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ABSTRACT 

 
Hormonal Activation of Genes through Nongenomic Pathways by Estrogen and 

Structurally Diverse Estrogenic Compounds. (May 2005) 

Xiangrong Li, B.S., Wuhan University 

Chair of Advisory Committee: Dr. Stephen H. Safe 

 

 
Lactate dehydrogenase A (LDHA) is hormonally regulated in rodents, and increased 

expression of LDHA is observed during mammary gland tumorigenesis. The 

mechanisms of hormonal regulation of LDHA were investigated in breast cancer cells 

using a series of deletion and mutant reporter constructs derived from the rat LDHA 

gene promoter. Results of transient transfection studies showed that the -92 to -37 

region of the LDHA promoter was important for basal and estrogen-induced 

transactivation, and mutation of the consensus CRE motif (-48/-41) within this region 

resulted in significant loss of basal activity and hormone-responsiveness. Gel mobility 

shift assays using nuclear extracts from MCF-7 cells indicated that CREB family 

proteins interacted with the CRE. Studies with kinase inhibitors showed that estrogen-

induced activation of this CRE was dependent on protein kinase C, and these data 

show that LDHA is induced through a nongenomic (extranuclear) pathway of estrogen 

action. 

 

Estrogen activates several nongenomic pathways in MCF-7 cells, and this study 

investigated the effects of structurally diverse estrogenic compounds on activation of 

mitogen activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), protein 

kinase C (PKC), protein kinase A (PKA), and calcium/calmodulin-dependent protein 

kinase IV (CaMKIV). Activation of kinases was determined by specific substrate 

phosphorylation and transactivation assays that were diagnostic for individual kinases.  

The compounds investigated in this study include E2, diethylstilbestrol (DES), the 

phytoestrogen resveratrol, and the following synthetic xenoestrogens: bisphenol-A 

(BPA), nonylphenol, octylphenol, endosulfan, kepone, 2,2-bis(p-hydroxyphenyl)-1,1,1-

trichloroethane (HPTE), and 2',3',4',5'-tetrachloro-4-biphenylol (HO-PCB-Cl4). With the 
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exception of resveratrol, all the compounds activated PI3K and MAPK whereas 

activation of PKC by the xenoestrogens was structure-dependent and resveratrol, 

kepone and HO-PCB-Cl4 were inactive. Only minimal estrogen/xenoestrogen-

dependent activation of PKA was observed.  CaMKIV was activated only by E2 and 

DES, and HO-PCB-Cl4 was a potent inhibitor of CaMKIV-dependent activity. These 

results demonstrate that activation of nongenomic pathways by estrogenic compounds 

in MCF-7 cells is structure-dependent. 
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CHAPTER I 

INTRODUCTION 

1.1 BREAST CANCER 

 
1.1.1  Incidence and mortality of breast cancer  

Cancer is one of the leading causes of premature death in the United States, second 

only to cardiovascular diseases. The overall cancer death rates have been dropping at 

a rate of 1.1% per year from 1993-2001, but the overall cancer incidence in the United 

States remains stabilized from 1995-2001 (Jemal et al., 2004). For women in the United 

States, one of the most frequent sties for developing cancer is the breast. It is estimated 

that women in the United States have a one-in-eight chance to develop breast cancer in 

their lifetime (Feuer et al., 1993; Wingo et al., 1995). The incidence of female breast 

cancer increased 3.7% annually from 1980-1987 and 0.4% annually from 1987-

2001(Jemal et al., 2004).  

 

In the United States, breast cancer accounts for 17.1% of total cancer deaths in females 

in 1990s (Wingo et al., 2003). Fortunately, the mortality rate of breast cancer has been 

declining (Ghafoor et al., 2003). This decreasing trend may reflect the improvements on 

the diagnosis and therapy for breast cancer treatment (Peto et al., 2000).  

 

Female breast cancer incidence and mortality rates differ greatly across racial and 

ethnic groups. In the United States, from 1996-2000, the breast cancer incidence is 

140.8 in every 100,000 among white women, 127.1 among black women, 97.1 among 

Asian/Pacific islanders, 89.8 among Hispanics and 58.0 among Native Americans. In 

the same period, the mortality rate was 35.9 per 100, 000 women among black women, 

27.2 among white women, 17.9 among Hispanics, 14.9 among Native Americans and 

12.5 among Asian/Pacific Islanders (Weir et al., 2003). 

 

This dissertation follows the style and format of Gene. 
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Worldwide, about 1 million new cases are diagnosed each year and 0.6 million deaths 

annually result from this disease. Incidences are highest in Western nations, such as 

the United Kingdom and the United States (Mettlin, 1999).  

 
1.1.2  Classification of breast cancer  
 
1.1.2.1 Structure of the mammary gland 

The mammary gland is a highly specialized eccrine gland unique in mammals. Its milk-

producing tissues are organized into 15-20 glandular units called lobes, each of which is 

connected to the nipple through ductal structure. Unlike most organs, which reach 

maturity before adulthood, mammary glands achieve final development and 

differentiation only after the first full term pregnancy (Donegan and Spratt, 2002). Before 

puberty, mammary glands largely consist of ductal structures. During puberty, 

mammary glands in females drastically increase the lobe tissue and elongate the ductal 

system. This is the period when mammary glands are most susceptible to carcinogens. 

The growing ducts end in bulbous structures termed terminal end buds (TEBs), which 

further divide in to smaller structures termed alveolar buds. In non-pregnant adult 

women, the breast tissue contains three types of lobules. Lobule type 1(Lob1), or 

terminal ductal lobular unit (TDLU), composes of terminal duct and several ductules 

(alveolar buds) that sprout from it.  Additional sprouting of ductules will transform Lob1 

to Lob2 or even Lob3. In nulliparous women, mammary glands consist of mainly Lob1 

structures, with only a small proportion of Lob2 and minimal proportion of Lob3. In 

parous women, during pregnancy, mammary glands undergo massive ductal 

lengthening and branching, forming large ductules. This process results in the 

progression of Lob1 towards Lob2 and Lob3.  By middle pregnancy, the ductules 

progress to secretory acini and Lob3 develops into well-differentiated Lob4. The 

secretory activities of acini continue to grow in the second half of pregnancy. During 

lactation, no further major morphological changes in mammary glands can be observed, 

but the process of growth and differentiation can still be detected. After lactation, 

mammary glands undergo a series of involutional changes. In this process, the 

secretory acinar structures collapse and Lob4 regresses to Lob3. After menopause, in 

both nulliparous and parous women, the lobular structures degenerate and eventually, 

mammary glands enter Lob1-dominated status (Russo and Russo, 2004).  
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Ductal carcinoma, the most frequent form of breast malignancy, occurs at terminal 

ductal lobular unit (TDLU) or Lob 1. The Lob2 structure has been associated with the 

development of lobular carcinoma in situ (LCIS), a benign breast lesion (Russo et al., 

1992; Donegan and Spratt, 2002). Overall, Lob1 and Lob2 have greater susceptibility to 

carcinogenesis than more differentiated Lob3 (Russo et al., 1988). These findings help 

explain the protective effect of pregnancy against breast cancer because parous 

women have predominantly Lob3 structures in breast tissues (Russo and Russo, 2004). 

 

1.1.2.2 Clinical classification of breast cancer  

Breast cancers can be divided into the following groups: Noninvasive carcinoma (in situ 

carcinoma), microinvasive carcinoma, invasive (nonfiltrating) carcinoma and Paget’s 

disease.  

 

Noninvasive carcinomas are early benign lesions that can be further divided into two 

groups: ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS). DCIS is 

carcinoma of ductal origin. It is confined locally to the ductal system of breast, with the 

basement membrane and the surrounding stroma intact. The standard treatment for 

DCIS is lumpectomy followed by radiation therapy. LCIS is a breast tissue lesion of 

lobular origin. It is considered a risk factor for breast cancer, rather than a precursor of 

invasive breast cancer per se. Women carrying LCIS have a lifetime risk of 25-30% for 

breast cancer. Because of its benign nature, LCIS usually only requires close 

monitoring. For high risk women with LCIS, prophylactic mastectomy and 

chemoprevention can be considered.  

 

Invasive carcinomas can be of ductal or lobular origin. These are cancers that have 

penetrated the surrounding lymphatic and vascular channels. For treatment of invasive 

carcinomas, it is important to determine the status of metastasis. Microinvasive 

carcinoma is a relative new category of breast cancer introduced to describe the 

intermediary state between noninvasive and invasive carcinoma. Paget’s disease is a 

special type of breast cancer which accounts for approximately 2% of total cases. It is 

characterized by the presence of large neoplastic cells in the epidermis of nipple-areola 

complex. Symptoms include erythema, rash, ulceration and discharge around nipples 

(Donegan and Spratt, 2002; Torosian, 2002).  
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1.1.2.3 TNM staging 

AJCC (American Joint Committee on Cancer) adopted a cancer classification system 

termed TNM, which is now used internationally. In TNM system, a stage for tumor is 

assigned according to information about the tumor (T), the regional lymph nodes (N) 

and distant metastasis (M).  

Table1   

TNM Stage based on TNM components. Adapted from AJCC (2002). 

Stage T N M 
Stage 0 Tis N0 M0 
Stage I T1 N0 M0 
Stage IIA T0  

T1  
T2 

N1  
N1  
N0 

M0 
M0 
M0 

Stage IIB T2 
T3 

N1 
N0 

M0 
M0 

Stage IIIA T0 
T1  
T2 
T3  
T3 

N2 
N2 
N2 
N1 
N2 

M0 
M0 
M0 
M0  
M0 

Stage IIIB T4 Any N3 M0 
Stage IIIC Any T N3 M0 
Stage IV Any T Any N M1 

 

In T categories, Tis is assigned only to carcinomas in situ or noninvasive, T0 is 

assigned when no primary tumor can be detected. T1 stage tumor is 2 cm in diameter 

or smaller and a T2 tumor is 2 cm to 5 cm in diameter. A T3 tumor is more than 5 cm in 

diameter and a T4 tumor is of any size with direct extension to the chest wall and skin, 

or an inflammatory tumor.  In N categories, N0 is assigned when no regional lymph 

node metastasis is detectable. N1 is assigned when metastasis occurs in 1 to 3 axillary 

lymph nodes. N2 is assigned when metastasis occurs in 4 to 9 axillary lymph nodes. N3 

is assigned when the tumor spreads to 10 or more axillary lymph nodes. In M 
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categories, M0 is assigned if metastasis has not occurs in distant tissues, M1 is 

assigned if tumor has spread to distant tissues.   

Once the TNM category has been determined, an overall stage number can be 

assigned to a particular case of breast cancer (Table 1). 

The stage I and II are considered the early stage of invasive carcinoma, with a 5-year 

survival rate of more than 75% when properly treated. Survival rates rapidly decrease 

when the cancer reaches a later stage. Stage III cancer has a 5-year survival rate of 

approximate 50%, while the 5-year survival rate for Stage IV cancer is less than 20% 

(AJCC, 1997).  

 

1.1.2.4 ER-positive and ER-negative cells 

Base on the status of estrogen receptor (ER), breast cancers can be divided into ER-

positive and ER-negative groups. Compared to ER-negative tumors, ER positive tumors 

generally are better-differentiated, respond better to antiestrogen treatment and have 

relatively lower recurrence rate and better prognosis for survival (Putti et al., 2004). ER 

is expressed in most normal terminal ductal lobular units, although the percentage of 

epithelial cells that expresses ER at a particular time is less than 10% (Petersen et al., 

1987). The elevation of ER expression in normal epithelial cells sensitizes the cells to 

estrogen and increase the breast cancer risk (Khan et al., 1994).  ER-positive tumors 

account for approximately 60-65% of total primary tumors (Putti et al., 2004).  However, 

during the progression of cancer, some originally ER-positive breast tumors evolve into 

ER-negative tumors (Kuukasjarvi et al., 1996).  

 
The loss of ER from ER-positive tumors is due to a diverse array of mechanisms. Some 

studies have found that breast cancer cells frequently have abnormalities on 

chromosome 6, in which the ERα gene is located. In some breast cancer cells, the ER 

coding sequence has been totally deleted (Devilee et al., 1991; Magdelenat et al., 

1994). DNA methylation may also play a role since methylation of CpG sites on the ER 

promoter can silence ER expression and ER-negative breast cancer cell lines tend to 

have a higher percentage of promoter methylation (Ottaviano et al., 1994).  
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ER-negative cells usually express elevated activities of growth factor receptors.  High 

levels of Erb-B2 and EGFR have been associated with ER-negative breast tumors 

(Allred et al., 1992; Schroeder et al., 1997; Elledge et al., 1998).  Downstream targets of 

growth factor receptors, such as Ras/Raf/MAPK, are also elevated in ER-negative 

tumors. Overexpression of Raf can downregulate ER levels in ER-positive MCF-7 cells 

and transform them into ER-negative cells. The transformed cells lose estrogen-

responsiveness and are no longer inhibited by antiestrogens (El-Ashry et al., 1997). 

Similar results were obtained by overexpression of Erb-B2 (growth factor receptor 

upstream of Raf) or MAPK (kinase downstream of Raf) in MCF-7 cells (Oh et al., 2001). 

Extracellular signal-regulated kinase (ERK7), a member of MAPK, enhances the 

degradation of ERα by targeting DNA-binding domain of ER α and increasing 

ubiquitination (Henrich et al., 2003).  

 

Although ER-negative tumors may be derived from ER-positive tumors, some breast 

tumors are ER-negative from the inception of lesion, suggesting that ER-negative 

tumors may arise independently from ER-positive tumors. In most cases, primary ER-

negative tumors remain ER-negative in recurrent tumors and it is rare that ER-negative 

tumors change to ER-positive status during the progression of cancer (Johnston et al., 

1995; Kuukasjarvi et al., 1996). 

 
1.1.3  Carcinogenesis 

Cancer is the collective name for a family of diseases that differ greatly from one 

another but share a common symptom, i.e., uncontrolled or dysregulated cell 

proliferation. Cancer is a leading cause of death in industrialized countries and in 1995, 

cancer account for approximately 500,000 deaths in United States (Wingo et al., 1995) 

(Feuer et al., 1993). With the life expectancy of general population increasing, more 

people are expected to develop and die from cancer. 

 

The development of a tumor (carcinogenesis) is a very complex multiple-stage process 

and often takes decades to occur. Although there are still many controversies regarding 

the origins and development of cancer, it is generally believed that carcinogenesis can 

be divided into three steps: initiation, promotion and progression (Fig. 1). 
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Fig.1. The steps of carcinogenesis 

 

Initiation is the process by which cells gain abnormalities that are due primarily to DNA 

mutations. There is a strong correlation between carcinogenesis and mutagenesis, 

which lends support to the importance of mutations for cancer development (Ames et 

al., 1973). Virtually all cancer causing agents, such as chemical carcinogens, radiation 

and viruses, possess the ability to induce DNA mutations, either directly or after 

metabolic activation. The exact mechanisms for mutagenesis can be diverse. Ultraviolet 

A (UVA) irradiation produces pyrimidine dimers in epidermal cells (Applegate et al., 

1999). Aflatoxin B1, after enzymatic activation, forms DNA adducts through the N7 

position of guanine (Ross et al., 1992). Benzo[α]pyrene is metabolized into 7β,8α-

dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[α]pyrene (BPDE), which 

subsequently forms adducts with the amino group at the N2 position of guanine (Hsu et 
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al., 2004). In some cases, carcinogens induce different DNA lesions in target genes. 

For example, p53 tumor suppressor gene is frequently mutated in cancer cells and C to 

T and CC to TT mutations are usually found in UV-induced skin cancer (Brash, 1997); 

G to T mutations in p53 are linked with aflatoxin-induced liver cancer (Foster et al., 

1983) and A to T mutations are associated with vinyl chloride-induced liver cancer 

(Hollstein et al., 1994). These preferences in mutations can serve as “signatures” to 

help elucidate the links between certain mutagens and etiology of specific cancers. 

Mutagens can also act synergistically. For instance, both Hepatitis B Virus (HBV) 

infection and aflatoxin are carcinogens in liver. Exposure to both HPV infection and 

aflatoxin increases the risk of liver cancer compared to exposure to the single agents 

(Kew, 2003). 

 

Although in most cases, carcinogenesis requires mutations, there are some exceptions. 

For example, teratocarcinoma, a rare form of cancer, is of epigenetic origin and does 

not involve DNA mutations (Alvarez et al., 1999).  

 

Most cancers appear to arise from only a single founding cell (Fialkow, 1976; Fearon et 

al., 1987). This monoclonal origin of cancer means that a single malignant cell has the 

ability to develop into a lethal tumor (Skipper and Perry, 1970). Usually the founding cell 

arises from the local tissue. Epithelia are the most common tumor formation sites and 

this may reflect the fact that epithelial cells bear the brunt of mutagenic insults. 

However, it is worth mentioning that primary cancer does not always originate in situ. 

For example, contrary to common belief, stomach cancers caused by chronic 

Helicobacter pylori arise from infiltrating bone-marrow derived cells instead of epithelial 

cells in the stomach lining (Houghton et al., 2004).  

 
The initiation step of carcinogenesis is important but not sufficient for carcinogenesis. In 

multicellular organisms, cell proliferation is under strict control and some cells 

temporarily gain the ability of independent proliferation. However, unless this trait is 

inherited and transmitted to progeny cells, these cells will eventually revert to normal 

growth rate or be eliminated. The integrity of a cell is guarded by a multitude of cellular 
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defense pathways, which includes cell growth inhibition and DNA repair, or induction of 

cell death.  

 

Multiple mutations are required for a single founding cell to develop into a full-blown 

cancer. This requirement reflects the multiple restraints against malignant growth. 

Hanahen and Weinberg (2000) proposed six new capacities necessary for malignancy: 

self sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of 

apoptosis, limitless replicative potential, sustained angiogenesis and tissue invasion 

and metastasis.  Exactly how many mutations are required for transformation is still a 

matter of debate. Vogelstein and Kinzler (1993) estimated three to six mutations were 

needed for carcinogenesis. Hahn et al (1999) reported that ectopic expression of three 

genes, namely large-T antigen, oncogenic Ras and telomerase, can transform normal 

human epithelial and fibroblast cells into tumor cells.   

 
Accumulation of additional mutations can be greatly accelerated by agents called 

promoters. The promotion stage of carcinogenesis does not directly involve changes in 

genetic information, but is linked to induction of genes that stimulate cell division and/or 

inhibit cell death. When tumor promoters are applied after initiation, they can greatly 

multiply the number of cells containing the initial mutation (Sisskin et al., 1982). With 

more mutant cells there is a higher probability for further mutations and independence, 

which enhances tumor formation.  

 

Many promoters function by inducing cell proliferation. For example, one commonly 

used promoter is 12-O-tetradecanoylphorbol-13-acetate (TPA), a naturally occurring 

phorbol ester that has been extensively used to promote mouse skin tumors (Takigawa 

et al., 1982). The cancer-promoting ability of TPA is linked to the activation of protein 

kinase C (PKC) and subsequent enhanced cell proliferation (Housey et al., 1988). 

Some promoters act by inducing cytolethality followed by compensatory cell growth 

(Marks et al., 1995). One example of this type of promoter is chloroform. Chloroform 

increases the liver tumor rate in mice model by inducing centrilobular necrosis and 

subsequent regenerative proliferation (Larson et al., 1994). Unlike initiation which is 
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irreversible, promotion is largely reversible after withdrawal of the promoting factor 

(Miller and Miller, 1981) 

 

After persistent tumor promotion, the large number of mutant cells will continue to 

replicate into numerous clones. Eventually, further mutations occur to induce cells into 

an irreversible progression stage (Fig. 1). One prominent trait of this stage is karyotypic 

instability, accompanied by alterations of genetic information on a large scale. 

Gradually, the cellular responses to environmental cues are altered or lost (Noble, 

1977) and at this stage, cells are poised to develop full blown cancers.  

 
Although progression is considered irreversible because of the large scale of genomic 

alterations, cells in any stage of carcinogenesis, under certain conditions, can terminally 

differentiate and stop development towards malignancy (Reiss et al., 1986). Several 

lines of evidence support the notion of “cancer stem cells”. This theory states that in 

some types of cancers only a very small proportion of cells are capable of infinite self-

renewal. Thus, in those tumors, most cells will eventually stop proliferation. The whole 

tumor growth is driven by a very small group of mutated cells resembling normal stem 

cells (Marx, 2003).  

 

Inherited genetic mutations can predispose carriers to certain cancers. For example, a 

single missense mutation (I1307K) of APC (adenomatous polyposis coli) gene among 

Ashkenazi Jews increases the risk of colon cancer almost by two-fold (Stern et al., 

2001). Environmental factors are also important etiological factors for development of 

cancers. The respective contributions of genetic factors and environmental factors can 

be estimated by twin studies. Data from cohorts of 44,788 pairs of Scandinavian twins 

indicates there is an increased risk of developing cancer on the same site in twin 

siblings, especially for cancer of stomach, colorectum, lung, breast and prostate. 

However, the rates of concordance are generally less than 10%, which means that the 

increased risks are very moderate although twins share significant or identical genetic 

background. Thus, studies on twins suggest both genetic and environmental factors 

contribute to carcinogenesis, but environmental factors play a major role (Lichtenstein 

et al., 2000).   
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1.1.4 Breast cancer risk factors 

As with other cancers, both genetic and nongenetic factors play a role in development 

of breast cancer. Breast cancer is the ultimate outcome of multiple genetic and 

environmental/lifestyle risk factors. 

 

1.1.4.1 Age 

The risk of breast cancer increases with age of the individual. The incidence is relatively 

low in young women but begins to rise sharply after age 45 (Hankey et al., 1994). This 

is consistent with the model of cancer development as a multiple-stage process. 

Women who develop breast cancer at a young age (<35) are more likely to carry 

genetic predisposing factors and the resulting cancers are often more aggressive 

(Winchester et al., 1996). 

 

1.1.4.2 Life time estrogen exposure 

Epidemiological studies indicate that cumulative exposure to unopposed estrogen over 

a lifetime is a major risk factor for breast cancer. Two well-recognized breast cancer risk 

factors include early menarche and late menopause, can be at least partly attributed to 

the increased lifetime estrogen exposure. Conversely, ovariectomy, a procedure greatly 

decreases endogenous estrogen levels, decreases breast cancer risk (Kelsey et al., 

1993).  

 

The extremely low incidence of male breast caner also highlights the role of estrogen in 

mammary carcinogenesis (Giordano et al., 2002). Only about 1500 new male breast 

cancer cases are diagnosed in the United States annually (Giordano et al., 2002). Risk 

factors for male breast cancer include elevated estrogen levels and BRCA2 mutations 

(Tischkowitz et al., 2002). Due to its lower incidence, little is known about male breast 

cancer, although some reports suggest that male breast cancer is similar to female 

breast cancer and should be treated using the same guidelines. However, other studies 

indicate that male breast cancer has distinct immunophenotypic differences from female 

breast cancer and different treatments should be explored (Muir et al., 2003). 

 

Exogenous estrogen exposure also contributes to breast cancer risk. Hormone 

replacement therapy (HRT), an estrogen-progestogen regimen for relieving 
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postmenopausal symptoms, increases breast cancer risk (Chen et al., 2002). Recently, 

large clinic studies carried out by Women’s Health Initiative (WHI) not only confirmed 

that the use of HRT is a breast cancer risk factor, but also found that HRT increases the 

risk of heart attack, stroke and blood clots. On the other hand, HRT offers some 

benefits, such as a modest decreased risk of colorectal cancer and hip fracture 

(Enserink, 2002).  Another major source of exogenous estrogen is Combined Oral 

Contraceptive (COC). The use of COC has been associated with a weakly increased 

breast cancer risk. The excess risk is most significant for current or recent users and 

gradually declines once the use has been ceased. After 10-year COC-free period, the 

increased risk can no longer be detected (Collaborative Group on Hormonal Factors in 

Breast Cancer, 1996; Ursin et al., 1998). 

 

1.1.4.2.1 Estrogen promotes proliferation and suppresses apoptosis 

Eukaryotic cell cycle can be divided into S, M, G1 and G2 phases, with S phase for 

DNA synthesis, M phase for mitosis, G1 and G2 phases for the two gaps between S 

phase and M phase. The non-proliferating cells remain in a quiescent, noncylcing stage 

termed G0 and out of cell cycle.  Proliferative stimuli can drive G0 cells to enter G1 

phase and resume cell proliferation. Conversely, growth inhibitory signals cause cells to 

leave cell cycle and enter G0 phase. One important checkpoint for cell cycle is the 

restriction point at late G1, after which a cell will commit itself to finishing the cycle 

(Sherr, 1996). Estrogen is mitogenic in a number of target tissues and regulates many 

components involved in cell cycle. Estrogen treatment stimulates G0 phase cells into 

the cell cycle and increases the rate of progression through G1 phase (Sutherland et 

al., 1983; Leung and Potter, 1987; Nandi et al., 1995). 

 

Retinoblastoma protein (Rb) and E2F play central roles in cell cycle progression. E2F is 

a family of transcription factors that transactivate essential genes for G1/S transition, 

including proteins involved in DNA replication (DNA polymerase α, proliferating cell 

nuclear antigen), nucleotide biosynthesis (thymidylate synthase, ribonucleotide 

reductase), DNA repair (RAD51) and cyclin proteins (cyclin E, cdk2) (Nevins, 2001). In 

quiescent cells, Rb sequesters E2F and represses S phase entry. Under proliferative 

stimuli, Rb is phosphorylated and dissociated from E2F, relieving the inhibitory effect on 

E2F (Hiebert et al., 1992). In primary human fibroblast cells, Rb antisense 
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oligonucleotides knockdown Rb levels and increase cell proliferation (Strauss et al., 

1992). Many oncogenic proteins, such as adenovirus E1A, SV40 tumor antigen and 

human papillomavirus E7, stimulate cell proliferation by sequestrating Rb and blocking 

its inhibition on E2F (Chellappan et al., 1992).  

 

Cyclins, through periodic associations with their cognate cyclin-dependent kinases 

(Cdks), function as molecular clock to keep the pace of the cell cycle (Fig. 2). 

Phosphorylation of Rb can be achieved by cyclin D1/cdk4,6 and cyclin E/cdk2 

complexes (Matsushime et al., 1992); (Sherr, 1994). Cyclin D1 is an important cyclin for 

G1 phase progression and essential for both mammary gland development and 

carcinogenesis (Sherr, 1994). Mammary glands require cyclin D1 for normal 

development of lobular-alveolar structure. This vital role is illustrated by the fact that 

mammary glands of cyclin D1 knockout mice are underdeveloped and hypotrophic 

(Sicinski et al., 1995). Overexpression of cyclin D1 has been associated with mammary 

carcinogenesis (Bartkova et al., 1995). Conversely, disruption of cyclin D1 in mice 

confers resistance to breast cancer-inducing effects of Erb-B2 and Ras, although other 

oncogenic pathways driven by c-Myc and Wnt-1 are still functional (Yu et al., 2001a). 

Cyclin E is another major factor governing G1/S transition (Sherr, 1994). 

Overexpression of cyclin E in breast cancer is associated with a higher proliferation rate 

and poorer prognosis (Nielsen et al., 1998). Dysregulation of cyclin E is also linked with 

chromosome instability in human breast epithelial cells (Spruck et al., 1999). 

 



 14

S

G1

G2

M

Cyclin E

Cdk2

Cdk4,6

Cyclin D

Cyclin A
Cdk2

Restriction point

CyclinA

Cdc2

Cyclin B
Cdc2

G0

 
 

Fig. 2. The mammalian cell cycle. 

 
Cyclin D1 forms complexes with Cdk4 and Cdk6, while cyclin E associates with Cdk2. 

These complexes phosphorylate Rb, causing the activation of E2F and entry into S 

phase. Both cyclin D1 and cyclin E are induced by estrogen. The expression of cyclin 

D1 is stimulated by E2 in breast cancer cells through transcriptional activation (Altucci 

et al., 1996; Castro-Rivera et al., 2001). The cyclin E is less E2-induible; however, 

estrogen increases the cyclin E/Cdk2 complex activity within 6 hours and the activation 

appears to be related to the redistribution of Cdk inhibitor p21 rather than elevated 

cyclin E level (Planas-Silva and Weinberg, 1997).  

 

In breast cancer cells, estrogen upregulates the mitogenic gene c-Myc, which is a proto-

oncogene and important regulator in cell cycle progression (Dubik et al., 1987). c-Myc 

gene is frequently amplified in primary breast tumor (Bieche et al., 1999) and 

overexpression of c-Myc in transgenic mice predisposes them to spontaneous 

mammary adenocarcinomas (Stewart et al., 1984). Conversely, c-Myc 

phosphorothioate antisense oligonucleotides abolish the E2-induced MCF-7 breast 
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cancer cell proliferation, suggesting that c-Myc is essential for the proliferative effect of 

E2 (Watson et al., 1991).  Another important proto-oncogene induced by estrogen is c-

fos (van der Burg et al., 1989; Duan et al., 1999). The expression of c-fos is associated 

with diminished endocrine responsiveness and poor survival rate for breast cancer 

patients (Gee et al., 1995).  

 

Estrogen activates several kinase pathways important for cell proliferation.  For 

example, estrogen-induced ERK mediates the G1/S transition in HepG2 cells by 

enhancing the cyclin D1 transcription (Marino et al., 2002). Furthermore, E2 induces the 

expression of bcl-2, a proto-oncogene that blocks apoptosis (Dong et al., 1999).  

Apoptosis is essential for normal mammary gland development and involution after 

pregnancy and lactation. Suppressing apoptosis can facilitate neoplastic development 

in breast tissues (Schedin et al., 1996).  

 

1.1.4.2.2 Estrogen induces mutagenesis 

Oxidative metabolism of certain estrogens by cytochrome P450 (CYP) can produce 

mutagenic metabolites and free radicals (Liehr, 1990).  Two major endogenous 

estrogens, 17β-estradiol (E2) and estrone can be hydroxylated at multiple positions. 

The C4 and C16α-hydroxylated estrogens can be oxidized into electrophilic 

semiquinones and quinones to form DNA adducts (Osborne et al., 1993; Zhu et al., 

1994; Liehr, 2000). In addition, the redox cycling between semiquinones and quinones 

generates superoxide and hydroxyl radicals, both of which increase oxidative stress and 

DNA damage (Liehr, 1990). Estrogens and their metabolites also induce other genetic 

injuries, including microsatellite instability, chromosome aberration and aneuploidy 

(Hodgson et al., 1998; Tsutsui et al., 2000).  

 

1.1.4.2.3 Estrogen facilitates tumor invasion 

Cadherins are a group of adhesion molecules that are essential for the tight junctions 

between cells. Cadherins associate with cytoplasmic protein catenins and other 

cytoskeletal components to form adhesion systems among cells. An intact adhesion 

system suppresses cancer cell invasion and prevents metastasis. One subclass of 

cadherin, E-cadherin, has been associated with metastasis suppression. Low levels of 
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E-cadherin expression are linked with invasiveness of mammary carcinomas (Oka et 

al., 1993; Siitonen et al., 1996). Estrogen downregulates E-cadherin levels in both 

immortalized breast epithelial cells and breast cancer cells. The inhibition can be 

abolished by antiestrogens and is mediated through recruiting ER and corepressors to 

the E-cadherin promoter (Oesterreich et al., 2003). Furthermore, estrogen induces the 

production of proteolytic enzymes Cathepsin D that destroys extracellular matrix 

(Augereau et al., 1994; Wang et al., 1997). There is a significant correlation between 

high cathepsin D levels in primary breast cancer and metastasis (Rochefort, 1990). 

Estrogen also induces vascular endothelial cell growth factor (VEGF), which facilitates 

angiogenesis, a process essential for solid tumor growth and metastasis (Stoner et al., 

2004).  

 

1.1.4.2.4 Estrogen induces proliferation through paracrine pathways 

In beast cancer cells estrogen induces the production of growth factors such as TGFs 

and IGFs (Manni et al., 1991; Kenney et al., 1993). Secreted growth factors can 

stimulate the growth of neighboring cells. Medium conditioned by estrogen-treated ER-

positive breast cancer cells induce the proliferation of ER-negative cells, suggesting 

estrogen can induce cell proliferation indirectly through a paracrine pathway (Clarke et 

al., 1992). Tissue recombination studies confirm the paracrine actions in a rodent model. 

In one study, breast epithelial cells from ER-knockout mice were combined with breast 

stromal cells from wildtype mice to obtain hybrid tissues. The hybrid tissues were 

cultured in athymic mice under estrogen treatment. Estrogen stimulates epithelial cell 

proliferation in hybrid tissues with wildtype stromal cells, regardless of the ER status of 

epithelium. Conversely, the epithelial tissues from wildtype or ER knockout mice 

combined with ER-knockout stromal cells were unresponsive to estrogen treatment 

(Cunha et al., 1997). Similar observations were also made in the mouse  uterus (Cooke 

et al., 1997).  

 

1.1.4.3 Lifestyle and environmental factors 

Reproductive history plays a role in modifying breast cancer risk. Late first complete 

pregnancy or nulliparity is linked with elevated risk (Trichopoulos et al., 1983). 

Pregnancy before the age of 30 reduces the risk and the protective effect persists into 

old age. However, first pregnancy after the age of 30 is linked to increased risk (Rosner 
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et al., 1994). Lactation decreases the risk of breast cancer in premenopausal women 

and this protective effect increases with the duration of lactation (McTiernan and 

Thomas, 1986; Newcomb et al., 1994). It is suggested that the protective effects of 

pregnancy and lactation may be due to the terminal differentiation of mammary gland 

(Russo et al., 1982).  

 

Great differences in breast cancer risks exist across different geographic regions. The 

risks of breast cancer in Western countries are significantly higher than those in Asia. 

Genetic background can not account for these differences because women who have 

migrated from low risk to high risk areas soon acquired the breast cancer risk of high 

risk areas (Stanford et al., 1995). However, it has been difficult to pinpoint the 

environment and lifestyle factors that are responsible for this increase in breast cancer 

risk.  

 

High doses of radiation, especially received during an early age, increase breast cancer 

risk, as demonstrated by the increased breast cancer risk among atomic bomb 

survivors of Hiroshima and Nagasaki (Tokunaga et al., 1979). Radiation-associated risk 

is confirmed by other epidemiological studies among women treated with ionizing 

radiation for acute postpartum mastitis or non-neoplastic conditions in breast tissues 

(Baral et al., 1977; Shore et al., 1977).  However, modest amounts of radiation, as 

received in routine diagnostic imaging, appears to pose no increased breast cancer risk 

(Boice et al., 1995)  

 

Drinking alcohol is generally associated with increased risk of breast cancer (Willett et 

al., 1987; Longnecker et al., 1995; Feigelson et al., 2001; Singletary and Gapstur, 2001). 

The underlying mechanism is postulated to be that alcohol increases endogenous 

estrogen level by enhancing aromatase, an important enzyme for estrogen production 

(Purohit, 2000).  Other theories suggest that induced expression of insulin-like growth 

factor 1(IGF1) (Yu and Berkel, 1999) or IGF1 receptor (IGF1R)(Stoll, 1999) by alcohol is 

the cause of increased breast cancer risk. The link between smoking and breast cancer 

is more controversial. Some studies reported a positive linkage (Johnson et al., 2000; 

Kropp and Chang-Claude, 2002) while others found protection or no effects (Nordlund 

et al., 1997; Lash and Aschengrau, 2002). These conflicting results may be confounded 
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by the fact that smokers also tend to drink. Another issue that further complicates the 

issue is that smoke contains PAHs (polynuclear aromatic hydrocarbon), which can be 

antiestrogenic through the AhR (aryl hydrocarbon receptor)-dependent pathway (Safe 

et al., 1991). 

 

Animal studies show that high fat/high calorie diet predisposes laboratory animals to 

mammary tumors (Henderson, 1993). However, studies on human subjects are mixed. 

One meta-analysis study shows a positive association between breast cancer risk and 

saturated fat intake (Howe et al., 1990). In contrast, The Nurses’ Health Study found no 

association between fat intake and breast cancer incidence, regardless of the types of 

fat (Holmes et al., 1999). Limited data favor a protective role of physical activity against 

breast cancer (Thune et al., 1997). Strenuous physical activity delays menarche, which 

in turn increases the length of menstrual cycle, decreases the frequency of ovulatory 

cycles and reduces circulating estrogen levels (Bernstein et al., 1987).  

 

1.1.4.4 Xenoestrogen hypothesis 

The estrogen receptor (ER) is promiscuous and binds a broad spectrum of structurally 

diverse compounds that induce estrogenic responses.  Many of these compounds can 

be found in the environment and diet. Thus, there is a possibility that some of these 

compounds can potentially perturb the hormonal homeostasis and lead to hormone-

related cancer, developmental and reproductive problems (Sonnenschein and Soto, 

1998). These compounds are named ‘xenoestrogen” and can be divided into two 

categories: industrial and pharmaceutical estrogens, which are mainly man-made 

chemicals, and phytoestrogens, which are plant products. Industrial and pharmaceutical 

estrogens include polychlorinated biphenyls (PCBs), bisphenol-A (BPA), octylphenol 

(OP), diethylstilbestrol (DES), 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and 

1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE, the stable breakdown product of 

DDT). Examples of phytoestrogens are daidzein, genistein and resveratrol (Fig. 3).  

Recently, it was reported that some heavy metals may also possess estrogenic activity. 

Cadmium was proposed as an ER activator by interacting with the ligand-binding 

domain of ER (Stoica et al., 2000; Johnson et al., 2003). Thus the name 

“metalloestrogen” was given to describe the putative estrogenic heavy metals. This 

finding needs further confirmatory studies.  
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Fig. 3. Structures of some xenoestrogens. 

 
The adverse effects of xenoestrogens have been demonstrated in animals. An 

accidental DDT spill has been associated with reproductive defects and reduced 

birthrates in alligators of Lake Apopka in Florida (Guillette et al., 1994). Bisphenol-A 

(BPA) and octylphenol (OP) cause feminization in male snails under laboratory 

conditions (Oehlmann et al., 2000). Treatment of immature rats with kepone increases 

their uterine weight and stimulates the ER-dependent production of progesterone 

receptor (PR) (Hammond et al., 1979). However, whether these findings have relevance 

on human health is still a hotly debated issue. In some studies, PCBs and DDE has 

been linked with elevated breast cancer risk (Falck et al., 1992; Wolff et al., 1993). In 
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other studies, no links were found between PCBs or DDE and breast cancer (Krieger et 

al., 1994; Hunter et al., 1997; Hunter et al., 1997; Lopez-Cervantes et al., 2004). 

Overall, available evidence does not favor a putative link between PCBs/DDE and 

breast cancer (Safe, 2004).  

 

One pharmaceutical estrogen, DES, has been proven to slightly increase risk of breast 

cancer (Colton et al., 1993).  However, DES is the exception rather than the rule since 

most industrial estrogens are several orders of magnitude weaker than DES in terms of 

estrogenicity. Industrial estrogens constitute only a negligible estrogen intake and the 

major dietary estrogen source comes from phytoestrogens (Safe, 1995).  

 

Phytoestrogens include three main categories; namely isoflavones, coumestans and 

lignans (Peeters et al., 2003). Genistein (4',5,7-trihydroxyisoflavone), an intensively 

studied estrogenic flavone, is very rich in soybeans and is often used as a model for 

phytoestrogens (Dixon and Ferreira, 2002). In some animal models, genistein is 

estrogenic and induces mammary tumor growth (Hsieh et al., 1998; Day et al., 2001; 

Allred et al., 2004). However, in other systems, genistein suppresses mammary cancer 

development (Lamartiniere et al., 1995). Studies on humans also yield mixed results. In 

one study, premenopausal women on a soy-rich diet have elevated proliferation of 

breast lobular epithelia cells (McMichael-Phillips et al., 1998). In contrast, another study 

indicated that consumption of food rich in phytoestrogens confers a protective effect 

against breast cancer, a notion supported by the fact that  breast cancer risk is low in 

East Asian countries, where soybean consumption is high (Ganry, 2002).  

 

Several mechanisms have been proposed to explain this seemingly paradoxical 

phenomenon. One hypothesis suggests that the timing of genistein administration may 

be important for its protective effects. Neonatal genistein treatment induces cell 

differentiation in mammary glands and reduces breast cancer risk while genistein 

treatment in adults increases estrogen burden and elevates breast cancer risk. This 

hypothesis is supported by animal models. In rodents treated with genistein neonatally 

or prepuberally, breast cancer risk decreases and in adult ovariectomized nude mice, 

genistein increases proliferation of breast cancer cells (Barnes, 1997; Lamartiniere et al., 

2002). Besides functioning as a weak estrogen, genistein is also a tyrosine kinase 
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inhibitor (Fan and Rillema, 1992), apoptosis inducer (Brown et al., 1998; Katdare et al., 

2002) and inhibitor of proteasome-mediated protein degradation (Kazi et al., 2003). All 

these functions can modify the impact of genistein on breast cancer risk and complicate 

the issue.  

 

Resveratrol (trans-3,4’,5-trihydroxystilbene) is a phenolic compound found in grapes, 

wine and other food products (Jang et al., 1997). It is a phytoalexin that protects plants 

against fungal infections (Hain et al., 1990).  Resveratrol shares structural similarity with 

ER-agonist DES and has been shown to bind to estrogen receptor and subsequently 

activates estrogen-responsive genes. In MCF-7 breast cancer cells, resveratrol 

treatment induces ERE-luciferase reporter activity.  Resveratrol also stimulates the 

proliferation of T47D breast cancer cells and the proliferation can be abolished by 

cotreatment with antiestrogen ICI 182,780 (Gehm et al., 1997). Although considered a 

xenoestrogen, the actions of resveratrol go far beyond its estrogenic activities. It 

possesses antioxidant and anti-inflammatory activity and protects against 

cardiovascular diseases (El-Mowafy, 2002). The high concentration of resveratrol in red 

wine has been proposed to explain the fact of moderate consumption of read wine 

reduces risk of cardiovascular disease (Frankel et al., 1993). Resveratrol activates 

ERα-dependent PI3K at a concentration of 10 uM but concentrations higher than 50 uM 

inhibits PI3K in MCF-7 cells (Pozo-Guisado et al., 2004).  Activation of MAPK (mitogen-

activated protein kinase) by UV or phorbol ester can be blocked by resveratrol (Yu et 

al., 2001b). Despite its estrogenic activity, resveratrol has not been linked with breast 

cancer, on the contrary it may possess cancer preventive activity (Jang et al., 1997).  

 

In conclusion, there is not sufficient evidence to support the notion that xenoestrogens 

in general pose a risk of breast cancer. However, this conclusion does not exclude the 

possibility that certain individual xenoestrogens may elevate breast cancer risk.  Neither 

does it rule out the possibility that some xenoestrogens cause detrimental effects 

through mechanisms other than the disruption of endocrine systems.  



 22

1.1.4.5 Genetic factors 
Genetic factors also influence breast cancer risk. A family history of breast cancer is a 

strong predictor of breast cancer (Colditz et al., 1993). Many mutations of tumor 

suppression genes predispose their carriers to increased rates of breast cancer. 

Together, genetic factors account for 5-10% of total cases of breast cancer (Colditz et 

al., 1993; Weber and Garber, 1993). 

  

1.1.4.5.1 BRCA1 

BRCA1 was mapped to chromosome 17q21 by genetic linkage analysis and 

subsequently cloned in 1994 (Miki et al., 1994). It is estimated that carrying BRCA1 

mutations confer a 54% chance of developing breast cancer by the age of 60 (Easton et 

al., 1995).  Other estimations on penetrance vary from 56% to 36%, depending on the 

populations (Struewing et al., 1996; Fodor et al., 1998). In addition, BRCA1 mutations 

carry increased risks for ovarian, prostate and colon cancer (Ford et al., 1994). 

 

BRCA1 is a large protein of 1863 amino acids, containing  a BRCT (BRCA1 C-terminus) 

domain in the C-terminus and a RING domain in N-terminus, which are both involved in 

interaction with DNA repair proteins (Powell and Kachnic, 2003). BRCA1 localizes in 

nucleus during S and G2 phases and associates with Rad51, a protein homologous to 

bacterial RecA and vital for homologous recombination and double-strand DNA break 

(DSB) repair. Both BRCA1 and Rad51 are present in the asynapsed (axial) elements of 

human synaptonemal complexes, suggesting a role for BRCA1 in guarding the genome 

integrity (Scully et al., 1997a). Upon DNA damage in S phase, BRCA1 rapidly 

translocates to sites of DNA synthesis and become phosphorylated. Phosphorylation is 

important for BRCA function and can be mediated by several DNA-damage responsive 

kinases, such as ATM, ATR and Chk2 (Cortez et al., 1999; Lee et al., 2000b; Tibbetts et 

al., 2000). Phosphorylated BRCA1 associates with Rad51 and another protein BRAD1 

(BRCA1 associated Ring Domain). The complex is proposed to participate in a 

replication checkpoint response (Scully et al., 1997b).  

 

BRCA1 promotes apoptosis in breast and ovarian cancer cell lines in a mechanism 

dependent on Ras/MEK4/JNK pathway when DNA damage signals exist. Mutations on 
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BRCA1 cause the loss of apoptotic activity and may contribute to tumor development 

(Thangaraju et al., 2000). Another role of BRCA1 is to act as an ubiquitin (Ub) protein 

ligase (E3). Although the exact function of BRCA1- mediated ubiquitination is still 

unknown, it appears to be a significant part of BRCA1 activity. Many cancer-

predisposing mutations disrupt the Ub ligase activity in the BRCA1 RING domain and 

these mutations have been linked with sensitivity to gamma-radiation, suggesting Ub 

ligase activity of BRCA1 is important for DNA repair (Ruffner et al., 2001).  

 

BRCA1 is involved in regulating gene transcription.  Fusion protein of BRCA1 linked to a 

GAL4-DNA binding domain can activate transcription of reporters driven by GAL4 DNA-

binding sites (Haile and Parvin, 1999).  BRCA1 exists in the SWI/SNF-related 

chromatin-remodeling complex (Bochar et al., 2000) and is also associated with the 

RNA polymerase II (RNAPII) complex through RNA helicase A (Anderson et al., 1998). 

Furthermore, BRCA1 complexes with transcription factors such as p53 and c-Myc and 

regulates their transcriptional activities either positively (p53) or negatively(c-Myc) 

(Wang et al., 1998; Zhang et al., 1998). BRCA1 also transactivates Cdk-inhibitor 

p21/WAF1/CIP1, which in turn participates in cell cycle arrest (Somasundaram et al., 

1997).  

 

Overall, BRCA1 plays an important physiological role in cell cycling and in response to 

DNA-damage (Thomas et al., 1997; Scully and Livingston, 2000). Disrupting BRCA1 in 

transgenic mice leads to impaired cell proliferation, non-detectable mesoderm formation 

and eventual embryonic lethality. In knockout embryos, cyclin E is downregulated while 

cdk inhibitor p21 is upregulated, leading to cell growth arrest and eventual premature 

death of embryos (Hakem et al., 1996). 

 

Estrogen induces BRCA1 expression in breast cancer cells (Gudas et al., 1995; 

Spillman and Bowcock, 1996). The BRCA1 protein in turn suppresses ER-mediated 

proliferative activities. Both ligand-dependent and ligand-independent transcription of 

ER can be inhibited by BRCA1 in breast and ovarian cancer cells (Fan et al., 1999; 

Zheng et al., 2001). Recently, it was found that BRCA1 inhibited ERK (extracellular 

response kinase) signals initiated by membrane estrogen receptor and growth factor 

receptor and subsequently halt cell cycle in breast cancer cells. The authors suggested 
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that BRCA1 induces a dual-specificity phosphatase that is capable of deactivating ERK 

(Razandi et al., 2004). These findings may explain why mutations on BRCA1 increase 

cancer risks primarily only on mammary glands and ovaries.  

 

1.1.4.5.2 BRCA2 

Mutations on BRCA1 alone cannot account for all the familial breast cancer cases, 

suggesting other genes may have a role in genetic susceptibility to breast cancer 

(Easton et al., 1993). Shortly after the identification of BRCA1, another gene whose 

mutations also predispose individuals to breast cancer was discovered and named 

BRCA2 (Wooster et al., 1994).   

 

The lifetime breast cancer risk rendered by BRCA2 mutations is similar to BRCA1 

mutations; however, BRCA2 mutation carriers have a later onset of disease (Schubert 

et al., 1997). Mutated BRCA2 is also associated with risk of male breast cancer, 

pancreatic cancer, prostate cancer, and ovarian cancer (Thorlacius et al., 1996; 

Tischkowitz et al., 2002). Mutations on BRCA1 and BRCA2 together are responsible for 

about 5-10% of all breast cancer and 40-60% of hereditary breast cancer (Paakkonen 

et al., 2001). 

 

BRCA2 does not share significant homology with BRCA1; however, it plays a role very 

similar to BRCA1. Cultured cells expressing mutated BRCA2 quickly accumulate 

abnormalities on chromosome structures over rounds of cell division, suggesting that 

BRCA2 is essential for maintaining genome integrity (Patel et al., 1998). BRCA2 

colocalizes and cooperates with Rad51 and BRCA1 in double-strand DNA break repair 

and homologous recombination (Sharan et al., 1997; Chen et al., 1998). Like BRCA1, 

BRCA2 deficiency in mice leads to embryonic lethality. The level of p21/WAF1/CIP1 is 

elevated and cell proliferation is reduced. The development of mesoderm is detectable 

but with reduced size. Overall, the symptoms closely resemble that of BRCA1 knockout 

but with less severity, suggesting that BRCA1 and BRCA2 modulate some of the same 

physiological responses (Hakem et al., 1996) (Suzuki et al., 1997).  
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Despite their functional similarities, BRCA1 and BRCA2 are not equivalent. BRCA1 and 

BRCA2-assocaited breast cancers have different characteristics. BRCA1-assocated 

breast cancers are frequently invasive and estrogen receptor and progesterone 

receptor negative, while BRCA2-assocated breast cancers largely resemble sporadic 

breast cancers (Lakhani et al., 2002). Another difference between BRCA1 and BRCA2 

is that BRCA2 has no ubiquitin protein ligase activity.   

 

1.1.4.5.3 p53 

p53 is an important tumor suppressor gene that mediates cellular stress response 

pathways. Activation of p53 leads to cell growth arrest or apoptosis upon cellular stress 

signals, which can be either DNA damage or oncogenic stress signals (Sherr, 1998; 

Woods and Vousden, 2001).  

 

The p53 protein is a nuclear transcription factor and in the inactivated form, p53 has a 

very quick turnover and is expressed at low levels. Rapid degradation of p53 is 

regulated by Mdm2 and JNK (Haupt et al., 1997; Fuchs et al., 1998b). Mdm2 is a ring-

finger protein that binds to the N-terminus of p53. This interaction not only targets p53 

for ubiquitination and proteasome-dependent degradation (Fuchs et al., 1998a), but 

also inhibits the transcriptional activity of p53 (Oliner et al., 1993).  Furthermore, Mdm2 

mediates the export of p53 from nucleus into cytoplasm (Tao and Levine, 1999). Upon 

stress signals, Mdm2 undergoes downregulation (Zeng et al., 2000), or 

phosphorylation, which reduces Mdm2-p53 interactions (Mayo et al., 1997), or de-

sumoylation, which increases Mdm2 turnover (Buschmann et al., 2000).  All these 

events stabilize p53, which in turn transcriptionally activates Mdm2. This negative 

feedback mechanism ensures that the elevation of p53 is kept in check (Wu et al., 

1993). The central role of Mdm2 in p53 regulation is highlighted by Mdm2 knockout 

mice, whose embryos undergo massive apoptosis at post-implantation stage. This 

embryonic lethality can be rescued if mice are deficient of both p53 and Mdm2 (Jones 

et al., 1995). JNK also play a similar role in regulating p53. In the absence of stress 

signals, JNK associates with p53 and targets p53 for proteasome-dependent 

degradation (Fuchs et al., 1998b). In response to stress signals such as radiation and 

oxidative stress, JNK phosphorylates p53 on Thr-81. Phosphorylated p53 exhibits 
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increased transcriptional activity and elevated resistance to degradation mediated by 

Mdm2 (Fuchs et al., 1998c; Buschmann et al., 2001).  

 

The major role of p53 is to function as a central mediator of stress signals. Under DNA 

damage stress, p53 quickly accumulates due to inhibition of its degradation. At the 

same time, p53 is phosphorylated and activated by several stress-responsive kinases, 

such as ATM, ATR, Chk1/2, p38 and JNK. The phosphorylation serves to stabilize p53 

and enhance its transcriptional activity  (Banin et al., 1998; Waterman et al., 1998; 

Tibbetts et al., 1999; She et al., 2000; Shieh et al., 2000; Buschmann et al., 2001). 

Under oncogenic signals, p53 is mainly activated through p14/ARF, an alternate 

transcriptional product of INK4α/ARF locus (anther product is p15/ARF).  

Overexpression of oncogenic Myc and E1A rapidly induces p19/ARF (the mouse 

homolog of human p14/ARF) in primary mouse embryo fibroblasts (de Stanchina et al., 

1998; Zindy et al., 1998). ARF in turn interacts with Mdm2 and abolishes Mdm2-

mediated p53 suppression (Pomerantz et al., 1998). 

 

Activated p53 interacts with specific DNA motifs as a tetramer and transactivates an 

array of genes that arrest cell cycle progression and induce apoptosis. GADD45 (DNA 

damage-inducible gene 45), a DNA-damage responsive protein that blocks cell cycle, is 

transactivated by p53 (Zhan et al., 1994). p53 also induces Cdk inhibitor 

p21/WAF1/Cip1, which is essential for p53-mediated cell cycle arrest and apoptosis (el-

Deiry et al., 1993; Xiong et al., 1993). Furthermore, some pro-apoptotic genes, such as 

Fas and Bax, are p53-inducible (Miyashita et al., 1994; Owen-Schaub et al., 1995). p53 

may also downregulate proto-oncogene c-fos and Bcl-2 (Ginsberg et al., 1991) (White, 

1996). Moreover, p53 suppresses transcription by associating with TBP (TATA-binding 

protein), a component of the TFIID complex (Seto et al., 1992). Some studies suggest 

that p53 participates in DNA repair, as demonstrsnatred by its interaction with DNA 

recombination component Rad51 and nucleotide excision repair factors XPB and XPD 

(Rad3) (Buchhop et al., 1997). In addition, p53 binds single stranded DNA ends and 

catalyzes DNA annealing, suggesting a direct role in repairing DNA breaks (Bakalkin et 

al., 1994).  
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Mutations on p53 compromise cell cycle arrest and attenuate apoptotic signals upon 

cellular stress, thus greatly increasing risks of cancer. Mice with disrupted p53 develop 

normally but have an elevated frequency of spontaneous tumorigenesis (Donehower et 

al., 1992). In humans, the congenital mutations of p53 are associated with Li-Fraumeni 

syndrome, a condition that renders patients susceptible to a wide range of cancers, 

including brain, breast, bone and lung tumors (Malkin et al., 1990). Conversely, mice 

expressing constitutively activated p53 have lower incidence of cancer, however, their 

aging process is greatly accelerated (Tyner et al., 2002). In contrast, another study 

indicates that in mice with multiple copies of p53 under the control of native promoter, 

tumor resistance is still enhanced as expected but the aging process progresses at 

normal pace (Garcia-Cao et al., 2002).  

 

About 50% of human cancers contain p53 mutations (Donehower, 1996) and 20-40% 

breast cancer patients have p53 mutations (Faille et al., 1994; Greenblatt et al., 1996). 

However, germline p53 mutations are very rare in hereditary breast cancers, therefore, 

mutations on p53 only account for a very small portion of hereditary breast cancers 

(Prosser et al., 1991; Zelada-Hedman et al., 1997).   

 

1.1.4.5.4 ATM  

AT (Ataxia telangiectasia) is a hereditary recessive disorder characterized by cerebellar 

ataxia, telangiectasia, immune defects, chromosomal instability, radiosensitivity and 

cancer susceptibility. The mutation responsible for AT is identified to occur on the ATM 

(ataxia telangiectasia mutated) gene (Savitsky et al., 1995). There is a correlation 

between homozygous ATM mutations and elevated breast cancer risk (Stankovic et al., 

1998). Moreover, the ATM mutation heterozygotes may also be susceptible to breast 

cancer (Swift et al., 1976; Morrell et al., 1990; Athma et al., 1996), although some 

studies argue that heterozygosity of ATM does not confer significantly increased breast 

cancer risk (FitzGerald et al., 1997). It is estimated that 1.4% of the general population 

harbor heterozygous mutation on ATM and this condition contributes to 3.8-6.6% of all 

breast cancers (Easton, 1994; Athma et al., 1996).  

 

ATM protein is a kinase that contains a phosphatidylinositol 3- kinase (PI3K) domain at 

the C-terminus (Savitsky et al., 1995). ATM binds to DNA directly, with a preference for 
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double strand ends. After DNA damage by radiation exposure, ATM is activated to 

phosphorylate p53 on Ser15, resulting in p53 upregulation and a subsequent stress 

response (Banin et al., 1998; Canman et al., 1998; Smith et al., 1999). A proline-rich 

motif within ATM interacts with the SH3 domain in c-Abl, a non-receptor protein tyrosine 

kinase that is important for radiation-induced G1 arrest (Shafman et al., 1997). 

Phosphorylation by ATM is required for BRCA1 to respond to DNA damage, a function 

that may explain the predisposition of ATM mutations to enhance breast cancer (Cortez 

et al., 1999).  

 

1.1.4.5.5 PTEN 

PTEN is a tumor suppressor whose mutation has been linked with increased breast 

cancer risk. PTEN is a phosphatase that dephosphorylates D3 position of PIP3 

(phosphatidylinositol 3,4,5-trisphosphate), a crucial regulator of cell growth and survival. 

By increasing PIP3 turnover, PTEN inhibits the activity of PDK1 and AKT, two pro-

survival protein kinases (Alessi et al., 1997; Vanhaesebroeck and Alessi, 2000). The 

loss of PTEN function is linked with tumorigenesis. Homozygous deletion of PTEN in 

mice results in embryonic lethality. The heterozygous PTEN deletion mice are viable, 

but with a much higher incidence of tumor formation (Di Cristofano et al., 1998).  

 

Germline mutations on PTEN lead to Cowden’s syndrome, which is a rare autosomal 

dominant inherited disease characterized by high incidence of breast, endometrium, 

brain and thyroid cancer (Lynch et al., 1997; Eng, 2003). It is estimated that woman with 

Cowden’s disease have 30-50% increase in the incidence of breast cancer (Starink et 

al., 1986). PTEN Mutations are infrequent in familial breast cancer patients except 

those with Cowden disease (FitzGerald et al., 1998). Since Cowden’s disease is rare, 

PTEN mutations only have a small impact on hereditary breast cancer incidence.  

 

1.1.4.5.6 STK11  

STK11(LKB1) is a tumor suppressor gene whose mutations lead to Peutz-Jeghers 

syndrome, a rare autosomal dominant disorder. Peutz-Jeghers syndrome is 

characterized by multiple gastrointestinal hamartomatous polyps and increased risk of 

cancers in gastrointestinal tract, lung, breast, uterus, ovary, and pancreas (Boardman et 

al., 1998; Giardiello et al., 2000). GI tract cancers are the greatest risk for Peutz-
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Jeghers syndrome patients, however, risk for breast cancer is  also significant, as high 

as 29% by the age of 65 (Lim et al., 2003).  However, because of the extremely low 

prevalence of Peutz-Jeghers syndrome in general population, STK11 mutations 

contribute little to familial breast cancer.   

 

Overexpression of STK11 leads to apoptosis in a p53-dependent manner (Karuman et 

al., 2001). STK11 also mediates cell-cycle arrest by inducing cdk inhibitor 

p21/WAF1/CIP1 in the presence of p53 (Tiainen et al., 2002). Brg1 (brahma-related 

gene-1), an ATPase associated with SWI/SNF chromatin-remodeling complexes, 

interacts with STK11. This interaction appears to increase Brg1 ATPase activity and 

result in suppression of cell proliferation (Marignani et al., 2001).   

 
Although mutations on single high-penetrant genes attract much attention in breast 

cancer research, the majority of breast cancers cannot be accounted for by a single-

gene mutation. BRCA mutations together only contribute to about 5-10% of all breast 

cancers (Paakkonen et al., 2001), with other mutations noted above accounting for a 

lower percentage. It has been hypothesized that breast cancer risk can be modified by 

polymorphism of various genes involved in estrogen production, action and metabolism. 

Although each individual polymorphism alone only slightly modifies the breast cancer 

risk, together, the polymorphisms may have significant cumulative impact. Several 

candidate genes for this model have been proposed, including CYP17 (an enzyme vital 

for steroidogenesis), ESR(ERα), HSD17B1 (17β-hydroxysteroid dehydrogenase I, an 

enzyme converting estrone to more biologically active E2), COMT (catechol-O-

methyltransferase, an enzyme deactivated catechol estrogen by O-methylation) and 

CYP1A1 (an estrogen hydroxylase) (Feigelson et al., 1996; Huang et al., 1999). 

 

1.1.5 Breast cancer treatment 

The principle of breast cancer treatment is to specifically, or at least preferentially 

eliminate breast cancer cells while leaving normal cells relatively intact. Given the 

physiological similarities between cancer cells and normal cells, this has proven to be a 

difficult task. However, significant progress on development of drugs with minimal side-

effects has been made. At present, the predominant treatments for breast cancer are 

surgical removal, chemotherapy, endocrine and radiation therapy.  
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1.1.5.1 Surgery and radiation 

In the early days of breast cancer treatment, radical mastectomy was widely used. This 

procedure involves removing the entire breast, the overlaying skin and pectoral muscles 

and axillary contents. With better understanding of the biology of breast cancer, a more 

moderate approach termed modified radical mastectomy (MRM) has been adopted. 

MRM is a collection of procedures that remove the entire breast and the auxiliary node-

bearing tissues. Survival rates for women who have undergone MRM is comparable 

with that for women who have had a radical mastectomy (Maddox et al., 1983). 

 

For early stages of breast cancer (DCIS or stage I and II invasive breast cancer), BCT 

(breast-conserving therapy) is the treatment of choice. For eligible patients, BCT is as 

effective as radical and modified radical mastectomy (van Dongen et al., 2000). BCT is 

a combination of lumpectomy and radiotherapy. Unlike mastectomy, BCT preserves the 

structure and cosmetic appearance of the breast. The rationale for BCT is that after 

surgical removal of the tumor, radiant therapy can be used to eliminate microscopic 

tumors that cannot be removed by surgery. Radiation therapy usually begins 4 weeks 

after surgery, allowing for adequate healing from the operation. A typical radiation dose 

is 50 Gy in 5 weeks with a boost of 10 Gy into the lumpectomy cavity. Although still 

controversial, the 10-Gy boost is believed to help reduce the risk of early local 

recurrence (Romestaing et al., 1997).  

 

Besides its application in BCT, radiation therapy can also be used in conjunction with 

mastectomy. The NIH/NCI Consensus Conference recommends postmastectomy 

radiation therapy for patients with four or more positive axillary lymph node metastases. 

The benefit of postmastectomy radiation therapy for patients with one to three positive 

lymph nodes remains uncertain (Eifel et al., 2001). Furthermore, radiation therapy is 

also employed to relieve the pain from cancer metastasis. The most frequent sites for 

breast cancer metastasis are bone, lung, liver and brain. Among them, bone is the most 

common site for palliative bone radiation (Arcangeli et al., 1989). In one study, after 15-

Gy radiation was given in 3 fractions over 2-week period, breast cancer patients with 

bone metastasis experience pain relief and mobility improvement (Rasmusson et al., 

1995).  
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1.1.5.2 Chemotherapy 

Chemotherapy has been employed either as an adjuvant therapy for breast cancer after 

surgery or a primary treatment for metastatic breast cancer. Multiple regimens have 

been developed and typically involve multiple cycles of treatment by a combination of 

several cytotoxic chemicals. In adjuvant chemotherapy, the goal is to eliminate 

microscopic tumors and prevent relapse. The commonly used regimens for adjuvant 

chemotherapy include CMF (cyclophosphamide, methotrexate, 5-fluorouracil), AC 

(Doxorubicin, cyclophosphamide), CAF (cyclophosphamide, doxorubicin, 5-fluorouracil), 

AC plus paclitaxel and CEF (cyclophosphamide, epirubicin, 5-flurouracil). For metastatic 

breast cancer, the goal of chemotherapy is to prolong the survival and alleviate the 

symptoms. Major chemicals used for treatment of metastatic breast cancer are taxanes 

and anthracyclines. These agents are used alone or in various combinations (Donegan 

and Spratt, 2002; Torosian, 2002).  

 

Despite its beneficial effects for breast cancer patients, chemotherapy is well-known for 

its serious side effects, which are specific for individual drugs or may be shared by a 

broad spectrum of reagents. Proliferating cells are most vulnerable to chemotherapy 

and typical symptoms include myelosuppression, nausea, vomiting, diarrhea, skin 

rashes or photosensitivity, hair loss, kidney damage and premature menopause 

(Torosian, 2002).   

  

1.1.5.3 Endocrine therapy 

 

1.1.5.3.1 SERMs and antiestrogens 

Since estrogen plays an important role in mammary carcinogenesis, the estrogen 

receptor pathway presents itself as an attractive chemotherapeutic target. Antiestrogens 

can be used to disrupt ER signaling pathway and thereby inhibit breast cancer growth. 

However, estrogen is a multi-function hormone and important not only for the mammary 

gland, but also for numerous other organs, such as ovary, bone, nervous system and 

cardiovascular system. Therefore, any method that disrupts ER action and effective in 

inhibiting breast cancer will also interfere with normal estrogen functions in other parts 

of the body and cause undesirable side effects. Thus the concept of SERM (selective 
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estrogen receptor modulator) was introduced to describe compounds that are 

estrogenic in some tissues and antiestrogenic in others (Miller, 2002). In contrast, some 

compounds, such as ICI 182,780, show almost universal antiestrogenic activity 

regardless of cell-context. These compounds are termed “pure antiestrogens” (Fig. 4).  

 

Tamoxifen (Nolvadex) is a SERM that represents a great advance in breast cancer 

treatment. Tamoxifen is a substituted triphenylethylene derivative widely used for breast 

cancer treatment. In rodent models, tamoxifen can prevent the mammary 

carcinogenesis in DMBA (1,2-dimethylbenzanthracene) induced animals (Jordan, 

1976). In clinical trials compiled by the Early Breast Cancer Trialists' Collaborative 

Group in 1998, tamoxifen adjuvant therapy significantly decreases the mortality of ER-

positive breast cancer patients regardless of age and menopausal status. The 10-year 

death rate was reduced by 14% with one year of adjuvant tamoxifen treatment, by 18% 

with two years and by 28% with five years treatment.  No additional benefits were found 

to prolog tamoxifen treatment beyond five years.  For ER-negative patients, the benefit 

of tamoxifen is only minimal (Early Breast Cancer Trialists' Collaborative Group, 1998). 

ER-status is a strong predictor of tamoxifen response, consistent with the notion that 

tamoxifen inhibits breast cancer primarily by functioning as an antiestrogen in breast 

tissue (MacGregor and Jordan, 1998). However, there is evidence that tamoxifen may 

inhibit breast cancer through other mechanisms. For instance, tamoxifen inhibits tumor 

growth independent of ER by inducing the inhibitory growth factor TGF-β (Brandt et al., 

2003).  
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Fig. 4.  Estrogen (E2), SERMs (tamoxifen and raloxifene) and the pure 

antiestrogen (ICI 182, 780). 

 

Tamoxifen-responsive tumors often develop resistance during the course of treatment 

(Osborne et al., 1980).  Frequently, the development of resistance is paralleled by the 

loss of ER (Vihko et al., 1986). However, loss of ER expression alone cannot account 

for all the resistance. In many cases, breast cancer cells remain ER-positive even after 

becoming tamoxifen resistant (Encarnacion et al., 1993; Johnston et al., 1995). Many 

hypotheses on tamoxifen-resistance have been proposed, including the increased 

metabolic deactivation of tamoxifen (Osborne et al., 1992; Johnston et al., 1993),  

elevated expression of the P-glycoprotein multidrug resistance efflux pump (Chen et al., 

1986) or activation of cellular kinases (Hori et al., 2000; Kurokawa et al., 2000; Schiff et 

al., 2000; Osborne et al., 2003).  

  

Tamoxifen also offers some beneficial estrogenic effects. In postmenopausal breast 

cancer patients, tamoxifen treatment helps maintain bone density, although in 

premenopausal women tamoxifen slightly accelerates bone loss (Love et al., 1992). 
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Postmenopausal women receiving tamoxifen for 2 years have a 12% decrease in total 

cholesterol levels and 20% decrease in low-density lipoprotein (LDL) cholesterol levels 

(Love et al., 1991). Breast cancer patients receiving tamoxifen treatment also 

experience a reduced incidence of fatal myocardial infarction (McDonald et al., 1995). 

 

Tamoxifen also has some undesirable side-effects. Most symptoms are minor, including 

hot flashes, mood disturbances, weight gain and atrophic vaginitis. However, two 

conditions, endometrial carcinoma and thromboembolic phenomena, are severe 

enough to demand cautions (Fisher et al., 1998; Ragaz and Coldman, 1998). 

Tamoxifen induces the growth of endometrial tumor transplanted in athymic mice 

(Gottardis et al., 1988) and the incidence of endometrial cancer was significantly 

elevated in women receiving tamoxifen (Early Breast Cancer Trialists' Collaborative 

Group, 1998; Bernstein et al., 1999). However, the increased risk was only observed in 

postmenopausal women but not premenopausal women (Fisher et al., 1998).  The 

incidence of stroke, pulmonary embolism, and deep-vein thrombosis are elevated with 

tamoxifen treatment (Fisher et al., 1998). Another condition that initially caused 

concerns is that tamoxifen a rodent hepatocarcinogen through an ER-independent 

pathway. Clinical studies found that patients taking tamoxifen have no increased risk of 

liver cancer, suggesting that the hepatic carcinogenic effects in rats are probably not 

relevant for humans (Early Breast Cancer Trialists' Collaborative Group, 1998).  

 

Raloxifene (previously named keoxifene and LY 156758) is a newly developed SERM. 

It binds to ER with a high affinity and inhibits the growth of breast cancer cells in culture 

and reduces the incidence of NMU-induced mammary carcinoma in rodents. However, 

with a short biological half-life, raloxifene is less potent than tamoxifen (Gottardis and 

Jordan, 1987; Poulin et al., 1989). High dose (150 mg per day) raloxifene has a modest 

inhibitory effect against ER-positive breast cancer in postmenopausal women 

(Gradishar et al., 2000). Cross-resistance with tamoxifen is common and tamoxifen-

resistant cancer cells are frequently not responsive to raloxifene (O'Regan et al., 2002).  

Unlike tamoxifen, raloxifene does not induce significant estrogenic activity in uteri, 

although it is not totally antiestrogenic in uterus because raloxifene supports the growth 

of tamoxifen-induced endometrial cancer cells in nude mice (Black et al., 1994; 

O'Regan et al., 2002). The low estrogenicity of raloxifene in the uterus has been 



 35

confirmed in clinical studies, demonstrating that raloxifene does not stimulate 

morphological changes in the endometrium of postmenopausal woman free of 

endometrial abnormities (Boss et al., 1997; Cauley et al., 2001).  

 

The potential applications of raloxifene are primarily not for breast cancer treatment, but 

for prevention of breast cancer, osteoporosis and cardiovascular diseases. Raloxifene 

intake reduces the incidence of breast cancer without increasing risk of endometrial 

cancer, although the risk of thromboembolic disease is elevated (Cauley et al., 2001). A 

large clinical trial STAR (Study of TAM and Raloxifene) is underway to compare the 

effects of 5 years of raloxifene or tamoxifen among postmenopausal women with high 

risk for breast cancer. Raloxifene can prevent bone loss in ovariectomized rats (Black et 

al., 1994). Postmenopausal women receiving raloxifene have had significant 

improvements in maintaining bone mineral density of the lumbar spine, hip, and total 

body (Delmas et al., 1997).  The results from MORE (Multiple Outcomes of Raloxifene 

Evaluation) trials demonstrated that in postmenopausal osteoporotic women, raloxifene 

increases bone mineral density in the spine and femoral neck and reduces risk of 

vertebral fracture (Ettinger et al., 1999).  Raloxifene decreases serum LDL cholesterol 

levels and the MORE trials found that incidence of CHD (coronary heart disease) in 

women with elevated CHD risks can be reduced by 40% with raloxifene (Barrett-Connor 

et al., 2002). A large trial named RUTH (Raloxifene Use for The Heart) is being conduct 

to assess the effect of raloxifene on CHD high risk women (Mosca et al., 2001).  

 

Arzoxifene (LY 353, 381) is a raloxifene analog with a longer biological half life. As a 

chemopreventive agent, arzoxifene is superior to raloxifene in rat mammary 

tumorigenesis model (Suh et al., 2001).  Arzoxifene maintains bone density in 

ovariectomized rats much more potently than raloxifene, without causing uterotropic 

effects (Sato et al., 1998). A phase I clinical  trial has shown the efficacy of arzoxifene 

on advanced breast cancer (Munster et al., 2001). GW 5638 is a high affinity ER-

antagonist in breast tissue but functions as full estrogen in bone and cardiovascular 

system (Willson et al., 1997). Interestingly, GW 5638 has no cross-resistance with 

tamoxifen and has potential to be used for treatment of tamoxifen-resistant tumors 

(Connor et al., 2001).  
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ICI 182,780 (also known as Fulvestrant or Faslodex), a “pure” antiestrogen, have been 

shown effective for treating breast cancer (Howell et al., 1995). A unique feature of this 

pure antiestrogen is that it greatly accelerates degradation of ER (Dauvois et al., 1992; 

DeFriend et al., 1994).  This mechanistic difference may explain why the pure 

antiestrogen is less cross-resistant with tamoxifen compared to other SERMs. For 

example, ICI 182,780 is effective against tamoxifen-resistant MCF-7 breast cancer cells 

(Lee et al., 2000a).  ICI 182, 780 is now being used as a second-line agent after 

tamoxifen failure (Howell et al., 1996).  

 

1.1.5.3.2 Ovarian ablation and aromatase inhibitors 

The estrogen biosynthetic pathway is also an important target for breast cancer therapy. 

In premenopausal women, ovaries are the predominant sites of estrogen production, 

therefore ovarian ablation constitutes a therapy for premenopausal breast cancer 

patients. Both surgical ovariectomy and ovarian radioablation are effective for ER-

positive patients (Torosian, 2002). Recently, medical ovarian ablation using a 

gonadotropin releasing hormone (GnRH) analog has been gaining in popularity. GnRH 

analog inhibits the ovarian production of estrogen and induces a status resembling 

menopause. The main advantage of the GnRH regimen is its reversibility and non-

invasiveness.  In clinical trials, the GnRH analog goserelin (Zoladex) has response 

rates comparable to that of ovariectomy in hormone-receptor positive premenopausal 

patients (Taylor et al., 1998). In the IBCSG (International Breast Cancer Study Group) 

trial, a comparable performance of goserelin has been shown against CMF 

chemotherapy in ER-positive premenopausal patients (Castiglione-Gertsch et al., 

2003).   

  

In postmenopausal women, the major estrogen-producing site is peripheral adipose 

tissue. The enzyme responsible for conversing androgen to estrogen is aromatase 

(CYP19) (Simpson et al., 1993) (Fig. 5) and inhibition of aromatase has been an 

important strategy for breast cancer treatment in postmenopausal women. 
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Fig. 5. The role of aromatase in estrogen synthesis. 

 
Three generations of aromatase inhibitors have been developed, including first-

generation aminoglutethimide, second-generation fadrozole and formestane, third-

generation letrozole (Femara), anastrozole (Arimidex) and exemestane (Aromasin).  

Depending on whether they possess a steroid structure, aromatase inhibitors can be 

divided into two categories:  steroidal and nonsteroidal. Formestane and exemestane 

belong to steroidal category whereas aminoglutethimide, fadrozole, letrozole and 

anastrozole are nonsteroidal aromatase inhibitors (Fig. 6).  

 

Compared to tamoxifen, aromatase inhibitors are linked to lower incidences of 

endometrial cancer and thromboembolic phenomena. The major undesirable side-

effects of aromatase inhibitors are increased osteoporosis and bone fracture (Baum et 

al., 2002; Coombes et al., 2004). Because of their distinct mechanisms compared to 

SERMs, aromatase inhibitors may also overcome resistance to tamoxifen. Aromatase 

inhibitors have been used as second-line therapy after tamoxifen treatment. In the IES 

(Intergroup Exemestane Study) trial, patients who have completed 2-3 years of 

tamoxifen were assigned to continue tamoxifen treatment or switch to exemestane. 

After a median follow-up of 30.6 months, a superior reduction in breast cancer 

occurrence was observed in the exemestane group compared to the tamoxifen group 
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(Coombes et al., 2004). In the ATAC (Arimidex, Tamoxifen, Alone or in Combination) 

trial, postmenopausal patients were put on anastrozole, tamoxifen or combination 

treatment. Among hormone-receptor-positive patients, anastrozole is more effective 

than tamoxifen in prolonging disease-free survival (Baum et al., 2002).   Another clinic 

trial reported that for postmenopausal women who have finished 5 years of tamoxifen 

treatment, letrozole caused 43% reduction in breast cancer events as compared to a 

placebo for a median follow-up of 2.4 years (Goss et al., 2003).  
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Fig. 6. Aromatase inhibitors. 

 
Aromatase inhibitors are generally not used alone for treating premenopausal women 

because they cannot sufficiently downregulate estrogen levels in premenopausal 

women. However, the combination of aromatase inhibitors and GnRH analogs shows 

potential for treating premenopausal breast cancer patients (Dowsett et al., 1992; 

Torosian, 2002). Several large, randomized clinical trials are underway to explore this 

possibility (Winer et al., 2005).  
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1.1.5.3.3 Progesterone 

Progestational agents such as megestrol acetate (Megace) and medroxyprogesterone 

acetate (Provera) have  been used to treat hormone-receptor-positive breast cancer in 

postmenopausal women, with a response rate comparable to that of tamoxifen 

(Morgan, 1985; Ettinger et al., 1986; Sedlacek, 1988; Muss and Cruz, 1992). The major 

side effects are weight gain and thromboembolic phenomena, although sometimes 

weight gain may be beneficial for breast cancer patients who have cancer cachexia 

(Sedlacek, 1988). 

 

1.1.5.3.4. Estrogen therapy 

Although counterintuitive, DES, a potent synthetic estrogen, had been employed to treat 

advanced breast cancer in postmenopausal women before the widespread use of 

tamoxifen. Unlike antiestrogen therapies which were developed under the guidance of 

receptor-ligand theory, estrogen therapy was established on empirical data that mass 

doses of estrogen cause tumor regression in postmenopausal breast cancer patients. 

The mechanism for this estrogen-induced breast tumor regression is not clear. One 

theory suggests that estrogen induces apoptosis through a putative zinc-finger protein 

(Szelei et al., 2000). Other studies propose that high doses of estrogen reduce 

membrane fluidity of cancer cells in an ER-independent manner and this leads to 

cytotoxicity (Clarke et al., 1990).  

 

Daily treatment of 1.5, 15, 150 and 1500 mg of DES caused a 10, 15, 17 and 21% 

regression of breast cancer, respectively (Carter et al., 1977). A randomized trial 

demonstrated that DES and tamoxifen treatment have comparable efficacy but DES is 

associated with more side-effects, including nausea, vomiting, anorexia, fluid retention, 

thromboembolic phenomena, uterine bleeding and hypercalcemic flares (Ingle et al., 

1981; Donegan and Spratt, 2002). Estrogen therapy with DES has been largely 

superseded by tamoxifen treatment. 
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1.1.5.3.5 Trastuzumab 

ErbB2 (HER2/neu) is a growth factor receptor with high homology to the EGFR 

(epidermal growth factor receptor). Low levels of ErbB2 are expressed at low levels in 

epithelial tissues but are often amplified in breast cancer. Overexpression of ErbB2 in 

breast cancer is associated with highly aggressive tumor and poor prognosis (Slamon 

et al., 1987; Press et al., 1990). A humanized monoclonal antibody MAb 4D5 

(trastuzumab or Herceptin) has been developed to block the ErbB2 (Baselga et al., 

1996) and clinical trials demonstrate that trastuzumab is effective against ErbB2-

overexpressing metastatic breast cancer (Cobleigh et al., 1999). The combination of 

trastuzumab with chemotherapy further improved the outcome of patients (Slamon et 

al., 2001). Trastuzumab treatment increases the risk of cardiotoxicity, which is probably 

due to the disruption of ErbB2 signaling that is important for cell survival upon cardiac 

stress (Chien, 1999).  

 

1.2 Estrogen receptor  

1.2.1 The structure of estrogen receptor 

Estrogen exerts its effects through the estrogen receptor (ER), which is a member of 

the nuclear receptor (NR) superfamily of transcription factors (Evans, 1988; 

Mangelsdorf et al., 1995). Two isoforms of ER, ERα and ERβ, have been identified.  

 

The human ERα gene was cloned and sequenced from MCF-7 breast cancer cells. It 

encompasses 140 kb DNA segment, encoding a 66 KDa protein with 595 amino acids 

(Green et al., 1986). Like all NRs, ERα possesses a modular structure that can be 

divided into several independent but interacting structural and functional domains. The 

domains are designated A through F from the N-terminus to C-terminus (Fig. 7). The 

A/B domain contains activation function 1(AF1), which activates gene transcription in a 

ligand-independent manner. The AF1 domain is not only important for constitutive 

activity, but also for mediating the agonistic activity of antiestrogens (Berry et al., 1990). 

The C domain is a highly conserved DNA-binding domain (DBD), which recognizes a 

consensus DNA motif named estrogen response element (ERE). The C domain 

contains two regions termed CI (aa185-215) and CII (aa 216-250), and each contains a 

zinc finger. The zinc fingers are crucial for sequence recognition and DNA-binding and 
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the removal of zinc ion results in abolishment of ER-ERE binding (Green et al., 1988). 

Three residues Glu203, Gly204 and Ala207 form a site called P-box that is involved in 

ERE-recognition (Mader et al., 1989). Five amino acids between Cys221 and Cys227 

are termed the “D box”, which mediates ER dimerization (Mader et al., 1993). The D 

domain serves as a hinge to give ER flexibility for conformational changes. In addition, 

the D domain is an important region for binding nuclear receptor coregualtors (Jackson 

et al., 1997). The E domain contains AF2, which modulates ligand-dependent 

transactivation activity of ERα.  E domain also includes the ligand binding region (LBD) 

(Kumar et al., 1987; Lees et al., 1989; Tora et al., 1989), which has a pocket-like 

structure consisting of 12 α-helices designated helix 1 to helix 12. The conformation of 

the LBD upon ligand binding is important for ER-dependent activity. Estrogen binding is 

accompanied by repositioning of helix12, which forms a hydrophobic groove crucial for 

the interactions with LXXLL motifs of coactivators. The ER antagonist raloxifene binds 

to the LBD in a similar way as E2, however, the antagonist binding causes helix 12 to 

adopt a different conformation and disrupts interaction with nuclear coactivators, 

resulting in the gene silencing (Brzozowski et al., 1997; Heery et al., 1997). The function 

of the F domain is relatively unknown, but has been implicated in distinguishing 

between ER agonists and antagonists (Montano et al., 1995).  

 

Estrogen-binding to the ER is accompanied by ER degradation through the ubiquitin-

proteasome pathway. ERα turnover is important not only for controlling ERα levels, but 

also for maintaining the transcriptional activity of ERα. Inhibition of the ubiquitin-

proteasome pathway causes accumulation of ERα and inhibition of E2-induced 

transactivation (Reid et al., 2003). The impact of ligand-binding on ERα degradation is 

highly ligand-dependent. E2 and the antiestrogen ICI182,780 accelerates the ERα 

turnover while tamoxifen attenuates the degradation (McDougal et al., 2001; Preisler-

Mashek et al., 2002). Increased ER turnover is an important mechanism for the anti-

proliferative activity of ICI182,780 (Fan et al., 2003). The antiestrogenic activity of 

SAhRMs (selective AhR modulators) can be partially accounted for by their ability to 

induce ER degradation through the ubiquitin-proteasome pathway (McDougal et al., 

2001; Wormke et al., 2003).  
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Fig. 7. The domain structure of ERα. 

 

ERα had been considered the only estrogen receptor until ERβ was discovered in 1996 

(Kuiper et al., 1996; Mosselman et al., 1996). ERβ  shares significant homology with 

ERα in the DBD (96%) and LBD (58%), but differs greatly from ERα in the AF1 region 

(Mosselman et al., 1996). E2 binds to ERα and ERβ with comparable affinity (Kuiper et 

al., 1997) and ERβ can dimerize with itself or form heterodimers with ERα (Cowley et 

al., 1997; Pettersson et al., 1997). The order of DNA binding affinity is: ERα 

homodimer≈ERα-ERβ heterodimer>ERβ homodimers (Cowley et al., 1997) 

 

The discovery of ERβ added another level of complexity to the effects of estrogen. ERβ 

mediates the transactivation of ERE-containing promoters in a way similar to ERα 

(Cowley et al., 1997). However, many important ERα-regulated genes, such as 

progesterone receptor (PR), are not regulated by ERβ but primarily by ERα (Fuqua et 

al., 2003). Conversely, ERβ mediates some actions in which ERα has no role. For 

example, E2 initiated rapid CREB phosphorylation in GnRH neurons in ERα knockout 

mice but not in ERβ knockout mice (Abraham et al., 2003). ERβ also exhibits different 

transcriptional activities than ERα depending on ligand structure and cellular context 

(Meyers et al., 2001). Some xenoestrogens, such as 2,3-bis(4-

hydroxyphenyl)propionitrile (DPN), show significantly higher affinity for ERβ than ERα 

(Kuiper et al., 1997). Furthermore, some xenoestrogens, such as HPTE, are ERα 

agonists but ERβ antagonists (Gaido et al., 1999). The tissue distribution of ERβ is 

significantly different from that of ERα. Human ERα is expressed in testis, ovary, 

prostate and skeletal muscle while ERβ expresses in thymus, spleen, ovary and testis 

(Mosselman et al., 1996). This differential expression of ERα and ERβ in various cell 
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types may contribute to the cell-context-dependent responses to estrogen and tissue-

specific responses of various estrogenic compounds.  

 

1.2.2 The physiological functions of estrogen 

Estrogens mediate the development and function of the female reproductive system. 

However, estrogens are by no means only female hormones. In both males and 

females, estrogens play crucial physiological roles, including sex differentiation, bone 

development and maintenance, central nervous system and cardiovascular function 

(Martinez-Vargas et al., 1975; Ansar Ahmed et al., 1989; Maggi et al., 1989; Smith et 

al., 1994; Brosnihan et al., 1997; McEwen and Alves, 1999).  

 

1.2.2.1 Reproductive system and estrogen  

The ER is important for both mammary gland development and tumorigenesis. ERα 

knockout (αERKO) mice are viable but sterile and are estrogen-insensitive in several 

estrogen target organs, including mammary glands, reproductive tracts and gonads. 

The well-recognized estrogenic responses, such as uterine weight increase and vaginal 

cornification, are all absent in αERKO mice (Lubahn et al., 1993; Korach, 1994). In 

αERKO mice, mammary glands undergo normal development in the prenatal period, 

but fail to develop terminal end buds and are severely undertropic during adulthood 

(Lubahn et al., 1993; Korach, 1994). The under-developed mammary glands are 

resistant to DMBA (7,12-dimethylbenz[a]anthracene)-induced carcinogenesis (Day et 

al., 2001). Breast caner can still be induced in αERKO mice by overexpression of Wnt-1 

or ErbB2 oncogenes, but with a much later onset compared to wild type mice, 

suggesting that ERα is facilitative but not indispensable for mammary carcinogenesis 

(Bocchinfuso et al., 1999; Hewitt et al., 2002).  

 

The reproductive tract of female αERKO mice develop normally before puberty, 

however, sexual maturation is severely impaired.  In adult αERKO mice, the uterus is 

hypoplasitc and weighs only half of that of wild-type mice (Lubahn et al., 1993). No 

significant ovarian abnormalities were detected in neonatal αERKO mice, but ovaries in 

the mature αERKO mice have disrupted ovulation and luteinization and develop 

multiple hemorrhagic cysts (Schomberg et al., 1999).  Surprisingly, adult male αERKO 
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mice are also infertile because of impaired spermatogenesis (Eddy et al., 1996). Similar 

results were observed in male mice with disrupted aromatase, an enzyme essential for 

estrogen synthesis (Robertson et al., 1999).  

 

In contrast to the extensive reproductive tract abnormalities in  αERKO mice, ERβ 

knockout (βERKO) mice  are fertile and have no significant abnormalities except 

reduced fertility (Korach, 1994; Krege et al., 1998).  

 

1.2.2.2 Cardiovascular system and estrogen  

Women have significantly lower risk of cardiovascular disease than men. This gender 

difference has been putatively attributed to the beneficial effects of estrogen to 

cardiovascular systems (Nathan and Chaudhuri, 1997). Estrogen decreases low-density 

lipoprotein (LDL) level and increases high-density lipoprotein (HDL) level, thus favorably 

altering the lipoprotein profile (Bush, 1990; Knopp et al., 1996). Estrogen has 

vasodilatory effects and protects against vascular injury (Spyridopoulos et al., 1997; 

Pare et al., 2002).  Recently, estrogen was found to upregulate atheroprotective 

prostacylin PGI2 by activating cyclooxygenase 2 (COX-2), thus protecting against 

atherogenesis (Egan et al., 2004). In epidemiological studies, estrogen has been linked 

with improved cardiovascular functions (PEPI, 1995; Grodstein et al., 1996). Bilateral 

ovariectomy before menopause elevates the risk for coronary heart disease (CHD) and 

the increased risk is eliminated by estrogen-replacement therapy (Colditz et al., 1987). 

Based on these results, it has been theorized that hormone replacement therapy (HRT) 

can be used as a preventive regimen in postmenopausal women against cardiovascular 

diseases. However, a large clinical trial conducted by Women’s Health Initiative has 

reported contradictory results. This study found that women taking HRT have an 

increased risk for heart diseases and stroke (Rossouw et al., 2002).The relationships 

between estrogen and cardiovascular diseases require further assessment. 
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1.2.2.3 Bone and estrogen  

Estrogen plays a key role in bone development and maintenance. Before and during 

puberty, estrogen stimulates bone growth in both males and females and may be the 

major driving force of pubertal growth spurt (Cutler, 1997).  In adulthood, estrogen is 

crucial for maintaining bone destiny. A young adult male with homozygous disrupted 

ERα gene has normal masculinization, but incomplete epiphyseal closure, tall stature 

(204 cm, 80.3 in), and decreased bone mineral density (Sudhir et al., 1997). In 

premenopausal women, estrogen exposure is strongly associated with bone mass 

(Armamento-Villareal et al., 1992). The deficiency of estrogen in postmenopausal 

women leads to an increased risk of osteoporosis and estrogen intake can alleviate 

bone loss (Ettinger et al., 1985). The Women’s Health Initiative also confirmed that HRT 

protect against hip fracture in postmenopausal women (Rossouw et al., 2002). The 

mechanism for the effects of estrogen in bone is still not entirely understood. Estrogen 

suppresses the bone-resorption activity of osteoclasts (Oursler et al., 1991). 

Furthermore, estrogen enhances calcium intake in the intestine (O'Loughlin and Morris, 

1998), while reducing calcium excretion in kidney (Dick et al., 2004). 

 

1.2.2.4 Nervous system and estrogen 

As a sex hormone, estrogen plays important roles in sexual differentiation in the brain 

and reproductive behavior (Breedlove, 1992; McCarthy, 1994; Bakker et al., 2003) 

However, the impact of estrogen on the nervous system go far beyond reproductive 

functions. Sustained estrogen treatment improves learning ability, memory and fine 

motor skill in animal models (O'Neal et al., 1996; Lacreuse and Herndon, 2003). 

Estrogen promotes neural cell survival against a plethora of stresses, including hypoxia, 

excitotoxicity, oxidative stress, glucose deprivation and amyloid-β peptide (Goodman et 

al., 1996; Regan and Guo, 1997; Wang et al., 2001b).  Brain injury can be alleviated by 

estrogen in an ERα-dependent manner (Dubal et al., 2001).  Estrogen stimulates 

neurite outgrowth and increases dendritic spine density (Brinton et al., 1997; Murphy et 

al., 1998). Moreover, estrogen inhibits the central nervous system (CNS) inflammation 

by downregulating inflammatory factors and preventing the recruiting of inflammatory 

cells in the CNS (Ito et al., 2001; Matejuk et al., 2001).  
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It has been hypothesized that estrogen can prevent and alleviate the neurodegenerative 

diseases, such as Alzheimer’s disease and Parkinson’s disease. However, clinic trials 

have reported conflicting results and further studies are required to resolve this issue 

(Henderson, 1997; Miller et al., 2001; Shulman, 2002). Estrogen may have a role in 

protecting against schizophrenia, but again, this hypothesis is controversial (Huber et 

al., 2001) 

 

1.2.3 The genomic actions of estrogen receptor 

 

1.2.3.1 General transcription 

In normal eukaryotic cells, RNA polymerase II (Pol II) is responsible for the transcription 

of protein-encoding genes.  However, numerous other factors are also required for 

transcription and these factors, along with Pol II, are termed “general transcriptional 

machinery”. Core promoters are the minimal DNA sequences that are essential for 

basal transcriptions and they located around the transcription initiation site and 

frequently contain some consensus DNA motifs, such as TATA element, TFIIB-

recognition element (BRE), Initiation element (Inr) and downstream promoter element 

(DPE) (Smale and Kadonaga, 2003). Basal transcriptional activity can be modified by 

the binding of site-specific regulatory proteins to cis-elements proximal to core 

promoter.  

 

Among all the core promoter motifs, the TATA element is the most studied. Thus TATA-

containing promoter serves as a model for transcription initiation. In TATA-containing 

promoters, upon the binding of transcription factors in regulatory regions, TBP (TATA-

binding problem) binds to the TATA element with or without TAFs (TBP-associated 

factors).  TBP and TAFs together form the general transcription factor TFIID. This event 

is followed by the sequential recruitment of TFIIB, Pol II, TFIIF, TFIIE, and TFIIH. The 

resulting complex is usually referred to as the preinitiation complex (PIC), which induces 

DNA melting in the core promoter and starts transcription. TFIIH then phosphorylates 

the C-terminal domain (CTD) of Rpb1, a subunit of Pol II. The phosphorylation of CTD 

leads to destabilization of PIC and progression into elongation phase (Nikolov and 

Burley, 1997) (Cosma, 2002; Hahn, 2004).  
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In eukaryotic cells, DNA is associated with proteins to form the tightly compact structure 

named chromatin. Access to DNA and subsequent transcription are only made possible 

by “relaxation” on this tight structure. Chromatin is organized into repeating structures of 

200 bp of DNA associated with highly conserved proteins named histones, including 

H1, H2A, H2B, H3 and H4. The core of this structure is nucleosome, which consists of  

two superhelical DNA loops wrapped around an octmer composed of two of H2A, H2B, 

H3 and H4 each (Arents et al., 1991). H1 histone and its variant H5 associate with the 

DNA that links the nucleosomes and are important for higher order of packing 

(Carruthers et al., 1998; Widom, 1998). Electron microscopy reveals nucleosome 

structures as 10 nm chromatin fiber with a “beads-on-a-string” appearance. Additional 

folding packs the 10 nm chromatin fibers into 30 nm chromatin fiber. More folding 

processes can condense chromatin into more compact forms, eventually giving rise to 

the highly packed metaphase chromosomes (Albert et al., 1994; Russell, 1998) (Fig. 8).   

 

The relaxation of chromatin structure is essential to grant the access of DNA to Pol II 

and other components of the general transcriptional machinery. Two distinct 

mechanisms have been employed in cells to remodel chromatin: the covalent 

modification of histones and the ATP-dependent histone-DNA dissociation.  

 

Histones can undergo acetylation, methylation, phosphorylation and ubiquitination. 

These post-translational modifications are important in regulation of chromatin structure. 

The best characterized histone modification is acetylation. Histone acetyltransferases 

(HATs) acetylate lysine residues at N-terminus of core histones.  This acetylation 

facilitates binding of transcription factors to their cognate DNA motifs (Vettese-Dadey et 

al., 1996) and disrupts higher-order chromatin structure (Tse et al., 1998). Conversely, 

histone deacetylases (HDACs) reverses the acetylation and repress gene expression 

(Grunstein, 1997; Kouzarides, 2000).  

 

Another important histone modification is methylation. Both lysine and arginine residues 

of histones can be methylated (Zhang and Reinberg, 2001). Histone methylation has 

been linked with both transcriptional activation and repression (Nielsen et al., 2001; 

Wang et al., 2001a). Until recently, no histone demethylase has been identified, leading 

to the speculation that histone methylation may be an irreversible step.  However, a 
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recent study identified a nuclear amine oxidase homolog LSD1 that specifically 

demethylates Lys4 on histone H3 (Shi et al., 2004). Chromatin structure can also been 

affected by other forms of histone modifications, such as phosphorylation (Wei et al., 

1999) and ubiquitination (Wang et al., 2004).  
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Fig. 8. The different stages of chromatin packing. Adapted from Albert et al. (1994). 

 

ATP-dependent chromatin remodeling complexes reposition histones and alter the 

accessibility to DNA utilizing the energy from ATP hydrolysis (Martens and Winston, 

2003). These complexes can be divided into several subfamilies, including SWI 

(switch)/SNF (sucrose nonfermenting), ISWI (imitation switch)(Lemon et al., 2001) and 
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Mi-2/NURD (nucleosome remodeling and deacetylation) (Knoepfler and Eisenman, 

1999). The ATP-dependent chromatin remodeling usually elevates gene expression, 

but Mi-2/NURD actions are frequently associated with gene repression (Solari and 

Ahringer, 2000). The ATP-dependent chromatin remodeling and covalent modification 

of histones are not mutually exclusive. These two distinct mechanisms can cooperate in 

regulating gene expression (Cosma et al., 1999).  

 
1.2.3.2 ER-mediated transcription 

In the classical model of ER action, ER exists in the cell nucleus (King and Greene, 

1984; Press et al., 1989) and forms a complex with heat shock protein 90 (hsp90). Hsp 

90 protects unliganded ER from degradation and keeps ER in an inactive state 

(Chambraud et al., 1990). Most ER ligands, such as E2, are small hydrophobic 

molecules and can enter cells easily and bind ER.  Upon ligand binding, the ER 

undergoes a conformational change, which results in dissociation from hsp90, 

dimerization and binding to regulatory regions of E2-responsive promoters (Tsai and 

O'Malley, 1994). The consensus ERE GGTCAnnnTGACC was identified in the in 

Xenopus vitellogenin A2 gene promoter (Klein-Hitpass et al., 1988). The specificity of 

ER-ERE binding is not strict because ER can also bind nonconsensus EREs or even 

ERE half-sites (Berry et al., 1989; Wang et al., 1997).  ER-ERE binding affinities may be 

influenced by flanking regions and additional regulatory factors, such as heat shock 

protein 70 (Landel et al., 1994; Driscoll et al., 1998). ER-DNA interactions are 

accompanied by subsequent recruitment of coactivators, interaction with the 

preinitiation complex and activation of gene expression (Tsai and O'Malley, 1994) (Fig. 

9). The level of ER-mediated gene expression is determined by many factors, such as 

the estrogenic potency of the ligands, posttranslational modifications especially 

phosphorylation of ER, the availability of accessory proteins and cofactors 

(Katzenellenbogen et al., 1996).  
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Fig. 9. The classic model of ER action 

 

ER interacts with a number of basal transcriptional factors, including TFIIB (Ing et al., 

1992), TAFII30 (Jacq et al., 1994) and TAFII28(May et al., 1996). Furthermore, ER 

recruits numerous coregulatroy proteins which function as bridging modules between 

nuclear receptors and the general transcription machinery. These proteins can be 

divided into two categories, coactivators, whose interactions with ER enhance 

transcription, and corepressors, whose interactions with ER repress transcription.  

 

Numerous coactivators enhance ERα transactivation and these include CBP/p300, 

PCAF (p300/CBP-associated factor), SRC-1/NCoA-1/ERAP-160, SRC-2/GRIP1/NCoA-

2/TIF2, SRC-3/ACTR/RAC3/pCIP/AIB1, RIP-140, SWI/SNF, p68, L7/SPA and E2-AP 

(Smith et al., 1996; Voegel et al., 1996; Klinge, 2000). Some coactivators, including 

SRC-1 and CBP/p300, require E2-bound ERα (Halachmi et al., 1994) while other 

coactivators, such as L7/SPA, are stimulated by tamoxifen-bound ERα (Jackson et al., 

1997). Coactivators, such as CBP/p300, SRC-1 and PCAF, possess intrinsic HAT 

activities. The chromatin-remodeling complex SWI/SNF can also be recruited by E2-
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bound ERα as coactivators (Ichinose et al., 1997). These properties help explain the 

ability of coactivators to enhance transcription (Bannister and Kouzarides, 1996; 

Spencer et al., 1997). Knocking out SRC-1 in mice can hamper the effects of estrogen 

on many target organs, including uterus, mammary gland, prostate and testis (Xu et al., 

1998).   

 

ERα corepressors include SMRT, NCoR, REA, SHP and BRCA1 (Chen and Evans, 

1995; Horlein et al., 1995; Seol et al., 1998; Fan et al., 1999; Montano et al., 1999). 

Corepressors can recruit proteins with histone deacetylases (HDAC) activity and 

suppress gene expression (Alland et al., 1997). Levels of coactivators and corepressors 

differ in different cell types and this differential expression may partially account for the 

tissue and cell-context specific action of certain ER-ligands (Shibata et al., 1997). 
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Fig. 10. Genomic models of ER actions 

 

ER also activates target genes through protein-protein interaction. By association with 

certain transcription factors, such as activator protein 1 (AP1) (Tzukerman et al., 1991; 
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Webb et al., 1995) or Sp1 protein (Krishnan et al., 1994; Porter et al., 1996; Vyhlidal et 

al., 2000), ER can activate genes without directly binding DNA (Fig. 10). 

 
The aforementioned actions of ER are all mediated by the nuclear ER. It has been 

found that a small percentage of ER may also reside in cytoplasm and cell membrane. 

Estrogen can rapidly elicit a broad spectrum of kinase cascades by activating an 

extracellular ER. Some studies also suggest the existence of ER inside the 

mitochondria. Estrogen treatment increases the localization of ER to mitochondria and 

induces the transcription of several mitochondrial genes, such as cytochrome oxidase 

subunits I, II, and III. These responses may be due to the binding of ER to the ERE in 

mitochondrial DNA (mtDNA) (Chen et al., 2003; Chen et al., 2004b).  

 

Although ER is usually associated with activation of gene expression, in some cases 

ER can inhibit gene expression through diverse mechanisms. ER represses interleukin-

6 transcription by interfering with NF-kB binding to the NF-kB site in interleukin 6 

promoter (Ray et al., 1997). The inhibition of quinone reductase (QR) expression by ER 

is mediated by ER binding to electrophile/antioxidant response element (EpRE/ARE) in 

the 5’-flanking region of QR gene. Antiestrogen relieves this inhibition, confirming that 

the repression is ER-mediated (Montano et al., 1998). ER represses prolactin-induced 

β-casein expression by direct interactions with the transcription factor STAT5 (Faulds et 

al., 2001).  ER mediates inhibition of vascular endothelial growth factor (VEGF) 

expression in HEC1A endometrial cancer cells by ERα-Sp3 interactions (Stoner et al., 

2000).  

 

ER frequently modulates proliferative activities, but under certain conditions, ER also 

mediates apoptosis. For example, long-term estrogen-deprived MCF-7 cells undergo 

apoptosis upon treatment with E2 and this apoptosis is mediated by induction of Fas 

which can be inhibited by the antiestrogen ICI 182,780 (Song et al., 2001). In the colon 

cancer cell line COLO205, E2 induces apoptosis through ERβ, which may be the 

underlying mechanism for the epidemiological finding that postmenopausal hormone 

replacement therapy reduces in the risk of developing colon cancer (Qiu et al., 2002).  
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1.2.3.3 Phosphorylation of estrogen receptor 

ER contains multiple phosphorylation sites that significantly modify ER activity. The 

estrogen-bound ERα exhibits increased phosphorylation on Ser104, Ser106 and 

especially on Ser118. Phosphorylation of these sites can enhance ERα transcriptional 

activity, although the kinases responsible have not been conclusively identified (Denton 

et al., 1992; Joel et al., 1995; Rogatsky et al., 1999; Lannigan, 2003). Estrogen binding 

is not essential for phosphorylation of ERα. In response to growth factors, ERα is 

phosphorylated on multiple sites, with Ser118 as a major target. Several kinases 

phosphorylate Ser118 of ERα and these include MAP kinase (Ali et al., 1993; Le Goff et 

al., 1994; Kato et al., 1995), the complex formed by TFIIH and cyclin-dependent kinase 

7 (Chen et al., 2000) and PKC (Joel et al., 1995). Interestingly, not all PKCs have the 

same effects on phosphorylation of ERα. Ser122 in mouse ERα, which is equivalent of 

Ser118 of human ERα, can be phosphorylated by PKCδ, but not PKCα or PKCε 

(Lahooti et al., 1998). Ser118 phosphorylation leads to enhanced ERα transcriptional 

activity independent of ligand-binding (Kato et al., 1995).  

 

Ser167 on ERα is also phosphorylated, leading to increased transcriptional activity of 

ERα and resistance to tamoxifen-induced apoptosis. This phosphorylation can be 

mediated by p90 ribosomal S6 kinase 1 (pp90rsk1, downstream kinase of MAPK) (Joel 

et al., 1998), casein kinase II (Arnold et al., 1995) and AKT (Campbell et al., 2001).  

 

Src family tyrosine kinases p60c-src and p56lck phosphorylate ERα at Tyr537, which is 

important for DNA binding and dimerization (Castoria et al., 1993; Arnold et al., 1995). 

Pak1 (p21-activated kinase-1) phosphorylates Ser305 of ERα and this phosphorylation 

is crucial for transactivation functions of ER by PAK1(Wang et al., 2002). Additional 

phosphorylation can be achieved at Ser104 and Ser106 by CKD2 (Rogatsky et al., 

1999) and at Ser 122 by PKC δ (Lahooti et al., 1998). Not all phosphorylation increase 

ERα-dependent activity. For example, PKA-mediated phosphorylation of Ser236 leads 

to inhibition of ERα dimerization (Chen et al., 1999).  
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Like ERα, ERβ activity can also be modulated through phosphorylation. For example, 

MAPK phosphorylates Ser106 and Ser124 of ERβ and enhances the recruitment of 

steroid receptor coactivator-1 (SRC-1) (Tremblay et al., 1999).  

 

1.2.4. The nongenomic actions of estrogen receptor 

 

1.2.4.1  Mitogen activated protein kinase (MAPK)  

Mitogen activated protein kinases (MAPKs) are important enzymes in signal 

transduction and are highly conserved among eukaryotes. Human MAPKs can 

substitute for their homologs in yeast in some cases (Atienza et al., 2000). In 

mammalian cells, MAPKs include extracellular signal-regulated kinase (ERK), c-Jun-N-

terminal kinase (JNK), p38 kinase (CSBP) and big MAP kinase-1(ERK5/BMK-1). ERK 

primarily responds to mitogenic signals, while JNK and p38 are predominantly activated 

by stress signals and ERK5/BMK1 is activated through both pathways (Kyriakis and 

Avruch, 2001; Pearson et al., 2001).  

 

Although MAPKs are a diverse group of kinases, they share an evolutionarily conserved 

model of activation, which consists of the sequential phosphorylation of three kinases. 

The MAPK kinase kinase (MAPKKK/MEKK) phosphorylates the serine/threonine 

residues on MAPK kinase (MAPKK/MEK). The phosphorylated MAPKK in turn activates 

MAPK through phosphorylation (Chang and Karin, 2001). A hallmark of MAPK is a dual-

phosphorylation motif Thr-X-Tyr in the activation loop and both threonine and tyrosine 

phosphorylation are required for the full activity of MAPK (Kyriakis and Avruch, 2001). 

MAP kinase phosphatase (MKP) can dephosphorylate the threonine/tyrosine and 

thereby attenuate MAPK-dependent responses (Camps et al., 2000).  

 

To date, the most studied MAPKs are ERK1 and ERK2, which serve as the prototype 

for understanding of MAPK signaling. For ERK1/2, the MAPKKKs are Rafs (A-Raf, B-

Raf, and Raf-1) (Howe et al., 1992; Moodie et al., 1993) and Mos (Solhonne et al., 

1999). Typically, membrane-associated receptor tyrosine kinases (RTKs) or G-protein-

coupled receptors (GPCRs) transmit the activating signals to Ras through a guanine 

nucleotide exchange factor (GEF) named SOS (Son of Sevenless). Ras is a small GTP-
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binding protein and in the resting state exists as a GDP-bound form. The association 

with SOS induces Ras to exchange GDP for GTP and the GTP-bound Ras in turn 

activates Rafs (Otsu et al., 1993). Other mechanisms for activation of Raf have also 

been identified. For example, Rap1 can mediate activation of B-Raf in a cAMP-

dependent pathway (York et al., 1998; Rueda et al., 2002). G-protein-activated PKCα 

can directly phosphorylate and activate Raf-1(Kolch et al., 1993). Regardless of the 

activating mechanisms, activated Rafs phosphorylate two MAPKKs (MEK1 and MEK2), 

which in turn phosphorylate two MAPKs (ERK1 and ERK2). Other MAPKs share the 

same three-tiered kinase activation system, although the specific components can be 

variable. The specificities are summarized as Figure 11.  

 

 

Raf, Mos,Tpl-2

MEK1/2

ERK1/2

MEKK1-4, DLK, MLK2, Tpl-2, 
ASK1, TAK1, TAO1/2

MEK3/6 MEK4/7

p38α/β/γ/δ JNK1/2/3

MEK5

BMK1

MAPKKK Unknown

MAPKK

MAPK

mitogens stress/cytokines

 
 

Fig. 11. MAPKs, MAPKKs and MAPKKKs. Adapted from Schaeffer and Weber(1999) 

and Roux and Blenis (2004). 

 
Activated ERK1/2 phosphorylates a wide array of downstream effectors, such as 

transcriptional factors (Elk-1, SP1, STAT3)(Ng and Cantrell, 1997; Yang et al., 1998; Liu 

et al., 2001), transcriptional coregulatory proteins (CBP, SRC-1, DRIP205)  (Liu et al., 

1999; Rowan et al., 2000; Misra et al., 2002) and membrane proteins (CD120a, Syk, 
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calnexin)(Chevet et al., 1999; Xu et al., 1999; Van Linden et al., 2000). The targets of 

ERK1/2 also include several protein kinases that are involved cell cycle and apoptosis, 

such as RSK (p90 ribosomal S6 kinase or MAPK-activated protein kinase-1, MAPKAP-

K1) (Dalby et al., 1998), MSK (mitogen- and stress-activated protein kinase) (Deak et 

al., 1998) and MNK (MAP kinase-interacting kinase) (Waskiewicz et al., 1997). ERK1/2 

are important regulators of cell proliferations and are targets for development of 

anticancer drugs (Kohno and Pouyssegur, 2003). ERK1 knockout mice display delayed 

thymocyte maturation but no other major abnormalities, possibility due to the 

compensatory influence of ERK2 (Pages et al., 1999). In contrast, MEK1 knockout 

embryos failed to undergo normal angiogenesis in the placenta and died at 10.5 days 

after gestation (Giroux et al., 1999). 

 

The p38 kinases have four isoforms (α,β,γ and δ) that respond to an array of stress 

signals, including reactive oxygen species (ROS), hypoxia, cytokines, heat shock, viral 

infection and ultraviolet irradiation (Chen et al., 2001b; Kyriakis and Avruch, 2001). Cell 

cycle progression can be arrested by p38 kinases at G1/S and G2/M checkpoints 

(Molnar et al., 1997; Tarn et al., 2002; Hirose et al., 2003). and p38 mediates apoptosis 

(Aoshiba et al., 1999; Kumar et al., 2004; Van Laethem et al., 2004) and inflammation 

(Dean et al., 1999). p38α knockout mice have defective angiogenesis in the placenta, 

yolk sack and embryo itself and this results in embryonic death (Mudgett et al., 2000).  

 

The JNK family is also known as SAPK (stress-activated protein kinase) due to its 

reference to its response to stress and cytokines. To date, three members of the JNK 

family have been identified, namely JNK1 (SAPKγ), JNK2 (SAPKα) and JNK3 (SAPKβ) 

(Roux and Blenis, 2004). JNKs have been implicated in maintaining the immune system 

and regulating apoptosis. Mice with a single gene disruption on JNK1, JNK2, JNK3 or 

double gene disruptions on JNK1/JNK3 or JNK2/JNK3  all have normal phenotypes, but 

JNK1/JNK2 double knockout died before birth due to  dysregulation in neuronal 

apoptosis (Kuan et al., 1999).  

 

Estrogen activates ERK1/2 in MCF-7 breast cancer cells in an ER-dependent manner 

(Migliaccio et al., 1996). Estrogen-induced ERK activity has also been found in 
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osteoblastic and neuroblastoma cells and primary cortical neurons (Endoh et al., 1997; 

Watters et al., 1997; Singer et al., 1999). Activation of ERks by E2 involves Ras (Lu and 

Giguere, 2001), however, the upstream components of this pathway remain unknown. 

Other MAPKs, such as JNK and p38, can also be activated via ER upon estrogen 

treatment (Lee et al., 2001; Prifti et al., 2001). Activation of p38 by E2 may inhibit cell 

growth by inducing apoptosis in vascular smooth muscle cells (Mori-Abe et al., 2003). 

Tamoxifen can activate JNK in both ER-positive and negative cells and this leads to 

increased apoptosis (Mandlekar et al., 2000). 

 

One model for E2-dependent activation of ERK involves an interaction between ER and 

Src through adaptor proteins. An adaptor protein called modulator of nongenomic 

activity of estrogen receptor (MNAR) has been identified and this protein bridges the 

interaction of ER with Src (Wong et al., 2002). MNAR contained two LXXLL motifs, 

which interact with ER, and one PXXP motif, which interacts with the SH3 domain of 

Src. By bridging Src and ER, MNAR mediates activation of Src by ligand- bound ER 

and subsequent activation of downstream kinase targets, including MAPK (Barletta et 

al., 2004). Other cellular components may also be involved in forming the ER-Src 

complex and these include Shc and cytoskeletal protein p130Cas (Song et al., 2002; 

Cabodi et al., 2004). ER coupling with G-proteins is another possible mechanism for 

activation of MAPK by E2 (Razandi et al., 1999). 

 

Another study proposed an autocrine/paracrine model for MAPK activation by E2. In 

this model, HRG (Heregulin) is synthesized and secreted into extracellular environment 

upon E2 stimulation. HRG binds to ErbB2 (HER-2), a member of epidermal growth 

factor receptor family. ErbB2 in turn activates PKCδ, which activates Ras and initiates 

downstream MAPK signaling (Keshamouni et al., 2002).  

 

A G-protein coupled receptor, GPR30, is capable of mediating estrogen-induced ERK 

activity independent of ER. GPR30 not only modulates activation of ERKs by estrogen, 

but it is also involved in subsequent deactivation of ERKs.  E2-induced ERK activity was 

rapidly reduced to basal levels by Raf-1 inactivation through GPR30-induced cAMP 

signaling (Filardo et al., 2000; Filardo et al., 2002). In ER-negative SKBR3 breast 

cancer cell line, GPR30 responds not only to E2, but also to  antiestrogens (ICI 182780 
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and tamoxifen) and xenoestrogen (o, p’-DDE) (Filardo et al., 2000; Thomas et al., 

2004).  

 

ERβ also activates MAPK. By transfecting ERα or ERβ into ER-negative Rat-2 

fibroblast cells, MAPK can be activated upon E2 or E2-BSA treatment. Interestingly, the 

antiestrogen ICI 182,780 inhibits ERα-initiated MAPK activity but has no effects on 

MAPK activation through ERβ (Wade et al., 2001) 

 

1.2.4.2 Phosphatidylinositol 3- kinase (PI3K) 

Phosphatidylinositol 3- kinase (PI3K) phosphorylates the 3’ hydroxyl group of inositol 

ring on inositol phospholipids, especially phosphatidylinositols (PtdIns) (Fig. 12).  PI3Ks 

include three distinct classes: Class I, II and III.  Class I PI3Ks serve as prototypes for 

PI3Ks and can be further divided into two subclasses, Class IA and IB. Both classes are 

heterodimers consisting of a 110 kDa catalytic subunit and a regulatory subunit.  
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Fig.12. Phosphatidylinositol (PtdIn). 

Class IA PI3Ks are predominantly activated by tyrosine kinases and have three catalytic 

(p110α, p110β and p110δ) (Hiles et al., 1992; Hu et al., 1993; Vanhaesebroeck et al., 

1997) and three regulatory isoforms (p85α, p85β and p55γ) (Otsu et al., 1991; Pons et 

al., 1995). The p85α isoforms have two alternative splicing variants p50α and p55α 

(Inukai et al., 1996; Inukai et al., 1997).  Class IB PI3Ks, which are activated by G-

proteins, have only one catalytic subunit (p110γ) (Stoyanov et al., 1995) and one 

regulatory subunit (p101) (Stephens et al., 1997).  Despite their similarity, the Class I 

PI3Ks are not functionally redundant. For instance, p110α knockout mouse embryos 
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experience a proliferative defect and developmental delay, leading to embryonic 

lethality (Bi et al., 1999). In contrast, p110γ knockout mice are viable but have a 

defective immune response (Hirsch et al., 2000). 

 

Unlike heterodimeric Class I PI3Ks, Class II PI3Ks are single molecules. The most 

noticeable feature of Class II PI3Ks is their C-terminus C2 domain, which can bind 

phospholipids. However, the C2 domain of Class II PI3Ks lacks the Ca2+-binding 

capacity, which is a common function of C2 domains in other proteins (MacDougall et 

al., 1995; Arcaro et al., 1998). The precise functions of Class II PI3Ks are still unclear.  

 

Class III PI3K have only one identified catalytic subunit in mammals and share 

homology with the yeast kinase Vps34p, which is involved in vesicular protein sorting. 

The main function of Class III PI3K is to modulate intracellular trafficking (Volinia et al., 

1995).  

 

The major cellular substrate of Class I PI3K is PtdIns (4,5)P2 (PIP2), which is a 

phosphatidylinositol (PtdIn) phosphorylated at 4D and 5D positions of the inositol ring. 

PI3K phosphorylates PIP2 at the 3D position of the inositol ring, converting it into 

PtdIns(3,4,5)P3 (PIP3).  PIP3 locates on the cytosolic side of the cell membrane and 

recruits AKT (also called PKB, protein kinase B) from the cytosol to the plasma 

membrane by interacting with the Pleckstrin homology (PH) domain of AKT (Salim et 

al., 1996). The translocation of AKT brings it into close proximity to another membrane-

bound kinase named 3-phosphoinostitide-dependent protein kinase -1 (PDK1), which 

activates AKT by phosphorylation of Thr308 (Alessi et al., 1997; Vanhaesebroeck and 

Alessi, 2000).  There is evidence that another kinase, PDK2, may further phosphorylate 

AKT at Ser473 and enhance its activity, however, the exact nature of PDK2 remains 

unclear (Toker and Newton, 2000; Hresko et al., 2003).  

 

AKT is a cellular homolog of akt retrovirus oncogene (Bellacosa et al., 1991). In 

vertebrates, there are three AKT family members: AKT1, AKT2 and AKT3. These there 

isoforms share similar structures and functions but are regulated differently (Okano et 

al., 2000). Knockout models suggest that AKT isoforms are not functionally equivalent. 

Akt1 knockout mice have smaller size, impaired growth and increased apoptosis upon 



 60

chemical insults (Chen et al., 2001a). In contrast, AKT2 knockout mice develop insulin 

resistance (Cho et al., 2001) 

 

AKT is an important effector of PI3K and mediates many important functions of PI3K. 

Many downstream targets of AKT regulate cell survival. AKT phosphorylates BAD and 

prevents its inhibitory association with anti-apoptotic factor BCL-XL (Datta et al., 1997). 

AKT also inhibits the apoptotic transcription factor FKHR (Brunet et al., 1999) and the 

apoptotic protease caspase-9 (Cardone et al., 1998). Survival factor NFκB is activated 

by AKT through activating IκB Kinase (IKK), which induces the degradation of NFκB 

inhibitor IκB (Romashkova and Makarov, 1999). AKT negatively regulates the tumor 

suppressor p53 by activating MDM2 and enhancing p53 degradation (Mayo and 

Donner, 2001). Furthermore, AKT inhibits glycogen synthase kinase-3 (GSK-3), an 

apoptosis-inducing kinase (Cross et al., 1995) and activates the anti-apoptotic p70S6 

kinase (RSK) (Burgering and Coffer, 1995). Another important target activated by AKT 

is mTOR (the mammalian target of rapamycin), which is a kinase that integrates the 

signals of nutrient availability and enhances protein synthesis upon activation (Nave et 

al., 1999) (Fig. 13).   
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Fig. 13.  Roles of PI3K in cellular signaling. Adapted from Vivanco and Sawyers (2002). 
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Although AKT is a major downstream target of PI3K, it can not account for all the 

actions of PI3K. AKT and PI3K knockout mice exhibit significantly different phenotypes 

as indicated above, supporting the notion that other factors also play roles in mediating 

PI3K function (Bi et al., 1999; Hirsch et al., 2000; Chen et al., 2001a; Cho et al., 2001). 

This is corroborated by the finding that PI3K can regulate the Ras/Raf/ERK pathway as 

a serine-threonine protein kinase, in contrast to its usual role as a lipid kinase (Bondeva 

et al., 1998).  Protein kinase C (PKC) can be activated by the PI3K product PIP3 or the 

PI3K downstream kinase PDK1 (Le Good et al., 1998; Wymann and Pirola, 1998). 

Furthermore, PI3K can phosphorylate insulin receptor substrate-1(IRS-1) and activate 

insulin pathways (Lam et al., 1994).  

 

The activity of PI3K is modulated by a series of phosphatases that dephosphorylate 

PIP3 and these include the phosphatase and tensin homolog (PTEN), which is mutated 

in multiple advanced cancers and also called MMAC1 or TGFβ-regulated and epithelial 

cell-enriched phosphatase (TEP1).  The central role of PTEN is to dephosphorylate the 

3D position of inositol ring in PIP3 to give PIP2 and thereby functioning as a negative 

regulator of PI3K activity. Overexpression of PTEN results in significantly decreased 

levels of PIP3 and decreased AKT activity (Inukai et al., 1997; Maehama and Dixon, 

1998; Cantley and Neel, 1999).  In fact, PTEN was originally identified as a tumor 

suppression gene even before its function as phosphatase was determined. The tumor 

suppressing function of PTEN is attributed to its phosphatase activity (Myers et al., 

1998) and PIP3 appears to be the most important target of PTEN in terms of inhibiting 

mitogenesis (Tamura et al., 1998). Another phosphatase named Src-homology-2-

containing inositol 5’-phosphatase (SHIP) can also dephosphorylate PIP3, however, the 

dephosphorylation occurs on the 5D position of inositol ring instead of the 3D position 

(Ware et al., 1996).  

 

To date, the most studied model for PI3K activation is the Class IA PI3K, which consists 

of regulatory a subunit p110 and a catalytic subunit p85. The p85 subunit contains 

several important domains, including one Src-Homology-3 domain (SH3), two proline 

rich domains (PRDs), two Src-Homology-2 domains (SH2s) and one breakpoint cluster 
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region homology domain (BCR). The SH2 domain functions as a docking point that 

binds phosphorylated tyrosine residues in both receptor tyrosine kinases and adaptor 

proteins. In the inactive state, p85 constitutively binds to p110 via a region named iSH2 

domain (inter SH2) because it is located between the two SH2 domains.  In this 

manner, p85 recruits and anchors p110 to cell membrane. This association inhibits the 

catalytic activity of p110 until the SH2 domains of p85 interact with phosphorylated 

tyrosine residues and release p110 (Yu et al., 1998). The PRD motif has an affinity for 

SH3 domains and can mediate the association of p85 with several Src family kinases, 

such as src, lck, lyn and fyn (Liu et al., 1993; Vogel and Fujita, 1993; Kapeller et al., 

1994; Pleiman et al., 1994). The association between p85 and Src family kinases is also 

an important pathway of PI3K activation (Pleiman et al., 1994). p85 also contains a 

SH3, which can interact with the PRD domain prevent activation of PI3K without proper 

stimulation (Kapeller et al., 1994). Another pathway for PI3K activation is by activating 

p110 catalytic subunit through Ras binding (Rodriguez-Viciana et al., 1994). The 

activated p110 in turn phosphorylates p85 and inhibits the PI3K activity. This negative 

feedback helps maintaining basal PI3K activity (Dhand et al., 1994). The p85 subunit 

binds to small G-proteins Rac1 and Cdc42 though the BCR domain (also named rho-

GAP homology region) and thereby functions a direct activator of G-proteins (Zheng et 

al., 1994; Tolias et al., 1995)..  

 

In contrast to Class IA PI3Ks that are usually activated by tyrosine kinase receptors, 

Class IB PI3K is generally activated through stimulation of its catalytic subunit p110γ by 

the β and γ subunits of heterotrimeric G-proteins (Stoyanov et al., 1995). It has also 

been suggested that Class IA PI3Ks can also be activated by β and γ subunits and this 

requires further investigation (Kurosu et al., 1997).  

 

PI3K is a downstream target of estrogen in MCF-7 breast cancer cells and cultured 

hippocampal neurons (Yokomaku et al., 2003). Moreover, in vascular endothelial cells, 

E2 induces eNOS in an ERα-dependent manner via the AKT pathway (Hisamoto et al., 

2001; Simoncini et al., 2002). Activation of PI3K by estrogen may be mediated by the 

association between ERα and p85, the PI3K regulatory subunit. The ligand-binding 

domain of estrogen-bound ERα binds to p85, relieving the inhibitory effects of p85 and 
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activating p110.  Src may also be a component of this ERα-p85 complex by functioning 

as an enhancer of ERα-p85 action (Castoria et al., 2001; Sun et al., 2001).   

 

There is evidence that PI3K activation by estrogen can also occur in the absence of ER. 

For example, estrogen activates PI3K in ER-negative MDA-MB-435 and MDA-MB-231 

breast cancer cell lines and this activation can be inhibited by Src kinase inhibitor PP2 

but not by antiestrogen ICI 182,780, suggesting that ER-independent pathway exists for 

PI3K activation (Tsai et al., 2001) 

 

1.2.4.3 Protein Kinase A (PKA) 

PKA (protein kinase A) is an important component in cell signaling and involved in 

apoptosis, differentiation, neuronal transmission and cell proliferation (Ghirardi et al., 

1992; Indolfi et al., 1997; Yao et al., 1998; Saavedra et al., 2002). Activation of PKA is 

mediated through the second messenger cyclic adenosine 3’,5’-monophosphate (cAMP) 

upon environmental stimuli. In the absence of cAMP, PKA is a tetramer consisting of 

two catalytic (C) subunits and two regulatory (R) subunits. There are three isoforms of C 

subunits (Cα, Cβ and Cγ) and four isoforms of R subunits (RIα, RIβ, RIIα and RIIβ).  

The R subunits repress C subunits and inhibit kinase activity. Stimulating signals 

activate membrane-associated G protein coupled receptor (GPCR), which in turn 

activates adenylate cyclase. Second messenger cAMP is produced by adenylate 

cyclase from ATP and binds to R subunits, causing their dissociation from C subunits to 

give the active kinase (Chin et al., 2002) (Fig. 14). Phosphodiesterases (PDEs) can 

degrade cAMP and function as negative regulators of PKA (Conti et al., 1995). The 

downstream targets of C subunits include CREB family transcription factors, NFkB and 

nuclear receptors (Daniel et al., 1998). At least two mechanisms contribute to the 

specificity of PKA pathways. One is the differential C and R isoform distribution in 

various cell types (Skalhegg and Tasken, 2000) and the other is the association of PKA 

with a scaffold protein called A kinase anchoring protein (AKAP)(Coghlan et al., 1995).  
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Fig. 14. Mechanism of PKA activation. 

 

PKA is the major mediator of cAMP signals; however, not all cAMP actions are PKA-

dependent. A guanine exchanging factor Epac can directly associate with cAMP and 

activate small G-protein Rap1 independent of PKA (de Rooij et al., 1998). Conversely, 

not all the effects of PKA involve cAMP.  The C subunit of PKA can associate with 

NFkB-IkB complex and regulate NFkB activity independent of cAMP. In response to 

cytokines or inflammatory signals, IkB undergoes degradation and activates the C 

subunit to phosphorylate p65 subunit of NFkB (Zhong et al., 1997). Although 

predominantly an intracellular kinase, PKA can exist outside of cells either as proteins 

anchored to outer cell membranes or as a soluble form (Schlaeger and Kohler, 1976; 

Korc-Grodzicki et al., 1988; Hatmi et al., 1996). Interestingly, cancer cells have elevated 

secretion of PKA C subunits and extracellular PKA may serve as a biomarker for 

carcinogenesis (Cho et al., 2000a; Cho et al., 2000b).  
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PKA RIα-deficient mice demonstrate severe developmental defects and embryonic 

lethality (Amieux et al., 2002). In contrast, PKA RIIβ knockout mice are viable and have 

markedly diminished white adipose tissue and develop resistance against diet-induced 

obesity, fatty livers and diabetes (Cummings et al., 1996; Schreyer et al., 2001). 

Furthermore, PKA RIIβ knockout shows high voluntary ethanol consumption and low 

sensitivity to ethanol-induced sedation (Thiele et al., 2000). These differences in 

knockout phenotypes highlight the fact that the R isoforms are not functionally 

exchangeable.  

 

PKA plays a regulatory role in mammary tumorigenesis. Cholera toxin (CT), a PKA 

activator, is capable of inducing breast cancer cell growth in vitro and in vivo (Sheffield 

and Welsch, 1985). The activation of PKA is associated with increased tamoxifen 

resistance in breast cancer cells (Michalides et al., 2004). PKA can prevent ubiquitin-

proteasome-dependent ERα degradation induced by the ligand-binding (Tsai et al., 

2004). 

 
Estrogen rapidly induces cAMP levels and subsequently activates PKA in breast cancer 

and uterine cells through activation of adenylate cyclase (Aronica et al., 1994), however, 

the mechanism of estrogen-induced adenylate cyclase is still unknown. In rat pulmonary 

vascular smooth muscle cells, calcium removal blocked induction of cAMP by E2, 

suggesting that the intracellular calcium may have an important role. In contrast, the G-

protein inhibitor, pertussis toxin, had no impact on E2-induced cAMP level (Farhat et al., 

1996).  

 

1.2.4.4 Protein kinase C (PKC) 

Protein kinase C (PKC) was first described as a protein kinase requiring calcium, 

phospholipids (especially phosphatidylserine), and diacylglycerol (DAG) for complete 

activation (Inoue et al., 1977; Takai et al., 1979). At least 12 different isoforms of PKCs 

have been identified and divided into three classes:  conventional PKCs (α, β and γ), 

novel PKCs (δ, ε, η and θ) and atypical PKCs (ζ, ι and λ). Conventional PKCs are 

activated by diacylglycerol, phospholipid, and Ca2+. Novel PKCs are activated by 

diacylglycerol and phospholipid, but not by Ca2+. Atypical PKCs are activated only by 
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phospholipid, not by diacylglycerol and Ca2+. Protein kinase C µ (PKCµ) and its mouse 

homolog protein kinase D (PKD) that share a certain degree of homology with PKCs 

(Johannes et al., 1994; Valverde et al., 1994) and they are usually termed PKC-related 

kinases.  

 

PKCs have a modular structure, with an N-terminus regulatory domain and a C-

terminus catalytic domain. Both domains consist of several relatively conserved regions 

(C) interspersed by several variable regions (V). In conventional PKCs, the N-terminus 

locates a sequence that suppresses the catalytic domain in the absence of cofactors 

and activators. This sequence mimics the PKC substrate but lacks the phosphorylation 

site, and is also called pseudosubstrate site or autoinhibitory domain (House and Kemp, 

1987). The C terminus side of the pseudosubstrate site are two copies of conserved C1 

region, which are cysteine-rich motifs and responsible for phorbol ester binding 

(Kaibuchi et al., 1989). Next to the C-terminus of double-C1 region is another conserved 

region C2, which binds to Ca2+ and phospholipid (Shao et al., 1996). The catalytic 

domain at the C-terminus includes another two conserved domain C3 and C4. C3 is the 

ATP binding site and essential for kinase activity. C4 is the substrate binding site and is 

blocked by pseudosubstrate site when PKC is inactive (Newton, 1997).  

 

In general, the structure of novel PKCs are very similar to conventional PKC. The major 

difference is that novel PKCs do not have a C2 region. Instead, they have a C2-like 

region on the N-terminus side of C1. This C2-like region shares significant homology 

with C2 but cannot bind to Ca2+ . The lack of   Ca2+-binding C2 regions explains why 

novel PKCs are insensitive to Ca2+ (Sossin and Schwartz, 1993). The atypical PKCs 

have only one copy of the C1 region instead of the two copies in conventional and novel 

PKCs. Like novel PKCs, atypical PKCs also possess a C2-like region to the N-terminus 

of C1 (Mellor and Parker, 1998) (Fig. 15). 
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Fig. 15.  Structure of PKCs. Adapted from Webb et al. (2000). 

 
The activation of conventional PKCs is usually initiated by stimulation of phospholipase 

C (PLC) through G-protein coupled receptors, receptor tyrosine kinases or non-receptor 

tyrosine kinases.  The phospholipase C cleaves the PtdIns(4,5)P2 (PIP2) into 

diacylglycerol (DAG) and inositol (1,4,5) trisphosphate (IP3). Diacylglycerol interacts 

with PKC by displacing its pseudosubstrate and activating PKC. IP3 elevates the 

intracellular calcium levels by inducing release of calcium from intracellular calcium 

stores. By binding to calcium, DAG and PS (phosphatidylserine), conventional PKCs 

are able to achieve full activity (Nishizuka, 1984). The activation of PKC increases the 

calcium flux from extracellular sources and the increase in calcium enhances PKC 

activity (Nishizuka, 1992).  

 

Some PKCs, such as PKCε, PKCη, PKCζ and PKC-related kinase PRK1, can be 

activated by phosphoinositides PtdIns(3,4)P2 and PtdIns(3,4,5)P3 (Nakanishi et al., 

1993; Toker et al., 1994; Palmer et al., 1995). However, the biological relevance of this 

response is still unknown.  
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PKC modulates estrogen responsiveness and estrogen receptor levels in osteoblast-

like cells (Migliaccio et al., 1993; Migliaccio et al., 1998). PKC can be activated by 

PDK1, the downstream target of PI3K (Chou et al., 1998; Le Good et al., 1998). 

Apoptosis is inhibited by PKCs in thymocytes and breast cancer cells (McConkey et al., 

1989; Rajotte et al., 1992; Lu et al., 2004). The elevation of PKC activity was detected 

in breast cancer tissues compared to the surrounding normal tissues (O'Brian et al., 

1989) and PKCα levels tends to be higher in breast tumors with low or no ERα 

expression (Lahn et al., 2004).  Furthermore, stimulation of PKC greatly enhances the 

invasiveness of MCF-7 breast cancer cells (Johnson et al., 1999). 

 

Although PKC has been identified as a target of E2 nongenomic actions, little is known 

about the mechanism (Kelly et al., 1999; Sylvia et al., 2001). Both G-protein inhibitor 

GDP beta S and phospholipase C inhibitor U73122 can block E2-induced PKC activity, 

suggesting that this process is dependent on G proteins as well as phospholipase C 

(Sylvia et al., 2001). Another study showed that E2 stimulates PKC in both ER-positive 

MCF-7 and ER-negative HCC38 cells through an ER-independent mechanism. This 

report also shows that phosphatidylinositol-dependent phospholipase C and G proteins 

are both involved. Interestingly, in this study, the antiestrogen ICI 182,780 did not block 

activation of PKC by E2 whereas tamoxifen inhibited activation (Boyan et al., 2003). In 

contrast, treatment of HepG2 cells with E2 rapidly increased intracellular IP3 levels and 

activated PKCα and inhibition by antiestrogens suggests that ER is required in this 

response (Marino et al., 1998) 

 

1.2.4.5 Calcium/calmodulin-dependent protein kinase IV (CaMKIV) 

Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a member of a group of 

kinase regulated by calmodulin and calcium. Calcium regulates many different aspects 

of cellular functions while still maintaining remarkable specificity. The 

compartmentalization of localized calcium signals is an important way to distinguish 

between diverse calcium signals and the different amplitudes and frequencies of 

calcium level oscillations also convey differential signaling information (Thomas et al., 

1996).  
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For some calcium responsive proteins, such as conventional PKCs, the calcium signal 

can be directly detected by calcium binding. For others, calcium responsiveness 

requires the assistance of a calcium-binding protein. Calmodulin (CaM) is one of such 

proteins that can transduce the signal of increasing intracellular calcium to target 

molecules. In vertebrates, CaM is a highly conserved small protein of 148 amino acids 

that contains four helix-loop-helix motifs named EF hands, which are capable of calcium 

ion binding. The binding process is cooperative and this type of binding can confer 

tremendous calcium sensitivity to CaM (Chin and Means, 2000).  

 

CaMKIV (CaMKIV Gr) functions as a monomer (Miyano et al., 1992) and is located 

mainly in the nucleus but also exist in granular endoplasmic reticulum in neuronal 

somata, dendritic processes and axons (Jensen et al., 1991; Nakamura et al., 1995). 

CaMKIV contains an autoinhibitory domain in the C-terminus, whose inhibitory effect 

can be relieved by Ca2+/calmodulin binding (Tokumitsu et al., 1994). However, 

Ca2+/calmodulin binding only has a limited activating effect for CaMKIV. For full 

activation, CaMKIV requires phosphorylation by CaM kinase kinases (CaMKKs). There 

are two CaM kinase kinases, namely CaM kinase I kinase-α (CaMKIKα) and CaM 

Kinase I kinase-β (CaMKIKβ). Upon stimulation by Ca2+ and calmodulin, both kinases 

activate CaMKI and CaMKIV through phosphorylation (Tokumitsu et al., 1995; Edelman 

et al., 1996). On rat CaMKIV, phosphorylation by CaMKIK occurs at Thr196 (Selbert et 

al., 1995) whereas human CaMKIV is phosphorylated at the homologous Thr200 

(Chatila et al., 1996) (Fig. 16).  
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Fig. 16. Mechanism of CaMKIV activation. 

 

Ser12 and Ser13 in the N-terminus of CaMKIV may also be involved in the 

autoinhibition of kinase activity and the inhibitory effect can be abolished by 

autophosphorylation on Ser12 and Ser13 once CaMKIV is activated by Ca2+ and 

calmodulin (Chatila et al., 1996) (Fig. 17). CaMKIV can also gain its Ca2+/calmodulin-

independent activity through self-phosphorylation within the putative calmodulin-binding 

domain (Watanabe et al., 1996). Activated CaMKIV can be attenuated by 

dephosphorylation by protein phosphatase 1 (PP1), protein serine-threonine 

phosphatase 2A (PP2A) and Ca2+/calmodulin-dependent protein phosphatase 2B 

(calcineurin) (Westphal et al., 1998; Kasahara et al., 1999).  
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 Fig. 17. Structure of CaMKIV. 
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CaMKIV is highly conserved and its homologs have been found in species ranging from 

mammals to Aspergillus nidulans (Joseph and Means, 2000). This degree of 

conservation suggests important functions for this protein. CaMKIV is involved in 

regulation of many transcription factors, including cAMP response element binding 

protein (CREB) (Matthews et al., 1994), activation protein 1(AP1) (Chatila et al., 1997) 

and serum-response factor (SRF) (Miranti et al., 1995). CaMKIV knockout mice have 

ataxia, impaired viability, defective Purkinje cell maturation and aberrant lymphocyte 

differentiation. The males are infertile due to impaired spermiogenesis and females 

have reduced fertility because of abnormal follicular development and ovulation (Wu et 

al., 2000a; Wu et al., 2000b). Furthermore, CaMKIV knockout mice have reduced 

memory for unpleasant events compared to wildtype (Wei et al., 2002).  Overexpression 

of CaMKIV in transgenic mice induces mitochondrial biogenesis in muscle cells and 

enhances the endurance of muscles (Wu et al., 2002). CaMKIV protects granule 

neurons and T-lymphocytes from apoptosis (Anderson et al., 1997; See et al., 2001). 

CaMKIV has also been implicated in carcinogenesis and there is significant correlation 

of CaMKIV expression with malignancy in endometrial carcinoma (Shang et al., 2003).  

 
Estrogen is known to cause a rapid increase of intracellular calcium levels (Morley et al., 

1992).  Presumably this process leads to the activation of CaM kinase. Qin and 

coworkers reported that estrogen can stimulate CaMKIV activity in MCF-7 breast cancer 

cells (Qin et al., 2002) and only CaMKIV but not CaMKII was activated by estrogen. 

This suggests a certain specificity in E2-dependnet calcium signaling.  

 

Although estrogen increases intracellular calcium levels in many cell types, the 

mechanisms appear to be different.  For example, in primary rabbit kidney proximal 

tubule cells, BSA-conjugated E2 stimulates calcium uptake from medium in a cAMP-

and PKC-dependent manner. This stimulation can be abolished by a Ca2+ blocker, 

suggesting the uptake of extracellular calcium through membrane channel is the cause 

of increased calcium (Han et al., 2000). In contrast, another study showed that in MCF-

7 cells, the E2-stimulated calcium increase is caused by mobilization of intracellular 

calcium stores, not by the influx of extracellular calcium (Improta-Brears et al., 1999). 
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1.2.4.6 The nature of membrane associated estrogen-binding factor 

Nongenomic actions induced by estrogens were initially observed in endometrial cells 

as a rapid increase in intracellular calcium (Pietras and Szego, 1975; Pietras and 

Szego, 1977). Similar observations were made in other cells,   suggesting that estrogen 

is capable of initiating various kinase cascades in breast cancer cells and many other 

cell types. Kinases activated by estrogen include MAPK (Migliaccio et al., 1996; Endoh 

et al., 1997; Duan et al., 2001; Kousteni et al., 2001), PI3K (Simoncini et al., 2000; 

Hisamoto et al., 2001; Duan et al., 2002), PKA (Aronica et al., 1994; Farhat et al., 

1996), PKC (Kelly et al., 1999; Sylvia et al., 2001) and CaMKIV (Qin et al., 2002). There 

is evidence that E2 may also induce tyrosine phosphatase activity through nongenomic 

pathway (Chen et al., 2001c) 

 

Nongenomic pathways induced by estrogen share several common traits. They occur 

within minutes and are insensitive to the transcription inhibitor actinomycin D and 

translation inhibitor cycloheximide since no transcription or translation is required. 

Furthermore, these responses can be triggered by estrogen conjugated with bovine 

serum albumin (BSA), a complex too bulky for cellular entry (Coleman and Smith, 

2001). It is generally believed that the nongenomic actions of estrogen are mediated by 

a membrane associated estrogen binding factor, however, the exact nature of this factor 

is has not been established. 

 

One hotly debated issue is whether the putative membrane estrogen-binding factor is 

identical to the intracellular ER. There is evidence supporting a role for membrane ERα 

and ERβ as mediators of the nongenomic actions of estrogen (Razandi et al., 1999). 

One study proposed that the putative membrane estrogen- binding factor may be 

identical or at least similar in structure to nuclear ER, because the membrane form can 

be recognized by specific ER antibodies (Pappas et al., 1995). Razandi et al (1999) 

found that transfecting ER-negative Chinese hamster ovary (CHO) cells with ER 

expression vector resulted in ER expression in both the cell membrane and nuclear 

compartments. Furthermore, the nuclear and membrane types of ERs were identical in 

term of estrogen affinity and it was suggested that the cell membrane and intracellular 

ERs share the same transcript. The putative membrane ER was also found to cluster 
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with many signal transduction components, such as Src and Shc, in specialized 

membrane compartments called caveolae. One major protein of the caveolae, caveolin-

1, is known to physically interact with ER and overexpression of caveolin-1 enhances 

ER mediated kinase activation by facilitating the translocation of ER from nucleus to 

membrane (Schlegel et al., 1999; Razandi et al., 2002). The Ser 522 in mouse ERα is 

important for translocation of ERα  to membrane. The S522A mutant is much less 

effective in membrane localization, caveolin-binding and kinase activation but is equally 

efficient as wildtype ERα in transactivating ERE-luciferase reporter through a genomic 

pathway (Razandi et al., 2003).  

 

The hypothesis that the membrane associated estrogen-binding factor is ER poses an 

interesting question with regard to the conformation of membrane ER. ER lacks any 

apparent transmembrane domain so presumably cannot adopt a transmembrane 

conformation. The association of ER with the cell membrane is supposedly either 

through posttranslational modification or formation of complexes with other membrane-

associated factors. Norfleet and coworkers (1999) employed an enzyme-linked 

immunocytochemistry method to detect membrane ER in nonpermeabilized rat pituitary 

cells. The results showed that a variety of ER-antibodies targeting different regions of 

ER all recognized membrane ER, suggesting the all the membrane ER domains (AF1, 

AF2 and DBD) were accessible to extracellular environment. The putative membrane 

ER appears to be very dynamic and transitory, a trait that further complicates this 

perplexing issue (Watson et al., 2002).  

 

There are several lines of evidence supporting that certain nongenomic actions of 

estrogen are independent of ER. For example, estrogen can activate PI3K in ER-

negative breast cancer cells (Tsai et al., 2001). In hippocampal neurons, E2 induces 

membrane potentiation through PKA and the antiestrogen ICI 182,780 cannot block this 

PKA activation, suggesting a process that is ER-independent (Gu et al., 1999). Another 

study proposed the existence of a novel estrogen receptor because estrogen can 

induce MAPK in cerebral cortex in ERα knockout mice and this action cannot be 

inhibited by antiestrogen ICI 182,780 (Singh et al., 2000).      
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Luconi and coworkers (1999) identified in sperm cell membrane a 29-KDa novel 

receptor that binds estrogen and mediates increased intracellular calcium. Nadal and 

coworkers (2000) suggested that E2 and certain xenoestrogens can elicit nongenomic 

actions through a receptor not related to ER but a receptor that shares the 

pharmacological profile of γ-adrenergic receptor. GPR30, a G-protein coupled receptor, 

has been shown to bind E2, antiestrogens (ICI 182780 and tamoxifen) and a 

xenoestrogen (o, p’-DDE). Through recruiting a stimulatory G-protein (Gs), the ligand-

bound GPR30 mediates various kinase pathways in an ER-independent manner 

(Thomas et al., 2004).  

 

It is quite possible that the nongenomic actions of estrogen and estrogenic compounds 

are the combinational results of membrane ER and several other membrane associated 

estrogen binding factors. The exact contributions of each factor are determined by the 

cell context and the nature of the ligands. These nongenomic actions of estrogen are by 

no means only curious but biologically insignificant events. Many important 

physiological functions of estrogen are believed to be mediated through nongenomic 

pathways. For example, nongenomic actions play an important role in estrogen-

stimulated cell proliferation (Marino et al., 2002) and activation of eNOS (endothelial 

nitric oxide synthase) by E2 is carried out through AKT pathway via ERα (Hisamoto et 

al., 2001; Simoncini et al., 2002).   

 

1.3 Lactate dehydrogenase A (LDHA) 

Normal cells favor aerobic metabolism over glycolysis as the main avenue for energy 

production when the oxygen supply is sufficient. Anaerobic metabolism predominates 

only under hypoxic conditions (Racker, 1974) and solid tumors also usually develop in 

conditions with a limited supply of oxygen. This strong selection pressure forces cancer 

cells to adopt anaerobic metabolism. However, unlike normal cells that will revert to 

aerobic metabolic pathways when oxygen becomes available, cancer cells maintain 

anaerobic metabolism even under aerobic conditions. This observation led to the 

hypothesis that cancer was caused by aberrant metabolism (Warburg, 1956). Although 

this hypothesis was proven incorrect, the observation itself, now termed “Warburg 

effect”, has been validated.   
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The underlying cause for Warburg effect is still unknown, but proto-oncogenes Ras, 

Src, and Myc enhance glycolysis under aerobic conditions by upregulating proteins 

involved in glucose transportation and glycolysis, suggesting some underlying links 

between carcinogenesis and glycolysis (Dang and Semenza, 1999). At first glance, 

glycolysis appears to be an unsuitable choice and puts cancer cells at a disadvantage 

because it is a much less efficient way to extract energy from glucose. However, closer 

examination reveals that glycolysis can confer some growth advantage to cancer cells. 

Lactate, the byproduct of anaerobic metabolism, significantly decreases pH in the 

surrounding microenvironment and induces apoptosis in normal cells. In contrast, with 

disrupted apoptotic pathways, cancer cells are more tolerant of the acidic environment. 

Thus, lactate can help cancer cells to decrease competitions from neighboring normal 

cells (Williams et al., 1999; Gatenby and Gillies, 2004). Some studies also suggest that 

lactate, or acidic conditions in general, facilitate breakdown of the extracellular matrix 

and metastasis (Schlappack et al., 1991; Rozhin et al., 1994; Stern et al., 2002). High 

levels of glycolysis in cancer cells are associated with poor prognosis (Kunkel et al., 

2003) Based on these studies, anaerobic metabolism is not only just the result of 

hypoxic conditions during carcinogenesis, but also an active player in cancer 

development. The relationship between glycolysis and carcinogenesis can be viewed as 

a mutual positive feedback, on one hand with proto-oncogenes upregulating glycolytic 

enzymes and, one the other hand with the glycolytic product lactate promoting 

metastasis.  

 

Lactate dehydrogenase (LDH) plays a crucial role in glycolysis, catalyzing the 

conversion between lactate and pyruvate. LDH is a tetramer formed by random 

association between two type of subunits, lactate dehydrogenase A (LDHA) and lactate 

dehydrogenase B (LDHB) (Boyer et al., 1963). Lactate dehydrogenase A is also called 

lactate dehydrogenase M because it predominates in muscle and liver, while lactate 

dehydrogenase B is also called lactate dehydrogenase H because it predominates in 

heart. Kinetically, LDHA is more efficient in catalyzing the conversion of pyruvate to 

lactate and LDHB is more efficient in catalyzing the conversion of lactate to pyruvate. 

The ratio between LDHA and LDHB is an indicator of cellular metabolic patterns and an 

increase on LDHA portion suggests a metabolism shift toward glycolysis. Besides its 

role in glycolysis, LDHA has also been implicated in regulating gene transcription and 
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DNA replication (Williams et al., 1985; Zhong and Howard, 1990). There is a third type 

of LDH subunit called LDHC, which only exists in mammalian testes and spermatozoa 

(Goldberg, 1963).   

 

In mouse models heterozygous LDHA disruption resulted in reduced LDHA activity but 

apparently had no detrimental effects, however, homozygous LDHA deletion led to 

embryonic lethality (Merkle et al., 1992). In contrast, humans with congenital LDHA 

disruption are viable and largely normal, but susceptible to exertional myoglobinuria and 

easy fatigue after strenuous activity (Kanno et al., 1980).  

 

LDHA and its product lactate are often elevated during tumorigenesis and are linked 

with high malignancy. Thus, they are used as biomarkers for cancer prognosis 

(Goldman et al., 1964; Farron et al., 1972; Walenta et al., 1997). Breast cancer cells 

also tend to express higher levels of LDHA (Farron et al., 1972; Hilf et al., 1976). 

Interestingly, LDHA can be upregulated by estrogen, a mitogen for mammary 

carcinogenesis (Richards and Hilf, 1972; Burke et al., 1978; Li and Hou, 1989). Thus, it 

is not unreasonable to hypothesize that E2-induced LDHA facilitates mammary 

carcinogenesis. Mechanistic studies on the E2-responsiveness of LDHA may give new 

insight into the development of breast cancer. 

 

1.4 Objectives 

 
1.4.1 Identifying the E2-responsvie region of LDHA promoter 

LDHA is an E2-responsive gene (Richards and Hilf, 1972; Li and Hou, 1989) and its 

promoter contains multiple cis-elements, including TRE (TPA-responsive 

element)(Huang and Jungmann, 1995), CRE (cAMP-responsive element) (Short et al., 

1994) and Sp1(Specificity protein 1)(Short et al., 1994) motifs. Thus the first goal of this 

study is to identify the E2-responsive region. The promoter region of LDHA was inserted 

into the luciferase reporter vector pGL2 and a series of LDHA promoter deletion and 

mutant constructs were made to determine the E2-responsiveness through transient 

transfection assays in MCF-7 cells.  
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1.4.2 Identifying the mechanism of activation of CREB by estrogen  

Preliminary results indicated that a CRE (cAMP response element) located in –58/+9 

region of LDHA promoter is responsible for the E2-dependent transactivation. CRE is 

recognized and induced by CREB family transcription factors (Comb et al., 1986; 

Montminy et al., 1986; Hoeffler et al., 1988; Yamamoto et al., 1988; Gonzalez and 

Montminy, 1989). Thus the second goal of this research is to investigate the mechanism 

of hormonal activation of CREB in MCF-7 cells. The binding of CREB family proteins to 

this CRE site was confirmed with gel mobility shift and supershift assays. A 

constitutively active PKA expression vector, a cAMP inducer cholera toxin and a 

dominant negative CREB expression vector were used to investigate the role of CREB 

in mediating E2-responsiness of LDHA promoter.  

 

CREB requires phosphorylation on Ser133 to be transcriptionally active (Gonzalez and 

Montminy, 1989) and Ser133 can be phosphorylated by a plethora of kinase cascades, 

including PKA (Gonzalez and Montminy, 1989), Calcium-calmodulin-dependent Kinases 

(Matthews et al., 1994; Sun et al., 1994) and PKC (Xie and Rothstein, 1995) (Fig. 18). A 

series of kinase inhibitors were used to identify the kinase cascades responsible for the 

hormonal activation of the LDHA promoter.  
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Fig. 18. The potential mechanisms of activation of CREB by estrogen. 
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1.4.3 Investigating the roles of ERα domains in kinase activation 

The third goal of this research is to further characterize the nature of membrane ER and 

the roles of ERα domains (AF1, AF2 and DBD) in the activation of kinase cascades. 

The activation of kinase pathways by E2 was investigated in a mammalian one-hybrid 

system. A luciferase reporter vector driven by five tandem GAL4 sites was 

cotransfected with GAL4-Elk-1, GAL4-SRF, GAL4-CREB and GAL4-p65 fusion proteins 

to assess the E2-induced MAPK, PI3K, PKA/PKC and CaMKIV respectively (Fig. 19). 

ER mutation variants HE11, HE15, HE19 and TAF1 were used to investigate the 

domain requirements of ERα in activation of these kinases. The assay was carried out 

in ER positive MCF-7 cells and ER-negative cell line C4 derived from MCF-7 cells 

(Oesterreich et al., 2001) .  
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Fig. 19. GAL4-fusion protein system for measuring E2-indcued kinase activities. 

 
1.4.4 Investigating the roles of xenoestrogens in kinase activation 

Although the nongenomic activities of estrogen on have been extensively studied, little 

is known about the nongenomic activities of synthetic industrial estrogenic compounds. 

Since xenoestrogens include a broad spectrum of structurally diverse chemicals, their 

profiles on kinase activation may differ from estrogen and from one another. These 

differences may be important for elucidating the mechanisms of nongenomic pathways 
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of estrogen and for evaluating the possible adverse impacts of xenoestrogens on 

wildlife and human health.  The GAL4-fusion protein system (Fig. 19) and the 

downstream targets of various kinases were used as end points to explore this problem.  
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CHAPTER II 
 

MATERIALS AND METHODS 
 
2.1 Chemicals, enzymes and antibodies  

Antibiotic/antimycotic solution, trypsin, Tris base, acetic acid, disodium EDTA, sodium 

bicarbonate, sodium chloride, hydrochloric acid, sodium hydroxide, magnesium 

chloride, urea, calcium chloride, HEPES, glycerol, dimethylsulfoxide (DMSO) , 

methanol, ethanol and acetone were purchased from Sigma (St. Louis, MO). LB 

medium was purchased from Life Technologies (Gaithersbrug, MD, USA). Cholera toxin, 

bisindolylmaleimide I, Ro-31-8425, W7, SQ22536, H89, PD98059, LY294002, KN93, 

wortmannin, 2’,5’-dideoxyadenosine and TPA were obtained from Calbiochem (San 

Diego, CA). ICI 182, 780 was kindly provided by Dr. Alan Wakeling (AstraZeneca, 

Macclesfield, UK). MEM medium and DME/F-12 medium were purchased from Sigma 

(St. Louis, MO).  Fetal bovine serum (FBS) was obtained from Intergen (Purchase, NY). 

Nonylphenol, p-t-octylphenol, and bisphenol A were purchased from Aldrich Chemical 

(Milwaukee, WI). 2′,3′,4′,5′-Tetrachloro-4-biphenylol (HO-PCB-Cl4) and 2,2-bis(p-

hydroxyphenyl)-1,1,1-trichloroethane (HPTE) were prepared in this laboratory with 

purity>98% as determined by gas chromatographic analysis. E2, resveratrol and 

diethylstilbestrol (DES) were purchased from Sigma Chemical (St Louis, MO). 

Endosulfan and kepone were purchased from Chem-Service (West Chester, PA). Bgl II, 

Hind III, Kpn I and Xho I restriction enzymes and T4 polynucleotide kinase were 

purchased from Promega (Madison, MI). The antibodies for p-AKT (sc-7985-R), p-ERK 

(sc-7383), p-CREB (sc-7978-R), ATF-1 (sc-241X), ATF-1 (sc-270X), CREB-1 (sc-186X), 

C/EBPβ (sc-746X), CREB-2 (sc-200X), CERM-1 (sc-440X) and p53 (sc-126) were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The gylceraldehyde-3-

phosphate dehydrogenase (GAPDH) antibody (4300) was purchased from Ambion 

(Austin, TX).  

 

2.2 Oligonucleotides and constructs 

Oligonucleotides were purchased from Genosys/Sigma (Woodlands, TX) or IDTDNA 

(Coralville, IA). The construct containing the 5’ flanking region –1173/+25 of rat LDHA 

gene was kindly provided by Dr. Richard A. Jungmann (Northwestern University, 
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Chicago, IL). TpGL2 luciferase reporter plasmid was made by inserting the TATA 

sequence between the Bgl II and Hind III sites of pGL2 vector (Promega). A series of 

fragments of LDHA promoter were PCR amplified (95°C 1 min, 50°C 30 sec, 72°C 1 

min for 24 cycles) using GeneAMP PCR kit from Roche (Branchburg, NJ). The 

amplification were performed in 2 mM MgCl2, 1 uM each primer, 1 mM dNTPs and 2.5 

U Taq DNA polymerase using a PTC-200 Peltier Thermal Cycler from MJ Research 

(Waltham, MA). PCR products were cut with KpnI/XhoI enzymes and inserted between 

KpnI and XhoI sites of TpGL2. Ligation products were transformed into DH5α 

competent E. coli cells, and clones were verified by sequencing. All the promoter 

fragments shared the same reverse primer: 5’ aac tcg agt cat gac gca gag cag 3’. The 

forward primers are (5’ to 3’): pLDH-1(ggg gta ccg gga aca gca atg ta), pLDH-2(ggg gta 

cca ttt cgg gct act g), pLDH-3(tcg gta ccg tgt cgc agc aca), pLDH-4(acg gta cct gga cgc 

ccg ccc ccg gcc cag cct ac), pLDH-5(acg gta ccc cag cct aca cgt ggg ttc), pLDH-7(acg 

gta ccg ctc cca ctc tga cgt cag c), pLDH-6 (acg gta ccg gag ctt cca ttt aag), pLDH-

7m(acg gta ccg ctc cca ctc aga aga tcg cgc gga gct, mutated region is underlined). 

 

The wildtype human ERα expression vector was supplied by Dr. Ming-Jer Tai (Baylor 

College of Medicine, Houston, TX). Expression plasmids for ERα deletion mutants 

HE11, HE15 and HE19 were provided by Dr. Pierre Chambon (Institute de Genetique et 

Biologie Moleculaire et Cellulaire, Illkirch, France) and inserted in pcDNA3 (Invitrogen, 

Carlsbad, CA) vector in this laboratory. TAF1 ERα mutant was obtained from Dr. D. 

McDonnell (Duke University, Durham, NC). The chimeric protein expression vectors 

GAL4-Elk-1, GAL4–SRF and GAL4-CERB were provided by Dr. Roger Treisman 

(Imperial Cancer Research Center, London, England), Dr. Linda Sealy (Vanderbilt 

University, Nashville, TN) and Dr. Richard Goodman (Oregon Health Science Center, 

Portland, OR), respectively. The GAL4-p65 expression vector and GAL4-Luc vector 

were provided by Dr. Marty Mayo (University of North Carolina, Chapel Hill, NC). The 

mutant CREB inhibitory expression plasmid (KCREB) was provided by Dr. Richard 

Goodman (Oregon Health Science Center, Portland, OR). Constitutively active Protein 

Kinase A expression plasmid (PKAc) was supplied by Dr. Richard Maurer (Oregon 

Health Science Center, Portland, OR). All the plasmids were prepared using DNA 

maxprep kit (BioRad, Hercules, CA). 
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2.3 Cell maintenance 

MCF-7 and ZR-75 human breast cancer cells were obtained from the American Type 

Culture Collection (ATCC, Manassas, VA) and  maintained in MEM medium with phenol 

red and supplemented with 10% fetal bovine serum (Intergen, Newark, NJ or Sigma, St. 

Louis, MO) , 2.2 g/l sodium bicarbonate plus 1% antibiotic-antimyotic solution in an 

air/carbon dioxide (95:5) atmosphere at 37°C. MCF-7-C4 cells were kindly provided by 

Dr. W. Welshons (University of Missouri-Columbia, Columbia, MO) and maintained in 

DME/F-12 medium without phenol red and supplemented with 2.5% dextran/charcoal-

stripped fetal bovine serum, 2.2 g/l sodium bicarbonate plus 1% antibiotic-antimyotic. All 

cells were maintained in 150cm2 tissue culture dishes from Falcon (Lincoln Park, NJ) or 

Corning (Corning, NY). Cells were passaged by trypsinizing, centrifuging at 500Xg for 1 

min, resuspending in fresh medium and seeding in new culture dishes.  

  
2.4 Transient transfection assay 

Cells were seeded in DME/F-12 medium without phenol red supplemented with 2.5% 

dextran/charcoal-stripped fetal bovine serum, 2.2 g/l sodium bicarbonate plus 1% 

antibiotic-antimyotic solution. After 24 hr, cells were transfected by the calcium 

phosphate-DNA coprecipitation method. After 8 hr, the transfection mixture was 

withdrawn and the cells were treated with fresh DME/F-12 medium containing chemical 

treatments, or DMSO alone as a solvent control. Alternatively, cells were transfected 

with Oligofectamine (Invitrogen, Carlsbad, CA) according to manufacturer’s 

recommendation. After 24-48 hr, cells were harvested in 1 x Lysis buffer (Promega) by 

manual scraping. Cell lysates were prepared by freezing cells in liquid nitrogen for 30 

sec, vortexing for 30 sec, and centrifuging at 12,000 x g for 1 min. Luciferase activity 

was determined using a luciferase assay reagent (Promega) by Lumicount micro-well 

plate reader (Packard Instrument Co.).The activities of β-galactosidase was determined 

by luminescent Galacto-Light plus assay system from Tropix (Bedford, MA) and used to 

normalize for transfection efficiency. 
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2.5 DNA probe labeling 

γ-P32-ATP was purchased from NEN Research Products B (Boston, MA). 

Oligonucleotides were diluted to 5 uM and 5’-end-labelled by incubating with T4 

polynucleotide kinase and γ-P32-ATP in 37°C for 1 hr. The labeled product were purified 

by TE-10 column (Clontech, Palo Alto,  CA) and count on Beckman LS liquid 

scintillation counter to ensure the radioactivity exceed 1X105  CPM.  

 
2.6 Northern analysis 

MCF-7 cells were plated in 100 mm culture dishes with 80% confluence and maintained 

in serum-free DME/F-12 medium supplemented with 2.2 g/l sodium bicarbonate plus 

1% antibiotic-antimyotic solution for 48 hr before treated with DMSO or E2. Total RNA 

was extracted using RNAzol B (Tel-test Inc., Friendswood, TX) according to 

manufacturer’s recommendation. Total RNA was quantified by measuring the 260/280 

absorption ratio with a Beckman DU640 spectrometer. Equal amounts of RNA for each 

treatment were loaded on 1.2% agarose gel containing 3% formaldehyde in 1XSPC (20 

mM NaH2PO4, 2 mM EDTA, pH 6.8) buffer, electrophoresised for 3 hr in SPC and 

transferred to Hybond-N+ nucleic acid transfer nylon membrane (Amersham Pharmacia 

Biotech) using a capillary blotting method. The membrane was exposed to UV light for 5 

min and baked at 80oC for 2 hr to crosslink RNA to membrane. The membrane was 

incubated in a pre-hybridization buffer (0.1% BSA, 0.1% Ficoll, 0.1 % 

polyvinylpyrollidone, 10% dextran sulfate, 1% SDS, 0.15 M sodium chloride, 10 nM 

sodium dihydrogen phosphate, 1 mM EDTA) for 18 hr at 65oC and hybridized in the 

same buffer for 24 hr with the 32P-labeled LDHA probe (5’ to 3’: agg tct gag att cca ttc 

tgt ccc aaa atg caa gga aca c). After hybridization, the membrane was washed twice at 

room temperature in 1XSSPE buffer (0.15 M NaCl, 10 mM NaH2PO4, 1 mM EDTA). The 

resulting blots were visualized and quantitated on Storm imager system (Molecular 

Dynamics Inc., Sunnyvale, CA). The LDHA mRNA levels were standardized against β-

tubulin levels. 

 

2.7 Nuclear extract preparation 

MCF-7 cells were cultured in 150 mm cell culture dish in DME/F-12 medium 

supplemented with 2.5% FBS, 2.2 g/l sodium bicarbonate plus 1% antibiotic-antimyotic 
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solution for 24 hr. Treatment were added to medium 1 hr before harvesting if applicable. 

Medium was aspirated and cells were washed in ice-cold HE buffer (25 mM HEPES, 

1.5 mM EDTA, pH 7.6) and harvested in ice-cold HEG buffer (25 mM HEPES, 1.5 mM 

EDTA, 10% glycerol (v/v), pH 7.6) supplemented with protease inhibitor cocktail 

(Sigma) by manual scraping. Cells were homogenized with a Type-B Dounce 

homogenizer (Kontes Glass Co., Vineland, NJ) on ice for 40 strokes to disrupt the cells 

while leaving the nucleus intact. The cellular homogenate was centrifuged at 800g for 

10 min at 4oC to collect the nuclear pellet. The supernatant containing cytoplasmic 

proteins was discarded and the nuclear pellet was incubated in HEGK (25 mM HEPES, 

1.5 mM EDTA, 0.5 M KCl,10% glycerol(v/v)pH 7.6) buffer for 20 min on ice with 

frequent vortex to dissolve the nuclear proteins. The sample was centrifuged at 

12,000Xg for 10 min at 4oC and the supernatant containing nuclear proteins was 

quantified by Bradford method and aliquoted to store at -80oC for future use. 

 

2.8 Gel electrophoretic mobility shift assay (EMSA)  

Specific oligonucleotide probes (5 pmol) were 32P-labeled at the 5'-end using T4 

polynucleotide kinase (Promega) and -32P-ATP. Gel mobility shift and supershift 

assays were performed on ice. For each sample, appropriate amount of HEGK buffer 

(25 mM HEPES, 1.5 mM EDTA, 0.5 M KCl, 10% (v/v) glycerol, pH 7.6) was added to 5 

ug MCF-7 nuclear extract protein to bring the total volume to 5 ul. HEG buffer (25 mM 

HEPES, 1.5 mM EDTA, 10% (v/v) glycerol, pH 7.6) of 15 ul was added to dilute the salt 

concentration and 1ug poly(dI-dC) (Roche) was added to block the nonspecific binding. 

After incubation for 5 min, 0.01 pmol labeled DNA probe was added and incubated for 

10 min. Antibodies or IgG control were added to the mixture and incubated for 5 min if 

applicable. The mixture was resolved in 5% non-denaturing PAGE in TBE buffer at 

120V for 3-4 hr. Gels were dried and the protein-DNA complexes were visualized using 

Storm Imager system (Molecular Dynamics Inc., Sunnyvale, CA). The sequences of 

oligonucleotide probes (5’ to 3’) are: CRE (aga gat tgc ctg acg tca gag agc tag), LDHA 

(gct ccc act ctg acg tca gcg cgg agc ttc cat ), mLDHA (gct ccc act cag aag atc gcg cgg 

agc ttc cat, mutated region was underlined). 
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2.9 Western analysis  

Cells were seeded into 35-mm six-well tissue culture plates in phenol red-free DME/F-

12 medium (Sigma) supplemented with 2.5% dextran/charcoal-stripped fetal bovine 

serum, 2.2 g/l sodium bicarbonate plus 1% antibiotic-antimyotic solution. After 24 hr, 

cells were treated and harvested in ice-cold high salt lysis buffer (50 mM HEPES, 500 

mM NaCl, 10% glycerol, 1% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA. PH 7.5) 

supplemented with protease inhibitor cocktail (Sigma). After 30 min incubation with 

frequent vortexing, the samples were centrifuged at 14000xg for 10 min at 4oC. The 

supernatant was collected and the protein concentrations were quantified by Bradford 

method. Equal amounts of protein from each treatment group were boiled for 5 min in 1 

x Laemmli buffer (50 mM Tris-HCl, 2% SDS, 0.1% bromphenol blue, 175 mM ß-

mercaptoethenol), separated by 10% SDS-polyacrylamide gel electrophoresis (SDS-

PAGE), and electrotransferred to polyvinylidene difluoride (PVDF) membrane (Bio-Rad, 

Hercules, CA). Membranes were blocked in PBS containing 5% nonfat milk and 

0.05%Tween-20 for 1 hr, probed with 1:1000 primary antibodies for 2 hr and incubated 

with peroxidase-conjugated secondary antibodies for 1 hr. The membranes were 

washed in 0.05%Tween-20 for 10 min and the blots were visualized using Western 

Lightning kit (PerkinElmer, Boston, MA) on Kodak (Rochester, NY) X-Omat AR 

autoradiography film. The images were scanned with a Sharp JX-330 scanner and 

quantified with Zero-D Scanalytics software.  

 

2.10 Statistics 

All data were analyzed by ANOVA and Scheffe’s post-hoc test and were presented as 

means ± SE for at least three replicate experiments for each treatment group. Statistical 

analyses were performed using SuperANOVA software (Abacus Concepts, Berkeley, 

CA) and were considered significant if p<0.05.  
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CHAPTER III 
 

RESULTS* 
 

3.1 The E2-responsiveness of LDHA promoter requires the CRE (-48/-41) 
In MCF-7 cells treated with E2, LDHA mRNA levels were determined by Northern blot 

analysis. The results (Fig. 20) showed that significant induction by E2 was observed 

within one hour and persisted for 48 hours. This observation is in agreement with 

previous reports showing that E2 induced LDHA activity in breast cancer cells (Richards 

and Hilf, 1972; Burke et al., 1978; Li and Hou, 1989). 
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Fig. 20. Induction of LDHA mRNA levels by E2 in MCF-7 cells.  Cells were 

treated with 10 nM E2 in serum free DME/F-12 medium for 1, 6 or 48 hr. The 

mRNA was isolated and analyzed by Northern blot as described in Materials and 

Methods. β-Tubulin mRNA was used as a loading control. Significant induction 

(p<0.05) by E2 is indicated by an asterisk. 

 
*Part of the data reported in this chapter is reprinted with permission from Li, X., Qin, C., 
Burghardt, R., Safe, S., 2004. Hormonal regulation of lactate dehydrogenase-A through 
activation of protein kinase C pathways in MCF-7 breast cancer cells. Biochem. 
Biophys. Res. Commun. 320, 625-634 by Elsevier (doi:10.1016/j.bbrc.2004.05.205).  
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The 5’ promoter region of rat LDHA gene contains multiple cis-elements that may 

contribute the regulation of LDHA expression; these include an ERE half site, GC rich 

site (Sp1), NF1 site, USF site and CRE site (Fig. 21).  The rat LDHA promoter shares 

significant homology with human LDHA promoter and has been extensively used a 

model to understand the molecular mechanisms of LDHA regulation (Fukasawa and Li, 

1986; Jungmann et al., 1998).  
 

pLDH-1

(-332)

1/2  ERE GC Rich NF1 USF CRE

pLDH-2

(-249)

pLDH-3

(-192)

pLDH-4

(-110)

pLDH-5

(-92)

pLDH-6

(-58)

pLDH-7

(-37)

 
Fig. 21. The schematic map for the major cis-elements on LDHA promoter 

region. 

 

In order to investigate the mechanism of LDHA regulation by estrogen, we constructed 

a series of luciferase reporter vectors containing the various fragments of LDHA 

promoter by PCR amplification as described in the Materials and Methods. They were 

named pLDH-1(-332 to +9), pLDH-2(-249 to +9), pLDH-3(-192 to +9), pLDH-4(-110 to 

+9), pLDH5 (-92 to +9), pLDH6 (-37 to +9) and pLDH7 (-58 to +9), respectively (Fig. 

21). 

 

In MCF-7 cells transfected with pLDH-1 but without ERα, no estrogen-induced activities 

were observed. In contrast, E2 induced up to 7-fold of increase in luciferase activity in 

MCF-7-cells after cotransfection with pLDH-1 and wildtype ERα (Fig. 22). Although 

MCF-7 cells are ERα-positive, endogenous ERα is apparently a limiting factor in the 

transfected cells due to the overexpression of promoter-reporter constructs and 

cotransfection of additional ERα is necessary for induction of transactivation by E2. This 

phenomenon has been commonly observed in many other studies (Berry et al., 1989; 
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Savouret et al., 1991; Wang et al., 1999). E2 does not induce luciferase activity when 

cotransfected with pLDH-1 and ERα mutants containing deletions of AF1 (A/B domain) 

(HE19), AF2 (E/F domain) (HE15) or the DNA binding (C) domain (HE11) (Fig. 22). 

Previous studies have shown that HE11 can mediate induction of HE11/Sp1 by E2 

through interaction with GC-rich Sp1 binding sites (Duan et al., 1998; Sun et al., 1998). 

Since HE11 did not mediate transactivation by E2 in cells transfected with pLDH-1, it is 

unlikely that the GC-rich sites in LDHA promoter are E2-responsive. 
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Fig. 22. E2-responsiveness of pLDH-1 when cotransfected with wildtype/variants 

ERα expression plasmids. MCF-7 cells were transfected with pLDH-1 reporter 

plus empty vector (EV), wild type hER or ERα mutants HE11, HE15 and HE19. 

Cells were treated with 10 nM E2 or D (DMSO control) for 48 hr. Luciferase 

activities were determined for three separate determinations for each treatment 

group as described in the Materials and Methods. Significant induction (p<0.05) 

compared to DMSO is indicated by an asterisk.  

 
To identify E2-responsive DNA motifs in the LDHA promoter, a series of LDHA 

promoter constructs (pLDH-1 to pLDH-7) were transfected along with hER into MCF-7 

breast cancer cells. E2 induced the luciferase activity in cells transfected with pLDH-1(-

332 to +9), pLDH-2 (-249 to +9) and pLDH-3 (-192 to +9) in MCF-7 cells (Fig. 23). The 

response in cells transfected with pLDH-1, pLDH-2 and pLDH-3 was comparable, 

suggesting that the DNA motifs within the -332 to -249 region of LDHA promoter are not 
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required for the E2-responsiveness. Further deletion analysis showed that pLDH-4 (-

110 to +9), pLDH-5 (-92 to +9) were still E2-responsive but E2 did not induce luciferase 

activity in cells transfected with pLDH-6 (-37 to +9) (Fig. 24), indicating that -92 to -37 

region of the promoter is essential for E2-responsiveness.  
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Fig. 23. E2-induced transactivation in MCF-7 cells transfected with pLDH-1, 

pLDH-2 and pLDH-3. Luciferase promoter-reporter constructs pLDH-1, pLDH-2 

and pLDH-3 were cotransfected with hER into MCF-7 cells. Cells were treated 

with 10 nM E2 or D (DMSO control) for 48 hr. Luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) compared to DMSO is indicated by an asterisk.  

 

A prominent feature within the -92 to -37 region of LDHA promoter is a CRE site from 

-48 to -41. The construct containing a mutation of this CRE (pLDH-7m) was not E2-

responsive, suggesting that the CRE at -48 to -41 is required for the estrogen-

induced transactivation of LDHA in MCF-7 cells. There was a notable decrease in 

basal luciferase activity for mutant construct pLDH-7m compared to wildtype pLDH-7 

(Fig. 25). These results suggest that the CRE (-48/-41) is an important regulatory 

motif in LDHA promoter, an observation in agreement with findings from other 

laboratories (Short et al., 1994; Firth et al., 1995). Moreover, the estrogen-induced 

activity of pLDH-7 was inhibited by cotreatment of antiestrogens ICI 182, 780 or 4’-

hydroxytamoxifen, indicating that the induction is mediated by ER (Fig.  26). 
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Fig. 24. E2-induced transactivation in MCF-7 cells transfected with pLDH-4, 

pLDH-5 and pLDH-6. The pLDH-4, pLDH-5 and pLDH-6 constructs and hER 

were cotransfected into MCF-7 cells. Cells were treated with 10 nM E2 or D 

(DMSO control) for 48 hr. Luciferase activities were determined as described in 

the Materials and Methods. Significant induction (p<0.05) compared to DMSO is 

indicated by an asterisk.  
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Fig. 25. E2-induced transactivation in MCF-7 cells transfected with pLDH-5, 

pLDH-7 and pLDH-7m. pLDH-5, pLDH-7 and pLDH-7m constructs and hER were 

cotransfected into MCF-7 cells. Cells were treated with 10 nM E2 or D (DMSO 

control) for 48 hr. Luciferase activities were determined as described in the 

Materials and Methods. Significant induction (p<0.05) compared to DMSO is 

indicated by an asterisk.  
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Fig. 26. Effects of antiestrogens on the E2-responsiveness of pLDH-7. MCF-7 

cells were transfected with pLDH7 and hER and treated with DMSO (control) or 

10 nM E2 ± antiestrogen ICI 182780 (1uM) or tamoxifen (1uM) for 48 hr. 

Luciferase activities were determined as described in the Materials and Methods. 

Significant induction by E2 (p<0.05) is indicated by an asterisk.  

 
3.2 CREB family proteins bind to the CRE (-48/-41) site  

To investigate the binding of nuclear proteins to the CRE (-48/-41), a fragment of the 

LDHA promoter (-58/-36) which contains the CRE motif was used as DNA probe in gel 

mobility shift assays (Fig. 27).  One major retarded band was observed using nuclear 

extracts prepared from either DMSO- or E2-treated MCF-7 cells (lane 8 and 9). The E2 

treatment increased the band density, suggesting that E2 enhances the binding of 

nuclear protein to the radiolabeled DNA probe. Competition with 200-fold excess of 

unlabled consensus CRE or LDHA/CRE probe decreased the retarded band densities 

(lane 10 and 11). In contrast, mLDHA, the LDHA promoter fragment (-58 to -36) with a 

mutation on the CRE site, did not competitively decrease the retarded band density 

(lane 12). These results show that specific nuclear proteins bind the CRE. As a positive 

control, a radiolabeled consensus CRE DNA probe was also used to perform the same 

experiment and comparable results were observed (lane 1-6), confirming the specificity 

of nuclear protein-CRE interactions.  
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Fig. 27. Gel mobility shift assay. Nuclear extracts were prepared from MCF-7 cells 

treated with DMSO or E2 (10 nM) for 2 hr. Radiolabled consensus CRE or -58 to -36 

region of LDHA promoter were used as probes. Retarded bands are indicated with an 

arrow.  
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Fig. 28. Supershift assay. Nuclear extracts were prepared from MCF-7 cells 

treated with E2 (10 nM) for 2 hr. Radiolabled LDHA promoter (-58 to -36) DNA 

was used as a probe. Supershifted band is indicated with an arrow. Antibodies 

used for supershift experiments were: ATF-1(a), ATF-1(b), C/EBPβ(c), CREB-

1(d), CREB-2(e), CREM-1(f) and IgG (g).  

 
The nuclear proteins bound to the CRE were investigated using protein antibodies in a 

supershift assay (Fig. 28). The effects of various antibodies on the nuclear protein-DNA 
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probe retarded band are indicated in lanes 6-12. Of all the antibodies, only ATF-1 

antibody gave a supershifted ternary complex (lane 7/antibody b).  Some weak protein 

immunodepletions were also observed for antibodies against CREB-1 and CREM-1 

(lane 9/antibody d and lane 11/antibody f). These results confirm that the CREB family 

proteins bind to the CRE (-48/-41) of LDHA promoter. 

 

The roles of CREB family proteins in mediating the E2-responsiveness of LDHA were 

further investigated by transfection of a dominant negative form of CREB, KCREB 

(Coleman et al., 1996). In MCF-7 cells transfected with pLDH-5, E2-induced luciferase 

activity was gradually diminished after cotransfection of increasing amounts of KCREB 

(Fig. 29). This result demonstrated the important role of CREB in mediating the E2-

responsiveness of LDHA.   
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Fig. 29. Inhibitory effects of dominant negative CREB (KCREB) on the E2-

responsiveness of pLDH-5. MCF-7 cells were transfected with pLDH-5, hER and 

different amounts of KCREB. Cells were treated with DMSO or E2 (10 nM) for 48 

hr. Luciferase activities were determined as described in the Materials and 

Methods. Significant induction (p<0.05) by E2 is indicated by an asterisk and 

significant inhibition (p<0.05) of this response by KCREB is indicated by double 

asterisks.  
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Fig. 30. Activation of pLDH-5 by constitutively active PKA (PKAc). MCF-7 cells 

were transfected with pLDH-5 and different amounts of PKAc for 48 hr. 

Luciferase activities were determined for three separate determinations as 

described in the Materials and Methods. Significant induction (p<0.05) by PKAc 

is indicated by an asterisk.  

 

A constitutively active PKA (PKAc) expression vector induced luciferase activity in cells 

transfected with pLDH-5 in a dose-dependent manner (Fig. 30).  PKA is a well known 

inducer of CREB transcriptional activity (Rehfuss et al., 1991). In agreement with this 

finding, a PKA activator, cholera toxin, also induced luciferase activity in cells 

transfected with pLDH-7 (Fig. 31). These results confirm that the CREB mediates LDHA 

gene expression through the CRE site.  
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Fig. 31. Activation of pLDH-7 by cholera toxin. MCF-7 cells were transfected with 

pLDH-7 and treated with different doses of cholera toxin (CT) for 48 hr. 

Luciferase activities were determined as described in the Materials and Methods. 

Significant induction (p<0.05) by CT is indicated by an asterisk.   

 

Hormonal activation of CREB in MCF-7 cells was also investigated using a GAL4-CREB 

fusion protein and a luciferase reporter gene containing five tandem GAL4 response 

elements (GAL4-Luc). In MCF-7 cells cotransfected with GAL4-CREB, GAL4-Luc and 

hER, E2 induced the luciferase activity, indicating that E2 activates CREB. In contrast, 

hormone-induced transactivation was not observed without cotransfection of hER (Fig. 

32). These observations suggest that induction of LDHA constructs by E2 is mediated 

by ER through activation of CREB.  
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Fig. 32. Activation of GAL4-CREB fusion protein by E2 in MCF-7 cells. MCF-7 

cells were transfected with hER, GAL4-Luc, GAL4-CREB or GAL4 DNA binding 

domain (PM) as a negative control. Cells were treated with DMSO or E2 (10 nM) 

for 48 hr. Luciferase activities were determined as described in the Materials and 

Methods. Significant induction (p<0.05) by E2 is indicated  with an asterisk. 

 

3.3 Activation of CREB by E2 is primarily mediated through PKC pathway in MCF-7 

cells  
CREB is a transcription factor regulated through multiple pathways, including kinase 

cascades PKA, PKC and CaMKIV (Gonzalez and Montminy, 1989; Matthews et al., 

1994; Sun et al., 1994; Xie and Rothstein, 1995). These three kinases are also 

activated by E2 through nongenomic pathways (Aronica et al., 1994; Sylvia et al., 2001; 

Qin et al., 2002).  A number of kinase inhibitors were used to identify the kinase 

pathways responsible for mediating activation of LDHA and CREB by E2.  The CaM 

kinase inhibitor (W7), MAPK inhibitor (PD98059) and PI3K inhibitor (wortmannin) did 

not affect transactivation in MCF-7 cells transfected with pLDH-7 and treated with E2 

(Fig. 33), suggesting that CaM kinase, MAPK and PI3K are not involved in mediating 

hormonal activation of LDHA.  PKA is a major kinase responsible for activating CREB 

and previous studies have indicated that estrogen can activate CREB through the PKA 

pathway (Dong et al., 1999). Three cAMP-PKA pathway inhibitors SQ22536, 2’,5’-

dideoxyadenosine (ddA) and H89 were used to analyze the involvement of PKA in 

activation of LDHA by E2. None of these inhibitors had a major impact on E2-dependent 
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transactivation, although a small inhibitory effect was observed (Fig. 34). Therefore, the 

PKA pathway does not play a predominant role in estrogen-dependent activation of 

LDHA.   
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Fig. 33. Effects of W7, PD98059 and wortmannin on activation of pLDH-7 by E2. 

MCF-7 cells were transfected with pLDH7 and hER and treated with DMSO, E2 

(10 nM) alone, or E2 plus W7, PD98059 and wortmannin for 24 hr. Cells were 

treated with DMSO or E2 (10 nM) for 48 hr. Luciferase activities were determined 

as described in the Materials and Methods. Significant induction (p<0.05) by E2 

is indicated by an asterisk. 

 

In contrast to PKA and CaM Kinase inhibitors, the PKC inhibitor bisindolylmaleimide I 

(Bi) inhibited the E2-induced transactivation in MCF-7 cells transfected with pLDH-7 and 

significant inhibition was observed with  5 and 10 uM Bi (Fig. 35).  
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Fig. 34. Effects of PKA inhibitors H89, SQ22536 and 2’5’-dideoxyadenosine 

(ddA) on activation of pLDH-7 by E2. MCF-7 cells were transfected with pLDH-7 

and treated with DMSO, E2 (10 nM) alone, or E2 plus W7, PD98059 and 

wortmannin for 24 hr. Luciferase activities were determined for three separate 

determinations as described in the Materials and Methods. Significant induction 

by E2 is indicated by an asterisk (p<0.05). 
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Fig. 35. Inhibition of E2-dependent activation of pLDH-7 by the PKC inhibitor 

bisindolylmaleimide I. MCF-7 cells were transfected with pLDH-7 and treated with 

DMSO (D), E2 (10 nM) alone, or E2 plus different concentration of 

bisindolylmaleimide I (Bi) for 24 hr. Luciferase activities were determined for 

three separate determinations as described in the Materials and Methods. 

Significant induction (p<0.05) by E2 is indicated by an asterisk. Significant 

inhibition (p<0.05) of E2-induced luciferase activity is indicated by double 

asterisks.  
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The effects of kinase inhibitors on hormonal activation pLDH-7 construct are 

summarized in Table 2. The results indicate that the induction of LDHA by estrogen is 

mediated through activation of PKC pathway.  

 

Table 2  

Effects of kinase inhibitors on activation of pLDH-7 constructs by E2 

 
Kinase pathway Inhibitors Effects 

MAPK PD98058 None 

PI3K wortmannin None 
2’5’-dideoxyadenosine 

SQ22536 PKA 

H89 

Minimal 

CaMKIV W7 None 

PKC bisindolylmaleimide I decreased 
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The role of PKC was further confirmed by inhibiting the E2-inudced activation of pLDH-7 

using 5 uM Bi and by showing that activation of pLDH-7 by the PKC activator TPA was 

also inhibited after cotreatment with Bi (Fig. 36).  
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Fig. 36. E2-responsiveness of pLDH-7 is inhibited by the PKC inhibitor 

bisindolylmaleimide I. MCF-7 cells were transfected with pLDH-7 and treated with 

DMSO, E2 (10 nM) alone, E2 plus bisindolylmaleimide I (Bi), TPA alone or TPA 

plus Bi for 24 hr, Luciferase activities were determined as described in the 

Materials and Methods. Significant induction (p<0.05) by E2 and TPA is indicated 

by an asterisk and significant inhibition (p<0.05) of E2 or TPA-induced luciferase 

activity is indicated by double asterisks (p<0.05).  
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Fig. 37. Induction of pLDH-7 by cholera toxin . MCF-7 cells were transfected with 

pLDH-7 and treated with DMSO, cholera toxin (CT) alone, CT plus Bi, CT plus 

H89 for 24 hr. Luciferase activities were determined as described in the Materials 

and Methods. Significant induction (p<0.05) by CT is indicated by an asterisk and 

significant inhibition (p<0.05) of CT-induced luciferase activity is indicated by 

double asterisks (p<0.05).  

 
Activation of pLDH-7 by E2 is in direct contrast with the activation by cholera toxin (CT), 

a cAMP/PKA inducer. CT-induced luciferase activity was inhibited by the PKA inhibitor 

H89 but not the PKC inhibitor Bi (Fig. 37). This demonstrates that cholera toxin and E2 

activate the LDHA construct through different mechanisms. Cholera toxin acts via PKA, 

while E2 acts mainly via PKC.  

 



 104

0 2 4 6

D

E2

E2+Ro-31-8425

TPA 

TPA+ Ro-31-8425 

Relative Luciferase Activity

*

*
**

**

8

 
Fig. 38. E2-responsiveness of GAL4-CREB is dependent on PKC. MCF-7 cells 

were transfected with GAL4-Luc reporter gene and GAL4-CREB. Cells was 

treated with DMSO (D), E2 (10 nM) alone, or E2 plus 5 uM Ro-31-8425 (RO), 

TPA (10 nM) alone or TPA plus Ro-31-8425. Luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) compared to control (DMSO) is indicated by an asterisk and significant 

inhibition of E2- and TPA-induced luciferase activities is indicated by double 

asterisks (p<0.05).  

 
Since we have demonstrated that estrogen upregulated LDHA via PKC-dependent 

activation of CREB, we next investigated whether PKC activated CREB in MCF-7 

breast cancer cells. In cells transfected with GAL4-CREB fusion protein, GAL4-Luc 

reporter gene and hER, E2 induced the luciferase activity, indicating that CREB is 

activated by E2 treatment. The activation was inhibited by the PKC inhibitor Ro, 

suggesting the event is PKC dependent.  As a control, the PKC activator TPA activated 

CREB and the activation was also inhibited by Ro (Fig. 38).  
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Fig. 39. E2-induced phosphorylation of CREB. MCF-7 cells were treated at 

various time points with E2. Whole lysates were obtained and levels for phospho-

CREB were determined for three separate determinations as described in the 

Materials and Methods. Significant induction (p<0.05) compared to control is 

indicated by an asterisk (p<0.05). GAPDH was used as a loading control. 

 
Phosphorylation on Ser133 is essential for the transcriptional activity of CREB 

(Gonzalez and Montminy, 1989). Therefore, we use a phospho-Ser133 CREB antibody 

to investigate the phosphorylation of CREB upon E2 treatment. E2 rapidly induced 

phosphorylation of CREB at Ser133 within 5 min and the phosphorylation soon returned 

to basal levels (Fig. 39). Both E2 and the PKC activator TPA induced CREB 

phosphorylation and these responses were blocked by PKC inhibitor Bi (Fig. 40). These 

results confirmed that in MCF-7 cells, E2 induces LDHA by activating CREB family 

proteins through the nongenomic PKC pathway.  
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Fig. 40. Inhibition of CREB phosphorylation by the PKC inhibitor. MCF-7 cells 

were treated with E2 or TPA for 5 min with or without the cotreatment with Bi. 

Whole cell lysates were obtained and the levels for phospho-CREB were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) compared to DMSO (control) is indicated by an asterisk (p<0.05) and 

significant inhibition of E2- and TPA-induced CREB phosphorylation is indicated 

by double asterisks. GAPDH was used as a loading control. 

 

 

3.4 GAL4-protein chimeras can be used to assess estrogen-induced kinase cascades 

ERα modulates an array of kinases, but detailed mechanisms of these responses are 

not well understood (Migliaccio et al., 1996; Duan et al., 2001) (Aronica et al., 1994; 

Farhat et al., 1996; Kelly et al., 1999; Simoncini et al., 2000; Hisamoto et al., 2001; 

Sylvia et al., 2001; Duan et al., 2002; Qin et al., 2002) . Previous studies have shown 

that E2-dependent activation of MAPK, PI3K, CaMKIV and PKA/PKC can be 

determined in MCF-7 cells transfected with GAL4-Elk-1, GAL4-SRF, GAL4-p65 and 

GAL4-CREB expression plasmids, respectively (Castro-Rivera et al., 2001; Duan et al., 

2002; Qin et al., 2002; Chen et al., 2004a; Li et al., 2004). Moreover, since endogenous 

ERα is limiting in this system and estrogen-induced transactivation is only observed 

after cotransfection of ER, this system can be used to assess the role of variant ERα in 

mediating hormonal activation of kinase pathways.  
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In MCF-7 cells transfected with GAL4-Luc, GAL4-Elk-1, and ER/variants/empty vector, 

only wild type hER and ERα variant TAF1 can mediate the E2-induced MAPK activity. 

TAF1 is an ER variant with three amino acid mutations in helix 12 (D538N, E542Q and 

D545N) that facilitate nuclear ERα-coactivator interactions (Tzukerman et al., 1994), 

thus it is not surprising that mutations on these amino acids do not affect estrogen-

dependent activation through non-genomic pathways (Fig. 41). In these experiments, 

ER variants HE11 (DBD deletion mutant), HE15 (E/F domain mutant) and HE19 (A/B 

domain mutant) were not active. Similar results were observed in E2-induced PI3K 

activity (Fig. 42) and PKA/PKC activity (Fig. 43) in cells transfected with GAL4-SRF and 

GAL4-CREB, respectively. However, an exception was observed for induction of 

CaMKIV activity by E2 (Fig. 44).  ER variant HE19 mediated the activation of CaMKIV 

by estrogen whereas TAF1 exhibited minimal activities in modulating E2-induced 

CaMKIV.  
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Fig. 41. Effects of wildtype/mutant ERα on E2-dependent activation of GAL4-Elk-

1 in MCF-7 cells. Cells were transfected with 1 ug GAL4-Luc, 0.5 ug 

ERα/mutants/empty vector (EV), and 1 ug GAL4-Elk-1 expression plasmid. Cells 

were treated with 10 nM E2 or D (DMSO) for 24 hr and luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) by E2 is indicated by an asterisk.  
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Fig. 42. Effects of wildtype/mutant ERα on E2-dependent activation of GAL4-

SRF in MCF-7 cells. Cells were transfected with 1 ug GAL4-Luc, 0.5 ug 

ERα/mutants/empty vector, and 0.1 ug GAL4-SRF expression plasmid. Cells 

were treated with 10 nM E2 or D (DMSO) for 24 hr and luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) by E2 is indicated by an asterisk.  



 109

GAL4-CREB 

Relative Luciferase Activity

0 20

EV

hER

HE11

HE15

HE19

TAF1

40

E2
D

*

*

 
Fig. 43. Effects of wildtype/mutant ERα on E2-dependent activation of GAL4-

CREB in MCF-7 cells. Cells were transfected with 1 ug GAL4-Luc, 0.5 ug 

ERα/mutants/empty vector, and 0.1 ug GAL4-CREB expression plasmid. Cells 

were treated with 10 nM E2 or D (DMSO) for 24 hr and luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) by E2 is indicated by an asterisk.  
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Fig. 44. Effects of wildtype/mutant ERα on E2-dependent activation of GAL4-p65 

in MCF-7 cells. Cells were transfected with 1 ug GAL4-Luc, 0.5 ug 

ERα/mutants/empty vector, and 0.1 ug GAL4-p65 expression plasmid. Cells 

were treated with 10 nM E2 or D (DMSO) for 24 hr and luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) by E2 is indicated by an asterisk.  

 

To rule out the role of possible interference of endogenous ERα in these assays, we 

carried out a similar set of experiments within the MCF-7 C4 clone, an ERα-negative 

cell line derived from MCF-7 cells (Figs. 45-48) (Oesterreich et al., 2001). The patterns 

of kinase activation in C4 cells transfected with wildtype and variant ERα were 

comparable to that observed for MCF-7 cells (Figs. 41-44), indicating that the 

endogenous ER is not interfering with the assay system.  
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Fig. 45. Effects of wildtype/mutant ERα on E2-dependent activation of GAL4-Elk-

1 in C4 cells. Cells were transfected with 1 ug GAL4-Luc, 0.5 ug 

ERα/mutants/empty vector, and 1 ug GAL4-Elk-1 expression plasmid. Cells were 

treated with 10 nM E2 or D (DMSO) for 24 hr and luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) by E2 is indicated by an asterisk.  
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Fig. 46. Effects of wildtype/mutant ERα on E2-dependent activation of GAL4-

SRF in C4 cells. Cells were transfected with 1 ug GAL4-Luc, 0.5 ug 

ERα/mutants/empty vector, and 0.1 ug GAL4-SRF expression plasmids. Cells 

were treated with 10 nM E2 or D (DMSO) for 24 hr and luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) by E2 is indicated by an asterisk.  
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Fig. 47. Effects of wildtype/mutant ERα on E2-dependent activation of GAL4-

CREB in C4 cells. Cells were transfected with 1 ug GAL4-Luc, 0.5 ug 

ERα/mutants/empty vector, and 0.1 ug GAL4-CREB expression plasmid. Cells 

were treated with 10 nM E2 or D (DMSO) for 24 hr and luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) by E2 is indicated by an asterisk.  
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Fig. 48. Effects of wildtype/mutant ERα on E2-dependent activation of GAL4-p65 

in C4 cells. Cells were transfected with 1 ug GAL4-Luc, 0.5 ug 

ERα/mutants/empty vector, and 0.1 ug GAL4-p65 expression plasmid. Cells 

were treated with 10 nM E2 or D (DMSO) for 24 hr and luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) by E2 is indicated by an asterisk.  

 
The effects of kinase-specific inhibitors on hormonal activation of GAL4-Elk-1, GAL4-

SRF, GAL4-CREB and GAL4-p65 were also investigated. The results showed that 

activation of GAL4-Elk-1, GAL4-SRF and GAL4-p65 by E2 were inhibited MPAK 

inhibitor PD98059, PI3K inhibitor LY294002 and CaMKIV inhibitor KN93, respectively 

(Fig. 49-51). Activation of GAL4-CREB by E2 was primarily inhibited by the PKC 

inhibitor Ro-31-8425, whereas no inhibition by the PKA inhibitor H89 was observed (Fig. 

52). These data support the validity of these assays, which were used in subsequent 

studies on the activation of non-genomic pathways by structurally-diverse estrogenic 

compounds. 
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Fig. 49. Inhibition of E2-dependent activation of MAPK in MCF-7 cells. Cells were 

transfected with 1 ug GAL4-Luc, 0.5 ug ER and 1 ug GAL4-Elk-1 expression 

plasmids. MCF-7 cells were treated with DMSO (D), E2 or E2 plus 30 uM 

PD98059 (PD) for 24 hr.  Luciferase activities were determined as described in 

the Materials and Methods. Significant induction (p<0.05) by E2 is indicated by 

an asterisk. Significant inhibition (p<0.05) of E2-induced luciferase activity is 

indicated by double asterisks.  
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Fig. 50. Inhibition of E2-dependent activation of PI3K in MCF-7 cells. Cells were 

transfected with 1 ug GAL4-Luc, 0.5 ug ER and 0.1 ug GAL4-SRF expression 

plasmids. MCF-7 cells were treated with DMSO (D), E2 or E2 plus 25 uM 

LY294002 (LY) for 24 hr.  Luciferase activities were determined as described in 

the Materials and Methods. Significant induction (p<0.05) by E2 is indicated by 

an asterisk. Significant inhibition (p<0.05) of E2-induced luciferase activity is 

indicated by double asterisks.  
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Fig. 51. Inhibition of E2-dependent activation of CaMKIV in MCF-7 cells. Cells 

were transfected with 1 ug GAL4-Luc, 0.5 ug ER and 0.1 ug GAL4-p65 

expression plasmids. MCF-7 cells were treated with DMSO (D), E2, E2 plus 20 

uM KN93 (KN) for 24 hr.  Luciferase activities were determined as described in 

the Materials and Methods. Significant induction (p<0.05) by E2 is indicated by 

an asterisk. Significant inhibition (p<0.05) of E2-induced luciferase activity is 

indicated by double asterisks. 
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Fig. 52. Inhibition of E2-dependent activation of PKA/PKC in MCF-7 cells. Cells 

were transfected with 1 ug GAL4-Luc, 0.5 ug ER and 0.1 ug GAL4-CREB 

expression plasmids. MCF-7 cells were treated with DMSO (D), E2, E2 plus 10 

uM H89 or E2 plus 5 uM Ro-31-8425 (Ro) for 24 hr.  Luciferase activities were 

determined as described in the Materials and Methods. Significant induction 

(p<0.05) by E2 is indicated by an asterisk. Significant inhibition of E2-induced 

luciferase activity (p<0.05) is indicated by double asterisks.  

  

3.5 The activation of various kinase pathways by structurally diverse estrogenic 

compounds 

A number of structurally-diverse estrogenic compounds were used to test their abilities 

to activate kinases in MCF-7 cells (Fig. 53). Cells were transfected with GAL4-Elk-

1/ERα, treated with 10 nM E2 and DES and various concentrations (20-75 uM) of other 

estrogenic compounds. All compounds, with the exception of resveratrol, induced 

luciferase activity, and thereby activated MAPK activity (Fig. 54) 
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Fig. 53. Estrogenic compounds tested for their activation of kinase pathways in 

MCF-7 cells.   

 

 

 



 120

 

GAL4-Elk-1 

Relative Luciferase Activity

0 20 40 60

D

10 nM E2

25 uM HPTE

25 uM Octylphenol

25 uM Nonylphenol

50 uM Endosulfan

75 uM Resveratrol

75 uM BPA

20 uM Kepone

25 uM HO-PCB-Cl4

10 nM DES *

* *

*

* *

*

*

*

*

*

80

 
 

Fig. 54. Activation of GAL4-Elk-1 by estrogenic compounds. MCF-7 cells were 

transfected with 1ug GAL4-Luc, 0.5 ug ER, and 1 ug GAL4-Elk-l. Transfected 

cells were treated with D (DMSO), E2, or the estrogenic compounds for 24 hr.  

Luciferase activities were determined as described in the Materials and Methods. 

Significant induction (p<0.05) compared to DMSO control is indicated by an 

asterisk.  
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Results from Western blot analysis for phospho-ERK confirmed results of transient 

transfection assays. With the exception of resveratrol, E2 and other estrogenic 

compounds induced phosphorylation of ERK within 10 min after treatment (Fig. 55). 

Inhibition studies with PD98059 indicated that E2 and two other xenoestrogenic 

compounds, HPTE and nonylphenol, also induced phosphorylation of ERK (Fig. 56).  
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Fig. 55. Effects of estrogenic compounds on the phosphorylation of ERK. MCF-7 

cells were treated for 10 min with D (DMSO), E2, HPTE, Oct (p-t-octylphenol), 

Non (nonylphenol), Endo (endosulfan), Res (resveratrol), BPA, Kep (Kepone), 

PCB (HO-PCB-Cl4) and DES. Whole cell lysates were prepared and Western 

blots were performed as described in the Materials and Methods. GAPDH was 

used as a loading control. 
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Fig. 56. Inhibition of ERK phosphorylation by PD98059 (PD). MCF-7 cells were 

pretreated with 30 uM PD98059 for 2 hr and then treated with D, E2, HPTE or 

Non in the presence or absence of PD. Whole cell lysates were prepared and 

Western blots were performed as described in the Materials and Methods. 

GAPDH was used as a loading control. 
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Fig. 57. Activation of GAL4-SRF by estrogenic compounds. MCF-7 cells were 

transfected with 1ug GAL4-Luc, 0.5 ug ER, and 0.1 ug GAL4-SRF. Transfected 

cells were treated with D (DMSO), E2, or the estrogenic compounds for 24 hr.  

Luciferase activities were determined as described in the Materials and Methods. 

Significant induction (p<0.05) compared to DMSO control is indicated by an 

asterisk.  
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Estrogen-induced PI3K plays a major role in proliferation of MCF-7 cells (Castoria et al., 

2001). Results in Figure 57 showed that E2, DES and seven xenoestrogens all induced 

PI3K activity whereas induction was not observable for resveratrol. Western analysis for 

phosphorylation of AKT, a downstream target of PI3K, confirmed this observation (Fig. 

58). The relative potencies of these compounds varied among the transient transfection 

and Western blot assays, possibly due to the fact that transient transfection assay 

evaluates long term (24 hr) effects whereas short term (10 min) effects are observed in 

the immuno blots. The results in Figure 59 confirmed that the induction of AKT 

phosphorylation by E2, nonylphenol and HPTE is inhibited by the PI3K inhibitor 

LY294002.  
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Fig. 58. Effects of estrogenic compounds on phosphorylation of AKT. MCF-7 

cells were treated for 10 min with D (DMSO), E2, HPTE, Oct (p-t-octylphenol), 

Non (nonylphenol), Endo (endosulfan), Res (resveratrol), BPA, Kep (Kepone), 

PCB (HO-PCB-Cl4) and DES. Whole cell lysates were prepared and Western 

blots were performed as described in the Materials and Methods. GAPDH was 

used as a loading control. 
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Fig. 59. Inhibition of AKT phosphorylation by LY294002 (LY). MCF-7 cells were 

pretreated with 25 uM LY for 2 hr and then treated with D, E2, HPTE or Non in 

the presence or absence of LY. Whole cell lysates were prepared and Western 

blots were performed as described in the Materials and Methods. GAPDH was 

used as a loading control. 
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Fig. 60. Activation of GAL4-CREB by estrogenic compounds. MCF-7 cells were 

transfected with 1ug GAL4-Luc, 0.5 ug ER, and 0.1 ug GAL4-CREB. Transfected 

cells were treated with D (DMSO), E2, or the estrogenic compounds for 24 hr.  

Luciferase activities were determined as described in the Materials and Methods. 

Significant induction (p<0.05) compared to DMSO control is indicated by an 

asterisk.  
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Activation of GAL4-CREB is observed in MCF-7 cells treated with E2, DES, HPTE, 

BPA, octylphenol, nonylphenol and endosulfan, but not kepone, resveratrol and HO-

PCB-Cl4. These results (Fig. 60) differentiated kepone and HO-PCB-Cl4 from other 

xenoestrogens. Transactivation studies suggested that E2 primarily activates CREB 

through PKC pathways in MCF-7 cells (Fig. 51), and this was further investigated by 

analyzing induction of CREB phosphorylation by PKC in the presence or the absence 

of PKC inhibitor Ro-31-8425 and PKA inhibitor H89. Minor (E2/HPTE) or no detectable 

inhibition (nonylphenol) of CREB phosphorylation were observed in cells cotreated with 

H89. Significant inhibition was observed after treatment with E2, HPTE and 

nonylphenol in cells cotreated with Ro-31-8425 (Fig. 61). These results confirmed that 

E2 and some xenoestrogens activate PKC in MCF-7 cells.  
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Fig. 61. Effects of estrogenic compounds on the phosphorylation of CREB. MCF-

7 cells were pretreated with 10 uM H89 or 5 uM Ro-31-8425 (Ro) for 2 hr and 

then treated with D, E, HPTE or Non (nonylphenol) in the presence or absence of 

inhibitors for 10 min. Whole cell lysates were prepared and Western blots were 

performed as described in the Materials and Methods. GAPDH was used as a 

loading control. 
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Fig. 62. Activation of GAL4-p65 by estrogenic compounds. MCF-7 cells were 

transfected with 1ug GAL4-Luc, 0.5 ug ER, and 0.1 ug GAL4-p65. Transfected 

cells were treated with D (DMSO), E2, or the estrogenic compounds for 24 hr.  

Luciferase activities were determined as described in the Materials and Methods. 

Significant induction (p<0.05) compared to DMSO control is indicated by an 

asterisk.  
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Of all the compounds tested, only E2 and DES induced transactivation in MCF-7 cells 

transfected with GAL4-p65/ERα (Fig. 62). However, preliminary studies showed that in 

cells transfected with GAL4-p65, HO-PCB-Cl4 inhibited the E2-induced transactivation, 

suggesting that this compound may be a CaMKIV inhibitor. This inhibitory effect was 

further investigated in MCF-7 cells transfected with GAL4-p65/ERα and treated with E2 

alone or in combination with different concentrations of HO-PCB-Cl4. The results 

showed that HO-PCB-Cl4 significantly inhibited CaMKIV-dependent activation of GAL4-

p65 by E2 in a dose-dependent manner (Fig. 63). Antibodies for detecting phospho-

CaMKIV are not available. Therefore, the inhibitory effects of HO-PCB-Cl4 were 

investigated using CaMKIV-dependent induction of p53 by E2 as a model (Qin et al., 

2002). The results (Fig. 64) demonstrated that E2-dependent inductions of p53 protein 

levels in MCF-7 cells was inhibited by the antiestrogen ICI 182,780 and by both KN93 

and HO-PCB-Cl4, confirming that HO-PCB-Cl4 is a CaMKIV inhibitor.  
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Fig. 63. Inhibition of transactivation of GAL4-p65 by HO-PCB-Cl4.  MCF-7 cells 

were transfected with 1ug GAL4-Luc, 0.5 ug ER and 0.1ug GAL4-p65. Cells were 

treated with D, E2 or E2 plus various concentrations of HO-PCB-Cl4 for 24 hr. 

Luciferase activities were determined described in the Materials and Methods. 

Significant induction (p<0.05) compared to DMSO control is indicated by an 

asterisk.  
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D             E2        E2+ICI   E2+KN   E2+PCB

p53

GAPDH  
Fig. 64. Inhibition of hormone-induced p53 protein expression by ICI 182, 780, 

KN93 and HO-PCB-Cl4. MCF-7 cells were treated with DMSO (D), E2, or E2 plus 

ICI 182,780 (ICI), KN93 (KN) and HO-PCB-Cl4 (PCB) for 6 hr. Whole cell lysates 

were prepared and Western blots were performed as described in the Materials 

and Methods. GAPDH was used a loading control.  

 

To evaluate the role of ER in the nongenomic actions of estrogenic compounds, we 

chose E2 and two compounds HPTE and nonylphenol to test whether their activation of 

MAPK and PI3K is sensitive to antiestrogen inhibition. The phosphorylation of AKT 

through E2, HPTE and nonylphenol were inhibited by ICI 182, 780, suggesting that 

activation of PI3K by these three chemicals is ER-dependent. E2-induced 

phosphorylation of ERK is also inhibited by ICI 182,782, however, HPTE- and 

nonylphenol-induced phosphorylation of ERK were partially (HPTE) or completely 

(nonylphenol) resistant to the inhibitory effects of ICI 182,780 (Fig. 65). These results 

indicate that some nongenomic actions of xenoestrogen may not be mediated by ER.  
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Fig. 65. Effects of the antiestrogen ICI 182,780 on MAPK and PI3K activation by 

estrogenic compounds. MCF-7 cells were pretreated with ICI 182,780 (I) for 6 hr 

and then treated with DMSO (D), E2 (E), HPTE (H) and nonylphenol (N) for 10 

min. Whole cell lysates were prepared and Western blots were performed as 

described in the Materials and Methods. GAPDH was used as a loading control.  
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CHAPTER IV 

DISCUSSION AND SUMMARY 

 
4.1 The E2-responsive DNA motif in LDHA gene promoter is a CRE (-48/-41) 

Estrogen-induced breast cancer growth requires upregulation of a plethora of cellular 

components. Traditionally, the molecular mechanisms of hormonal activation of genes 

were thought to be mediated by the classic ER-ERE pathway. However, during the past 

10-15 years, multiple novel pathways of hormonal actions have been discovered. For 

example, c-fos, a proto-oncogene essential for cell proliferation, is induced by estrogen 

through activation of MAPK and PI3K pathways (Duan et al., 2001). Heat shock protein 

27 (Hsp 27), an important chaperone protein, is regulated by estrogen through ER-Sp1 

interactions with both GC-rich and ERE half sites or through GC-rich sites alone (Porter 

et al., 1996).  

 

One goal of this study has been to elucidate the mechanism of induction of LDHA by 

estrogen. LDHA has been well characterized as an E2-inducible gene. For example, in 

MCF-7 breast cancer cells, LDHA were induced by estrogen but not by progesterone, 

hydrocortisone, prolactin, insulin, or triiodothyronine (Burke et al., 1978).  Rodent 

mammary tumors and normal mammary glands had increased LDHA expression after 

administration of E2 (Richards and Hilf, 1972). LDHA levels increased significantly in 

the uterus of immature mice treated with DES and the LDHA promoter-reporter 

constructs are also responsive to E2 and DES in CHO cells (Li and Hou, 1989). 

Preliminarily results of Northern blot analysis (Fig. 20) indicate that upon treatment of 

MCF-7 cells with E2, LDHA mRNA levels are significantly increased within 1 hr and 

increased further 6 and 48 hr after treatment. The maximum induction (about two-fold) 

was achieved at 48 hr time point. It is possible that LDHA mRNA levels may be further 

induced if cells were treated with E2 for longer than 48hr.  These results confirm that 

LDHA mRNA levels are induced by E2 at the transcriptional level.  

 

Analysis on the LDHA prompter indicates that it contains multiple cis-elements (Fig. 

21). Results of transient transfection assays (Fig. 23-25) show that the cis-element 

mediating estrogen-induction in MCF-7 cells is a CRE site located at -48/-41 in the 
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LDHA promoter. This CRE appears to be an important regulatory element and other 

studies showed that the element is activated by cAMP signaling (Short et al., 1994). 

The cAMP-responsiveness of the CRE (-48/-41) site was also confirmed in our study 

through the induction of LDHA promoter-reporter constructs by  constitutively active 

PKA (Fig. 30) and cholera toxin, a cAMP inducer (Fig. 31).  CRE binds CREB family 

proteins and results of a gel mobility shift (Fig. 27), and supershift assays (Fig. 28) and 

the inhibitory effects of Killer CREB on a LDHA promoter construct (Fig. 29) have 

verified the binding of CREB family proteins to the CRE (-48/41).  

 

Active CRE sites are frequently observed in close proximity (200 bp) to transcription 

initiation sites in gene promoters (Fig. 66 ) and become less cAMP-responsive when 

moved further upstream (Tinti et al., 1997). In agreement with this observation, the E2-

responsive-CRE in LDHA promoter is located near the initiation start site (-48/-41) and 

this motif is not only important for E2-responsivenes, but also for basal activity. 

Mutation of the CRE in promoter-reporter construct results in a 75% decrease in basal 

activity compared to the wildtype construct (Fig. 25).  

 

 

Somatostatin TTGGCTGACGTCAGAGAGAGAG -32
PEPCK GCCCCTTACGTCAGAGGCGAGC -74
VIP TACTGTGACGTCTTTCAGAGCA -60
PTH GGGACTGACGTCATCT -65
Enkephalin GGGCCTGCGTCAGC -87
αCG AAAATTGACGTCATGG -113
fos CCCAGTGACGTAGGA -57
Secretogranin II GCCGGTGACGTCAGCGT -74
Chromogranin B CTCCGTGACGTCAGCGT -108
Synapsin I CGCGCTGACGTCACTCG -166

LDHA CACTCTGACGTCAGCGC -48
Aromatase TATGCACGTCACCCA -161
Fibronectin CCCTGACGTCACCC -170
αA Crystallin ACCAGACTGTCATCCC -148  

Fig. 66. Locations of active CRE sites in gene promoters. CRE sites are 

underlined and indicated in bold and their starting positions are indicated as 

numbers in the right column. Adapted from Montminy (1997). 
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The consensus CRE sequence is TGACGTCA, however, a CGTCA half site is also 

functional, although less active (Fink et al., 1988; Craig et al., 2001). Many CRE-

regulated genes are involved in metabolic pathways and this includes genes such as 

phosphoenol pyruvate carboxykinase (Liu et al., 1991), cytochrome C (Herzig et al., 

2000) and the gene in this study, LDHA. Some important cell cycle and cell survival 

factors, such as Bcl-2 (Dong et al., 1999) and cyclin D1 (Castro-Rivera et al., 2001), 

are also regulated in breast cancer cells by these CRE motifs. Other examples of CRE-

regulated genes are growth factors (insulin, fibroblast growth factor 6), transcription 

factors (glucocorticoid receptor, STAT3) and immune system regulators (Cox-2, 

interleukin-2) (Mayr and Montminy, 2001).  Since CREs can be regulated by estrogen, 

these genes are potential targets for hormonal activation through their respective 

CREs. Many of them, such as Bcl-2 and cyclin D1, have already been characterized as 

E2-responsive in breast cancer cells (Dong et al., 1999; Castro-Rivera et al., 2001).  

 

CRE-regulated genes are particularly important for mediating brain functions. For 

example, trkB, a receptor for brain-derived neurotrophic factor (BDNF)/neurotrophin 

(NT)-4/5, is regulated by a proximal CRE within its promoter. The product of trkB plays 

a crucial role in brain development and maintenance, and its adaptation to injury or 

pathological conditions (Deogracias et al., 2004). CART, a peptide involved in 

addiction and feeding behavior, is also responsive to cAMP, which subsequently 

activates a CREB-CRE complex (Lakatos et al., 2002). Given the important role of 

CREB in the nervous system, it is possible that some of these effects of estrogen on 

the nervous system are mediated through activation of CRE-regulated genes (McEwen, 

2001).  

 

LDHA promoter-reporter constructs are E2-inducible only when cotransfected with 

wildtype ER. The ER variants HE11 (deletion on DBD), HE15 (deletion on AF2) and 

HE19 (deletion on AF1) were not active (Fig. 22), suggesting that AF1, AF2 and DBD 

in ER are all necessary for induction of LDHA by E2. This observation is consistent 

with the study on ER domain requirement for E2-induced GAL4-CREB activation, 

which also showed that HE11, HE15 and HE19 did not mediate GAL4-CREB activation 

whereas wildtype ER was active (Fig. 43, 47).  The E2-induced LDHA promoter activity 
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can be inhibited by the antiestrogens ICI 182,780 and tamoxifen (Fig. 26), further 

confirming the requirement of ER for hormone-responsiveness. 

 

Gel mobility shift assays demonstrated that nuclear factors specifically bound to CRE (-

48/-41) since coincubation with excess unlabeled probe (LDHA) or a consensus CRE 

competitively decreased the retarded band intensity whereas unlabeled probe with a 

CRE mutation had no effect on retarded band intensity (Fig. 27).  Supershift assays 

showed that ATF1 antibody supershifted the nuclear-proteins-DNA complex, 

suggesting that CREB family proteins are components of this complex. The fact that 

other antibodies against CREB and CREM did not form supershifted complex does not 

exclude their potential roles in the complex, since supershift assays are conducted in 

vitro, and do not necessarily reflect the situation in living cells. Furthermore, some 

epitopes in the complex may be inaccessible to specific antibodies and thus cannot be 

detected and previous studies in this laboratory with other protein-CRE complexes 

were not supershifted by these same antibodies. 

 

Cholera toxin, a cAMP inducer, and PKAc, a constitutively active form of PKA, both 

activated the LDHA promoter constructs (Fig. 30, 31). Responsiveness to cAMP/PKA 

stimuli is a common trait for CRE-regulated genes and this confirms that the CRE in 

the LDHA promoter is cAMP-responsive. The Killer CREB inhibition study suggests the 

transcriptions factors binding to CRE (-48/-41) include CREB proteins (Fig. 29). CREB 

family proteins have several closely related members, including CREB, ATF1 and 

CREM and for CREB and CREM, several alternatively spliced products have been 

identified (van Dam and Castellazzi, 2001; Lonze and Ginty, 2002).The splicing 

variants exhibit distinct activating/repressing ability (Table 3). For example, a truncated 

CREM gene product, ICER (inducible cAMP response element repressor), is a potent 

transcriptional repressor for CRE (Molina et al., 1993) and is involved in the stress 

response in pituitary gland (Mazzucchelli and Sassone-Corsi, 1999). A highly 

conserved basic region/Leucine Zipper (bZIP) in C-terminus of CREB family proteins is 

essential for their dimerization and DNA-binding (Yun et al., 1990). Dimerization can 

form homodimers, or heterodimers between different CREB family members (Hurst 

and Jones, 1987; Yamamoto et al., 1988; Laoide et al., 1993). Killer CREB has a DNA 

binding domain deletion and exerts its inhibitory effects by sequestering CREB family 
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protein through dimerization (Walton et al., 1992). Thus, the Killer CREB experiment 

confirmed the role of CREB family proteins in mediating LDHA induction by E2. 

 

Table 3  

Examples of splicing variants of CREB and CREM. Adapted from Mayr and 

Montminy (2001). 

CREB family member Splicing variants activities 

CREB 341/CREB-α Activation 

CREB 327/CREB ∆ Activation 

CREB ∆-14 Inhibition 
CREB 

CREB ∆-35 Inhibition 

CREM-τ Activation 

CREM-α Conditional activation 

S-CREM Inhibition 
CREM 

ICER I Inhibition 

 

 

GAL4-CREB was also activated by E2 when cotransfected with ER and GAL4-Luc 

(Fig. 32). Furthermore, similar to observations with the LDHA promoter-reporter 

constructs,   GAL4-CREB was non-responsive to E2 without cotransfection of ER. 

Thus, these results indicate that E2 activates CREB in MCF-7 cells in an ER-

dependent manner.  

 

In summary, this study identified a CRE (-48/-41) site that is responsible for the E2-

inducibility of the LDHA promoter. The responsiveness of LHDA to E2 is dependent on 

ER and cannot be mediated by ER mutants with deletions of AF1, AF2 and DBD. This 

CRE is the specific binding site for CREB family proteins.  
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4.2 E2-induced activation of CREB is mediated predominantly through nongenomic 

activation of PKC by E2 in MCF-7 Cells 

 

CREB requires phosphorylation of Ser133 to be transcriptionally active (Gonzalez and 

Montminy, 1989) and this phosphorylation can be achieved through multiple kinase 

cascades, including PKA (Gonzalez and Montminy, 1989), CaM Kinase (Matthews et 

al., 1994; Sun et al., 1994), PKC (Xie and Rothstein, 1995), PI3K/AKT (Du and 

Montminy, 1998) and MAPK/pp90RSK (Xing et al., 1998). The MAPK kinase inhibitor 

PD98059, the PI3K inhibitor wortmannin and CaM kinase inhibitor W7 did not inhibit the 

E2-inducibility of LDHA promoter-reporter constructs, suggesting that MAPK/pp90RSK, 

PI3K/AKT and CaM kinase are not involved into E2-mediated activation of CREB (Fig. 

33).  

 

PKA is a major pathway for phosphorylation of CREB Ser133 (Gonzalez and Montminy, 

1989) and estrogen has been shown to elevate intracellular cAMP levels (Aronica et al., 

1994). Thus it is biologically plausible that E2 activates LDHA by activating CREB family 

through the cAMP/PKA pathway. In fact, some CRE-regulated genes, such as Bcl-2 

and cyclin D1, are induced by estrogen-activated PKA (Dong et al., 1999; Castro-Rivera 

et al., 2001). However, three cAMP/PKA inhibitors that we employed (H89, SQ22536 

and 2’5’-dideoxyadenosine) had only minimal impact on the E2-responsiveness of 

LDHA promoter constructs (Fig 34). The cAMP/PKA pathway is functional and capable 

of inducing LDHA promoter-reporter constructs in MCF-7 cells, because cholera toxin 

and PKA can activate those constructs (Fig. 30, 31).  However, induction of LDHA by 

estrogen is not predominantly mediated by activation of PKA pathway.  

 

In contrast to the cAMP/PKA inhibitors, the PKC inhibitors Ro-31-8425 and 

bisindolylmaleimide I abolished E2-induced activation of LDHA promoter-reporter 

constructs (Fig. 35) and GAL4-CREB (Fig. 36), suggesting that the E2-induced activity 

is mainly through activation of PKC. This finding is further corroborated by Western blot 

analysis showing that E2-induced CREB phosphorylation was also inhibited by 

bisindolylmaleimide I (Fig. 40). The effects of estrogen are clearly distinguished from 

the traditional cAMP inducers such as cholera toxin in the activation of LDHA. Cholera-

toxin-induced activation of LDHA was inhibited by the PKA inhibitor H89 but not the 
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PKC inhibitor bisindolylmaleimide I (Fig. 37), while activation of LDHA by E2 was 

inhibited by bisindolylmaleimide I but not H89 (Fig. 34, 35). Activation of CREB family 

protein by PKC is a relatively rare event compared to that of PKA, but has previously 

been reported (Xie and Rothstein, 1995; Xie et al., 1996; Johannessen et al., 2004). 

Therefore, PKC is an effector of nongenomic actions of E2 (Kelly et al., 1999; Sylvia et 

al., 2001) and this study shows  that estrogen induces PKC, which in turn activates 

CREB family proteins and induces LDHA transcription.   

 

Previous studies in this laboratory have identified two genes, Bcl-2 and cyclin D1, that 

are regulated by E2 through activation of CREB in a PKA-dependent manner (Dong et 

al., 1999; Castro-Rivera et al., 2001). In the case of cyclin D1, the induction is 

mediated through a nonconsensus proximal CRE (TAACGTCA) in ZR-75 cells. This 

nonconsensus CRE was not active in MCF-7 cells. In the case of Bcl-2, the 

nonconsensus CRE motif (TGACGTA) was activated by E2 in MCF-7 cells. In the 

LDHA promoter, the E2-responsive CRE is a consensus motif (TGACGTCA). These 

results suggest that the cell context, the nucleotide sequence of the CRE and its 

flanking regions have a role in determining whether the target gene will be 

preferentially activated by PKA or PKC. E2-induced activation of GAL4-CREB (Fig. 52) 

and phosphorylation of CREB protein (Fig. 61) were all predominantly inhibited by the 

PKC inhibitor Ro-31-8425 rather than by the PKA inhibitor H89, suggesting that there 

is a certain degree of preference over kinase activation pathways linked to 

phosphorylation of CREB. However, at present, little is known about the mechanism of 

activation of PKA or PKC by E2/ER and it is difficult to speculate about the underlying 

mechanisms for this preferential PKA/PKC activation.  

  
Phosphorylation of CREB is significantly increased within 5 min after treatment of E2. 

This rapid action is within the typical time-frame of the nongenomic actions by E2 (Fig. 

39). We also observed that the phosphorylation levels of CREB soon returned to basal 

levels. This transient phosphorylation is also a typical feature of CREB activation. The 

underlying mechanism may be the rapid dephosphorylation of CREB at Ser133 by 

protein phosphatases, such as protein phosphatase-1 (PP-1) and protein phosphatase 

PP2A (Hagiwara et al., 1992; Wadzinski et al., 1993). Possibly due to this reason, 
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many CREB-regulated genes are induced only transiently. For example, in PC12 cells, 

the transcription of somatostatin can be rapidly induced by cAMP inducers but soon 

decreases to basal levels within 4 hr (Hagiwara et al., 1992). However, the induction of 

LDHA transcription appears to be more long-term because Northern blots (Fig. 20) 

showed that the induction on LDHA mRNA levels persisted for up to 48 hr after 

treatment with E2. The gel mobility shift assay also demonstrated that two-hour E2 

treatment before harvesting nuclear extracts enhanced nuclear protein binding to the 

CRE.  Thus, after initial phosphorylation and following dephosphorylation, there may 

be a secondary sustainable CREB activation in cells through some unidentified 

mechanism.  Another possibility is that some CREB isoforms, or other members of 

CREB family, may be less susceptible to dephosphorylation and can substitute for 

CREB in maintaining upregulated gene expression for longer periods.  
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Fig. 67. Model of E2-induced LDHA transactivation in MCF-7 cells. 

 

In summary, this study showed that E2-induced activation of CREB in MCF-7 cells is 

mediated predominantly through PKC. The PKA pathway in MCF-7 cells is intact and 
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fully functional after stimulation with a cAMP inducer, however, PKC but not PKA is the 

major pathway for hormone-dependent phosphorylation of CREB (Fig. 67).  

 

4.3. Nongenomic actions of E2 require different ER domains  

Estrogen is not unique in its activation of nongenomic actions in cells/tissues. Rapid, 

nongenomic effects have been extensively reported for other steroids, including 

progesterone (Morrill and Kostellow, 1999; Patrat et al., 2000), androgens (Benten et 

al., 1997; Machelon et al., 1998), glucocorticoids (Qiu et al., 1998; Venero and Borrell, 

1999) and  mineralocorticoids (Gekle et al., 1996; Christ et al., 1999).  The large 

number of examples of steroid-mediated activation of kinase pathway suggests that 

steroid hormones are important signaling molecules in metazoans. Phylogenetic 

analyses indicate that the first steroid hormone receptor was an estrogen receptor and 

other steroid receptors evolved from the prototypical estrogen receptor through ligand 

exploitation and serial genome expansions (Thornton, 2001).  Thus, some nongenomic 

activities by the diverse group of steroids may also have evolved from a common 

mechanism which originated with ancient ER.  

 

Steroid-mediated nongenomic actions have also been characterized in plants. A 

transmembrane receptor kinase BRI1 can be activated by binding to brassinosteroid 

(BR), a plant steroid (Wang et al., 2001c). BR binding to BRI1 leads to its dimerization 

with BRI1-associated receptor kinase 1 (BAK1) and mutual transphosphorylation. The 

BRI1-BAK1 complex inhibits the activity of BIN2, a kinase which shares homology with 

mammalian glycogen synthase kinase 3 (GSK3). BIN2 is a negative regulator of BR 

signaling and its inhibition leads to the activation of two downstream nuclear proteins, 

BZR1 and BZR2/BES1 and target gene expression (Fig. 68) (Tichtinsky et al., 2003; 

Wang and He, 2004). The steroid binding domain of BRI1 has a unique structure from 

that of the metazoan steroid receptors, suggesting that they are not closely related 

(Kinoshita et al., 2005). The plant steroid signaling systems may share a distant 

ancestral prototype with metazoan systems, or it may have arisen independently. 

Whatever the case, steroid-induced nongenomic actions appear to be an ancient 

mechanism and have important physiological functions. For example, in breast cancer 

cells hormone-dependent growth is not only inhibited by antiestrogens but also by PI3K 
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inhibitors such as LY294002, suggesting that direct or indirect actions of this kinase by 

E2 is essential for cell growth (Zhang et al., unpublished data). 

 

BRl1 BAK1

BIN2

BES1/BZR1
BR response genes

BR

 
Fig. 68. Brassinosteroid (BR)-mediated kinase pathway in Arabidopsis. Adapted 

from Tichtinsky et al. (2003).  

 

When transfected chimeric proteins are used to assess E2-induced kinase activation, 

cotransfection of ER is required for activity even though MCF-7 cells express 

endogenous ER (Fig. 41-44). As observed for LDHA promoter-reporter constructs and 

many other E2-responsive constructs, endogenous ER is not sufficient to observe E2-

responsiveness due to overexpression of constructs in the transfected cells. Therefore 

we conducted parallel experiments in ER-negative C4 cells and observed results 

similar to those observed in transfected MCF-7 cells (Fig. 45-48). These results 

indicate that at least, a portion of kinase-inducing membrane associated ER and 

nuclear ER are encoded by the same gene (Razandi et al., 1999). This is an important 

issue since some lines of evidence suggest that the membrane-associated ER is 

distinct from the nuclear ER (Gu et al., 1999; Nadal et al., 2000; Singh et al., 2000; 

Tsai et al., 2001; Thomas et al., 2004). In our studies, transfected ER was capable of 

mediating the activation of MAPK, PI3K, PKA/PKC and CaMKIV, in ER-negative C4 
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cells and ER-positive MCF-7 cells, suggesting that the same ER can mediate both 

genomic and nongenomic actions of estrogen.    

 

The validity of the chimeric protein assays were confirmed with the specific kinase 

inhibitors. E2 induced transactivation in MCF-7 cells transfected with GAL4-Elk-1, 

GAL4-SRF and GAL4-p65 and these responses were inhibited by the MAPK inhibitor 

PD98059, PI3K inhibitor LY294002 and CaMKIV inhibitor KN93, respectively (Fig. 49-

52). E2-dependent activation of GAL4-CREB was inhibited by the PKC inhibitor Ro-31-

8425 but not the PKA inhibitor H89, confirming that E2 preferential induced activation 

of CREB through PKC in MCF-7 cells. Thus GAL4-Elk-1, GAL4-SRF, GAL4-CREB and 

GAL4-p65 have been validated as assays to detect activation of MAPK, PI3K, 

PKA/PKC and CaMKIV pathways, respectively, in MCF-7 cells. All the assays were 

performed in MCF-7 cells and their use in other cell lines would require similar 

validation studies.   

 

For MAPK, PI3K and PKA/PKC, their activation can be mediated by transfected 

wildtype ER or TAF1. ER with deletions of AF1 (HE19), AF2 (HE15) and DBD (HE11) 

(Fig. 69) are ineffective for activating MAPK, PI3K and PKA/PKC (Fig. 41-43). In 

contrast, for CaMKIV, activation can be mediated by wildtype ER and the AF1 deletion 

mutant (HE19), but not by HE11, HE19 or TAF1 (Fig. 44). The different patterns of ER 

domain requirements for hormonal activation of CaMKIV and MAPK/PI3K/PKA/PKC 

suggest that the association of ER with other membrane/cytosolic proteins may differ 

for specific kinases.  

 

 

AF1 DBD D AF2
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DBD D AF2

AF1 DBD D XXX  AF2
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Fig. 69. Domains of wild-type, deletion and mutant ER constructs. 
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The AF2 domain of ERα is important for regulating E2-induced kinase cascades since 

this domain can associate with SH2 domain of c-Src, triggering downstream activation 

of MAPK in MCF-7 cells. This association is stimulated by estrogen and inhibited by 

antiestrogens, suggesting a ligand-dependent mechanism of kinase activation 

(Migliaccio et al., 1996; Migliaccio et al., 2002). In our study, the HE15 construct, in 

which the AF2 region is deleted, did not mediate E2-dependent transactivation in cells 

transfected with the chimeric proteins although basal activities were increased (Fig. 41-

44). The estrogen-insensitivity is not surprising because HE15 lacks the ligand binding 

domain. However, the elevated basal activities suggest that AF1/DBD of ER may 

constitutively enhance activation of kinases.  

 

The constitutive activity of the AF1 domain of ER has been well documented in its 

genomic actions (Tremblay et al., 1999); (Schlegel et al., 2001). Our study provides 

indirect evidence that the AF1/DBD domain contributes to the constitutive nongenomic 

activity. It is possible that the constitutive nongenomic activity of AF1/DBD is inhibited 

by AF2 domain and can be released only by adding ligand and by deleting the AF2 

domain. The TAF1 ER mutant mediated E2-induced transactivation in cells transfected 

with kinase-dependent constructs. However, the basal activities and fold induction were 

variable compared to those observed in cells transfected with wildtype ER (Fig. 41-43). 

TAF1 is mutated on three amino acids that are important for the ER genomic actions 

(D538N, E542Q and D545N) and ER genomic pathways are decreased or not observed 

using this construct (Tzukerman et al., 1994). Since TAF1 activates MAPK, PI3K and 

PKA/PKC, this suggests that the genomic and nongenomic actions of ER are mediated 

through distinct mechanisms.  

 

CaMKIV activation distinguished itself as a unique pathway in this study. Transfecting 

cells with HE19, an ER mutant with deletion on AF1, activated CaMKIV-dependent 

GAL4-p65 and this was also observed in cells transfected with wildtype ER (Fig. 44, 

48). HE19 did not activate other kinase-dependent chimeric proteins, suggesting that 

AF1 domain is not essential for CaMKIV activation.  In contrast, TAF1 mutant, although 

active in regulating the E2-induciblity of MAPK-, PI3K- and PKA/PKC-dependent 

constructs, did not mediate CaMKIV-dependent activation of GAL4-p65 by E2, however, 

basal activities were significantly elevated (Fig. 44, 48). These unique features suggest 
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that hormonal activation of CaMKIV differs from the other kinases and this may be due 

to association of ER with other cytosolic/membrane factors.   

 

In summary, this study used chimeric proteins to evaluate the nongenomic actions of E2 

mediated by wildtype and mutant ER in MCF-7 cells and C4 cells. The results 

demonstrate differential activation among kinases, with wildtype ER and TAF1 

activating MAPK, PI3K and PKA/PKC, while wildtype ER and HE19 activating CaMKIV 

(Fig. 41-48). Phylogenetic studies suggest that the ancestral estrogen receptor was an 

orphan receptor and its ligand-binding capacity was acquired later during evolution 

(Escriva et al., 1997; Laudet, 1997). It is possible that the ancestral prototypes of AF1 

and AF2 were sufficient for induction of nongenomic activities before acquiring the 

capability for activating genomic pathways. A sequential acquisition of nongenomic and 

genomic pathways of estrogen receptor may be an integral component of the evolution 

of ER structure and function.   

 

4.4 Structurally diverse estrogenic compounds have different profiles for ER-dependent 

activation of kinase pathways 

The estrogenic compounds examined in this study are structurally diverse. Some 

closely resemble the backbone structure of estradiol, such as DES. Others such as 

kepone bear no apparent semblance to estradiol. Kepone is a cubic molecule and does 

not contain a single aromatic ring (Fig. 53). These compounds all bind to the ER and 

exhibit estrogenic activities.  With the exception of DES, which has comparable potency 

to E2, the compounds investigated in this study are weak ER agonist compare to E2. 

For example, kepone has only about 0.01-0.04% of the affinity for ER compared to 

estradiol (Hammond et al., 1979).  

 

Estrogenicity is a loosely used term and literally means estrogen-like property. 

However, what constitutes an estrogen-like property has not been well-defined.  Usually 

an ER-binding compound will be considered “estrogenic” if it can mimic some activities 

of estrogen, such as inducing vaginal cornification in immature mice, increasing the 

proliferation of uterine epithelium and uterine wet weight in ovariectomized mice, or 

upregulating estrogen-inducible genes and cell proliferation  in estrogen responsive cell 
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cultures or tissues. The compounds examined in this study have all been intensively 

studied and are estrogenic based on at least one of the criteria indicated above 

(Hammond et al., 1979; Gould et al., 1998; Steinmetz et al., 1998; Hodges et al., 2000; 

Yoon et al., 2000; Yoshida et al., 2000; Yoon et al., 2001; Recchia et al., 2004).   

 

In these studies, we used concentrations of estrogenic compounds that induced 

maximal activities but were not cytotoxic. With the exception of resveratrol, E2 and the 

other eight compounds activate MAPK and PI3K in MCF-7 cells in both transient 

transfection assays and by Western blot analysis for phospho-ERK or phospho-AKT 

(Fig. 54-55, 57-58). There were some differences on the relative potencies of these 

compounds between the two assays and these were not further investigated. Two 

representative chemicals, HPTE and nonylphenol were selected as prototypes for 

inhibition studies using the MAPK inhibitor PD98059 and the PI3K inhibitor LY294002. 

The results confirmed that the activities mediated by these estrogenic compounds are 

indeed modulated through activation of MAPK and PI3K pathways (Fig. 56, 59).  

 

In MCF-7 cells, PI3K activation is crucial for E2-induced cell proliferation (Castoria et 

al., 2001). With the exception of resveratrol, the estrogenic compounds all induced PI3K 

activity, in agreement with reports showing that they stimulate MCF-7 cell proliferation 

(Soto et al., 1995). In our studies resveratrol was inactive and did not modulate MAPK-, 

PI3K-, PKA/PKC- and CaMKIV-dependent activities. There are reports demonstrating 

the activation of ER-ERE by resveratrol (Gehm et al., 1997). However, with regard to 

kinase activation, our observations are supported by studies showing that resveratrol 

inhibits some kinase activities and inhibits growth of human cancer cells (Lu and 

Serrero, 1999).  

 

E2, DES, HPTE, BPA, octylphenol, nonylphenol and endosulfan activated PKA/PKC, 

however, kepone, resveratrol and HO-PCB-Cl4 were inactive in this assay (Fig. 60). 

Using HPTE and nonylphenol as representative compounds, Western blots 

demonstrated that the phosphorylation of CREB by xenoestrogens is mediated mainly 

through PKC, not PKA (Fig. 61). Kepone and HO-PCB-Cl4 activated MAPK and PI3K 

but not PKA/PKC, showing that activation of PKA/PKC by xenoestrogens was structure-
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dependent and required ligand-dependent recruitment of different sets of 

cytosolic/membrane proteins associated with activation of kinases.  

 

The uniqueness of CaMKIV was also observed by its selective activation by estrogenic 

compounds. Among the compounds that were used, only E2 and DES induced 

CaMKIV-dependent activation of NFkB p65 subunit (Fig. 62).  DES is a synthetic 

estrogen that closely mimics estradiol and it is not surprising that DES and E2 

consistently showed the same kinase activation patterns in this study (Fig. 54, 57, 60, 

62). It was surprising that HO-PCB-Cl4, which binds ERα and induces MCF-7 cell 

proliferation (Ramamoorthy et al., 1997), inhibited E2-induced GAL4-p65 activity. 

Significant inhibition of this CaMKIV dependent-activity was observed at concentrations 

as low as 5 uM, suggesting a potency similar to the widely used CaMKIV inhibitor KN93 

(Fig. 63).  Estrogen-induced p53 upregulation is activated by through CaMKIV-

dependent action of NFkB subunit p65 (Qin et al., 2002) and both KN93 and HO-PCB-

Cl4 inhibited p53 protein expression by E2 in MCF-7 cells (Fig. 64). These results 

confirmed that HO-PCB-Cl4 is a potent inhibitor of CaMKIV, quite the contrary to what 

might be expected of an estrogenic compound.  

 

These results, coupled with previous findings on the structure-dependent differences in 

activation of genomic ER (Gould et al., 1998; Sonnenschein and Soto, 1998; Gaido et 

al., 2000), demonstrate profound structure-dependent differences among various 

estrogenic compounds. In this study, DES and had the same kinase activation profile. 

However, even DES can be distinguished from E2 in some respects. In MCF-7 cells, E2 

but not DES activates GC-rich promoters through ER/Sp1 interactions (Wu et al, 

unpublished data). Thus, each compound exhibits unique estrogenic activities and also 

shares some of the same estrogenic activities with E2.   

 

The activation of MAPK and PI3K by E2 can be inhibited by the antiestrogen ICI 182, 

780. Similarly, ICI 182, 780 abolished the activation of PI3K by HPTE and nonylphenol 

(Fig. 65). These results are consistent with the hypothesis that estrogen-dependent 

nongenomic actions are mediated by the ER.  However, MAPK induced by HPTE and 

nonylphenol could not be inhibited by ICI 182,780, suggesting that some nongenomic 

actions were independent of ER and mediated by membrane-associated estrogen-
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binding factors not related to the traditional nuclear ER. Based on these results, the 

nongenomic actions of estrogenic compounds can be view as a combinational effect of 

ER and non-ER mediated pathways. The relative weight of each pathway maybe 

variable for each specific kinase and is determined by cell context and ligand structure. 

The effects of ER-dependent and –independent pathways can be distinguished through 

the ER-inhibitory effects of antiestrogen ICI 182,780 (Fig. 70). Future studies will 

investigate the mechanisms associated with the differential responses induced by 

xenoestrogens.  

 

Estrogenic compounds

ER Other estrogen-
binding factors 
(e.g. GPR30)

Nongenomic 
actionsICI 182,780

ICI 182,780

 .  

 

Fig. 70. The nongenomic actions of estrogenic compounds. 

 

Parallel phenomena have been observed for the nongenomic actions of other steroid 

hormones. A distinct membrane progestin receptor (mPR) has been identified and this 

protein mediates the nongenomic actions of progesterone. This putative mPR has been 

cloned and resembles a G protein-coupled receptor (GPCR) and is unrelated to the 

traditional nuclear progesterone receptor (PR) (Zhu et al., 2003). The androgen 

receptor also appears to have a membrane-associated form unrelated to the nuclear 
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form. The membrane androgen receptor (mAR) mediates the nongenomic actions of 

androgens on the cell membrane of T cells. This mAR apparently is different from 

nuclear androgen receptor because AR antibodies do not recognize mAR and 

cyproterone, a blocker of the classical AR does not inhibit activation of mAR (Benten et 

al., 1999). In another report, a putative membrane androgen receptor (mAR) has been 

biochemically characterized in the ovary of Atlantic croaker. Again, the mAR in this case 

has different ligand-binding affinity from that of nuclear AR, suggesting that it is not 

nuclear AR, or at least is a modified form of nuclear AR (Braun and Thomas, 2004).  

 

Several candidate proteins have been proposed as membrane-associated estrogen-

binding factors (Luconi et al., 1999; Nadal et al., 2000; Thomas et al., 2004). One factor 

that has been relatively well-characterized is a transmembrane G protein-coupled 

receptor named GPR30. GPR30 possesses specific, high affinity binding capacity for 

E2, the antiestrogens tamoxifen and ICI 182,782, and the xenoestrogen o-p’-DDE 

(Thomas et al., 2004). Upon E2 treatment, GPR30 rapid induces adenylate cyclase and 

elevates cAMP levels (Filardo et al., 2002).  E2 and phytoestrogens genistein and 

quercetin also activated MAPK cascades and upregulated c-fos gene through GPR30 

(Maggiolini et al., 2004). Recently, GPR30 has been identified in the endoplasmic 

reticulum and rapidly mobilizes intracellular calcium and induces PIP3 production in the 

nucleus in response to estrogen stimulation (Revankar et al., 2005). These findings 

suggest that GPR30 is an integral part of estrogen signaling and may have important 

physiological functions.  

 

Some steroid hormone receptor agonists, such as estradiol, progesterone  and 

tamoxifen, elicit nonspecific nongenomic actions by altering cell membrane fluidity and 

other properties (Clarke et al., 1990; Shivaji and Jagannadham, 1992). These actions 

usually require ligand concentrations in the micromolar range, which is significantly 

higher than most physiological concentrations of E2. However, these concentrations are 

similar to those of the estrogenic compounds we used in this study. Although it is 

unlikely, it is possible that some kinase activities activated by specific estrogenic 

compounds in this study may be caused by nonspecific effects which are receptor-

independent.  
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Based on current reports, the nongenomic actions of estrogen and other estrogenic 

compounds are highly complex, ligand-structure-dependent and mediated by multiple 

mechanisms. Results obtained from routine receptor binding or transactivation assays 

are an oversimplification and cannot accurately reflect the estrogenic activity of a 

compound and novel approaches should be explored to address this inadequacy.  

 

In summary, this study demonstrated that structurally diverse estrogenic compounds 

differentially activate multiple kinase pathways in MCF-7 cells. With the exception of 

resveratrol, all the compounds we tested activated MAPK and PI3K. In contrast, the 

activation of PKA/PKC and CaMKIV are by these compounds are structure-dependent. 

One xenoestrogen, HO-PCB-Cl4, was identified as a potent CaMKIV inhibitor. Thus, the 

nongenomic actions of estrogenic compounds should not be evaluated based solely on 

data from their genomic action. Current studies in this laboratory are focused on both 

genomic and non-genomic ER-dependent and –independent effects of structurally 

diverse estrogenic compounds.  
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