carious teeth more 

susceptible to pulp exposure through attrition, while antemortem tooth loss due to caries 

would have reduced the number of observable teeth affected by pulp exposure in 

females.  Based on these findings, Schulz (1981) concluded that, while acorns probably 

became more important in the Middle and Late periods, the contribution of 

carbohydrates and proteins to the diet remained essentially unchanged through time.   

Central California—San Francisco Bay Area 

Bioarchaeological research in the San Francisco Bay Area has largely been 

synchronic in nature.  To date, only a few studies have investigated temporal variation in 

diet and health patterns (e.g., Bartelink 2001; Brooks 1975; Ivanhoe and Chu 1996).  

Ivanhoe and Chu (1996) examined cranial and postcranial measurements in skeletal 

samples from the San Francisco Bay area.  Although the trend was not as marked as that 
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identified for the lower Sacramento Valley, Ivanhoe and Chu (1996) found a significant 

reduction in stature through time.  The greatest differences occurred between the Early 

and Early-Middle period transition, and between phase 1 and 2 of the Late period.  

Ivanhoe and Chu (1996:369-370) also found that San Francisco Bay populations are 

metrically smaller than their Sacramento Valley counterparts, and may have represented 

a morphologically distinct population.  These findings are consistent with previous 

osteometric studies on central California samples (e.g., Brooks 1975; Gerow 1993).       

Bartelink (2001) examined temporal patterns in the expression of elbow OA in 

skeletons from five sites along the eastern shore of San Francisco Bay (e.g., CA-ALA-

13, 307, -309, -328, -329).  Research over the past few decades has demonstrated a 

relationship between joint degeneration and functional stress, with the strongest 

correlation at the elbow joint (Jurmain 1991a, 1999).  Bartelink (2001) hypothesized that 

the prevalence of elbow OA in females would increase through time, due to greater 

functional demands associated with acorn processing with mortars and pestles.  For 

males, a change from unilateral to bilateral OA involvement was expected, marking the 

shift from the atlatl to the bow and arrow between the Middle and Late period.  Although 

the greatest differences occurred between the Early and Middle period, the prevalence of 

elbow OA involvement actually declined through time.  Males showed greater OA 

involvement than females during the Middle and Late period.  Bartelink (2001) argued 

that the greater sex difference through time reflected a change in the sexual division of 

labor.  
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Similar to reports from the Santa Barbara Channel, evidence of interpersonal 

violence in central California is relatively common (Andrushko et al. 2005; Grady et al. 

2001; Jurmain 1991b, 2001; Jurmain and Bellifemine 1997; Pastron et al. 1973; Tenney 

1986), although temporal patterns have yet to be systematically explored.  While 

evidence of interpersonal violence in the San Francisco Bay area is less prevalent than 

southern California, the prevalence of “parry fractures,” healed cranial trauma, and 

projectile point injuries is substantially higher than that reported for most other North 

American prehistoric contexts (see Jurmain 1991b, 1999, 2001; Jurmain and Bellifemine 

1997).  Jurmain (2001) found that 4.4 percent of adults from the Yukisma site (CA-SCL-

638, circa 240 B.C. to A.D. 1770) showed healed cranio-facial fractures, a rate slightly 

higher than the 2.7 percent reported for the Ryan Mound site (CA-ALA-329) located 14 

miles away (Jurmain and Bellifemine 1997).  Similarly, Newman (1957) found that 2.1 

percent of male crania from the lower Sacramento Valley showed healed cranial trauma.  

Jurmain (2001) reported that 70 percent of all long bone fractures from the Yukisma site 

were to the forearm, injuries that may be linked to interpersonal violence.  The overall 

rate of forearm injuries was 2.3 percent, comparable to the 1.8 percent observed in 

samples from the Ryan Mound (Jurmain 1991b, 2001).  For both the Yukisma and Ryan 

Mound samples, at least 2.5 percent of skeletons had embedded projectile points, slightly 

higher than the ~1.9 percent reported for nearby Rubino site (CA-SCL-674; Grady et al. 

2001), and the 2.2 percent identified in sites from southern California (Lambert 1994, 

1997).  Recent examinations of skeletal samples from the Rubino site have also 

documented an unusual pattern of “trophy taking”, which included the targeting of 
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forearm bones and crania for removal (Andrushko et al. 2005; Grady et al. 2001).  

Andrushko et al. (2005) found that for individuals missing forearms, cut marks were 

nearly always present on associated distal humeri.  In areas adjacent to the primary 

interments, they identified caches of drilled and polished radii and ulnae, further 

supporting the “trophy taking” hypothesis.  Of particular interest is that most of the 

evidence of interpersonal violence in central California is found on the skeletons of adult 

males (Andrushko et al. 2005; Grady et al. 2001; Jurmain and Bellifemine 1997).  This 

is consistent with ethnographic and ethnohistoric evidence of warfare practices, which 

primarily involved young and middle-aged males.   

Theoretical Expectations 

In this study, I use bioarchaeological evidence to investigate changes in diet and 

health associated with late Holocene resource intensification in central California.  I 

draw on predictions from human behavioral ecology to develop a series of hypotheses 

aimed at understanding the biological consequences of subsistence change throughout 

the prehistoric record of the lower Sacramento Valley and the San Francisco Bay area.  

Resource intensification models posited for central California predict temporal declines 

in foraging efficiency during the late Holocene, marked by population-resource 

imbalances, territorial circumscription, and higher levels of sedentism.  If intensification 

models accurately characterize subsistence change in California, then it follows that 

these patterns should be recognized in diet and health indicators observed on bones and 

teeth of human skeletons.  These expectations closely match the mid-to-late Holocene 

human skeletal record from the Santa Barbara Mainland and Coast of southern 
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California (Lambert 1993, 1994; Walker 1996; Walker and Erlandson 1986; Walker and 

Lambert 1991).   

I address three primary research questions in this study to investigate temporal 

and spatial variability in diet and health: 1) were subsistence changes during the late 

Holocene in central California marked by the increased consumption of low trophic 

level fauna and vegetal foods, such as acorns, seeds, and root foods?; 2) were these 

subsistence changes associated with a decline in health status?; and 3) did these 

changes result in greater inequality between the sexes, reflected in differences in both 

diet and the quality of health? 

Resource intensification models predict late Holocene declines in foraging 

efficiency, measured by the increased focus on lower-ranked food resources through 

time.  I hypothesize that the shift toward intensified acorn use, smaller fauna, and lower-

trophic level marine resources through time should be evident in the carbon and nitrogen 

stable isotope values from human bone.  Although stable isotope values often cannot 

identify the specific food resources consumed, the data provide a means through which 

to measure the differential contribution of protein and carbohydrate resources to diet, 

and also the contribution of different macronutrients that are derived from marine versus 

terrestrial ecosystems.   

Temporal comparison of dental caries rates provides an additional line of 

evidence regarding the importance of protein and carbohydrate food resources through 

time.  I hypothesize that the dental caries rate will increase through time, due to the 

greater consumption of carbohydrate-rich plant foods, such as acorns, seeds, and root 
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foods.  Since San Francisco Bay area populations had direct access to a greater diversity 

of protein-rich marine foods that protect against caries development, I expect to find 

fewer carious lesions in these samples than in those from the lower Sacramento Valley.     

To evaluate temporal changes in health, I examine the following four indicators 

of health status: 1) tibial periostoses; 2) mean femoral length; 3) porotic hyperostosis; 

and 4) linear enamel hypoplasia.  Resource intensification models predict temporal 

declines in foraging efficiency, and by extension, temporal declines in health status 

during the late Holocene (Broughton and O’Connell 1999).  I hypothesize that the 

prevalence of tibial periostoses (as a general measure of infectious disease) should 

increase through time, associated with greater population crowding and sedentism during 

the late Holocene.  I hypothesize that nutritional status, as measured by mean femoral 

length, porotic hyperostosis, and linear enamel hypoplasia, will decline through time 

with the economic transition between the Early and Late period.  Since the hypothesized 

subsistence changes originated between the Early and Middle periods, I expect to find 

greater declines in health during this transition than between the Middle and Late 

periods.   

To evaluate possible changes in the sexual division of labor, I compare male and 

female health status and stable isotope dietary signatures through time.  Although males 

and females are at different levels of risk for disease due a variety of biological factors, 

sexual inequality in access to food resources plays an important role in sex differences in 

health in many societies (Ortner 2003:114-117).  Sex differences in access to food 

resources may be the result of gendered status differences, or may simply be an 
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unintended consequence of sexual division of labor practices (Grauer and Stuart-

Macadam 1998).  In central California, available evidence suggests that sexual division 

of labor patterns became more demarcated through time (McGuire and Hildebrandt 

1994).  This is consistent with the expectations of resource intensification, since greater 

sex segregation in labor organization may result from population-resource imbalances 

(Cohen 1989a, 1989b).   

Summary 

Resource intensification models provide a robust and testable framework from 

which to evaluate temporal changes in diet and health patterns in prehistoric central 

California.  While debate continues among archaeologists regarding the importance of 

environmental factors, population pressure, and social complexity in driving subsistence 

change, the results of this study should help to clarify whether the purported changes 

resulted in poorer or improved health conditions through time.  The seasonal-stress 

hypothesis advanced by Schulz (1981), McHenry (1968), and Dickel et al. (1984) argues 

that the development of intensified acorn strategies resulted in improved nutrition and 

health, contra the predictions of resource intensification models.  Since the 

bioarchaeological component of the seasonal-stress hypothesis is primarily based on 

three lines of evidence (i.e., Harris lines, linear enamel hypoplasias, dental caries), it is 

possible that these data did not fully encompass the biological changes in health and diet 

experienced by populations from the lower Sacramento Valley.  Resource intensification 

models, on the other hand, predict temporal declines in health in the lower Sacramento 

Valley and the San Francisco Bay area, as measured by a reduction in dietary quality, 
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increased population crowding, and greater levels of sedentism.  Although temporal 

trends in interpersonal violence have not been examined in central California, the 

comparatively high levels of trauma observed in the Bay Area suggest that populations 

may have been experiencing high levels of resource stress during the late Holocene.   
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CHAPTER IV  

SAMPLE DEMOGRAPHY AND CHRONOLOGY  

Sex and age are key variables that influence disease processes that affect skeletal 

and dental tissues (Ortner 2003).  Since various sex and age cohorts may be at 

differential risk of morbidity and mortality, it is important to control for these variables 

in paleopathological analyses (Jurmain 1999).  Age and sex-controlled comparisons also 

provide a more meaningful framework for interpreting health and diet information.  In 

this chapter, I describe the criteria used to estimate sex and age of the skeletal samples 

and then evaluate potential biases in the samples.  Finally, I describe the seriation 

method that I used to place burials within their respective time periods, as well as some 

of the criticisms of the dating scheme (i.e., Scheme B1, Bennyhoff and Hughes 1987).  I 

provide examples of the data collection forms used in this study in Appendix A.  These 

forms were designed to collect data following guidelines in Standards for Data 

Collection from Human Skeletal Remains (Buikstra and Ubelaker 1994), and were 

provided by Lori Wright of Texas A&M University.   

The skeletal samples used in this study are curated at the Phoebe Apperson 

Hearst Museum of Anthropology (PAHMA) located on the campus of the University of 

California at Berkeley.  Permission to complete paleopathological and isotopic analyses 

of human skeletal remains was granted by the curator and museum staff in full 

compliance with the Native American Graves and Repatriation Act (NAGPRA).  I 

completed all osteological analyses between May 2004 and January 2005.  The skeletal 

samples from the lower Sacramento Valley sites fall within the ethnographic boundaries 
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of the Plains Miwok tribe, while skeletal samples from San Francisco Bay fall within the 

ethnographic boundaries of the Ohlone Tribe.   

Sex and Age Estimation  

Sex Estimation   

For the purposes of this study, I examined a total of 511 skeletons, the majority 

of which were adults (85.3 percent; n = 436).  Of the adult sample, 93.1 percent 

(406/436) could be sexed using standard osteological criteria.  Males comprised 44.1 

percent (179/406) and females 55.9 percent (227/406) of the sexed sample. Thirty 

skeletons (7.4 percent of the adult sample) were assigned an indeterminate sex since they 

either lacked diagnostic criteria or showed intermediate expressions of sexually 

dimorphic features.   

I estimated the sex of the adult sample using several methods outlined in 

Standards for Data Collection from Human Skeletal Remains (Buikstra and Ubelaker 

1994).  Standards, as this document came to be known, was developed for NAGPRA 

compliance and represents a culmination of the efforts of several bioarchaeologists to 

establish minimum criteria for recording osteological data, especially for collections 

subject to repatriation.  For the vast majority of the adult sample, I relied on sexually 

dimorphic features of the pelvis (e.g., ventral arc, subpubic concavity, ischiopubic ramus 

ridge, preauricular sulcus, sciatic notch), which provide correct classification 

approximately 95 percent of the time (e.g., France 1998; Phenice 1969; Rogers and 

Saunders 1994; Steele and Bramblett 1988; Sutherland and Suchey 1991; Walker 2005; 

White 2000).   
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For the cranium, I scored five sexually dimorphic features (e.g., nuchal crest, 

mastoid process, supra-orbital margin, supra-orbital ridge, and mental eminence) using a 

five-point ordinal scale ranging from the most gracile to the most robust (see Ascadi and 

Nemeskeri 1970; Buikstra and Ubelaker 1994).  In general, non-metric criteria of the 

skull produce an accuracy rate of 80 to 90 percent (White 2000:362).   

When pelvic and cranial indicators were unavailable, I sexed adults using long 

bone measurements.  In a previous study, Dittrick and Suchey (1986) measured a large 

sample of femora and humeri from prehistoric central California and reported sectioning 

points for males and females.  In their study, accuracy for humeral and femoral 

dimensions was comparable to that of cranial indicators, and ranged from about 80 to 90 

percent.  Dittrick and Suchey (1986) also examined temporal variation and reported 

different sectioning points for the Early period and the combined Middle and Late period 

samples.  For approximately ten percent of the adult sample, I estimated sex metrically 

using Dittrick and Suchey’s (1986) sectioning points.  

Adult Age Estimation  

 I used a number of criteria to estimate the age-at-death of the adult sample.  In 

general, the pelvis provides the most reliable criteria for estimating age.  I evaluated 

pubic symphysis age estimates separately for males and females using the Suchey-

Brooks aging casts and following procedures outlined in Brooks and Suchey (1990), 

Buikstra and Ubelaker (1994), and Katz and Suchey (1986).  Similarly, I evaluated age-

related changes in the auricular surface of the ilium following the protocol described in 

Buikstra and Ubelaker (1994) and Lovejoy et al. (1985).  In general, these pelvic 
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indicators have proved to be effective in aging forensic and modern anatomical 

collections with a reasonable degree of accuracy, although age ranges and standard 

deviation increase appreciably for older individuals (Brooks and Suchey 1990; 

Buckberry and Chamberlain 2002; Buikstra and Ubelaker, ed. 1994; Klepinger et al. 

1992; Lovejoy et al. 1985).  In cases that lacked pelves, ectocranial suture closure was 

used to estimate age following Buikstra and Ubelaker (1994) and Meindl and Lovejoy 

(1985).  Other aging methods, such as the degree of dental attrition and vertebral 

osteophytosis were also assessed, although these criteria were only used to clarify 

discrepancies between more reliable aging criteria.  

In conjunction with the methods outlined above, I also used the transition 

analysis aging method, recently developed by Boldsen (1997) and Boldsen et al. (2002).  

Unlike most skeletal aging methods that categorize general changes in anatomical 

features into a series of sequential phases, transition analysis uses multiple aging criteria 

and provides point-age estimates based on maximum likelihood ratios.  This approach 

attempts to counter the limitations of most traditional aging methods by independently 

evaluating age-related changes in a series of different components.  For example, five 

separate components of the pubic symphysis (e.g., symphyseal relief, symphyseal 

texture, superior apex, dorsal symphyseal margin, dorsal symphyseal margin) are 

independently evaluated, followed by six features of the auricular surface and posterior 

iliac region, and five cranial sutures (see descriptions in Boldsen et al. 2002:96-104).  A 

central problem in paleodemographic research is that the age-at-death distribution of the 

study sample tends to “mimic” the distribution of the reference sample following the age 
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criteria upon which the latter age estimates are based (Bocquet-Appel and Masset 1982; 

Hoppa and Vaupel 2002).  The transition analysis method attempts to overcome this 

problem by first estimating the age-at-death distribution of the entire sample and then 

estimating the age-at-death for specific individuals in the sample (Boldsen et al. 

2002:73).  An additional advantage is that the method can be applied to incomplete or 

fragmentary skeletons.  Although transition analysis is still considered in the testing 

stage, it represents a statistically robust approach for skeletal aging that can complement 

more traditional methods.  For the purposes of this study, I calculated age estimates for 

adults and compared point age estimates and ranges with other aging criteria.  In most 

cases, the transition analysis error ranges overlapped with pubic symphysis and auricular 

surface ages, and confirmed the general age interval in which each skeleton was placed.  

The ADBOU (Archaeological Database Odense University) computer software 

program– developed by Jesper Boldsen– was used to calculate the age-at-death 

distribution and point age estimates.  

Subadult Age Estimation 

For estimating the age of the subadult sample, I used dental eruption sequences, 

dental maturation stages, long bone lengths, and epiphyseal union stages.  I estimated 

dental ages using figures and descriptions presented in Buikstra and Ubelaker (1994).  

Similarly, I recorded long bone measurements following Buikstra and Ubelaker (1994) 

and compared these values with standardized tables reported in Scheuer and Black 

(2000).  Finally, I recorded epiphyseal union stages for the major long bones and 

compared these values with aging charts compiled in Scheuer and Black (2000).  
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Skeletal Samples 

Table 4.1 presents the sample distribution by age category: subadult (0-16 years); 

young adult (18-29 years); middle adult (30-39 years); late adult (40+ years); and adult, 

age indeterminate (18+ years).  For some of the analyses, I divide the subadult sample 

into the following age categories: 0-5 years, 6-10 years, 11-16, and 17-19 years.  I also 

combined age categories to increase the sample size for some statistical comparisons and 

in instances when significant age or sex differences did not exist.  For the adult sample, 

82.6 percent (360/436) could be assigned an age category; the remaining 17.4 percent 

(76/436) of the adult sample are classified as adult, age indeterminate (20+ years).  The 

remaining 75 individuals (14.7 percent of sample) are classified as subadults, and 

included individuals that ranged from infancy to age 16 years, although most (67 

percent) were between 6 and 16 years of age. 

The Sacramento Valley skeletal sample consists of 290 individuals (Table 4.1).  

When partitioned by time period, the Early period (n=137) sample has the largest sample 

size, followed by the Middle (n=90) and Late (n=63) periods, respectively.  For the 

Early period sample, males outnumber females 2 to 1 in the young adult age category, 

while females outnumber males 1.4 to 1 in the late adult category.  Females also 

outnumber males 4.5 to 1 in the Middle period sample and 4 to 1 in the Late period 

sample for the late adult category.  In general, comparisons of the total sex ratios by time 

period indicate that the Early period sample is well balanced, while the Middle and Late 

period samples are skewed toward a higher number of females.  For subadults, the Early 
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period sample has the highest number of individuals represented (n=28), followed by the 

Middle (n=13) and Late Period (n=11) samples.  

Table 4.1.  Age and Sex Distribution of the  
Skeletal Samples by Region and Time Period. 

The San Francisco Bay sample consists of 221 individuals (Table 4.1).  The 

Middle period (n=98) sample has the largest sample size, followed by the Late (n=69) 

and Early (n=54) period samples.  The small size of the Early period sample is due to the 

paucity of archaeological phases dating to this period in the Bay Area.  For the Early 

 Sacramento Valley San Francisco Bay 

 
Males Females Indeter-

minate Subadults Males Females Indeter-
minate Subadults 

Age n % n % n % n % n % n % n % n % 
Early Period (4950-2150 B.P.) 
0-17       28 20.4       11 20.4 
18-29 21 15.3 10 7.3     5 9.3 9 16.7     
30-39 10 7.3 11 8.0 3 2.2   4 7.4 5 9.3     
40+ 14 10.2 20 14.6 1 .7   5 9.3 16 29.6     
20+ 7 5.1 9 6.6 3 2.2   2 3.7 3 5.6     
Total 52 38.0 50 36.5 7 5.1 28 20.4 16 29.6 27 50.0   11 20.4 
Middle Period (2150-1050 B.P.) 
0-17       13 14.4       7 7.1 
18-29 17 18.9 13 14.4 1 1.1   15 15.3 15 15.3 3 3.1   
30-39 9 10.0 7 7.8     10 10.2 6 6.1 1 1   
40+ 4 4.4 18 20.0 1 1.1   4 4.1 17 17.3 1 1   
20+ 3 3.3 3 3.3 1 1.1   5 5.1 8 8.2 6 6.1   
Total 33 36.7 41 45.6 3 3.3 13 14.4 34 34.7 46 46.9 11 11.2 7 7.1 
Late Period (1050-200 B.P.) 
0-17       11 17.5       5 7.2 
18-29 7 11.1 11 17.5     6 8.7 14 20.3 1 1.4   
30-39 5 7.9 4 6.3     6 8.7 1 1.4     
40+ 4 6.3 16 25.4 1 1.6   9 13.0 5 7.2     
20+   2 3.2 2 3.2   7 10.1 10 14.5 5 7.2   
Total 16 25.4 33 52.4 3 4.8 11 17.5 28 40.6 30 43.5 6 8.7 5 7.2 
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period sample, females outnumber males 3.3 to 1 in the young adult category and 3.2 to 

1 in the late adult category.  For the Middle period sample, males outnumber females 1.7 

to 1 in the middle adult category, while females outnumber males in the late adult 

category 4.3 to 1.  Finally, for the Late period, females outnumber males 2.3 to 1 in the 

young adult category and 1.4 to 1 in the late adult category; males outnumber females 

only in the middle adult category.  The Early period also has the highest representation 

of subadults (n=11), followed by the Middle (n=7) and Late period (n=5) samples.  

Overall, the San Francisco Bay sample has a balanced sex distribution for the Late 

period sample, with a more skewed representation for the Early and Middle period.  

Burial Seriation  

The skeletal remains used in the present study were excavated between the early 

1900s and the 1970s.  The conditions under which many archaeological investigations 

were undertaken varied dramatically, ranging from careful excavations by professional 

archaeologists to salvage recovery efforts undertaken during construction projects.  

Fortunately, professional archaeologists excavated the majority of sites selected for the 

present study, many of whom were affiliated with the University of California 

Archaeological Survey at U.C. Berkeley.  Between the 1950s and 1990s, the late James 

A. Bennyhoff seriated hundreds of burials into the Central California Taxonomic 

System, using the grave lot as the primary unit of analysis.  Although Bennyhoff never 

published his burial seriations, he “phased” skeletons from dozens of archaeological 

sites throughout central California for several osteological research projects.  I obtained 

burial seriation information through a detailed review of the Bennyhoff note collection 
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curated by Randy Milliken of Far Western Anthropological Research Group, Inc.  

Bennyhoff’s notes are organized by archaeological site and contain detailed descriptions 

and charts that illustrate how each burial was phased.  For each burial, Bennyhoff listed 

the corresponding museum catalogue and/or burial numbers by site, phase, and time 

period.  Although Bennyhoff relied heavily on time-diagnostic shell bead types from 

grave lots, his notes indicate that he evaluated a number of independent lines of 

evidence, including radiocarbon dates, obsidian hydration profiles, burial orientation, 

“charm stone” types, projectile point types, and grave depth in making his assessments.   

As discussed in Chapter II, the chronological framework used in the present 

study follows Bennyhoff and Hughes’ scheme B1 (Bennyhoff 1994a; Bennyhoff and 

Hughes 1987).  This chronological sequence was developed as an alternate to previous 

dating schemes (e.g., Beardsley 1948, 1954a, 1954b; Gifford 1947; Heizer 1949) and is 

based primarily on time-diagnostic Olivella shell bead types.  Bennyhoff and Hughes 

(1987:147) argued that most previous dating schemes were based on only a few 

radiocarbon dates that failed to identify significant periods of culture change.  Scheme 

B1 is based on 180 uncorrected radiocarbon dates, many of which were derived directly 

from shell beads (Bennyhoff and Hughes 1987).  In general, while archaeologists 

recognize the time-diagnostic value of many Olivella bead types, several problems have 

come to light over the past two decades with respect to the dating scheme (see Groza 

2002).  First, the radiocarbon dates used to construct scheme B1 were based on different 

sample materials, including charcoal, bone collagen, and shell, and were derived from 

both burial and midden contexts (Bennyhoff and Hughes 1987; Groza 2002:27-39).  
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Second, the use of mixed charcoal and shell samples may have provided imprecise dates, 

since materials of different ages may have been combined.  Third, some of the 

radiocarbon analyses used to construct scheme B1 were performed before δ13C 

correction was systematically applied, before humic acids and diagenetic carbonates 

were routinely removed from bone collagen and charcoal samples, and before routine 

correction for the marine reservoir effect for dating shell.  

In a recent study, Groza (2002) recalibrated 162 of the 180 dates that were used 

to construct scheme B1, and AMS-dated 103 additional time-sensitive Olivella beads to 

test the scheme’s validity.  Groza (2002) found support for most of the time-sensitive 

bead types defined by Bennyhoff and Hughes (1987), although the new AMS dates 

altered the calendrical dates for some of the phases.  In particular, Groza (2002) found 

that Bennyhoff had reversed the “Late Middle” and “Terminal Middle” phases, and that 

the Late Period began later than originally thought.  Groza (2002) introduced scheme D 

as an alternative to scheme B1, which should be a more reliable chronology since it 

based on a single material (Olivella shell beads), and corrects for both δ13C and the 

reservoir effect.  Despite inconsistencies between these two dating schemes, I follow 

convention in using the general chronological framework presented in scheme B1, but 

recognize that scheme D may gain in acceptance after further validation.  Table 4.2 and 

Figure 4.1 provide a comparison of dating scheme B1 and scheme D.   
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Table 4.2.  Central California Chronology. 

Due to potential biases associated with individual burial seriations, I combined 

all skeletons from each region into three broad chronological periods for the purposes of 

this study: Early period (circa 4950-2150 B.P.), Middle period (circa 2150-1050 B.P.), 

and Late period (circa 1050-200 B.P.).  I also include skeletons dated to the Early-

Middle period transition with the Early period sample and skeletons dated to the Middle-

Late period transition with the Middle period sample.  Although this sacrifices more 

detailed chronological resolution, it also avoids the problem of grouping burials into 

unrealistic time increments that have been difficult to validate (see Bouey 1995; Groza 

2002).  In conjunction with Bennyhoff’s seriations, I also crosschecked burial numbers 

with available radiocarbon dates to evaluate any major discrepancies between absolute 

and relative dating methods.  Fortunately, some of the sites were only occupied during 

one time period, and some of the others showed relatively clear stratigraphic 

demarcations between periods. 

Table 4.3 presents the skeletal sample by time period, site, and region.  For the 

Sacramento Valley, the Early period is represented by SJO-68 (Blossom Mound) and 

SJO-142 (McGillivray Mound).  The Middle period is represented primarily by SAC-43 

  Approximate Dates (Scheme B1) Calibrated Dates (Scheme D) 
 (Bennyhoff and Hughes 1987) (Groza 2002) 
Period B.P. B.C./A.D. B.P. B.C./A.D. 
Late Period 1050-200 B.P. A.D. 900-1800 740-230 B.P. A.D. 1210-1720 
Middle/Late Transition 1250-1050 B.P. A.D. 700-900 940-740 B.P. A.D. 1010-1210 
Middle Period 2150-1250 B.P. 200 B.C.-A.D. 700 2160-940 B.P. 210 B.C.-A.D. 1010 
Early/Middle Transition 2450-2150 B.P. 500-200 B.C. 2450-2160 B.P. 500-210 B.C. 
Early Period 4950-2450 B.P. 3000-500 B.C. >3450-2450 B.P. >1500-500 B.C. 
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(Brazil Mound) and SAC-60 (Hicks Mound), although a few individuals from SJO-154 

(Cardinal Mound) are included in the sample.  Four sites represent the Late period 

sample: SJO-154, SAC-43, SAC-60, and SAC-06 (Johnson Mound).  The majority of 

burials are from SJO-154 and SAC-06, the latter of which was occupied from the Late 

period into the Mission period. 

 For the San Francisco Bay, the Early period is represented primarily by ALA-

307 (West Berkeley Village), although a few individuals from the “basal cemetery” 

(Component C) at ALA-328 (Patterson Mound) are included in the sample.  The Middle 

period is represented by four sites: ALA-307, ALA-309 (Emeryville Shellmound), ALA-

328, and ALA-329 (Ryan Mound).  The Late period is primarily represented by ALA-

309 and ALA-329, but also includes two individuals from ALA-328.  Compared with 

the Early period, the Middle and Late period samples are more representative of the two 

sub-regions of the Bay Area included in this study (i.e., upper east Bay and lower east 

Bay).   
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Figure 4.1  Scheme B1 and Scheme D.   
(Redrawn after Bennyhoff and Hughes 1987:149, Figure 10; Groza 2002:95, Figure 6). 
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Table 4.3.  Distribution of Skeletal Samples by Region and Time Period.  

Summary 

The accurate determination of sex and age is a critical component in 

paleopathological investigations.  As Walker et al. (1988) have noted, age and sex biases 

can be influenced by a number of factors including the gender of the investigator, 

differential preservation of skeletal samples, and cultural rules regarding burial practices 

of the dead.  In this study, I minimized some of these biases by relying on multiple 

criteria for estimating sex and age from the skeletal sample.  Although the demographic 

composition of the sample is biased towards a higher number of females, especially in 

Sacramento Valley San Francisco Bay 
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Early Period      Early Period      
CA-SJO-68 33 35 5 27 100  CA-ALA-307 14 22  9 45 
 CA-SJO-142 19 15 2 1 37  CA-ALA-328 2 5  2 9 
Total 52 50 7 28 137  Total 16 27  11 54 
Middle Period       Middle Period      
CA-SJO-154 2 3  3 8  CA-ALA-307 2 3 3 2 10 
CA-SAC-43 20 22 2 6 50  CA-ALA-309 17 16 6 3 42 
CA-SAC-60 11 16 1 4 32  CA-ALA-329 6 15  1 22 
Total 33 41 3 13 90  CA-ALA-328 9 12 2 1 24 
       Total 34 46 11 7 98 
Late Period       Late Period      
CA-SJO-154 3 12  3 18   CA-ALA-309 20 21 5  46 
CA-SAC-43 3 2  2 7  CA-ALA-328  2   2 
CA-SAC-60 1 2  1 4   CA-ALA-329 8 7 1 5 21 
CA-SAC-06 9 17 3 5 34  Total 28 30 6 5 69 
Total 16 33 3 11 63       
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late adult age category, the overall sample sizes should be adequate for comparing the 

prevalence of pathological lesions between groups. 

The skeletal samples demonstrate age and sex biases, but should still provide 

adequate sample sizes for most statistical comparisons.  The skewing of the sample 

towards adults is due, in part, to the primacy that adults have been given in burial 

seriation studies, and also due to the fact that subadults were less commonly interred 

with time-diagnostic grave goods.  In general, females are over-represented for both 

regions, particularly in the late adult category.  For statistical comparisons of disease or 

stress indicators that are influenced by age and sex (e.g., dental caries), I address the 

effects of biases in the age-sex distribution.  

Using Bennyhoff’s note collection, I was able to seriate a relatively large sample 

of burials into three major time periods for the purposes of comparison.  While debate 

continues with respect to the reliability of various dating schemes among California 

archaeologists, I deemed it necessary to use scheme B1 to provide meaningful temporal 

assignments for the skeletal samples.  To minimize burial phasing problems, I assigned 

each skeleton to a broader time interval, which should be sufficient to identify major diet 

and health trends.  
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CHAPTER V 

PALEODIETARY RECONSTRUCTION 

The reconstruction of prehistoric diets has been a central focus of 

bioarchaeological research over the past several decades and has provided important 

insights regarding food exploitation patterns of earlier human societies.  The emergence 

of ecologically oriented approaches during the 1960s laid the groundwork for the study 

of archaeofaunal and archaeobotanical remains – the food items consumed by prehistoric 

societies – as well as the study of the material remains used to extract and process those 

food resources.  However, the archaeological record may be inherently biased, because 

of differential preservation of biological remains, varied sampling methods during 

excavation, and misinterpretation of the uses of food processing implements. 

Since the 1970s, applications of stable isotope analysis in archaeology have 

provided a new tool that can aid in the reconstruction of prehistoric diets.  The statement 

“you are what eat” is the basis for applications using stable isotopes for reconstructing 

past diets and refers to the relationship between the isotopic composition of an animal’s 

tissues and its diet (Ambrose et al., 2003).  In this chapter, I first review the theoretical 

basis of stable isotope analysis and then define the parameters of prehistoric diets in 

central California based on evidence derived from the archaeological and ethnographic 

record.  With these parameters defined, I provide a reconstruction of late Holocene 

paleodiets in the Sacramento Valley and San Francisco Bay using stable isotope analyses 

of carbon and nitrogen in bone collagen, and stable isotopes of carbon in bone apatite. 
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Stable Isotope Analysis 

Isotopes are atoms of the same element that have the same number of protons but 

a different number of neutrons.  Unlike unstable forms of isotopes, stable isotopes do not 

undergo radioactive decay over time, and thus record chemical signatures of biological 

and geological processes in nature.  Although chemically similar, isotopes of the same 

element react at different rates in chemical reactions due to slight differences in atomic 

mass (i.e., due to the difference in the number of neutrons).  This results in the 

disproportionate incorporation (enrichment) of one isotope over another if the chemical 

reaction does not go to completion.  Alternatively, isotopes are fractionated during 

equilibrium processes due to thermodynamic differences between compounds.  The 

enrichment of one isotope relative to another is known as “isotopic fractionation”, and 

accounts for differences in stable isotope ratios in nature.  Stable isotopes are expressed 

by the ratio of the “rare” isotope to the “abundant” isotope (e.g., 13C/12 C) relative to an 

international standard.   

Stable isotope ratios are calculated relative to a standard of known isotopic 

composition, and are expressed in parts per thousand, or “permil”, relative to the 

standard (Schoeller 1999:668-669).  International laboratory standards for stable isotope 

research are provided by the National Bureau of Standards and the International Atomic 

Energy Agency, Vienna.  The delta notation symbol (δ) is used to express the isotopic 

ratio of a sample relative to the standard.  Isotopic composition is calculated as follows:  

δ = (R sample – R standard)/ R (standard) x 1000 
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Where R is equal to the ratio of the rare to the abundant isotope in the sample compared 

with that of the standard.   

The most common stable isotope ratios used to reconstruct diet of living 

organisms are 13C/12 C (δ13C) and 15N/14N  (δ15N).  Stable isotopes of carbon are 

expressed relative to the PDB standard, a Cretaceous belemnite fossil from the Peedee 

formation in South Carolina.  PDB, by definition, has a value of 0‰, and is enriched in 

13C relative to organic carbon and most terrestrial carbonate materials.  Hence, δ13C 

values for the materials in this study are negative relative to the standard.  Since the 

actual source of PDB has been exhausted, secondary standards (e.g., NBS-19) are used 

and calibrated to PDB.  Stable isotopes of nitrogen are expressed by the ratio of 15N/14N 

relative to the standard, which is atmospheric N2 (AIR).  Because atmospheric N2 is 

more depleted in 15N than most living things, δ15N values in nature are almost always 

positive relative to the standard, which is set at 0‰.  Substances that are enriched in the 

“heavy” isotope of carbon or nitrogen have higher delta (δ) values than substances that 

are depleted in the “heavy” isotope.  I discuss the distribution of stable isotopes of 

carbon and nitrogen isotopes in ecosystems below. 

Carbon  

Carbon has two stable isotopes, 13C and 12C, that occur in nature at abundances 

of 1.1 and 98.9 percent, respectively (Schwarcz and Schoeninger 1991).  Hence, the 

heavy isotope is less abundant than the light isotope.  Natural variations in carbon 

isotopes ratios reflect fractionation processes and variation in dissolved marine 
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bicarbonate and atmospheric CO2.  The atmosphere transfers carbon to terrestrial 

organisms through plant photosynthesis, while natural waters derive carbon from 

multiple sources, including dissolved inorganic carbon (HCO3), atmospheric CO2, and 

CO2 from decomposed organic matter introduced by rivers (Tan 1989).  In marine 

ecosystems, organisms obtain carbon primarily from the photosynthetic activity of 

phytoplankton (Schwarcz and Schoeninger 1991:304).      

The photosynthetic pathway a plant uses to fix atmospheric CO2 is the main 

factor that determines carbon isotope variation in living organisms.  During 

photosynthesis, the carboxylating enzyme, ribulose bisphosphate carboxylase, 

incorporates smaller amounts of 13C than 12C, which results in 13C-depleted plant tissues 

relative to atmospheric CO2 (O’Leary 1981, 1988).  C3, C4, and CAM plants follow 

unique photosynthetic pathways and differ in isotopic composition due to differences in 

reaction rates when incorporating atmospheric CO2.  These pathways relate to adaptive 

mechanisms that different plants use to maximize efficiency of photosynthesis in 

different environments (Heaton 1999).    

C3 plants follow the Calvin-Benson photosynthetic pathway and utilize a 3-

carbon molecule that discriminates against the isotopically heavier 13C when 

incorporating atmospheric CO2.  C3 plants show a large isotopic discrimination relative 

to atmospheric CO2 and this fractionation results in plant tissues with δ13C values that 

that typically range from –34 to –22‰, with an average of –27.1 ± 2.0‰  (O’Leary 

1988:329, 334).  C3 plants account for the vast majority of the earth’s vegetation, and 
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include trees, shrubs, legumes, and most types of grasses and tubers that are found in 

temperate regions (O’Leary 1981, 1988).   

C4 plants include maize, millet, amaranth, sugarcane, and some tropical grasses 

that are typical of hot and arid climates.  These plants follow the Hatch-Slack 

photosynthetic pathway and utilize a 4-carbon molecule that discriminates less against 

the isotopically heavier 13C than do C3 plants when incorporating atmospheric CO2.  

Because of these differences in photosynthesis, C4 plants are more enriched in the 

“heavy” isotope than are C3 plants and have an average isotopic value of –13.1 ± 1.2‰ 

(O’Leary 1988:334).  The non-overlapping ranges of C3 plants C4 plants permit 

discrimination between dietary signatures for organisms that consume these resources in 

different amounts.  

CAM (Crassulacean Acid Metabolism) plants include desert-adapted flora such 

as succulents and cactus, and have isotopic signatures that overlap with C3 and C4 

plants.  CAM plants open their stomates at night and selectively incorporate CO2 using a 

process similar to that used by C4 plants (O’Leary 1988:331).  During the daytime, some 

CAM plants reopen their stomates and incorporate CO2 into their tissues similar to C3 

plant photosynthesis.  For CAM plants that only photosynthesize in the dark, δ13C values 

average around -11‰.  However, CAM plants can range isotopically from –10 to –20‰, 

depending on the degree of daytime photosythesis. 

Other factors can contribute δ13C variation in plants, although these differences 

are small relative to the differences caused by different photosynthetic pathways.  

Genetic differences within a single plant species can result in δ13C values that vary by as 
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much as 3.0‰, although variability will be more restricted within a given ecosystem 

(Tieszen 1991:236).  Different plant parts (e.g., seeds, roots, leaves) may also differ 

slightly in isotopic composition, due to variation in δ13C values of different biochemical 

components (Codron et al. 2005).  The environment also influences variation in δ13C 

values in plants.  For example, increases in irradiance and temperature and decreases in 

precipitation cause δ13C enrichment in plant tissues (Heaton 1999; Tieszen 1991).  In 

dense forests in particular, δ13C values can vary by 3-4‰ due the “canopy effect” 

(coined by van der Merwe and Medina 1989), with the most depleted values near the 

ground surface and the most enriched values in the upper layers of the canopy.  

Differences in available sunlight and reassimilation of 13C depleted CO2 near the ground 

surface appears to account for much of the δ13C variability in forested environments 

(Heaton 1999:640-641; van der Merwe and Medina 1989, 1991; Tieszen 1991).   

Aquatic freshwater plants obtain carbon from dissolved inorganic carbon in 

natural waters and show δ13C values that overlap with terrestrial plants; however, most 

are C3 plants and have average values of approximately -25‰ (Schwarcz and 

Schoeninger 1991:304).  In contrast, marine plants typically are more enriched in 13C 

than terrestrial plants by about 7‰, and these differences are passed up the food chain to 

animal consumers.  Marine plankton vary isotopically and generally show intermediate 

values between the ranges of C3 and C4 plants; however, sea grasses and some algae 

(e.g., seaweed) may have δ13C values that are close to the average values for C4 plants 

(Ambrose 2000; Schwarcz and Schoeninger 1991:304).  Animals that feed within marine 
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ecosystems tend to have δ13C values that are enriched by ~7‰ relative to those that feed 

within terrestrial ecosystems.     

The isotopic composition of plants is recorded in the tissues of animal consumers 

(Schoeninger and DeNiro 1984).  However, controlled feeding studies indicate that an 

animal’s tissues are slightly enriched in 13C relative to the diet (Ambrose 2000; Ambrose 

and Norr 1993; DeNiro and Epstein 1978; Krueger and Sullivan 1984).  DeNiro and 

Epstein (1978) found tissues to be enriched by 1-2‰ for small animals, although the 

range for controlled feeding studies of both small and large mammals varies from .5 to 

4.6‰ (Ambrose 2000:101; Ambrose and Norr 1993:5, Table 1).  Diets of prehistoric 

humans and mammals in nature suggest larger isotopic differences between bone 

collagen and diet, and have values that range from 4.7 to 6.1‰.  Collagen-diet spacing 

varies between tissues, with little isotopic fractionation between an animal’s diet and 

muscle, and greater fractionation between diet and bone collagen (DeNiro and Epstein 

1978).  Recent controlled feedings experiments on rats and mice indicate an average 

collagen-diet spacing of 5.0‰ for bone collagen (Ambrose and Norr 1993; Tieszen and 

Fagre 1993).   

The use of carbon isotopes from bone mineral (carbonates in bioapatite) for 

paleodietary construction has been the subject of considerable debate.  Sullivan and 

Krueger (1981) were the first to argue that apatite from bone and enamel could be used 

for paleodietary reconstruction, thus extending the period of time to studies of older 

fossils that no longer preserve the organic collagen fraction.  However, Schoeninger and 

DeNiro (1982) argued that diagenetic exchange between sediments and fossils would 



 

 

128 

 

produce erroneous carbon isotope values.  Although new sample treatment methods are 

now used to remove the more soluble and isotopically lighter diagenetic carbonates from 

the mineral fraction of bone and enamel tissue (Lee-Thorp et al. 1989; Sullivan and 

Krueger 1983), this has not always been successful.  However, bioapatite samples can be 

examined spectroscopically using Fourier transform infrared spectroscopy (FTIR), 

which can help identify samples that are diagenetically altered (Nielsen-Marsh and 

Hedges 2000a; Wright and Schwarcz 1996).      

Krueger and Sullivan (1984) argued that the δ13C value of bioapatite reflects the 

isotopic composition of all dietary macronutrients (proteins, carbohydrates, and lipids), 

while the δ13C value of bone collagen primarily reflects the protein component of the 

diet.  Two controlled feedings studies using rats and mice fed a pure C3, C4, and mixed 

diet indicate that some carbon molecules from dietary protein are preferentially routed to 

bone collagen and record a signature biased toward the protein component of the diet 

(Ambrose and Norr 1993; Tieszen and Fagre 1993).  These studies also support the 

hypothesis that the δ13C value of apatite is derived from dissolved bicarbonate in the 

blood and accurately reflects the isotopic composition of the whole diet.  This suggests 

that carbon atoms used to form collagen follow a protein “routing” model, while carbon 

atoms used to form the carbonate in bioapatite follow a “linear mixing model” (Ambrose 

and Norr 1993; Tieszen and Fagre 1993).    

The use of carbon isotopes from bone collagen in conjunction with bioapatite can 

provide additional information regarding the contribution of different macronutrients to 

the diet.  These applications use differences in carbon isotope values between diet and 
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bone collagen, and diet and bone apatite, to determine potential sources of dietary 

macronutrients.  Ambrose and Norr (1993) found a consistent spacing of 9.4 ± .6‰ 

between diet and apatite, which was 4.4‰ larger than the average spacing of 5.0‰ 

between diet and collagen.  However, collagen-diet spacing varies depending on whether 

dietary protein is isotopically heavier or lighter than that of the whole diet.  For example, 

terrestrial animals that feed from C3 food webs show a collagen-apatite spacing of 

approximately 4.4‰, since the δ13C value of the protein component of the diet is the 

same as that of the whole diet (9.4-5.0 = 4.4‰).  However, a diet that consisted of         

13C-enriched marine animal proteins and C3 carbohydrates would result in a collagen-

apatite spacing value that is less than 4.4‰, since the δ13C value of the dietary protein 

would be heavier than that of the whole diet (Ambrose et al. 1997; Harrison and 

Katzenberg 2003).  Alternately, a diet that consisted of C4 plants and C3 animal proteins 

would result in a collagen-apatite spacing value that is greater than 4.4‰, since the δ13C 

value of dietary protein would be lighter than that of the whole diet.  However, Harrison 

and Katzenberg (2003:241) found relatively high collagen-apatite spacings (~10‰) in 

some individuals from sites from Southern Ontario that predated the introduction of 

maize, a C4 plant.  The authors suggest that these high values reflect a diet that consisted 

almost entirely of C3 plant foods, which provided the main source of dietary protein.   

Nitrogen 

Stable nitrogen isotopes have also been successfully applied in the reconstruction 

of prehistoric diets, and can be used to distinguish between marine and terrestrial diets.  

Nitrogen has two stable isotopes, 15N and 14N, that occur in nature at abundances of .36 
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and 99.64 percent, respectively.  More than 99 percent of exchangeable nitrogen is 

bound as N2 in the atmosphere and ocean, and is incorporated into most plants from 

inorganic ammonium and nitrates in soils (Ambrose 1991; Schwarcz and Schoeninger 

1991).  Terrestrial plants that obtain N2 from the soil generally have δ15N values that are 

higher than the standard (AIR), which is 0‰ (Heaton 1987; Virginia and Delwiche 

1982).  Nitrogen in soils is incorporated into the tissues of vascular plants, and derives 

from complex nitrification and denitrification processes associated with the bacterial 

decomposition of organic matter.  However, some plants (e.g., legumes) share a 

symbiotic relationship with bacteria and fix most of their nitrogen from atmospheric N2.  

These plants have significantly lower δ15N values than non-fixing plants that obtain 

nitrogen from the soil.  In aquatic ecosystems, blue-green algae (cynobacteria) act as 

nitrogen-fixers, and thus also have low δ15N values (Schoenhherr 1992).     

 Terrestrial plants that obtain nitrogen through bacterial degradation in soils also 

show significant variation in δ15N values due to differences in environment and climate 

(Ambrose 1986, 1991; Heaton 1987).  For instance, soils in saline and arid climates are 

more enriched in 15N than are cool, moist forest soils.  Terrestrial plants located within 

coastal and estuarine settings are also isotopically enriched, due to sea spray and fixation 

with nitrogen-enriched saline soils (Heaton 1987; Sealy et al. 1987).  Marine plants have 

δ15N values that are ~4‰ heavier than terrestrial plants, and these differences are 

reflected in animal consumers. 

Since all nitrogen incorporated into bone collagen derives from dietary protein, 

δ15N values of an animal’s tissues accurately reflect the δ15N value of the whole diet.  
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Since plants contain only 10 to 25 percent protein, and meat is 85 to 90 percent protein, 

meat consumption will dominate δ15N signatures (Ambrose et al. 2003:220-221).  Unlike 

carbon isotopes, nitrogen isotopes show a “trophic effect”, with a 3-4‰ step-wise 

increase over food values at each level in the food web (DeNiro and Epstein 1981).  

Herbivore tissues are enriched by 3-4‰ over the plants that they eat, and carnivores 

show a similar enrichment over herbivore tissues.  Due to this step-wise enrichment, it is 

often possible to reconstruct food webs of primary producers, herbivores, and carnivores 

within a given ecosystem (Ambrose 1986).  Marine animals are more enriched in 15N 

than terrestrial animals, due to longer food chains in marine environments.  Additionally, 

phytoplankton at the base of marine food webs are enriched in 15N due to the 

incorporation of dissolved nitrates from seawater, and this higher δ15N value is 

transferred to secondary consumers (Schwarcz and Schoeninger 1991). 

Although stable nitrogen isotopes have been useful for reconstructing animal 

diets, researchers have recognized that other factors also contribute to high δ15N values 

in animals (Ambrose 1986, 1991; Sealy et al. 1987).  For instance, large herbivores from 

arid regions show anomalously high δ15N values, which suggests that metabolic 

processes also contribute to isotopic variation (Ambrose and DeNiro 1986; Ambrose 

1986, 1991).  Research in this area suggests that two different metabolic processes may 

account for this variation.  Ambrose and DeNiro (1986) and Ambrose (1986, 1991) 

argued that water-stressed animals selectively retain greater amounts of 15N for tissue 

synthesis, whereas the lighter 14N will be excreted in urea.  In contrast, Sealy et al. 

(1987) argued that nitrogen recycling within the digestive system in protein-stressed 



 

 

132 

 

ruminants could produce trophic-like effects and result in high δ15N values.  Schwarcz et 

al.’s (1999) study of prehistoric humans and archaeofauna from the Sahara Desert 

suggests a relationship between high δ15N values and both arid climate and excretion of 

15N-depleted urea due to water-stress.  These studies indicate that both metabolic factors 

and climate should be carefully considered in human paleodietary studies, since each 

may produce high δ15N values that could be misinterpreted as trophic level effects 

relating to diet. 

Archaeological Applications 

Applications of stable isotope analyses for reconstructing prehistoric diets began 

in the late 1970s with Vogel and van der Merwe’s (1977) classic study of prehistoric 

populations from eastern North America.  This study was the first to document the 

introduction and increased reliance on maize, a C4 cultigen, by prehistoric societies in 

the Americas.  Later research demonstrated that the adoption of maize agriculture varied 

dramatically between regions, and that maize was not eaten in some areas until very late 

in prehistory (Larsen 1997).  The spatial and temporal variability in these trends appears 

to reflect environmental differences, responses to climate change, the availability of 

other food resources, and also cultural factors.  More recent applications have used 

carbonate from bone apatite to track the introduction of C4 cultigens in the diet 

(Ambrose et al. 2003; Harrison and Katzenberg 2003).     

Schoeninger et al. (1983) found that the combination of carbon and nitrogen 

isotopes could be used to distinguish between marine and terrestrial C3 diets in coastal 

settings.  Since marine food webs tend to be enriched in both δ13C and δ15N, the 
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importance of marine foods can be assessed using bivariate plots of carbon and nitrogen 

(Keegan and DeNiro 1988).  Larsen et al. (1992) found that carbon and nitrogen isotopes 

could also help distinguish between maize and marine food consumption for Georgia 

coast groups that exploited both resources.  

Paleodietary studies using carbon and nitrogen isotopes suggest that Mesolithic 

populations from the Atlantic coast of Europe were more reliant on marine resources 

than were later Neolithic populations (Lubell et al. 1994; Richards et al. 2003).  Along 

the Pacific Coast of North America, a number of studies have also documented spatial 

and temporal variation in marine food consumption (Chisholm et al. 1983; Goldberg 

1993; Harrison and Katzenberg 2003; King 1997; Molto and Kennedy 1991; Walker and 

DeNiro 1986).  For instance, Walker and DeNiro (1986) found evidence for the 

increased use of marine resources (e.g., marine fish, sea mammals) through time among 

forager societies from the southern California coast.  Goldberg’s (1993) study of coastal 

groups from southern California found that marine animal consumption increased 

through time for the Northern Channel islanders, but decreased through time for 

Southern Channel islanders.  Chisholm et al. (1983) and Schwarcz (1991) found that 

groups that lived along the British Columbia coast were heavily dependent on salmon, 

but found little variation in δ13C and δ15N through time.  Coltrain et al. (2004) found that 

arctic foragers of eastern Canada relied heavily on marine foods, and may have derived 

some of their dietary protein from whaling.  These studies document substantial regional 

and temporal variation in the consumption of marine resources in different coastal 
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settings, and demonstrate the wide applicability of stable carbon and nitrogen analysis in 

the discrimination between marine versus terrestrial food consumption. 

Materials and Methods 

I obtained bone samples for stable carbon and nitrogen isotope analysis (n=111).  

I sampled approximately 2-3 grams of bone from adult individuals, and attempted to 

include an equal number of males and females from each time period and region to 

obtain a representative sample.  In following the PAHMA guidelines for destructive 

analysis, I preferentially selected rib fragments (n=56) for isotopic analysis.  In cases 

where rib fragments were unavailable or showed evidence of poor bone preservation, I 

selected long bone shaft fragments (n=37).  For eighteen individuals, I used bone powder 

samples that came from femora and tibiae shafts.  These samples were used in previous 

bone dating research and had been carefully cleaned prior to grinding (Cook and Heizer 

1953, 1959; Heizer and Cook 1947, 1949).  To verify that these samples had not been 

chemically altered, I compared the δ13C and δ15N values of bone fragments and bone 

powder samples from four individuals.  In this study, I also include four samples from 

CA-MRN-266, a Late period site located along Tomales Bay to the north of San 

Francisco.  I use preliminary results from this site to compare coastal forager diets with 

diets from San Francisco Bay and the lower Sacramento Valley.      

To provide baseline data for key animal resources, I sampled archaeological 

fauna (n=19) from two sites used in this study (ALA-309, SAC-06).  Ala-309 is located 

along eastern shore of San Francisco Bay, and SAC-06 is located along the Cosumnes 

River in the lower Sacramento Valley.  Faunal specimens are housed at the PAHMA and 
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were sampled according to the museum’s destructive analysis policy.  To supplement the 

archaeofauna data, I collected bone samples of modern fauna from central California and 

also used published isotope results from the literature.  I evaluate all dietary differences 

between periods and regions using the Mann-Whitney U test, which is a commonly used 

non-parametric alternative to the Student’s T-test.  Because I expect data to be non-

normally distributed, this statistic is especially suited to the data since comparisons are 

based on average rank rather than on sample means.  I consider results to be statistically 

significant at p<.05.  

Collagen 

A diamond-studded dremel drill was used to clean the external bone cortex and 

to remove any adhering cancellous bone from the samples.  I cleaned bone samples 

ultrasonically in 50 mm centrifuge tubes through washes of Barnstead filtered-dH20, 95 

percent ethanol, 100 percent ethanol, and acetone to remove any surface contaminants.  

The “collagen” fraction was extracted by soaking bone samples in a .25 M HCl solution 

until completely demineralized (Ambrose 1993; Schoeninger et al. 1989; Schwarcz and 

Schoeninger 1991).  Collagen was extracted from bone powder samples by soaking the 

sample in a 1.0 M HCl solution until demineralized (~45 min to 1 hr), following a 

modified protocol of Ambrose (1990) and Bell et al. (2001).  Collagen pseudomorphs 

were soaked in a .125 M solution of NaOH for 24 hrs to remove humic contaminants, 

and the “collagen” residue was gelatinized, frozen overnight, and lyophilized (freeze-

dried).  I measured collagen yields by subtracting the collagen sample weight after 

processing from the pretreatment sample weight.  Fresh bone provides good collagen 
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yields of around 20 percent, while yields between 1 and 5 percent may produce 

anomalous results (Ambrose 2000; van Klinken 1999).  Carbon and nitrogen isotope 

ratios in collagen were measured by continuous-flow mass spectrometry by Thomas 

Boutton, Department of Rangeland Ecology and Management, at Texas A&M 

University.  Collagen was combusted in a Carbo Erba EA-1108 elemental analyzer, 

which feeds sample gases to the Finnigan Delta Plus isotope ratio mass spectrometer.  

Precision of duplicate measurements was ± .1‰ for δ13C and ± .15‰ for δ15N.  I 

calculated atomic C/N ratios to identify diagenetically altered samples.  Previous 

research suggests that samples with a C/N ratio outside the range of 2.9-3.6 may be 

diagenetically altered (DeNiro 1985). 

Apatite 

For bioapatite, bone samples were mechanically ground into a powder using a 

steel mortar and pestle and sieved through a fine-mesh screen (<70 µm).  The collagen 

fraction was removed through treatment with a 1.5 percent sodium hypochlorite solution 

(.04 ml solution/mg sample) for 48 hr, replaced once at 24 hr (Koch et al. 1997).  The 

samples were agitated several times a day to ensure even contact between the bone 

powder and solution.  At 48 hr, the solution was centrifuged, decanted, and rinsed three 

times through Barnstead filtered-dH20.  Diagenetic contaminants were removed using a 

1 M solution (.04 ml solution/mg sample) of dilute acetic acid, buffered with NaOH to a 

pH of 4.5 (Koch et al. 1997).  The samples were treated for 24 hr, with a solution change 

at 12 hr.  At 24 hr, the solution was centrifuged, decanted, and rinsed three times.  The 

samples were placed in an oven to dry overnight at 90°C.  Ethan Grossman, of the 
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Department of Geology and Geophysics, Texas A&M University, measured stable 

carbon and oxygen isotope ratios using a Thermo Finnigan Delta Plus isotope ratio mass 

spectrometer with a Gas Bench II on-line gas preparation system.  Stable isotope ratios 

were measured relative to PDB and the data were corrected for an internal laboratory 

carbonate standard (B2; -0.509‰ for δ13C, –0.14‰ for δ18O).  Instrument precision is 

~± .1‰ for δ13C and ± .2‰ for δ18O. 

FTIR Analysis 

To evaluate diagenesis, I performed Fourier transform infrared spectroscopy 

(FTIR) on a subset of apatite samples (n=30) from ten archaeological sites.  Since there 

may be a relationship between collagen and apatite preservation, I selected samples that 

primarily had high C/N ratios and/or low collagen yields.  I prepared FTIR samples by 

mechanically grinding 2 mg of fine bone powder with 200 mg of spectroscopic grade 

KBr (potassium bromide).  The KBr/bone mixture was placed on a 12 mm disc and 

pressed into a pellet using a hydraulic press at ~10,000 psi.  FTIR uses a light source, 

which passes an infrared beam through the KBr pellet.  As photons of infrared light 

interact with molecules within the bone, certain wavelengths of light are absorbed that 

identify bands associated with the PO4, CO3, OH, and H2O groups (Surovell and Stiner 

2001:633).  The relative abundance of light measured across these wavelengths is used 

to evaluate chemical alterations due to diagenesis.  I collected spectra between wave 

numbers 2500 and 400 cm-1, and scanned each sample 100 times using a Nicolet Magna 

560 FTIR spectrometer.  I corrected the baseline of each scan and measured spectra 
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heights at 565, 590, 605, 1035, and 1415 cm-1 using the OMNIC (Version 3.0) computer 

software program (Wright and Schwarcz 1996; Garvie-Lok et al. 2004).   

The most commonly used measures of diagenesis in bone apatite include the C/P 

(CO3/PO4) ratio and the crystallinity index (CI), or splitting factor (SF).  The C/P ratio is 

used to measure carbonate content and is calculated by dividing the 1415 cm-1 by the 

1035 cm-1 peak height (Wright and Schwarcz 1996).  Low C/P values (~.15) indicate 

low carbonate content, while high values (>.25) indicate higher than modern bone 

carbonate content.  I calculated the CI by adding the 565 and 605 cm-1 peaks, and 

dividing by the 590 cm-1 trough in between them (Termine and Posner 1966; Shemesh 

1990; Surovell and Stiner 2001).  The CI evaluates the crystalline structure of bioapatite, 

and high values (> 4.25) can indicate either post-burial increase in crystal size or the 

dissolution of more soluble crystals due to diagenesis or sample treatment (Nielsen-

Marsh and Hedges 2000b).  FTIR preparation and analysis were performed under the 

supervision of Dr. Andreas Kronenberg, Department of Geology and Geophysics, at 

Texas A&M University.  FTIR data was repeatable (n=4) at .04 ± .01 for C/P and .12 ± 

.13 for CI.   

Parameters of Prehistoric Diet in Central California 

Reconstructions of prehistoric diet in central California have focused on the 

analysis of artifact assemblages, archaeobotanical remains, and archaeofaunal remains.  

Although each of these sources of dietary information are subject to biases, such as 

differential preservation and potential misinterpretation of artifact function, these data – 

in conjunction with the ethnohistoric record – can be used to define the parameters of the 
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prehistoric diet.  Archaeological research in central California suggests a subsistence 

economy focused on intensive game hunting, fishing, and seed and nut exploitation.  

However, the relative importance of these different subsistence strategies throughout the 

Holocene has been the focus of much debate.   

The “menu” for central California theoretically includes any plant or animal 

resource that could have been consumed prehistorically.  Strike’s (1994) ethnobotanical 

volume indicates that the California Indians exploited hundreds of different plant 

resources during the ethnohistoric period.  However, many of these plant resources were 

harvested solely for medicinal properties or for the construction of housing, boats, and 

basketry.  Although the ethnohistoric and ethnographic record provide valuable 

information regarding “menu” choices, these dietary reconstructions may not directly 

reflect prehistoric uses of plant and animal resources. 

Plant Resources 

The natural landscape in central California has been substantially altered by 

human activity over the past two hundred and fifty years.  The arrival of Europeans and 

their cattle in the late eighteenth century resulted in the introduction of foreign grasses 

that quickly replaced much of the indigenous vegetation of the Central Valley and San 

Francisco Bay area.  Since the late 1800s, land reclamation projects, mining, farming, 

and dam construction all dramatically altered ecosystems of the lower Sacramento 

Valley and San Francisco Bay estuary.  These changes are expected to affect δ13C and 

δ15N in food webs, which may inhibit paleodietary interpretations of key plant resources.  
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Since stable isotope data are not available for archaeobotanical remains from the region, 

I rely on published data on modern plants, recognizing these constraints.  

Table 5.1 lists several economically important plant food resources in central 

California and their isotopic composition.  Figure 5.1 plots the δ13C and δ15N values of 

these plants reported in the literature.  These plants are described in the ethnographic 

literature of central California groups (see Strike 1994), and many of the taxa are also 

abundant in archaeobotanical assemblages (Wohlgemuth 2004).  The data are from 

modern plants from San Francisco Bay and the southern California coast.  I corrected for 

the anthropogenic burning of fossils fuels (“Suess Effect”) that has lowered modern 

atmospheric CO2 δ13C values, by adding +1.5‰ to modern plant values (Ambrose et al. 

1997).  This correction is necessary to bring these values in line with expectations of the 

prehistoric diet.   
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Table 5.1.  Names and Stable Isotope Values of Economically Important Plants Resources in Central California. 

Common Name Species n2 δδδδ13C δδδδ13C  
Corrected1 δδδδ15ΝΝΝΝ Location Citation Sample 

Nuts 

Valley oak Quercus lobata 1 -27.47 -25.97 3.00 SC Goldberg 1993:180, Table 8 acorns 
Scrub oak Quercus dumosa 1 -23.95 -22.45 -.76 SC Goldberg 1993:180, Table 8 acorns 
Coast live oak Quercus agrifolia 1 -24.80 -23.30 2.82 SC Goldberg 1993:180, Table 8 acorns 
Coast live oak Quercus agrifolia 1 -27.37 -25.87 -1.24 SC Goldberg 1993:180, Table 8 leaves 
Walnut Juglans californica 1 -26.79 -25.29 1.16 SC Goldberg 1993:180, Table 8 nut meat 
Holly-leaved cherry Prunus ilicifolia 1 -24.19 -22.69 6.01 SC Goldberg 1993:180, Table 8 nuts 
Holly-leaved cherry Prunus ilicifolia 1 -28.00 -26.50 5.95 SC Goldberg 1993:180, Table 8 leaves, stems 
Holly-leaved cherry Prunus ilicifolia 1 -27.21 -25.71 2.90 SC Goldberg 1993:180, Table 8 leaves 
Seeds 
Wild cucumber Marah sp. 1 -26.10 -24.60 8.61 SC Goldberg 1993:180, Table 8 nut 
Fruits 

California blackberry Rubus vitifolius 7 -24.70 -23.20 6.50 SFB Cloern et al. 2002:720, Table 2 various 
Elderberry Sambucus mexicana 1 -26.73 -25.23 3.95 SC Goldberg 1993:180, Table 8 berries 
Manzanita Arctostaphylos spp. 1 -26.35 -24.85 -3.05 SC Goldberg 1993:180, Table 8 berries 
Manzanita Arctostaphylos spp. 1 -27.17 -25.67 -.07 SC Goldberg 1993:180, Table 8 leaves, stems 
Sedges, Rushes, Seeds 
Tule Scirpus acutus 80 -27.70 -26.20 8.70 SFB Cloern et al. 2002:720, Table 2 various 
Alkalai bulrush Scirpus maritimus 13 -26.40 -24.90 9.20 SFB Cloern et al. 2002:720, Table 2 various 
California bulrush Scirpus californicus 34 -27.40 -25.90 8.30 SFB Cloern et al. 2002:720, Table 2 various 
Common cattail Typha latifolia 79 -25.50 -24.00 7.00 SFB Cloern et al. 2002:720, Table 2 various 

1 +1.5‰ added to published modern plant values to correct for “Suess Effect”.   
2 n >1 are mean values (SD not provided).   
Location: SC = Southern California, SFB = San Francisco Bay. 
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Figure 5.1.  δ13C and δ15N values for economically important plants in central California.   
Note:  +1.5‰ was added to the published δ13C values to correct for the “Suess Effect”. 

Sources of data are listed in Table 5.1. 

I calculated mean δ13C and δ15N values for six different plant species (n=12), 

including oak (Quercus sp.), walnut (Juglans californica), holly-leaved cherry (Prunus 

ilicifolia), wild cucumber (Marah sp.), elderberry (Sambucus mexicana), and manzanita 

(Arctostaphylos spp.).  δ13C values for these plants range from –22.45 to –26.5‰, with 

an average value of –24.8 ± 1.3‰.  δ15N values are more variable, and range from –.07 

to 8.6‰, with an average value of 2.44 ± 3.4‰.  For other plants listed in Table 5.1, 

δ13C and δ15N signatures represent published mean values based on more representative 

samples.  These plants include California blackberry (Rubus vitifolius), tule (Scirpus 
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acutus), alkalai bulrush (Scirpus maritimus), California bulrush (Scirpus californicus), 

and cattail (Typha latifolia).  The mean values for these plants fall within the range of 

the calculated means for other plants.   

Acorns (Quercus spp.) have an average isotopic composition of –24.1 ± 1.8‰ for 

δ13C and .96 ± 2.3‰ for δ15N.  Manzanita and acorns from some oak trees show 

unusually low δ15N values that are close to the standard value for AIR, which may be 

influenced by chemical fertilzers that lower δ15N values of soils (Keegan 1989).  In 

contrast, wild cucumber, cattail, holly-leaved cherry, tule, and bulrush all have high δ15N 

values.  Many of these plants are associated with nitrogen-enriched saltwater marsh 

environments, which may explain their high δ15N values (Cloern et al. 2002).  However, 

nitrates from animal fertilizers and pollution may also be contributing to these high 

isotopic signatures.  Ethnographic and archaeological data indicate that the seeds of 

these plants were important food resources to native California societies, and were often 

roasted or boiled into porridge (Strike 1994).  

Animal Resources 

In addition to the diverse array of plant foods exploited in native California, the 

diet also consisted of a number of terrestrial, freshwater, and marine animal resources.  

Archaeofaunal studies indicate that a variety of terrestrial mammals were exploited 

prehistorically in central California, including black-tailed deer (Odocoileus hemionus), 

elk (Cervus elaphus), pronghorn (Antilocapra americana), coyote (Canis latrans), and 

raccoon (Procyon lotor).  
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Prehistoric fish remains from sites in the Sacramento River drainage are 

dominated by freshwater species, such as Sacramento perch (Archoplites interruptus), 

Sacramento sucker (Catostomus occidentalis), Sacramento blackfish (Orthodon 

microlepidotus), hitch (Lavinia exilicauda), and tule perch (Hysterocarpus traski), 

among others (Gobalet et al. 2004:823-824). 

In contrast, bones of salmon (Oncorhynchus spp.) and sturgeon (Acipenser spp.) 

are poorly represented in many sites within the Sacramento River drainage (Gobalet et 

al. 2004).  However, salmon were a major dietary food resource during the ethnohistoric 

period, and may be under-represented in archaeofaunal assemblages (Yoshiyama 1999).  

For instance, Kroeber (1932) noted that salmon were often filleted at the weir, so fish 

bones may rarely have been deposited in village middens.  Shell remains of 

Margaritifera falcata have also been identified in archaeological sites along the 

Sacramento River, although freshwater mussels probably were a minor component of the 

diet (Bouey and Richman 1995). 

In the greater San Francisco Bay area, prehistoric peoples exploited a variety of 

anadromous, marine, and freshwater fish species.  Anadromous fish are abundant in 

most Bay Area shell mounds, which suggests that salmon and sturgeon were key dietary 

items at these sites.  Marine fish were also important and included bat rays (Myliobatis 

californica), Pacific herring (Clupea pallasi), northern anchovy (Engraulis mordax), 

topsmelt (Atherinopsis affinis), jacksmelt (Atherinopsis californiensis), and leopard 

shark (Triakis semifasciata).  Although freshwater fish were probably less important, 

Gobalet et al. (2004) have identified fish bones of Sacramento sucker, Sacramento 
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blackfish, Sacramento pikeminow, Sacramento perch, thicktail chub, hitch, and 

threespine stickleback in a number of archaeological sites from the east Bay.  Freshwater 

fish could have easily been exploited from creeks and sloughs in close proximity to 

village sites.   

Archaeofaunal studies indicate that marine mammals were an important food 

resource to the prehistoric groups of San Francisco Bay.  Bones of large marine 

mammals, such as Steller sea lion (Eumetopias jubatus), California sea lion (Zalophus 

californianus), and Northern fur seal (Callorhinus ursinus) are abundant in many 

archaeological sites, as are remains of smaller resident species, such as sea otter 

(Enhydra lutris) and harbor seal (Phoca vitulina).   

Shellfish also represented a key dietary resource to prehistoric San Francisco Bay 

populations.  Shell mound sites contain an abundance of California oyster (Ostrea 

lurida), bay mussel (Mytilus spp.), and bent-nosed clam (Macoma nasuta), which could 

have been exploited throughout most of the year.  However, many researchers have 

argued that the abundance of shellfish in village middens may be a poor determinant of 

their dietary importance, since shellfish provide small amounts of meat relative to shell 

detritus (Claassen 1998).    

Table 5.2 lists isotope ratios of economically important fauna from central 

California.  I include data from the published literature in order to expand the breadth of 

faunal dietary signatures.  For all modern fauna, I converted modern values to prehistoric 

values by adding +1.5‰ to δ13C values to correct for anthropogenic burning of fossil 

fuels.  To reconstruct isotopic values of dietary meat, I corrected bone collagen isotope 
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values for the “offset” between collagen and muscle tissue caused by inter-tissue 

differences in isotopic fractionation.  For mammals, I added –2.4‰ to δ13C values to 

correct for the offset between bone collagen and muscle (DeNiro and Epstein 1978).  

This offset is similar to the –2.25‰ value reported by Tieszen and Fagre (1993) in 

controlled diet experiments on mice.  For fish, I corrected for the offset between bone-

collagen and muscle by adding –3.7‰ to δ13C values (Keegan and DeNiro 1988).  This 

correction was not necessary for many of the marine fauna, since published δ13C values 

were taken directly from muscle tissue.  Although some studies on animals have found a 

small bone collagen-to-muscle offset for δ15N values (~1.7±.7‰), there is a high degree 

of variation reported between researchers (Keegan and DeNiro 1988).  For the purposes 

of this study, I assume that δ15N values for bone collagen and muscle are the same. 

For the samples I processed, C/N ratios calculated for modern and archaeological fauna 

fall within the acceptable range of well-preserved collagen (2.9-3.6).  A sea otter sample 

has a C/N ratio of 3.56, but shows adequate collagen yield (6.5 percent) and has δ13C 

and δ15N values within the range of other specimens.  An archaeological salmon bone 

shows a low collagen yield (.91 percent), but has an acceptable C/N ratio (3.46).  δ13C 

and δ15N values for this specimen are within the expected range for anadromous fish, c 

although the δ15N value is higher than the values for other salmon.  Given the degree of 

isotopic variability in fish, it is uncertain whether this sample is diagenetically altered.  

Collagen yields for faunal specimens ranged from .91 to 22.7 percent, with an average of 

9.1 percent (n=19).  There was no relationship between C/N ratio and collagen yields in   
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Table 5.2.  Names and Stable Isotope Values of Economically Important Animal Resources in Central California. 

Common Name Species n1  
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Terrestrial mammals 
Black tailed deer Odocoileus hemionus a 1 AB -19.89  -22.29   4.57     SC 
Black tailed deer Odocoileus hemionus a 1 AB -19.87  -22.27   5.62     SC 
Black tailed deer Odocoileus hemionus a 1 AB -20.68  -23.08   2.90     SC 
Black tailed deer Odocoileus hemionus a 1 AB -18.37  -20.77   6.18     SC 
Black tailed deer Odocoileus hemionus a 1 AB -19.70  -22.10   4.29     SC 
Black tailed deer Odocoileus hemionus a 1 AB -18.9  -21.30   3.88     SC 
Black tailed deer Odocoileus hemionus a 1 AB -19.33  -21.73   5.31     SC 
Black tailed deer Odocoileus hemionus b 1 MB -22.87  -23.77 -16.01 5.36 5.82 44.6 15.3 3.39 17.40 SV 
Black tailed deer Odocoileus hemionus b 1 AB -20.18  -22.58 -11.33 8.85 5.56 35.9 12.7 3.3 3.22 SFB 
Black tailed deer Odocoileus hemionus b 1 AB -20.55  -22.95 -13.61 6.94 7.04 46.1 16.5 3.26 15.20 SFB 
Black tailed deer Odocoileus hemionus b 1 AB -20.88  -23.28 -10.99 9.89 5.74 41.1 14.3 3.35 1.22 SV 

Pronghorn Antilocapra  
Americana                  b 1 AB -20.78  -23.18 -12.78 8.00 7.83 45.9 16.6 3.24 6.79 SV 

Elk Cervus elaphus           b 1 AB -20.21  -22.61 -11.55 8.66 5.77 43.9 15.8 3.24 8.37 SFB 
Elk Cervus elaphus           b 1 AB -21.01  -23.41 -12.80 8.21 5.39 45.3 16.3 3.25 11.10 SV 
Raccoon Procyon lotor             b 1 MB -20.98 -19.48 -21.88 -15.73 3.75 8.62 45.9 16.5 3.24 22.60 SV 
Raccoon Procyon lotor             b 1 AB -12.20  -14.60 -9.55 2.65 8.66 43.0 14.6 3.43 9.49 SFB 
Coyote Canis latrans              b 1 MB -19.87 -18.37 -20.77 -13.63 4.74 7.73 45.9 16.3 3.29 14.70 SV 
Coyote Canis latrans              b 1 AB -18.76  -21.16 -12.08 6.68 8.19 37.4 13.6 3.22 6.03 SFB 
Jackrabbit Lepus californicus      c 1 MB -22.00 -20.50 -22.90   1.90     SC 



 
 
 
Table 5.2 Continued 

 

148 

 

Common Name Species n1  

T
is

su
e2  

O
ri

gi
na

l δδ δδ
13

C
3  

Fo
ss

il 
Fu

el
  δδ δδ

13
C

 
C

or
re

ct
ed

4  

C
or

re
ct

ed
 δδ δδ

13
C

 
M

ea
t5  

A
pa

tit
e 

δδ δδ13
C

6  

C
ol

la
ge

n-
A

pa
tit

e 
Sp

ac
in

g 

δδ δδ15
ΝΝ ΝΝ

  

%
 C

 

%
 N

 

C
/N

 

%
C

ol
la

ge
n 

Y
ie

ld
 

L
oc

at
io

n 

Squirrel Sciurus sp.                  c 1 MB -19.90 -18.40 -20.80   2.10     SC 
Mountain lion Felis concolor             c 1 MB -17.60 -16.10 -18.50   7.60     SC 
Bobcat Lynx rufus                  c 1 MB -15.80 -14.30 -16.70   10.00     SC 
Marine mammals 
Sea Otter Enhydra lutris            b 1 AB -11.37  -13.77 -8.38 2.99 16.30 44.9 16.2 3.22 14.50 SFB 
Sea Otter Enhydra lutris            b 1 AB -10.57  -12.97 -7.34 3.23 14.89 41.9 13.7 3.56 6.48 SFB 
Sea Otter Enhydra lutris             c 1 MB -10.00 -8.50 -10.90   13.90     NC 
Sea Otter Enhydra lutris             c 1 MB -9.70 -8.20 -10.60   13.30     NC 
Sea Otter Enhydra lutris             c 1 MB -9.60 -8.10 -10.50   15.40     NC 
Harbor seal Phoca vitulina            b 1 AB -11.13  -13.53 -9.78 1.35 18.58 43.6 14.5 3.51 6.05 SFB 
Harbor seal Phoca vitulina            c 1 MB -11.70 -10.20 -12.60   16.00     SC 
Harbor seal Phoca vitulina            c 1 MB -13.90 -12.40 -14.80   19.30     NC 
Harbor seal Phoca vitulina            c 1 MB -11.20 -9.70 -12.10   17.50      
Steller sea lion Eumetopias jubatus    b 1 AB -11.90  -14.30 -10.11 1.79 19.05 39.2 14.2 3.23 10.20 SFB 
California sea 
lion 

Zalophus   
californianus              c                  1 MB -12.90 -10.40 -12.80   17.60     SC 

California sea 
lion 

Zalophus   
californianus              c                  1 MB -13.30 -11.80 -14.20   17.20     SC 

California sea 
lion 

Zalophus   
californianus              c                  1 MB -11.00 -9.50 -11.90   19.30     NC 

California sea 
lion 

Zalophus   
californianus              c                  1 MB -13.30 -11.80 -14.20   23.00     NC 
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Marine fish 
Marine fish Marine fish                 c  10 MB -12.50±1.4 -11.00±1.4 -11.00±1.4   13.80±1.6     SC 
Rockfish, 
surfperch Marine fish                 d 24 MB  -16.10±.7 -16.10±.7   14.30±1.3     CCC 

Leopard shark Triakis semifasciata   e  31 MT -17.20±.9 -15.70±.9 -15.70±.9   17.20±1.6     SFB 

Jacksmelt Atherinopsis 
californiensis              e 15 MT -17.30±1.4 15.80±1.4 15.80±1.4   14.30±1.4     SFB 

Northern 
anchovy Engraulis mordax       f  4 MT -16.80±.4 -15.30±.4 -15.30±.4   13.90±.8     GF 

Pacific sardine Sardinops sajax           f 3 MT -17.00±.3 -15.50±.3 -15.50±.3   12.90±.1     GF 
Shortbelly 
rockfish  Sebastes jordanii         f 5 MT -17.10±.3 -15.60±.3 -15.60±.3   13.80±.2     GF 

Lingcod Ophiodon elongates    f 6 MT -18.30±.5 -16.80±.5 -16.80±.5   12.50±.3     GF 

Shiner surfperch Cymatogaster 
aggregate                    e 18 MT -17.40±.8 -15.90 -15.90   15.90±1.5     SFB 

Anadromous fish 
Salmon Oncorhynchus spp.     b 1 AB -12.12  -15.82 -8.46 3.66 17.29 16.5 5.57 3.46 .912 SFB 
Salmon Oncorhynchus spp.     b 1 MB -13.00 -11.50 -15.20 -8.74 4.26 13.87 40.4 13.7 3.44 4.88 CCC 
Sturgeon Acipenser spp.            b 1 AB -7.94  -11.64 -8.46 -.52 16.57 44.4 16.3 3.18 9.70 SFB 
Sturgeon Acipenser spp.            b 1 AB -13.17  -16.87 -7.86 5.31 15.25 30.4 11.0 3.20 3.79 SFB 

White sturgeon Acipenser 
transmontanus            e 13 MT -19.70±1.1 -18.20±1.1 -18.20±1.1   17.50±1.8     SFB 

Chinook salmon Oncorhynchus 
tshawytscha                 f 4 MT -17.50±.2 -16.00±.2 -16.00±.2   13.80±.2     GF 
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Freshwater fish 
Sacramento 
sucker 

Catostomus 
occidentalis                g  MB -28.00 -26.50 -26.50   9.50     CV 

Shellfish and crab 
Bay mussel Mytilus sp.                  e 21 MT -20.60±1.7 -19.10±1.7 -19.10±1.7   10.40±1.7     SFB 
Freshwater 
mussel 

Margaritifera       
falcate                         h 34 MT -22.89 -21.39 -21.39   2.50     NC 

Crab Cancer magister          i  MT ~-22.00 ~-20.50 ~-20.50   ~14.50     SUB 
1 Number of samples (S.D. provided for n>1 if available), 2sample (AB = archaeological bone, MB = modern bone, MT = muscle tissue), 

3uncorrected δ13C value for bone collagen or muscle tissue, 4+1.5‰ added to δ13C values to correct for “Suess Effect”, 5-2.4‰ and –3.7‰ 
added to δ13C bone collagen values for mammals and fish, respectively, to correct for fractionation between bone collagen and muscle tissue 
(DeNiro and Epstein 1978), 6apatite δ13C value, +1.5‰ added to modern bone samples to correct for “Suess Effect”. 

2 Bold-faced values in table indicate low collagen yield (<1%). 
Data Sources: aGoldberg (1993:181, Table 9), bpresent study, cSchoeninger and DeNiro (1984:627, Table 1), dNewsome et al. (2004:6, Table 2), 

eGreenfield et al. 2005,  fSydeman et al. (1997:330, Table 1), gSarakinos et al. (2002:384), hHoward et al. (2005:223-234); iStewart et al. 
(2004:4524, approximated from Figure 3).  

Sample locations in California: (SC = southern California; SV = Sacramento Valley; SFB = San Francisco Bay; NC = northern California; CCC 
= central coast; Gulf of the Farallones; SUB = Suisun Bay). 
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the archaeological samples (r = .364, p = .09, n=15), so I assume that bone collagen 

signatures reflect actual dietary values. 

Figure 5.2 plots the δ13C and δ15N values of the faunal specimens.  The 

individual data points represent dietary values for single mammalian specimens; 

however, isotopic values for marine fish and shellfish represent mean values from the 

literature based on marine ecology studies (see Table 5.2).  The data conform well to 

reconstructed food webs from other terrestrial and marine ecosystems: δ13C values 

separate most terrestrial mammals from marine fauna, while δ15N values show the 

expected step-wise enrichment between trophic levels.  Collagen-apatite spacing values 

are also greatest for terrestrial herbivores, followed by terrestrial carnivores, anadromous 

fish, and marine mammals, which conforms to expectations regarding the different 

sources of dietary macronutrients between animals feeding at different levels of the food 

web. 

Terrestrial herbivore meat has a mean δ13C value of –22.4 ±.9‰ and mean δ15N 

of 5±1.6‰.  Slightly higher δ15N values in some of these samples may be due to the 

excretion of 15N-depleted urea in water-stressed herbivores.  More likely, these values 

reflect consumption of 15N-enriched plants that are typical of coastal and estuarine 

environments (Heaton 1987; see Figure 5.1).   

Terrestrial carnivore meat has an average δ13C and δ15N value of –18.9 ±2.9‰ 

and 8.5 ±.9‰, respectively.  Although raccoons are omnivorous, I include these fauna 

with terrestrial carnivores since isotopic signatures overlap.  The mountain lion, bobcat, 

and a single raccoon sample show higher δ13C values than the other carnivores, which 
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suggests greater consumption of 13C-enriched resources (marine foods, or C4 plants) in 

these samples.   
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Figure 5.2.  δ13C and δ15N “meat” values for economically important animal resources in central 
California.  Note: +1.5‰ was added to the published values to correct for the “Suess Effect”, 
and –2.4‰ was added to correct for collagen-muscle tissue fractionation in terrestrial animals 

and –3.7‰ in fish.  Marine fish and shellfish are represented by published mean values.  
Sources of data are listed in Table 5.2. 

Marine mammals and marine fish eat at high trophic levels within longer food 

chains, and have higher δ13C and δ15N values than terrestrial animals.  Marine mammals 

are at the top of the food web, with an average δ13C value of –12.8±1.4‰ and δ15N value 

of 17.2±2.6‰.  Pinniped carnivores (e.g., Steller sea lion, California sea lion, harbor 
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seal) consume a diet consisting of marine fish and invertebrates, and have an average 

δ13C value of -13.5±1.0‰ and δ15N value of 18.7 ±1.9‰ .  In contrast, sea otters mainly 

consume invertebrates and lower trophic level fish, and have an average δ13C value of  –

11.7±1.5‰ and δ15N value of 14.8±1.2‰ (n=5).  Pinnipeds and sea otters differ by 

~2.0‰ in δ13C and ~4.0‰ in δ15N. 

  Table 5.2 contains mean δ13C and δ15N values for marine fish reported in the 

literature.  Mean δ13C values for individual fish species range from –15.3 ±.4‰ for 

northern anchovy to –16.8 ±0.5‰ for lingcod.  δ15N values range from 12.5±.3‰ for 

lingcod to 17.2 ±1.6‰ for leopard shark.  Although many of the species that inhabit San 

Francisco Bay are classified as estuarine fish and are adapted to brackish waters, isotopic 

signatures of these fish clearly reflect a high trophic level signature.   

In contrast, freshwater fish have more variable isotopic signatures, and range 

from about –16.0 to –27.0‰ for δ13C and 5.0 to 14‰ for δ15N (France 1995; Katzenberg 

1999; Katzenberg and Weber 1999; Schoeninger and DeNiro 1984; Yoneda et al. 2004).  

Sacramento sucker, an indigenous fish from central California, has a δ13C value of 

approximately –26.5‰ and a δ15N value of 9.5‰, which is clearly distinct from marine 

fish (Sarakinos et al. 2002:384). 

Anadromous fish (salmon and sturgeon) are also variable because these fish 

spend their life cycle in both marine and fresh waters (Moyle 2002).  For instance, 

salmon are born in freshwater rivers and streams, migrate to the sea to mature, and again 

return to fresh waters to spawn.  However, most of the life cycle and feeding for these 
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fish occurs in the ocean; thus, δ13C and δ15N values are similar to marine fish.  

Anadromous fish have a mean δ13C value of –15.6±2.2‰ and a mean δ15N value of 

15.7±1.7‰ (Table 5.2), which is within the range of values reported for marine fish.  

Economically important invertebrates are not well characterized for the study 

area, but the available data are consistent with previous research of similar ecosystems.  

Bay mussel (Mytilus sp.) has a mean δ13C value of –19.1±1.7‰ and a mean δ15N value 

of 10.4±1.7‰ (n=21; Table 5.2).  Newsome et al. (2004:6, Table 2) report a higher mean 

δ13C value for California mussels (-14.7±.3‰, n=8) collected in Santa Cruz, California; 

however, this reflects differences in the sources of carbon between coastal and estuarine 

environments.  Freshwater mussels collected from the Yolo River Basin from northern 

California have an average δ13C value of –21.4‰, and an average δ15N value of 2.5‰, 

which is distinctly different from shellfish from saltwater enivornments (Howard et al. 

2005:223-224).  Crab mussel tissue (Cancer magister) has an approximate δ13C value of 

–20.5‰ and δ15N value of 14.5‰ for samples collected in the northern San Francisco 

Bay (Stewart et al. 2004). 

Although water birds (cormorants, ducks, and geese) were economically 

important resources in central California, avifauna dietary signatures are poorly 

characterized for the region.  δ13C values of egg albumen from piscivorous birds from 

the Farallones Islands area range from –15.9 to –17.7‰, while δ15N values range from 

16.7 to 17.3‰ (Sydeman et al. 1997:330, Table 1, n=15).  Schoeninger and DeNiro 

(1984) report much lower values for aquatic migratory birds from southern California 
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(δ13C = -21.9 ±3.9‰; δ15N = 11.1 ±2.7‰, n=3), but this may reflect interspecific 

differences in diet or the tissues sampled.  Piscivorous bird flesh should be similar to 

marine fish values for δ13C, and enriched by 3-4‰ for δ15N values. 

Figure 5.3 provides a reconstruction of the theoretical food web for prehistoric 

central California, and the isotopic values reflect the food portions actually consumed 

(e.g., meat, acorns).  The boxes represent the range of carbon and nitrogen isotope values 

as defined by the floral and faunal data presented in Tables 5.1 and 5.2.  The range 

represented by freshwater fish reflects the degree of isotopic variability described in 

studies from other regions.  This range could be narrowed with future research on 

isotopic variability of modern and archaeological fish from central California.  

Evaluation of Sample Quality 

Preparation of bone collagen for isotopic analysis involved mechanical, 

ultrasonic, and chemical cleaning to remove diagenetic contaminants from bone 

samples.  These steps are usually effective for well-preserved collagen, although sample 

quality must be carefully evaluated prior to data analysis.  To evaluate samples for 

diagenetic alteration, I examined atomic C/N ratios and percent collagen yields.  Table 

5.3 presents isotopic data and measures of sample quality for the human bone samples.  

Nine samples produced C/N ratios that were outside normal ranges for well-preserved 

collagen (2.9-3.6).  Five of these samples also had low collagen yields, and all are from 

Early period sites from the Sacramento Valley.  The remaining four samples had C/N 

ratios that were between 3.61 and 3.65, but showed high collagen yield (between 7.24  
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Figure 5.3.  Reconstructed carbon and nitrogen dietary signatures for economically  
important food resources in prehistoric central California. 

and 21.44 percent), and had δ13C and δ15N signatures similar to other samples from the 

same region and time period (Table 5.3).  Four additional samples had a C/N ratio of 3.6, 

but also produced good collagen yields (13-30 percent) and had similar δ13C and δ15N 

values to other samples from the same region and time period.  I exclude the five 

samples with both high C/N ratios and low collagen yields from the analyses, but include 

the other eight samples with C/N ratios that were between 3.6 and 3.65.   
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Table 5.3.  Stable Isotope Values and Preservation  
Indicators for Human Bone Samples from Central California. 
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Sacramento Valley 
Early 5661 powder M -20.56 -10.57 9.99 9.42 33.21 11.03 3.51 2.40 -5.59   
Early 5664 powder M -21.21 -13.00 8.21 9.46 32.49 11.14 3.40 2.20 -6.85   
Early 5667 powder M -23.09 -12.27 10.82 2.90 7.38 .98 8.79 .14 -7.44   
Early 5668 powder M -19.97 -12.24 7.73 10.02 32.33 10.17 3.71 1.60 -6.92   
Early 5677 Rib M -19.33 -12.92 6.41 11.78 43.34 15.77 3.21 6.49 -8.90 .18 3.83 
Early 5806 long bone M -20.21 -11.3 8.91 10.44 39.74 13.17 3.58 1.40 -7.63   
Early 5824 long bone M -19.70 -14.47 5.23 11.03 41.16 13.78 3.49 14.0 -9.50   
Early 5827 long bone M -19.61 -13.00 6.61 11.91 43.71 14.46 3.53 5.63 -8.67   
Early 6470 long bone M -20.78 -15.57 5.21 9.29 23.57 6.64 4.14 .90 -8.68 .23 3.25 
Early 7015 Rib M -20.20 -14.45 5.75 10.36 45.50 15.35 3.46 16.35 -10.04 .23 3.31 
Early 7597 Rib M -20.07 -14.81 5.26 11.02 45.25 16.19 3.26 7.86 -8.31   
Early 7603 Rib M -19.12 -12.87 6.25 12.87 44.55 16.32 3.19 8.65 -9.35   
Early 7613 Rib M -20.46 -13.58 6.88 10.65 46.17 16.58 3.25 10.24 -8.13   
Early 7632 long bone M -19.33 -14.23 5.10 11.58 45.42 15.25 3.48 8.59 -8.66   
Early 5666 long bone F -21.34 -12.02 9.32 9.72 21.26 7.67 3.23 3.25 -8.21   
Early 5670 powder F -19.69 -11.44 8.25 10.68 26.61 8.53 3.64 1.05 -8.63   
Early 5676 long bone F -20.01 -12.34 7.67 9.92 15.73 4.79 3.83 1.40 -8.44   
Early 5678 long bone F -19.39 -12.18 7.21 11.71 40.79 14.54 3.27 5.27 -8.14 .19 3.54 
Early 5801 long bone F -19.57 -12.44 7.13 11.67 40.35 14.52 3.46 5.83 -8.16   
Early 6472 long bone F -20.05 -15.86 4.19 10.13 44.18 15.42 3.34 14.82 -7.31   
Early 7567 Rib F -20.72 -15.43 5.29 9.66 43.20 15.77 3.20 18.38 -8.13   
Early 7575 Rib F -18.28 -12.54 5.74 12.42 31.80 10.72 3.46 3.69 -9.14 .23 3.24 
Early 7578 Rib F -19.86 -13.32 6.54 9.72 42.16 15.29 3.22 9.47 -7.71   
Early 7579 Rib F -19.28 -14.06 5.22 10.39 44.20 16.12 3.20 12.93 -8.41   
Early 7637 long bone F -19.90 -12.86 7.04 10.72 42.42 15.35 3.22 8.89 -7.84   
Middle 6718 Rib M -20.38 -14.47 5.91 11.80 44.01 15.90 3.23 21.38 -8.44   
Middle 6727 Rib M -19.74 -12.52 7.22 12.20 39.45 13.15 3.50 3.41 -9.22 .18 3.72 
Middle 6728 Rib M -19.90 -12.07 7.83 12.19 38.40 12.98 3.45 11.59 -9.01   
Middle 6785 long bone M -19.99 -11.88 8.11 11.16 35.71 12.05 3.46 4.71 -5.64 .18 3.72 
Middle 11289 rib M -20.36 -11.17 9.19 10.71 41.70 14.50 3.36 19.26 -7.83   
Middle 6698 long bone F -19.06 -12.99 6.07 12.17 43.62 15.79 3.22 10.49 -8.37   
Middle 6700 long bone F -19.83 -12.70 7.13 10.53 41.47 15.02 3.22 9.38 -7.29 .20 3.21 
Middle 6702 long bone F -19.70 -12.75 6.95 10.8 40.67 14.49 3.28 5.92 -7.49   
Middle 6703 long bone F -19.93 -13.62 6.31 10.99 42.52 15.29 3.24 12.44 -6.97   
Middle 6714 long bone F -19.78 -13.39 6.39 11.08 44.81 16.13 3.24 8.42 -5.33 .21 2.9 
Middle 6774 long bone F -19.82 -14.58 5.24 11.53 44.09 15.22 3.38 18.07 -5.97 .23 3.23 
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Middle 11276 rib F -20.24 -14.54 5.70 10.51 46.74 15.91 3.43 18.25 -7.27   
Middle 11296 rib F -20.13 -14.57 5.56 10.58 43.17 14.72 3.42 19.21 -7.39 .15 3.37 
Late 6734 long bone M -20.08 -14.42 5.66 11.12 40.92 13.73 3.48 14.70 -9.62   
Late 6779 long bone M -19.98 -12.95 7.03 11.36 44.74 14.64 3.57 7.76 -9.14   
Late 6792 rib M -19.53 -13.11 6.42 12.71 39.75 13.45 3.45 2.75 -8.76   
Late 6805 long bone M -19.43 -13.13 6.30 10.33 44.02 15.62 3.29 7.35 -7.29   
Late 7117 powder M -20.17 -13.36 6.81 10.40 41.71 14.59 3.34 5.79 -6.81   
Late 7126 rib M -20.23 -13.17 7.06 11.8 42.35 15.37 3.31 5.50 -7.91 .12 4.1 
Late 7130 powder M -20.12 -13.57 6.55 10.02 37.69 13.53 3.25 9.40 -8.26   
Late 7150 powder M -20.18 -12.79 7.39 11.53 37.54 12.39 3.54 2.57 -6.85   
Late 7151 powder M -19.89 -12.59 7.30 11.46 35.29 11.87 3.47 2.17 -7.15   
Late 7152 rib M -20.19 -13.93 6.26 11.17 43.98 14.55 3.53 7.00 -7.15   
Late 6733 long bone F -20.11 -12.27 7.84 11.76 32.73 11.13 3.43 9.68 -2.74   
Late 6796 long bone F -20.47 -12.24 8.23 10.53 35.60 12.72 3.27 4.87 -6.30   
Late 6800 long bone F -20.10 -14.09 6.01 10.12 43.84 15.72 3.25 13.33 -7.18   
Late 7127 powder F -19.56 -14.48 5.08 10.49 42.18 14.87 3.31 12.48 -7.02   
Late 7129 powder F -19.81 -15.05 4.76 10.34 42.97 15.48 3.24 8.50 -7.72   
Late 7132 powder F -19.95 -12.31 7.64 9.79 40.16 13.54 3.46 3.53 -6.47   
Late 7146 powder F -19.61 -13.39 6.22 10.36 41.82 14.29 3.41 6.69 -6.47   
Late 7147 powder F -20.18 -12.95 7.23 10.02 43.64 15.05 3.38 6.96 -7.47   
San Francisco Bay 
Early 556 rib M -14.98 -11.56 3.42 15.45 44.14 15.97 3.23 7.46 -6.82 0.2 3.44 
Early 8257 long bone M -14.29 -10.87 3.42 16.86 43.06 15.67 3.21 6.74 -6.74   
Early 8260 rib M -12.89 -10.92 1.97 17.73 44.82 15.35 3.41 12.35 -6.96   
Early 8291 long bone M -16.07 -12.19 3.88 12.62 39.52 13.33 3.46 5.57 -6.90   
Early 8292 rib M -13.65 -11.55 2.10 17.57 32.76 11.78 3.24 2.78 -7.55   
Early 8301 rib M -14.33 -9.75 4.58 16.30 43.48 15.77 3.22 10.63 -8.63   
Early 8303 long bone M -13.31 -11.02 2.29 17.30 42.65 15.30 3.25 7.55 -7.07 .16 3.75 
Early 8320 long bone M -14.14 -10.53 3.61 15.28 41.05 14.27 3.36 4.94 -5.71   
Early 8345 rib M -13.18 -10.84 2.34 18.44 44.19 15.92 3.24 5.13 -9.08   
Early 557 powder F -14.49 -10.57 3.92 15.93 44.13 15.90 3.24 6.25 -5.59 .21 3.47 
Early 8258 long bone F -14.56 -10.95 3.61 16.17 44.22 15.99 3.23 9.07 -6.07 .13 3.63 
Early 8261 long bone F -13.44 -12.04 1.40 17.32 40.28 14.47 3.25 3.86 -7.47 .13 4.28 
Early 8274 rib F -13.80 -10.96 2.84 16.35 46.18 16.45 3.28 14.80 -5.99   
Early 8283 rib F -16.32 -12.86 3.46 11.95 43.88 15.00 3.41 14.16 -6.72   
Early 8287 long bone F -14.50 -11.49 3.01 15.67 43.60 15.83 3.21 8.67 -5.77   
Early 8300 long bone F -15.34 -9.84 5.50 13.27 42.24 14.33 3.44 4.04 -6.04   
Early 8302 rib F -14.20 -10.59 3.61 16.05 44.58 14.37 3.62 7.24 -6.62   
Early 8310 rib F -13.56 -11.29 2.27 17.31 41.16 14.85 3.23 5.90 -7.46   
Middle 1392 rib M -17.87 -13.27 4.60 9.10 43.25 15.81 3.19 4.61 -4.03 .21 2.88 
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Middle 2688 long bone M -18.91 -12.60 6.31 7.74 42.42 15.4 3.21 7.37 -4.96   
Middle 3762 long bone M -15.29 -10.73 4.56 13.25 42.52 14.37 3.45 12.45 -6.40   
Middle 3782 rib M -18.95 -11.88 7.07 8.27 43.92 14.76 3.47 8.29 -6.36   
Middle 3795 rib M -16.09 -12.24 3.85 12.06 45.14 16.25 3.24 6.74 -5.74   
Middle 3815 rib M -15.73 -12.45 3.28 13.03 46.21 16.79 3.21 13.34 -3.74 .20 3.01 
Middle 7094 rib M -17.25 -13.99 3.26 10.79 45.78 16.49 3.24 24.69 -6.44   
Middle 8792 rib M -17.83 -12.97 4.86 10.10 46.05 14.73 3.65 15.03 -7.91   
Middle 8822 rib M -17.84 -13.42 4.42 10.27 44.51 16.08 3.23 14.75 -8.54   
Middle 10292 rib M -17.57 -13.91 3.66 10.23 45.57 16.44 3.23 20.04 -7.96   
Middle 1365 rib F -17.95 -13.59 4.36 8.51 46.93 16.84 3.25 19.41 -5.90   
Middle 3784 rib F -16.62 -12.59 4.03 11.16 44.90 14.54 3.60 13.44 -6.68 .23 3.27 
Middle 3787 rib F -16.48 -13.35 3.13 11.36 46.20 16.74 3.22 13.81 -6.05   
Middle 3816 rib F -16.31 -12.34 3.97 12.01 44.67 16.17 3.22 12.24 -6.60   
Middle 7075 rib F -18.65 -13.89 4.76 8.58 46.64 16.75 3.25 17.18 -6.23   
Middle 7077 rib F -18.97 -14.44 4.53 8.43 46.57 15.09 3.60 20.18 -7.30 .23 3.17 
Middle 7082 rib F -17.12 -14.48 2.64 11.86 44.19 14.34 3.60 29.67 -6.49 .18 3.38 
Middle 8763 rib F -18.39 -13.71 4.68 8.93 20.76 7.52 3.22 20.05 -7.97   
Middle 8778 rib F -19.02 -15.05 3.97 8.59 45.37 16.44 3.22 20.60 -7.71   
Middle 8797 rib F -17.97 -13.63 4.34 9.63 43.16 15.70 3.21 17.52 -7.98 .18 3.72 
Middle 8827 rib F -18.18 -13.41 4.77 9.76 44.72 15.72 3.32 18.86 -8.92 .22 3.51 
Late 10372 rib F -20.28 -15.26 5.02 6.62 43.99 15.98 3.21 22.65 -6.36   
Late 2685 rib M -16.52 -12.32 4.20 12.51 45.20 16.30 3.24 16.15 -6.44   
Late 2687 rib M -14.24 -10.44 3.80 13.94 41.78 15.03 3.24 2.31 -4.07 .18 3.42 
Late 3755 long bone M -15.73 -12.07 3.66 13.04 42.85 14.82 3.37 12.20 -6.49   
Late 7071 rib M -16.4 -13.27 3.13 11.18 46.84 15.20 3.60 21.23 -6.79 .18 3.5 
Late 7076 rib M -17.89 -14.27 3.62 9.53 44.14 16.01 3.22 19.22 -7.23 .24 3.15 
Late 7095 rib M -18.41 -15.04 3.37 9.58 46.77 15.10 3.61 21.44 -6.93 .21 3.33 
Late 7098 rib M -17.34 -14.58 2.76 10.69 46.98 16.32 3.36 20.57 -6.21   
Late 7100 long bone M -17.75 -13.37 4.38 10.01 43.32 14.92 3.39 10.99 -6.00   
Late 5329 rib F -18.47 -13.96 4.51 8.77 44.09 15.97 3.22 21.82 -6.41   
Late 7073 rib F -18.32 -13.59 4.73 8.96 46.59 14.98 3.63 14.02 -6.71 .17 3.43 
Late 7108 rib F -18.61 -12.95 5.66 9.00 42.53 14.35 3.46 4.69 -5.83 .17 3.67 
Central Coast (Tomales Bay) 
Late 6366 powder M -12.86 -9.68 3.18 16.43 40.64 14.53 3.26 3.21 -4.56   
Late 6368 powder M -13.32 -10.46 2.86 16.03 40.72 14.57 3.26 3.78 -5.45   
Late 6483 powder M -13.77 -9.94 3.83 15.58 38.85 14.06 3.22 4.75 -4.59   
Late 6375 powder F -13.64 -10.35 3.29 16.11 39.77 14.14 3.28 4.18 -4.76   

1 Samples with C/N ratios outside of normal ranges and low collagen yields (<1%) are indicated in 
bold-faced type.   

2 The high collagen yields (>20 percent) for a few samples may be due to problems with the 
balance. 
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Figure 5.4 plots C/N ratios on the x-axis and the collagen yields on the y-axis.  

With the five diagenetically altered samples removed, there is no significant relationship 

between C/N ratio and collagen yields (r = -.014, p = .884, n=106).  There is also no 

significant relationship between C/N ratios and δ13C and δ15N values (δ13C, r = -.174, p 

= .075; δ15N, r = -.146, p = .134), or between δ13C values and collagen yields (r = .119, p 

= .226).  However, δ15N values show a significant negative correlation with collagen 

yield for the San Francisco Bay samples (r = -.379, p = .001), but not for the Sacramento 

Valley samples (r = -.092, p = .519).  The negative correlation in the Bay samples is due 

to the lower collagen yields and higher δ15N values at ALA-307 (n=18; Table 5.2).  

However, when plotted together, δ13C and δ15N values are strongly correlated (r = .95, p 

= .001), which indicates that the samples are preserving a biogenic signal.  Since all 

other measures indicate good sample quality, I assume that these samples are not 

diagenetically altered.   

Thus, for the vast majority of samples (106/111 = 95.5 percent), bone quality 

indicators indicate reasonably good collagen preservation.  The average collagen yield 

for the 106 useable samples is 10.66±6.1 percent.  Average collagen yields are highest 

for ribs (13.5±6.9 percent, n=56), second highest for long bones (8.5±8.5 percent, n=37), 

and lowest for powder samples (5.3±3.0 percent, n=18).  The paired bone and powder 

samples from four individuals also showed a high degree of replicability, with mean 

differences of .03±05‰, .3±14‰, and .04±.03 for δ13C, δ15N, and C/N ratio, 

respectively.  Based on these findings, I consider the bone powder samples sufficient for 

dietary analysis.   
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Figure 5.4.  Plot of the relationship between the C/N ratio and % collagen  

yield in prehistoric human bone samples from central California. 

Diagenesis of bone apatite can be a significant problem for prehistoric bone 

samples, regardless of the length of time since burial.  Soils and groundwater from the 

burial environment can exchange CO3 with bioapatite in tooth enamel and bone, and 

may also result in carbonate dissolution and recrystallization (Nielsen-Marsh and 

Hedges 2000b).  Since these diagenetic processes alter the mineral phase of apatite, 

stable isotope ratios may not accurately reflect dietary signatures.  Dilute acetic acid is 

commonly used to remove the more labile carbonates that are adsorbed onto the surfaces 

of apatite crystals, as well as exogenous calcite and dolomite (Garvie-Lok et al. 2004; 

Kohn and Cerling 2002).  Labile carbonates are more easily dissolved by acetic acid 

treatment than are structural carbonates that substitute into crystal lattice positions 
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during diagenesis.  Although pretreatment with dilute acetic acid may be effective in 

removing diagenetic carbonates, samples should be screened for signs of 

recrystallization and carbonate content.   

Figure 5.5 presents the relationship between C/P ratio and CI in the samples (see 

Table 5.3).  There is a significant negative correlation between the C/P ratio and CI (r =  

-.733, p = .001, n=30), which suggests that recrystallization and excessive carbonate loss 

have occurred in some of the samples.  Three samples with high CI values also have low 

C/P ratios (<.15), suggesting significant loss of carbonate content.   
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Figure 5.5.  Plot of the relationship between the C/P and CI in prehistoric  

human bone apatite samples from central California. 
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Figures 5.6 and 5.7 plot the relationship between δ13C and CI and δ13C and C/P 

of apatite, respectively.  δ13C values show a significant negative correlation with C/P 

ratio (r = -.374, p = .042, n=30), but not CI (r = .341, p = .066).  However, when the five 

samples with low C/P ratios (<.17) are removed, there is no correlation between C/P 

ratio and δ13C (r = -.289, p = .161, n=25), or between CI and δ13C (r = .233, p = .233, 

n=25).  Although it was not possible to examine all samples with FTIR, the sample 

prescreening suggests that the vast majority of samples appear to be suitable for stable 

isotope analysis.  I exclude the five samples that showed low C/P ratios (<.17) from 

statistical analyses, but assume the remaining samples preserve a biogenic signal. 
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Figure 5.6.  Plot of the relationship between the C/P and apatite δ13C  
in prehistoric human bone samples from central California. 
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Figure 5.7.  Plot of the relationship between the CI and apatite δ13C  
in prehistoric human bone samples from central California. 

Paleodietary Interpretation 

Regional and Temporal Trends 

Table 5.4 presents mean stable isotope values from human bone collagen and 

apatite.  I also include the four skeletons from Tomales Bay (central coast) in the plot for 

comparison with the main study samples.  Table 5.5 presents Mann-Whitney U test 

results for inter-regional sample comparisons.  Sacramento Valley skeletons have an 

average δ13C value of –19.9±.5‰ and δ15N of 10.9±.9‰, whereas San Francisco Bay 

skeletons have an average δ13C value of –16.4±2.0‰ and δ15N of 12.3±3.3‰.  When the 

data are partitoned by time period, Early period Valley skeletons average –19.9‰ for 

δ13C and 10.8‰ for δ15N, while Bay skeletons average –14.3‰ for δ13C and 16.0‰ for 
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δ15N.  These values are significantly different (δ13C, z = -5.263, p = .001; δ15N, z = -

5.175, p = .001).  Middle period Valley skeletons average –19.9‰ for δ13C and 11.3‰ 

for δ15N, whereas Bay skeletons average –17.7‰ for δ13C and 10.0‰ for δ15N, also 

significantly different (δ13C,  = -4.506, p = .001; δ15N, -2.305, p = .021).  Late period 

Valley skeletons average –20.0‰ for δ13C and 10.9‰ for δ15N, while Bay skeletons 

average –17.2‰ for δ13C and 10.7‰ for δ15N; these values are significantly different for 

δ13C but not for δ15N (δ13C, z = -4.45, p = .001).  

Table 5.4.  Comparison of Stable Isotope Values in  
Bone Collagen and Apatite in Prehistoric Central California. 

Carbon and nitrogen bone isotope ratios show the greatest differences between 

regions in the Early period (mean differences of 5.6‰ for δ13C, 5.2‰ for δ15N).  In 

contrast, Middle and Late period samples show a ~2.0‰ difference between regions for 

carbon isotopes only.  Although δ15N values are significantly higher in Valley skeletons 

than in Bay skeletons for the Middle period, this difference is relatively small (1.3‰). 

  Collagen δδδδ13C  Apatite δδδδ13C Collagen-apatite spacing δδδδ15N  
Period n Mean SD n Mean SD n Mean SD n Mean SD 

Sacramento Valley 

    Early Period 20 -19.9 .7 24 -13.2 1.4 20 6.7 1.5 20 10.8 1.0 

    Middle Period 13 -19.9 .3 12 -13.1 1.1 12 6.8 1.1 13 11.3 .7 

    Late Period 18 -20.0 .3 17 -13.3 .8 17 6.6 1.0 18 10.9 .8 
San Francisco Bay 

    Early Period 18 -14.3 .9 15 -11.1 .8 15 3.3 1.0 18 16.0 1.8 

    Middle Period 22 -17.7 1.2 22 -13.3 1.1 22 4.4 1.0 22 10.0 1.8 

    Late Period 11 -17.2 1.4 11 -13.3 1.3 11 4.0 .8 11 10.7 1.8 
Central Coast 

    Late Period 4 -13.4 .4 4 -10.1 .4 4 3.3 .4 4 16.0 .4 
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Table 5.5.  Mann-Whitney U Results for  
Inter-regional Comparisons of Stable Isotope Values. 

 n z p value1 Trend2 
Early Period     

δ13C collagen 38 -5.263 .001 SFB>SV 

δ15N collagen 38 -5.175 .001 SFB>SV 

δ13C apatite 39 -4.331 .001 SFB>SV 
Coll-apatite spacing 39 -4.966 .001 SFB>SV 
Middle Period     

δ13C collagen 35 -4.506 .001 SFB>SV 

δ15N collagen 35 -2.305 .021 SV>SFB 

δ13C apatite 34 -.667 .505  
Coll-apatite spacing 34 -4.343 .001 SV>SFB 
Late Period     

δ13C collagen 29 -4.450 .001 SFB>SV 

δ15N collagen 29 -1.034 .301  

δ13C apatite 28 -.259 .796  
Coll-apatite spacing 28 -4.281 .001 SV>SFB 

1 Statistically significant results (p<.05) are indicated by bold-faced type in the table.  
2 Direction of trend indicates which skeletal sample has a higher δ13C or δ15N value, or larger 

collagen-apatite spacing.  

Figure 5.8 shows that δ13C and δ15N values for individual skeletons do not 

overlap between the Sacramento Valley and San Francisco Bay, indicating distinct food 

consumption patterns in the two regions.  Figure 5.9 plots carbon and nitrogen isotope 

values for the Sacramento Valley sample.  δ13C values in Valley skeletons cluster 

together and show a small spread of values, ranging from –18.3‰ to –21.3‰ in 

individual skeletons.  The spread of δ15N values is somewhat larger, and ranges from 

9.4‰ to 12.9‰ in individual skeletons.  The low variability in isotopic signatures and 

small standard deviations suggest that diets were relatively homogenous within the 

Valley during all time periods.  However, the higher standard deviations for δ13C and 
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δ15N values in Early period skeletons indicate greater isotopic variability during this 

period than was found for the Middle and Late period samples (Table 5.4).   
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Figure 5.8.  Plot of the relationship between the δ13C and δ15N in prehistoric  
human bone collagen samples from prehistoric central California. 

Statistical results presented in Table 5.6 indicate no significant temporal 

differences in δ13C and δ15N values for Sacramento Valley skeletons.  Comparison with 

the theoretical food web presented in Figure 5.3 indicates that that mean δ13C and δ15N 

values for Valley skeletons fall entirely within the expected ranges of terrestrial C3 

resources and freshwater fish.  The low δ15N values in these samples suggests that 
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dietary protein from anadromous fish (salmon, sturgeon) was not a major component of 

the diet, contrary to what has been in the ethnographic literature and ethnohistoric 

accounts (see Yoshiyama 1999). 
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Figure 5.9.  Plot of the relationship between the δ13C and δ15N in prehistoric 
 human bone collagen from the Sacramento Valley. 

In contrast to the Valley, San Francisco Bay skeletons show a strong linear 

relationship between δ13C and δ15N values (r = .98, p = .001; Figure 5.10).  This suggests 

that two isotopically distinct food sources are primarily contributing to the dietary 

signatures: 13C-enriched marine proteins and terrestrial C3 resources.  Early period 

skeletons have average values of –14.3‰ for δ13C and 16.0‰ for δ15N; Middle period 

skeletons have average values of -17.7‰ for δ13C and 10.0‰ for δ15N; and Late period 
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skeletons have average values of –17.2‰ for δ13C and 10.7‰ for δ15N.  Carbon and 

nitrogen isotope signatures are significantly different between the Early and Middle 

(δ13C, z = -5.193, p = .001; δ15N, z = -5.22, p = .001) and the Early and Late (δ13C, z =   

-3.955, p = .001; δ15N, z = -4.18, p = .001) periods (Table 5.6).  Isotope signatures are 

not significantly different between the Middle and Late period samples.  

Table 5.6.  Mann-Whitney U Results for  
Temporal Comparisons of Stable Isotope Values. 

  Sacramento Valley San Francisco Bay 
   n z p value1 Trend2  n z p value1 Trend2  

δ13C collagen 33 -.221 .825  40 -5.193 .001 EP>MP 

δ15N collagen 33 -1.437 .151  40 -5.220 .001 EP>MP 

δ13C apatite 36 -.252 .801  37 -4.578 .001 EP>MP 

E
P 

vs
. M

P 
  Coll-apatite spacing 36 -.419 .675   37 -3.001 .003 EP<MP 

δ13C collagen 38 -.629 .530   29 -3.955 .001 EP>LP 

δ15N collagen 38 -.044 .965  29 -4.180 .001 EP>LP 

δ13C apatite 41 -.543 .587  26 -3.451 .001 EP>LP 

E
P 

vs
. L

P 
  Coll-apatite spacing 41 .000 1.000   26 -1.791 .073 EP<LP 

δ13C collagen 31 -.480 .631  33 -.707 .480  

δ15N collagen 31 -1.782 .075  33 -.917 .359  

δ13C apatite 29 -.642 .521  33 -.115 .902  

M
P 

vs
. L

P 
  Coll-apatite spacing 29 -.117 .859   33 -1.261 .207   

1 Statistically significant results (p<.05) are indicated by bold-faced type in the table.  
2 Direction of trend indicates which skeletal sample has a higher δ13C or δ15N value, or larger 

collagen-apatite spacing. 

Comparison with the theoretical food web presented in Figure 5.3 indicates that 

that mean δ13C and δ15N values for Bay skeletons fall within the range of marine and 

terrestrial C3 resources.  Early period skeletons fall within the expected dietary “meat” 

values of high trophic level marine resources, including both marine and anadromous 

fish, and marine mammals.  Middle and Late period skeletons show a high level of 
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variability and overlap, and also significantly lower δ13C and δ15N values, which 

indicate greater consumption of lower trophic level marine resources (e.g., shellfish) and 

a significant contribution of C3 plants. 
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Figure 5.10.  Plot of the relationship between the δ13C and δ15N in prehistoric human bone collagen 
from San Francisco Bay.  The linear relationship indicates that two isotopically distinct 

food resources are contributing to dietary signatures (Pearson’s r  = .98, p = .001). 

Bay and Valley bone apatite δ13C values are nearly identical in the Middle and 

Late periods (~-13.3‰; Table 5.4).  In contrast, Early period Bay values are enriched in 

13C by 2.1‰ over Valley skeletons, a statistically sigificant difference (z = -4.331, p = 

.001; Table 5.5).   
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Valley skeletons have a collagen-apatite spacing of 6.7‰, 6.8‰, and 6.6‰ for 

the Early, Middle, and Late periods, respectively (Table 5.4).  In contrast, collagen-

apatite spacing in Bay skeletons is 3.3‰, 4.4‰, and 4.0‰ for the Early, Middle, and 

Late periods, respectively.   
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Figure 5.11.  Plot of the relationship between the δ13C and collagen-apatite spacing δ13C  
in prehistoric human bone samples from the Sacramento Valley. 
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Figure 5.12.  Plot of the relationship between the δ13C and collagen-apatite  
spacing δ13C in prehistoric human bone in San Francisco Bay. 

Figures 5.11 and 5.12 plot the relationship between collagen-apatite spacing and 

δ15N for the Sacramento Valley and San Francisco Bay samples, respectively.  As 

discussed previously, a collagen-apatite spacing value of 4.4‰ indicates that the δ13C of 

protein component of the diet is equal to that of the whole diet.  Values higher than 

4.4‰ indicate that dietary protein is depleted in 13C relative to the whole diet, and values 

less than 4.4‰ indicate that the δ13C of dietary protein is enriched in 13C relative to that 

of the whole diet.  The large collagen-apatite spacing value of ~6.7‰ in Valley skeletons 

indicates that the diet was significantly depleted in 13C relative to the whole diet, which 

indicates a diet that consisted primarily of C3 terrestrial resources (plants and mammals) 

and freshwater fish.  However, the smaller values (<4.4‰) in Early and Late period Bay 

skeletons indicate that the δ13C of dietary protein was more enriched in 13C than that of 
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the whole diet, which indicates a diet that consisted of marine proteins and terrestrial 

plant resources.  The average 4.4‰ collagen-apatite spacing in Middle period Bay Area 

skeletons indicates that the δ13C of dietary protein was equal to that of the whole diet. 

Bone apatite δ13C values are significantly higher in Early period Bay skeletons 

than in Middle and Late period Bay skeletons (EP vs. MP, z = -4.578, p = .001; EP vs. 

LP, z = -3.451, p = .001).  Collagen-apatite spacing values are also smallest for Early 

period skeletons, and then increase through time, suggesting a temporal shift toward 

greater consumption of C3 plants.  Early and Middle period collagen-apatite spacing 

values are significantly different (z = -3.001, p = .003), and differences approach 

statistical significance (p = .073) for comparisons between Early and Late period Bay 

skeletons. 

Carbon and nitrogen stable isotope ratios from Tomales Bay (central California 

coast) are featured in Figure 5.8 (also see Table 5.4).  These skeletons have average 

values of –13.4‰ for δ13C and 16.0‰ for δ15N, and plot in the upper right hand corner 

of Figure 5.8 alongside Early period Bay skeletons.  The Tomales Bay region, to the 

north of San Francisco Bay, is thought to have been occupied relatively late in 

prehistory, and it is of particular interest that these skeletons are isotopically similar to 

Early period Bay Area groups.  The mean collagen-apatite spacing value of 3.3‰ is also 

identical to Early period Bay skeletons.  Although larger sample sizes are needed, stable 

isotope bone values from Tomales Bay are consistent with a 13C-enriched diet, 

comprising high trophic level marine proteins and terrestrial C3 carbohydrates.  The 

similarities between the Early period Bay and Late period coast are interesting in light of 
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the large time difference represented by the two samples, which is approximately 2000 

years.  

Sex Comparisons 

Although samples sizes are relatively small when male and female skeletons are 

examined separately, sex differences in food consumption patterns may be reflected in 

stable isotope signatures.  Table 5.7 presents carbon and nitrogen stable isotope data for 

males and females by region, and statistical results are provided in Table 5.8.  In the 

Sacramento Valley samples, male and female skeletons have nearly identical δ13C 

signatures, whereas δ15N values in males are slightly enriched by ~.5‰.  This suggests 

greater meat consumption in males, but the difference in δ15N is small and only 

approaches statistical significance for the Middle (z = - 1.757, p = .079) and Late (z =     

-1.822, p = .068) period samples.  For bone apatite, Middle period male skeletons also 

have significantly higher δ13C values than female skeletons (1.2‰ difference; z  = -2.03, 

p = .042).  However, collagen-apatite spacing differences indicate that dietary protein is 

less enriched in 13C in Middle period males than in females (z = -2.03, p = .042).  These 

differences could be due to greater consumption of 13C-depleted freshwater fish and C3 

plants by males, which would account for the higher δ15N and collagen-apatite spacing 

values.  In contrast, the lower δ15N values and smaller collagen-apatite spacing in 

females relative to males could be due to their greater consumption of terrestrial 

herbivores and lesser consumption of C3 plants. 
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Table 5.7. Sex Comparison of Stable Isotope Values in Prehistoric Central California. 

    Collagen δδδδ13C  Apatite δδδδ13C 
Collagen-apatite 

spacing δδδδ15ΝΝΝΝ  
Period Sex n Mean SD n Mean SD n Mean SD n Mean SD 

Sacramento Valley 
Early Period Males 11 -20.0 .6 13 -13.3 1.4 13 6.7 1.6 11 11.0 1.1 
 Females 9 -19.8 .9 11 -13.1 1.4 11 6.7 1.5 9 10.7 1.0 
Middle Period Males 5 -20.1 .3 5 -12.4 1.2 5 7.7 1.2 5 11.6 .7 
 Females 8 -20.0 .4 8 -13.6 .8 7 6.3 .7 8 11.0 .6 
Late Period Males 10 -20.0 .3 10 -13.3 .6 9 6.6 .6 10 11.2 .8 
  Females 8 -20.0 .3 8 -13.4 1.1 8 6.6 1.3 8 10.4 .6 
San Francisco Bay 
Early Period Males 9 -14.1 1.0 9 -11.0 .7 8 3.2 .9 9 16.4 1.8 
 Females 9 -14.5 .9 9 -11.2 .9 7 3.5 1.0 9 15.6 1.8 
Middle Period Males 10 -17.3 1.3 10 -12.8 1.0 10 4.6 1.3 10 10.5 1.9 
 Females 12 -18.0 1.2 12 -13.8 .9 12 4.2 .7 12 9.6 1.7 
Late Period Males 8 -16.8 1.4 8 -13.2 1.5 8 3.6 .5 8 11.3 1.7 
  Females 3 -18.5 .2 3 -13.5 .5 3 5.0 .6 3 8.9 .1 
Central Coast 
Late Period Males 3 -13.3 .5 3 -10.0 .4 3 3.3 .5 3 16.0 .4 
  Females 1 -13.6 - - -10.4 - 1 3.3 - 1 16.1 - 

 

Table 5.8.  Mann-Whitney U Result Sex Comparisons of Stable Isotope Values. 
  Sacramento Valley San Francisco Bay 

Period    n z p value1 Trend2  n z p value1 Trend2  
Early Period δ13C collagen 20 -.494 .621   18 -1.104 .270   

 δ15N collagen 20 -.570 .569  18 -1.015 .310  

 δ13C apatite 24 -.782 .434  15 .000 1.000  
  Coll-apatite spacing 24 -.261 .794   15 -.638 .524   

Middle Period δ13C collagen 13 -1.317 .188   22 -1.451 .147   

 δ15N collagen 13 -1.757 .079  22 -1.055 .291  

 δ13C apatite 12 -2.030 .042 M>F 22 -2.176 .030 M>F 
  Coll-apatite spacing 12 -2.030 .042 M>F  22 -.396 .692   

Late Period δ13C collagen 18 -.311 .756  11 -2.245 .025 M>F 

 δ15N collagen 18 -1.822 .068  11 -2.449 .014 M>F 

 δ13C apatite 17 -.144 .885  11 -.204 .838  
  Coll-apatite spacing 17 .000 1.000   11 -2.449 .014 F>M  

1 Statistically significant results (p<.05) are indicated by bold-faced type in the table. 
2 Direction of trend indicates which skeletal sample has a higher δ13C or δ15N value, or larger 

collagen-apatite spacing.  
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Compared with the Sacramento Valley, isotopic signatures in San Francisco Bay 

are more distinct between the sexes.  For all time periods, male skeletons have slightly 

higher δ13C and δ15N values than female skeletons.  Although the sample size is notably 

small, Late period males have significantly higher δ13C and δ15N values than females 

(δ13C, z = -2.245, p = .025; δ15N, z = -2.449, p = .014), and are enriched by .7‰ for δ13C 

and by 2.4‰ for δ15N.  The smaller collagen-apatite spacing values in Late period male 

skeletons indicates that male individuals consumed greater amounts of 13C-enriched 

marine foods than females in the sample (z = -2.449, p = .014).  Although isotopic 

signatures are significantly different between the sexes in the Late period sample, this 

finding may be the result of small sample size and is treated conservatively. 

Summary 

The stable isotope results have a number of important implications for central 

California prehistory.  Comparisons between the lower Sacramento Valley and San 

Francisco Bay indicate that food consumption patterns were distinct between the two 

regions, with no overlap in dietary signatures.  Overall, the isotopic data reflect food 

resources available from local food webs.  In the lower Sacramento Valley, carbon and 

nitrogen isotopic signatures from bone collagen indicate a mixed diet that consisted 

primarily of C3 terrestrial resources.  When compared with dietary signatures of locally 

available food resources, these signatures fall within expected ranges of terrestrial game 

(e.g., herbivores, carnivores), C3 plants (acorns, seeds), and freshwater fish.  This result 

is supported by the collagen-apatite spacing values, which indicate that the dietary 

protein was less enriched in 13C than the whole diet.  The high spacing (~6.6‰) further 
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indicates heavy consumption of C3 plant carbohydrates, which could include acorns, 

seeds, geophytes, and berries.  It is noteworthy that isotopic values do not reflect heavy 

consumption of 13C-enriched aquatic resources, such as anadromous fish.  There is no 

evidence for a change in protein or carbohydrate resources through time for any of the 

dietary signatures.   

In the San Francisco Bay, isotopic signatures clearly reflect the consumption of 

13C-enriched marine proteins.  Early period Bay skeletons have carbon and nitrogen 

isotopic signatures from bone collagen that indicate heavy consumption of high-trophic 

level marine resources, such as marine and anadromous fish, and sea mammals.  The 

small collagen-apatite spacing (3.3‰) indicates that dietary protein was more enriched 

in 13C than the whole diet.  C3 terrestrial resources appear to have made a relatively 

small contribution to the diet compared with animal protein resources.  A significant 

dietary shift occurred between the Early and Middle period, which is indicated in carbon 

and nitrogen isotope signatures from collagen and carbon isotopes from apatite.  Carbon 

and nitrogen isotope values from collagen indicate that Middle period groups consumed 

relatively smaller amounts of marine protein than Early period groups.  Dietary 

signatures are consistent with the greater consumption of low-trophic level marine foods, 

such as shellfish, and also greater consumption of terrestrial resources, such as land 

mammals and C3 plants.  The collagen-apatite spacing of 4.4‰ indicates that the δ13C of 

the protein component of the diet and the whole diet are the same.  Late period isotopic 

signatures are nearly identical to those of Middle period Bay skeletons, although the 

smaller collagen-apatite spacing value of 4.0‰ indicates a slightly greater contribution 
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of marine resources.  The high correlation between carbon and nitrogen isotope values 

from bone collagen indicates that groups consumed similar sources of dietary protein 

over time, but in relatively different amounts.  The larger collagen-apatite spacing values 

in Middle and Late period skeletons further indicate that terrestrial C3 resources made a 

greater contribution to the diet than in the Early period.  Overall, stable isotope 

signatures between San Francisco Bay and the Sacramento Valley became more similar 

over time.   

Although sample sizes are greatly reduced when partitioned by sex, there is some 

evidence to suggest dietary differences between males and females.  In the Sacramento 

Valley, Middle period male skeletons have slightly higher δ15N and collagen-apatite 

spacing values than females, which could be due to greater consumption of freshwater 

fish and C3 plant carbohydrates in males, and greater consumption of terrestrial game in 

females.  In San Francisco Bay, male skeletons have higher carbon and nitrogen collagen 

isotope signatures than female skeletons, suggesting greater consumption of dietary 

protein.  The significantly smaller collagen-apatite spacing in the Late period samples 

further indicates that male diets were more enriched in 13C than female diets during this 

period, due to greater consumption of marine proteins in males.   
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CHAPTER VI 

DENTAL PATHOLOGY 

Studies of oral health have a long a history in anthropology for investigating 

dietary differences among human populations that practice different subsistence 

strategies.  Since teeth directly interact with food, they can provide useful information on 

the relationship between diet and dental health.  Although this relationship is complex, 

dental disease studies have been successfully used to make inferences regarding the 

importance of different food resources to the diet.  In this chapter, I use dental caries, 

antemortem tooth loss, and alveolar abscesses in the adult dentition to examine 

differences in oral health by time period, by region, and by sex in prehistoric central 

California.  I expect these conditions to be more prevalent during the Middle and Late 

period, associated with the greater consumption of carbohydrate staples such as acorns, 

small seeds, and root foods.  Further, I expect to find a higher prevalence of dental 

disease among groups from the lower Sacramento Valley that had less access to marine 

proteins than among groups from San Francisco Bay.  Finally, I expect female skeletons 

to show a higher prevalence of dental disease than male skeletons, reflecting sex 

differences in the consumption of protein and carbohydrate resources.      

Literature Review 

Dental disease is among the most common conditions observed on prehistoric 

human skeletons (Hillson 2000; Jurmain 1990a).  Although dental disease encompasses 

a variety of different conditions, this study focuses on those most relevant to diet 
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including dental caries, antemortem tooth loss, and alveolar abscesses.  Dental caries 

form where plaque deposits of inorganic salts accumulate on the external surfaces of 

teeth.  These deposits comprise colonies of microorganisms (e.g., Streptococcus mutans, 

Lactobacillus acidophilus) that mineralize to form dental calculus, which adheres to 

tooth surfaces (Hillson 2000:258).  These oral bacteria secrete organic acids resulting in 

focal demineralization of enamel hydroxyapatite (Larsen 1997:65).  Caries initiation 

sites are influenced by crown morphology; hence posterior teeth are more susceptible 

than anterior teeth due to their greater number of pits and fissures.  Bacterial 

fermentation of carbohydrates, especially dietary sugars, plays a major role in the 

formation of dental caries (Hunter 1988; Moore and Corbett 1971; Newbrun 1982).  

Numerous studies on living populations have confirmed the relationship between the 

consumption of carbohydrates and the development of dental caries, especially for foods 

with high sugar content (Hillson 1996, 2000, 2001; Hunter 1988; Newbrun 1982; 

Walker et al. 1998).  Carbohydrate-rich foods that are sticky in texture may also 

contribute to caries, since food particles can become easily lodged within interproximal 

spaces, pits, and fissures of teeth (Larsen 1997; Nelson et al. 1999).  In severe dental 

caries, much of the tooth crown is destroyed, opening the pulp chamber to oral bacteria 

that may inflame the gingiva and gums (Hillson 1996, 2000, 2001).  Severe 

inflammation may result in the formation of periapical granulomas and abscesses within 

the alveolus (Ortner 2003:590-592).  Although dental caries are a major cause of 

antemortem tooth loss, severe dental attrition may also expose the pulp chamber and 

lead to the shedding of teeth.   
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In addition to the vast clinical literature on dental disorders among living human 

populations, numerous bioarchaeological studies have found significant differences in 

the prevalence of dental caries and antemortem tooth loss between prehistoric forager 

and agricultural societies (Cohen and Armelagos 1984; Larsen 1997).  In many areas of 

the world where agriculture was adopted, the caries rate shows a significant increase 

compared with earlier non-agricultural groups from the same region.  This pattern is 

thought to mark the transition from a varied diet of meat and plant foods to the 

intensified focus on more cariogenic plant staples (Hillson 2001; Larsen et al. 1991; 

Larsen 1997).  For the New World in particular, the high prevalence of dental caries 

among prehistoric agriculturalists is attributed to the adoption of maize as a staple crop 

(Larsen 1980, 1984, 1995; Larsen et al. 1991; Powell 1985; Schollmeyer and Turner II 

2004).  When processed into a sticky gruel, carbohydrate-rich foods such as maize, may 

promote tooth decay.  Researchers have also found temporal differences in caries 

prevalence in prehistoric non-agricultural societies.  For example, Walker and Erlandson 

(1986) found a significant decline in dental caries in prehistoric groups from southern 

coastal California, which they interpret as a change from consumption of cariogenic 

plants, such as roots and tubers, to the intensified use of marine resources, such as fish 

and sea mammals.  Societies that consume high amounts of protein-rich foods, including 

terrestrial animal meat and fish, typically have lower caries rates, since protein raises the 

pH of plaque in the oral cavity, thus protecting tooth enamel from developing caries 

(Littleton and Frolich 1993; Mundorff et al. 1990; Mundorff-Shrestha et al. 1994).   
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Methods and Materials 

Prehistoric societies in central California consumed a variety of carbohydrate and 

protein resources that would have influenced caries rates.  In this study, I hypothesize 

that increased consumption of plant staples such as acorns, beginning with the Middle 

period, should result in a higher prevalence of dental caries, antemortem tooth loss 

(AMTL), and alveolar abscesses.  Acorns are rich in carbohydrates but contain relatively 

small amounts of sugar.  However, when processed into a sticky gruel, acorn mush may 

have had cariogenic properties that would have promoted dental decay.  To test this 

hypothesis, I examined the prevalence of dental caries, antemortem tooth loss, and 

alveolar abscesses in the maxillary and mandibular dentition following a protocol 

modified from Standards for Data Collection (Buikstra and Ubelaker 1994).  I 

inventoried each tooth position as follows:  

1) present, unerupted 
2) present, in occlusion (with enamel height > 2 mm from CEJ, surrounding at 

least 50 percent of the crown circumference) 
3) absent, unknown when tooth was lost  
4) absent, lost antemortem (AMTL) 
5) absent, lost postmortem (PMTL) 
6) congenitally absent 
7) present, with less than 2 mm of enamel remaining due to attrition 
8) present, but not observable due to presence of adhesive or soil 
9) partial root present, but most of tooth lost antemortem 
 
I scored a tooth as AMTL when the alveolar bone showed clear evidence of 

resorption for that tooth position.  For ambiguous cases, I only scored tooth sockets with 

depths of ~2 mm or less as lost antemortem.  The calculation of AMTL frequency did 

not include unerupted teeth, tooth positions associated with postmortem alveolar 

damage, congenitally absent teeth, or teeth that showed partial antemortem loss (e.g., 
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tooth roots remaining).  Since agenesis of the third molar is common in humans, I scored 

this tooth as congenitally absent only when the corresponding occluding tooth was 

present (but lacked occlusal wear facets) and the individual was older than 25 years of 

age.  When the third molar was absent and the corresponding occluding tooth showed 

evidence of wear, I scored the tooth as AMTL.  For all other ambiguous cases, I scored 

the absence of the third molar as unobservable.  To qualify as “observable” for the 

presence of caries, a tooth had to be present and in the occlusal plane with at least 2 mm 

of vertical enamel (as measured by calipers from the CEJ) surrounding at least 50 

percent of the crown circumference.  I diagnosed each carious lesion with the aid of a 

stainless steel dental probe and 10x hand lens following protocols outlined in Hillson 

(1996, 2001).  Although tooth discolorations can signify early stages of caries, I did not 

record these features.  For each carious tooth, I recorded the tooth type affected, the 

number of carious lesions per tooth, and the location of the lesion on the crown.  I scored 

caries as follows:  

1) no caries 
2) occlusal surface caries 
3) cervical caries (affecting mesial or distal surfaces) 
4) caries affecting the smooth surfaces of the buccal or lingual aspects of the 

tooth (excluding fissures) 
5) cervical root caries 
6) large caries with severe crown destruction 
7) interproximal caries 
8) pulp exposure due to attrition (non-carious) 
9) not scorable 
 
Although detailed study of different types of carious lesions could provide 

additional information with respect to diet (Hillson 2001; Ortner 2003:590), I consider 

all forms of carious lesions together for the purposes of this study.  Severe enamel 
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attrition, AMTL, and postmortem damage are common in the sample and resulted in the 

loss of numerous teeth that could be scored for caries.  To facilitate statistical 

comparison, I pooled left and right teeth from the maxillary and mandibular dentition by 

tooth class (molars, premolars, canines, incisors) and also for the dentition as a whole 

(all tooth types).  Although sample pooling may introduce potential sources of bias, this 

is routinely done for archaeological collections that suffer from high levels of attrition 

and tooth loss (Larsen et al. 1991; Walker and Erlandson 1986).  Since carious lesions 

are extremely rare in the subadult age category, I focus on adult individuals for this 

study. 

In addition to calculating caries rates by individual tooth type, I also applied 

Lukacs’ (1995, 1996) “decayed-missing” correction to calculate the prevalence of 

carious teeth.  The correction accounts for disproportionate AMTL due to caries versus 

AMTL due to attrition.  For this correction, the number of teeth lost antemortem is 

multiplied by the number of teeth with exposed pulp cavities due to caries, to estimate 

the number of teeth lost antemortem to caries.  This value is added to the total number of 

carious teeth and then divided by the total number of teeth observed for caries, plus the 

total number of teeth lost antemortem.  Lukacs’ (1995: 155) correction is calculated as 

follows: 

1) Estimated number of teeth lost due to caries (number of teeth lost 
antemortem x proportion of teeth with pulp exposure due to caries). 

2) Total estimated number of teeth with caries (estimated number of teeth lost 
due to caries + number of carious teeth observed). 

3) Total number of original teeth (number of teeth observed + number of teeth 
lost antemortem). 

4) Corrected caries rate (total estimated number of teeth with caries / total 
number of original teeth) 
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For each tooth position, I also scored the presence or absence of alveolar 

abscesses.  Periapical inflammation of buccal or lingual tooth roots (e.g., periapical 

abscess) may result in abscesses and ultimately tooth loss.  For the purposes of this 

study, I consider all abscess types together as a single group.  I compare abscess 

prevalence by tooth position, pooling left and right sides from the maxillary and 

mandibular dentition.  I scored abscesses that encompassed more than one tooth position 

as “present” for each tooth position affected. 

Since dental attrition can affect caries prevalence, I recorded wear scores for each 

tooth type following the protocol in Standards for Data Collection (Ubelaker and 

Buikstra 1994).  This uses the scoring system developed by Smith (1984:45-46) for 

incisors, canines, and premolars, and by Scott (1979:214) for molars.  To evaluate 

differences in attrition rates between samples, I subtracted the difference in the mean 

score of adult first and second molars (M1-M2 = attrition rate) following Walker et al. 

(1998).  Since first molars erupt around 6 years of age and second molars around 12 

years of age, the difference in mean wear score can be used as a relative measure of 

attrition rate.  For all comparisons, I used the chi-square and Fisher’s Exact statistic 

(when cell counts were less than five) to test for significant associations by time period, 

by region, by sex, and by age category.  To account for the higher probability of 

obtaining statistically significant results (p < .05) due to random chance with multiple 

comparisons, I set the alpha level for statistical significance at p< .017.  However, I treat 

p-values between .018 and .05 as approaching statistical significance.  



 

 

186 

 

Results  

Age Effects 

Dental caries often show an age dependent pattern in many skeletal studies, so 

results may be affected by differences in the age distribution of the samples (Hillson 

2001; Larsen et al. 1991).  Table 6.1 and Figure 6.1 summarize the distribution of caries 

by age category in prehistoric central California.  For the Sacramento Valley sample, the 

proportion of carious teeth shows a strong association with increasing age-at-death 

(Kruskal-Wallis, X2 = 52.943, df = 2, p = .001).  However, this pattern is not significant 

for the San Francisco Bay samples (Kruskal-Wallis, X2 = 1.452, df = 2, p = .484).      

To test for age bias in the samples, I compared age distributions by time period, 

by region, and by sex.  The proportion of individuals within each age category is not 

significantly different between time periods for either the Sacramento Valley (Kruskal-

Wallis, X2 = 4.252, df = 2, p = .119) or the San Francisco Bay samples (Kruskal-Wallis, 

X2 = 2.461, df = 2, p = .292).  When compared by region, the age distributions are 

similar between the Sacramento Valley and San Francisco Bay for the Early and Middle 

period samples (Early, X2 = .277, p = .599; Middle, X2 = .033, p = .855).  However, 

differences in the age-at-death distributions of the Late period samples approaches 

statistical significance (X2 = 5.309, p = .021) due to the higher proportion of older adults 

(40+ years) in the Sacramento Valley sample. 

The age distribution by sex is significantly different in the Sacramento Valley 

sample for the Middle (X2 = 10.535, p = .001) period samples and approaches a 

significant difference for the Early period sample (X2 = 5.45, p = .02).  The age 
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distributions are not significantly different for the Late period samples (X2 = 1.578, p = 

.209).  Significant differences in the age distribution are also found in the San Francisco 

Bay sample for the Late period sample (X2 = 10.332, p = .001) but not for the Early (X2 = 

.047, p = .828) and Middle (X2 = 2.057, p = .152) period samples. 

Table 6.1. Distribution of Dental Caries in the Sample by Age Category. 
    Early Period Middle Period Late Period 

 Male Female Male Female Male Female 
Age 

Dental 
Caries n % n % n % n % n % n % 

Sacramento Valley 
Maxillary 5/161 3.1 7/55 12.7 5/141 3.5 2/81 2.5 4/45 8.9 5/109 4.6 
Mandibular 0/151 0.0 1/55 1.8 4/149 2.7 1/62 1.6 0/34 0.0 0/108 0.0 

18
-2

9 
ye

ar
s 

Total 5/312 1.6 8/110 7.3 9/290 3.1 3/143 2.1 4/79 5.1 5/217 2.3 
Maxillary 10/42 23.8 10/55 18.2 3/72 4.2 5/45 11.1 1/27 3.7 2/24 8.3 
Mandibular 0/49 0.0 3/41 7.3 8/100 8.0 2/49 4.1 2/26 7.7 4/44 9.1 

30
-3

9 
ye

ar
s 

Total 10/91 11.0 13/96 13.5 11/172 6.4 7/94 7.4 3/53 5.7 6/68 8.8 
Maxillary 6/75 8.0 13//65 20.0 4/9 44.4 7/37 18.9 2/18 11.1 13/44 29.5 
Mandibular 3/136 2.2 6/86 7.0 2/25 8.0 6/56 10.7 1/28 3.6 14/58 24.1 
Total 9/211 4.3 19/151 12.6 6/34 17.6 13/93 14.0 3/46 6.5 27/102 26.5 40

+ 
 

ye
ar

s 

All Teeth 24/614 3.9 40/357 11.2 26/496 5.2 23/330 7.0 10/178 5.6 38/387 9.8 
San Francisco Bay 

Maxillary 0/64 0.0 0/29 0.0 0/98 0.0 4/69 5.8 1/38 2.6 0/110 0.0 
Mandibular 0/57 0.0 1/26 3.8 1/109 .9 3/89 3.4 0/49 0.0 4/112 3.6 

18
-2

9 
ye

ar
s 

Total 0/121 0.0 1/55 1.8 1/207 .5 7/158 4.4 1/87 1.1 4/222 1.8 
Maxillary 0/0 0.0 2/7 28.6 0/55 0.0 0/27 0.0 0/42 0.0 0/1 0.0 
Mandibular 0/11 0.0 0/22 0.0 1/47 2.1 1/12 8.3 0/33 0.0 0/3 0.0 

30
-3

9 
ye

ar
s 

Total 0/11 0.0 2/29 6.9 1/102 1.0 1/39 2.6 0/75 0.0 0/4 0.0 
Maxillary 0/21 0.0 0/38 0.0 0/33 0.0 8/56 14.3 1/39 2.6 1/20 5 
Mandibular 0/33 0.0 1/44 2.3 0/33 0.0 0/56 0.0 0/31 0.0 0/23 0.0 
Total 0/54 0.0 1/82 1.2 0/66 0.0 8/112 7.1 1/70 1.4 1/43 2.3 40

+ 
 

ye
ar

s 

All Teeth 0/186 0.0 4/166 2.4 2/375 .5 16/309 5.2 2/232 .9 5/269 1.9 
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Figure 6.1.  Caries prevalence by age category and by sex  
(a = Sacramento Valley; b = San Francisco Bay). 
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Temporal Differences: Sacramento Valley      

Table 6.2 summarizes the distribution of dental caries in the Sacramento Valley 

sample by tooth type and by time period.  In general, molars show the highest prevalence 

of caries and incisors the least.  Table 6.3 shows that only differences in the canine 

caries rate for Middle and Late period females approaches statistical significance 

(Fisher’s Exact, p = .028).  Since the prevalence of carious lesions by individual tooth 

class was relatively small, I consider all tooth classes together as a group to examine 

overall caries prevalence.  To adjust the total caries rate to account for AMTL due to 

caries, I applied the “correction factor” to the data (Lukacs 1995, 1996).  Figure 6.2 

presents the prevalence of caries-induced versus attrition-induced pulp exposure by time 

period and by region.  The Sacramento Valley sample shows a greater proportion of 

caries-induced pulp exposure than the San Francisco Bay sample; however, attrition-

induced pulp exposure appears to be the primary cause of antemortem tooth loss in both 

regions.   

Table 6.4 and Figure 6.3 summarize the distribution of dental caries (uncorrected 

and corrected) by time period.  Statistical results for the “corrected” caries prevalence 

are presented in Table 6.5.  Overall, the total “uncorrected” prevalence of carious teeth is 

4.9 percent for males and 9.5 percent for females.  When the Lukacs’ “correction” is 

applied to account for AMTL due to caries in the Sacramento Valley sample, the total 

caries rate increases to 6.8 percent for males and 18.5 percent for females.  The 

“corrected” caries rate is 14.5 percent for the Early period, 9.5 percent for the Middle 

period, and 15.9 percent for the Late Period samples (sexes pooled).  The proportion of 
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carious teeth is significantly more common in the Early and Late period samples than in 

the Middle period sample (Early vs. Middle period, X2 = 12.858, p = .001; Middle vs. 

Late periods, X2 = 18.477, p = .001). 

Table 6.2.  Distribution of Dental Caries in Prehistoric Central California. 
  Early Period Middle Period Late Period 
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Tooth Type n1 % n1 % n1 % n1 % n1 % n % n1 % n1 % n1 % 
Sacramento Valley 
Maxillary                   

Incisors 0/52 0.0 2/30 6.7 0/3 0.0 1/36 2.8 0/25 0.0 0/1 0.0 0/15 0.0 3/38 7.9 0/0 0.0 
Canines 4/41 9.8 3/26 11.5 0/4 0.0 3/35 8.6 0/19 0.0 0/0 0.0 0/13 0.0 4/27 14.8 0/0 0.0 

Premolars 3/68 4.4 5/42 11.9 0/3 0.0 1/60 1.7 5/54 9.3 0/0 0.0 2/28 7.1 5/50 10.0 0/1 0.0 
Molars 19/143 13.3 25/102 24.5 3/10 30.0 7/109 6.4 11/74 14.9 0/1 0.0 5/34 14.7 9/75 12.0 0/0 0.0 

Total Teeth 26/304 8.5 35/200 17.5 3/20 15.0 12/240 5.0 16/172 9.3 0/2 0.0 7/90 7.8 21/190 11.1 0/1 0.0 

Mandibular                   
Incisors 0/65 0.0 0/40 0.0 0/3 0.0 1/57 1.7 0/36 0.0 0/0 0.0 0/15 0.0 2/42 4.8 0/0 0.0 

Canines 0/42 0.0 2/34 5.9 0/3 0.0 0/38 0.0 0/32 0.0 0/0 0.0 0/10 0.0 2/30 6.7 0/0 0.0 
Premolars 0/92 0.0 2/52 3.8 0/0 0.0 2/83 2.4 1/46 2.2 0/3 0.0 0/21 0.0 5/60 8.3 0/1 0.0 

Molars 4/154 2.6 6/83 7.2 1/6 16.7 12/116 10.3 9/69 13.0 3/5 60.0 3/42 7.1 10/89 11.2 0/0 0.0 
Total Teeth 4/353 1.1 10/209 4.8 1/12 8.3 15/294 5.1 10/183 5.5 3/8 37.5 3/88 3.4 19/221 8.6 0/1 0.0 
San Francisco Bay 
Maxillary                   

Incisors 0/22 0.0 0/20 0.0 0/0 0.0 0/45 0.0 0/31 0.0 0/2 0.0 0/30 0.0 1/26 3.8 0/5 0.0 

Canines 0/15 0.0 0/10 0.0 0/0 0.0 0/29 0.0 0/27 0.0 0/3 0.0 0/24 0.0 1/20 5.0 0/3 0.0 
Premolars 0/25 0.0 0/20 0.0 0/0 0.0 0/56 0.0 2/51 3.9 0/6 0.0 0/37 0.0 0/44 0.0 0/2 0.0 

Molars 0/39 0.0 2/34 5.9 0/0 0.0 0/81 0.0 11/80 13.7 0/10 0.0 2/63 3.2 1/66 1.5 0/4 0.0 

Total Teeth 0/101 0.0 2/84 2.4 0/0 0.0 0/211 0.0 13/189 6.9 0/21 0.0 2/154 1.3 3/156 1.9 0/14 0.0 
Mandibular                   

Incisors 0/16 0.0 0/17 0.0 0/0 0.0 0/40 0.0 0/38 0.0 0/4 0.0 0/26 0.0 0/22 0.0 0/3 0.0 
Canines 0/15 0.0 0/9 0.0 0/0 0.0 0/27 0.0 0/26 0.0 0/7 0.0 0/15 0.0 0/21 0.0 0/3 0.0 

Premolars 0/32 0.0 0/26 0.0 0/0 0.0 0/51 0.0 1/57 1.7 0/9 0.0 0/30 0.0 0/44 0.0 0/5 0.0 
Molars 0/57 0.0 2/59 3.4 0/0 0.0 2/97 2.1 4/93 4.3 0/21 0.0 0/60 0.0 5/85 5.9 0/9 0.0 

Total Teeth 0/120 0.0 2/111 1.8 0/0 0.0 2/190 1.1 5/214 2.3 0/41 0.0 0/131 0.0 5/172 2.9 0/20 0.0 
1 number affected/number scored.
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Table 6.3.  Chi-Square and Fisher’s Exact Results for Temporal Comparisons of Caries by Individual Tooth Type. 

Incisors Canines Premolars Molars 

Sex Testing X2, F.E. p value n1 X2, F.E. p value n1 X2, F.E. p value n1 X2, F.E. p value n1 
Sacramento Valley 

EP vs. MP F.E. .195 0/117 vs. 2/93 F.E. 1.000 4/83 vs. 3/73 F.E. 1.000 3/160 vs. 3/143 .085 .771 23/297 vs. 19/225 

EP vs. LP F.E.  0/117 vs. 0/30 F.E. .575 4/83 vs. 0/23 F.E. .334 3/160 vs. 2/49 .615 .433 23/297 vs. 8/76 

M
al

es
 

MP vs. LP F.E. 1.000 2/93 vs. 0/30 F.E. 1.000 3/73 vs. 0/23 F.E. .603 3/143 vs. 2/49 .302 .583 19/225 vs. 8/76 

EP vs. MP F.E. .499 2/70 vs. 0/61 F.E. .061 5/60 vs. 0/51 .162 .687 7/94 vs. 6/100 .472 .492 31/185 vs. 20/143 

EP vs. LP F.E. .449 2/70 vs. 5/80 .165 .685 5/60 vs. 6/57 .179 .672 7/94 vs. 10/110 1.894 .169 31/185 vs. 19/164 

Fe
m

al
es

 

MP vs. LP F.E. 1.000 0/61 vs. 5/80 F.E. .028 0/51 vs. 6/57 .711 .399 6/100 vs. 10/110 .397 .529 20/143 vs. 19/164 

San Francisco Bay 

EP vs. MP   0/38 vs. 0/85   0/30 vs. 0/56   0/57 vs. 0/107 F.E. .543 0/96 vs. 2/178 

EP vs. LP   0/38 vs. 0/56   0/30 vs. 0/39   0/57 vs. 0/67 F.E. .505 0/96 vs. 2/123 

M
al

es
 

MP vs. LP   0/85 vs. 0/56   0/56 vs. 0/39   0/107 vs. 0/67 F.E. 1.000 2/178 vs. 2/123 

EP vs. MP   0/37 vs. 0/69   0/19 vs. 0/53 F.E. .555 0/46 vs. 3/108 1.741 .187 4/93 vs. 15/173 

EP vs. LP F.E. 1.000 0/37 vs. 1/48 F.E. 1.000 0/19 vs. 1/41   0/46 vs. 0/88 F.E. 1.000 4/93 vs. 6/151 

Fe
m

al
es

 

MP vs. LP F.E. .410 0/69 vs. 1/48 F.E. .436 0/53 vs. 1/41 F.E. .254 3/108 vs. 0/88 2.935 .087 15/173 vs. 6/151 
1 Number of caries observed/number of teeth observed for caries.
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Figure 6.2.  Relative proportion (%) of pulp-exposed teeth caused  

by caries versus attrition by region and time period. 

In contrast, the proportion of carious teeth is similar between the Early and Late 

period samples (X2 = 1.404, p = .238).  When partitioned by sex, these patterns hold for 

both the male and female samples (Early vs. Middle period, males, X2 = 22.661, p = 

.001; females, X2 = 21.142, p = .001; Middle vs. Late periods, males, X2 = 9.65, p = .001; 

females, X2 = 8.24, p = .005).    

Figure 6.4 summarizes the distribution of AMTL in the Sacramento Valley 

sample (also see Table 6.4).  For males, the prevalence of AMTL is 7.6, 6.7, and 6.8 

percent for the Early, Middle, and Late periods, respectively; these values are not 

significantly different.  The prevalence of AMTL in females is 18.2, 25.5, and 16.8 

percent for the Early, Middle, and Late periods, respectively.  AMTL is significantly 

more common in the Middle period female sample than in the Early and Late period 
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female samples (Early vs. Middle, X2 = 15.88, p = .001; Middle vs. Late periods, X2 = 

18.691, p = .001; Table 6.5).   

Table 6.6 summarizes the distribution of alveolar abscesses in the Sacramento 

Valley sample by individual tooth position and Table 6.7 presents statistical results for 

comparisons by time period.  Abscesses affected 3.3 percent of males and 5.2 percent of 

females.  For males, the total abscess prevalence (all tooth positions combined) is 3.3, 

6.8, and 3.4 percent for the Early, Middle, and Late periods, respectively.  Abscesses are 

significantly more common among Late period males than Middle period males for the 

molar tooth position (Middle vs. Late period, X2 = 5.666, p = .017).  For the incisor and 

premolar tooth positions, abscesses are significantly more common in Middle period 

males than in Early period males (Early vs. Middle period, incisors, X2 = 18.547, p = 

.001; premolar, X2 =9.677, p = .002).  For females, the total prevalence of alveolar 

abscess (all tooth positions combined) is 5.2, 7.1, and 7.1 percent for the Early, Middle, 

and Late periods, respectively.  Abscesses are significantly more common among 

Middle period females than among Early period females for the incisor tooth position 

(X2 = 8.877, p = .003). 
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Table 6.4.  Total Prevalence of Carious Teeth (Corrected and Uncorrected)  
and AMTL in Prehistoric Central California. 

   Male Female 
Region Period Observation Type n1 % n1 % 

Sacramento Valley Early Period Observed caries 30/657 4.6 45/409 11.0 

  Corrected caries 57/755 7.6 141/606 23.3 

  AMTL 98/1298 7.6 197/1083 18.2 

 Middle Period Observed caries 27/534 5.1 26/355 7.3 

  Corrected caries 35/589 5.9 78/598 13.0 

  AMTL 55/827 6.7 243/954 25.5 

 Late Period Observed caries 10/178 5.6 40/411 9.7 

  Corrected caries 13/198 6.6 104/539 19.3 

  AMTL 20/293 6.8 128/761 16.8 

 Periods Pooled Observed caries 67/1369 4.9 111/1175 9.5 

  Corrected caries 105/1357 7.7 323/1743 18.5 

  AMTL 173/2418 7.2 618/2798 22.1 

San Francisco Bay Early Period Observed caries 0/221 0.0 4/195 2.1 

  Corrected caries 0/236 0.0 7/236 3.0 

  AMTL 15/334 4.5 41/433 9.5 

 Middle Period Observed caries 2/426 .5 18/403 4.5 

  Corrected caries 2/440 .5 26/468 5.6 

  AMTL 14/574 2.4 65/803 8.1 

 Late Period Observed caries 2/285 .7 8/328 2.4 

  Corrected caries 2/376 .5 8/357 2.2 

  AMTL 91/573 15.9 29/597 4.9 

 Periods Pooled Observed caries 4/932 .4 30/9326 3.2 

  Corrected caries 4/1052 .4 41/1061 3.9 

  AMTL 120/1481 8.1 135/1833 7.4 
1 number affected/number scored. 
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Figure 6.3.  Caries prevalence in the Sacramento Valley sample by  
sex and time period (a = uncorrected; b = corrected). 
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Table 6.5.  Chi-Square and Fisher’s Exact Results for  
Temporal Comparisons of Total “Corrected” Caries Prevalence. 

Region Sex Comparison X2, F.E. p value1 n2 Trend 
Caries      

Males EP vs. MP 22.661 .001 57/755 vs. 35/589 EP>MP 
 EP vs. LP .223 .637 57/755 vs. 13/198   
  MP vs. LP 9.650 .001 35/589 vs. 13/198 MP<LP 

Females EP vs. MP 21.142 .001 141/606 vs. 78/589 EP>MP 
 EP vs. LP 2.676 .112 141/606 vs. 104/539   

  MP vs. LP 8.240 .005 78/589 vs. 104/539 MP<LP 
Sexes Pooled EP vs. MP 12.858 .001 198/1361 vs. 113/1187 EP>MP 

 EP vs. LP 1.404 .238 198/1361 vs. 117/737   
  MP vs. LP 18.477 .001 113/1187 vs. 117/737 MP<LP 
AMTL      

Males EP vs. MP .612 .434 98/1298 vs. 55/827   
 EP vs. LP .183 .669 98/1298 vs. 20/293   
  MP vs. LP .011 .918 55/827 vs. 20/293   

Females EP vs. MP 15.880 .001 197/1083 vs. 243/954 EP<MP  
 EP vs. LP .578 .447 197/1083 vs. 128/761   

Sa
cr

am
en

to
 V

al
le

y 

  MP vs. LP 18.691 .001 243/954 vs. 128/761 MP>LP 
Caries      

Males EP vs. MP F.E. .545 0/236 vs. 2/440   
 EP vs. LP F.E. .525 0/236 vs. 2/376  
  MP vs. LP F.E. 1.000 2/440 vs. 2/376   

Females EP vs. MP 2.355 .135 7/236 vs. 26/468   
 EP vs. LP .303 .602 7/236 vs. 8/357  

  MP vs. LP 5.631 .018 26/468 vs. 8/357  MP>LP 
Sexes Pooled EP vs. MP 3.476 .088 7/472 vs. 28/908   

 EP vs. LP .111 .808 7/472 vs. 10/733  
  MP vs. LP 3.403 .068 28/908 vs. 10/733   
AMTL      

Males EP vs. MP 2.875 .090 15/334 vs. 14/574  
 EP vs. LP 26.524 .001 15/334 vs. 91/573 EP<LP 
  MP vs. LP 62.305 .001 14/574 vs. 91/573 MP<LP  

Females EP vs. MP .678 .410 41/433 vs. 65/803   
 EP vs. LP 8.425 .004 41/433 vs. 29/597 EP>LP 

Sa
n 

Fr
an

ci
sc

o 
B

ay
 

  MP vs. LP 5.728 .017 65/803 vs. 29/597 MP>LP  
1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
2 Number of caries observed/number of teeth observed for caries. 
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Figure 6.4.  Prevalence of AMTL in the Sacramento Valley sample. 

 Evaluated alongside the caries data, female AMTL was highest during the 

Middle period, when the caries prevalence was the lowest (Table 6.4).  Caries-induced 

pulp exposure was also the lowest during this period, which suggests that severe attrition 

may account for the higher prevalence of AMTL in these samples (Figure 6.2).  Taken 

together, these results suggest that Early and Late Period diets were significantly more 

cariogenic than were diets during the Middle period, particularly for females.  
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Table 6.6.  Distribution of Alveolar Abscesses in Prehistoric Central California by Time Period. 
  Early Period Middle Period Late Period 
  Male Female Indeterminate Male Female Indeterminate Male Female Indeterminate 

Region Tooth Type n % n % n % n % n % n % n % n % n % 
Maxillary                                     

Incisors 3/163 1.8 5/126 4.0 0/20 0.0 7/97 7.2 21/135 15.6 0/12 0.0 1/35 2.9 7/100 7.0 0/4 0.0 
Canines 4/85 4.7 4/67 6.0 1/10 10.0 3/53 5.7 10/70 14.3 0/6 0.0 0/18 0.0 7/51 13.7 0/2 0.0 
Premolars 3/172 1.7 14/139 10.1 2/20 10.0 14/109 12.8 16/139 11.5 0/12 0.0 4/40 10.0 11/106 10.4 0/4 0.0 
Molars 23/249 9.2 23/204 11.3 4/27 14.8 27/160 16.9 10/182 5.5 7/17 41.2 4/58 6.9 10/133 7.5 0/2 0.0 
Total 33/669 4.9 46/536 8.6 7/77 9.1 51/419 12.2 57/526 10.8 7/47 14.9 9/151 6.0 35/290 12.1 0/12 0.0 

Mandibular                                     
Incisors 0/157 0.0 3/132 2.3 0/15 0.0 2/101 2.0 2/106 1.9 0/4 0.0 0/37 0.0 4/97 4.1 0/0 0.0 
Canines 0/80 0.0 1/74 1.4 0/9 0.0 0/51 0.0 0/56 0.0 0/2 0.0 0/21 0.0 1/48 2.1 0/1 0.0 
Premolars 2/164 1.2 2/149 1.3 0/19 0.0 3/105 2.9 4/114 3.5 0/8 0.0 1/37 2.7 3/96 3.1 0/4 0.0 
Molars 8/233 3.4 5/202 2.5 0/28 0.0 1/157 .6 5/154 3.2 1/10 10.0 0/49 0.0 4/133 3.0 0/6 0.0 
Total  10/634 1.6 11/557 2.0 0/71 0.0 6/414 1.4 11/430 2.6 1/24 4.2 1/144 .7 12/374 3.2 0/11 0.0 

Sa
cr

am
en

to
 V

al
le

y 

All Teeth 43/1303 3.3 57/1093 5.2 7/148 4.7 57/833 6.8 68/956 7.1 8/71 11.3 10/295 3.4 47/664 7.1 0/23 0.0 
Maxillary                   

Incisors 2/39 5.1 0/48 0.0 0/0 0.0 0/72 0.0 0/96 0.0 0/6 0.0 10/77 13.0 0/85 0.0 0/8 0.0 
Canines 1/21 4.8 0/28 0.0 0/0 0.0 0/38 0.0 2/49 4.1 0/4 0.0 1/39 2.6 0/43 0.0 0/4 0.0 
Premolars 1/38 2.6 2/57 3.5 0/0 0.0 2/73 2.7 4/103 3.9 0/10 0.0 12/81 14.8 3/87 3.4 1/8 12.5 
Molars 4/54 7.4 5/74 6.8 0/0 0.0 13/106 12.3 23/147 15.6 4/19 21.1 25/120 20.8 20/124 16.1 2/10 20.0 
Total 8/152 5.3 7/207 3.4 0/0 0.0 15/289 5.2 29/395 7.3 4/39 10.3 48/317 15.1 23/339 6.8 3/30 10.0 

Mandibular                                     
Incisors 0/41 0.0 4/41 9.8 0/0 0.0 0/70 0.0 4/101 4.0 0/10 0.0 6/61 9.8 0/57 0.0 0/8 0.0 
Canines 1/23 4.3 2/28 7.1 0/0 0.0 1/34 2.9 1/53 1.9 0/7 0.0 3/33 9.1 0/32 0.0 0/4 0.0 
Premolars 0/49 0.0 2/63 3.2 0/0 0.0 0/70 0.0 2/110 1.8 0/14 0.0 2/68 2.9 0/68 0.0 0/8 0.0 
Molars 1/74 1.4 3/95 3.2 0/0 0.0 0/114 0.0 6/154 3.9 0/23 0.0 11/91 12.1 0/107 0.0 0/11 0.0 
Total  2/187 1.1 11/227 4.8 0/0 0.0 1/288 .3 13/418 3.1 0/54 0.0 22/253 8.7 0/264 0.0 0/31 0.0 

Sa
n 

Fr
an

ci
sc

o 
B

ay
 

All Teeth 10/339 2.9 18/434 4.1 0/0 0.0 16/577 2.8 42/813 5.2 4/93 4.3 70/570 12.3 23/603 3.8 3/61 4.9 
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Table 6.7.  Chi-Square and Fisher’s Exact Results for Temporal Comparisons of Alveolar Abscess Prevalence. 
   Sacramento Valley San Francisco Bay 

Tooth Type Sex Comparison X2, F.E. p value1 n2 Trend X2, F.E. p value1 n2 Trend 
Incisors Males EP vs. MP 18.547 .001 3/320 vs. 9/198 EP<MP F.E. .084 2/80 vs. 0/142   
  EP vs. LP 5.054 .025 3/320 vs. 1/72  .821 .365 2/80 vs. 16/138  
   MP vs. LP 2.090 .148 9/198 vs. 1/72   9.923 .002 0/142 vs. 16/138 MP<LP 
 Females EP vs. MP 8.877 .003 8/258 vs. 23/241 EP<MP F.E. .261 4/89 vs. 4/197   
  EP vs. LP 1.721 .190 8/258 vs. 11/197  F.E. .021 4/89 vs. 0/142  
   MP vs. LP 2.374 .123 23/241 vs. 11/197   F.E. .143 4/197 vs. 0/142   
Canines Males EP vs. MP 1.995 .158 4/165 vs. 3/104   F.E. .457 2/44 vs. 1/72   
  EP vs. LP 1.786 .181 4/165 vs. 0/39  F.E. .715 2/44 vs. 4/72  
   MP vs. LP .008 .931 3/104 vs. 0/39   F.E. 1.000 1/72 vs. 4/72   
 Females EP vs. MP 2.419 .120 5/141 vs. 10/126   F.E. 1.000 2/56 vs. 3/102   
  EP vs. LP 2.335 .127 5/141 vs. 8/99  F.E. .181 2/56 vs. 0/75  
   MP vs. LP .002 .968 10/126 vs. 8/9   F.E. .263 3/102 vs. 0/75   
Premolars Males EP vs. MP 9.677 .002 5/336 vs. 17/214 EP<MP F.E. .777 1/87 vs. 2/143   
  EP vs. LP 4.707 .030 5/336 vs. 5/77  3.102 .078 1/87 vs. 14/149  
   MP vs. LP .257 .612 17/214 vs. 5/77   6.018 .014 2/143 vs. 14/149 MP<LP 
 Females EP vs. MP 1.197 .274 16/288 vs. 20/253   F.E. .751 4/120 vs. 6/213   
  EP vs. LP .391 .532 16/288 vs. 14/202  F.E. .703 4/120 vs. 3/155  
   MP vs. LP .154 .695 20/253 vs. 14/202   F.E. .739 6/213 vs. 3/155   
Molars Males EP vs. MP 2.263 .132 31/482 vs. 28/317   4.379 .036 5/128 vs. 13/220   
  EP vs. LP 1.808 .179 3/482 vs. 4/107  14.190 .001 5/128 vs. 36/211 EP<LP 
   MP vs. LP 5.666 .017 28/317 vs. 4/107 MP<LP 5.294 .021 13/220 vs. 36/211   
 Females EP vs. MP .001 .978 28/406 vs. 15/336   3.584 .058 8/169 vs. 29/301   
  EP vs. LP .732 .392 28/406 vs. 14/266  2.309 .129 8/169 vs. 20/231  
   MP vs. LP .644 .422 15/336 vs. 14/266   .149 .699 29/301 vs. 20/231   

1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
2 Number of abscesses observed/number of tooth positions observed for abscesses. 
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Table 6.8 presents attrition rates calculated from the mean difference in wear 

score between M1 and M2.  The higher attrition rate observed in the Middle period 

sample may have, in effect, resulted in the lower caries rate during this period, since 

rapid tooth wear could have outpaced enamel destruction due to caries.  The higher 

prevalence of alveolar abscesses during this period may again be due to higher attrition 

rates that caused more frequent exposure of the pulp chamber (Table 6.6).  If so, this 

may have caused increased levels of periodontal disease, which would have led to 

periapical inflammation and antemortem tooth loss. 

Table 6.8.  Mean Wear Scores and M1-M2 Differences. 

Temporal Differences: San Francisco Bay 

Table 6.2 summarizes the distribution of dental caries in the San Francisco Bay 

sample by tooth type and by time period.  Carious lesions are found only in molars for 

males and premolars and molars for females.  The proportion of carious teeth is not 

significantly different between time periods for either male or female sample 

comparisons (Table 6.3).   

Figure 6.5 shows that when all tooth classes are considered together as group, the 

“uncorrected” caries frequency is .4 percent for males and 3.0 percent for females (also 

  M1-M2 Differences 
Region Period Male Female 

Sacramento Valley Early Period 5.4 4.5 
 Middle Period 5.9 4.9 
 Late Period 4.8 3.0 

San Francisco Bay Early Period 4.0 3.0 
 Middle Period 4.3 4.0 
 Late Period .9 4.0 
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see Table 6.4).  When the Lukacs’ correction is applied, the prevalence of carious teeth 

increases slightly to 3.9 percent for females but remains the same for males.  Sex-pooled 

comparisons of the “corrected” frequencies are not significantly different between 

periods.  However, the difference in caries rate between Middle and Late period females 

approaches statistical significance (Middle period = 5.6 percent; Late period = 2.2 

percent; X2 = 5.631, p = .018).   

Figure 6.6 presents the distribution of AMTL in the San Francisco Bay sample 

(also see Table 6.4).  The prevalence of AMTL is 8.1 percent for males and 7.4 percent 

for females. For males, the prevalence of AMTL is 4.5, 2.4, and 15.9 percent for the 

Early, Middle, and Late periods, respectively.  AMTL is significantly more common in 

the Late period male sample than in the Early and Middle period male samples (Early vs. 

Late period, X2 = 26.524, p = .001; Middle vs. Late periods, X2 = 62.305, p = .001).  

For females, the prevalence of AMTL is 9.5, 8.1, and 4.9 percent for the Early, 

Middle, and Late periods, respectively.  AMTL is significantly more common in the 

Early and Middle period samples than in the Late period sample (Early vs. Late period, 

X2 = 8.425, p = .004; Middle vs. Late period, X2 = 5.728, p = .017).  Figure 6.6 shows 

that the proportion of teeth lost antemortem declines through time in females, but shows 

a sharp increase in males between the Middle and Late periods.  Although severe 

attrition probably accounts for the vast majority of cases of AMTL in the San Francisco 

Bay sample (Figure 6.2), the divergent patterns of AMTL between the sexes cannot be 

directly attributed to differences in attrition rates (see Table 6.8).  For example, Late  
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Figure 6.5.  Caries prevalence in the San Francisco Bay sample by  

sex and time period (a = uncorrected; b = corrected). 
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period males have the lowest attrition rates but also the highest prevalence of AMTL for 

the whole sample. 
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Figure 6.6.  Prevalence of AMTL in the San Francisco Bay sample. 

Alveolar abscesses are also relatively common in the San Francisco Bay sample 

and affected 6.0 percent of male dentitions and 4.4 percent of female dentitions (Table 

6.6).  For males, the total abscess prevalence (all tooth positions combined) is 2.9, 2.8, 

and 12.3 percent for the Early, Middle, and Late periods, respectively.  Abscesses are 

significantly more common among Late period males than among Early period males for 

molars (Early vs. Late, X2 = 14.19, p = .001).  Alveolar abscesses are also significantly 

more prevalent in Late period male samples than in Middle period male samples for the 

premolar (X2 = 6.018, p = .014) and incisor (X2 = 9.923, df = 1, p = .002) tooth positions.  

For females, the total abscess prevalence (all tooth positions combined) is 4.1, 5.2, and 
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3.8 percent for the Early, Middle, and Late periods, respectively (Table 6.6).  However, 

the prevalence of alveolar abscessing is not significantly different between time periods.  

The unusually high prevalence of alveolar abscesses in the Late period male sample is 

consistent with the high levels of AMTL for this period, although it is also associated 

with the lowest caries prevalence and attrition rates for the entire sample.  For females, 

there is little similarity between the temporal trends for carious lesions, AMTL, and 

alveolar abscesses.  

Regional Comparisons 

Table 6.4 presents the distribution of dental caries for the Sacramento Valley and 

San Francisco Bay samples (also see Figure 6.3 and 6.5).  Table 6.9 presents the 

statistical results for inter-regional comparisons of dental caries and AMTL.  Overall, 

carious lesions are twelve times more common in males and three times more common 

in females from the Sacramento Valley than in their male and female counterparts from 

San Francisco Bay (“uncorrected” caries, periods pooled, Table 6.4).  When all periods 

are considered together as group, the prevalence of caries is 4.9 and 9.5 percent for 

Sacramento Valley males and females, respectively, and .4 and 3.2 percent for San 

Francisco Bay males and females, respectively.  These differences are even more 

dramatic when the caries “correction” is applied (Sacramento Valley, males = 7.7 

percent; females = 18.5 percent; San Francisco Bay, males = .4 percent = males; females 

= 3.9 percent).  Carious teeth are significantly more prevalent in the Sacramento Valley 

sample than in the San Francisco Bay sample for male, female, and “pooled sex 

comparisons” for all time periods (p<.001, “corrected” caries).    
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AMTL is also significantly more common in the Sacramento Valley samples 

(p<.017) for male, female, and “sex-pooled” comparisons for all time periods, with one 

exception: the proportion of teeth lost antemortem is significantly higher for San 

Francisco Bay males than Sacramento Valley males in the Late period sample (X2 = 

7.497, p = .001; see Table 6.9).  

Table 6.9. Chi-Square and Fisher’s Exact Results  
for Regional Comparisons of Caries and AMTL. 

Observed Sex Period X2, F.E. p value1 n2 Trend 
Caries Males Early Period 18.905 .001 57/755 vs. 0/236 SV>SFB 
  Middle Period 67.533 .001 35/589 vs. 2/440 SV>SFB 
   Late Period 18.554 .001 13/198 vs. 2/376 SV>SFB 
 Females Early Period 48.319 .001 141/606 vs. 7/236 SV>SFB 
  Middle Period 16.719 .001 78/598 vs. 26/468 SV>SFB 
   Late Period 57.107 .001 104/539 vs. 8/357 SV>SFB 
 Sexes Pooled Early Period 56.172 .001 198/1361 vs. 7/472 SV>SFB 
  Middle Period 32.072 .001 113/1187 vs. 28/908 SV>SFB 
   Late Period 90.883 .001 117/737 vs. 10/733 SV>SFB 
AMTL Males Early Period 3.857 .050 98/1298 vs. 15/334 SV>SFB 
  Middle Period 12.835 .001 55/827 vs. 14/574 SV>SFB 
   Late Period 14.226 .001 20/293 vs. 91/573 SFB>SV 
 Females Early Period 17.778 .001 197/1083 vs. 41/433 SV>SFB 
  Middle Period 91.069 .001 243/954 vs. 65/803 SV>SFB 
   Late Period 46.822 .001 128/761 vs. 29/597 SV>SFB 
 Sexes Pooled Early Period 15.163 .001 295/2381 vs. 56/767 SV>SFB 
  Middle Period 89.302 .001 298/1781 vs. 79/1377 SV>SFB 
   Late Period 7.497 .006 148/1054 vs. 120/1170 SV>SFB 

1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
2 Number of caries or AMTL observed/number of teeth observed in Sacramento Valley sample vs. 

number of caries or AMTL observed/number of teeth observed in San Francisco Bay sample.  

Alveolar abscesses also show a similar pattern as dental caries and AMTL (see 

Table 6.10).  Abscesses are significantly more common in the Sacramento Valley 

sample than in the San Francisco Bay sample for “sex-pooled” comparisons of the 



 

 

206 

 

incisor and premolar tooth positions (incisors, 17.211, p = .001; premolars, X2 = 13.944, 

p = .001); however, abscesses of the molar position are significantly more common in 

San Francisco Bay dentitions (X2 = 17.752, p = .001).  For comparisons of the Middle 

period samples, alveolar abscesses are significantly more common in Sacramento Valley 

dentitions than in San Francisco Bay dentitions for both incisors (males, Fisher’s Exact, 

p = .012; females, X2 = 10.554, p = .001) and premolars (males, X2 = 7.268, p = .007; 

females, X2 = 5.671, p = .017).  However, the pattern for the Late period samples is more 

variable.  San Francisco Bay males have a higher prevalence of abscesses of the molar 

tooth position (X2 = 11.425, p = .001), while females are significantly more affected for 

the incisor (X2 = 8.171, p = .004) and canine (X2 = 6.316, p = .012) tooth positions. 

A few exceptions aside, the higher prevalence of dental caries, AMTL, and 

alveolar abscessing in the Sacramento Valley samples suggests that these diets were 

significantly more cariogenic than were diets of the San Francisco Bay area; further, the 

extremely low caries rate among San Francisco Bay skeletons is consistent with data 

from other prehistoric groups that consumed high amounts of marine proteins, such as 

fish, which appear to inhibit caries formation (e.g., Littleton and Frohlich 1993; Walker 

and Erlandson 1986). 



 

 

207 

 

Table 6.10.  Chi-Square and Fisher’s Exact Results for  
Regional Comparisons of Alveolar Abscesses by Tooth Position. 

Tooth Position Sex Period X2, F.E. p value1 n2 Trend 
Incisors Males Early Period 1.263 .261 3/320 vs. 2/80   
  Middle Period F.E. .012 9/198 vs. 0/142 SV>SFB 
   Late Period 6.592 .010 1/72 vs. 16/138 SFB>SV 
 Females Early Period .384 .536 8/258 vs. 4/89   
  Middle Period 10.554 .001 23/241 vs. 4/197 SV>SFB 
   Late Period 8.171 .004 11/197 vs. 0/142 SFB>SV 
Canines Males Early Period .558 .455 4/165 vs. 2/44  
  Middle Period .426 .514 3/104 vs. 1/72  
   Late Period 2.227 .136 0/39 vs. 4/72   
 Females Early Period .000 .993 5/141 vs. 2/56  
  Middle Period 2.605 .107 10/126 vs. 3/102  
   Late Period 6.316 .012 8/9 vs. 0/75 SFB>SV 
Premolars Males Early Period .057 .812 5/336 vs. 1/87   
  Middle Period 7.268 .007 17/214 vs. 2/143 SV>SFB 
   Late Period .553 .457 5/77 vs. 14/149   
 Females Early Period .895 .344 16/288 vs. 4/120   
  Middle Period 5.671 .017 20/253 vs. 6/213 SV>SFB 
   Late Period 4.812 .028 14/202 vs. 3/155   
Molars Males Early Period 1.160 .282 31/482 vs. 5/128  
  Middle Period 1.571 .210 28/317 vs. 13/220  
   Late Period 11.425 .001 4/107 vs. 36/211 SFB>SV 
 Females Early Period .949 .330 28/406 vs. 8/169  
  Middle Period 1.645 .200 15/336 vs. 29/301  
   Late Period 2.231 .135 14/266 vs. 20/231   

1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
2 Number of abscesses observed/number of tooth positions observed for abscesses in Sacramento 

Valley sample vs. San Francisco Bay sample. 

Sex Comparisons: Sacramento Valley 

Comparisons between the total numbers of carious teeth were performed to 

evaluate sex differences within each time period for the Sacramento Valley sample.  

Statistical results for sex comparisons of dental pathology are provided in Table 6.11.  
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For each tooth type, female dentitions show a higher prevalence of carious teeth than 

male dentitions (see Table 6.2). 

When all tooth classes are considered together as a group, the prevalence of 

carious teeth is 4.9 percent for males and 9.5 percent for females (“uncorrected”, Figure 

6.3).  When the “caries correction” is applied, sex differences are even more marked 

(males = 6.8 percent, females = 18.5 percent).  Overall, carious teeth are significantly 

more common in female skeletons than in male skeletons (X2 =130.736, p <.001).  Sex 

differences are greatest for the Early period sample (15.7 percent), followed by Late 

period (12.7 percent) and Middle period (7.1 percent) samples.  Carious teeth are 

significantly more common in female skeletons than in male skeletons for the Early (X2 

= 66.805, p = .001) and Late period (X2 = 17.569, p = .001) samples.  The prevalence of 

carious is not significantly different for comparisons of Middle period samples.     

Although the Middle period sample is significantly biased toward older adult 

females, the proportion of carious teeth is similar between the sexes.  However, 

significant sex differences in the Early period sample may be due to a greater proportion 

of older females.  To evaluate whether an age-sex bias influenced the results, I removed 

individuals from the late adult category (40+ years).  When only young and middle-aged 

individuals are included in the analysis, caries are significantly more common in female 

skeletons than in male skeletons for the Early period sample (X2 = 8.716, p = .003).  This 

suggests that sex differences during this period are not solely due to the biased age 

distribution. 
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In addition to sex differences in caries prevalence, Sacramento Valley female 

dentitions show a significantly higher proportion of AMTL than do male dentitions 

(females, 20.3 percent; males, 7.2 percent; X2 = 183.902, p = .001; Figure 6.4).  When 

examined separately by time period, AMTL is significantly more common in female 

skeletons than in male skeletons for all three periods (Early period, X2 = 61.577, p = 

.001; Middle period, X2 = 112.63, p = .001; Late period, X2 = 17.506, p = .001).  These 

differences are greatest for the Middle period (18.8 percent) sample, followed by the 

Early (10.6 percent) and Late (10.0 percent) period samples.   

Table 6.11. Chi-Square and Fisher’s Exact Results for Sex Comparisons of Caries and 
AMTL. 

Observed Region Period X2, F.E. p value1 n2 Trend 
Caries Sacramento Valley Early Period 66.805 .001 57/755 vs. 141/606 F>M 
  Middle Period .930 .351 35/589 vs. 78/598 F>M 
  Late Period 17.569 .001 13/198 vs. 104/539 F>M 
  Periods Pooled 130.736 .001 105/1357 vs. 323/1743 F>M 
 San Francisco Bay Early Period F.E. .015 0/236 vs. 7/236 F>M 
  Middle Period 19.745 .001 2/440 vs. 26/468 F>M 
  Late Period F.E. .058 2/376 vs. 8/357  
  Periods Pooled 24.441 .001 4/1052 vs. 41/1061 F>M 
AMTL Sacramento Valley Early Period 61.557 .001 98/1298 vs. 197/1083 F>M 

  Middle Period 112.63 .001 55/827 vs. 243/954 F>M 
  Late Period 17.506 .001 20/293 vs. 128/761 F>M 
  Periods Pooled 183.902 .001 173/2418 vs. 618/2798 F>M 
 San Francisco Bay Early Period 6.903 .009 15/334 vs. 41/433 F>M 
  Middle Period 19.798 .001 14/574 vs. 65/803 F>M 
  Late Period 38.601 .001 91/573 vs. 29/597 M>F 
  Periods Pooled .628 .428 120/1481 vs. 135/1833  

1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
2 Number of caries or AMTL observed/number of teeth observed in male sample vs. number of 

caries or AMTL observed/number of teeth observed in female sample. 
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Since the caries prevalence is lowest for female skeletons in the Middle period sample 

(Figure 6.3), the greater proportion of tooth loss during this period may be due to higher 

attrition rates (see Table 6.8).  

Alveolar abscesses are also more prevalent in female skeletons than in male 

skeletons from the Sacramento Valley (Table 6.6).  Overall, abscesses are significantly 

more common in females for the incisor and canine tooth positions, and approach a 

significant difference for the premolar tooth position (incisors, X2 = 11.448, p  = .001; 

canines, X2 = 6.328, p = .012; premolars, X2 = 3.764, p = .052).  When the samples are 

examined separately by time period, alveolar abscesses are more common in female 

dentitions than in male dentitions for comparisons of the Early (premolars, X2 = 7.889, p 

= .005) period samples.  

Sex Comparisons: San Francisco Bay 

Similar to the pattern found in the Sacramento Valley, the prevalence of dental 

caries in San Francisco Bay is greater in female skeletons than in male skeletons for all 

tooth types (see Table 6.2).  When all tooth classes are considered together as a group, 

the prevalence of carious teeth is .4 percent for males and 3.0 percent for females.  Since 

caries-induced pulp exposure is rare in the samples, the “corrected” caries prevalence is 

similar to uncorrected values (.4 percent for males, 3.9 percent for females).  Overall, the 

prevalence of carious teeth is significantly greater in female dentitions than in male 

dentitions (X2 =24.441, p = .001).   

Sex differences are greatest for the Middle period sample (5.1 percent), followed 

by the Early (3.0 percent) and Late (1.7 percent) period samples.  Carious teeth are 
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significantly more common in female skeletons than in male skeletons for comparisons 

of the Early and Middle period samples (Early period, Fisher’s Exact, p = .015; Middle 

period, X2 = 19.745, p = .001).  Males and females show a similar caries prevalence for 

the Late period sample.  Since the San Francisco Bay sample does not show an age-

dependent pattern, the sex differences do not appear to be due to differences in the age 

composition of the samples. 

In addition to the significant sex differences in caries, San Francisco Bay females 

also show a significantly higher prevalence of AMTL for the Early (females = 9.5 

percent, males = 4.5 percent; X2 = 6.903, p .009) and Middle period samples (females = 

8.1 percent, males = 2.4 percent; X2 = 19.798, p = .001).  In contrast, Late period males 

show a significantly higher proportion of AMTL than females (males = 15.9 percent, 

females = 4.9 percent; X2 = 138.601, p = .001).  Although female skeletons generally 

show a higher prevalence of alveolar abscesses than male skeletons, these differences are 

not statistically significant (Table 6.6, Table 6.12).  However, Late period male 

dentitions show a significantly greater proportion of alveolar abscesses than female 

dentitions for the incisor (X2 = 17.462, p = .001), premolar (X2 = 8.009, p = .005), and 

molar (X2 = 7.038, p = .008) tooth positions. 
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Table 6.12.  Chi-Square and Fisher’s Exact Results for  
Sex Comparisons of Alveolar Abscesses by Tooth Position. 

Region Tooth Types Period X2, F.E. p value1 n2 Trend 
Incisors Early Period F.E. .070 3/320 vs. 8/258   
 Middle Period 4.018 .045 9/198 vs. 23/241   
 Late Period F.E. .191 1/72 vs. 11/197   
 Periods Pooled 11.448  .001 13/590 vs. 42/696  F>M 
Canines Early Period F.E. .737 4/165 vs. 5/141   
 Middle Period 2.727 .099 3/104 vs. 10/126   
 Late Period F.E. .105 0/39 vs. 8/99   
  Periods Pooled 6.328 .012 7/308 vs. 23/366 F>M 
Premolars Early Period 7.889 .005 5/339 vs. 16/288 F>M 
 Middle Period .001 .988 17/214 vs. 20/253   
 Late Period .017 .897 5/77 vs. 14/202   
 Periods Pooled 3.764  .052 27/627 vs. 50/743   
Molars Early Period .077 .782 31/482 vs. 28/406   
 Middle Period .895 .344 28/317 vs. 15/336   
 Late Period .386 .534 4/107 vs. 14/266   
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  Periods Pooled .195 .659 63/906 vs. 57/1008   
Incisors Early Period F.E. .685 2/80 vs. 4/89  
 Middle Period F.E. .143 0/142 vs. 4/197  
 Late Period 17.462 .001 16/138 vs. 0/142 M>F 
 Periods Pooled 6.252  .012 18/360 vs. 8/428 M>F 
Canines Early Period F.E. 1.000 2/44 vs. 2/56  
 Middle Period F.E. .643 1/172 vs. 3/102  
 Late Period F.E. .055 4/72 vs. 0/75  
  Periods Pooled  .995 .319 7/188 vs. 5/233   
Premolars Early Period F.E. .401 1/87 vs. 4/120  
 Middle Period F.E. .483 2/143 vs. 6/213  
 Late Period 8.009 .005 14/149 vs. 3/155 M>F 
 Periods Pooled 1.738 .187 17/379 vs. 13/488   
Molars Early Period .119 .730 5/128 vs. 8/169  
 Middle Period 2.38 .123 13/220 vs. 29/301  
 Late Period 7.038 .008 36/211 vs. 20/231 M>F 
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  Periods Pooled 1.044 .307 54/559 vs. 57/701   
1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
2 Number of abscesses observed/number of teeth observed for abscess in male sample vs. female 

sample. 
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Summary 

Comparisons between the total number of carious teeth, the number of teeth lost 

antemortem, and the total number of alveolar abscesses show a number of statistically 

significant associations that provide insight into dietary differences between time 

periods, regions, and the sexes.  Temporal comparisons indicate that both Sacramento 

Valley male and female skeletal samples show a higher prevalence of carious teeth 

during the Early and Late periods than in the Middle period.  These patterns are more 

variable for AMTL and alveolar abscesses.  Males show no significant differences in 

AMTL through time, while females show a significantly higher proportion of AMTL in 

the Middle period than in the Early and Late period.  Alveolar abscesses are also 

significantly more common for some tooth positions in the Middle period sample than in 

the Early and Late period samples. 

Temporal comparisons of the San Francisco Bay skeletal samples indicate that 

the caries rate for Middle period females is significantly higher than that of Late period 

females.  The prevalence of AMTL significantly increased in the Late period for males, 

but significantly decreased for females.  Alveolar abscessing is also significantly more 

common for some tooth positions in Middle and Late period male samples, while the 

female samples showed a significant reduction in the prevalence of alveolar abscesses 

over time for the incisor tooth position. 

Inter-regional comparisons suggest that the prevalence of carious teeth, AMTL, 

alveolar abscessing, and rate of enamel attrition was greater in skeletal samples from the 

Sacramento Valley than in skeletal samples from San Francisco Bay.  The dramatic 
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regional differences in caries prevalence in both sexes do not appear to reflect 

differences in attrition rates or differences in the age composition of the samples.  This 

suggests that Sacramento Valley diets were significantly more cariogenic than those 

from the San Francisco Bay area.  Although the prevalence of AMTL and alveolar 

abscesses is greater in Early and Middle period samples from the Sacramento Valley, the 

Late period male sample from the San Francisco Bay shows a significantly higher 

prevalence of these conditions.   

For the Sacramento Valley, female skeletons show a significantly higher 

prevalence of carious teeth than do male skeletons for the Early and Late period samples.  

These differences appear to reflect true dietary differences, between the sexes in general, 

and do not appear to reflect sex differences in attrition rates or the age composition of 

the samples.  Female dentitions also show a significantly higher prevalence of AMTL 

and alveolar abscesses than do male dentitions.  Collectively, these significant sex 

differences in dental disease suggest that females consumed greater amounts of 

cariogenic plant foods than males, especially during the Early and Late periods in the 

Sacramento Valley.   

For the San Francisco Bay sample, females also show a higher proportion of 

carious teeth than males, and these differences are significant for comparisons of the 

Early and Late period samples.  AMTL was also significantly greater among females 

than males in the Early and Middle period samples, although males show a significantly 

higher prevalence of AMTL and alveolar abscesses in the Late period sample.  Although 

sex differences are less marked in the San Francisco Bay samples than in the Sacramento 
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Valley samples, these results suggest that in general, female diets were much more 

cariogenic than male diets in prehistoric central California. 
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CHAPTER VII 

PERIOSTEAL REACTIONS 

Over the past few decades, the emphasis of paleopathological research has 

shifted away from the description and diagnosis of specific disease processes on 

individual skeletons to the study of multiple disease and stress indicators in large skeletal 

samples.  This population-oriented approach has provided greater insight into the health 

status of prehistoric societies, and has oriented bioarchaeological studies within the 

greater context of anthropological archaeology (Buikstra 1991).  The study of non-

specific infection has been of major area of interest in osteological research, as it may 

provide insight regarding the prevalence of infectious pathogens in the past.  In this 

chapter, I examine non-specific lesions of the tibia as a general measure of community 

health in prehistoric central California. 

Literature Review 

Non-specific infections on bone have been commonly used in the reconstruction 

of health status among prehistoric human societies (Larsen 1995, 1997).  Evidence of 

multiple periostoses on the La Ferrassie 1 Neandertal skeleton, excavated from the 

Dordogne region of France, indicates that such afflictions also affected earlier humans 

(Fennell and Trinkaus 1997).  Although it is often assumed that lesions affecting the 

external cortex of the bone are caused by inflammation of the overlying periosteum (i.e., 

the vascular tissue that encases bones) due to infection, similar lesions may also result 

from direct trauma to the skeleton (Larsen 1997; Mensforth et al. 1978; Ortner 2003; 
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Roberts et al. 1998).  Because bone tissue can only respond in a limited number of ways 

(i.e., bone growth or removal), the diagnosis of specific diseases in dry bone specimens 

continues to pose major challenges in paleopathological research. 

There are a number of diseases that may cause inflammation of bone and 

adjacent tissues, including osteomyelitis, treponematosis, tuberculosis, leprosy, 

pulmonary osteoarthopathy, tumors, traumatic injury, and scurvy (Gladykowska-

Rzeczycka 1998; Ortner 2003; Powell and Cook 2005a, 2005b; Schultz 2001).  In the 

case of infection, skeletal involvement may occur through direct association with 

affected tissues, open wounds, or may be transmitted through the bloodstream 

(hematogenously) from another area of the body (Ortner 2003:181). 

Non-specific lesions can be classified through examination of lesion 

characteristics, assessment of the pattern of involvement, and whether the lesion affects 

the inner or outer cortex of the bone.  Periosteal reactions, alternately referred to as 

periostitis or periostoses, are among the most common lesions identified in prehistoric 

skeletons (Ortner 2003).  Active lesions are characterized by subperiosteal deposition of 

porous, woven bone that forms superficial to the bone cortex (Ortner 2003:210).  This 

may take on an “onion-skin” appearance and manifest as small patches of proliferative 

bone growth or may involve large portions of the bone diaphysis (Ragsdale et al. 1981).  

In the healed state, the reaction may encompass the circumference of the bone and 

appear as layers of thick, striated bone that are contiguous with the unaffected areas of 

the cortex.  In many cases, it is not possible to identify the origin of the reaction.   
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Periosteal reactions (periostoses) may occur on their own, or in conjunction with 

other inflammatory conditions, such as osteomyelitis.  Osteomyelitis is a pyogenic (pus 

forming) infectious condition that originates within the medullary cavity, mainly 

affecting the endosteal surfaces (Eyre-Brook 1983; Ortner 2003:181-184).  In cases 

where the blood supply to the periosteum is disrupted, a sequestrum of necrotic bone 

may form, which aids in maintaining the infection.  As the disease progresses, new 

periosteal bone deposition produces a shell of reactive bone called the involucrum.  

Cloacae openings develop in the involucrum to allow pus and necrotic bone to escape 

through the surface of the skin (Ortner 2003).   

Although periostosis and osteomyelitis can involve diseases processes of their 

own, skeletal manifestations may also occur secondary to trauma, skin ulcers, and 

treponemal disease (Ortner 2003:206-208).  Chronic ulcers of the skin and direct trauma 

to the skeleton may promote a proliferative response of the periosteum and adjacent 

tissues, and open wounds associated with these conditions provide the mechanism 

though which bacteria can readily enter the bloodstream.  Researchers have noted that 

periosteal reactions show a predilection for the tibia, which is the most commonly 

affected element in archaeological skeletons (Larsen 1997:85; Ortner 2003:209).  The 

reason for this is not well understood.  However, since the anterior surface of the tibia is 

not well insulated by muscle, it is an area that is susceptible to both trauma and infection 

(Ortner 2003).  The tibia is also commonly affected in treponemal disease, which might 

suggest that bacteria prefer the cooler, less insulated areas of the body.     
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Although nonspecific periosteal reactions can be caused by a variety of 

conditions, paleopathologists continue to use these lesions as a general measure of 

infectious disease in studies of prehistoric societies (e.g., Bright and Loveland 1999; 

Goodman et al. 1984; Lambert 1993; Larsen 1995, 1997; Larsen and Hutchinson 1999; 

Nelson 1999; Walker and Lambert 1991).  In conjunction with other skeletal indictors, 

the prevalence of periostoses can be used to make general inferences regarding health 

status through periods of subsistence change, such as the transition to agriculture (Larsen 

1997:84).  Many studies of sedentary agricultural and nonagricultural (e.g., southern 

California) societies report significant increases in the prevalence of periosteal lesions 

through time, compared with earlier foragers from the same region (e.g., Cohen and 

Armelagos 1984, ed.; Lambert 1993; Walker and Lambert 1991; Inhorn and Brown 

1990; Larsen 1995, 1997).  For example, in twelve of eighteen case studies reported in 

Paleopathology at the Origins of Agriculture, the authors found an increase in the 

prevalence of periosteal reactions with the transition from foraging to farming (Cohen 

and Armelagos 1984).  Increases in population density and sedentism during the 

Holocene are thought to have promoted conditions more conducive to the long-term 

survival of infectious pathogens, a hypothesis supported by research on modern human 

societies (Cohen 1977, 1989, 1997; Inhorn and Brown 1990; Larsen 1995, 1997).  

Among densely settled communities, opportunity to spread infection is increased 

through a greater degree of person-to-person contact in daily activities (Inhorn and 

Brown 1990).  The accumulation of waste also promotes unsanitary conditions that are 
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conducive to the spread of infection, which may result in the contamination of drinking 

water. 

In addition to the study of nonspecific bone lesions, considerable interest has 

been directed at identifying treponemal diseases in prehistoric skeletons (Baker and 

Armelagos 1988; Cook and Powell 2005a; Merbs 1992; Powell 1991; Powell and Cook 

2005).  North American researchers have identified skeletal lesions consistent with yaws 

and syphilis (endemic and venereal), although paleopathological diagnosis of specific 

treponemal diseases continues to be debated (Baker and Armelagos 1988; Powell and 

Cook 2005a, 2005b).  Treponematosis is caused by the bacterial spirochete, Treponema 

spp., and includes four closely related diseases—yaws, pinta, endemic syphilis (bejel, 

treponarid), and venereal syphilis (Hacket 1976; Ortner 2003:274).  Transmission of 

yaws, pinta, and endemic syphilis occurs through direct contact with the skin or mucous 

membranes, while venereal syphilis occurs through sexual contact, but may also be 

passed congenitally from mother to fetus across the placenta (Roberts and Manchester 

1995:155).  Yaws and endemic syphilis are usually acquired during childhood, while 

pinta predominately affects adults during the third decade of life (Roberts and 

Manchester 1995:152).  Although yaws and syphilis (endemic and venereal) often affect 

the long bones, pinta does not affect the skeleton.  Ortner et al. (1992:343) report that 

only ten to twenty percent of individuals with the treponemal diseases that affect bone 

will show evidence of skeletal involvement.   

The identification of treponematosis in dry bone specimens is problematic, since 

periosteal reactions and osteomyelitis often occur as part of the disease process (Ortner 
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2003).  The overlapping pattern of involvement of syphilis and yaws are also similar, so 

it may not be possible to distinguish between them on the skeleton (Ortner 2003:274; 

Schultz 2001).  For endemic and venereal syphilis, gummatous lesions (i.e., caries sicca) 

may develop on the cranial vault, and infection may involve the nasal cavity and the 

long bones.  Tibial lesions may be pronounced in both yaws and syphilis (endemic and 

venereal), producing a “saber shin” appearance caused by appositional bone growth 

along the anterior diaphysis; sclerotic trabecular bone may also envelope the medullary 

cavities (endostosis) of long bones (Ortner 2003:286).  Recent studies in ancient DNA 

and bone histology have successfully identified specific treponemal diseases in skeletal 

remains (Centurion-Lara et al. 1998; Fraser et al. 1998; Kolman et al. 1999; Schultz 

2001; Walker et al. 2005).   

Methods 

Since the tibia is more predisposed to record periostoses than any other skeletal 

element, I focus on this bone as a general health indicator for the present study.  For each 

tibia, I examined the external surface for signs of periosteal bone deposition and 

recorded the location of the lesion on the bone following Standards for Data Collection 

(Buikstra and Ubelaker 1994).  For the 0-5 year-old category, I took a conservative 

approach to avoid confusing periosteal reactions with normal periosteal bone deposition.  

Although I examined all complete and fragmentary tibiae, I only include elements that 

were at least 60 percent complete in the analysis.  I described the macroscopic 

characteristics (e.g., plaque-like deposit, striated compact bone) of each lesion, and 

determined whether it was active, healed, or actively healing (mixed).  In my 
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examination of cranial vault bones for porotic hyperostosis, I observed no instances of 

healed or active stellate scars (i.e., caries sicca) in any of the samples; however, I 

observed skeletal manifestations of “saber-shin” lesions in a few cases.  I only noted a 

single case of nasopalatal resorption, but did not systematically score this feature.  Since 

I did not examine all long bones for periostosis, I provide only summary data for cases in 

which more than one element was affected.  This precluded the calculation of prevalence 

rates for any bones other than the tibia.  I use the chi-square and Fisher’s Exact statistic 

to test for significant associations between the proportion of individuals with tibial 

periostoses and age, sex, time period, and region.  To account for the increased 

probability of obtaining statistically significant results (p < .05) due to random chance 

with multiple comparisons, I set the alpha level for statistical significance at p< .017.  

However, I treat p-values between .018 and .05 as approaching statistical significance. 

Results 

Large periosteal reactions that affected more than one-third of the diaphyseal 

surface are the most common lesion type in the sample (Sacramento Valley = 38.7 

percent; San Francisco Bay = 45.9 percent).  I observed saber-shin deformity – a 

common characteristic of treponemal disease – in 3.2 percent of tibiae from the 

Sacramento Valley and 13.5 percent of tibiae from the San Francisco Bay.  I observed 

osteomyelitis of the tibia in three cases, all of which came from the San Francisco Bay 

sample.   

Table 7.1 presents the distribution of unilateral and bilateral lesions in the 

sample.  For individuals that had both tibiae present for observation, bilateral 
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involvement was more common than unilateral involvement (66.7 versus 33.3 percent, 

respectively) in the Sacramento Valley sample, but was nearly equal  (52.4 versus 47.6 

percent, respectively) in the San Francisco Bay sample.  The high degree of bilateral 

involvement in conjunction with lesions on other long bones suggests that many of the 

periostoses are part of a systemic disease, most likely of infectious origin.  Although I 

did not score other bones systematically, I noted at least eight cases (Sacramento Valley, 

n = 4; San Francisco Bay, n = 4) of tibial periostoses that were associated with other 

affected elements, especially femora, fibulae, radii, and ulnae.    

Table 7.1.  Distribution of Unilateral and Bilateral Tibial Periosteal Reactions. 

Table 7.2 presents the distribution of lesions by state of healing.  For both the 

Sacramento Valley and San Francisco Bay samples, healed lesions comprise roughly 

one-half of the tibiae affected by periostosis.  The Sacramento Valley sample shows a 

higher prevalence of active lesions than the San Francisco Bay sample.  In both regions, 

male skeletons show a higher prevalence of active tibial lesions at the time of their 

deaths than female skeletons.  These results indicate that the vast majority of periostoses 

were either healed or in the process of healing at the time of death.  

Lesion Type Region n % affected 
Unilateral Lesions Sacramento Valley 6/18 33.3 

 San Francisco Bay 10/21 47.6 
Bilateral Lesions Sacramento Valley 12/18 66.7 

 San Francisco Bay 11/21 52.4 



 

 

224 

 

Table 7.2.  Distribution of Healed and Unhealed Tibial  
Periosteal Reactions in Central California Samples by Region. 

  n % affected 
Region Lesion State Male Female Subadult Total Male Female Subadult Total 

Active Lesion 4/29 0/29 5/29 9/31 13.8 0.0 17.2 29.0 
Healed Lesion 4/29 5/29 3/29 14/31 13.8 17.2 10.3 45.2 Sacramento 

Valley Mixed 
Reaction 4/29 2/29 2/29 8/31 13.8 6.9 6.9 25.8 
Active Lesion 1/32 0/32 0/32 2/37 3.1 0.0 0.0 5.4 
Healed Lesion 5/32 13/32 0/32 21/37 15.6 40.6 0.0 56.8 San 

Francisco 
Bay Mixed 

Reaction 6/32 5/32 2/32 14/37 18.8 15.6 6.3 37.8 
  

I examined the relationship between age and the distribution of tibial periosteal 

lesions to assess whether certain age classes were more susceptible to involvement.  

Figure 7.1 presents the distribution of tibial periostoses by age class.  Periosteal reactions 

are absent in the 0 to 5 year-old age class, and are rare in young children overall (< than 

10 years of age).  In contrast, the 11 to 16 year-old age class shows the highest 

prevalence of tibial lesions (13 percent).  For late adolescents (17-19 years) and adults 

(20+ years), the percentage of affected tibiae is between eight and ten percent.  The 

proportion of individuals with tibial lesions is not significantly different between age 

classes (X2 = .904, df = 3; p = .825).   
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Figure 7.1.  Prevalence of tibial periosteal reactions by age class. 

Temporal Comparisons 

Table 7.3 summarizes the distribution of tibial periosteal reactions in the 

Sacramento Valley sample by region and time period.  Figure 7.2 presents the 

prevalence of periostoses for the right tibia to illustrate general trends in the samples.  

Statistical results for chi-square and Fisher’s Exact test are provided in Table 7.4. 
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Table 7.3.  Distribution of Tibial Periosteal Reactions in  
Central California by Geographic Region, Time Period, and Sex. 
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Figure 7.2.  Prevalence of tibial periosteal reactions by region and time period for right tibiae  

(pooled sample includes subadults and individuals of indeterminate sex). 

     Male Female Indeterminate Subadult 

Region Time Period Prevalence Left Right Left Right Left Right Left Right 
Early Period     n 0/39 0/40 0/30 0/29 1/4 1/4 0/16 0/15 
     % affected 0.0 0.0 0.0 0.0 25.0 25.0 0.0 0.0 
Middle Period     n 3/25 4/25 2/33 1/32 0/0 0/0 4/11 2/10 
     % affected 12.0 16.0 6.1 3.1 0.0 0.0 36.4 20.0 
Late Period     n 3/14 2/14 2/27 2/28 0/0 0/0 2/7 2/7 Sa

cr
am

en
to

 
V

al
le

y 

     % affected 21.4 14.3 7.4 7.1 0.0 0.0 28.6 28.6 
Early Period     n 2/13 1/11 6/18 4/21 0/0 0/0 0/7 0/8 

     % affected 15.4 9.1 33.3 19.1 0.0 0.0 0.0 0.0 
Middle Period     n 3/25 2/26 4/35 2/34 1/2 1/4 1/6 1/6 

     % affected 12.0 7.7 11.4 5.9 50.0 25.0 16.7 16.7 
Late Period     n 1/11 3/10 1/5 1/9 2/2 0/0 0/2 0/2 Sa

n 
Fr

an
ci

sc
o 

B
ay

 

     % affected 9.1 30.0 20.0 11.1 100 0.0 0.0 0.0 
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 The prevalence of tibial periostoses increased through time for the Sacramento 

Valley sample.  For the sample as a whole (pooled ages and sexes), the lesion prevalence 

is 1.1, 11.6, and 13.4 percent for the Early, Middle, and Late period, respectively.  Tibial 

lesions are significantly more common in the Middle and Late period samples than in the 

Early period sample (Early vs. Middle period, Fisher’s Exact, p = .003, left tibia; Early 

vs. Late period, Fisher’s Exact, p = .008, left tibia; Fisher’s Exact, p = .009, right tibia).  

However, the prevalence for right tibiae approaches significance only for comparisons 

between the Early and Middle period samples (Fisher’s Exact, p = .021).  For the male 

sample, the proportion of left tibiae with periostoses also increases between the Early 

and Late period (Fisher’s Exact, p = .016).  The difference between the Early and Middle 

period approaches significance in males for right tibiae only (Fisher’s Exact, p = .019, 

right tibia).  However, no temporal pattern is observed in the female sample.  In the 

subadult category, the proportion of affected left tibiae approaches statistical 

significance for comparisons between the Early and Middle period sample only (Fisher’s 

Exact, p = .019, left tibia). 

Table 7.3 summarizes the distribution of tibial periosteal reactions by region and 

time period for the San Francisco Bay sample.  For the sample as a whole (pooled ages 

and sexes), the lesion prevalence is 16.7, 10.9, and 19.5 percent for the Early, Middle, 

and Late period, respectively.  However, the proportion of individuals with tibial 

periostoses is not significantly different between time periods (Table 7.4).  This pattern 

also holds for temporal comparisons of the adult and subadult categories. 
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Table 7.4.  Chi-Square and Fisher’s Exact Test Results for Tibial Periostoses by Time Period. 
Sex/Ages  Left P  value1 n2 Trend Right p value1 n2 Trend 
Sacramento Valley 
Males   EP vs. MP F.E. .055 0/39 vs. 3/25   F.E. .019 0/40 vs. 4/25 EP<MP 
   EP vs. LP F.E. .016 0/39 vs. 3/14 EP<LP F.E. .064 0/40 vs. 2/14   
   MP vs. LP F.E.  .647  3/25 vs. 3/14    F.E.  1.000 3/25 vs. 3/14    
Females   EP vs. MP F.E. .493 0/30 vs. 2/33   F.E. 1.000 0/29 vs. 1/32   
   EP vs. LP F.E. .474 0/30 vs. 2/27   F.E. .491 0/29 vs. 2/28   
   MP vs. LP F.E.   1.000 2/33 vs. 2/27    F.E.  1.000 1/32 vs. 2/28    
Subadults   EP vs. MP F.E. .019 0/16 vs. 4/11 EP<MP F.E. .150 0/15 vs. 2/10   
   EP vs. LP F.E. .083 0/16 vs. 2/7   F.E. .091 0/15 vs. 2/7   
   MP vs. LP F.E. 1.000 4/11 vs. 2/7    F.E. 1.000 2/10 vs. 2/7    

  EP vs. MP F.E. .003 1/89 vs. 9/69 EP<MP F.E. .021 1/88 vs. 7/67 EP<MP 
  EP vs. LP F.E. .008 1/89 vs. 7/48 EP<LP F.E. .009 1/88 vs. 6/49 EP<LP 

Ages & 
Sexes 
Pooled MP vs. LP X =.057 .812  9/69 vs. 7/48   X2 = .092 .762 7/67 vs. 6/49   
San Francisco Bay 
Males   EP vs. MP F.E. 1.000 2/13 vs. 3/25   F.E. 1.000 1/11 vs. 2/26  
   EP vs. LP F.E. 1.000 2/13 vs. 1/11   F.E. .311 1/11 vs. 3/10  
   MP vs. LP F.E.  1.000 3/25 vs. 1/11    F.E.  .119 2/26 vs. 3/10    
Females   EP vs. MP F.E. .071 6/18 vs. 4/35   F.E. .188 4/21 vs. 2/34  
   EP vs. LP F.E. 1.000 6/18 vs. 1/5   F.E. 1.000 4/21 vs. 1/9  
   MP vs. LP F.E.  .507  4/35 vs. 1/5    F.E.  .515 2/34 vs. 1/9    
Subadults   EP vs. MP F.E. .462 0/7 vs. 1/6   F.E. .429 0/8 vs. 1/6  
   EP vs. LP F.E.  0/7 vs. 0/2   F.E.  0/8 vs. 0/2  
   MP vs. LP F.E. 1.000 1/6 vs. 0/2    F.E. 1.000 1/6 vs. 0/2    

  EP vs. MP X2 = 1.106 .293 8/38 vs. 9/68   F.E. .524 5/40 vs. 6/70  
  EP vs. LP F.E. 1.000 8/38 vs. 4/20   F.E. .706 5/40 vs. 4/21  

Ages & 
Sexes 
Pooled   MP vs. LP F.E. .481 3/25 vs. 1/11    F.E. .231 6/70 vs. 4/21    

1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
2 Number affected/number examined. 
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Regional Comparisons 

Table 7.3 summarizes the distribution of tibial periostoses by region.  Statistical 

results for inter-regional comparisons are presented in Table 7.5.  Overall, the prevalence 

of tibial periostoses is greater in the San Francisco Bay sample than in the Sacramento 

Valley sample (Figure 7.2).  When all periods are considered together as a group, 7.8 

(16/206) percent of left and 6.4 percent (13/204) of right tibiae have lesions in the 

Sacramento Valley sample, whereas 17.3 percent (22/127) of left and 11.5 percent of 

right (15/131) tibiae have lesions in the San Francisco Bay sample.  Statistically 

significant differences are found for left tibia (X2 = 7.097, p = .008), but not the right 

tibia (X2 = 2.685, p = .101).  When partitioned by time period, significant differences are 

found only for the Early period samples (Fisher’s Exact, p = .001, left tibia; p = .011, 

right tibia).  Table 7.3 shows that this result is largely due to inter-regional differences 

between Early period females (Sacramento Valley, left: 0/30 = 0 percent, right: 0/29 = 0 

percent; San Francisco Bay, left: 6/18 = 33.3, right: 4/21 = 19.1 percent).  Tibial lesions 

are significantly more common among female skeletons from San Francisco Bay than 

among females from the lower Sacramento Valley (Fisher’s Exact, p = .002, left tibia; p 

= .026, right tibia).  However, there are no significant differences in the proportion of 

tibiae with periostoses for either the male or subadult sample.



 

 

230 

 

Table 7.5.  Chi-Square and Fisher’s Exact Test Results for Regional Differences  
in Tibial Periosteal Reactions in the Sacramento Valley and San Francisco Bay Samples. 

 SV vs. SFB SV vs. SFB SV vs. SFB SV vs. SFB 
 Males Females Subadults Ages and Sexes Pooled 
Period 
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Left Side 
Early 
Period 

F.E. .059 0/39 vs. 
2/13  

F.E. .002 0/30 vs. 
6/18 

SFB>
SV 

F.E. - 0/16 vs. 
0/7 

F.E. .001 1/89 vs. 
8/38 

SFB>SV 

Middle 
Period 

F.E. 1.000 3/25 vs. 
3/25  

F.E. .674 2/33 vs. 
4/35 

 F.E. .600 4/11 vs. 
1/6 

.001 .973 9/69 vs. 
9/68 

 

Late 
Period 

F.E. .604 3/14 vs. 
1/11  

F.E. .292 2/27 vs. 
1/5 

  F.E. 1.000 2/7 vs. 
0/2 

F.E. .465 7/48 vs. 
4/20 

  

Right 
Early 
Period 

F.E. .216 0/40 vs. 
1/11  

F.E. .026 0/29 vs. 
4/21 

SFB>
SV 

F.E. - 0/15 vs. 
0/8 

F.E. .011 1/88 vs. 
5/40 

SFB>SV 

Middle 
Period 

F.E. .419 4/25 vs. 
2/26  

F.E. 1.000 1/32 vs. 
2/34 

 F.E. 1.000 2/10 vs. 
1/6 

.140 .708 7/67 vs. 
6/70 

 

Late 
Period 

F.E. .615 2/14 vs. 
3/10  

F.E. .432 2/28 vs. 
1/9 

  F.E. 1.000 2/7 vs. 
0/2 

F.E. .437 6/49 vs. 
4/21 

  

1 Statistically significant results (p<.017) are indicated by bold-faced type in the table.  
2 Number of affected/total examined in SV sample vs. number of affected/total examined in SFB sample.
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Sex Comparisons 

The distribution of tibial periosteal lesions by sex is summarized in Table 7.3, 

and statistical results are provided in Table 7.6.  In general, periosteal lesions are more 

common among males than among females in the Sacramento Valley sample.  When all 

periods are considered together as a single group, the prevalence of periostoses for males 

is 7.7 percent (6/78) for the left, and 7.6 percent (6/79) for the right tibia.  For females, 

3.3 percent (3/90) of left and 2.2 percent (2/89) of right tibiae are affected.  However, the 

proportion of affected tibia is not significantly different between males and females for 

any of the comparisons (Table 7.6).  For the San Francisco Bay sample, periostoses 

affected 12.2 percent (6/49) of left and 12.8 percent (6/47) of right tibiae for males, and 

19 percent (11/58) of left and 10.9 percent (7/64) of right tibiae for females.  However, 

the prevalence of tibial lesions is also not significantly different by sex for any of the 

comparisons. 

Table 7.6.  Chi-Square and Fisher’s Exact Test Results for  
Sex Differences in Tibial Periosteal Reactions by Region. 

 Sacramento Valley  San Francisco Bay  
Period  X2, F.E. p value n1 X2, F.E. p value n1 

Left tibia       
Early Period F.E. - 0/39 vs. 0/30 F.E. .412 2/13 vs. 6/18 
Middle Period F.E. .643 3/25 vs. 2/33 F.E. 1.000 3/25 vs. 4/35 
Late Period F.E. .107 3/14 vs. 2/27 F.E. 1.000 1/11 vs. 1/5 
Periods Combined F.E. .306  6/78 vs. 4/90 .898 .343 6/49 vs. 11/58 
Right tibia             
Early Period F.E. - 0/40 vs. 0/29 F.E. .637 1/11 vs. 4/21 
Middle Period F.E. .157 4/25 vs. 1/32 F.E. 1.000 2/26 vs. 2/34 
Late Period F.E. .254 2/14 vs. 2/28 F.E. .582 3/10 vs. 1/9  
Periods Combined F.E. .150 6/79 vs. 3/89 .088 .767 6/47 vs. 7/64 

1 Number affected/number examined of males vs. females. 
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Summary 

The abundance of large periosteal reactions, the high degree of bilateral 

involvement, and the polyostotic pattern in several individuals suggests that many of 

these lesions are the result of infection rather than trauma.  The distribution of tibial 

periosteal reactions in the samples provides some support for resource intensification 

models in prehistoric central California.  The prevalence of tibial lesions significantly 

increased through time in males and for the sample as a whole in the Sacramento Valley, 

which is expected with higher levels of infection associated with greater population and 

sedentism.  In contrast, the San Francisco Bay sample shows no significant trends 

through time with respect to the prevalence of tibial lesions.  Inter-regional comparisons, 

however, indicate that a greater proportion of individuals in the San Francisco Bay 

sample have tibial periostoses compared with those in the Sacramento Valley skeletal 

series, especially during the Early period.  Both sexes had a similar prevalence of tibial 

periostoses, which suggests that males and females had similar levels of exposure to 

infection and/or trauma. 
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CHAPTER VIII 

STATURE 

The association between adult stature and other indicators of health status has 

been documented in numerous studies of living human populations (Bogin and Rios 

2003; Bogin et al. 2002; Leonard et al. 2000; Martorell 1989; Martorell and Habicht 

1986; Saunders and Hoppa 1993; Stinson 1985, 2002).  Because short stature is often 

linked with malnutrition, undernutrition, and the prevalence of infectious disease in 

modern human populations, it is often used as a comparative measure of health status.  

In this chapter, I use mean femoral length as a proxy measure of stature differences in 

prehistoric central California.  I examine differences in femoral length by time period, 

between regions, and between the sexes.  

Literature Review 

Disease and nutritional stress are recognized as important factors that control the 

rate and velocity of long bone growth (Cameron and Demerath 2002; King and Ulijaszek 

1999).  Although there has been considerable debate, human biologists recognize that 

poor nutrition and disease during critical periods of growth and development (e.g., birth 

to age three) are associated with elevated risk of morbidity and mortality throughout the 

lifespan.  In sum, individuals (modern and prehistoric) who experience significant 

growth disruption due to nutritional stress or disease have a tendency to die at younger 

ages than individuals who experienced childhoods without major episodes of health 
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stress (Cameron and Demerath 2002; Kemkes-Grottenthaler 2005; Martorell and Habict 

1986; Martorell 1989; Saunders and Hoppa 1993; Stinson 2002).  

Although genetic factors and adequate vitamin D synthesis influence growth 

rates, nutrition and disease are recognized as the most important factors that regulate 

long bone growth in modern human populations (Bogin et al. 2002; Martorell 1989; 

Steckel 1995; Stinson 2002).  For example, Bogin et al. (2002) compared growth rates in 

adult Maya and their children from Guatemala with growth rates of recent Maya 

American immigrants to the United States.  They found that American-born Maya 

average 11.54 cm taller than their Guatemalan counterparts, which the authors attribute 

to improvements in childhood nutrition and access to health care in the U.S. (Bogin et al. 

2002:753).  In a retrospective study of Dutch male stature from AD 50 to 1997, Maat 

(2005) found fluctuations in height that corresponded to changing health conditions in 

the past.  During the Roman Period, the movement toward urbanization was associated 

with a negative secular trend in stature, a decline in dietary quality, and poorer sanitary 

conditions (Maat 2005:283-287).  Improvements in nutrition and health from the middle 

of the nineteenth century to 1997 were associated with a positive secular trend in stature, 

which accounts for the high mean stature among modern Dutch males.  These studies 

support the notion that nutrition and disease play an important role in the attainment of 

maximum stature.  

During early growth and development, the young are highly susceptible to 

perturbations caused by nutritional deficiencies, such as protein and/or calorie 

malnutrition, and infection (Cameron and Demerath 2002; Stinson 2002).  Poor maternal 
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health and/or malnutrition may account for initial growth stunting in infants and young 

children, and later to diminished adult stature (Saunders and Hoppa 1993:132).  Low 

birth-weight infants are also more susceptible to growth retardation and poorly 

developed immune systems than are healthy infants, and consequently show higher rates 

of morbidity and mortality.  Poor maternal health, inadequate infant nutrition, and high 

pathogen load – in conjunction with immuno-compromised health status – account for 

the high rates of infant mortality and morbidity in many developing nations, and 

presumably for archaeological populations as well (Saunders and Hoppa 1993).  For 

those individuals who experienced childhood growth arrest but survived to adulthood, 

stunting (i.e., short adult stature) can be used as a measure of stressful childhood 

conditions (Cameron and Demerath 2002; Kemkes-Grottenthaler 2005; Martorell and 

Habict 1986; Martorell 1989; Saunders and Hoppa 1993; Stinson 2002).  

Methods 

Although there are a number of formulae for estimating stature from long bone 

length, none are appropriate for central California populations.  Some researchers (e.g., 

Sciulli and Giesen 1993; Sciulli et al. 1990) have used Fully’s anatomical method to 

generate stature regression formulae for archaeological samples.  These formulae are 

then applied to other archaeological samples to estimate stature from long bones lengths.  

This method has had some success in comparing stature trends within a specific 

archaeological region, but cannot be extrapolated to prehistoric samples from other 

regions.  Lambert (1993, 1994) simply used mean femoral length to compare the relative 

stature of populations from different regions and time periods in the Channel Islands 
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area of southern California.  This method has several advantages.  First, it avoids having 

to estimate stature using regression formulae that are only appropriate to the reference 

samples from which they are derived.  Second, since femoral length shows a high 

correlation with living height and accounts for approximately 27 percent of total adult 

stature, measurements are directly comparable between skeletal samples (Lambert 

1993).  As with any comparison of stature, this assumes a degree of genetic homogeneity 

within and between time periods for a given archaeological region.  

For the sake of comparison with data from prehistoric southern California 

(Lambert 1993, 1994) and the other reasons mentioned above, I use mean femoral length 

as a proxy measure of adult stature.  I measured the maximum length of adult right 

femora, substituting the left side in cases when the right side was damaged or missing.  I 

measured reconstructed femora only in instances where joins were complete and 

properly aligned, avoiding femora with damage to the superior aspect of the femoral 

head or the distal articular surface of the femoral condyles.  I collected all measurements 

using a standard osteometric board and recorded maximum bone length to the nearest 

millimeter.  I examined normality in the sample distribution using the Kolmogorov-

Smirnov and Shapiro-Wilk tests before comparing stature data.  I used the one-way 

ANOVA and Student’s T-test to examine differences in mean femoral length by time 

period, by region, and by sex.  

Results  

Statistical comparisons of ratio level data can be influenced by departure from 

normality and by differences in the sample variances.  The hypothesis that a sample 
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comes from a normal distribution can be examined using tests of normality, such as 

Kolmogorov-Smirnov and Shapiro-Wilk tests.  Since sex-pooled comparisons tend to 

show a bimodal distribution of femoral length due to sexual dimorphism, I examined 

sample distributions for males and females separately.  Based on examination of box-

and-whisker plots, I eliminated three outliers from the analysis (one male, two females).  

I then examined the normality distribution in each sample using the Kolmogorov-

Smirnov and Shapiro-Wilk tests and through visual examination of Q-Q plots.  

Statistically significant values (p<.05) indicate that a sample is not normally distributed, 

while non-significant values suggest that a sample is within the range of the normal 

distribution.  Although no significant differences are found in any of the Sacramento 

Valley samples, femoral lengths in Early period males and females and Middle period 

females in the San Francisco Bay sample show significant departures from normality.  

Based on these results, I limit most statistical comparisons to the Sacramento Valley 

samples.   

Mean femoral lengths and standard deviations are presented by site in Table 8.1.  

For the Sacramento Valley sample as a whole (periods combined), mean femoral length 

was 449.5 mm for males and 420.7 mm for females.  The longest femora for males are 

from SJO-142, and the shortest are from SAC-60.  For females, in contrast, the longest 

femora are found in the SAC-06 sample and the shortest are found in the SAC-43 

sample.  For the San Francisco Bay sample as a whole (periods combined), mean 

femoral length was 450.2 mm for males and 409.5 for females.  For the male sample, the 

longest femora are from ALA-309, while the shortest femora are from ALA-329.  For 
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females, in contrast, the longest femora are found in the ALA-307 sample, and the 

shortest are found in the ALA-328 sample.   

Table 8.1.  Mean Femoral Lengths (in mm) in Prehistoric Central California by Site. 

Temporal Comparisons  

The distribution of mean femoral lengths in the Sacramento Valley sample is 

presented by time period in Figure 8.1 and Table 8.2.  ANOVA results are presented in 

Table 8.3.  Femur length for females shows a significant decline between the Early and 

Middle period (p = .001, Bonferroni Test; difference of 1.75 cm), and then a significant 

increase between the Middle and Late periods (p = .008, Bonferroni Test; difference of 

1.42 cm).  Since femoral length accounts for approximately 27 percent of total adult 

stature (Lambert 1993), these differences account for a reduction in female stature of 

approximately 6.5 cm (1.75/.27 = 6.48 cm) between the Early and Middle period, 

  Males Females 
Site Mean S.D. n Mean S.D. n 
Sacramento Valley 
SJO-68 450.90 20.51 30 428.82 12.92 17 
SJO-142 457.88 14.95 16 428.71 12.23 7 
SJO-154 440.50 13.89 4 411.17 12.19 6 
SAC-43 450.06 16.07 17 409.72 12.97 18 
SAC-60 437.20 19.64 10 417.45 17.45 11 
SAC-06 444.83 15.77 6 433.00 14.79 8 
Total 449.48 18.52 83 420.73 16.22 67 
San Francisco Bay 
Ala-307 449.33 2.31 3 421.86 17.53 7 
Ala-309 459.75 9.38 8 406.14 16.04 7 
Ala-328 449.78 16.94 9 403.42 13.12 12 
Ala-329 443.30 22.46 10 410.33 10.15 12 
Total 450.23 17.29 30 409.50 14.72 38 
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followed by an increase of roughly 5.3 cm (1.42/.27 = 5.26) between the Middle and 

Late period.  Temporal change in femur length only approaches statistical significance 

for males between the Early and Middle period (p = .107, Bonferroni Test).   
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Figure 8.1.  Comparison of male and female femoral length through time in the Sacramento Valley. 

Table 8.2.  Distribution of Mean Femoral Length by  
Sex and Time Period in Prehistoric Central California. 

  Males Females 
Period Mean S.D. n Mean S.D. n 
Sacramento Valley 
Early Period 453.33 18.89 46 428.79 12.46 24 
Middle Period 443.89 17.54 27 411.29 13.51 28 
Late Period 446.90 18.52 10 425.47 17.86 15 
San Francisco Bay 
Early Period 454.20 12.33 5 418.44 16.64 9 
Middle Period 449.56 17.20 16 407.48 13.03 21 
Late Period 449.22 21.00 9 404.75 14.23 8 
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Table 8.2 and Figure 8.2 present the distribution of mean femoral lengths in the 

San Francisco Bay sample by sex and time period.  Although statistical comparisons 

could not be computed due to small sample size, mean femoral length is shorter in the 

Middle and Late period samples than in the Early period sample.  A larger sample size is 

needed to test whether temporal differences between other periods are statistically 

significant.   

Table 8.3.  ANOVA Results for Temporal  
Femoral Length Comparisons in Prehistoric Central California. 
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Sacramento Valley 

2.398 80 .097 .107 EP>MP .94 10.844 64 .001 .001 EP>MP 1.75 

   .945 EP>LP .64    1.000 EP>LP .33 

   1.000 MP<LP .30    .008 MP<LP 1.42 
San Francisco Bay 
    EP>MP .46     EP>MP 1.10 

    EP>LP .50     EP>LP 1.40 

    MP>LP .03     MP>LP .56 
1 Statistically significant results are indicated by bold-faced type in the table.  
2 Bonferroni test indicates which ANOVA comparisons are statistically significant within a three-

way comparison.  
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Figure 8.2.  Comparison of male and female femoral length through time in San Francisco Bay.  

Regional Comparisons 

I controlled sex to compare stature differences between the Sacramento Valley 

and San Francisco Bay samples (Table 8.2).  Figures 8.3 and 8.4 illustrate regional 

differences in mean femoral length for males and females, respectively.  The results of 

Student’s t-tests are provided in Table 8.4.  For the statistical comparisons that could be 

computed, femora are significantly longer in the Sacramento Valley female sample than 

in the San Francisco Bay female sample (t = 2.829, df = 21, p = .01).  Although 

differences are not significant (or could not be computed) for most comparisons, San 

Francisco Bay males are, on average, slightly taller than their Sacramento Valley 

counterparts, while the opposite is true for females (and significantly so for the Late 

period sample).  Although these patterns are interesting, no substantive conclusions can 
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be drawn, except that Late period females in the Sacramento Valley sample were 

significantly taller (~7.7 cm) than females in the San Francisco Bay sample.   
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Figure 8.3.  Regional comparison of femoral length in Sacramento Valley and San Francisco Bay males.   
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Figure 8.4.  Regional comparison of femoral length in Sacramento Valley and San Francisco Bay females.   

Table 8.4. T-test Results for Regional Differences in Mean Femoral Length. 
 Period t-statistic df p-value1 Trend Difference (cm) 
Males      
Early Period    SFB>SV .09 
Middle Period -1.032 41 .308 SFB>SV .57 
Late Period -.269 17 .791 SFB>SV .23 
Females      
Early Period    SV>SFB 1.03 
Middle Period    SV>SFB .38 
Late Period 2.828 21 .010 SV>SFB 2.07 

1 Statistically significant results (p<.05) are indicated by bold-faced type in the table.  

Sex Comparisons 

Sex differences in mean femoral length are presented in Table 8.2 and Figure 8.1 

for the Sacramento Valley sample.  The results of Student’s t-tests are provided in Table 

8.5.  Due to the degree of sexual dimorphism expressed in many Amerindian 

populations, significant sex differences are expected in studies of prehistoric skeletal 

samples (Larsen 1997).  However, relative differences in stature between the sexes can 
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provide insight into biologically and/or culturally mediated factors that had differential 

effects on health during the period of growth and development (Ortner 1998, 2003).  For 

the Sacramento Valley sample, mean femoral length is greater in males than females, 

and these differences are statistically significant for all three periods (Early period, t = 

6.505, df = 64.122, p = .001; Middle period, t = 7.738, df = 53, p = .001; Late period, t = 

3.021, df = 23, p = .006).  The mean difference is 2.45 cm for the Early period, 3.26 cm 

for the Middle period, and 2.14 cm for the Late period, which corresponds to 

approximate total stature differences of 9.1, 12.1, and 7.9 cm, respectively. 

Table 8.5.  T-test Results for Mean Femoral Length  
Differences Between Males and Females in Central California.   

Period t-statistic df p-value1 trend Difference (cm) 
Sacramento Valley 
Early Period 6.505 64.122 .001 M>F 2.45 
Middle Period 7.738 53 .001 M>F 3.26 
Late Period 3.021 23 .006 M>F 2.14 
San Francisco Bay 
Early Period    M>F 3.58 
Middle Period    M>F 4.21 
Late Period 5.040 15 .001 M>F 4.45 

1 Statistically significant results are indicated by bold-faced type in the table.   

Sex differences in mean femoral length are presented in Table 8.2 and Figure 8.2 for the 

San Francisco Bay sample.  Although a non-normal distribution prevented statistical 

comparisons for the Early and Middle period samples, differences in mean femoral 

length between the sexes follow a similar pattern to that identified for the Sacramento 

Valley sample.  The mean difference is 3.58 cm for the Early period, 4.21 cm for the 

Middle period, and 4.45 cm for the Late period.  In the Late period, significant sex 
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differences are found between males and females (t = 5.04, df = 15, p = .001).  The 

difference in mean femoral length is 4.45 cm, which corresponds to an approximate 

stature difference of approximately 16.5 cm.  

Summary 

In the Sacramento Valley sample, mean femoral length significantly declined 

between the Early and Middle period in females, although this trend was reversed in the 

Late period.  Although small sample size prevented most comparisons in the San 

Francisco Bay sample, mean femoral length was higher for Early period males and 

females than in their Middle and Late period counterparts.  Late period Sacramento 

Valley females were also significantly taller than their San Francisco Bay counterparts.  

Sexual dimorphism in mean femoral length peaked during the Middle period in both the 

Sacramento Valley and San Francisco Bay samples.  In the Late period, sex differences 

in mean femoral length in the San Francisco Bay exceeded that found in the Sacramento 

Valley sample, which may suggest a greater level of sexual inequality in overall health 

and/or nutritional status during this time period in San Francisco Bay.  
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CHAPTER IX 

POROTIC HYPEROSTOSIS 

“Porotic hyperostosis” refers to porotic or sieve-like lesions that are commonly 

observed on prehistoric crania.  Most researchers interpret these lesions as osseous 

responses to acquired childhood anemia caused by iron-deficient diets, parasitism, and 

infection, or by a combination of these factors (Blom et al. 2005; El-Najjar et al. 1976; 

Facchini et al. 2004; Glen-Haduch et al. 1997; Grauer 1993; Kent 1986; Mensforth et al. 

1978; Salvadei et al. 2001; Stuart-Macadam 1985, 1987a, 1987b, 1992; Sullivan 2005; 

Walker 1985, 1996; Wright and Chew 1999).  In this chapter, I examine differences in 

the prevalence of porotic hyperostosis in prehistoric crania from central California by 

time period, by region, and by sex as a measure of childhood health status. 

Literature Review 

Recent bioarchaeological studies emphasize the multi-factorial nature of acquired 

anemia, and recognize that both nutritional status and pathogen load may work 

synergistically in the development of cranial lesions.  Although the genetic anemias 

(e.g., sickle-cell anemia and thalassemia) show a similar pattern of skeletal involvement 

as the acquired anemias, these conditions were not present in the Americas during the 

pre-Columbian period (Angel 1966; Hershkovitz et al. 1997; Ortner 2003:370).  Porotic 

hyperostosis is a common condition found in archaeological skeletons, especially among 

prehistoric agricultural societies (Cohen and Armelagos 1984; El-Najjar et al. 1976; 

Holland and O’Brien 1997; Larsen 1995, 1997; Walker 1985).  Early studies of porotic 
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hyperostosis took a strictly nutritional interpretation, since heavy consumption of iron-

deficient plant staples is linked with childhood anemia in many living societies (El-

Najjer 1976; El-Najjar et al. 1976; Lallo et al. 1977).  For instance, El-Najjar et al. 

(1976) interpreted porotic lesions in prehistoric crania from the southwestern United 

States as evidence of iron-deficiency anemia, resulting from the heavy consumption of 

iron-poor maize.   

Anemia is a condition in which the number of red blood cells or the amount of 

hemoglobin within them is below normal levels.  Hemoglobin, the main protein of red 

blood cells, is responsible for oxygen transport from the lungs to other bodily tissues via 

the bloodstream.  Adequate iron intake is critical for cellular growth, oxygen transport to 

bodily tissues, and oxidative metabolism, and can only be met through sufficient iron in 

the diet (Ryan 1997:25).  Hence, iron-deficiency anemia occurs when the amount of 

dietary iron that is absorbed by the digestive system is insufficient to meet nutritional 

requirements and adequate production of red blood cells (erythropoiesis).  Although 

infants accumulate iron in utero, these stores are depleted between the first four to six 

months of life, after which the diet becomes the primary source of iron (El-Najjar et al. 

1976; Wright and Chew 1999).  The human digestive system can readily access heme 

and ferrous iron from meats and fish, although bioavailability in many plant foods is 

significantly lower (Roberts and Manchester 1995; Ryan 1997).  Some plant staples, 

such as maize, are deficient in iron and contain phytic acids that may further inhibit iron 

absorption by the digestive system.  Deficiencies in other dietary nutrients, such as 

ascorbic acid, proteins, and amino acids also contribute to the depletion of bioavailable 
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iron (Ryan 1997).  Present in many plant foods including acorns, tannins also inhibit iron 

and vitamin B-12 intake by the digestive system.  In contrast, foods that are high in 

Vitamin C may aid in the absorption of bioavailable iron (Roberts and Manchester 

1995). 

Although inadequate dietary iron is one cause of acquired anemia, weanling 

diarrheal disease due to parasitic infestation (helminthiasis) or bacterial infection may 

also result in secondary loss of blood and iron (Goodman 1994; Holland and O’Brien 

1997; Kent 1986, 1992; Larsen 1995, 1997; Mensforth et al. 1978; Rothschild 2002; 

Ryan 1997; Stuart-Macadam 1992a, 1992b; Walker 1986; Wright and Chew 1999).  The 

fact that some non-agricultural societies have high levels of porotic hyperostosis 

suggests that non-dietary factors also play a role.  For example, coastal populations that 

consumed iron-rich marine foods from southern California and British Columbia show 

frequencies of porotic hyperostosis that are as high as that reported for many agricultural 

groups (Bathurst 2004; Cybulski 1977, 1992; Lambert 1994; Lambert and Walker 1991; 

Walker 1986).   

Helminthiasis can be acquired through contaminated water supply, consumption 

of fish and sea mammals that carry parasites, or direct contact with skin, and may cause 

anemia through chronic abdominal bleeding and diarrhea (Bathurst 2004; Blom et al. 

2005; Merid et al. 2001; Rothschild 2002; Walker 1986).  Helminth infestation is a 

common problem in modern developing nations and is often associated with unsanitary 

living conditions and high population density (Aufderheide and Rodríguez-Martín 

1998:223; Crompton 1999; Goncalves et al. 2003). 
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Recent archaeoparasitological research has identified eggs of fish tapeworm 

(Diphyllobothrium spp.) and human roundworm (Ascaris lumbricoides) in prehistoric 

shell mound sites from the Pacific Coast of Canada (Bathurst 2004).  Diphyllobothrium 

spp. use freshwater and anadromous fish as an intermediary to human hosts and has been 

linked to pernicious anemia in humans (vitamin B12 deficiency).  Salmon are common 

carriers of tapeworm in the Pacific region and larvae may survive in raw, dried, or even 

cold-smoked fish (Bathurst 2004:5).  Ascaris lumbricoides is specific to humans and is 

acquired through consumption of food or water that is contaminated by fertilized eggs 

(Goncalves et al. 2003).  Porotic hyperostosis identified in crania from the Pacific Coast 

of Canada provides support for the role of parasites in the development of acquired 

anemia in some maritime settings (Cybulski 1977, 1992).   

Some researchers have interpreted anemia as an adaptive response to heavy or 

chronic pathogen load rather than iron deficient diets, a hypothesis referred to as the 

“anemia of chronic disease” or the “anemia of infection” (Kent 1986, 1992; Stuart-

Macadam 1992a, 1992b).  For example, researchers have found that the digestive system 

is capable of adjusting its capacity to absorb dietary iron, based not only on daily need 

but also in response to microbial invasion.  This argument states that the withholding of 

iron (hypoferremia) is part of body’s natural defense mechanism from invading 

microorganisms, such as bacteria and parasites (Stuart-Macadam 1987b, 1992a, 1992b, 

Weinberg 1992).  Mild anemia may then lower the absorption of dietary iron and 

decrease serum iron levels, thus protecting against microbial infection.  Stuart-Macadam 

(1987b, 1992a, 1992b) has argued that the association between high levels of porotic 
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hyperostosis and agricultural subsistence is coincidental, since agricultural populations 

are sedentary and present conditions that are conducive to bacterial infection.  Since 

individuals who are even mildly anemic have reduced work capacity, diminished motor 

function, and higher rates of mortality, many researchers have rejected the premise that 

iron-deficiency can be viewed as adaptive (Goodman 1994; Holland and O’Brien 1997).   

Angel (1966) coined the term “porotic hyperostosis” (alternately, spongy 

hyperostosis, symmetrical osteoporosis, or cribra cranii externa) to describe porotic 

lesions located on crania from prehistoric Greece.  “Cribra orbitalia” is used to refer 

specifically to lesions that affect the orbital plate of the frontal bone, whereas cranial 

porotic hyperostosis is often used to describe the lesions of the cranial vault (Ortner 

2003).  The high degree of association between orbital and vault lesions suggests a link 

between the two features (Roberts and Manchester 1995:167; Stuart-Macadam 1987a, 

1989).  Porotic hyperostosis and cribra orbitalia are characterized by pitting of the 

external lamina of the cranial vault and the superior border of the eye orbit, respectively 

(Schultz 2001; Stuart-Macadam 1985).  Approximately 90 percent of lesions show 

bilateral involvement (Aufderheide and Rodríguez-Martín 1998:349; Stuart-Macadam 

1989).   

Anemia-related porotic hyperostosis is defined by enlarged marrow spaces (i.e., 

marrow hyperplasia) within the diploë of the orbital roof and cranial vault.  Increased 

pressure from hematopoietic tissue within the vault produces thinning of the external 

lamina, which becomes porous, thus permitting the exposure of underlying cancellous 

bone (diploë).  Orbital and vault lesions occur between infancy and early childhood 
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when cranial bones are thin and pliable (Stuart-Macadam 1985, 1987a).  In adulthood, 

fatty yellow marrow replaces much of the hematopoietic tissue in the diploë space, 

preventing the formation of new lesions.  Hence, porotic hyperostosis observed in adult 

crania represents a childhood condition (Stuart-Macadam 1985).  Cribra orbitalia often 

manifests during infancy and is believed to precede vault lesions (Stuart-Macadam 

1989).  This suggests that orbital lesions provide a better record of acquired anemia 

during infancy, while vault lesions provide a better record of early childhood anemia.  In 

its active stage, porotic hyperostosis may show significant vault thickening and may 

produce the classic “hair-on-end” appearance observed on radiographs (Stuart-Macadam 

1987a).  Active lesions are most common in juvenile crania between the ages of six 

months and five years of age (Stuart-Macadam 1989).  In the healed state, lesions show 

sclerotic margins with smooth edges and range from small pits (< 1 mm) on the external 

table to large fenestrae that perforate into the diploë (Stuart-Macadam 1989).   

Methods 

A limiting factor in paleopathological research is that differential skeletal 

preservation, excavation methods, and cultural burials practices all reduce the number 

and representation of skeletal elements available for observation (Walker et al. 1988).  

To address this problem, I scored the degree of completeness of left and right eye orbits 

and cranial vault bones as follows:  

1) 76 to 100 percent complete 
2) 51 to 75 percent complete 
3) 26 to 50 percent complete 
4)   0 to 25 percent complete.   
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For each adult and subadult cranium, I scored the presence or absence of cribra 

orbitalia of the orbital roof and porotic hyperostosis of the cranial vault.  In this analysis, 

I include crania that had least one orbital roof that was > 50 percent complete.  Since I 

scored both sides, I used the side with the most severe expression to represent the 

condition.  When one side was incomplete or absent, I used the side that was present to 

represent the condition.  In scoring vault porosity, I include observations for crania that 

are reasonably intact.  To be included in the analysis, a cranium had to have at least one 

complete parietal bone, and also at least one frontal and occipital bone that were >50 

percent complete.   

I scored the severity of expression of cribra orbitalia and porotic hyperostosis 

using the following system, which is adapted from Standards for Data Collection 

(Buikstra and Ubelaker 1994).  I scored lesion severity as follows: 

1) Porosity absent 
2) External table porosity only, no evidence of cranial vault thickening 
3) External table porosity, with coalescence of foraminae, no evidence of cranial 

vault thickening  
4) External table porosity, with coalescence of foraminae with coral-like 

hyperostosis, evidence of cranial vault thickening  
5) Slight porosity, pinpoint size (indeterminate porosity, limited to external 

table) 

Evidence of pinprick porosity (score = 4) may represent mild cases of porotic 

hyperostosis but was not considered in this analysis.  The small pore size of this 

condition may be due to scalp infection, osteoporosis, or the result of taphonomic 

erosion.  Since mild lesions (score = 1) may also be ambiguous in this regard, I 

compared the presence and absence of cribra orbitalia and porotic hyperostosis both with 
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and without these lesions included.  I also combined the frequency of moderate and 

severe lesions into a moderate/severe category.  I scored lesions based on whether they 

appeared to be active, healed, or showed signs of both processes.  Since aboriginal 

Californians did not practice cranial deformation, this did not warrant consideration in 

lesion assessments.  I use the chi-square and Fisher’s Exact statistic to test for significant 

associations between the proportion of individuals with cranial and orbital lesions and 

age, sex, time period, and region.  To account for the increased probability of obtaining 

statistically significant results (p < .05) due to random chance with multiple 

comparisons, I set the alpha level for statistical significance at p< .017.  However, I treat 

p-values between .018 and .05 as approaching statistical significance. 

Results 

In this section, I first describe the distribution of lesions that were active, healed, 

or in the process of healing at the time of death.  I use the term “cribra orbitalia” to refer 

to lesions of the orbital roof and “porotic hyperostosis” to refer specifically to the porous 

lesions on the cranial vault.  Table 9.1 summarizes the distribution of cribra orbitalia and 

porotic hyperostosis by state of healing for each geographic region.  The vast majority of 

the lesions are fully healed, ranging from 85.3 to 96.3 percent healed in adults and from 

60 to 100 percent healed in subadults.  In general, subadults show the highest prevalence 

of active and mixed reaction lesions, which is consistent with the hypothesis that lesions 

develop in childhood and represent healed scars in adults.  Although I classified lesions 

as “active” in three adults for cribra orbitalia and two adults for porotic hyperostosis, this 

may be due to observer error in the classification of healing stages.  There are no 
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consistent patterns between the sexes or between the regions with respect to healing state 

for either orbital roof or cranial vault lesions.  

Table 9.1.  Distribution of Healed and Non-Healed  
Orbital and Vault in Prehistoric Central California. 

Temporal Comparisons 

Table 9.2 and Figure 9.1 summarize the distribution of cribra orbitalia in the 

Sacramento Valley sample.  Statistical results for temporal comparisons are presented in 

Table 9.3.  The “total” column in Table 9.2 includes all adult and subadult crania.  The 

prevalence of cribra orbitalia in the total sample (pooled periods) is 34.1 percent.  When 

partitioned by severity, moderate to severe lesions account for 11.0 percent of the total 

lesions.  When adults and subadults are considered as a group, the prevalence of cribra 

orbitalia is 30.7, 28.8, and 51.2 percent for the Early, Middle, and Late periods, 

respectively (Table 9.2).  Orbital lesions are significantly more common in the Late 

period sample than in the Middle period sample (Middle vs. and Late period, X2= 5.818, 

  Cribra orbitalia Porotic hyperostosis 
Region Sex/Age Affected Active Healed Mixed Active Healed Mixed 

Males N 1/21 20/21 0/21 0/45 42/45 3/45 
  % affected 4.8 95.2 0.0 0.0 93.3 6.7 
Females N 1/34 29/34 4/34 1/44 40/44 3/44 
  % affected 2.9 85.3 11.8 2.3 90.9 6.8 
Subadults n 0/17 12/17 5/17 2/13 9/13 2/13 Sa

cr
am

en
to

 
V
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  % affected 0.0 70.6 29.4 15.4 69.2 15.4 
Males n 0/27 26/27 1/27 1/56 50/56 5/56 
  % affected 0.0 96.3 3.7 1.8 89.3 8.9 
Females n 0/28 26/28 2/28 1/48 46/48 1/48 
  % affected 0.0 92.9 7.1 2.1 95.8 2.1 
Subadults n 0/6 6/6 0/6 0/5 3/5 2/5 

Sa
n 
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an
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o 
B

ay
 

  % affected 0.0 100 0.0 0.0 60.0 40.0 
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p = .016).  The difference in the proportion of affected crania approaches significance 

for comparisons between the Early and Late period samples (X2 = 5.433, p = .02).  

When the data are partitioned by sex, cribra orbitalia is present in 26.3, 35.7, and 

12.5 percent of male crania and 31.4, 25.0, and 51.9 percent of female crania for the 

Early, Middle, and Late period sample, respectively.  The prevalence of orbital lesions 

approaches a significant difference only for comparisons of Middle and Late period 

females (X2 = 4.799, p = .028).  For subadults, the prevalence of orbital lesions is 36.4, 

33.3, and 87.5 percent for the Early, Middle, and Late period samples, respectively.  

Differences in the proportion of affected crania approach statistical significance for 

comparisons between the Early and late period samples (Fisher’s Exact, p = .035).  

When only moderate to severe lesions are considered, similar trends and statistical 

patterns hold as found by the previous comparisons (Table 9.3).   

The distribution of porotic hyperostosis in the Sacramento Valley sample is 

presented in Table 9.2 and Figure 9.2.  Porotic hyperostosis affected nearly one-half of 

all crania (47.7 percent) in the “pooled periods” sample, and moderate to severe lesions 

account for 18.4 percent of the total lesions.  When adults and subadults are considered 

as a group, the prevalence of porotic hyperostosis is 42.9, 48.0, and 61.9 percent for the 

Early, Middle, and Late period samples, respectively.  Vault lesions are more common in 

the Late period sample than in the Early period sample, but this difference only 

approaches statistical significance (X2 = 4.359, p = .037; Table 9.3).  When the data are 

partitioned by sex, the prevalence of vault lesions is 60.0, 65.5, and 28.6 percent for 
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Table 9.2.  Distribution of Cribra Orbitalia and Porotic Hyperostosis in Prehistoric Central California. 
 

  
Cribra Orbitalia  

(All Levels) 
Cribra Orbitalia  

(Moderate/Severe) 
Porotic Hyperostosis   

(All Levels) 
Porotic Hyperostosis  
(Moderate/ Severe) 

Period 
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Sacramento Valley                 
N 10/38 11/35 8/22 31/101 2/39 3/35 2/22 7/102 24/40 13/37 5/22 45/105 10/40 4/37 2/22 16/105 Early 

Period % affected 26.3 31.4 36.4 30.7 5.1 8.6 9.1 6.9 60.0 35.1 22.7 42.9 25.0 10.8 9.1 15.2 
N 10/28 9/36 2/6 21/73 4/28 1/36 1/6 6/73 19/29 13/35 2/8 35/75 10/29 5/35 1/8 16/75 Middle 

Period % affected 35.7 25.0 33.3 28.8 14.3 2.8 16.7 8.2 65.5 37.1 25.0 48.0 34.5 14.3 12.5 21.3 
N 1/8 14/27 7/8 22/43 1/8 6/27 4/8 11/43 2/7 18/27 6/8 26/42 2/7 4/28 3/8 9/43 Late 

Period % affected 12.5 51.9 87.5 51.2 12.5 22.2 50.0 25.6 28.6 66.7 75.0 61.9 28.6 14.3 37.5 20.9 
N 21/74 34/98 17/36 74/217 7/75 10/98 7/36 4/218 45/76 44/99 13/38 106/222 22/76 13/100 6/38 41/223 Pooled 

Periods % affected 28.4 34.7 47.2 34.1 9.3 10.2 19.4 11.0 59.2 44.4 34.2 47.7 28.9 13.0 15.8 18.4 
San Francisco Bay                 

N 4/8 6/15 3/6 13/29 2/8 3/15 0/6 5/29 13/15 16/22 3/9 32/46 9/15 6/22 3/9 18/46 Early 
Period % affected 50.0 40.0 50.0 44.8 25.0 20.0 0.0 17.2 86.7 72.7 33.3 69.6 60.0 27.3 33.3 39.1 

N 14/24 14/30 0/4 32/65 8/24 7/31 0/3 18/65 23/26 19/32 1/4 51/70 20/26 10/32 ¼ 36/70 Middle 
Period % affected 58.3 46.7 0.0 49.2 33.3 22.6 0.0 27.7 88.5 59.4 25.0 72.9 76.9 31.3 25.0 51.4 

N 9/23 8/22 3/5 22/53 7/23 5/22 2/5 15/53 20/24 13/22 1/5 36/53 14/24 11/22 0/5 26/53 Late 
Period % affected 39.1 36.4 60.0 41.5 30.4 22.7 40.0 28.3 83.3 59.1 20.0 67.9 58.3 50.0 0.0 49.1 

N 27/55 28/67 6/15 67/147 17/55 15/68 2/14 38/147 56/65 48/65 5/18 119/169 43/65 27/76 4/18 80/169 Pooled  
Periods % affected 49.1 41.8 40.0 45.6 30.9 22.1 14.3 25.9 86.0 73.8 27.8 70.4 66.2 35.5 22.2 47.3 

1 Totals include individuals of indeterminate sex.
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Figure 9.1.  Distribution of cribra orbitalia in the Sacramento Valley sample. 
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Table 9.3.  Chi-Square and Fisher’s Exact Test Results for Temporal Differences in  
Prevalence of Cribra Orbitalia and Porotic Hyperostosis in Prehistoric Central California. 

   Cribra Orbitalia  (All Levels) Cribra Orbitalia (Moderate/Severe) 
Region Sex Testing X2, F.E.. p value1 n3 Trend X2, F.E. p value1 n3 Trend 

Males EP vs. MP .674 .412 10/38 vs. 10/28  F.E. .227 2/39 vs. 4/28  
 EP vs. LP F.E. .658 10/38 vs. 1/8  F.E. .436 2/39 vs. 1/8  
 MP vs. LP F.E. .388 10/28 vs. 1/8   F.E. 1.000 4/28 vs. 1/8   
Females EP vs. MP .362 .547 11/35 vs. 9/36  F.E. .357 3/35 vs. 1/36  
 EP vs. LP 2.642 .104 11/35 vs. 14/27  F.E. .160 3/35 vs. 6/27  
 MP vs. LP 4.799 .028 9/36 vs. 14/27 MP<LP F.E. .036 1/36 vs. 6/27 MP<LP 
Subadults EP vs. MP F.E. 1.000 8/22 vs. 2/6  F.E. .530 2/22 vs. 1/6  
 EP vs. LP F.E. .035 8/22 vs. 7/8 EP<LP F.E. .029 2/22 vs. 4/8 EP<LP 
 MP vs. LP F.E. .091 2/6 vs. 7/8  F.E. .301 1/6 vs. 4/8   

Total2 EP vs. MP .075 .784 31/101 vs. 21/73  .114 .736 7/102 vs. 6/73  
 EP vs. LP 5.433 .020 31/101 vs. 22/43 EP<LP 9.748 .002 7/102 vs. 11/43 EP<LP 

Sa
cr

am
en

to
 V

al
le

y 

 MP vs. LP 5.818 .016 21/73 vs. 22/43 MP<LP 6.522 .011 6/73 vs. 11/43 MP<LP 
Males EP vs. MP F.E. .703 4/8 vs. 14/24  F.E. 1.000 2/8 vs. 8/24  
 EP vs. LP F.E. .689 4/8 vs. 9/23  F.E. 1.000 2/8 vs. 7/23  
 MP vs. LP 1.733 .188 14/24 vs. 9/23  .045 .831 8/24 vs. 7/23  
Females EP vs. MP .180 .671 6/15 vs. 14/30  F.E. 1.000 3/15 vs. 7/31  
 EP vs. LP .050 .823 6/15 vs. 8/22  F.E. 1.000 3/15 vs. 5/22  
 MP vs. LP .552 .458 14/30 vs. 8/22  F.E. 1.000 7/31 vs. 5/22  
Subadults EP vs. MP F.E. .200 3/6 vs. 0/4  F.E. 1.000 0/6 vs. 0/3  
 EP vs. LP F.E. 1.000 3/6 vs. 3/5  F.E. .182 0/6 vs. 2/5  
 MP vs. LP F.E. .167 0/4 vs. 3/5  F.E. .464 0/3 vs. 2/5  

Total2 EP vs. MP .156 .693 13/29 vs. 32/65  1.185 .276 5/29 vs. 18/65  
 EP vs. LP .084 .771 13/29 vs. 22/53  1.243 .265 5/29 vs. 15/53  

Sa
n 

Fr
an

ci
sc

o 
B

ay
 

  MP vs. LP .701 .402 32/65 vs. 22/53  .005 .942 18/65 vs. 15/53  
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   Porotic Hyperostosis (All Levels) Porotic Hyperostosis  (Moderate/Severe) 
Region Sex Testing X2, F.E.. p value1 n3 Trend X2, F.E. p value1 n3 Trend 

Males EP vs. MP .218 .641 24/40 vs. 19/29   .734 .391 10/40 vs. 10/29   
 EP vs. LP F.E. .217 24/40 vs. 2/7  F.E. 1.000 10/40 vs. 2/7  
 MP vs. LP F.E. .103 19/29 vs. 2/7  F.E. 1.000 10/29 vs. 2/7  
Females EP vs. MP .031 .859 13/37 vs. 13/35  F.E. .732 4/37 vs. 5/35  
 EP vs. LP 6.214 .013 13/37 vs. 18/27 EP<LP F.E. .717 4/37 vs. 4/28  
 MP vs. LP 5.314 .021 13/35 vs. 18/27 MP<LP F.E. 1.000 5/35 vs. 4/28  
Subadults EP vs. MP F.E. 1.000 5/22 vs. 2/8  F.E. 1.000 2/22 vs. 1/8  
 EP vs. LP F.E. .028 5/22 vs. 6/8 EP<LP F.E. .102 2/22 vs. 3/8  
 MP vs. LP F.E. .132 2/8 vs. 6/8  F.E. .569 1/8 vs. 3/8  

Total2 EP vs. MP .468 .494 45/105 vs. 35/75  1.112 .292 16/105 vs. 16/75  
 EP vs. LP 4.359 .037 45/105 vs. 26/42 EP<LP .704 .401 16/105 vs. 9/43  

Sa
cr

am
en

to
 V

al
le

y 

 MP vs. LP 2.090 .148 35/75 vs. 26/42  .003 .959 16/75 vs. 9/43  
Males EP vs. MP F.E. 1.000 13/15 vs. 23/26  F.E. .300 9/15 vs. 20/26  
 EP vs. LP F.E. 1.000 13/15 vs. 20/24  .011 .918 9/15 vs. 14/24  
 MP vs. LP F.E. 1.000 23/26 vs. 20/24  1.982 .159 20/26 vs. 14/24  
Females EP vs. MP 1.019 .313 16/22 vs. 19/32  .099 .753 6/22 vs. 10/32  
 EP vs. LP .910 .340 16/22 vs. 13/22  2.397 .122 6/22 vs. 11/22  
 MP vs. LP .001 .983 19/32 vs. 13/22  1.929 .165 10/32 vs. 11/22  
Subadults EP vs. MP F.E. 1.000 3/9 vs. 1/4  F.E. 1.000 3/9 vs. 1/4  
 EP vs. LP F.E. 1.000 3/9 vs. 1/5  F.E. .258 3/9 vs. 0/5  
 MP vs. LP F.E. 1.000 1/4 vs. 1/5  F.E. .444 1/4 vs. 0/5  

Total2 EP vs. MP .148 .701 32/46 vs. 51/70  1.687 .194 18/46 vs. 36/70  
 EP vs. LP .031 .861 32/46 vs. 36/53  .983 .322 18/46 vs. 26/53  

Sa
n 

Fr
an

ci
sc

o 
B

ay
 

  MP vs. LP .354 .552 51/70 vs. 36/53  .068 .794 36/70 vs. 26/53  
1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
2 Total includes individuals of indeterminate sex.  
3 Number affected/number examined. 
.
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Figure 9.2.  Distribution of porotic hyperostosis in the Sacramento Valley sample. 

male crania, and 35.1, 37.1, and 66.7 percent for female crania for the Early, Middle, and 

Late period samples, respectively.  Vault lesions are significantly more common in Late 

period females than in Early period females (Early vs. Late period, X2 = 6.214, p = .013).  

However, the proportion of affected crania only approaches a significant difference for 

comparisons between the Middle and Late period female samples (X2 = 5.314, p = .021).  

For subadults, the prevalence of vault lesions is 22.7, 25.0, and 75.0 percent for the 

Early, Middle, and Late period samples, respectively.  Vault lesions are more common in 

the Late period sample than in the Early period sample for this group, although the 

difference only approaches statistical significance (Fisher’s Exact, p = .028).  When only 

moderate to severe lesions are considered, the proportion of individuals with porotic 
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hyperostosis is not significantly different for all temporal comparisons of the adult and 

subadult samples. 

The distribution of cribra orbitalia in the San Francisco Bay sample is 

summarized in Table 9.2 and Figure 9.3.  The prevalence of cribra orbitalia in the total 

sample (pooled periods) is 45.6 percent.  When partitioned by severity, moderate to 

severe lesions account for 25.9 percent of the total lesions.  When adults and subadults 

are considered together as a group, the prevalence of cribra orbitalia is 44.8, 49.2, and 

41.5 percent for the Early, Middle, and Late period samples, respectively; the prevalence 

of orbital lesions is not significantly different between time periods (Table 9.3).   
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Figure 9.3.  Distribution of cribra orbitalia in the San Francisco Bay sample. 

When the data are partitioned by sex, cribra orbitalia is present in 50.0, 58.3, and 

39.1 percent of male crania, and 40.0, 46.7, and 36.4 percent of female crania for the 
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Early, Middle, and Late period samples, respectively.  The prevalence of orbital lesions 

is also not significantly different between time periods.  Samples sizes for the subadult 

category are too small to be statistically meaningful. 

The distribution of porotic hyperostosis in the San Francisco Bay sample is 

summarized in Table 9.2 and Figure 9.4.  The prevalence of vault lesions in the total 

sample (pooled periods) is 70.4 percent.  When partitioned by severity, moderate to 

severe lesions account for 47.3 percent of the total lesions.  When adults and subadults 

are considered together as a group, vault lesions are present in 69.6, 72.9, and 67.9 

percent of crania for the Early, Middle, and Late period samples, respectively.  When the 

data are partitioned by sex, the prevalence of vault lesions is 86.7, 88.5, and 83.3 percent 

for male crania, and 72.7, 59.4, and 59.1 percent for female crania for the Early, Middle, 

and Late period samples, respectively.  Similar to the trend observed for cribra orbitalia, 

the prevalence of vault lesions is not significantly different between time periods (Table 

9.3).  Samples sizes for the subadult category are again too small to be statistically 

meaningful. 
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Figure 9.4.  Distribution of porotic hyperostosis in the San Francisco Bay sample. 

Regional Comparisons  

Inter-regional comparisons of cribra orbitalia between the Sacramento Valley and 

San Francisco Bay samples are summarized in Table 9.2 and Figure 9.5.  Statistical 

results for these comparisons are presented in Table 9.4.  When adults and subadults are 

considered together as a group (pooled periods), the prevalence of orbital lesions is 45.6 

percent for the San Francisco Bay sample and 34.1 percent for the Sacramento Valley 

sample, a difference that approaches statistical significance (X2 = 4.864, p = .027).  

When only moderate to severe lesions are considered, 25.9 percent of crania in the San 

Francisco Bay sample are affected, whereas 11.0 percent of the Sacramento Valley 

sample are affected, a statistically significant difference (X2 = 13.714, p = .001).  When 

examined by time period, orbital lesions are also significantly more common in the Bay 
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sample than in the Valley sample during the Middle period (all levels of severity, X2 = 

6.087, p = .014; moderate to severe lesions, X2 = 9.076, p = .003). 
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Figure 9.5.  Distribution of cribra orbitalia (all levels of severity)  

in prehistoric central California by region. 

Orbital lesions are significantly more common in male crania from San Francisco 

Bay than in male crania from the Sacramento Valley (all levels of severity: X2 = 5.793, p 

= .016, moderate to severe lesions: X2 = 9.813, p = .002).  For female crania, the 

prevalence of moderate to severe lesions is higher in Bay samples than in Valley 

samples, although this difference only approaches statistical significance (X2 = 4.41, p = 

.036).  No significant differences are found between regions for the subadult samples.  

Figure 9.6 summarizes the distribution of porotic hyperostosis by region (also see 

Table 9.2).  Inter-regional comparisons of porotic hyperostosis mirror the patterns 

observed for cribra orbitalia.  When adults and subadults are considered together as a 
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Table 9.4.  Chi-Square and Fisher’s Exact Test Results for  
Regional Comparisons of Cribra Orbitalia and Porotic Hyperostosis. 

   Cribra Orbitalia  (All Levels) Cribra Orbitalia  (Moderate/Severe) 

Sex/Age Period X2, F.E. p value1 n3 Trend X2, F.E. p value1 n3 Trend 

Males Early Period F.E. .222 10/38 vs. 4/8  F.E. .129 2/39 vs. 2/8  

 Middle Period 2.660 .103 10/28 vs. 14/24  F.E. .186 4/28 vs. 8/24  

 Late Period F.E. .222 1/8 vs. 9/23  F.E. .642 1/8 vs. 7/23  

  Periods Combined 5.793 .016 21/74 vs. 27/55 SFB>SV 9.813 .002 7/75 vs. 17/55 SFB>SV 

Females Early Period .344 .558 11/35 vs. 6/15  F.E. .348 3/35 vs. 3/15  

 Middle Period 3.383 .066 9/36 vs. 14/30  F.E. .020 1/36 vs. 7/31 SFB>SV 

 Late Period 1.175 .278 14/27 vs. 8/22  F.E. 1.000 6/27 vs. 5/22  

  Periods Combined .855 .355 34/98 vs. 28/67   4.41 .036 10/98 vs. 15/68 SFB>SV 

Subadults Early Period F.E. .657 8/22 vs. 3/6  F.E. 1.000 2/22 vs. 0/6  

 Middle Period F.E. .467 2/6 vs. 0/4  F.E. 1.000 1/6 vs. 0/3  

 Late Period F.E. .510 7/8 vs. 3/5  F.E. 1.000 4/8 vs. 2/5  

 Periods Combined .223 .637 17/36 vs. 6/15   F.E. 1.000 7/36 vs. 2/14   

Total2 Early Period 2.010 .156 31/101 vs. 13/29  1.809 .179 7/102 vs. 5/29  

 Middle Period 6.087 .014 27/73 vs. 32/65 SFB>SV 9.076 .003 6/73 vs. 18/65 SFB>SV 

 Late Period .891 .345 22/43 vs. 22/53  .089 .765 11/43 vs. 15/53  

  Periods Combined 4.864 .027 74/217 vs. 67/147 SFB>SV 13.714 .001 4/218 vs. 38/147 SFB>SV 
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   Porotic Hyperostosis (All Levels) Porotic Hyperostosis (Moderate/Severe) 

Sex/Age Period X2, F.E. p value1 n3 Trend X2, F.E. p value1 n3 Trend 

Males Early Period F.E. .105 24/40 vs. 13/15  5.91 .015 10/40 vs. 9/15 SFB>SV 

 Middle Period 3.998 .046 19/29 vs. 23/26 SFB>SV 9.959 .002 10/29 vs. 20/26 SFB>SV 

 Late Period F.E. .012 2/7 vs. 20/24 SFB>SV F.E. .220 2/7 vs. 14/24  

  Periods Combined 12.516 .001 45/76 vs. 56/65 SFB>SV 19.519 .001 22/76 vs. 43/65 SFB>SV 

Females Early Period 7.801 .005 13/37 vs. 16/22 SFB>SV F.E. .152 4/37 vs. 6/22  

 Middle Period 3.312 .069 13/35 vs. 19/32  2.769 .096 5/35 vs. 10/32  

 Late Period .299 .584 18/27 vs. 13/22  7.483 .006 4/28 vs. 11/22 SFB>SV 

  Periods Combined 6.038 .014 44/99 vs. 48/65 SFB>SV 12.477 .001 13/100 vs. 27/76 SFB>SV 

Subadults Early Period F.E. .660 5/22 vs. 3/9  F.E. .131 2/22 vs. 3/9  

 Middle Period F.E. 1.000 2/8 vs. 1/4  F.E. 1.000 1/8 vs. 1/4  

 Late Period F.E. .103 6/8 vs. 1/5  F.E. .231 3/8 vs. 0/5  

 Periods Combined .232 .630 13/38 vs. 5/18   F.E. .711 6/38 vs. 4/18   

Total2 Early Period 9.13 .003 45/105 vs. 32/46 SFB>SV 10.466 .001 16/105 vs. 18/46 SFB>SV 

 Middle Period 9.321 .002 35/75 vs. 51/70 SFB>SV 14.257 .001 16/75 vs. 36/70 SFB>SV 

 Late Period .375 .541 26/42 vs. 36/53  8.107 .004 9/43 vs. 26/53 SFB>SV 

  Periods Combined 19.416 .001 106/222 vs. 119/169 SFB>SV 37.763 .001 41/223 vs. 80/169 SFB>SV 
1 Statistically significant (p<.017) results are indicated by bold-faced type in the table. 
2 Total includes individuals of indeterminate sex. 
3 Number affected/number examined.
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Figure 9.6.  Distribution of porotic hyperostosis (all levels of  
severity) in prehistoric central California by region. 

group (pooled periods), 70.4 percent of crania in the San Francisco Bay sample have 

vault lesions compared with 47.7 percent of crania in the Sacramento Valley sample, a 

statistically significant difference (all levels of severity, X2 = 19.416, p = .001; moderate 

to severe lesions, X2 = 37.763, p = .001).   

When partitioned by time period, vault lesions are also significantly more 

common in the San Francisco Bay sample than in the Sacramento Valley sample, a 

pattern that also holds for all three periods (Early period, all levels of severity: X2 = 9.13, 

p = .003, moderate to severe lesions: X2 = 10.466, p = .001; Middle period, all levels of 

severity: X2 = 9.321, p = .002, moderate to severe lesions: X2 = 14.257, p = .001; Late 

period, moderate to severe lesions: X2 = 8.107, p = .004).  When the data are further 

partitioned by sex, porotic hyperostosis affected 86.0 percent of male crania from San 
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Francisco Bay and 59.2 percent of crania from the Sacramento Valley.  For females, the 

prevalence of vault lesions is 73.8 and 44.4 percent for the San Francisco Bay and 

Sacramento Valley samples, respectively.  Table 9.4 shows that San Francisco Bay 

males and females have a significantly higher prevalence of vault lesions than do their 

Sacramento Valley counterparts.  When examined by time period, these patterns hold, 

with one exception: the prevalence of vault lesions is not significantly different between 

regions for Middle period females.  These robust trends indicate that the overall 

prevalence of cribra orbitalia and porotic hyperostosis was significantly higher in crania 

from San Francisco Bay than in crania from the Sacramento Valley.     

Sex Comparisons 

 Table 9.2 summarizes the distribution of cribra orbitalia and porotic 

hyperostosis in the Sacramento Valley sample (also see Figures 9.1 and 9.2).  For the 

sample as a whole, the prevalence of cribra orbitalia is similar between males and 

females (males = 28.4 percent; females = 34.7 percent).  Statistical results presented in 

Table 9.5 indicate no significant association between sex and prevalence of orbital 

lesions for any time period.  However, male crania show a higher prevalence of porotic 

hyperostosis than female crania for the Early and Middle period samples, although these 

differences only approach statistical significance (Early period: males = 60.0 percent; 

females = 35.1 percent, X2 = 4.761, p = .029; Middle period, males = 65.5 percent; 

females = 37.1 percent; X2 = 5.107, p = .024).   

 Table 9.2 summarizes the distribution of cribra orbitalia and porotic hyperostosis 

in the San Francisco Bay sample (also see Figures 9.3 and 9.4).  The prevalence of cribra  
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Table 9.5.  Chi-Square and Fisher’s Exact Test Results of Sex Comparisons of Cribra Orbitalia and Porotic Hyperostosis. 

  Sacramento Valley San Francisco Bay 

Lesion Type Period X2, F.E. p value1 n Trend X2, F.E. p value1 n Trend 

    Early Period .232 .630 10/38 vs. 11/35  F.E. .685 4/8 vs. 6/15  

    Middle Period .866 .352 10/28 vs. 9/36  X2 = .727 .394 14/24 vs. 14/30  

    Late Period F.E. .101 1/8 vs. 14/27  X2 = .037 .848 9/23 vs. 8/22  

C
ri

br
a 

O
rb

ita
lia

 
(a

ll 
le

ve
ls

 o
f 

se
ve

ri
ty

) 

    Periods Combined .773 .379 21/74 vs. 34/98   X2 = .650 .420 27/55 vs. 28/67   

    Early Period F.E. .662 2/39 vs. 3/35  F.E. 1.000 2/8 vs. 3/15  

    Middle Period F.E. .159 4/28 vs. 1/36  X2 = .789 .375 8/24 vs. 7/31  

    Late Period F.E. 1.000 1/8 vs. 6/27  X2 = .342 .559 7/23 vs. 5/22  

C
ri

br
a 

O
rb

ita
lia

 
(m

od
er

at
e/

se
ve

re
) 

    Periods Combined .804 .849 7/75 vs. 10/98   X2 = 1.237 .266 17/55 vs. 15/68   

    Early Period 4.761 .029 24/40 vs. 13/37 M>F F.E. .431 13/15 vs. 16/22  

    Middle Period 5.107 .024 19/29 vs. 13/35 M>F X2 = 6.075 .014 23/26 vs. 19/32 M>F 

    Late Period F.E. .097 2/7 vs. 18/27  X2 = 3.327 .068 20/24 vs. 13/22  Po
ro

tic
 

H
yp

er
os

to
si

s 
(a

ll 
le

ve
ls

 o
f s

ev
er

ity
) 

    Periods Combined 3.751 .053 45/76 vs. 44/99   X2 = 9.572 .002 56/65 vs. 48/65 M>F 

    Early Period 2.601 .107 10/40 vs. 4/37  X2 = 3.963 .047 9/15 vs. 6/22 M>F 

    Middle Period 3.605 .058 10/29 vs. 5/35  X2 = 11.984 .001 20/26 vs. 10/32 M>F 

    Late Period F.E. .576 2/7 vs. 4/28  X2 = .321 .571 14/24 vs. 11/22  Po
ro

tic
 

H
yp

er
os

to
si

s 
(m

od
er

at
e/

se
ve

re
) 

    Periods Combined 6.893 .009 22/76 vs. 13/100 M>F X2 = 13.147 .001 43/65 vs. 27/76 M>F 
1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
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orbitalia is similar (and statistically insignificant) between males and females in the San 

Francisco Bay sample (males = 49.1 percent; females, = 41.8 percent; Table 9.5).  In 

contrast, porotic hyperostosis is significantly more common in male crania than in 

female crania (males = 86 percent; females = 73.8 percent, all levels of severity: X2 = 

9.5732, p = .002; moderate to severe lesions: X2 = 13.147, p = .001).  When partitioned 

by period, males also show a higher prevalence of vault lesions in the Middle period 

sample (Middle period, all levels of severity: X2 = 6.075, p = .014, moderate to severe 

lesions: X2 = 11.984, p = .001). 

Summary 

The distribution of cribra orbitalia and porotic hyperostosis in the skeletal 

samples shows a number of interesting trends that have important implications for 

changes in health status during the late Holocene.  Overall, the proportion of individuals 

with orbital and cranial vault lesions significantly increased over time in the Sacramento 

Valley.  This pattern is consistent with the expectation that the acorn-dependent 

economies of the Middle and Late periods would contribute to higher levels of acquired 

anemia in children, since heavy consumption of acorns could result in iron-deficient 

diets; additionally, the greater level of sedentism and population aggregation associated 

with these time periods would have been more conducive to the spread of infection, 

which would have also lowered the bioavailability of dietary iron.  In contrast, the 

proportion of individuals with orbital and vault lesions remained unchanged through 

time in San Francisco Bay, an unexpected result.  However, a few exceptions aside, 

skeletal samples from San Francisco Bay had a significantly higher prevalence of both 
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orbital and vault lesions, which suggests that acquired anemia was a more serious health 

consequence for infants and children from the San Francisco Bay area.  Since marine 

resources that carry parasites (e.g., anadromous fish) were consumed in both regions, 

helminthiasis may have contributed to the anemic status of both groups. 

Sex comparisons also shed light on health patterns between males and females.  

Although the prevalence of orbital lesions was similar in males and females, the 

prevalence of vault lesions was higher in male crania in both regions, particularly in the 

San Francisco Bay sample.  This might suggest that female children were better buffered 

against nutritional stress and/or pathogen load than male children; this would be 

expected if male and female children were exposed to different levels of risk during 

early childhood.  Since vault lesions are expected to have a later age of onset than orbital 

lesions, this could also suggest that sex differences in anemia were less pronounced in 

infancy, but disproportionately affected males in early childhood. 
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CHAPTER X 

ENAMEL HYPOPLASIA  

Dental enamel hypoplasias are deficiencies in enamel thickness caused by 

physiological disruption during tooth crown formation (Goodman and Rose 1990; 

Hillson 1996).  Hypoplasias provide a sensitive record of early childhood stress events 

and do not remodel with age.  Consequently, enamel defects can still be observed in the 

adult dentition.  However, the lesions are nonspecific in nature and may result from 

nutritional stress (e.g., malnutrition, undernutrition), infection, trauma to the developing 

tooth germ, or other disease conditions that temporarily disrupt enamel formation 

(Goodman and Rose 1990).  In this chapter, I examine the prevalence of enamel 

hypoplasia to explore differences in childhood stress through time, between regions, and 

between the sexes.   

Literature Review 

During normal enamel formation, ameloblasts secrete layers of a proteinaceous 

matrix, beginning at the cusp and proceeding cervically.  Calcification of the matrix 

begins as water and protein are removed during amelogenesis and results in enamel that 

is composed primarily of inorganic salts.  The external surface of a tooth crown records 

the enamel formation process in small, horizontal linear bands called perikymata 

(Hillson and Bond 1997:91).  Since amelogenesis of the permanent dentition lasts from 

birth to seven years of age (excluding third molars), perturbations that occur in teeth that 
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develop at different ages can provide a record of stress events throughout different 

periods of childhood (Hillson 1996; Skinner and Goodman 1992; Wright 1997). 

Enamel hypoplasia defects can be classified based on their size and appearance.  

The most common defect is a linear enamel hypoplasia (LEH), which appears as a 

horizontal layer of thin enamel that traverses the labial surface of the tooth crown 

(Hillson 1996; Hillson and Bond 1997).  In general, these lesions manifest as furrow-

form defects that can be observed with the naked eye, although smaller defects can be 

detected with the aid of a microscope.  Less common hypoplasias include pit-form 

defects and a linear array of pits, which are more ambiguous to record than LEH defects 

(Hillson 1996; Hillson and Bond 1997; Buikstra and Ubelaker 1994).  Opacities and 

hypocalcifications are caused by poorly mineralized zones of enamel and are often 

considered together with hypoplastic defects (Hillson 1996).  However, in 

archaeological skeletons, enamel discolorations may be hard to distinguish from enamel 

staining from the burial environment. 

Despite the nonspecific nature of enamel hypoplasias, the formation of these 

defects is well understood and has clinical significance (Hillson 1996).  Malnourished 

and undernourished children in developing nations show a higher prevalence of 

hypoplasia than groups who received nutritional supplementation (Goodman et al. 1987; 

May et al. 1993).  In many archaeological settings, agricultural societies have a higher 

proportion of individuals with hypoplastic defects compared with earlier forager 

societies from the same region (Cohen and Armelagos 1984; Goodman and Rose 1990; 

Larsen 1995, 1997). 
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The relative timing of hypoplastic events has been the subject of much research 

in both archaeological and clinical studies, and many authors have sought a link between 

“peak stress” ages and the infant weaning or “post-weaning” period (Blakey et al. 1994; 

Goodman and Rose 1990).  However, estimation of the timing of defect formation is 

hindered by the use of different methods between researchers (Hillson 1996; Hillson and 

Bond 1997; Hodges and Wilkinson 1990).  Recently, Hillson and Bond (1997) have 

demonstrated that differences in crown geometry and the differing growth velocities of 

different teeth also influence the relationship between the position of an enamel defect 

on the crown and the chronological age at which it developed.  Hence, the position of a 

hypoplasia on the crown may not accurately reflect the timing of a stress event based on 

current dental development standards.  Despite these limitations, the relative timing of 

defects can still be compared between subsets within a skeletal series to evaluate general 

differences in hypoplasia formation times (Lovell and Whyte 1999). 

Methods 

For this study, I scored enamel hypoplasias in 313 adult dentitions from central 

California.  Since the subadult sample was insufficient for statistical comparison, the 

main focus of this analysis is on adult individuals.  The sample sizes for each tooth class 

are small due to tooth loss (antemortem and postmortem) and severe tooth attrition.  I 

scored the presence and absence of enamel hypoplasia on teeth that had at least 2 mm of 

continuous enamel on the labial surface of the crown as measured from the cemento-

enamel junction (CEJ) to the occlusal surface.  This is a true measure of crown height for 

unworn teeth and can also be used to measure the average amount of enamel removed 
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through attrition.  I measured crown heights from the CEJ to the occlusal surface for 

incisors, canines, and premolars following Standards for Data Collection (Buikstra and 

Ubelaker 1994).  Since the amount of enamel lost through attrition is age-dependent, 

tooth wear has the effect of mechanically removing hypoplastic defects that were 

acquired during childhood (Skinner and Goodman 1992).  This biases the study samples 

toward younger individuals who have more scorable enamel present. 

I scored enamel defects as linear enamel hypoplasia (LEH), major growth arrest, 

or linear horizontal array of pits (Buikstra and Ubelaker 1994).  Since most the observed 

defects in the sample are LEH, I treat all hypoplasia types as a single category for the 

purposes of this study.  I examined all teeth with the naked eye under strong oblique 

lighting and used a 10x hand lens to aid in the identification and classification of each 

hypoplastic defect.  Since microscopy was not used in this study, I consider the reported 

hypoplasia prevalence a minimum estimate. 

Mandibular canines and central maxillary incisors are the most sensitive teeth to 

record hypoplastic defects, although posterior teeth can provide evidence of more severe 

stress episodes (Goodman and Armelagos 1985; Goodman and Rose 1990).  I considered 

three tooth classes (maxillary and mandibular) in this analysis: central incisors, canines, 

and third premolars (P3).  Central incisor enamel formation spans the period from about 

three months to 4.5 years of age for the maxillary dentition and three months to four 

years of age for the mandibular dentition.  Maxillary canines span the period from about 

four months to six years of age and maxillary and mandibular third premolars span from 

two to six years of age.  Modern standards indicate that mandibular canines develop 
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between four months and six years of age.  However, I assume that amelogenesis of this 

tooth is complete by 4.5 years of age based on research on prehistoric Amerindian 

populations (Skinner and Goodman 1992; Wright 1997:238).  Since all teeth were 

examined for hypoplasia, I used the side with the greatest expression for a given 

individual to represent the condition.  For teeth that lacked hypoplastic defects, I used 

the side with the least attrition (as measured by labial crown height). 

I measured the location of each hypoplastic defect (to the nearest .02 mm) from 

the buccal midpoint of the CEJ to the occlusal-most edge of the defect using Digimatic 

Mitutoyo calipers.  Although this measure provides only an estimate of the age of defect 

formation, it is suitable for general comparisons between skeletal samples (Lovell and 

Whyte 1999).  I calculated the approximate age of each hypoplastic defect using 

regression formulae published in Goodman and Song (1999), which are presented in 

Table 10.1 below.  These formulae are based on the mean crown heights from 

Swärdstedt (1966) and the dental development timing from Massler et al. (1941) as 

presented in Goodman and Song (1999:224). 
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Table 10.1.  Regression Formulae Used to Estimate Age of  
Hypoplasia Defect Formation, Corrected for Buried Cuspal Enamel  

(Goodman and Song 1999:224, Table 9.4). 

Tooth Type  
Cuspal enamel 
time (in years) Equation C1 

 Enamel represented 
 (in mm)3 

Developmental ages 
represented (in years)4 

Maxillary         
I1 .8 Age = (-.374 x Ht) + 4.5 5 mm 3.0-4.5 years 
C 1.0 Age = (-.521 x Ht)+ 6.0 4 mm 3.9-6.0 years 
P3 1.0 Age = (-.395 x Ht) + 6.0 4 mm 4.4-6.0 years 

Mandibular     
I1 .6 Age = (-.391 x Ht) + 4.0 4 mm 2.4-4.0 years 

C2 .8 Age = (-.490 x Ht) + 4.5 4 mm 2.5-4.5 years 
P3 1.0 Age = (-.538 x Ht) + 6.0 4 mm 3.8-6.0 years 

1  Age = age in years; Ht = distance of hypoplastic defect in mm from CEJ. 
2  Assuming amelogenesis of the mandibular canine is complete by 4.5 years. 
3  Minimum cut-off for inclusion in analysis (as measured from CEJ). 
4  Developmental ages (in years) represented by each segment of enamel for each tooth type. 

Cuspal enamel that forms within the first year of life is buried under the surface 

of the crown and cannot be scored for hypoplastic defects without undertaking 

histological analysis.  To account for buried cuspal enamel, some researchers have 

recommended the use of “corrected” regression formulae (Goodman and Song 1999; 

Skinner and Goodman 1992; Wright 1997).  From the dental literature, Goodman and 

Song (1999) assume that the first .8 years of central maxillary incisor and premolar 

development and the first year of canine development are buried under cuspal enamel 

(Table 10.1).  This correction provides an older estimate of defect formation near the 

cusp but has little effect on defects that are near the CEJ.  I use these “corrected” 

equations for the present study (Goodman and Song 1999:225, Table 9.4). 

The degree of dental attrition in the adult sample is severe and significantly 

biases the sample toward younger individuals.  To address differential attrition in the 
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samples, I only consider observations scored in the same section of enamel for each 

tooth included in the analysis (see Wright 1997).  Hence, enamel defects located above 

the “cut-off” point (representing the earliest period of tooth development) are not 

included in the analysis.  For the maxillary incisor, I include teeth that had a minimum of 

5 mm of scorable enamel on the labial surface as measured from the CEJ at the midline 

(Table 10.1).  For all other tooth types, I set the cut-off point at 4 mm from the CEJ.  The 

sections of enamel considered by all tooth classes represent the dental development 

period between 2.4 and 6.0 years of age.  Although this excludes early forming 

hypoplastic defects (e.g., .25 to 2.3 dental development years), it ensures direct 

comparability between the samples.  I consider each tooth as an independent test of 

stress levels by time period, by region, and by sex.  I examined differences for each tooth 

type using the chi-square test, and used Fisher’s Exact test when cell counts were less 

than five.  To account for the increased probability of obtaining statistically significant 

results (p < .05) due to random chance with multiple comparisons, I set the alpha level 

for statistical significance at p< .017.  However, I treat p-values between .018 and .05 as 

approaching statistical significance.  I also used one-way ANOVA (with Bonferroni 

post-hoc test) and independent sample t-tests to examine differences in the mean age of 

defect timing between samples.  I consider these results to be statistically significant at 

p<.05. 
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Results 

Temporal Comparisons 

Hypoplastic defects are relatively common in the Sacramento Valley sample and 

are most prevalent in mandibular canines.  Table 10.2 presents the distribution of enamel 

hypoplasias by time period and tooth class.  At least 45.6 percent of adult individuals 

had at least one hypoplastic stress event recorded in a mandibular canine.  Maxillary 

canines are the second most affected tooth class (36.5 percent), followed by the 

maxillary central incisors (30.2 percent), mandibular central incisors (11.4 percent), and 

maxillary third premolars (5.2 percent).  I did not observe any hypoplasias in mandibular 

third premolars; hence this tooth will not be discussed further. 

The small number of observable defects in central incisors and premolars hinders 

statistical comparisons between periods.  However, the prevalence of hypoplastic defects 

in maxillary canines increases from 14.3 to 42.4 percent between the Early and Middle 

period, and reaches 50 percent in the Late period.  Statistical results presented in Table 

10.3 indicate that the proportion of individuals with hypoplasia is significantly different 

between the Early and Late period (X2 = 6.034, p = .014) samples, and approaches 

statistical significance for comparisons between the Early and Middle period samples (X2 

= 4.711, p = .03).  No other significant differences are found for any of the other tooth 

types, although small sample size prevented statistical comparisons in some cases. 
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Table 10.2.  Distribution of Enamel Hypoplasia  
Defects in Prehistoric Central California. 

 

Table 10.4 presents the mean developmental ages for hypoplastic defects in the 

Sacramento Valley sample and Table 10.5 presents the statistical results for temporal 

comparisons.  Since the mean age of hypoplastic defects in adults and subadults was 

nearly identical, I included permanent teeth from subadults in the analysis to increase the 

sample sizes. 

 Early Period Middle Period Late Period Pooled Periods 
Tooth Type Maxilla Mandible Maxilla Mandible Maxilla Mandible Maxilla Mandible 

Sacramento Valley         
Incisors (I1)         
  N 4/17 1/13 4/15 1/18 5/11 3/13 13/43 5/44 
  % affected 23.5 7.7 26.7 5.6 45.5 23.1 30.2 11.4 
Canines         
  N 3/21 11/26 14/33 14/31 10/20 11/22 27/74 36/79 
  % affected 14.3 42.3 42.4 45.2 50.0 50.0 36.5 45.6 
Premolars (P3)         
  N 0/15 0/22 3/28 0/26 0/15 0/14 3/58 0/62 
  % affected 0.0 0.0 10.7 0.0 0.0 0.0 5.2 0.0 
San Francisco Bay                 
Incisors (I1)         
  N 6/12 0/4 7/26 2/15 5/17 1/13 18/55 7/32 
  % affected 50.0 0.0 26.9 13.3 29.4 7.7 32.7 21.9 
Canines         
  N 11/15 8/14 8/31 12/32 4/21 5/19 23/67 25/65 
  % affected 73.3 57.1 25.8 37.5 19.0 26.3 34.3 38.5 
Premolars (P3)         
  N 1/12 0/12 0/26 4/25 0/16 0/19 1/54 4/56 
  % affected 8.3 0.0 0.0 13.8 0.0 0.0 1.9 7.1 
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Table 10.3.  Chi-Square and Fisher’s Exact Results for Temporal  
Comparisons of Enamel Hypoplasias in Prehistoric Central California. 

  Incisors (I1) Canines Premolars (P3) 

Tooth Type Comparison X2, F.E. p value1 n2 X2, F.E. p value1 n2 Trend  X2, F.E. p value1 n2 
Sacramento Valley           
Maxillary EP vs. MP F.E. 1.000 4/17 vs. 4/15 4.711 .030 3/21 vs. 14/33 EP<MP F.E. .541 0/15 vs. 3/28 
 EP vs. LP F.E. .409 4/17 vs. 5/11 6.034 .014 3/21 vs. 10/20 EP<LP  - 0/15 vs. 0/15 
 MP vs. LP F.E. .419 4/15 vs. 5/11 .288 .591 14/33 vs. 10/20  F.E. .541 3/28 vs. 0/15 
Mandibular EP vs. MP F.E. 1.000 1/13 vs. 1/18 .047 .829 11/26 vs. 14/31   - 0/22 vs. 0/26 
 EP vs. LP F.E. .593 1/13 vs. 3/13 .284 .594 11/26 vs. 11/22  F.E. .429 0/22 vs. 0/14 
 MP vs. LP F.E. .284 1/18 vs. 3/13 .121 .728 14/31 vs. 11/22    0/26 vs. 0/14 
San Francisco Bay           
Maxillary EP vs. MP F.E. .270 6/12 vs. 7/26 9.418 .002 11/15 vs. 8/31 EP>MP F.E. .316 1/12 vs. 0/26 
 EP vs. LP F.E. .438 6/12 vs. 5/17 10.609 .001 11/15 vs. 4/21 EP>LP  - 1/12 vs. 0/16 
 MP vs. LP F.E. 1.000 7/26 vs. 5/17 F.E. .741 8/31 vs. 4/21      - 0/26 vs. 0/16 
Mandibular EP vs. MP F.E. 1.000 0/4 vs. 2/15 1.529 .216 8/14 vs. 12/32  F.E. .302 0/12 vs. 4/25 
 EP vs. LP F.E. 1.000 0/4 vs. 1/13 3.208 .073 8/14 vs. 5/19   - 0/12 vs. 0/19 
 MP vs. LP F.E. 1.000 2/15 vs. 1/13 .671 .413 12/32 vs. 5/19   F.E. .142 4/25 vs. 0/19 

1 Statistically significant results (p<.017) are indicated by bold-faced type in the table. 
2 Number affected/number examined. 
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Table 10.4.  Mean Age of Hypoplasia Formation in Prehistoric Central California. 
 Incisor (I1) Canine Premolar (P3) All tooth types 
Period Mean1 SD n Mean1 SD n Mean1 SD n Mean1 SD n 
Sacramento Valley             
Early Period 3.15 .47 8 3.27 .67 27 4.71 .49 3 3.36 .73 38 
Middle Period 3.35 .43 16 3.76 .83 40 4.82 .22 6 3.75 .80 62 
Late Period 3.28 .41 13 3.63 .83 26 4.97 .57 3 3.61 .81 42 
Periods Combined 3.28 .43 37 3.58 .81 93 4.83 .37 11 3.61 .80 142 
San Francisco Bay             
Early Period 3.22 .33 8 3.93 .85 35 5.16 .25 3 3.89 .87 46 
Middle Period 3.29 .51 13 3.86 .86 31 4.88 .32 5 3.81 .86 49 
Late Period 3.20 .34 9 3.78 .87 16 5.02 .69 2 3.68 .85 27 
Periods Combined 3.25 .41 30 3.88 .85 82 4.99 .36 10 3.81 .86 122 

1 Represents mean developmental age of hypoplastic defects in the scored section of enamel. 

Table 10.5.  ANOVA and Bonferroni Test Results for Temporal  
Comparisons of Mean Age of Hypoplasia Formation in Prehistoric Central California. 

  Sacramento Valley San Francisco Bay 
Tooth Type F-statistic p value1 Trend Bonferroni2 F-statistic p value1 Trend Bonferroni2 
Incisors .578 .567   .129 .880   
Canines 3.151 .048 EP<MP .045 .182 .834   
All teeth 2.993 .053 EP<MP .047 .503 .606    

1 Statistically significant results (p<.05) are indicated by bold-faced type in the table.  
2 Bonferroni test indicates which ANOVA comparisons are statistically significant within a three-

way comparison. 

Mean developmental ages are skewed toward later forming enamel defects since 

variation in attrition restricted the amount of scorable sections of enamel included in the 

analysis (see Table 10.1).  For all tooth classes, the mean age of hypoplastic defect 

increases through time.  When all tooth classes are considered as a single group, there is 

a significant increase in the mean defect age from 3.36 to 3.75 years between the Early 

and Middle period (Bonferroni test, p = .047).  For canines, the mean age also 

significantly increases from 3.27 to 3.76 years between the Early and Middle period 
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(Bonferroni test, p = .045).  Although the range of scorable enamel for this tooth (3.9-6.0 

developmental years) is restricted due to variation in attrition, this suggests that young 

children experienced a slighter later age of peak stress episode (approximately three 

months), or experienced stress episodes of longer duration, during the Middle period 

than in the Early period.     

Hypoplastic defects are also relatively common in the San Francisco Bay sample, 

and again are most prevalent in mandibular canines.  Table 10.2 presents the distribution 

of enamel hypoplasias by time period and tooth class.  At least 38.5 percent of adult 

individuals had at least one hypoplastic stress event recorded in a mandibular canine.  

Maxillary canines are the second most affected tooth class (34.3 percent), followed by 

the maxillary central incisors (32.7 percent), mandibular central incisors (21.9 percent), 

mandibular third premolars (7.1 percent), and maxillary third premolars (1.9 percent).   

The small number of observable defects in central incisors and premolars again 

hinders statistical comparisons between periods.  However, the prevalence of 

hypoplastic defects in maxillary canines decreases from 73.3 to 25.8 percent between the 

Early and Middle period, with no change in the Late period (26.3 percent).  Statistical 

results presented in Table 10.3 indicate that the proportion of individuals with 

hypoplastic defects is significantly different between the Early and Middle period (X2 = 

9.418, p = .002) and between the Early and Late period (X2 = 10.609, p = .001) samples.  

No other significant differences are found for any of the other tooth types although small 

sample size prevented statistical comparisons in some cases.  The decline in the 

prevalence of enamel hypoplasias contrasts with the trend for the Sacramento Valley 
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sample, which shows a significant increase in the prevalence of hypoplastic defects 

through time.   

Table 10.4 presents the mean developmental ages of hypoplasias in the San 

Francisco Bay sample.  Since the mean defect age in adults and subadults was nearly 

identical, I again included permanent teeth from subadults in the analysis to increase 

sample size.  The mean defect age is 3.89, 3.81, and 3.68 developmental years for the 

Early, Middle, and Late period samples, respectively.  The mean age of hypoplasia 

formation is not significantly different between time periods (see Table 10.5). 

Regional Comparisons 

 The distribution of enamel defects in the Sacramento Valley and San 

Francisco Bay samples is presented in Figures 10.1 through 10.3 for the incisors, 

canines, and premolars, respectively (also see Table 10.2).  Statistical results for these 

comparisons are presented in Table 10.6.  Although the pattern is inconsistent across all 

tooth types, maxillary canine defects are significantly more common in the Early period 

Bay sample than in the Early period Valley sample (San Francisco Bay = 73.3 percent; 

Sacramento Valley = 14.3 percent; X2 = 12.837, p = .001).  However, for the Late period 

sample comparisons, the proportion of hypoplastic defects is higher in the Valley sample 

than in the Bay sample (San Francisco Bay = 50.0 percent; Sacramento Valley = 19.0 

percent).  This difference in LEH prevalence approaches statistical significance (X2 = 

4.364, p = .037).    

Table 10.4 presents the mean age of defect formation for the Sacramento Valley 

and San Francisco Bay samples.  Statistical results for comparisons of mean defect 
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formation ages are presented in Table 10.7.  Overall, mean ages are slightly older in the 

Sacramento Valley samples for central incisors but are older in canines and third 

premolars in the San Francisco Bay sample.  Considering all time periods together, the 

mean age of hypoplasia formation for all teeth is older in the San Francisco Bay sample 

(3.88 years) than in the Sacramento Valley sample (3.58).  These differences are 

statistically significant (t = -2.371, p = .019).  The mean defect age is also significantly 

older for canines in the Early period Valley sample (Sacramento Valley = 3.27 years; 

San Francisco Bay = 3.93 years, t = -3.447, p = .001). 
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Figure 10.1. Comparison of the distribution of enamel hypoplasia  
of central incisors in prehistoric central California. 
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Figure 10.2. Comparison of the distribution of enamel hypoplasia  

of canines in prehistoric central California. 
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Figure 10.3. Comparison of the distribution of enamel hypoplasia  

of third premolars in prehistoric central California 
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The mean number of hypoplastic defects is presented by tooth type in Table 10.8.  

The P3 and mandibular canine samples are too small to be meaningful.  However, the 

mean number of defects is greater overall in the San Francisco Bay sample than in the 

Sacramento Valley sample for the maxillary incisor and maxillary and mandibular 

canines.  Together these results suggest that stress episodes during enamel formation 

were more common in the San Francisco Bay sample overall, and showed a significantly 

higher prevalence in maxillary canines during the Early period.  However, the trend is 

reversed in the Late period, when hypoplastic defects of the maxillary canines are more 

prevalent in the Sacramento Valley sample.    

Sex Comparisons 

Table 10.9 presents the distribution of hypoplasias by sex in prehistoric central 

California.  Although hypoplasias are slightly more prevalent in females than males 

overall (combined periods), the results reported in Table 10.10 indicate that these 

differences are not statistically significant for either the Sacramento Valley or San 

Francisco Bay samples.  However, the small sample sizes in these comparisons may be a 

contributing factor to the lack of statistical differences. 
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Table 10.6.  Chi-Square and Fisher’s Exact Results for  
Regional Comparisons of Enamel Hypoplasias in Prehistoric Central California. 

Tooth Type Period X2, F.E. p value1 n2 Trend 
Maxillary        
Incisors (I1) Early Period F.E. .236 4/17 vs. 6/12   
 Middle Period F.E. 1.000 4/15 vs. 7/26   
 Late Period F.E. .444 5/11 vs. 5/17   
 Periods Combined .069 .792 13/43 vs. 18/55   
Canines Early Period 12.837 .001 3/21 vs. 11/15 SFB>SV 
 Middle Period 1.957 .162 14/33 vs. 8/31   
 Late Period 4.364 .037 10/20 vs. 4/21  SV>SFB 
 Periods Combined .022 .882 27/74 vs. 23/67   
Premolars (P3) Early Period F.E. .444 0/15 vs. 1/12   
 Middle Period F.E. .237 3/28 vs. 0/26   
 Late Period    0/15 vs. 0/16   
 Periods Combined F.E. .619 3/58 vs. 1/54   
Mandibular      
Incisors (I1) Early Period F.E. 1.000 1/13 vs. 0/4  
 Middle Period F.E. .579 1/18 vs. 2/15  
 Late Period F.E. .593 3/13 vs. 1/13  
 Periods Combined F.E. 1.000 5/44 vs. 7/32  
Canines Early Period .803 .370 11/26 vs. 8/14  
 Middle Period .381 .537 14/31 vs. 12/32  
 Late Period 2.403 .121 11/22 vs. 5/19  
 Periods Combined .0738 .390 36/79 vs. 25/65  
Premolars (P3) Early Period   0/22 vs. 0/12  
 Middle Period F.E. .113 0/26 vs. 4/25  
 Late Period   0/14 vs. 0/19  
 Periods Combined F.E. .056 0/62 vs. 4/56  

1  Statistically significant results (p<.017) are indicated by bold-faced type in the table.  
2 Number of affected/total examined in SV sample vs. number of affected/total examined in SFB 

sample. 
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Table 10.7.  T-Test Results for Regional Comparisons of  
Mean Age of Hypoplasia Formation Between Samples. 

    Time Period  Tooth Type T-statistic p value1 Trend 
Early Period   Incisors (I1) -.356 .727  
   Canines -3.447 .001 SV<SFB 

Middle Period   Incisors (I1) .352 .728  
   Canines -.496 .622   

Late Period   Incisors (I1) .437 .667  
   Canines -.582 .564   

Periods Combined   Incisors (11) .344 .732  
   Canines -2.371 .019 SV<SFB 

1  Statistically significant results (p<.05) are indicated bold-faced type in the table. 

Table 10.8.  Mean Number of Hypoplastic Defects by Tooth Class. 
 Incisor (I1) Canine Premolar (P3) 

Region  Maxillary Mandibular Maxillary Mandibular Maxillary Mandibular 
Sacramento Valley 1.13 1.33 1.11 1.18 1.00 1.00 
San Francisco Bay 1.26 1.00 1.36 1.32 2.00 1.00 
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Table 10.9.  Sex Distribution of Enamel Defects in Prehistoric Central California. 
  Early Period Middle Period Late Period Combined Periods 
Tooth Type Affected Male Female Male Female Male Female Male Female 
Sacramento Valley         
Maxillary          

Incisors (I1) n 4/12 0/5 1/10 3/5 1/3 4/8 6/25 7/18 
 % affected 33.3 0.0 10.0 60.0 33.3 50.0 24.0 38.9 
Canines n 2/14 1/7 6/20 7/12 5/8 5/12 13/42 13/31 
 % affected 14.3 14.3 30.0 58.3 62.5 41.7 31.0 41.9 
Premolars (P3) n 0/12 0/3 2/14 1/14 0/6 0/9 2/32 1/26 

 % affected 0.0 0.0 14.3 7.1 0.0 0.0 6.3 3.8 
Mandibular          

Incisors (I1) n 1/8 0/5 1/13 0/5 1/3 2/10 3/24 2/20 
 % affected 12.5 0.0 7.7 0.0 33.3 20.0 12.5 10 
Canines n 8/21 3/5 9/20 5/11 2/5 9/17 19/46 17/33 
 % affected 38.1 60.0 45.0 45.5 40.0 52.9 41.3 51.5 
Premolars (P3) n 0/18 0/4 0/17 0/8 0/6 0/8 0/41 0/20 

 % affected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
San Francisco Bay         
Maxillary          

Incisors (I1) n 3/6 3/6 2/12 4/13 2/9 3/7 7/27 10/26 
 % affected 50.0 50.0 16.7 30.8 22.2 42.9 25.9 38.5 
Canines n 7/8 4/7 6/16 2/13 2/9 2/10 15/33 9/31 
 % affected 87.5 57.1 37.5 15.4 22.2 20.0 45.5 29.0 
Premolars (P3) n 1/6 0/6 0/13 0/12 0/7 0/9 1/26 0/28 

 % affected 16.7 0.0 0.0 0.0 0.0 0.0 3.8 0.0 
Mandibular          

Incisors (I1) n 0/3 0/1 0/6 2/7 1/6 0/6 1/14 2/6 
 % affected 0.0 0.0 0.0 22.2 16.7 0.0 6.7 12.5 
Canines n 5/8 3/6 4/15 7/13 3/7 2/10 12/30 12/29 
 % affected 62.5 50.0 26.7 53.8 42.9 20.0 40.0 46.4 
Premolars (P3) n 0/7 0/5 0/12 4/11 0/9 0/9 0/28 4/29 

 % affected 0.0 0.0 0.0 26.7 0.0 0.0 0.0 13.8 
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Table 10.10.  Chi-Square and Fisher’s Exact Results for Sex Comparisons in Prehistoric Central California. 
  Sacramento Valley San Francisco Bay 

  Maxillary Mandibular Maxillary Mandibular 

Period X2, F.E. p value n1 X2, F.E. p value n1 X2, F.E. p value n1 X2, F.E. p value n1 

Incisors (I1)             

Periods Combined 1.100 .294 6/25 vs. 7/18 F.E. 1.000 3/24 vs. 2/20 .955 .328 7/27 vs. 10/26 F.E. 1.000 1/14 vs. 2/6 

Early Period F.E. .261 4/12 vs. 0/5 F.E. 1.000 1/8 vs. 0/5 F.E. 1.000 3/6 vs. 3/6  - 0/3 vs. 0/1 

Middle Period F.E. .077 1/10 vs. 3/5 F.E. 1.000 1/13 vs. 0/5 F.E. .645 2/12 vs. 4/13 F.E. .486 0/6 vs. 2/7 

Late Period F.E. 1.000 1/3 vs. 4/8 F.E. 1.000 1/3 vs. 2/10 F.E. .596 2/9 vs. 3/7 F.E. 1.000 1/6 vs. 0/6 

Canines (C)                         

Periods Combined .938 .333 13/42 vs. 13/31 .808 .369 19/46 vs. 17/33 1.839 .175 15/33 vs. 9/31 .012 .914 12/30 vs. 12/29 

Early Period F.E. 1.000 2/14 vs. 1/7 F.E. .620 8/21 vs. 3/5 F.E. .282 7/8 vs. 4/7 F.E. 1.000 5/8 vs. 3/6 

Middle Period F.E. .150 6/20 vs. 7/12 F.E. 1.000 9/20 vs. 5/11 F.E. .238 6/16 vs. 2/13 2.157 .142 4/15 vs. 7/13 

Late Period F.E. .700 5/8 vs. 5/12 F.E. 1.000 2/5 vs. 9/17 F.E. 1.000 2/9 vs. 2/10 F.E. .593 3/7 vs. 2/10 

Premolars (P3)                         

Periods Combined F.E. 1.000 2/32 vs. 1/26  - 0/41 vs. 0/20 F.E. .481 1/26 vs. 0/28 F.E. .112 0/28 vs. 4/29 

Early Period   - 0/12 vs. 0/3  - 0/18 vs. 0/4 F.E. 1.000 1/6 vs. 0/6  - 0/7 vs. 0/5 

Middle Period F.E. 1.000 2/14 vs. 1/14  - 0/17 vs. 0/8   - 0/13 vs. 0/12 F.E. .106 0/12 vs. 4/11 

Late Period   - 0/6 vs. 0/9   - 0/6 vs. 0/8   - 0/7 vs. 0/9   - 0/9 vs. 0/9 
1 Number of affected/total examined in male sample vs. number of affected/total examined in female sample.
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Summary 

The analysis of enamel hypoplasia defects provides conflicting trends within the 

two regions.  In the Sacramento Valley sample, the prevalence of hypoplastic defects in 

maxillary canines significantly increased through time, as predicted by resource 

intensification models.  However, in the San Francisco Bay skeletal series, the 

prevalence of hypoplastic defects significantly decreased through time.  The latter 

finding in Bay Area samples is more consistent with the seasonal-stress hypothesis 

originally postulated for the lower Sacramento Valley.   

The prevalence and mean number of hypoplastic defects is also significantly 

higher in Early period San Francisco Bay skeletons than in Early period Sacramento 

Valley skeletons.  However, this trend is reversed in the Late period, when a higher 

proportion of hypoplastic defects is observed in the Sacramento Valley samples.  

Although small sample size may be a factor, the prevalence of hypoplastic defects does 

not appear to be significantly different between the sexes for either region. 
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CHAPTER XI 

SUMMARY AND DISCUSSION 

In Chapter III, I presented a series of models derived from human behavioral 

ecology that might account for changes in subsistence patterns in prehistoric central 

California.  These models established a set of predictions regarding late Holocene 

subsistence change, and provide the conceptual framework from which I examined diet 

and health trends in lower Sacramento Valley and San Francisco Bay.  Resource 

intensification models predict that foraging efficiency decreased during the late 

Holocene as a result of overexploitation of high-ranked taxa, and by the increased use of 

more costly, lower-ranked resources (Broughton 1999).  A key prediction of resource 

intensification is that reduced foraging efficiency should be associated with a decline in 

health, as observed in osteological indicators of nutritional stress and disease (Broughton 

and O’Connell 1999).   

In this study, I evaluated whether expected changes in diet and health were 

evident in human skeletal remains dating to the mid-to-late Holocene in central 

California.  Although many of the expectations of resource intensification were met, 

there is significant regional variation that suggests a more complex picture of health in 

the region.  There is far less support for the seasonal-stress hypothesis, however, which 

argues that health status improved through time associated with intensified reliance on 

acorns and smaller fauna during the Middle and Late periods (see Dickel et al. 1984).  In 

this chapter, I summarize the isotopic and osteological diet and health indicators, and 

then discuss the data with respect to resource intensification and seasonal-stress models.  
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I first discuss dietary patterns based on evidence from stable isotopes and dental 

pathology, and then summarize the paleopathological and growth stress indicator data.  

Finally, I address the limitations of the present study and some implications for future 

research.   

Dietary Trends 

Stable Isotopes: Temporal Differences 

Although stable isotope values often cannot identify specific foods that were 

consumed prehistorically, the data do provide a means for evaluating the importance of 

bulk dietary components derived from isotopically distinct food resources.  These data 

can be compared with other sources of paleodietary information, such as that gleaned 

from archaeofaunal, archaeobotanical, and artifact use studies.  Human behavioral 

ecology approaches, such as optimal foraging theory, predict that diet breadth expansion 

will ensue over time as high-ranked resources are depleted within a given resource 

patch; hence, the shift toward intensified use of more costly food resources can be 

examined only if food resources that differ in rank are also isotopically distinct.  This 

would be realistic if, for instance, a population subsisted on two isotopically distinct 

food resources (e.g., marine mammals and small terrestrial mammals) that also had 

different return rates; however, prehistoric diets in central California included a variety 

of food resources, which prevents a robust test of the diet breadth model based on the 

isotopic evidence alone.  Due to these limitations, the isotopic data can be used in more 

general ways to evaluate changes in diet breadth.  For example, since high-ranked 

marine resources such as sea mammals, and also marine and anadromous fish, differ 
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isotopically (due to their higher trophic level) from some low-ranked resources, such as 

shellfish, the dietary signatures may provide some insight on the relative importance of 

these resources to the diet.  Additionally, an increase in collagen-apatite spacing values 

through time would indicate greater consumption of lower-ranked plant carbohydrate 

resources, as predicted by the diet breadth model. 

In the lower Sacramento Valley, comparisons of stable isotope values indicate 

that the proportion of dietary proteins and carbohydrates, as well as the sources of these 

macronutrients (i.e., aquatic vs. terrestrial), did not significantly change over time.  

Mean values of collagen δ13C and δ15N, apatite δ13C, and collagen-apatite spacing are 

nearly identical between the Early, Middle, and Late periods.  Compared with dietary 

signatures of locally available food resources, these signatures fall within expected 

ranges of terrestrial game (e.g., herbivores, carnivores), C3 plants (e.g., acorns, 

geophytes, seeds), and freshwater fish in particular.  This result is supported by the 

collagen-apatite spacing values, which indicate that the dietary protein was less enriched 

in 13C than the whole diet.  The high collagen-apatite spacing (~6.6‰) further indicates 

that heavy consumption of C3 plants and freshwater fish, which have low δ13C values, 

probably contribute the most to the diet.   

Broughton’s (1994a) analysis of late Holocene Sacramento Valley archaeofaunal 

assemblages suggested a temporal decline in the abundance of medium and large-sized 

terrestrial mammals and anadromous fish, relative to smaller freshwater fishes.  

Although food resources should be depleted in order of their rank (i.e., return rate), it is 

possible that some high-ranked resources could have been exploited, yet have 
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contributed little to average dietary signatures.  For example, although the isotopic 

signatures from Sacramento Valley skeletons are consistent with a diet of freshwater 

fish, terrestrial game, and C3 plants, harvesting of anadromous fish over brief intervals 

(e.g., spring and fall spawning runs) may not be detectable in isotope signatures.  

Although freshwater fish and terrestrial mammals overlap somewhat in collagen δ13C 

values, δ15N values are higher than would be expected for a strictly herbivore protein 

diet.  The mean δ15N value of herbivore flesh is 5.0±.1.6‰, so protein derived solely 

from these mammals would produce δ15N values of 8.0 to 9.0‰ in humans (accounting 

for the   3-4‰ trophic level effect between diet and bone collagen).  The mean δ15N 

value of ~11.0‰ in Sacramento Valley skeletons indicates a significant contribution 

from a higher trophic level food resource other than herbivore flesh.  This could include 

terrestrial carnivores and omnivores (e.g., coyote, bear, raccoon), which have a mean 

δ15N value of 8.8±.9‰, or more likely freshwater fish, which have δ15N values that can 

range from 5.0 to 14‰.  The only isotopic data available for freshwater fish from the 

Valley is from Sacramento sucker, which has δ15N values around 9.5‰.  If this value is 

representative of other freshwater fish species in the Sacramento Valley, then the δ15N 

values in the human bone collagen most likely reflect heavy consumption of freshwater 

fish.  For comparison, skeletons from the Santa Barbara Channel mainland of southern 

California (circa 5000 B.C. to A.D. 1150) have isotopic signatures that are similar to 

those of the Sacramento Valley (Walker and DeNiro 1986).  Mean δ13C values of             

-18.0‰ and δ15N values of 9.8‰ in these groups are consistent with a diet composed 

primarily of terrestrial C3 protein and freshwater fish.   
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Given the importance of salmon in the Sacramento Valley documented in 

ethnohistoric accounts (see Yoshiyama 1999), it is somewhat surprising that bone 

isotope values do not reflect consumption of this food resource.  Overall, collagen δ13C 

and δ15N values in Valley skeletons indicate that anadromous fish (which show both 

high δ13C and δ15N values similar to marine fish) did not contribute significant amounts 

of protein to the diet.  In contrast, prehistoric skeletons from sites along major salmon 

rivers in British Columbia have significantly higher collagen δ13C values that clearly 

indicate heavy consumption of salmon (Chisholm 1983; Lovell et al. 1986).  Lovell et al. 

(1986:103) reported a mean δ13C value of –15.5±.3‰ (n=8) in prehistoric skeletons 

from inland British Columbia, which is consistent with heavy consumption of salmon 

(the only 13C-enriched resource available in the area).  Similarly, in a site located 

downstream from Lovell’s study, Chisholm (1987, cited in Schwarcz 1991:270) found a 

mean δ13C value of –15.8‰ (n=13) in prehistoric bone collagen.  These signatures are 

clearly distinct from Sacramento Valley skeletons, which have a mean δ13C value of      

–19.9‰ (n=51).  In addition, the average δ15N value of ~11‰ in the Valley samples is 

substantially lower than would be expected if anadromous fish were stored and 

consumed in any great quantity throughout the year. 

Schulz (1981:39) hypothesized that salmon were most likely taken with gills nets 

in the lower Sacramento Valley and Delta, since the volume and force of water would 

have been too great for the construction of weirs.  He cites only four ethnographically 

documented weirs in the mid-Central Valley, all of which were constructed across 

smaller tributaries of the Sacramento and San Joaquin Rivers.  The high labor costs of 
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constructing gill nets (see Lindström 1996) may have also reduced the economic value 

of salmon in high flow areas of the lower Sacramento and San Joaquin Rivers.  Gobalet 

et al. (2004) found that archaeological salmon (Oncorhynchus spp) and sturgeon 

(Acipenser spp) remains are poorly represented in many areas within the Sacramento 

River drainage, especially in comparison with freshwater fish remains.  Although an 

ecological argument may explain the lack of intensified salmon exploitation in the lower 

Sacramento Valley, the hypothesis that salmonids may have been over-harvested during 

the prehistoric period should be examined using a more extensive isotopic dataset that 

includes the northern Valley sites (see arguments in Broughton 1994b; Butler 2000).   

In contrast to the Valley, skeletons from San Francisco Bay show clear evidence 

of dietary change through time.  Collagen δ13C and δ15N values are significantly higher 

in Early period skeletons than in Middle and Late period skeletons; these values reflect 

heavy consumption of high trophic level marine resources, such as marine and 

anadromous fish, piscivorous birds, and sea mammals.  The mean collagen δ13C value of 

–14.3‰ and δ15N value of 16.0‰ is similar (within 1‰ difference) to dietary signatures 

from the British Columbia coast (Chisholm et al.1983:397), as well as Late period (A.D. 

1150 to 1800) groups from the Santa Barbara Channel Islands and coast of southern 

California (Chisholm et al.1983; Goldberg 1993; Walker and DeNiro 1986).  The high 

δ13C and δ15N values in these coastal groups can be best interpreted as evidence for the 

heavy consumption of marine fish and sea mammals, which are well represented in 

archaeofaunal assemblages from both regions (Goldberg 1993; Walker and DeNiro 

1986).  Farther south along the Baja California coast, high δ13C and δ15N values reflect 
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even greater consumption of sea mammals, which are the top of the marine food chain 

(King 1997; Molto and Kennedy 1991).   

The Early period Bay Area sample is from the West Berkeley Village site (ALA-

307), located along the northeastern shore of San Francisco Bay.  In the lower 3.7 m of 

the shell mound, grooved and notched stone “net sinkers” were recovered in abundance; 

however, these artifacts were almost non-existent in the upper 1.8 m of the mound that 

dates to the Middle period (Wallace and Lathrap 1975:21).  Net sinkers demonstrate the 

use of gill nets or seines for fishing, and may have been used in conjunction with tule 

balsas, the watercraft of the Ohlone people during the ethnohistoric period (Follett 

1975:79-84).  Archaeofaunal studies of Bay Area sites also clearly indicate the 

importance of fish; particularly bat ray, sturgeon, salmon, herring, sardine, anchovy, and 

sharks (Broughton 1997; Gobalet et al. 2004).  Although comparing isotopic signatures 

between the upper and lower portions of the mound would have been ideal, a suitable 

sample of adult skeletons from the upper 1.8 m of the mound was not available.   

Mean collagen δ13C and δ15N values of Middle and Late period Bay skeletons are 

similar to each other, but are significantly lower than Early period Bay skeletons.  

Furthermore, their values suggest a shift toward greater consumption of terrestrial 

resources.  Dietary signatures are consistent with the heavy consumption of terrestrial 

mammals, and also low trophic level marine foods such as shellfish, that have similar 

δ13C and δ15N values.  Given their abundance in Middle and Late period faunal 

assemblages, marine and anadromous fish, marine mammals, and water birds continued 

to be exploited; however, isotopic signatures suggest that these food items contributed 
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proportionately less to the diet than did terrestrial protein sources and shellfish.  

Broughton (1999) and Simons (1992) both identified significant changes in Bay Area 

faunal assemblages during the late Holocene, in particular, the increase in sea otters 

relative to large marine mammals and artiodactyls.  This trend suggests that resource 

depression of large marine mammals and artiodactyls resulted in greater exploitation of 

otters, in addition to other lower-ranked prey.  Between the Middle and Late periods, the 

small +.5 ‰ shift in δ13C values and +.7‰ in δ15N values could indicate slightly greater 

consumption of otters; however, this difference is small, and may be the result of 

sampling bias.  The high linear correlation between collagen δ13C and δ15N values 

suggests that two isotopically distinct food resources were being consumed in the Bay 

Area: 13C-depleted terrestrial animal protein and shellfish, and 13C-enriched marine 

proteins.  However, the degree of overlap of dietary signatures in both the Middle and 

Late period samples indicates that a high level of variation in food consumption patterns, 

with some individuals consuming greater amounts of marine animal proteins than others.  

A change toward more seasonal residence between the Bay and the interior or changes in 

post-marital residence patterns may account for this variation.  

The collagen-apatite spacing provides a means from which to evaluate the 

importance of carbohydrates and fats to the diet.  The small mean collagen-apatite 

spacing in Early period skeletons (3.3‰) indicates that dietary protein was more 

enriched in 13C than the whole diet, consistent with the heavy consumption of high 

trophic level marine animal proteins.  In contrast, the mean collagen-apatite spacing in 

Middle period skeletons is 4.4‰, indicating that the δ13C of dietary protein and that of 
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the whole diet are the same.  This is consistent with a diet composed primarily of 

terrestrial resources, such as C3 plants, terrestrial mammals, and shellfish.  In Late 

period skeletons, collagen-apatite spacing values decreased to 4.0‰, which suggests 

slightly greater consumption of marine proteins; this is further supported by the slightly 

higher δ13C and δ15N values in these samples.  The larger collagen-apatite spacing in 

Middle and Late period skeletons is consistent with greater consumption of C3 plants 

(e.g., acorns, roots, and seeds) over time.  This observation is in accordance with the 

abundance of mortars and pestles recovered from Middle and Late period Bay Area 

sites, which suggest a greater emphasis on plant staples (Basgall 1987).  In sum, the 

isotopic evidence for dietary change in San Francisco Bay may be consistent with 

expectations of late Holocene resource intensification.  However, evidence for dietary 

change in the lower Sacramento Valley is not evident in stable isotope ratios.       

Stable Isotopes: Regional Differences 

As summarized in Chapter V, the most dramatic dietary differences are found 

between regions.  Sacramento Valley collagen δ13C and δ15N values reflect heavy 

consumption of freshwater fish and/or terrestrial mammals, while San Francisco Bay 

isotope signatures reflect greater consumption of marine fauna.  The difference in 

collagen-apatite spacing between the Valley and Bay are also illustrative of the 

importance of 13C-depleted resources, such as plant carbohydrates.  Compared with the 

Bay, Valley skeletons show higher collagen-apatite spacing values, indicating that plant 

carbohydrates comprised a greater proportion of their diet.  The non-overlapping 

signatures between regions indicate that individuals from the Bay and Valley were 
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consuming food resources derived from isotopically distinct food webs.  However, while 

dietary differences were maintained, isotopic signatures became more similar through 

time, as Bay Area diets became more terrestrially focused.  

Stable Isotopes: Sex Differences 

Some of the variability in isotope signatures may be attributable to sex 

differences in diet.  In the Sacramento Valley, male skeletons have slightly higher δ15N 

and collagen-apatite spacing values than females for the Middle period sample, which 

may have resulted from greater consumption of freshwater fish by males.  In San 

Francisco Bay, males have higher δ13C and δ15N values than females, suggesting that 

they consumed greater amounts of animal protein in their diets.  The smaller collagen-

apatite spacing values in Late period males also suggest that they consumed greater 

amounts of 13C-enriched marine protein than females during this period.  Although 

isotope values may reflect true differences in food consumption patterns between the 

sexes, these results should be treated conservatively due to the small sample size.   

Dental Disease  

Temporal Differences 

In this study, I hypothesized that the increased consumption of plant staples, such 

as acorns, would result in increased caries prevalence through time.  These predictions 

are not supported by the dental pathology results for either the lower Sacramento Valley 

or San Francisco Bay skeletal series.  Contrary to expectations, caries prevalence in the 

Valley significantly decreased between the Early and Middle period, and then 
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significantly increased between the Middle and the Late period.  The Middle period 

sample has the lowest caries rate, but has greater AMTL, alveolar abscessing, and also 

higher attrition rates.  However, greater rapidity of tooth wear may have contributed to 

the lower caries rate and higher prevalence of AMTL during this period, since heavily 

worn teeth with exposed pulp-chambers are susceptible to bacterial infection that causes 

alveolar abscessing and subsequent shedding of teeth.  In the Bay Area skeletal series, 

the caries rate is higher in Middle period females than in Early and Late period females; 

however, the prevalence of AMTL and alveolar abscessing (incisor tooth position) 

decreased through time.  In contrast, the caries rate in males did not change over time, 

although AMTL and alveolar abscessing significantly increased between the Middle and 

Late periods.      

Previous research on dental disease in central California has provided mixed 

results.  For example, Newman (1957) and Kennedy (1960) both reported an increase in 

the proportion of carious teeth over time in skeletal series from the lower Sacramento 

Valley.  In contrast, Schulz (1981) found no change in caries prevalence over time in the 

region.  These discrepancies most likely reflect differences in the representation and size 

of the samples, as well as the methods used to calculate caries rates.  In this study, the 

prevalence of carious teeth in the Valley is highest during the Early and Late period, but 

is significantly lower during the Middle period.  Although higher attrition rates in the 

Middle period may explain some of this trend, this may also reflect decreased 

consumption of cariogenic plant resources.   
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Although heavy acorn consumption during the Middle and Late period was 

expected to result in a higher caries rate, the cariogenic properties of acorns have not 

been critically evaluated.  Many nut foods have cariostatic properties that neutralize 

bacterial acids in the oral cavity, and thus may actually protect tooth enamel from caries.  

For instance, dental health studies suggest that foods that are high tannin and fat but low 

in sugar content may help prevent caries (Bowen 1994; Kandra et al. 2004).  Since 

acorns are rich in both tannins and fats and are especially low in sugar, greater 

consumption of acorns may also account for the lower caries rates observed during the 

Middle period.  Other resources, such as root foods and berries, would be expected to 

have more cariogenic properties – due to their higher sugar content – and thus, may 

account for the higher prevalence of caries in the Early and Late period series.   

Regional Differences   

Inter-regional comparisons suggest that the prevalence of carious teeth, AMTL, 

alveolar abscessing, and rate of enamel attrition was greater in the Sacramento Valley 

than in San Francisco Bay.  One exception was found: AMTL and alveolar abscesses are 

significantly more common among Late period males from the Bay Area.  The very low 

caries rate in Bay Area dentitions is consistent with heavy consumption of marine animal 

proteins, as demonstrated by the stable isotope data.  Indeed, I expected the dental caries 

rate to be substantially lower in Bay Area skeletons than in those from the Sacramento 

Valley.  Jurmain’s (1990a) dental pathology study of skeletons from the Ryan Mound 

site (ALA-329, using a different curated skeletal series from the present study) also 

reported a very low caries rate (.57 percent), which is consistent with the results of the 
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present study.  In southern California, Walker and Erlandson (1986) found a lower 

prevalence of caries among groups that subsisted on marine resources, such as fish and 

sea mammals, than among earlier groups from the same region that consumed terrestrial 

plant resources.  The regional differences found in this study are in accordance with 

previous research that shows lower caries rates among groups that consumed marine 

resources than among those that consumed high amounts of terrestrial plants (Costa 

1980; Littleton and Frolich 1993; Mundorff et al. 1990; Shrestha-Mundorff et al. 1994).   

Comparisons of dental attrition rates between the Valley and the Bay also shed 

light on regional differences in diet.  The higher attrition rate in Sacramento Valley 

dentitions is consistent with a greater focus on plant carbohydrates, which require 

intensive processing with grinding implements that introduce grit into the diet.  In 

comparison, the lower attrition rates in San Francisco Bay samples implies that these 

groups consumed smaller amounts of plants that required grinding.  In conjunction with 

the isotopic differences between the regions, the dental pathology data provide an 

additional line of evidence to suggest that prehistoric diets in the lower Sacramento 

Valley were more focused on plant staples compared with those of San Francisco Bay.   

Sex Differences 

Sex comparisons of oral health provide additional information regarding male-

female food consumption patterns.  In the Sacramento Valley, the caries rate was higher 

in female dentitions for all time periods, with statistically significant differences found in 

the Early and Late period samples.  The average percent difference in caries rate 

between males and females is 15.7, 7.1, and 12.7 percent for the Early, Middle, and Late 
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periods, respectively (“corrected” caries rate; Luckas 1996).  These differences appear to 

reflect true dietary differences between the sexes in general, and are not due to 

differences in attrition rates or the age structure of the samples.  Females also show a 

significantly higher prevalence of AMTL and alveolar abscesses than do males.  

Together, these differences suggest that females consumed greater amounts of cariogenic 

plant foods than males, especially during the Early and Late periods.  These findings are 

in accordance with Schulz’s (1981) study, which found that dental caries were 

significantly more common among females than males in the lower Sacramento Valley.     

In San Francisco Bay, the caries rate was also higher in female dentitions, with 

statistically significant differences found in the Early and Late period samples.  The 

average percent difference in caries rate between males and females is 3.0, 5.1, and 1.7 

percent for the Early, Middle, and Late periods, respectively (“corrected” caries rate).  

Males are unaffected by caries in the Early period, and have only slight involvement in 

the Middle and Late period skeletal series.  AMTL and alveolar abscessing are also 

significantly more common in female dentitions in the Early and Middle period samples; 

however, the prevalence of these conditions is greater for males in the Late period 

sample.  Although sex differences in oral health are less marked in San Francisco Bay 

than in the lower Sacramento Valley, these results support the hypothesis that female 

diets were more cariogenic than male diets in the region.   

That females are more often affected than males with respect to dental disease is 

commonly reported in other studies of agricultural and non-agricultural populations 

(Cucina and Tiesler 2003; Larsen et al. 1991; Lukacs 1996; Sutter 2001; Walker and 
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Erlandson 1986; Walker and Hewlett 1990).  Marked sex differences in oral health may 

provide some insight regarding sexual division of labor.  Ethnohistoric and ethnographic 

data sources indicate that females were largely responsible for the gathering, processing, 

and cooking of vegetal foods in California (Heizer and Elsasser 1980; E. Wallace 1978; 

Willoughby 1963).  If this were the case during the prehistoric period, then females may 

have consumed greater amounts of cariogenic plant foods than males.  In addition, if 

males were primarily responsible for hunting, as suggested by ethnographic evidence, 

they may have consumed greater amounts of animal protein that protects against caries.  

While sex differences in oral health may have been an unintended consequence of sexual 

division of labor, sexual inequality in access to protein may also have played a role.  

Because the stable isotope data indicate only slight sex differences in the consumption of 

protein and carbohydrate resources, it is likely that differences in oral health reflect 

greater consumption of cariogenic foods by females than by males, but not necessarily 

substantial differences in overall carbohydrate consumption.   

Given the generally higher prevalence of caries, AMTL, and alveolar abscessing 

in female skeletons, it was unexpected to find that the highest attrition rates occur among 

males.  If males consumed greater amounts of processed foods that contained grit, then 

this may have resulted in faster wear rates in their dentitions.  Alternately, it is also 

possible that sex differences in wear patterns are unrelated to diet, but instead reflect the 

use of teeth in various task activities (see Eshed et al. 2006, in press; Schulz 1977).  

Schulz (1977) documented a unique pattern of dental wear “grooving” in a small skeletal 

series from the lower Sacramento Valley, which he attributed to the use of the teeth for 
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stripping fibers and cordage for making basketry and fishing equipment, as documented 

in ethnohistoric accounts.  In sum, while the isotopic and dental pathology findings 

suggest sex differences in food consumption patterns, there is little data to suggest that 

these differences became more demarcated over time, as predicted by resource 

intensification models. 

Health Trends 

Tibial Periosteal Reactions 

Bioarchaeologists often record periosteal reactions on prehistoric human 

skeletons because they believe that these lesions provide an indirect measure of exposure 

levels to infectious pathogens (Larsen 1997).  In their article, “The Osteological 

Paradox”, Wood et al. (1992) argue that individuals with periosteal reactions may 

actually be healthier than those without, since the presence of these lesions indicates that 

an individual survived long enough to record evidence of it on their skeleton.  Because 

periosteal lesions are generally more common among prehistoric agriculturalists, Wood 

et al. (1992) suggest that these groups may have been healthier than earlier forager 

groups that would have succumbed to death from infection before skeletal lesions had 

time to manifest.  However, research in modern non-industrialized nations indicates that 

pathogens pose the greatest health risks, particularly among densely settled communities 

with poor sanitary conditions (Inhorn and Brown 1990).  Hence, the increased 

prevalence of infectious lesions in prehistoric skeletons should correlate with other 

archaeological measures of population density and health status (Cohen 1989a, 1989b; 

Larsen 1995).   
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Resource intensification models predict that osteological measures of poor health 

should increase concomitant with higher population density, poorer sanitation 

conditions, and reduced dietary quality (Lambert 1993, 1994; Lambert and Walker 1991; 

Larsen 1998, 2002; Walker et al. 2005).  In the lower Sacramento Valley, the prevalence 

of tibial lesions significantly increased over time.  The total lesion prevalence increased 

from 1.1 percent to 13.4 between the Early and Late periods.  In contrast, the prevalence 

of tibial lesions in the San Francisco Bay samples showed no significant trend through 

time for any of the sample comparisons.   

The increase in tibial lesion prevalence in Sacramento Valley skeletons may 

reflect greater susceptibility to either infection or trauma, perhaps related to elevated 

risks incurred during travel away from village sites (Larsen 1995, 1997).  Overall, the 

majority of affected tibiae have periosteal reactions that are large and diffuse (i.e., 

affecting more than one-third of the diaphysis).  Involvement of both tibiae, as well as 

other bones of the skeleton, is also common.  These observations suggest that many of 

the lesions are the result of systemic infection rather than traumatic injury.  The presence 

of sabre-shin deformity in some individuals, as well as the polyostotic distribution in 

many individuals, is also consistent with some forms of treponematosis, such as yaws or 

endemic syphilis (Ortner 2003; Walker et al. 2005).  While the proportion of individuals 

with tibial lesions remained unchanged in San Francisco Bay, lesions are significantly 

more common in the Early period Bay samples than in the Early period Valley skeletal 

series.  Also, the similar prevalence between the sexes in both regions suggests that 

males and females had similar levels of exposure to infection and/or trauma. 
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In the Santa Barbara Channel area, the prevalence of tibial periostoses 

significantly increased through time, with peak involvement during the late Middle 

period (circa A.D. 580-1380; Lambert 1993, 1994:183-184).  When mainland and island 

groups are analyzed separately, however, these trends are only significant for the 

islander groups (Lambert 1993, 1994).  In comparison with data from southern 

California, the prevalence of tibial lesions is substantially lower in central California.  

For example, 20 to 30 percent of skeletons examined from three sites from the mainland 

coast of southern California are affected (Walker et al. 2005:283, Table 11.2).  On the 

other hand, five sites from the Northern Channel Islands are more similar to central 

California, and show a prevalence of tibial lesions that ranges from 0.0 to 12.7 percent 

(Walker et al. 2005:283, Table 11.2).  Based on examination of lesion characteristics, the 

pattern of skeletal involvement, and the results of histological analyses, Walker et al. 

(2005) hypothesized that many of the periosteal lesions in the Santa Barbara Channel 

area are most likely the result of treponemal infection: 

Although osteoperiostitis can result from traumatic injury or 
nontreponemal infections, cancer, and other disorders, we believe that 
many if not most of the tibial lesions seen in Santa Barbara Channel area 
collections are responses to treponemal infection.  This conclusion is 
based on four related observations: the polyostotic nature of the disease in 
many of the affected individuals (an indication of systemic infection); the 
tibial predilection of the lesions (a typical feature of treponematosis); the 
late age of osseous involvement; and histological evidence for the long-
standing presence of a condition resembling endemic syphilis…[Walker 
et al. 2005:290 ]  

Although some of the tibial lesions observed in this study may have resulted 

from treponemal disease, this hypothesis needs to be tested through more extensive 

study of the pattern of involvement in the skeletal samples.  Overall, the significant 
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increase in the prevalence of tibial periostoses in the lower Sacramento Valley is 

consistent with resource intensification models; however, this expectation was not met in 

the San Francisco Bay skeletal series, which shows no evidence of change in lesion 

prevalence through time.   

Stature 

In this study, I hypothesized that femoral length would decline over time, 

concomitant with reduction in dietary quality and greater exposure to infectious 

pathogens during the late Holocene.  The data provide some support for a reduction in 

stature through time.  In the Sacramento Valley, femoral length in females significantly 

declined between the Early and Middle period, accounting for a stature reduction of 

approximately 6.5 cm.  However, a rebound in femoral length was observed between the 

Middle and Late periods, accounting for an increase in female stature of approximately 

5.3 cm.  In the San Francisco Bay samples, femoral lengths are highest during the Early 

period, and are equally shorter during the Middle and Late period, although small sample 

size and deviations from normality prevented most statistical comparisons between 

groups.   

Previous research suggests significant declines in stature during the late 

Holocene in California (Ivanhoe 1995; Ivanhoe and Chu 1996; Lambert 1993, 1994).  

Ivanhoe (1995) found a significant reduction in stature between the Early and Late 

period in prehistoric groups from the Central Valley, which he attributed to protein 

deficiency caused by high dependency on acorns.  Ivanhoe’s (1995) study sample is 

more representative of the Central Valley as a whole than the present study because it 
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includes skeletal samples from multiple sub-regions within interior central California.  

Although the trend is less dramatic than that identified in the Central Valley, Ivanhoe 

and Chu (1996) also observed a significant reduction in stature in skeletal series from 

San Francisco Bay, with the greatest declines between the Early and Early-Middle 

period transition, and between phases 1 and 2 of the Late period.  In the Santa Barbara 

Channel Island area of southern California, Lambert (1993, 1994) also observed a 

significant reduction in femoral length during the late Holocene; this trend was observed 

in both sexes, and is in agreement with other indicators of nutritional stress (Lambert and 

Walker 1991; Walker 1986, 1989). 

Inter-regional sample comparisons indicate that femora are generally longer in 

Bay Area skeletons for males, while femora are longer in the Valley skeletons for 

females.  Valley females have significantly longer femora than their Bay counterparts 

during the Late period; this trend reflects a rebound in femoral length between Middle 

and Late period in the Valley.  Sexual dimorphism in femoral length may also have 

peaked during the Middle period, in both the Sacramento Valley and San Francisco Bay 

skeletal series.  This implies that stature changes may have impacted growth patterns of 

females to a greater degree than males.  The stature trends offer general support for late 

Holocene resource intensification, although sample size hinders interpretations of 

temporal trends in the San Francisco Bay area.  The decline in stature between the Early 

and Middle period in the lower Sacramento Valley is consistent with greater nutritional 

or disease-related stress, as would be expected with reduced foraging efficiency.  
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Porotic Hyperostosis 

In the Sacramento Valley, the proportion of crania with cribra orbitalia and 

porotic hyperostosis significantly increased over time.  This trend is consistent with the 

expectation that the acorn-dependent economies of the Middle and Late periods would 

have contributed to higher levels of acquired anemia in children, since heavy 

consumption of acorns could have resulted in iron-deficient diets.  Additionally, 

increased sedentism and population aggregation within more circumscribed village 

communities would have resulted in poorer sanitation, and may have contributed to the 

anemic status of children by promoting conditions more conducive to the spread of 

pathogens and parasites (Cohen 1977;1989a; 1989b; Cohen and Armelagos 1984; Larsen 

1995, 1997).  In contrast to the Valley, the prevalence of orbital and vault lesions in San 

Francisco Bay remained similar through time.   

A few exceptions aside, the prevalence of orbital and vault lesions was higher in 

the Bay Area skeletal series than in the Valley series, which suggests that acquired 

anemia was a more serious health consequence for infants and young children in the Bay 

Area.  The stable isotope results from this study indicate that San Francisco Bay 

populations probably consumed adequate amounts of dietary protein, which suggests 

that the high prevalence of orbital and vault lesions is not the result of inadequate 

consumption of dietary iron.  This pattern is consistent with other studies that have 

documented a high prevalence of porotic hyperostosis among prehistoric societies that 

consumed marine resources as a major part of the diet (Blom et al. 2005; Cybulski 1977, 

1992; Walker 1986; Walker and Lambert 1991).  Among costal groups, the high 
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prevalence of orbital and vault lesions is attributed to non-dietary factors, such as 

weanling diarrheal disease, or chronic intestinal bleeding caused by parasites 

(helminthiasis) or bacterial infection, which results in secondary loss of blood and iron 

(Goodman 1994; Holland and O’Brien 1997; Kent 1986, 1992; Larsen 1995, 1997; 

Mensforth et al. 1978; Walker 1986; Wright and Chew 1999).   

Helminthes are a likely source of acquired anemia in prehistoric California, since 

these parasites are often present in anadromous fish and marine mammals.  Bathurst 

(2004:5) notes that salmon of the Pacific region are commonly infested with tapeworm, 

which may have been a significant cause of anemia in coastal regions.  In addition, 

helminthiasis can be acquired through contaminated water supply or through direct 

contact with the skin (Bathurst 2004; Blom et al. 2005; Merid et al. 2001; Rothschild 

2002; Walker 1986).  Recent studies have identified eggs of fish tapeworm 

(Diphyllobothrium spp.) and human roundworm (Ascaris lumbricoides) in prehistoric 

shell mounds from the Pacific coast of Canada (Bathurst 2004).  Prehistoric coastal 

populations in this region also show high levels of porotic hyperostosis, which suggests 

that parasites may have posed a major health risk (Cybulski 1977, 1992).  Although the 

presence of these parasites has not been examined in archaeological sites from central 

California, it is likely that they contributed to the prevalence of acquired anemia in the 

area.  Likewise, greater population aggregation and circumscription of territories during 

the late Holocene may have resulted in a greater prevalence of infectious diseases, which 

could also have contributed to anemia in infants and children.  
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Sex comparisons indicate that males and females had a similar prevalence of 

orbital lesions (cribra orbitalia) in the lower Sacramento Valley and San Francisco Bay.  

Since these lesions are mostly likely to occur during late infancy, this suggests a similar 

level of childhood health between the sexes.  In contrast, the prevalence of cranial vault 

lesions (porotic hyperostosis) is more common in male crania in both the Sacramento 

Valley and San Francisco Bay samples.  These differences suggest that female children 

may have been buffered to a greater degree against nutritional stress and/or pathogen 

load than male children, an observation supported by the epidemiological and 

paleopathological literature (Ortner 1998, 2003).  Alternately, differential cultural 

treatment of male and female children may also play a role in susceptibility to parasitic 

infestation or bacterial infection.  Since vault lesions generally show a later age of onset 

than orbital lesions, sex differences in anemia may have been less pronounced during 

infancy, but disproportionately affected males during early childhood.   

Enamel Hypoplasia 

Calculation of the total prevalence of dental enamel defects was hindered in this 

study by extreme dental attrition, AMTL, and postmortem tooth loss.  Despite these 

limitations, the prevalence of hypoplastic defects is significantly different between time 

periods and regions.  Overall, 45.6 percent of adult dentitions from the Valley and 38.6 

percent from the Bay have at least one hypoplasia recorded in a mandibular canine, the 

most commonly affected tooth type.  In the Valley skeletal series, the prevalence of 

hypoplastic defects significantly increased between the Early and Late periods for the 

maxillary canine only.  In contrast, the prevalence of hypoplasias of the maxillary canine 
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significantly decreased through time in skeletons from the Bay Area.  The prevalence 

and mean number of hypoplastic defects of the maxillary canine is higher in the Bay 

series than in Valley series during the Early period.  However, this trend is reversed in 

the Late period, when a higher proportion of hypoplastic defects is observed in the 

Valley sample.  Although small sample size may be a factor, the prevalence of 

hypoplastic defects appears to have been similar between the sexes in both regions.   

The hypoplasia data provide mixed support for resource intensification models in 

prehistoric California.  In the lower Sacramento Valley, the prevalence of enamel 

hypoplasias of the maxillary canine increased through time (14.3, 42.4, 50.0 percent, for 

the Early, Middle, and Late periods, respectively).  Schulz’s (1981) study of enamel 

defects in the Valley reported a prevalence of 14.0, 11.0, and 18.5 percent for the Early, 

Middle, and Late period, respectively.  The divergent results between Schulz (1981) and 

this study are striking given that both studies used many of the same skeletal samples.  

Schulz’s (1981) study used a larger sample that derived from a greater number of 

archaeological sites than the current study, although a smaller number of individuals 

were included from each site.  In Schulz’s (1981) study, dental attrition was not 

controlled for, which may have skewed the prevalence of enamel defects towards 

samples with less dental wear or a younger mean age-at-death.  In fact, the faster 

attrition rates identified in the Middle period sample may have reduced the number of 

enamel defects identified by Schulz for this time period.  In this study, observations of 

hypoplasias were made within the same scorable section of enamel for all individuals in 

the study, which avoided the influence of differing attrition rates among the samples.   
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The increase in hypoplastic defects in the lower Sacramento Valley provides 

some support for late Holocene resource intensification models in central California.  In 

San Francisco Bay, the prevalence of hypoplastic defects in the maxillary canine 

significantly decreased between the Early and Middle period from 73.3 to 25.8 percent.  

In contrast to the Valley, this finding provides some support for the seasonal-stress 

model, in that it implies an improvement in childhood health status in the Bay Area. 

Summary 

In this dissertation, I examined changes in diet and health during the mid-to-late 

Holocene in central California.  Using predictions derived from resource intensification 

models, I tested three main hypotheses regarding expected subsistence changes in the 

lower Sacramento Valley and San Francisco Bay area.  Paleodietary evidence from 

stable isotopes and dental disease was used to explore changes in food consumption 

patterns through time.  These results indicate distinct dietary patterns between the Valley 

and the Bay.   

For the lower Sacramento Valley, the stable isotope data indicate that the amount 

and sources of dietary macronutrients did not significantly change through time, and 

instead suggest a degree of dietary homogeneity extending back more than 4,000 years.  

Although food exploitation patterns may have varied through time, changes in diet 

breadth did not entail the consumption of new food resources that differed in isotopic 

composition.  The collagen-apatite spacing values indicate that C3 plant carbohydrates 

were of greater importance to diets from the Valley compared with the Bay, which is 

further supported by regional differences in dental disease.   



 

 

318 

 

In San Francisco Bay, some support is offered for resource intensification models 

based on the stable isotope data.  In the Early period, groups consumed heavy amounts 

of high trophic level marine resources; however, in the Middle and Late period, diets had 

shifted to include greater amounts of terrestrial C3 resources and low trophic level 

marine fauna, such as shellfish.  Higher collagen-apatite spacing values during these 

periods indicate increased consumption of C3 plant resources through time, as predicted 

by resource intensification models.     

Intensification theory also predicts temporal declines in health status, caused by 

poorer quality diets and increased levels of infection associated with high population 

density and sedentism during the late Holocene.  These predictions are supported by 

comparisons of disease and nutritional stress indicators in the lower Sacramento Valley.  

The temporal increase in tibial periostoses, cribra orbitalia, porotic hyperostosis, dental 

enamel defects, and a reduction in stature support the hypothesis of declining health 

status during the late Holocene.  Overall, these trends are most marked between the 

Early and Middle period, concomitant with archaeological evidence of intensified acorn 

use and higher population density.  In San Francisco Bay, most of the expectations with 

respect to declining foraging efficiency are not supported based on the data at hand.  The 

prevalence of tibial periostoses, cribra orbitalia, and porotic hyperostosis did not 

significantly change through time.  However, the prevalence of enamel hypoplasias 

declined through time in the Bay Area, which suggests that nutritional status during 

childhood may have actually improved.  The results of this study do not support the 

seasonal-stress hypothesis posited for the lower Sacramento Valley (Dickel et al. 1984), 
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but instead provide some support for improvement in childhood health status (based on 

the hypoplasia data alone) in the San Francisco Bay area.  Although few temporal 

differences are found in childhood health indicators in the Bay Area, health status in 

general appears to have been worse in this region compared with the Valley, especially 

with respect to indicators of anemia and tibial infection. 

Sex differences in diet and health were also evaluated to identify evidence of 

sexual division of labor, as well as differences in childhood health status.  Overall, the 

prevalence of dental disease was significantly higher in females than in males, which 

suggests that female consumed greater amounts of cariogenic plant foods.  Isotopic 

evidence provides some support for greater protein consumption in males, especially for 

the San Francisco Bay skeletal series.  Sex differences in tibial periostoses and growth 

stress indicators are less marked.  Although male stature exceeded that of females in 

both regions (for all three time periods), sex differences are greatest for the Middle 

period samples, which implies that growth stunting may have been more pronounced in 

females than in males during this period.  On the other hand, the fact that males had a 

higher prevalence of porotic hyperostosis than females also implies that female 

“buffering” may also have played a role in protecting against anemia during early 

childhood.    

Limitations of the Present Study 

Although the bioarchaeological data from this study provide multiple lines of 

evidence for examining subsistence change in the archaeological record, there are a 

number of limitations inherent to most studies of prehistoric skeletons.  First, skeletal 
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samples are not necessarily representative of the populations from they came, and may 

reflect only certain segments of society that were interred in a given place.  Skeletal 

elements are further impacted by damage induced from the burial environment and from 

the excavation itself.  Indeed, many of the skeletal samples examined in the study were 

excavated at time when archaeological field methods were in their infancy.  In addition 

to these confounding variables, small sample size was also a limitation in the present 

study.  Because microenvironmental differences may have affected diet choice and 

health status, larger sample sizes from different sub-regions of central California would 

allow for a more fine-grained analysis of the bioarchaeological patterns.  Finally, the 

dearth of radiocarbon dates and the degree of uncertainty introduced by relative dating 

measures (e.g., burial seriation) is also a limiting factor in this study.   

Implication for Future Research 

This dissertation demonstrates that the use of stable isotope data in conjunction 

with paleopathological evidence provides a robust approach from which to examine 

subsistence change in the archaeological record.  The stable isotope evidence 

demonstrated distinct dietary patterns between regions within central California.  The 

evidence from growth stress indicators and disease also demonstrated that health patterns 

were not uniform across geographic space, but instead appear to have been influenced 

more by local conditions.   

This research provides an initial “first step” for revitalizing bioarchaeological 

research in central California.  The stable isotope findings indicate a number of 

interesting patterns that merit further exploration.  For example, it would be informative 
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to examine stable isotope values in human skeletons from the northern Sacramento 

Valley, particularly among groups that lived along the Sacramento River and its 

tributaries.  If heavy salmon consumption occurred during the prehistoric period in the 

northern Valley, then it should be evident in the carbon and nitrogen human bone isotope 

signatures.  In San Francisco Bay, it would be important to examine paleodietary change 

in different areas of the estuary to gain a clearer understanding of food consumption 

patterns in various habitats.  This would be of particular interest for evaluating changes 

in diet breadth during the late Holocene in the region.  Because the paleodiets of the 

lower Sacramento Valley and San Francisco Bay do not overlap, it would also be of 

interest to examine where dietary signatures converge between the two regions.  The 

addition of stable isotope analysis to the toolkit of the archaeologist should continue to 

complement other lines of evidence from archaeofaunal and archaeobotanical 

assemblages.  

This research has also shown that changes in health status did not occur 

uniformly across different regions of central California during the mid-to-late Holocene.  

The lack of health changes in San Francisco Bay is interesting in light of the decline in 

health status in the lower Sacramento Valley.  Future bioarchaeological research should 

explore these trends in greater detail, which would shed considerable light on variability 

in diet and health patterns within different ecological niches in central California.   
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Age & Sex Data Forms Site: ___________ Catalogue Number: _____________ 

 Date: __________ Burial Number: ________________ 
 
Sex: PELVIS Left Right Sex: CRANIUM Left Right 

Ventral Arc   Nuchal Crest (1-5)   

Subpubic Concavity (1-3)   Mastoid Process (1-5)   

Ischiopubic Ramus Ridge (1-3)   Supraorbital Margin   

Greater Sciatic Notch (1-5)   Glabella (1-5)   

Preauricular Sulcus (0-4)   Mental Eminence (1-5)   
 
Pelvis: Estimated Sex (0-5)    Cranium: Estimated Sex (0-5) 
Best Sex Estimate: ____________   
 
Pubic Symphysis Age (Suchey-Brooks) 
 Left Phase ________  Age Range:  __________ 
 Right Phase ________  Age Range:  __________ 
 
Suture Closure (Meindle 1985) Blank=unobservable; 0=open; 1=minimal; 2=significant; 3=obliterated 
External Cranial Vault Left Right Palate Left 
1. Midlambdoid   11. Incisive  
2. Lambda   12. Anterior Median Palatine  
3. Obelion   13. Posterior Median Palatine  
4. Anterior Sagittal   14. Transverse Palatine  
5. Bregma   Internal Cranial Vault  
6. Midcoronal   15. Sagittal  
7. Pterion   16. Left Lambdoid  
8. Sphenofrontal   17. Left Coronal  
9. Inferior Sphenotemporal   Vault Total (1-7):  
10. Superior Sphenotemporal   Lat-Ant Total (6-10)  
 
Estimated Age Range: ______________ 
 
Transition Analysis: (Boldsen et al. 2002) 
ECTOCRANIAL SUTURES Left Right AURICULAR SURFACE Left Right 
Coronal pterica   Superior demiface topography   
Sagittal obelica   Inferior demiface topography   
Lambdoidal asterica   Superior surface morphology   
Zygomatico maxillary   Apex surface morphology   
Interpalatine/median palatine   Inferior surface morphology   
Interpalatine/posterior portion   Inferior surface texture   
PUBIC SYMPHYSIS   Superior posterior iliac exostoses   
Symphyseal relief   Inferior posterior iliac exostoses   
Symphyseal texture   Posterior iliac exostoses   
Superior apex      
Ventral symphyseal margin      
Dorsal symphyseal margin      
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CRANIAL PATHOLOGY:     Catalog #: _______________ 
(Cribra orbitalia, porotic hyperostosis)   Burial #: ________________ 
       Site: _________________ 
       Date: _________________ 
 
Porosity: 0 = Absent 

1 = External table porosity only, no thickening of cranial vault 
2 = Porosity, coalescence of foraminae, no thickening of cranial vault 
3 = Porosity, coalescence of foraminae with coral like hyperostosis 
4 = Slight porosity, pinpoint (indeterminate, limited to outer table) 

 
Activity: 0 = Absent 

1 = Active at time of death 
2 = Healed at time of death 
3 = Mixed reaction, some active lesions and signs of healing 
4 = Eroded lesion margins, uncertain activity at time of death 

 
Periostitis: 0 = Absent 

1 = New bone superficial to original cortex, woven only 
2 = New bone, mixed woven and sclerotic 
3 = Sclerotic bone only 

 
Preservation Score: 0= Absent 

1= 100% complete 
2= 75% complete 
3= 50% complete 
4= 25% complete 

 

Bone Porosity? Active? Periostitis? Preservation Score 

Left Orbit        
Right Orbit       
Left Frontal        

Right Frontal       
Left Parietal        
Right Parietal       
Left Occipital        
Right Occipital       

Left Sphenoid        
Right Sphenoid       
Left Temporal        
Right Temporal       
Endocranial Surface        
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Dental Data Collection Protocol 

Dental Inventory 
1 = present, but not in occlusion (not-erupted) 
2 = present, development complete, in occlusion (with wear facets) (>/=2mm root 
      present) 
3 = absent, without associated alveolar bone (unknown when it was lost) 
4= absent, with the alveolus remodelled or remodelling, antemortem tooth loss 
5 = absent, without alveolar remodelling, postmortem loss 
6 = absent, congenital, alveolar bone indicates that tooth never formed 
7 = present, damaged, little info recorded (or less than 2mm below crown) 
8 = present, but not observable (e.g., tooth in crypt, or impacted) 
9 = root is present, but fractured, crown is absent 
 
Supernumerary teeth 
1 = located in tooth row 
2 = within palate or on lingual aspect of mandible 
3 = mesiodens, within the palate but on midline 
4 = external to tooth row 
 
Development: following Moorrees stages (see chart) 
0 = not observable 
1 = initial formation of the cusp 
2 = union of the cusps 
3 = cusp form is complete 
4 = crown 1/2 (half the crown is complete) 
5 = crown 3/4 (three-fourths of crown is complete) 
6 = crown complete 
7 = initiation of the root 
8 = beginning division of the roots (molars) 
9 = root 1/4 of full length formed 
10 = root 1/2  
11 = root 3/4  
12 = root length complete 
13 = apex half closed 
14 = apex closed 
15 = crown complete, root fractured & not observable 
 
Root Form (for deciduous teeth only) 
0 = fractured, not observable 
1 = complete, without resorption 
2 = complete, with a little resorption 
3 = complete, 1/2 resorbed 
4 = almost the entire root has been resorbed 
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Dental Data Collection Protocol 

Caries: score each carie independently 
0 = no caries 
1 = occlusal surface, including the pits, fissures and exposed dentine 
2 = cervical regions, mesial & distal (excluding interproximal points of contact) 
3 = smooth surfaces of buccal & lingual aspects, excluding fissures 
4 = cervical regions, buccal and lingual, excluding interproximal areas 
5 = root caries, below the cervical area 
6 = large caries, have destroyed so much of the crown that point of origin is unclear 
7 = interproximal surfaces at the contact points between teeth 
8 = caries of the protostylid pit or circular caries (of hypoplasia) 
9 = pulp exposed by attrition, not really caries 
 Note: cervical caries that encircle the entire circumference of the root are scored  
 as one carie #2 and one carie #4. 
 
Abscesses: indicate the location of the abscess 
0 = no abscess, alveolus is complete 
1 = buccal or labial channel 
2 = lingual perforation 
3 = evident pocket that extends from the buccal periodontal margin 
4 = evident pocket that extends from the lingual periodontal margin 
5 = periapical abscess 
9 = the alveolus is not observable 
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PERMANENT TEETH: Maxillary     Site: __________  Catalogue Number: _____________ 
        Date: __________ Burial Number:      ______________ 
 
            Tooth Inventory   Development       Attrition                Caries              Abscess    Periodontitis 
                       Smith          Scott  1         2        3             Type Type    Periosteal Reaction? 
Max M3 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
Left M2 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
(L) M1 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
 P4 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 P3 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 C ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 I2 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 I1 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 
Max I1 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
Right I2 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
(R) C ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 P3 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 P4 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 M1 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
 M2 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
 M3 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
 
 
 
  
Dental age estimate: 
By dental development (Ubelaker) _________________________ 
 
By attrition/tooth loss  _________________________ 
 
 
Notes & Comments: 
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PERMANENT TEETH: Mandibular     Site: __________  Catalogue Number: _____________ 
         Date: __________ Burial Number:      ______________ 
 
            Tooth Inventory   Development       Attrition                Caries              Abscess    Periodontitis 
                       Smith          Scott  1         2        3             Type Type    Periosteal Reaction? 
Mand M3 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
Left M2 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
(L) M1 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
 P4 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 P3 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 C ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 I2 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 I1 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 
Mand I1 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
Right I2 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
(R) C ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 P3 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 P4 ______    _______        _____             _____   _____   _____    _____       ____      _________ 
 M1 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
 M2 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
 M3 ______    _______                    _____      _____   _____   _____    _____       ____      _________ 
 
 
 
Dental age estimate: 
By dental development (Ubelaker) _________________________ 
 
By attrition/tooth loss  _________________________ 
 
 
Notes & Comments: 
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Permanent Dentition: Linear enamel hypoplasias              Catalog #: _______________  Site: ____________________ 
                              Burial #: ________________                Date: ___________________ 
 
Defect: 0 = absence; 1 = linear horizontal grooves; 2 = major growth arrest (MGA wide & deep groove = SOD #1); 3 = linear horizontal array of pits; 4 
= nonlinear array of pits 
Maxilla:                 
Tooth L M3 L M2 L M1 L P4 L P3 L C L I2 L I1 R I1 R I2 R C R P3 R P4 R M1 R M2 R M3 
Presence                                 
Wear code                           
Crown height                                 
Defect 1                           
Dist. From CEJ                                 
Defect 2                           
Dist. From CEJ                                 
Defect 3                           
Dist. From CEJ                                 
Defect 4                           
Dist. From CEJ                                 
Mandible:        �Left Right�        
Tooth L M3 L M2 L M1 L P4 L P3 L C L I2 L I1 R I1 R I2 R C R P3 R P4 R M1 R M2 R M3 
Presence                                 
Wear code                           
Crown height                                 
Defect 1                           
Dist. From CEJ                                 
Defect 2                           
Dist. From CEJ                                 
Defect 3                           
Dist. From CEJ                                 
Defect 4                           
Dist. From CEJ                                 
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Deciduous Dentition: Linear enamel hypoplasias             Catalog #: _______________ 
                             Burial #: ________________ 
                  Site: ____________________ 
                  Date: ___________________ 
 
 
Defect: 0= absence; 1= linear horizontal grooves; 2= major growth arrest (MGA wide & deep groove = 
SOD #1); 3= linear horizontal array of pits; 4= nonlinear array of pits 
 
Maxilla:           
Tooth Lm2 Lm1 Lc Li2 Li1 Ri1 Ri2 Rc Rm1 Rm2 
Presence                     
Moorrees code                 
Wear Code                     
Crown height                 
Defect 1                     
Dist. From CEJ                 
Defect 2                     
Dist. From CEJ                 
Defect 3                     
Dist. From CEJ                 
Defect 4                     
Dist. From CEJ                 
Mandible:     �Left  Right�     
Tooth Lm2 Lm1 Lc Li2 Li1 Ri1 Ri2 Rc Rm1 Rm2 
Presence                     
Moorrees code                 
Wear Code                     
Crown height                 
Defect 1                 
Dist. From CEJ                     
Defect 2                 
Dist. From CEJ                     
Defect 3                 
Dist. From CEJ                     
Defect 4                 
Dist. From CEJ                     
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