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ABSTRACT 

Calcite Dissolution Kinetics and Solubility in Na-Ca-Mg-Cl Brines of Geologically 

Relevant Composition at 0.1 to 1 Bar pCO2 and 25 to 80 °C.  (May 2005) 

Dwight Kuehl Gledhill, B.S., Eastern Connecticut State University;  

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. John W. Morse 
 
 
 

 Sedimentary basins can contain close to 20% by volume pore fluids that are 

commonly classified as brines.  These fluids can become undersaturated with respect to 

calcite as a result of processes such as migration, dispersive mixing, or anthropogenic 

injection of CO2.  This study measured calcite solubility and dissolution rates in 

geologically relevant Na-Ca-Mg-Cl synthetic brines (35 to 200 g L-1 TDS).   

 In brines < 50 g L-1 TDS, the EQPITZER calculated calcium carbonate ion activity 

product (IAP) at steady-state was in reasonable agreement (±10%) with the 

thermodynamic solubility constant for calcite (Kc).  However, the IAP systematically 

exceeded Kc in more concentrated brines.  The deviation was strongly correlated with 

calcium concentration and also was observed in magnesium-free solutions.  This is 

interpreted as an uncertainty in the carbonate ion activity coefficient, and minor 

adjustment in stoichiometric association constants ( ) for the or 

ion pairs would correct for the error.   

∗
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The dissolution rate dependency on brine composition, pCO2 (0.1 to 1 bar), and 

temperature (25.0 to 82.5 °C) was modeled using the empirical rate equation  

( )nkR Ω−= 1  

where R is the rate, k and n are empirical fitting terms, and Ω the degree of 

disequilibrium with respect to calcite.  When Ω was defined relative to an apparent 

kinetic solubility, n could be assumed first-order over the range of Ω investigated (Ω = 

0.2 to 1.0).  Rates increased with increasing pCO2 as did the sensitivity to brine 

concentration.  At 0.1 bar, rates were nearly independent of concentration (k = 13.0 ±2.0 

x 10-3 moles m-1 hr-1).  However, at higher CO2 partial pressures rates became 

composition dependent and the rate constant, k, was shown to be a function of 

temperature, pCO2, ionic strength, and calcium and magnesium activity.  The rate 

constant (k) can be estimated from a multiple regression (MR) model of the form 

( ) ( ) ( ) ( ) ( )++ +++++= 22 5432210 MgCa aaIpCOTk ββββββ . 

 A relatively high activation energy (Ea = 20 kJ mol-1) was measured, along with a 

stirring rate independence suggesting the dissolution is dominated by surface controlled 

processes at saturation states Ω > 0.2 in these calcium-rich brines.  These findings offer 

important implications to reaction-transport models in carbonate-bearing saline 

reservoirs. 
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CHAPTER I 

INTRODUCTION 

 

1.1.  General Considerations 

Carbonate minerals constitute ~20% of Phanerozoic sedimentary rock, and at least 

60% of the world’s know petroleum reserves occur in carbonate reservoirs (Morse and 

Mackenzie, 1990).  Because calcite is a reactive common mineral, its precipitation and 

dissolution are of great importance in the creation and destruction of secondary porosity 

in the subsurface.   

 Although the importance of carbonate mineral dissolution during sediment 

diagenesis has been known since at least the late 1800’s (e.g., Murray and Renard, 

1891), experimental determination of dissolution rates as a function of solution 

composition did not receive considerable attention until the 1960’s (e.g., Weyl, 1958, 

1967; Terjesen et al., 1961; Akin and Lagerwerff, 1965; Berner, 1967; Schmalz, 1967).  

Since that time, a large number of investigations have examined the influences of 

“foreign” ions, temperature, CO2 partial pressure and other variables on calcite 

dissolution rates (see reviews of Plummer et al., 1979; Sjöberg and Rickard, 1985; 

Morse, 1983; Morse and Arvidson, 2002).  Previous investigations sought to understand 

the behavior of calcite in solutions with ionic strengths that did not generally exceed that 

of seawater.  Calcite reaction kinetics in concentrated solutions, typical of the  

_______________ 

This dissertation follows the style and format of Geochimica et Cosmochimica Acta. 
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subsurface, have received relatively little attention.  Although recent observations 

include precipitation rates in  

high salinity waters (Zhang and Dawe, 1998), there are apparently no studies that have 

directly addressed dissolution kinetics in complex high ionic strength solutions.   

 Modeling carbonate mineral dissolution as a function of saturation state requires 

accurate calculations of the distribution of carbonic acid system species.  However, 

accurate determination of the activities of these species in high ionic strength solutions 

continues to be problematic.  Investigations of the solubility of calcite coupled with the 

Pitzer parameterizations of the carbonic acid system in synthetic brines (He and Morse, 

1993) have made such calculations more reliable. 

 

1.2.  Historical Perspective 

Previous investigations into the specific effects of calcium and magnesium on 

calcite kinetics have been conducted at many different saturation states and solution 

compositions using differing techniques.  Consequently, the results are often 

contradictory and not readily comparable.    Weyl (1967) and Berner (1967) noted that 

the presence of Mg2+ resulted in a marked inhibitory effect on calcite dissolution rates at 

neutral to basic pH, while Alkattan et al. (2002) found no Mg2+ inhibition at pH 1 and 

pH 3.   Gutjahr et al. (1996b) also found no significant Mg2+ effect on the dissolution 

rate under neutral to basic conditions over a broad range of saturation states including 

near equilibrium.  Sjöberg and Rickard (1985) found no effect of Ca2+ in acidic solutions 

whereas in neutral to basic solutions Ca2+ was found to decrease the rate of the transport 

reaction making the dissolution more transport-controlled.   Buhmann and Dreybrodt 
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(1987) found that although the presence of Ca2+ and Mg2+ displace the calcite solution 

equilibria, the kinetics of the dissolution were hardly changed.  Calcite dissolution 

experiments in these compositionally simple and generally dilute solutions were 

conducted under low pCO2 and thus provide important insight into the kinetics from a 

“pure chemistry” standpoint but are of limited utility for subsurface waters where 

solutions are substantially more concentrated and high pCO2 usually prevails (Coudrain-

Ribstein et al., 1998). 

 

1.3. Rate Equations Describing Calcite Dissolution 

 The dissolution of calcite in the case of surface reaction-controlled kinetics (e.g., 

relatively near equilibrium where transport processes are not dominating) has been 

described by empirical (Morse and Berner, 1972; Sjöberg, 1978) or semi-empirical rate 

equations (Plummer et al., 1978) and by more mechanistic models based on surface 

speciation (Van Cappellen et al., 1993;  Arakaki and Mucci, 1995).  In each case the 

models rely on the “principle of detailed balancing” (Lasaga, 1998, pp. 82-93).  When a 

solid dissolves in a solution, the rate of the observed change in solution composition is a 

“net” rate that reflects both the forward (dissolution) and the back (precipitation) 

reaction rates.   

When the observed rate is zero, it does not imply that no dissolution or 

precipitation is occurring.  Instead, this kinetic equilibrium occurs when both the 

opposing rates are equal, provided that the following elementary reaction determines the 

rate of dissolution or precipitation: 
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kf 

 (1–1) 

where kf and kb are the forward and backward rate constants, the overall rate, R, is given 

by the sum of the forward (Rf) and backward (Rb) reaction rates: 

−+−=−= 2
3

2 COCabfbf aakkRRR  (1–2) 

where ai are the activities of the calcium and carbonate ions in solution.  If the reaction is 

reversible then the ratio kf/kb should be equivalent to the solubility product for calcite 

(Kc).  The unidirectional rate (R) is generally dominant except very close to equilibrium 

where Rf and Rb are similar (Morse and Arvidson, 2002).  

 

1.3.1. Empirical Models 

 The most commonly applied empirical model that describes the rate of calcite 

dissolution is the general rate equation (e.g., Morse and Berner, 1972): 

( ncalcite k
V
A

dt
dm

R Ω−⎟
⎠
⎞

⎜
⎝
⎛=−= 1 )  (1–3) 

where t is time, A is the surface area of the solid, V is the volume of solution (or mass of 

solvent in cases where molal units are used), k is the rate constant and n is the “order” of 

the reaction.  The saturation state (Ω) is the ratio of the ion activity product of calcium 

and carbonate (IAP) to Kc and the term (1-Ω) describes the degree of disequilibrium.  

The rate equation describes the rate increase as the degree of disequilibrium increases.  

The relative linearity of the relation between the degree of disequilibrium and rate is 

described by the reaction “order” where a value of 1 denotes perfect linearity.  With 

increasing values of n the function develops a hysteresis where the rate increases 

CaCO3
kb 

Ca2+ +  CO3
2-
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exponentially far from equilibrium.  In complex solutions, such as seawater, the value of 

n has typically been observed to be ~3.  In these instances, it implies that equation 1–3 is 

an oversimplification and other elementary reactions become important.    A similar, 

although not simply related, empirical model is given by Sjöberg (1978):  

( nn
sp

calcite K
V
A

dt
dm

R Ω−⎟
⎠
⎞

⎜
⎝
⎛=−= 1 ) (1–4) 

where n was found to be 1/2 for calcite in a pure ionic media (also see Lasaga, 1998). 

 Plummer et al. (1979) described the dissolution by three simultaneous 

mechanisms: 

kf 

 (1–5) 

 (1–6) 

 (1–7) 

in which the net rate of dissolution was given by the semi-empirical equation: 

−++ −++=−=
3

22*0
32

4321 HCOCaOHCOHH
calcite aakakakak
dt

dm
R  (1–8) 

where k1, k2, and  k3 are the forward rate constants and k4 is the back rate constant that is 

pCO2 dependent. 

 

 

CaCO3 + H2O
kf 

kb
Ca2+ +  HCO3

- + OH- 

Ca2+ + 2 HCO3
- CaCO3 + H2CO3

0 kf 

kb

CaCO3 + H+

kb
Ca2+ +  HCO3

-
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1.3.2.   Mechanistic Models 

 A more sophisticated mechanistic model, based on surface complexation theory, 

has recently been offered by Van  Cappellen et al. (1993).  It postulates the formation of 

the hydration species >CO3H0 and >CaOH0 (where > denotes a surface bond) at the 

calcite surface that govern the reactivity of the carbonate-water interface.  The model 

proposes the following surface species: 

+− +>⇔> HOHCO 3
0

3 C  (1–9) 

+++ +>⇔+> HCaCOCaHCO 3
20

3  (1–10) 

++ +>⇔> HCaOHCaOH 0
2  (1–11) 

+− +>⇔> HCaOCaOH 0  (1–12) 

0
32

0 CaHCOCOCaOH >⇔+>  (1–13) 

+− +>⇔+> HCaCOCOCaOH 32
0  (1–14) 

Arakaki and Mucci (1995) combined the semi-empirical model of Plummer et al. 

(1979) with the surface complexation model of Van Cappellen et al. (1993) to describe 

the dissolution of calcite in deionized water.  This yielded an overall reaction rate given 

by: 

( )( ) ( )( )
( )( ) ( ) 0

3
0
3

*
323

*0
32

87
0

3364

2
52

2
31

CaCOCaCOCOHCaHCO

COHH
calcite

akaaCakaHCOkkk

aCakkaCOk
dt

dmR

−>−>−−+

>−+>=−=

+

+−

+

+

 (1–15) 

Although these mechanistic models are perhaps intriguing, they are largely hypothetical 

resting on unverified correlations rather than direct observations of surface species and 

mechanisms.  They require the use intrinsic stability constants for the surface 
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complexation reactions that are not currently available in complex solutions causing 

them to have no predictive utility to natural waters. 

 

1.4.  EQPITZER Software 

In this dissertation common use will be made of the EQPITZER software 

developed by He and Morse (1993).  Using experimentally determined interaction 

parameters between the carbonic acid species ( , , and ) and the major 

ions Na

( )aq2CO −
3HCO −2

3CO

+, K+, Ca2+, Mg2+, Cl-, and ,  the EQPITZER software makes calculations 

based on the Pitzer equation for electrolytes (Pitzer, 1973; Pitzer and Mayorga, 1973; 

Pitzer and Mayorga, 1974).  This allows the determination of activity coefficients, not 

only for the major ion species, but also for the carbonic acid system in complex 

electrolyte solutions.  The software incorporates into the model experimentally 

determined stoichiometric Henry’s law constants ( ) and dissociation constants 

( and ) for the carbonic acid system appropriate to a wide range of high ionic 

strength solutions.  It also includes the thermodynamic association constants of Reardon 

and Langmuir (1974) for the important ion pairs , , and MgOH

−2
4SO

∗
HK

∗
1K ∗

2K

0
3CaCO 0

3MgCO +.  The 

program has been applied in this dissertation to provide a complete description of the 

carbonic acid system (at constant temperature and pressure) using at least two 

fundamental CO2 system parameters (alkalinity, total inorganic carbon, pCO2 and pH) 

and a solutions major ion composition.  Typically, in this study total alkalinity (TA) and 

total inorganic carbon (TCO2) will be coupled to calculate solution pH and pCO2. 
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1.5. Saline Fluids in the Subsurface 

 Most sedimentary rocks are comprised of ~20% pore water that ranges in salinity 

by approximately five orders of magnitude (Hanor, 1994a), from dilute meteoric waters, 

to waters with greater than 600 g L-1 of dissolved salts (Case, 1945).  The geochemistry 

of these waters imparts a significant influence on processes affecting the development of 

secondary porosity, reservoir permeability and mass transport in the subsurface.  There 

has been considerable recent interest in the geochemistry of formation waters as 

reservoirs are being developed as possible repositories for waste gases and fluids.  The 

mineral-brine-waste interactions in these repositories are of considerable interest with 

regards to reservoir management.  Presented in the following discussion is a brief 

description of the general distribution and diagenetic origin of the major elements that 

comprise subsurface waters.  Much of this discussion is based on review papers by 

Hanor (1994a) and Kharaka and Hanor (2004). 

  

1.5.1.  Nomenclature 

 In this dissertation I have adopted the terminology of Kharaka and Hanor (2004) 

when describing subsurface waters.  This will include the use of salinity being 

synonymous with total dissolved solids (TDS), generally reported in milligrams per liter 

(mg L-1) or grams per liter (g L-1).  Notice, however, that although this is a prevalent unit 

used by the petroleum industry, TDS is a mass-volume convention that makes it less 

than ideal for rigorous chemical treatment.  Many of the “field” measurements are 

reported in TDS without any consideration for the considerable volume change that must 

have transpired as a result of the temperature-pressure differential between the 
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subsurface and the surface.  In using liters, I recognize that there is a growing trend for 

usage of dm3 for volume, however, virtually all literature data are currently reported in 

L. 

Formation water has no genetic or age significance but typically refers to the 

pore water present in a formation prior to anthropogenic alteration.  These waters 

typically experience post-burial diagenetic alteration differentiating them from connate 

water.  The term brine will refer to water containing a higher salinity than that of 

seawater (35 g L-1 TDS).    The type of brine will be described using the classification 

scheme whereby the cations followed by the anions are listed in order of decreasing 

concentrations and charges are omitted (e.g., a Na-Ca-Mg-Cl brine). 

 

1.5.2.  Chemical Composition of Subsurface Waters 

1.5.2.1. Major Cations 

 The most dominant cation in formation waters is typically sodium, constituting 

70% to > 90% of the total cation mass.  With increasing salinity however, its relative 

proportion decreases and the proportions of K, Mg and Ca increase.  Calcium is typically 

the second most important cation and can even exceed Na on a mass basis when 

salinities exceed 300 g L-1 TDS.  It is usually found in greater abundance than 

magnesium.  This is an important distinction from seawater where magnesium exceeds 

calcium by 5:1, at least in modern oceans.    
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1.5.2.2. Major Anions 

 Chloride is by far the most dominant anion in subsurface brines (>35 g L-1), 

comprising > 95% by mass of the anions.  The principle source of chloride is seawater, 

which may have been concentrated by subaerial evaporation prior to burial, and 

additional chloride contributed by mineral dissolution (primarily halite).  Bromide can 

also be present, though it is minor relative to chloride.  Sulfate can be quite prominent in 

relatively dilute waters and occurs in seawater at concentrations of about 2.7 g L-1.  In 

contrast, most brines contain relatively minor amounts of sulfate rarely exceeding 1 g L-

1.  In waters having salinities greater than 30 g L-1, and where the system is calcium 

carbonate-buffered, the inorganic carbon species,  and , are generally less 

than a few hundred milligrams per liter. 

-
3HCO -2

3CO

 Reactive organic species dissolved in subsurface waters can play an important 

role in mineral diagenesis (for discussion and references see Kharaka and Hanor, 2004).  

They serve as proton donors, pH and Eh buffering agents, and can form complexes with 

metals.  In subsurface waters < 80 °C the concentration of monocarboxylic acid anions 

are typically < 0.5 g L-1 with propionate exceeding acetate.  At reservoir temperatures 

between 80 and 120 °C they can exceed 10 g L-1 and acetate typically exceeds 

propionate.  At higher temperatures thermal decarboxylation is responsible for 

conversion of acid anions to CO2.  The data for the concentrations of dicarboxylic acid 

anions such as oxalate is much more limited.  The range of reported vales is 0–2.6 g L-1.  

The low solubility of calcium oxalate and calcium malonate along with their rapid rate 

of thermal decomposition probably limits their concentration. 
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1.5.3.  Origin and Controls of Saline Fluid in the Subsurface 

 Spatial variability in salinity in formation waters can be accounted for by several 

physical processes related to transport.  Diffusive transport and dispersive mixing of 

waters of varying composition can produce formation waters with a wide range in 

salinity.  In addition, large-scale fluid advection has been found capable of transporting 

subsurface waters on the scale of hundreds of kilometers. Perhaps the only generally 

observed trend in salinity is that it often tends to increase with increasing basin depth 

where deep bedded salt or brines derived from subaerial evaporation of seawater are 

present.  However, there are notable exceptions such as the south Louisiana Gulf Coast 

(Hanor, 1994a). 

 Superimposed on the transport related controls of formation water salinity, a 

first-order effect may be metastable thermodynamic buffering by mineral assemblages as 

suggested by Hanor (1994b).  Hanor (1994b) found a simultaneous and systematic 

variation in dissolved Na, K, Mg, Ca and alkalinity with chloride consistent with 

buffering by silicate-carbonate mineral assemblages in southwest Louisiana Gulf Coast 

reservoirs.  In general a 1:1 covariance in monovalent cation concentration was observed 

on log-log plots while a 2:1 covariance was observed for divalent cations.  Probably the 

most important water-rock reaction controlling cation concentrations is the dissolution of 

halite, which is responsible for the increased sodium in basins where evaporites are 

present.  In addition, dissolution and precipitation of carbonate minerals impart a strong 

control on the concentration of the divalent cations calcium and magnesium.  The 

generally lower magnesium concentrations relative to that of evaporated seawater can 
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result from diagenetic processes such as dolomitization and the formation of chlorite.  

Also, calcium can be contributed from CaSO4 associated with evaporites.  Generally 

most associated sulfate is lost to bacterial reduction.   

 

1.6. Objectives of This Investigation 

This research aims to investigate the rates of calcite dissolution reactions in 

carbon-dioxide-rich brines.  In this study the solubility and dissolution kinetics of calcite 

have been determined in saline waters with a range in solution compositions 

approximating those in typical subsurface formation waters composed of Na-Ca-Mg-Cl 

brines.  Results have important applications to predictive chemical process models in 

carbonate cemented reservoirs and for carbon sequestration strategies. 

Because of the natural variability in subsurface waters with regards to 

composition, temperature and pCO2, it would be impractical to perform experiments for 

all the possible permutations.  Therefore, this study has centered around three primary 

objectives: (1) examine the solubility and change in reaction kinetics as a function of 

increasing brine concentration.  In this instance, with increasing salinity the chemistry of 

the brines are modified such that they exhibit a covariance of Ca2+, Mg2+, and ionic 

strength as predicted in “real” subsurface brines.  (2) Determine the independent effects 

of composition (Ca2+, Mg2+ and ionic strength), temperature (25–82 ºC), and pCO2 (0.1–

1.0 bar) on the dissolution kinetics.  (3) Examine the potential impact of a natural 

inhibitor commonly present in natural waters; SO4
2-.   

The results of these experiments have then been used to provide a purely 

empirical statistical model that describes the kinetics using the general rate equation.  
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The model has then been applied to offer a first-order geochemical constraint on CaCO3 

transport in the calcium-rich brines.
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CHAPTER II 

CALCITE SOLUBILITY IN GEOLOGICALLY RELEVANT 

BRINES 

 

 The principle of detailed balancing states that at equilibrium, the forward and 

reverse rates of every elementary reaction are equal.  Therefore, equilibrium represents a 

state of dynamic balance at which the measured concentrations of products and reactants 

remain constant.  In subsequent chapters, the kinetics of calcite dissolution in complex 

brines will be empirically modeled relative to this condition.  The objective of this 

chapter is to evaluate the predictive capability of the EQPITZER program (He and 

Morse, 1993) with regards to the thermodynamic solubility of calcite in synthetic Na-Ca-

Mg-Cl brines.   

 

2.1.  Materials and Their Preparation  

2.1.1.   Aqueous Solutions 

 Hanor (1994b) found that, for subsurface brines containing between 18 and 250 g 

L-1 Cl-, the concentration of Cl- can be predicted from TDS content.  The variation in the 

other major dissolved species (Na+, Ca2+, Mg2+, and Cl-) can then, subsequently, be 

accounted for statistically as a function of Cl- concentration.  Using these relations, 

Morse et al. (1997) applied a series of fourth order polynomial equations to empirically 

fit the major solutes and the equations yielded a generally high degree of correlation 

(Table 2–1).
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Table 2–1.  Coefficients for the calculation of brine composition.  Based on the equation 

C (mg L-1) = a + bX + cX2 + dX3 + eX4, where X is TDS (mg L-1) for calculation of Cl- 

(mg L-1) and Cl- is used for calculation of the other ion concentrations.  The values have 

been reproduced from Morse et al. (1997). 

Ion a b x 103 c x 106 d x 1012 e x 1018 r2

Na+ 2199.1 494.43 0.18625 -0.7038 -25.175 0.74 

Ca2+ -2602.3 171.94 -1.4869 9.5377 0 0.87 

Mg2+ -689.3 50.27 -0.39096 1.6454 0 0.68 

Cl- 1652.8 602.35 0 0 0 0.99 

 

The synthetic brines prepared for this study were based on these equations and 

ranged in salinity from 50to 195 g L-1.  Because potassium and bromide have not been 

shown to play an important role in carbonate mineral kinetics, for simplicity they have 

been omitted from these synthetic brines and the resulting deficiency in ionic strength 

has been balanced with additional NaCl.  In selected brines, Mg2+ was deliberately 

omitted as well, and similarly the charge was balanced with NaCl.  Each brine was 

prepared gravimetrically on the molal scale (m) from separate concentrated stock 

solutions of A.C.S. reagent grade NaCl, CaCl2•2H2O and MgCl2•6H2O.  The 

concentrations of the Ca2+ and Mg2+ in the stock solutions were verified by AgNO3 

titration as described in section 2.3.1.   
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2.1.2.  Solids 

 Calcite rhombs (Iceland spar) obtained from Ward’s Scientific Inc. were crushed 

into powder and wet sieved into >125 µm, 125–63 µm and 63–32 µm size fractions.  

The mineralogy was verified by powder X-ray diffraction as being >99% calcite.  To 

relieve surface strain and to clean the grains of ultra-fine particles which can enhance 

solubility, the fractions were sonicated in methanol for one hour, re-sieved, briefly 

washed with milliQ® (18.1 µΩ) water and freeze dried.  Figure 2–1 shows SEM 

micrographs of the 63–32 µm calcite fraction before (A, B) and after (C, D) sonication 

in methanol.  Based on the SEM micrographs, the average grain size of the 63–32 µm 

fraction was 26 ±16 µm.  In subsequent chapters where kinetics are addressed, the 

specific surface area will be more fully characterized and discussed. 

 

2.1.3.  Gases 

 Commercially purified high-grade CO2 and ultra-high purity N2 were precisely 

mixed and their flow rate controlled using dual MKS® Type 1479A mass-flow regulators 

that were controlled by specially developed LabVIEW® software.  In order to minimize 

evaporation of experimental solutions, the gas was bubbled through as series of 

humidifiers.   The humidifiers contained 90 ml of sodium chloride solutions having ionic 

strengths that were matched with the experimental solutions.  The humidifiers also 

served as gas mixing chambers. 
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Figure 2–1.  Scanning electron micrographs of crushed Iceland Spar calcite 32–63 µm 
size fraction used in solubility experiments.  Prior to treatment (A, B) the calcite powder 
was highly irregular and inhomogeneous containing a considerable amount of ultra-fine 
particles.  Scale bar = 50 µm.  Following sonication in methanol (C, D), most of the 
ultra-fine material was eliminated and the powder exhibited a more uniform size 
distribution.  Scale bar = 50 µm (C) and 20 µm (D). 
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2.2.  Solubility Reactor 

 The solubility reactor consisted of four specially modified glass 125 ml serum 

bottles.  Approximately 100 ml of brine was added to each serum bottle that 

accommodated a pipette tip and small vent.  A CO2-N2 gas mixture was then gently 

bubbled into the solution through the pipette tip.  In early experiments (i.e. Mg2+-free 

solutions) pure CO2 was used while in later experiments the gas mixture was 

approximately 50/50.  The 0.5 bar pCO2 system promoted a higher :TCO-2
3CO 2 ratio for 

a given Ca2+ concentration allowing more robust measurements to be made. The serum 

bottles were then inserted into water-jacketed vessels that were maintained at constant 

temperature (25 ±0.01 ºC) using a Neslab® RTE-8DD circulating bath.   

Following equilibration with the gas phase, 2 ml of concentrated primary 

standard grade Na2CO3 was added sufficient to establish approximately 20% saturation 

with respect to calcite.  This was necessary to minimize the amount of calcite dissolution 

so as to limit changes in the solution Ca2+ concentration.  Since a precise knowledge of 

the equilibrium concentrations was not initially known, the amount of sodium carbonate 

to be added could only be approximated based on EQPITZER predictions.  After several 

attempts, much better estimates could be applied from trial and error.  In the final 

experiments varying amounts of sodium carbonate were added to each of the four serum 

bottles so as to allow for a small range in final Ca2+ concentrations. 

The solution was then allowed to reestablish equilibrium with the gas phase prior 

to the addition of approximately 1 g of the 63–32 µm calcite.  Since the grinding action 

of magnetic stirrers has been known to produce enhanced solubility, the solutions were 

instead mixed by mounting the reactors on a Lab-line Instruments® orbit shaker which 
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was oscillated continuously at 250 RPM.  The calcite was allowed to react under the 

constant pCO2 gas mixture for 7 h.  This reaction time generally brought the solution to 

within a few percent of equilibrium and consequently subsequent changes in pCO2 were 

minor.  The gas feed was then removed and the serum bottles sealed with a septum top.  

The calcite suspension was then permitted to react with the brine in the closed system for 

one week.   The closed system eliminated evaporation of the brine for the duration of the 

experiment.  

 

2.3.  Post-Equilibration Analysis 

 At the experiment completion, a nitrogen gas feed was inserted into the serum 

bottle septum.  A minimal amount of nitrogen was use to displace fluid which was 

passed though a second syringe needle equipped with an in-line 0.45 µm Acrodisk® 

filter.  The filtered sample was collected into a 20-ml gas tight syringe.  This method 

avoided any atmospheric exchange with the carbonic acid system.  

 

2.3.1.  Determination of Salts 

Solution chloride concentrations were determined from a 1:10 gravimetric 

dilution of sample in milliQ® (18.1 µΩ) water.  Determination was made by AgNO3 

titration using an Accumet silver ion selective electrode interfaced via an Orion 720A 

potentiometer.  Endpoint detection was facilitated by a specifically developed computer 

software package.  The AgNO3 titrant was calibrated monthly against calibration curves 

using weighed amounts of IAPSO standard seawater.  Based on the calibration curves 
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the precision of the titration was better than 1.5% and replication was typically 

unnecessary.  

Calcium and total hardness (Ca2+ + Mg2+) concentrations were determined from a 

1:11 gravimetric dilution of sample in 0.01 N HCl.   Calcium was analyzed by EGTA 

titration with the calcium indicator Cal/Ver II® using a NaOH buffer to precipitate out 

the Mg2+.  Total hardness concentrations were determined by EDTA titration with 

Eriochrome Black T (EBT) using an NH3OH buffer.  Endpoint detection was facilitated 

using a Brinkmann PC 800 colorimeter interfaced with a Brinkmann 682 titroprocessor.  

Fresh standards were prepared specific for each experiment that closely bracketed the 

anticipated concentration range.  The standards were prepared gravimetrically from 

GFS® primary standard calcium carbonate dissolved in 0.01 N HCl and from a 

MgCl2•6H2O solution calibrated by AgNO3 titration.  The presence of Mg2+ in the 

standard was necessary for proper functioning of the indicators.  Four point calibration 

curves were generated against weighed amounts of standard for each experiment.  

Precision was within 2% in most cases and triplicates of each sample were measured.  

The concentrations of Mg2+ and Na+ were calculated from mass and charge 

balance as given by, 

++ −= 22 CaHardnessMg  (2–1) 

and, 

( ) 32
22 222 CONaMgCaClNa ×+×−×−= ++−+  (2–2) 

where Na2CO3 is the amount based on the primary standard grade sodium carbonate 

added at the initiation of the experiment. 
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2.3.2.  Analytical Parameters in the Carbonic Acid System 

The species distribution of the carbonic acid system was evaluated by coupling 

TA and TCO2.  These parameters were chosen over pH and pCO2 for two reasons: (1) 

the pH of the solution could not be directly measured without disruption to the closed 

system, and (2) the pCO2 could not be assumed from the gas mixture since once the 

system was closed a continued dissolution would result in a draw down of pCO2.  

TCO2 was immediately determined on the samples according to the method of 

Dickson and Goyet (1994) with a UIC Inc. Model 5011 CO2 coulometer.  Precision was 

better than 100 µmoles kg -1. 

TA was determined by a Gran-type titration (Gran, 1952) using a Metrohm 655 

Dosimat and an Orion 720A pH meter interfaced with a computer.  Apparent sample pH 

was measured using a Corning Inc. semi-micro combination pH electrode calibrated 

using NBS 4 and 7 buffers.  Computer software was used to evaluate the apparent 

inflection point.  An HCl titrant and solutions of primary standard Na2CO3 were made in 

NaCl solutions at ionic strengths specific to each of the brines.  The Na2CO3 standards 

were prepared gravimetrically under a nitrogen environment and their concentrations 

verified by coulometeric measurement of their TCO2 concentrations.  Four point 

calibration curves were made using weighted standards versus the volume at which the 

apparent inflection point occurred.  Precision was better than 0.1 meq kg-1.  The 

titrations were conducted at 25 ±0.1 ºC in a water-jacketed open cell into which CO2 was 

continuously bubbled.  The bubbling of CO2 into the cell served to facilitate gas 

exchange and prevent the solution from becoming oversaturated with respect to calcite 

as a result of degassing prior to the addition of the HCl titrant. 
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2.4.  Results and Discussion 

2.4.1.  Solubility Calculations 

 The analytical results for the solubility experiments are presented in Table 2–2, 

where concentrations are those measured at the terminus of the experiment.   

 The saturation state with respect to calcite (Ω) is defined simply as the ratio of 

the measured ion activity product (IAP) to the thermodynamic solubility constant for 

calcite (Kc), as given by 

cK
IAP

=Ω  (2–3) 

and 

−−++−+ == 2
3

2
3

222
3

2 COCOCaCaCOCa
mmaaIAP γγ . (2–4) 

If Ω = 1, then the solution is in equilibrium with respect to calcite; if Ω < 1 the solution 

is undersaturated; and if Ω > 1 the solution is supersaturated.  The only value that was 

directly measured is ; the remaining values had to be derived using the EQPITZER 

software based on the solution compositions given in Table 2–2.  Since the non-carbonic 

acid system contributions to TA are negligible in these synthetic brines, the carbonate 

alkalinity ( ) can be approximated by 

+2Ca
m

CA

+− +−≈
HOHC mmTAA . (2–5) 

The carbonate ion concentration, , can then be calculated from TA and TCO−2
3CO

m 2 

according to the equation 
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The stoichiometric first and second dissociation constants ( and ) of the carbonic 

acid system used by EQPITZER were experimentally determined in aqueous solutions 

containing Na

∗
1K ∗

2K

+, K+, Ca2+, Mg2+, SO4
2-, and Cl-  by He and Morse (1993).  The activity 

coefficients for the aqueous species were also calculated with EQPITZER, which uses 

the Pitzer ion-interaction model parameterized for the carbonic acid system that 

accommodates the associated species of CaCO3
0 and MgCO3

0.  The complete output of 

the EQPITZER model calculations for the solubility experiments are presented in 

Appendix I.  Calculated saturation states are presented in Figure 2–2 along with values 

calculated from data reported in relevant literature. 

 Although the EQPITZER-calculated IAP was in reasonable agreement (±10%) 

with Kc in relatively low Ca2+ concentration brines, increasing brine Ca2+ concentration 

resulted in a systematic increase in the calculated equilibrium IAP.  Consequently, 

calculated Ω values were considerably greater than 1 at high Ca2+ concentrations, 

suggesting an apparent supersaturation with respect to calcite.  Solubility experiments 

performed in Mg2+-free solutions exhibited the same behavior (solid circles in Figure 2–

2) implying that this is not due to the formation of a more soluble Mg2+-rich surface 

phase.  Nor is it specifically related to ionic strength, since in the Mg2+-free solubility 

experiments the ionic strength of the solutions was fixed (I = 3 m) by balancing with 

NaCl.  It should also be noted that in these solutions the Mg:Ca ratio was always <0.5.  
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This is much lower than in seawater where a ~8 % Mg-calcite forms at a Mg:Ca ratio of 

~5 (Mucci and Morse, 1984). 

 

Table 2–2.  Analytical results for the solubility experiments.  Units are molal except for 
total alkalinity (TA) and total carbon dioxide content (TCO2), which are in meq kg-1 H2O 
and mmol kg-1 H2O respectively. 

EXPT ID Na+ Ca2+ Mg2+ Cl- TA TCO2

KSP_Brine1_1 0.745 0.043 0.021 0.859 13.76 28.52 
KSP_Brine1_2 0.744 0.044 0.021 0.858 15.83 32.05 
KSP_Brine1_3 0.742 0.043 0.023 0.856 16.08 33.38 
KSP_Brine1_4 0.731 0.042 0.022 0.844 16.30 32.65 
KSP_Brine2_1 1.800 0.160 0.068 2.252 9.02 20.03 
KSP_Brine2_2 1.804 0.159 0.066 2.250 8.96 19.51 
KSP_Brine2_3 1.801 0.160 0.066 2.248 8.83 18.59 
KSP_Brine2_4 1.800 0.159 0.064 2.241 9.09 20.27 
KSP_Brine3_1 2.670 0.365 0.117 3.627 5.58 14.40 
KSP_Brine3_2 2.670 0.362 0.117 3.626 5.66 14.50 
KSP_Brine3_3 2.684 0.364 0.116 3.646 5.65 14.57 
KSP_Brine3_4 2.665 0.362 0.116 3.620 5.51 14.60 

MgFree_1 3.022 0.023 0.000 3.043 24.72 41.19 
MgFree_2 2.583 0.154 0.000 2.881 10.76 28.50 
MgFree_3 0.237 0.912 0.000 2.053 7.08 28.49 
MgFree_4 3.022 0.023 0.000 3.043 25.51 41.80 
MgFree_5 2.583 0.154 0.000 2.881 10.40 28.49 
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Figure 2–2.  The Ω values calculated using EQPITZER from the analytical results of this 
study compared with values calculated from literature data.  Solid scatter points are 
experimental data from this study.  Solid squares were measured in Na-Ca-Mg-Cl brines, 
while solid circles were measured in Mg2+-free brines.  Crosses are from He (1992).  
Open triangles are from Millero et al. (1984).  Open circles are from Wolf et al. (1989).  
The inset figure expands the region investigated in this study. The solid line represents 
thermodynamic equilibrium within the uncertainty depicted by the dashed lines 
(Plummer and Busenberg, 1982). 
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Millero et al. (1984) measured the solubility of calcite in NaCl solutions up to 6 

m.  In these experiments the mCa
2+ did not exceed 0.6 mmol kg-1 H2O.  Based on the 

reported solution compositions and coupling TA and TCO2 to solve for the carbonic acid 

system, analogous to the approach used with the analytical data from this study, the 

derived Ω values using EQPITZER closely approximated 1.  The same approach was 

applied to the data reported by Wolf et al. (1989) in which calcite dissolution was 

measured in highly concentrated CaCl2 solutions (up to 3 m Ca2+).  In this case a near 

exponential deviation with increasing mCa
2+ was observed with an apparent 

supersaturation in excess of 20 times for the most concentrated case.  Even the data sets 

for solubility experiments performed in complex brines reported by He et al. (1993) 

yield apparent Ω > 1.  However, no systematic error is seen in He et al.’s data and it is 

unclear what the preferred coupling should be since he reported all four parameters of 

the carbonic acid system.  Applying different combinations of each of the parameters 

yielded widely differing results.  Coupling pCO2 and TA yielded the best agreement 

with the other data sets. 

  

2.4.2.  Indeterminate Error Contribution to the Calculated Ω Value 

 In order to evaluate if the systematic deviations from unity in the calculated Ω 

values in these solutions are significant, we must first consider the magnitude of the 

indeterminate analytical error.  The error associated with mCa
2+ in equation 2–4 is 2%, as 

reported previously in section 2.3.1.  Only an estimate of the error in can be 

calculated since the error associated with the regression analysis used to derive the 

stoichiometric dissociation constants ( and ) is not reported (He and Morse, 1983).  

-2
3CO

m

∗
1K ∗

2K
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Based on equation 2–5 we can estimate the error contributed by analytical uncertainty in 

TA and TCO2 measurements to the calculated  to between 1.0% and 2.5%. -2
3CO

m

Error associated with the activity coefficients is harder to evaluate as these are 

derived values based on model calculations.  The uncertainty of the analytical data used 

as input for the model, however, is only accurate to within approximately ±2%.  How 

this error propagates through the model is complex, but as a conservative approximation, 

if we assume that the derived activity coefficients yield an uncertainty of similar relative 

magnitude, the net uncertainty in the calculated IAP is roughly 4%.  This is in close 

agreement with the observed reproducibility between replicate experiments (see error 

bars in Figure 2–3).  This is comparable to the relative uncertainty reported by Plummer 

and Busenberg (1982) for Kc.  At 25 °C it is valid only to within ±4.6%. 

 The analytical error is significantly less than observed systematic deviation of Ω 

from unity (Figure 2–3).  Therefore, the error is probably an artifact of the model’s 

predictive capability for the activity coefficients in these solutions.  A possible source of 

this systematic error will be further examined in the following section. 
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Figure 2–3.  Experimental uncertainty of the calculated ion activity product (IAP) for the 
calcite solubility experiments.   Scatter points are experimental data from this study and 
error bars represent 1 standard deviation amongst replicate experiments.  Open triangles 
are Na-Ca-Mg-Cl brines exhibiting a range of ionic strengths (I = 0.9 to 4.1 m) and open 
circles are from Mg-free solutions at a fixed ionic strength (I = 3.0 m).  The solid line is 
the thermodynamic equilibrium constant for calcite (KC) within the uncertainty depicted 
by the dashed lines (Plummer and Busenberg, 1982). 
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2.4.3.  The Effect of Ion Pairing on EQPITZER Total Activity Coefficients for the 

Carbonate Ion 

 He et al. (1993) applied the criteria offered by the Harvie et al. (1984) evaluation 

of the ion interaction model with and without the addition of ion pairs when considering 

which ion pairs to include in the EQPITZER model.  From this, the 2-2 type ion pairs 

with thermodynamic association constants (KA) greater than 500 where chosen to be 

included.  For the Na-K-Ca-Mg-HCO3-CO3 system the important ion pairs,  and 

, were defined using the  and  values of Plummer and Busenberg 

(1982).  In order to maintain internal consistency with the Pitzer parameters for the 

carbonic acid system, He et al. elected to assign unity activity coefficients to these ion 

pairs.  However, there is evidence that this assumption may not be valid.  Although 

Millero and Schreiber (1982) felt that in most cases the activity coefficient for neutral 

species formed between divalent cations and most anions could be assigned the value of 

1.0, for pairs formed with  it could be considerably less.  For seawater (I = 0.7 m) 

they calculated a γ = 0.7 ±0.2 where the error is related to uncertainties in K

0
3CaCO

0
3MgCO 0

3CaCO
K 0

3MgCO
K

-2
3CO

A. 

 The effect of the  ion pair on the activity coefficient for Ca0
3CaCO 2+ would be 

negligible since in these solutions the free-Ca2+: total-Ca2+ ≈ 1.0.  However, in the case 

of  ion, the fraction of free-  ions can be considerably less than one.  The free 

carbonate ion concentration ( ) can be calculated from the relation given by Millero 

and Schreiber (1982): 
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3CO -2
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where the subscripts F and T refer to the free and total concentration respectively.  The 

total concentrations and activity coefficients for each of the experimental brines are 

given in Table 2–3.  EQPITZER can also be used to calculate the carbonate ion activity 

coefficients for hypothetical solutions containing only KCl at concentrations equivalent 

to the ionic strengths of each of the experimental brines.  In these cases, the carbonate 

ion activity coefficient can be considered equivalent to −2
,3 FCO

γ  since a pure KCl solution 

doesn’t contain any significant ion pairing.  This assumes that the free activity 

coefficient can be approximately assumed to be solely dependent on ionic strength 

(Lewis and Randall, 1921).  The free carbonate ion concentrations can then be estimated 

from equation 2–7 (Table 2–3).    

 In all cases less than 40% of the carbonate ion is free (Table 2–3).  As a result, 

the calculated Ω values become increasing sensitive to errors in the total carbonate ion 

activity coefficient ( −2
,3 TCO

γ ) with increasing calcium concentration.  We can calculate the 

correction to −2
,3 TCO

γ  required to correct the Ω values to unity.  At equilibrium, 

( )
C

COCOCa

K

ma
TT
−−+ ∆+

==Ω
2
,3

2
,3

2

1
γγ

, (2–8) 

where activities and concentrations refer to their steady-state values,  is calcium 

activity, 

+2Ca
a

−2
,3 TCO

γ is the EQPITZER-calculated carbonate ion activity coefficient, and ∆γ is 

the empirical correction factor.  Rearrangement to solve for the empirical correction 

factor (∆γ) yields,

( ) −

−+

−=∆ 2
,3

2
,3

2
T

T

CO
COCa

C

ma
K γγ . (2–9) 
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The EQPITZER predicted −2
,3 TCO

γ  values are compared with their empirically corrected 

values ( −′ 2
,3 TCO

γ ) in Table 2–3, where γγγ ∆+=′ −− 2
,3

2
,3 TT COCO

.  In all cases the necessary 

correction is relatively minor. 

Using these corrected activity coefficients we can demonstrate the sensitivity of 

the calculated IAP to ion pairing by first deriving an apparent stoichiometric association 

constant (K*
A) for the  ion pair.  From the EQPITZER model output (Appendix 

I) we can extract an apparent  by applying the equations offered by Millero and 

Schreiber (1982) which state that for the complex, 

0
3CaCO

∗
0
3CaCO

K

0
3

2
3

2 CaCOCOCa →+ −+ , (2–10) 

the fraction of free  ion can be related to the stoichiometric association constants 

for the ion pairs in which it appears by 
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where  are the appropriate stoichiometric association constants.  We assume that the 

predominate ion pairs are ,  and .  Typically, the relative 

magnitude of the stoichiometric association constants have been found to 

be: > >> .  In seawater, for example, Millero and Schreiber (1982) 

measured values of  = 126 ±26, = 87 ±11 and = 2.6 ±0.5.  

Considering the high cation concentrations relative to the carbonate ion, we have 

assumed that , where 

∗
iK

0
3CaCO 0

3MgCO -
3NaCO

∗
0
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equation 2–11 and applying these simplifying assumptions we can estimate  and 

from: 
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where is initially and  is .  The values are then exchanged and the 

solution is derived in an iterative fashion.  In the case of the Mg-free solutions, the 

magnesium terms were omitted.  The value for was taken to be that measured by 

Millero and Schreiber (1982) for seawater (log = 0.41).  Although this is unlikely 

to be strictly true, provided , it is a reasonable assumption in 

these solution and should suffice for purposes sought here.   

xM +2Ca
m yM +2Mg
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The average log  values derived from these calculations is 1.53 ±0.16 

(Table 2–4).  For seawater, reported values for log range from 1.51 (Hansson, 

1973) to 2.21 (Pytkowicz and Hawley, 1974), but Millero and Schreiber (1982) offer 

perhaps the most reliable value of 2.1 ±0.1.  As expected, the log values for these 

more concentrated brines are lower than this; but more importantly, the range in 

literature values give some indication of the magnitude of precision that is to be 

anticipated (±0.7 log units). 
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Next we can calculate what the required values would have to be to 

account for ∆γ such that Ω is corrected to unity at steady-state.  Combining equations  2–

8 and 2–12, a corrected  can be approximated by: 
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The results are given in Table 2–4 and show that the difference required to account for 

the error is within ±0.2 log units in most cases; far less than the observed uncertainty in 

the literature values.   We can go further by using the relationship between and 

the thermodynamic association constant ( ) to estimate the 

∗
0
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K

0
3CaCO

K 0
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γ value needed to 

account for this error.  Millero and Schreiber (1982) describe how 0
3CaCO

γ  can be derived 

from relation to the  by ∗
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where we again assume that calcium is sufficiently buffered given its high concentration 

so that ++ ≈ 22
TF CaCa

γγ .  Substituting equation 2–14 into 2–13 yields 
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The average 0
3CaCO

γ  required to correct Ω to unity in these brines is 0.7 ±0.1 (Table 2–4). 

 



 

Table 2–3.  The total versus free carbonate ion activity.  The free carbonate ion molal concentration ( , free) was calculated 

from estimates of the free carbonate ion activity coefficient (
−2

3CO
m

−2
3CO

γ , free) calculated in hypothetical pure KCl solutions.  The error in 

the total carbonate ion activity coefficient ( −2
3CO

γ , total) necessary to correct the equilibrium IAP’s to unity is relatively minor 

( −2
3CO

γ , corrected).   

 −2
3CO

m  −2
3CO

γ  

Experiment ID Free Total % Free Free Total corrected 
KSP_Brine1_1 2.8E-06     9.8E-06 29% 0.123 0.036 0.037
KSP_Brine1_2 3.4E-06     

     
     
     
     
     
     
     
     
     
     

    
     
     
     
     

1.2E-05 29% 0.123 0.036 0.031
KSP_Brine1_3 3.3E-06 1.2E-05 29% 0.123 0.035 0.033
KSP_Brine1_4 3.6E-06 1.2E-05 29% 0.124 0.036 0.030
KSP_Brine2_1 1.7E-06 1.3E-05 13% 0.074 0.010 0.007
KSP_Brine2_2 1.8E-06 1.3E-05 13% 0.074 0.010 0.007
KSP_Brine2_3 1.8E-06 1.4E-05 13% 0.074 0.010 0.006
KSP_Brine2_4 1.7E-06 1.3E-05 13% 0.074 0.010 0.007
KSP_Brine3_1 7.4E-07 1.3E-05 6% 0.060 0.003 0.002
KSP_Brine3_2 7.5E-07 1.3E-05 6% 0.060 0.003 0.002
KSP_Brine3_3 7.5E-07 1.3E-05 6% 0.060 0.003 0.002
KSP_Brine3_4

 
7.2E-07 1.2E-05 6% 0.060 0.004 0.002

MgFree_1 7.1E-06 1.7E-05 40% 0.067 0.027 0.023
MgFree_2 1.4E-06 9.2E-06 15% 0.067 0.010 0.007
MgFree_3 8.7E-07 1.6E-05 5% 0.068 0.004 0.002
MgFree_4 7.6E-06 1.9E-05 40% 0.067 0.027 0.021
MgFree_5 1.3E-06 8.5E-06 15% 0.067 0.010 0.008

 

34

 



 

Table 2–4.  The sensitivity of carbonate ion activity to ion pairing.  The free carbonate ion molal concentration ( , free) was 

calculated from estimates of the free carbonate ion activity coefficient (
−2

3CO
m

−2
3CO

γ , free) calculated in hypothetical pure KCl solutions.  

The error in the total carbonate ion activity coefficient ( −2
3CO

γ , total) necessary to correct the equilibrium IAP’s to unity is relatively 

minor ( −2
3CO

γ , corrected).  The discrepancy could be easily explained by a minor error in the stoichiometric association constant for 

the CaCO3
0 ion pair ( ). ∗

0
3CaCO

K

 Log  ∗
0
3CaCO

K 0
3CaCO

γ  Log  ∗
0
3MgCO

K

Experiment ID EQPITZER corrected corrected EQPITZER corrected
KSP_Brine1_1 1.72     1.68 0.9 2.05 2.19
KSP_Brine1_2 1.72     

     
     
     
     
     
     
     
     
     
     

      
      
      
      
      

1.80 0.7 2.05 2.26
KSP_Brine1_3 1.73 1.78 0.7 2.02 2.21
KSP_Brine1_4 1.73 1.83 0.7 2.03 2.26
KSP_Brine2_1 1.48 1.68 0.7 1.94 2.17
KSP_Brine2_2 1.48 1.69 0.7 1.94 2.19
KSP_Brine2_3 1.48 1.72 0.6 1.95 2.22
KSP_Brine2_4 1.48 1.67 0.7 1.96 2.19
KSP_Brine3_1 1.38 1.66 0.9 2.10 2.38
KSP_Brine3_2 1.39 1.68 0.8 2.10 2.38
KSP_Brine3_3 1.38 1.68 0.8 2.10 2.39
KSP_Brine3_4 1.37 1.63 0.9 2.09 2.35
MgFree_1 1.75 1.88 0.6 - -
MgFree_2 1.47 1.65 0.9 - -
MgFree_3 1.26 1.61 0.4 - -
MgFree_4 1.75 1.94 0.6 - -
MgFree_5 1.47 1.60 0.9 - -
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2.5.  Conclusion 

 Although the EQPITZER model reasonably predicted equilibrium (±10%) with 

respect to calcite in relatively low concentration brines (< 50 g L- TDS), with increasing 

brine concentration a systematic increase in the calculated saturation state was observed, 

yielding at steady-state an apparent 2-fold supersaturation in the most-calcium rich 

brine.  The error was not specifically related to magnesium concentration suggesting that 

it is not the result of the formation of an enhanced solubility Mg-rich phase.  Instead, it 

was strongly correlated with increases in calcium concentration.  We can not be certain 

that the apparent increase in steady-state IAP is not related to a complex interaction 

between the calcite surface and these highly concentrated brines, but perhaps the 

simplest explanation is that the apparent IAP increase represents minor uncertainty in the 

carbonate ion activity coefficient.  A minor adjustment in stoichiometric association 

constants ( ) for the or ion pairs could correct for the error.  

Alternatively, if the neutral species ion activity coefficient (i.e.,

∗
+ 0

3
2 COM

K 0
3CaCO 0

3MgCO

0
3CaCO

γ ) were permitted to 

deviate slightly from unity, the error could also be resolved.  Although this minor error 

would have little consequence in many geochemical context such as in the case of 

mineral mass transport, it can impart significant error to kinetic rate models that 

empirically describe the rate of dissolution as a function of the degree of disequilibrium 

(1-Ω).  Jeschke and Dreybrodt (2002) showed that when rates are modeled by linear fits 

of log R versus log (1-Ω), small uncertainties in Ω can have a pronounced effect on the 

interpreted reaction order (n) and rate constant (k).  Small errors can create nonlinearity 

in log-log plots.  Such effects are particularly important under near equilibrium 

conditions such as those that will be considered in the subsequent chapters.
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CHAPTER III 

CALCITE DISSOLUTION KINETICS IN BRINES  

UP TO 1 MOLAL CALCIUM

 

  A series of classical pH-free-drift batch reactor experiments were used to 

measure the rate of calcite dissolution at a temperature of 25 °C and pressure of 1 atm 

(0.5 MPa) in a range of Na-Ca-Mg-Cl synthetic brines.  The free-drift method allows for 

rapid determination of dissolution rates over a broad range of saturation states.  An open 

system method was employed in which the rate of CaCO3 dissolution was determined by 

monitoring changes in solution pH as a function of time at a constant pCO2.  The rate of 

change in pH was subsequently converted to changes in alkalinity using the program 

EQPITZER (He and Morse, 1993) which could then be directly related to a dissolution 

rate.  Experiments examined the combined affects of a broad range of major ion 

concentrations and ionic strength (I) on the net rate of dissolution.  The calcium 

concentration in the brines reached a maximum of nearly 1 m at an ionic strength in 

excess of 4 m.  The compositions are representative of the high levels of calcium that 

can be found in Gulf Coast basin formation waters (Moldovanyi and Walter, 1992).  

These experiments served as a foundation for later experiments presented in subsequent 

chapters where the specific effects were determined.   
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3.1.  Materials and Methods 

3.1.1.  Aqueous Solutions 

Brines prepared for these experiments ranged in concentration that from pseudo-

seawater (I = 0.7 m) to nearly I = 4.5 m. The most concentrated brines contained calcium 

and magnesium concentrations similar to those of Smackover Formation waters of the 

southwest Arkansas shelf (Gulf Coast basin) (Moldovanyi and Walter, 1992).  Each 

solution was prepared in the same manner as described in Chapter II.  Their initial 

chemical compositions are presented in Table 3–1. 

 

Table 3–1.  Initial solution compositions of synthetic brines and pseudo-seawater (psw). 
Brine ID ~TDS  

(g L-1) 
Ionic 

Strength 
(molal) 

Ca2+

(molal) 
Mg2+

(molal) 
Na+

(molal) 
Cl-

(molal) 

psw_a 35 0.73 0.0116 0.0593 0.5164 0.6426 
psw_b 35 0.75 0.0112 0.0742 0.5076 0.6329 
brine 1 49 0.99 0.0795 0.0795 0.5360 0.0809 
brine 2 56 1.14 0.0914 0.0456 0.7295 0.9971 
brine 3 77 1.60 0.1475 0.0532 0.9995 1.3960 
brine 4 105 2.13 0.2624 0.0858 1.1740 1.6880 
brine 5a 134 2.96 0.4275 0.0817 1.4349 2.4496 
brine 5b 134 2.99 0.4366 0.0903 1.4070 2.4580 
brine 6 158 3.70 0.6408 0.1112 1.4400 2.9410 
brine 7a 179 4.35 0.9045 0.1266 1.2595 3.3204 
brine 7b 179 4.43 0.9356 0.1624 1.1360 3.3300 

  
 

3.1.2.  Solids 

 A.C.S. reagent grade calcite (Fisher Scientific) was pretreated with dilute (0.1 N) 

HCl according to the methods of Sass et al. (1983).  Mineralogy was verified as >99% 

calcite by X-ray diffraction.  A JEOL JSM-6400 scanning electron microscope was used 

to characterize grain size and distribution (Figure 3–1).  Using scanning electron 
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micrograph (SEM) images calibrated to an SRM 2090 SEM magnification standard, 

precise measurements of 250 individual grain edge lengths were obtained.  These were 

then used to calculate the geometric specific surface area ( , mGEOA 2 g-1) using the 

following equations: 

∑=
j

fjGEO mAA  (3–1) 

41
3

2

1066 −− ×== l
l

l

ρρjA  (3–2) 

T

j
f m

m
m =   (3–3) 

3lρ=jm  (3–4) 

∑=
j

jT mm  (3–5) 

where, assuming cubic geometry,  is the surface area per gram of grain jA j  (m2 g-1),  

is its edge length (cm),  is its mass fraction, and  is its mass (g), and ρ = calcite 

bulk density (2.71 g cm

l

fm jm

-3).  The geometric surface area calculated from these equations 

(0.91 m2 g-1) was in excellent agreement with a separate determination by N2-BET gas 

absorption (0.95 m2 g-1) (Brunauer et al., 1938). 
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Figure 3–1.  Scanning electron micrograph of acid treated A.C.S. reagent powder calcite.  
Magnification is x3000 and scale bar = 10 µm.  Geometric surface area was estimated 
from the average of two edge lengths of each grain (black lines).  
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 There were two reasons why this fine grain size, high specific surface area 

powdered calcite was specifically chosen in these early experiments.  First, when 

contending with an open system it can be difficult to precisely balance the water vapor 

flux of the reactor.  Over extended periods, a small imbalance can result in dilution or 

enrichment of the reacting solution thereby complicating the interpretation of the rate of 

dissolution.  A high specific surface area assured that the reaction could be followed 

through to near equilibrium in a relatively short time (< 3 hours) thus mitigating this 

effect.  Second, if the particle radius is <10 µm, then the velocity of the crystal relative 

to the surrounding fluid is low making convection negligible (Nielsen and Toft, 1984), 

and thus simplifying the hydrodynamics of the system and eliminating a potential 

stirring rate dependence on the reaction rate.  

 

3.1.3.  Solution Chemistry 

 Solution chemistry was determined using the methods described in Chapter II.  

These included the analysis of the salts (Ca2+, total hardness and Cl-) and the carbonic 

acid parameters TA and TCO2.  In addition, solution pH was measured with an Orion 

720A potentiometer using the modified approach of Knauss et al. (1990).  The method 

seeks to avoid the problems associated with pH measurement in high ionic strength 

solutions by referencing the H+-selective electrode to a solid state Cl- ion selective 

electrode, thereby avoiding a liquid junction potential.   

While calibration of pH electrodes is commonly made with respect to NBS 

buffers, this approach is generally accurate only in dilute solutions.  Since standard 

buffers are not readily available for solutions exhibiting the high ionic strengths used in 
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this study, the electrodes were calibrated directly to the EQPITZER software from 

measurements of the initial and final TA and TCO2 of the experimental solutions. 

Coupling these two carbonic acid system parameters with the solution composition, a 

“Pitzer scale” pH could be calculated using EQPITZER at the start and terminus of each 

experiment.  The electrode response slope (Sx) could then be established using a two-

point calibration from: 

fi

if
x pHpH

EE
S

−

−
=  (3–6)  

where E is the emf and pH is the calculated “Pitzer pH”, initial (i) and final (f).  

Electrode response in the brines was typically within 10% of the ideal Nernst value 

(Table 3–2).  The Knauss method is internally consistent with the EQPITZER software 

since it was used in the CO2-system Pitzer parameter determinations of He and Morse 

(1993).   

   

3.2.  Experimental 

 The 550 ml water-jacketed reaction vessel accommodated a gas feed, two 

electrodes, vent, temperature probe, and sampling port (Figure 3–2).  The solution was 

stirred at constant rate with a propeller shaft that passed through the top of the reaction 

vessel.  Temperature (25 ±0.1 °C) and pCO2 were maintained in the same manner as that 

described in Chapter II and similarly included the use of gas humidifiers. 

 



 

 

Figure 3–2.  Open system pH-free-drift batch reactor used to measure calcite dissolution rates in concentrated synthetic brines.  
Photo image shows the reactor (foreground) and gas humidifier.  The elements of the experimental setup are illustrated in the 
schematic: 1) high grade nitrogen and carbon dioxide gas; 2) dual MKS® Type 1479A mass-flow regulators; 3) computer; 4) gas 
humidifier; 5) batch reactor; 6) stir motor; 7) Orion® 720A pH meter; 8) Neslab® RTE-8DD circulating bath.

43
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The initial conditions of the brines prior to calcite addition were established by 

bubbling with a pure CO2 gas stream at a flow rate of 2 L min-1 followed by addition of a 

concentrated primary standard grade Na2CO3 solution sufficient to establish the CaCO3 

saturation state (Ω) at approximately 0.2.  The solution was then equilibrated with the 

gas phase for several hours and the electrodes were allowed to stabilize.  The emf was 

recorded, and a 10 ml aliquot was drawn for the initial determination of key parameters 

(Cl-, Ca2+, Mg2+, TA and TCO2).  Powdered calcite was then added to the reaction vessel 

at 200 mg in excess of its predicted consumption, and changes in solution emf were 

measured with reaction time. 

After 1 hour, the rate of change was typically too slow to resolve from electrode 

“noise”.  A final emf value was then recorded and a second aliquot drawn and filtered 

through a Millipore 0.45 µm syringe filter for determination of final Pitzer-scale pH for 

electrode calibration.  The change in solution composition continued to be monitored by 

hourly sampling until, within experimental error, steady-state was achieved.  The system 

typically achieved steady-state within 2 hours. 

 

3.3.  Results 

Table 3–2 lists the CO2-related parameters at the start of each experiment and the mean 

steady-state values.  Figure 3–3 shows the raw pH data as a function of time.  Calculated 

pH values from direct sample analysis illustrate the stability of the system at steady-

state.

 



 

Table 3–2.  Initial (i) and steady-state (ss) carbonic acid system parameters for the synthetic brines and pseudo-seawater (psw).  
Electrode response is reported as percent Nernstian. The pCO2 was derived using EQPITZER from coupling TA and TCO2 and the 
value reported is the mean of the initial and final conditions. 

Brine ID pHi pHss electrode 
response 

TAi
(meq kg-1H2O) 

TAss
(meq kg-1H2O) 

TCO2i 
(molal) 

TCO2ss 
(molal) 

pCO2
(bar) 

psw_a 5.794 6.059 ±0.015 88% 15.7 27.2 ±0.2 0.0443 0.0541 ±0.0007 0.98 ±0.00 
psw_b 5.983 6.099 ±0.010 91% 22.1 28.4 ±0.2 0.0480 0.0539 ±0.0007 0.86 ±0.01 
brine 1 5.409 5.776 ±0.009 83%  

  

6.2 14.2 ±0.2 0.0319 0.0394 ±0.0008 0.88 ±0.01 
brine 2 5.368 5.737 ±0.005 94% 6.0 13.5 ±0.1 0.0320 0.0385 ±0.0003 0.92 ±0.03 
brine 3 5.297 5.646 ±0.001 96% 5.2 11.6 ±0.1 0.0290 0.0353 ±0.0005 0.91 ±0.02 
brine 4 5.187 5.599 ±0.009 89% 3.8 9.7 ±0.1 0.0244 0.0298 ±0.0003 0.86 ±0.01 
brine 5a 5.079 5.438 ±0.028 112% 3.2 7.3 ±0.1 0.0233 0.0274 ±0.0012 0.95 ±0.06 
brine 5b 5.071 5.481 ±0.011 96% 2.8 7.6 ±0.1 0.0208 0.0264 ±0.0004 0.88 ±0.04 
brine 6 5.054 5.433 ±0.008 106% 2.3 6.4 ±0.1 0.0170 0.0235 ±0.0002 0.83 ±0.09 
brine 7a 4.790 5.429 ±0.003 86% 1.4 5.8 ±0.1 0.0181 0.0217 ±0.0001 0.98 ±0.00 
brine 7b 4.733 5.399 ±0.006 86% 1.2 5.6 ±0.0 0.0176 0.0218 ±0.0001 0.90 ±0.00 
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Figure 3–3.  Pitzer-scale pH as a function of time as measured in situ from electrodes out 
to 1 hour (line trace) and then as calculated from direct sample analysis (values >1 hour).  
Brine 1 (open circle), brine 2 (open square), brine 3 (open diamond), brine 4 (x), brine 5 
(+), brine 6 (open diamond), brine 7 (solid circle).  
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3.3.1.  Calculation of Dissolution Rate 

The dissolution of 1 mole of calcite contributes 2 moles of TA, as given by the 

overall reaction, 

−+ +⇔+ 3
2

23 2HCOCaOHCaCO . (3–7) 

Thus, the dissolution rate can be defined from the time dependent rate of change in TA: 

⎟
⎠
⎞

⎜
⎝
⎛=

dt
dTAV

dt
dCaCO

2
13  (3–8) 

where V is the mass of solvent since molal units are used. This requires that the pH-time 

data be converted to TA-time.  Since pCO2 remained near constant over the course of the 

reaction, TA can be determined using EQPITZER by coupling pCO2 and pH.  A 7th-

order polynomial equation was fit to the resulting TA-time data, and the first derivative 

of the fitted equation applied to equation 3–8.  As a result of the poor asymptotic 

properties of high order polynomial equations, the 
dt

dTA  data had to be truncated near 

the terminus.  To avoid this, several other empirical fits to the data were attempted.  

However, none provided as complete a fit to the data as the high order polynomial 

despite its limitations when applied to very slow rates such as those measured very near 

equilibrium (Ω > 0.98).  

 

3.3.2.  Surface Area Correction 

The rate of dissolution calculated in equation 3–8 must be normalized to the 

surface area of calcite.  The decrease in calcite surface area as a function of reaction 

extent was included in the rate calculations.  The available surface area within the 

reaction vessel ( , mtrxnA ,
2) at a given time t was estimated from: 
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tGEOttrxn AWA ,, ′=  (3–9) 

Where the first term (Wt) accounts for the loss of calcite mass and the second term 

( ) corrects for the change in specific surface area.  The loss of calcite mass is 

calculated from changes in TA by: 

tGEOA ,′

( )( )⎟
⎠
⎞

⎜
⎝
⎛ −−= itit TATAWFVWW ..

2
1 , (3–10) 

where Wi is the initial calcite mass (g), V is mass of solvent (kg), F.W. is the formula 

weight of calcite, and TAt and TAi are alkalinities at time t and t = 0.   

The term  is the specific surface area (mtGEOA ,′ 2 g-1) at time t, and is solved using 

an iterative procedure. The approach assumes cubic geometry for each CaCO3 grain, and 

that the activity of each calcite grain is equivalent per unit surface area.  As a result of 

dissolution, the volume of grain j at time t ( ) can be expected to vary approximately 

as follows: 

tjv ,

( ) mtjt
tj

tj vvtR
A

v 1,

2
3

1,
, 6

6 −
− ∆−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= , (3–11) 

where  is the specific surface area of grain j calculated at the previous time 

increment (t–1) using equation 3–2; R

1, −tjA

t is the surface area normalized dissolution rate 

(moles m-2 hr-1) at time t, ∆t is the time interval (hours) over which 
dt

dCaCO3 is 

numerically differentiated, and vm is the molar volume of calcite (3.693x10-5 m3 mole-1).  

A corrected surface area for grain j ( tjA ,′ ) is then calculated, 

 ( )3
2

,, 6 tjtj vA =′ . (3–12) 
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 The corrected grain dimension ( tj ,l′ ) is calculated from rearrangement of equation 3–2 

and  calculated from equations 3–1 through 3–5.  The surface normalized rate is 

then recalculated and the process iterated several times.  The available surface area 

within the reaction vessel at time t ( ) is then calculated from equation 3–9. 

tGEOA ,′

trxnA ,

The effect on the specific surface area was minor but the loss of calcite was 

significant in some cases (Figure 3–4).  This issue was resolved in later experiments (see 

Chapter IV) where a coarser calcite was used.  In terms of the effect on available surface 

area, the increase in specific surface area tended to partially offset loss of calcite mass.  

The total decrease in surface area over an experimental run was typically about 30%. 

A MATLAB software program was developed that facilitated these rate 

calculations along with the model fitting that will described in following discussion.  

The program along with output for each of the experiments is presented in Appendix II. 

 

3.4.  Discussion 

 Rate data were modeled using the general rate equation (see Morse and 

Arvidson, 2002, for discussion of application of different types of rate equations to 

calcite dissolution).  The general rate equation is (e.g., Morse and Berner, 1972): 

( )ncalcite k
dt

dm
R Ω−=−= 1  (3–13) 

where R is the rate (mole m-2 hr-1), m is moles of calcite, t is time, k is the 

empirical rate constant, and n is the reaction order.  The equation describes the 
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Figure 3–4.  The change in calcite mass.  The calculated change in calcite mass (open 
circle) and corresponding change in specific surface area (open square) as a result of 
dissolution for the brine 1 experiment. 
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rate as a function of saturation state (Ω) (see Chapter II, equation 2–3) where 1 - Ω 

represents the extent of disequilibrium.  Jeschke and Dreybrodt (2002) showed that when 

rates are modeled using this equation, small uncertainties in the IAPss used to calculate Ω 

can have a pronounced effect on the interpreted reaction order (n) and rate constant (k).  

Such effects are particularly pronounced under near equilibrium conditions as is the case 

in these experiments. 

 As was established in Chapter II, EQPITZER failed to correctly predict 

equilibrium in these concentrated solutions yielding Ω > 1 at steady state.  Furthermore, 

there was considerable variability amongst replicate solubility experiments.  Therefore, 

to model the rate data, the Ω value in equation 3–13 was derived from an apparent 

kinetic equilibrium IAP specific to each rate experiment.  The following discussion 

describes how this value was derived. 

 

3.4.1.   Apparent Kinetic Equilibrium 

 Figure 3–5 shows the change in carbonate ion activity as a function of dissolution 

rate for each of the synthetic brines.  In all cases a near linear correlation was observed.  

The apparent carbonate ion activity ( ) when the rate is zero was estimated from the 

intercept of a linear least square regression (Table 3–3).  Given that in these calcium-rich 

solutions the calcium activity remains nearly constant, the apparent saturation state (

∗
−2

3CO
a

∗Ω ) 

could be closely approximated by 

∗∗
∗

−

−−+

≈=Ω
2
3

2
3

2
3

2

CO

CO

eq

COCa

a

a

K

aa
 (3–14) 
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where is the apparent IAP at equilibrium (IAP∗
eqK *) calculated as the product of  

and the average steady state calcium ion activity.   

∗
−2

3CO
a

As shown in Figure 3–6, IAP* was generally in close agreement with the 

measured steady state IAP and exhibited a similar trend to that observed in the solubility 

experiments in which they systematically exceed Kc with increasing brine concentration.  

However, in most cases the kinetic experiments yielded somewhat lower steady state 

IAP’s than observed in the solubility experiments.  This may indicate that the steady 

state conditions observed in the kinetic experiments represent a metastable equilibrium 

and that given sufficient time the system reestablishes a new equilibrium.  However, the 

predominant free energy driving the dissolution is clearly relative to this initial 

metastable phase. 

When modeled with respect to the apparent saturation state, first-order kinetics (n 

= 1) were sufficient to provide an excellent fit to the rate data.  Reported in Table 3–3 

are the k values (mmole m2 hr-1) along with the correlation coefficients.  In general the 

rates decrease with increasing brine concentration although the relation is complex and 

will be further examined in Chapter IV.   It is remarkable that given the extreme 

variability in brine concentration, the rate constants agree to within 20% (51.5 ±8.4 

mmole m2 hr-1). 
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Figure 3–5.  The apparent carbonate ion activity as calculated from the experimental 
data using EQPITZER as a function of dissolution rate (dashed lines).  Solid lines are 
linear least square regression fits of the experimental data.  Brine 1 (open circle), brine 2 
(open square), brine 3 (open diamond), brine 4 (x), brine 5_a (+), brine 6 (open 
diamond), brine 7_a (solid circle).   
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Table 3–3.  The apparent carbonate ion activity at equilibrium ( ) predicted from 

regression analysis in Figure 3–5.  The rate constant (k, mmole m

∗
−2

3CO
a

2 hr-1) for the general 
rate equation in which n = 1 yielded and excellent fit of rate data when modeled as a 
function of Ω*. 

Brine ID ∗
−2

3CO
a x108 k r2

psw_a 84.8 55.9 0.986 
psw_b 97.3 63.3 0.956 
brine 1 22.3 66.6 0.993 
brine 2 18.6 48.1 0.993 
brine 3 12.7 54.7 0.991 
brine 4 8.1 51.7 0.998 

brine 5_a 4.8 52.5 0.973 
brine 5_b 5.5 43.7 0.994 
brine 6 4.3 48.2 1.000 

brine 7_a 4.1 42.1 0.992 
brine 7_b 3.6 39.6 0.987 

 

  In contrast to this study, the general rate equation has typically yielded reaction 

orders between 3 and 4 (e.g., Berner and Morse, 1974; Morse and Arvidson, 2002) when 

applied to calcite dissolution in complex natural waters (e.g., seawater).  However, first-

order kinetics for calcite dissolution is not unprecedented.  When Arakaki and Mucci 

(1995) measured calcite dissolution rates in solutions near saturation (0.1 < Ω < 0.8) 

they found that their mechanistic dissolution model predicted first-order dissolution 

kinetics. Furthermore, when Hales and Emerson (1997) reexamined experimental data of 

the dissolution rate of reagent grade calcite in seawater, they found that their original 

conclusion of a rate law with 4.5-order dependence was very sensitive to uncertainties in 

the Ω with respect to calcite.  When they applied an apparent kinetic solubility product, 

the dissolution rate could be adequately described by first-order kinetics.   
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Figure 3–6.  The apparent kinetic equilibrium IAP (solid circle) was in close agreement 
in most cases with the measured steady state IAP (solid square).  Values systematically 
exceeded Kc (lines) with increasing brine concentration similar to that observed in the 
solubility experiments (open circle), although to a lesser extent. 
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Another consideration is that the pseudo-seawater used in this study was 

phosphate-free unlike natural seawater.  Morse (1974) demonstrated that although 

phosphate contributes a minor change on the rate constant, it can have a pronounced 

effect on the reaction order.  Its absence in these solutions may explain the linear 

dependence on undersaturation.  Sjöberg (1978) reported a reaction order close to 2 for a 

pseudo-seawater prepared in a similar fashion to the one used here but containing 

sulfate.     Gutjahr et al. (1996b) examined the effect of modest amounts of calcium on 

the dissolution kinetics of calcite and also reported values close to first-order.   

 

3.4.2.  Surface versus Diffusion Controlled Processes 

Calcite dissolution can proceed by both surface reaction and mass transport 

processes.  Which of the two processes exhibits a dominant control on the observed rates 

can be determined by comparing the theoretical diffusion-controlled rate (RD) to the 

measured rate (R).  A similar approach, using the control index (qD) of Nielsen and Toft 

(1984), was employed by Zhang and Dawe (1998) to evaluate the controlling mechanism 

of calcite growth in high salinity water.  They defined the equation; 

D
D R

Rq = . (3–15) 

When qD ≤ 0.1, surface reactions dominate the dissolution, and when qD ≥ 0.9, 

diffusion dominates.  Values between 0.1 < qD < 0.9 indicate a mixed kinetic regime 

where rates show intermediate behavior (Morse and Arvidson, 2002).  The theoretical 

diffusion-controlled rate (RD) was estimated using the method of Morse and Berner 

(1972): 
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( ) ( )[ ]−−−− −+−= 2
3

2
333 COCOHCOHCOD mmmm

r
DAR , (3–16) 

where D is the diffusion coefficient (assumed 3.6x10-5 m2 hr-1), A is the surface area of 

the calcite, r is the crystal particle radius (~3.5 µm), and jm and denote the 

concentration of the j

jm

th species in the solution layer adjacent to the crystal surface and in 

the bulk solution respectively.  The thickness of the stagnant boundary layer was not 

considered because the particle radius was <10 µm and the low velocity of the crystal 

relative to the surrounding fluid makes convection negligible (Nielsen and Toft, 1984).  

 As a first-order approximation it was assumed that = im im .  While this will 

produce an overestimation for RD, the approximation is sufficient in this case since, for 

all experiments, experimental rates (R) are two to three orders of magnitude less than 

theoretical diffusion rates (RD) (Figure 3–7).  Since  qD<<1 across the range of modeled 

saturation states, the dissolution is dominated by surface controlled processes.  This is to 

be expected provided the near saturation region over which these rates were measured 

(e.g., Plummer et al., 1979; Busenberg and Plummer 1986; Morse and Arvidson, 2002; 

Brantley, 2004)  RD rates tended to decrease with increasing brine concentration.  These 

slower diffusional rates are a consequence of the proportional decrease in equilibrium 

carbonate ion concentration with increasing calcium, thus resulting in smaller 

concentration gradients. 

 



 58

 

 

 

0.001

0.01

0.1

1

10

0.3 0.45 0.6 0.75

m
ol

es
 m

-2
 h

r-1

Ω∗

R
D
 region

R

0.9

 

Figure 3–7.  Theoretical versus measured diffusion rates.  Theoretical diffusion rates for 
dissolution (RD) are 2 to 3 orders of magnitude greater than the experimental rates (R) 
indicating surface controlled kinetics.  The upper limit of the range in the RD is bounded 
by the pseudo-seawater RD while the lower limit is bonded by the most concentrated 
brine (brine 7).  Thus, the rate of theoretical diffusion decreases with increasing brine 
concentration. 
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3.5.  Conclusion 

An open-system pH-free-drift technique was employed to measure calcite 

dissolution rates in synthetic brines at 1 bar pCO2 for brines ranging in concentration 

from simple seawater (35 g L-1) to 179 g L-1.  Dissolution rates were modeled using the 

general equation ( ).  Observed rates were two to three orders of magnitude 

smaller than theoretical diffusional rates, over the range of saturation states modeled.  

Rates generally decreased with increasing brine concentration, but despite the large 

compositional range of the brines, rates varied by only about 20%.  The mean rate 

constant (k) is 51.5 ±8 mmole m

( nkR Ω−= 1 )

2 hr-1and the reaction order (n) could be assumed unity 

(n = 1).  These rates are in good agreement with previous studies under high pCO2 

conditions.
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CHAPTER IV 

CALCITE DISSOLUTION KINETICS IN  

GEOLOGICALLY RELEVANT BRINES 

 

  This chapter presents the findings from experiments similar to those conducted 

in Chapter III, but with important refinements made to the experimental methods that 

allowed for investigations over a broader range of conditions including lower pCO2 and 

higher temperature.  This series of experiments sought to determine the specific effects 

of temperature, pCO2, and solution composition on the rate of calcite dissolution for a 

broad range of geologically relevant brines.  Dissolution rates were measured at 25, 52.5 

and 80 ºC and near 1, 0.5 and 0.1 bar pCO2.  The dissolution experiments were 

performed in synthetic brines at ionic strengths and calcium and magnesium 

concentrations more typical of worldwide subsurface brines than those explored in the 

previous chapter.  In addition to examining the combined effect of covarying calcium, 

magnesium and ionic strength in a geologically meaningful way, the specific effects of 

each of these solution parameters was investigated.  Finally, the effect of a common 

natural inhibitor which has a highly variable concentration in natural brines, SO4
2-, was 

also investigated.  Multiple regression analysis was used to produce an empirical model 

capable of predicting the rate of dissolution in solutions typical of many subsurface 

formation waters. 
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4.1.  Materials and Methods 

4.1.1.  Aqueous Solutions 

The composition of the synthetic brines prepared for these experiments was 

based on the relation between total dissolved solids (TDS, g L-1) and the major dissolved 

species observed by Hanor (1994b).  Figure 4–1 shows the calcium, magnesium 

concentrations, and ionic strength that are predicted from TDS content based on those 

relations.   

Three ‘model’ brines were prepared with calcium, magnesium and ionic strength 

equivalent to subsurface brines exhibiting approximate TDS values of 50, 125 and 200 g 

L-1.  Although these solutions were similar in both magnesium concentration and ionic 

strength to those investigated in Chapter III, they exhibited only about half the calcium 

enrichment with increasing TDS (Figure 4–1).  This lower calcium enrichment is both 

more typical of most subsurface brines and also resulted in a higher carbonate carrying 

capacity, making the observed change in solution chemistry as a result of calcite 

dissolution more pronounced.  This made it considerably easier to make robust rate 

measurements in comparison with the earlier experiments.   

The preparation of each brine was done in the same manner described in Chapter 

II.  In addition, phosphate measurements were made on the concentrated stock solutions 

from which the brines were prepared according to the methods of Murphy and Riley 

(1962) and in all cases were found to be below our detection limit (< 1 µM). The initial 

chemical compositions are presented in Table 4–1.
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Figure 4–1.  The chemistry of the ‘model’ brines.  The brines prepared for these 
experiments were based on the relation between TDS and major dissolved species 
concentration observed by Hanor (1994b).  Three brines were prepared whose calcium 
(solid circle), magnesium (solid square) and ionic strength (solid diamond) were 
equivalent to subsurface brines exhibiting approximate TDS concentrations of 50, 125 
and 200 g L-1.  For comparison, the brine compositions of the Chapter III solutions are 
also shown (open scatter points).  Note the differences in scale of the two ordinate axes.  

 



 

Table 4–1.  Initial solution concentration and experimental conditions.   For each experiment concentration (molal), gas 
composition is XCO2, temperature (ºC), and reactor stirring rate (RPM) are given.  The gas mixture was balanced with nitrogen. 

     Brine Experiment Ca2+ Mg2+ Na+ Cl- SO4
2- I XCO2 ºC RPM

1 PCO2_01 0.0387         0.0229 0.7390 0.8504 0.0000 0.9235 1.0 25.0 300
2           
           
           
           
           
           
          
           
           
           
           
           
          
           
          
           
           
           
           
           
           

PCO2_02 0.1574 0.0651 1.8210 2.2610 0.0000 2.4889 1.0 25.0 300
3 PCO2_03 0.3472 0.1223 2.7310 3.6670 0.0000 4.1395 1.0 25.0 300
1 PCO2_04 0.0391 0.0217 0.7351 0.8485 0.0000 0.9175 0.5 25.0 300
2 PCO2_05a 0.1622 0.0677 1.8270 2.2830 0.0000 2.5169 0.5 25.0 300
2 PCO2_05b 0.1543 0.0703 1.7660 2.2110 0.0000 2.4399 0.5 25.0 500
2 PCO2_05c

 
0.1557 0.0656 1.6980 2.1360 0.0000 2.3611 0.5 25.0 700

3 PCO2_06 0.3509 0.1234 2.7270 3.6740 0.0000 4.1501 0.5 25.0 300
1 PCO2_07 0.0388 0.0228 0.7398 0.8592 0.0000 0.9247 0.1 25.0 300
2 PCO2_08 0.1549 0.0660 1.7690 2.2090 0.0000 2.4312 0.1 25.0 300
3 PCO2_09 0.3572 0.1177 2.6560 3.6050 0.0000 4.0806 0.1 25.0 300
2 TEMP_03a 0.1586 0.0656 1.7640 2.2100 0.0000 2.4363 0.5 52.5 300
2 TEMP_04a

 
0.1531 0.0678 1.7740 2.2140 0.0000 2.4366 0.5 80.0 300

2 Ca_01a 0.0410 0.0705 2.2220 2.4340 0.0000 2.5549 0.5 25.0 300
2 Ca_02a

 
0.3579 0.0626 1.2200 2.0570 0.0000 2.4815 0.5 25.0 300

2 I_01a 0.1522 0.0701 0.2504 0.6903 0.0000 0.9172 0.5 25.0 300
2 I_02a 0.1613 0.0743 3.3700 3.8370 0.0000 4.0763 0.5 25.0 300
2 Mg_01a 0.1637 0.0172 1.9740 2.3320 0.0000 2.5165 0.5 25.0 300
2 Mg_02a 0.1577 0.1235 1.6870 2.2460 0.0000 2.5307 0.5 25.0 300
1 SO4_01a 0.0395 0.0237 0.7296 0.8215 0.0115 0.9303 1.0 25.0 300
2 SO4_02a 0.1537 0.0772 1.7770 2.2090 0.0117 2.4816 1.0 25.0 300
3 SO4_03a 0.3451 0.1292 2.6300 3.5490 0.0127 4.0656 1.0 25.0 300

63
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4.1.2.  Solids 

 Calcite rhombs (Iceland spar) obtained from Ward’s Scientific Inc. were crushed 

into powder and wet sieved into >125 µm, 125–63 µm and 63–32 µm size fractions and 

treated as described in Chapter III.  The geometric specific surface area (AGEO) of the 

125–63 µm and 32–63 µm size fractions was calculated from SEM micrographs as 

described in Chapter III.  BET surface areas were obtained using krypton adsorption, 

which is more effective than nitrogen adsorption when contending with low surface area 

materials (Brantley, 2004). 

 The ratio of the specific surface area measured by gas adsorption to the 

geometric surface area defines the surface roughness (Helgeson, 1984), λ: 

GEO

BET

A
A

=λ . (4–1) 

The mean grain size diameters and surface area parameters for all the calcite material 

used in this manuscript are summarized in Table 4–2.  The 125–63 µm size fraction was 

used for these later rate experiments while the 63–32 µm fraction was chosen for the 

solubility experiments presented in Chapter III because its greater specific surface area 

allowed it to more rapidly achieve equilibrium.  

 



 

 

 

 

 

Table 4–2.  Grain size and surface area parameters. 

65

  Calcite Sieve fraction Mean grain 
diameter (µm) (µm) 

AGEO (m2 g-1) ABET (m2 g-1) λ 

Reagent Grade powder 1.8 0.91 0.95 1.05 
Iceland Spar 32–63 35.1 0.051 0.225 4.39 
Iceland Spar 63–125 84.2 0.022 0.098 4.48 
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 The higher roughness factors calculated for the crushed calcite may be attributed 

to complex microstructure resulting from grinding (Hodson, 1998) or from the presence 

of particulates (Brantley, 2004) not fully removed during the sonication.  However, BET 

measurement of specific surface areas on laboratory-ground powders < 0.1 m2 g-1 has 

been found unreliable in many cases (Brantley and Mellott, 2000). 

Furthermore, it may be more appropriate to use the geometric rather than the 

BET surface area when applied to mineral kinetics.  Gas adsorption measures the total 

surface area that can include both external and internal surface area.  Internal surface 

area includes cracks or connected pores that are deeper than they are wide and can 

develop during the grinding process (Jeschke and Dreybrodt, 2002).  Advection can 

control transport to and away from external surfaces, while diffusion must control 

transport for internal areas (Hochella, 1988). This results in the net dissolution rate being 

dominated by the external surface area which is better approximated by geometric 

estimate.   

For many silicate minerals, White et al., (1996) found a mean roughness factor of 

about 7 for a wide assortment of mineral particles.  However, Walter and Morse (1984) 

calculated a surface roughness of close to 1 for crushed calcite rhombs of similar mean 

grain diameter to the 63–125 µm fraction.  The disparity between the Walter and Morse 

(1984) study and the calcite used here may be a consequence of the BET measurement 

reliability and/or of calcite pretreatment.   The custom-made BET apparatus used by 

them was specifically designed for very low specific surface area materials (Kanel and 

Morse, 1979) and is believed to have been considerably more sensitive than the 

commercial one used in this study.  They also annealed their calcite after sonication 
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which may have helped to “heal” grinding induced fissures that would contribute to 

internal surface area.    In any event, they too concluded that for texturally complex 

calcite the relative reactivity during dissolution may be more accurately estimated from 

surface geometry than from BET surface areas which can overestimate the amount of 

reactive surface area.  Unless otherwise noted, the measured rates presented in this 

chapter are normalized to the geometric surface area.  The appropriateness of this choice 

will be made clear in Section 4.4.4. 

 

4.1.3.  Solution Chemistry 

 The analysis of the salts (Ca2+, total hardness, and Cl-) and the carbonic acid 

system parameters TA and TCO2, were performed using the methods described 

previously in Chapters II and III.  The salt membrane of the chloride selective electrode 

used as a reference electrode for pH measurement in the earlier experiments was 

compromised by the corrosive nature of these concentrated brines.  This resulted in 

electrode instability and poor and erratic electrode response that was considerably 

exacerbated at the elevated temperature of some experiments.  Many of the latter 

experiments performed in Chapter III had to be discarded as a result of electrode failure. 

For the experiments presented here, the H+ selective electrode was referenced to 

a Single Refex® solid-state reference electrode.  The Refex® reference electrode uses an 

ionically conductive hard-non-porous salt loaded polymeric matrix.  The matrix acts as 

an immobilized electrolyte thus avoiding a porous liquid-junction.  The calibration of the 

electrodes to “Pitzer scale” pH was performed in accordance to the methods detailed in 

Chapter III.  The electrode response was considerably more stable and consistent than in 

 



 68

the prior experiments and in most cases yielded good agreement (90 ±5%) with the ideal 

Nernst value even at high temperature. 

 

4.2.  Experimental 

The reaction vessel used in these experiments was a modified version of the one 

used in Chapter III.  These experiments included high temperature and low pCO2 

conditions requiring that a water cooled condenser be adopted and improvements made 

to the gas dispersion.  Gas previously was dispersed only by means of a submerged glass 

pipette tip, but this method was inefficient at maintaining constant pCO2 in the reaction 

vessel under low CO2 partial pressures.  Therefore, a specially developed ground glass 

gas dispersion tube was used.  Because calcite has been reported to become lodged in 

ground glass (Morse, 1973), the gas dispersion tube was only fritted on the downstream 

side.    

 Common to open-system free-drift experiments, if the initial rate of dissolution is 

too rapid, gas phase disequilibrium can occur in which there is an excess consumption of 

CO2 relative to supply in the solution (Arakaki and Mucci, 1995).  This can be avoided 

by: 1) conducting the dissolutions at high pCO2 where appropriate; 2) reducing the 

available surface area; and 3) not initiating the experiments at extreme degrees of 

disequilibrium.  In most cases, experiments were conducted near 0.5 bar pCO2 or 

greater, although three experiments were conducted at < 0.1 bar pCO2.  In contrast to the 

Chapter III experiments, calcite of roughly an order of magnitude lower specific surface 

area was used.  This produced considerably slower initial rates and meant that 

considerably more calcite could be added, reducing the change in surface area during the 
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experiments.  Finally, as with the previous experiments, a concentrated primary standard 

grade Na2CO3 solution was added sufficient to establish the CaCO3 saturation state (Ω) 

at approximately 0.2. 

The initial conditions of the brines prior to calcite addition were established by 

bubbling with an ultra high purity nitrogen-CO2 gas mixture appropriate for the desired 

experimental conditions (Table 4–1).  The approximate mole fraction (XCO2) was 

estimated from the ratio of the CO2 flow rate ( ) to the total gas flow rate, jR

( )
222

/2 NCOCOCO RRRX +≈ .   (4–2) 

The total flow rate was fixed at 2 L min-1 for all experiments.  The stirring rate was 

maintained at 300 rpm except where otherwise noted and the solution was equilibrated 

for several hours allowing the electrodes to stabilize.  The initial emf was noted and a 20 

ml aliquot drawn for solution analysis (Cl-, Ca2+, Mg2+, TA and TCO2).   

Unlike the previous experiments, in which the calcite added varied, in these 

experiments the volume of solution to surface area ratio was maintained to a near 

constant with two exceptions.  In the first two experiments (PCO2_06a and PCO2_07a), 

1 g of calcite was added (V:A = 2.3 cm), but this proved to generate a 
dt

dpH that was too 

slow (< 5 mV h-1).  These slow changes in solution chemistry made numerical 

differentiation of the rate data problematic since the high order polynomial equations 

used to fit the data are prone to oscillations when slopes approach zero.  Therefore, in 

the remaining experiments 2 g of calcite (V:A = 1.1 cm) were added.    

The calcite was allowed to react with the solution and changes in solution emf 

were measured.  Because of the enhanced stability of the Refex® electrode, the reactions 
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could be followed for extended periods encompassing the entire duration of the reaction.  

The experiments were terminated typically after 5 hours at which point steady-state was 

achieved within the precision of measurement.  A final emf value was noted and 

triplicate 20 ml samples were drawn and filtered through a Millipore 0.45 µm syringe 

filter for solution analysis and the results averaged.  The calcite remaining in solution 

was then collected by vacuum filtration and briefly rinsed with milliQ® (18.1 µΩ) water.  

The filtered material was freeze dried and stored in a vacuum desiccator for later SEM 

imaging. 

 

4.3.  Results 

Table 4–3 lists the CO2-related parameters at the start of each experiment and the 

mean steady-state values.  Calcite dissolution rates as a function of Ω* were calculated 

from the equations presented in Chapter III facilitated by the MATLAB program 

provided in Appendix II.  The apparent carbonate ion activity at equilibrium as 

extrapolated from the kinetic data ( ) were in close agreement with the measured 

steady-state values ( ) (Table 4–4).  The rates were modeled using the empirical rate 

equation,  with n = 1 (first-order), and the rate constants were normalized 

to both the geometric surface area (k

∗
−2

3CO
a

ss
CO

a −2
3

nkR )1( Ω−=

GEO) and the BET surface area (kBET) (Table 4–4).  

The MATLAB outputs have been complied in Appendix II for each of the experiments.

 



 

Table 4–3.  Initial (i) and steady-state (ss) carbonic acid system parameters.  Electrode response is reported as percent Nernstian. 
The pCO2 was derived using EQPITZER from coupling TA and TCO2 and the value reported is the mean of the initial and final 
conditions. 
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 Experiment 
 ID

pHi pHss electrode 
 response

TAi
(meq kg-1H2O) 

TAss
(meq kg-1H2O) 

TCO2i
(molal) 

TCO2ss 
(molal) 

pCO2
(bar) 

PCO2_01 5.655 5.820 ±0.019 84% 11.6 167 ±0.1 0.0387 0.0432 ±0.0012 0.98 ±0.01 
PCO2_02 5.312 5.624 ±0.015 90% 5.6 107 ±0.0 0.0255 0.0301 ±0.0004 0.89 ±0.04 
PCO2_03 5.064 5.427 ±0.016 86% 3.3 67 ±0.2 0.0194 0.0222 ±0.0001 0.92 ±0.08 
PCO2_04 5.823 6.039 ±0.028 90% 8.2 264 ±0.1 0.0212 0.0264 ±0.0005 0.45 ±0.00 
PCO2_05a 5.448 5.769 ±0.006 94% 4.0 80 ±0.0 0.0143 0.0180 ±0.0000 0.47 ±0.01 
PCO2_05b 5.448 5.769 ±0.004 97% 3.9 78 ±0.1 0.0140 0.0178 ±0.0001 0.46 ±0.01 
PCO2_05c 5.442 5.785 ±0.010 91% 3.9 80 ±0.1 0.0145 0.0180 ±0.0002 0.46 ±0.02 
PCO2_06 5.205 5.542 ±0.005 97% 3.4 46 ±0.1 0.0115 0.0127 ±0.0001 0.47 ±0.02 
PCO2_07 6.222 6.45 ±0.002 85% 3.9 61 ±0.1 0.0063 0.0084 ±0.0001 0.08 ±0.00 
PCO2_08 5.781 6.171 ±0.010 69% 1.7 35 ±0.0 0.0038 0.0053 ±0.0001 0.09 ±0.01 
PCO2_09 5.583 5.959 ±0.005 83% 1.0 22 ±0.1 0.0026 0.0036 ±0.0001 0.09 ±0.01 

TEMP_03a 5.431 5.754 ±0.006 93% 2.0 42 ±0.0 0.0072 0.0094 ±0.0001 0.37 ±0.01 
TEMP_04a 5.399 5.731 ±0.003 99% 1.2 24 ±0.1 0.0048 0.0059 ±0.0001 0.33 ±0.01 

Ca_01a 5.734 5.978 ±0.003 87% 7.8 127 ±0.0 0.0177 0.0222 ±0.0000 0.46 ±0.03 
Ca_02a 5.438 5.671 ±0.002 93% 3.6 60 ±0.0 0.0142 0.0164 ±0.0001 0.46 ±0.01 
I_01a 5.567 5.813 ±0.001 86% 4.7 81 ±0.0 0.0188 0.0220 ±0.0001 0.47 ±0.01 
I_02a 5.340 5.664 ±0.008 88% 3.1 59 ±0.1 0.0105 0.0132 ±0.0001 0.44 ±0.03 

Mg_01a 5.377 5.762 ±0.006 98% 3.3 76 ±0.0 0.0134 0.0175 ±0.0002 0.46 ±0.02 
Mg_02a 5.386 5.749 ±0.004 92% 3.4 75 ±0.0 0.0137 0.0176 ±0.0001 0.46 ±0.02 
SO4_01a 5.662 5.869 ±0.004 90% 11.2 179 ±0.1 0.0365 0.0432 ±0.0001 0.88 ±0.00 
SO4_02a 5.353 5.620 ±0.002 90% 5.9 105 ±0.1 0.0252 0.0296 ±0.0002 0.87 ±0.03 
SO4_03a 5.240 5.441 ±0.007 90% 4.4 66 ±0.1 0.0191 0.0212 ±0.0001 0.84 ±0.04 

PCO2_01b 5.642 5.894 ±0.005 91% 10.8 190 ±0.1 0.0365 0.0445 ±0.0002 0.89 ±0.01 
PCO2_01c 5.663 5.897 ±0.004 90% 11.4 189 ±0.1 0.0374 0.0440 ±0.0003 0.89 ±0.02 
PCO2_03b 5.074 5.457 ±0.005 85% 3.1 68 ±0.1 0.0183 0.0216 ±0.0002 0.86 ±0.06 
PCO2_03c 5.066 5.442 ±0.011 87% 3.1 66 ±0.0 0.0184 0.0211 ±0.0004 0.87 ±0.07 
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Table 4–4.  The apparent carbonate ion activity at equilibrium as extrapolated from rate 
data ( ) and measured at steady-state ( ).  The rate constant in mmol m∗

−2
3CO

a ss
CO

a −2
3

-2 hr-1 for 

the general rate equation in which n = 1, normalized to the BET (kBET) and geometric 
(kGEO) surface area.  Experiments denoted with an MR superscript were included in the 
multiple regression analysis (see Section 4.4.4) 

Experiment 
ID 

∗
−2

3CO
a x108 ss

COa −2
3

x108 kBET kGEO r2

PCO2_01MR 28.8 28.7±1.2 16.3 72.8 1.00 
PCO2_02MR 10.0 10.4±0.4 10.8 48.6 0.99 
PCO2_03MR 3.7 3.9±0.2 7.6 33.9 0.99 
PCO2_04MR 39.8 38.4±3.0 10.0 44.8 1.00 
PCO2_05aMR 9.8 10.7±0.2 6.1 27.4 0.99 
PCO2_05b 10.0 10.6±0.1 7.1 31.8 0.99 
PCO2_05c 10.1 11.3±0.3 6.7 30.2 0.99 
PCO2_06MR 3.4 3.6±0.0 5.1 22.8 0.99 
PCO2_07MR 40.9 44.9±0.0 3.6 16.0 0.99 
PCO2_08MR 11.4 12.0±0.0 2.7 12.0 0.99 
PCO2_09MR 4.1 4.4±0.1 2.7 12.0 0.99 
TEMP_03aMR 6.6 7.5±0.2 13.0 58.1 0.99 
TEMP_04aMR 2.5 3.7±0.4 23.9 106.9 0.98 
Ca_01aMR 25.8 26.9±0.2 5.6 25.3 0.98 
Ca_02aMR 6.6 6.8±0.0 7.3 32.5 0.99 
I_01aMR 13.8 14.2±0.1 9.8 43.7 0.99 
I_02aMR 5.6 5.7±0.2 4.3 19.3 0.99 
Mg_01aMR 9.7 10.1±0.1 6.7 30.0 0.99 
Mg_02aMR 9.2 9.6±0.1 6.2 27.7 0.99 
SO4_01a 34.4 34.5±0.5 11.1 49.6 0.99 
SO4_02a 9.6 10.1±0.1 8.3 37.2 0.99 
SO4_03a 3.5 4.0±0.1 5.1 22.8 0.98 
PCO2_01b 38.0 38.9±0.5 19.5 85.7 0.99 
PCO2_01c 37.6 39.1±0.4 32.8 32.8 0.99 
PCO2_03b 3.8 4.3±0.1 9.9 44.2 0.99 
PCO2_03c 3.9 4.0±0.1 2.7 12.3 0.93 
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4.4.  Discussion 

4.4.1.  Calcite Dissolution in ‘Model’ Brines and the Effect of pCO2 

 Although natural waters have a huge range in composition, the study of calcite 

reaction kinetics has largely been confined to dilute waters and seawater (e.g., for 

reviews see Plummer et al., 1979; Sjöberg, 1978; Morse, 1983; Burton, 1993; Morse and 

Arvidson, 2002).  Even in seawater, both the dissolution and precipitation kinetics have 

been shown to be complex.  Unlike seawater, however, the composition of subsurface 

formation waters varies considerably in the concentrations and ratios of the major 

dissolved species.  Fortunately, this variably is not entirely random as Hanor (1994b) 

demonstrated.  Instead, much of the variability can be explained by mineral-brine 

equilibration considerations.  This constrains somewhat the concentration of the major 

dissolved species as a function of TDS.  However, caution should be used in applying 

the results of this study to brines with compositions substantially different from those 

used here. 

Dissolution rates measured in each of the model brines at three CO2 partial 

pressures (XCO2 = 1.0, 0.5 and 0.1) are shown in Figure 4–2 and their corresponding rate 

constants are plotted in Figure 4–3 as a function of equivalent TDS.  The EQPITZER 

calculated partial pressures as derived from TA and TCO2 were 0.88 ±0.04, 0.45 ±0.01 

and 0.08 ±0.00 bar respectively, reflecting the contribution of vapor pressure.  As 

mentioned in Section 4.2, the lower surface area to solution volume ratios used in 

experiments PCO2_06a and PCO2_07a resulted in pH-time changes that were 

comparatively slower than in the other experiments, making their numerical 

differentiation problematic.  These experiments represent brine 3 (full square) under 
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XCO2 = 0.5 and brine 1 (open square) under XCO2 = 0.1 in Figure 4–2 and are noticeably 

disparate.  The numerical differentiation had to be truncated far from equilibrium and 

may have resulted in the rates being slightly overestimated.  

Other investigators (e.g., Sjöberg, 1978; Busenberg and Plummer, 1986) have 

demonstrated a rate dependence on CO2 for partial pressures above 0.1 bar and for pH 

ranges greater than about 4.5 when the rate is dominated by surface control reactions.  A 

strong dependence on CO2 partial pressure was also observed in this study.  About a 5-

fold decrease in the rate constant was measured when the partial pressure was reduced 

from near 1 to approximately 0.1 bar (Figure 4–3). Van Cappellen et al.  (1993) 

attributed this CO2 dependence to the formation of carbonate complexes with surface 

lattice calcium ions.  According to his surface complexation model, the CO2-promoted 

dissolution rate is directly proportional to the concentration of >CaHCO3
0 sites (where > 

represents the mineral lattice) and is an example of ligand promoted dissolution in which 

the formation of the bicarbonate surface complex increases the rate of detachment of 

Ca2+ from surface positions.   

The inhibitory effects of the salts also appear to exhibit CO2 dependence. Rates 

become progressively more depressed with increasing brine concentration but the effect 

is more pronounced at the higher partial pressures and all but absent at 0.1 bar.
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Figure 4–2.  The pCO2 effect on rates of calcite dissolution in model brines.   Brine 1 (open square), 2 (half full square) and 3 (full 
square) emulated geologic brines exhibiting TDS concentrations of 50, 125 and 200 g L-1 respectively.  The experiments were 
conducted at fixed pCO2 by bubbling under continuous gas feeds of CO2-N2 mixtures where XCO2 = 1.0 (a) , 0.5 (b) and 0.1 (c).
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Figure 4–3.  The rate constant (kGEO) as a function of TDS (g L-1).  In general, with 
increasing brine concentration rates decrease, but this compositional effect is dependent 
on pCO2.  XCO2 = 1 (solid circle), 0.5 (solid square) and 0.1 (solid diamond). Error bars 
represent analytical uncertainty. 
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4.4.2.  The Specific Effects of Ca2+, Mg2+ and Ionic Strength 

 The independent effects of Ca2+, Mg2+ and ionic strength were investigated by 

measuring  the dissolution rate in solutions that were modifications of ‘model’ brine 2 

(TDS = 125).  In each case, one factor was varied while all other variables were held 

constant.  For example, in the case of the Ca2+ effect experiments, two brines were 

prepared with Mg2+ concentration and ionic strength equivalent to brine 2, but with Ca2+ 

concentrations equivalent to brine 1 (Experiment Ca_01a) and brine 3 (Experiment 

Ca_02a) respectively.  The experiments were performed under a XCO2 = 0.5 atmosphere 

at 25 ºC and the rates compared against experiment PCO2_05a.  By using this approach 

the specific contribution to the net inhibition observed with increasing TDS (Figure 4–2 

and 5–3) could be evaluated. 

An interesting finding was that the greatest inhibition to the rate was attributed to 

increasing ionic strength (Figure 4–4a).  There are relatively few studies that have 

examined the specific effect of ionic strength on calcite dissolution rates.  Buhmann and 

Dreybrodt (1987) found that ionic strength was only of minor importance, but the study 

investigated very dilute solutions (< 2 mM) compared with those studied here.  In 

contrast, Zhang and Dawe (1998) found that in high salinity waters (up to 2 mol kg-1), 

the precipitation rate of calcite increased as a function of the square root of ionic 

strength.  Similarly, Bischoff (1968) found that nucleation rates of calcite also increased 

proportional to the square root of ionic strength.  In both cases, they suggested that with 

increased electrolyte concentrations, a stronger inter-particle attraction helps to catalyze 

calcite growth in a manner analogous to colloid flocculation. 
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Figure 4–4.  The specific effects of Ca2+, Mg2+ and ionic strength.   The rate constant (kGEO) (moles m-2 hr-1) as a function of the 
molal concentration of Ca2+ (a), Mg2+ (b) and ionic strength (c).
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 An alternative explanation that could account for both the increase precipitation 

rates observed in the prior studies, and the decreased dissolution rates measured in this 

study, is related to the effect water activity has on the hydration of metal ions.  Consider 

that cation dehydration poses a fundamental energetic barrier to precipitation 

(Lippmann, 1973; Arvidson and Mackenzie, 1999).  Conversely, the hydration of the 

calcium ion poses an energetic barrier to dissolution.  In order for calcite to dissolve, the 

attractive interaction of water molecules most overcome the ionic attraction within the 

mineral lattice.  If as a result of high ionic strength, the water activity is significantly 

diminished, one would expect the hydration efficiency of the calcium ion to be retarded.  

The rate constants shown in Figure 4–4a have been recast as a function of water activity 

in Figure 4–5.  

 There have been a considerable number of previous investigations regarding the 

effects of magnesium ion on calcite dissolution (Weyl, 1967; Berner, 1967; Sjöberg, 

1978; Buhmann and Dreybrodt, 1987; Compton and Brown, 1994; Gutjahr et al., 1996b; 

Alkattan et al., 2002).   While the magnesium ion has clearly been shown to strongly 

inhibit the rate of dissolution in neutral to basic solutions (e.g., Compton and Brown, pH 

8–9), in acidic solutions the inhibition appears absent (Alkattan et al., 2002; pH 1–3).  At 

intermediate pH such as those consistent with this study, the findings are often 

contradictory.    Both Buhmann and Dreybrodt (1987) and Sjöberg (1978) report a strong 

inhibitory effect while Gutjahr et al. (1996b) found no effect.
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Figure 4–5.  The rate constant (kGEO) (moles m-2 hr-1) as a function of water activity.
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 In this study only a modest inhibition was observed when magnesium was varied 

between 0.02 and 0.12 molal (Figure 4–4b).  Sjöberg (1978) described the inhibition due 

to magnesium in solutions containing < 50 mM Mg2+ in terms of a Langmuir-type 

adsorption isotherm.  The Langmuir-Volmer model would predict that beyond some 

inhibitor solution concentration the dissolution rate would become independent of the 

inhibitor concentration.  It is possible that the absence of a strong effect observed in this 

study may suggest that the magnesium concentrations of these brines have exceeded this 

inhibition plateau.  Although Compton and Brown (1994) did measure an inhibition 

effect in solutions containing up to 80 mM Mg2+, their experimental solutions were at 

pH > 8, which may be above the pH of zero surface charge (pHzpc ≈ 8.2) (e.g., Hohl et 

al., 1980).  Below the pHzpc the effects of cationic inhibitors may be greatly diminished 

(Van Cappellen et al., 1993; Pokrovsky and Schott, 2002). 

Several studies have also investigated the effect of the calcium ion on calcite 

dissolution (Sjöberg, 1978; Sjöberg and Rickard, 1985; Buhmann and Dreybrodt, 1987; 

Gutjahr 1996a, 1996b), often with contradictory results.  Sjöberg (1978) found that the 

addition of Ca2+ in solutions ranging from 0 to 10 mM resulted in about a 17% decrease 

to the rate constant that he described in terms of a Langmuir-type adsorption isotherm 

similar to that of magnesium.  Later Sjöberg and Rickard (1985) revisited the issue and 

concluded that due to surface adsorption, increasing Ca2+ resulted in a lower 

concentration gradient between the surface and the bulk solution thereby making the 

reaction more dependent on transport control.   In contrast, Gutjahr (1996b) found that 

the rate constant actually increased by roughly 40% when Ca2+ concentrations were 

increased from 0.160 to 4.090 mM.  The cause of the disparity between the different 
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studies is unclear since amongst these studies the pH, pCO2 and degree of disequilibrium 

are relatively similar.  In this study an increase in the measured rate constant was 

observed when calcium was increased from 0.04 to 0.36 molal (Figure 4–4c).  The 

experimental conditions of the previous studies do differ considerably from this study, 

which was performed using moderately acidic (pH < 6.5) , high pCO2, magnesium-

bearing solutions.   

An important consideration is the effect that calcium has on the carbonate 

carrying capacity of the solution.  For a given degree of undersaturation, the relative 

amount of carbonate ion in solution is reduced when the initial calcium concentration is 

increased.  The inhibiting effect of  has been demonstrated for dissolution far from 

equilibrium in the case of ZnCO

-2
3CO

3 and MnCO3 (Pokrovsky and Schott, 2002), dolomite 

and magnesite (Pokrovsky et al., 1999; Pokrovsky and Schott, 1999), and recently for 

calcite (Lea et al., 2001; Arvidson, personal communication).  Whether such inhibition 

effects occur near equilibrium has not yet been established or if at this low  

concentration they are significant, but they might contribute to the positive correlation 

between calcium and the rate constant measured here. 

-2
3CO

 

4.4.3.  Temperature and Stirring Rate Dependence 

 Since a much coarser calcite was used in these experiments relative to those 

presented in Chapter III, the effects of temperature and stirring rate needed to be 

investigated to confirm that, under these experimental conditions (i.e., Ω > 0.2), the 

reaction was still controlled by surface processes and not effected by hydrodynamic 

conditions.  When experiment PCO2_05 (i.e., brine 2, XCO2 = 0.5, 25.0 ºC) was 
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replicated at 500 and 700 rpm, the rates varied less than 8%, probably within 

experimental error when compositional effects among the replicates is considered (see 

section 4.4.4).  This confirms an independence on stirring rate as would be predicted for 

surface-controlled dissolution. 

Temperature is one of the most important variables when considering reaction 

rate constants.  Drastic variations in rates can occur owing to the exponential 

dependence of reaction rate on temperature, which is often assumed to follow the classic 

Arrhenius (1889) equation: 

⎟
⎠

⎞
⎜
⎝

⎛−

= RT
Ea

Aek  (4–3) 

where A is the pre-exponential factor, Ea is the activation energy, R is the gas constant 

(8.314 x 10-3 kJ mol-1K-1) and T is the temperature in degrees Kelvin.  The apparent 

activation energy for the dissolution reaction can be calculated from the slope of a plot 

of log k versus the reciprocal absolute temperature since 

A
RT
E

k a lnln +⎟
⎠
⎞

⎜
⎝
⎛ −

= . (4–4) 

A plot of ln kgeo against 1/T for dissolution experiments performed in brine 2 (equivalent 

TDS = 125 g L-1) conducted under a XCO2 = 0.5 atmosphere at 25.0, 52.5 and 82.5 °C is 

shown in Figure 4–7.  The apparent activation energy is calculated to be 21 ±1 kJ mol-1 

for this reaction.  There are a wide range of activation energies reported for calcite 

dissolution (about 8–60 kJ mol-1; see Morse and Arvidson, 2002 for review).  In dilute 

solutions far from equilibrium where diffusion-controlled processes dominate, most 

reported values are close to 10 kJ mol-1 (e.g., Plummer et al., 1978; Sjöberg, 1978; 

Salem, 1994).  However, greater values are typically believed to be indicative of surface-
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controlled processes (Lasaga, 1998).  The value reported here is in excellent agreement 

with Alkattan et al. (1998) who determined an Ea = 19 ± 4 kJ mol-1.    

 

4.4.4.  Multiple Regression Analysis of the Dependence of k on Ca2+, Mg2+, Ionic 

Strength, Temperature and pCO2 

 The kinetics of calcite dissolution have typically been described in terms of 

empirical or semi-empirical rate equations (e.g., Morse, 1978; Sjöberg, 1978; Busenberg 

and Plummer, 1986), classical chemical kinetics (e.g., Plummer et al., 1978) or surface 

speciation (Van Cappellen et al., 1993; Arakaki and Mucci, 1995; Pokrovsky and Schott, 

2002) models.  With the exception of some empirical models applied to seawater, these 

models are only applicable to relatively dilute solutions since accurately quantifying 

many of the required species (e.g., surface complexes) in concentrated solutions (i.e., >1 

m) is beyond current geochemical models.  

A disadvantage of the general rate equation (R = k(1-Ω)n) is that it requires 

fitting parameters (k and n) specific to the solution composition of interest, where the 

major solute and inhibitor concentrations and environmental conditions (e.g., P, T and 

pCO2) are known.  The first-order kinetics observed in this study across a broad range of 

typical brine concentrations requires that only one term, k, be determined.  This greatly 

simplifies the approach since conventional statistical methods can be applied to account 

for the variably in k as a function of the key factors investigated.
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Figure 4–6.   Arrhenius plot for apparent activation energy calculations for rates 
measured in brine 2 under a XCO2 = 0.5 atmosphere at 25.0, 52.5 and 82.5 °C.  The 
apparent activation energy is 20.9 kJ mol-1 indicating a surface-controlled reaction.
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A multiple regression analysis was used to evaluate to what extent the observed 

rate constant is dependent on each of the variables Ca2+, Mg2+, ionic strength, 

temperature and pCO2.  As with other regression models, multiple regressions (MR) may 

not be capable of yielding specific reaction mechanisms, but can estimate the relative 

strength of individual effects and thus be used to provide a predictive statistically-based 

empirical rate equation.  The goal of this approach is to fully describe the observed rate 

data as a function of each of the investigated factors.   

The MR analysis was performed using the statistical software SPSS® v. 11.0 for 

Windows.  The regression was based on the final compositions of the solutions for the 

experiments denoted by a MR superscript in Table 4–4 (N = 17).  The robustness of the 

model was evaluated from the coefficient of multiple determination (R2) and by 

examination of the residuals.  In addition, a colinearity diagnostic was determined.  

Colinearity is a common complication in MR that can occur when the effect of one 

independent variable on the dependent variable is contingent on the value of another 

independent variable (Philippi, 1993).   

The greatest predictive capability (adjusted R2 = 0.953, P < 0.001) was achieved 

when the data were left untransformed (i.e., linear regression) and activity was modeled 

rather than concentration in the cases of calcium and magnesium.  The resulting 

regression yielded: 

( ) ( ) ( ) ( ) ( )++ +++++= 22 5432210 MgCa
aaIpCOTk ββββββ  (4–5) 

where T is °C, pCO2 is given in bars, I is ionic strength and ai are activities of calcium 

and magnesium.  The unstandardized coefficients are provided in Table 4–5 for solving 
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to the rate constant normalized to the geometric (kGEO) and BET (kBET) surface areas.  

The calculated condition numbers for colinearity for each of the predictors were less 

than 20 and the variance inflation factors (VIF) less than 10, indicating that severe 

colinearity was not a factor (Freund and Littell, 1986; Chatterjee and Price, 1991). 

Since the predictors used in the model are measures in different units, the 

standardized coefficients (Beta, Table 4–5) are required for comparing the relative 

effects of each of the predictors.  The relative effects are T >> pCO2 ≈ I >  >> .   +2Ca
a +2Mg

a

The results confirm that ionic strength strongly correlates with a reduction in 

rate, and that the inhibitory effect of magnesium is small in these solutions.  It also 

shows that calcium is positively correlated with dissolution rate.  Figure 4–8 illustrates 

the predictive capability of the model where the measured rate constants are plotted 

versus their predicted values. 

 

Table 4–5.  The coefficients derived from multiple regression analysis.  These can be 
used to predict the rate constant from the predictors T °C, pCO2, I, and .  The 

coefficients specific to the geometrically normalized (k
+2Ca

a +2Mg
a

GEO) and BET normalized (kBET) 
rate constants are given separately. 

 Coefficient Unstandardized Standardized 
Predictor x103 geometric BET Beta 
Constant β0  -6.07 -1.36  
T (°C) β1 1.42 0.32 0.879 

pCO2 (bar) β2 48.56 10.84 0.499 
I (molal) β3 -10.97 -2.45 -0.475 

+2Ca
a  β4 127.45 28.45 0.259 

+2Mg
a  β5 -58.54 -13.07 -0.059 

 

 When we compare the dissolution rates measured using powered calcite in 

Chapter III versus these later experiments obtained using crushed rhombs, there are 
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apparent gross dissimilarities.  Specifically, although powder rates generally decreased 

with increasing brine concentration, the net inhibition was relatively minor.  In contrast, 

the crushed rhomb experiments reveal a stronger compositional effect at the same higher 

partial pressures.  In addition, if the rate constants are normalized to the BET surface 

area as is the typical approach, then the dissolution rates of the powdered calcite appear 

roughly 5 times faster.  However, Figure 4–8 reveals that when the rates are instead 

normalized to the geometric surface area, the MR model closely predicts the rates 

constants of the powdered calcite.  It also shows that the limited inhibition that was 

measured in the powered calcite experiments is an artifact of how the brines were 

prepared.   

The median Ca:I  ratio in the Chapter III experimental brines are about twice that 

of the later experiments.  Since the effects of calcium and ionic strength are inversely 

correlated, than the subdued compositional inhibition observed in the powdered calcite 

experiments can be accounted for as a result of the calcium effect partially compensating 

for the inhibitory effect associated with ionic strength. 

 

4.4.5.  The Inhibitory Effect of  in Concentrated Brines -2
4SO

A common inhibitor of calcite kinetics in natural waters is the divalent anion 

sulfate (Akin and Lagerwerff, 1965; Sjöberg, 1978; Buhmann and Dreybrodt, 1987; 

Mucci et al., 1989).  Sulfate present at seawater concentration has been demonstrated to 

reduce the dissolution rate constant by 40% in phosphate-free pseudo seawater (Sjöberg, 

1978).  In subsurface formation waters sulfate is often, but not always, a relatively minor 

component rarely exceeding 1 g L-1 compared with 2.7 g L-1 in seawater.  However, 
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Sjöberg (1978) found that the effect of sulfate increases with increasing calcium and 

magnesium concentration.  Consequently, it could potentially be an even more potent 

inhibitor in brines.  This could be related to the surface adsorption of calcium and 

magnesium, producing a more cationic surface that increases the adsorption of anions 

such as sulfate. 

To test the effect, approximately 1 g L-1 (~0.01 m) of sulfate were added to each 

of the ‘model’ brines in the form of a concentrated Na2SO4 solution.  The dissolution 

rates were measured in each solution at 25 °C and XCO2 = 1 and compared with its MR-

model predicted rate.  The higher CO2 partial pressure was chosen since brines of this 

pCO2 had the greatest compositional sensitivity.  Figure 4–9 shows the increasing 

inhibitory effect of sulfate with increasing calcium and magnesium, consistent with 

Sjöberg’s (1978) findings.  The equation fit to the data is purely an empirical construct, 

but does suggest that in the absence of calcium and magnesium the inhibitory effect of 1 

g L-1  would only be about 20%.  However, in brines containing a TDS of 200 g L-2
4SO -1 

the inhibition would be similar to that observed in seawater. 

 

4.5.  Conclusion 

The calcite dissolution rate near equilibrium (Ω >  0.2) in concentrated Na-Ca-Mg-Cl 

brines, equivalent to subsurface formation waters ranging from TDS 50 to 200 g L-1, 

have been measured.  The rates can be described using first-order kinetics by the general 

rate equation: , where n = 1 (first-order) and the rate constant k can be 

derived from the MR model:

nkR )1( Ω−=
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Figure 4–7.  The measured rate constants versus the predicted values from equation 4–5.  The lines represent the 95% confidence 
interval of the model prediction.  The regression was fit to data obtained from dissolution rates using the rhombic calcite (solid 
square).  When normalized to BET surface area, the previously measured rates obtained using powdered calcite (open circle) are 
shown to be considerably faster than the statistical model predicts (a).  However, when the rates are instead normalized to the 
geometric surface area, the statistical model closely predicts the rates (b).
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Figure 4–8.  The inhibitory effect of 1 g L-1 sulfate in model brines at 25 °C at XCO2 = 
1.0.  The measured rate constant (k) relative to the MR-model prediction (k0) show that 
with increasing calcium and magnesium activity (∑ = + ) the sensitivity to 

sulfate increases.  The equation of the line shown is: 
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( ) ( ) ( ) ( ) ( )++ +++++= 22 5432210 MgCa
aaIpCOTk ββββββ . 

 The strongest influence on the rate is not salt content but temperature and CO2 

partial pressure.  Surprisingly, ionic strength strongly correlates with an inhibition of rate 

of dissolution beyond the specific effects of calcium and magnesium.  Magnesium 

showed only a minor inhibitory effect while increasing calcium actually increased the 

rate constant. 

 When -  is present at concentrations typical for subsurface formation waters 

there is a strong inhibition effect similar to that observed previously in seawater.  

Sulfate’s effect is also strongly sensitive to the concentrations of calcium and 

magnesium.  Due to this relation, even though sulfate concentrations in subsurface 

formation waters are generally less than that in seawater, at TDS concentrations greater 

than 200 g L

2
4SO

-1, its effect on the rate may be of similar magnitude. 

 When rates are normalized to geometric surface area rather than BET surface 

area, there appears to be no substrate effect on the rate.  The rates obtained using 

reagent-grade powered calcite in Chapter III agree well with those obtained from 

crushed rhombs.  The small variability in dissolution rate observed in the Chapter III 

experiments is an artifact of how the brines were prepared.  In that case, the greater 

calcium concentrations of those earlier brines resulted in a rate increase that largely 

compensated for the inhibitory effect of ionic strength.
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CHAPTER V 

THE EFFECT OF CALCIUM-ENRICHED FORMATION WATERS 

ON REDUCING THE CaCO3 REACTIVE TRANSPORT CAPACITY 

 

5.1.  Introduction 

In order to stabilize atmospheric CO2 concentrations, major emission reductions coupled 

with carbon mitigation must be implemented in the very near future.  One mitigation 

strategy involves CO2 removal from flue gasses at point-sources (e.g., coal or natural gas 

power stations) and injection into geological repositories.  Although oil and gas 

reservoirs are an attractive choice because they are already equipped with the 

infrastructure necessary for the injection process and provide the cost benefit potential 

for field enhanced oil recovery (EOR or tertiary recovery), their overall storage capacity 

is rather limited (Bergman and Winter, 1995).  The estimated world-wide storage 

capacity in natural gas fields is estimated at only 500 to 1100 Gtonnes CO2 (Hendriks 

and Blok, 1993).  By comparison, the storage capacity in non-potable saline (brine) 

aquifers may be as high as 10,000 Gtonnes (Hendriks and Blok, 1993). 

 Although brine aquifers lack the infrastructure available at the oil and gas fields, 

deep saline aquifers have the largest potential storage capacity because they are 

widespread (e.g., proximal to point sources) and may not require the special structural 

and stratigraphic trap geometries required for oil and gas reservoirs (Gunter et al., 1996).  

Instead, carbon dioxide can be stored hydrodynamically in the formation waters for tens 

of thousands of years or longer.  In addition, oftentimes these formations contain 

dissolved hydrocarbons that are not concentrated enough to make them economically 
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attractive to conventional petroleum exploration.  CO2 flooding can liberate these 

dissolved hydrocarbons similar to the case with EOR (Koide et al., 1993; Koide et al., 

1992 ), helping to make the sequestration cost effective.  

 Of major concern for carbon dioxide sequestration in saline aquifers is the impact 

of mineral-brine-CO2 reactions on the storage capacity, permeability and integrity of the 

formation.    Prior to this study, however, the actual kinetics of mineral-brine-CO2 

reactions remained poorly understood.  Since fluid flow and fluid rock interactions are 

dynamic processes, rate kinetics is typically considered important to determining the 

localization of mineral dissolution. 

 

5.2.  The Reactive Front Along an Ideal Solution Channel 

 The effect of solution kinetics on a porous medium reacting with a calcium-rich 

brine will be examined by presenting the simplified case of an ideal solution channel.  

The approach used is based on Morse and Mackenzie (1993), where they explored 

geochemical constraints on carbonate transport in subsurface sedimentary environments.  

It was similar to the methods used by Dreybrodt (1981) and Buhmann and Dreybrodt 

(1985a, 1985b) when applied to calcite kinetics in developing a comprehensive model of 

karsification. 

 In this case, brine initially undersaturated with respect to calcite flows through an 

idealized cylindrical calcite pore of constant initial diameter.  As the brine flows it reacts 

with the calcite in accordance with the reaction kinetics presented in the preceding 

chapters.  The reactive front length, i.e. the length the solution travels over which it 
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experiences its most rapid change in saturation state, will be calculated for various brines 

and conditions.   

 In these examples, the composition of the brines will be reported in terms of TDS 

with their major ion composition calculated from Table 2–1.  The first example 

considers a 50 g L-1 TDS brine, initially at equilibrium with respect to calcite at 25 °C, 

with an alkalinity of 11.7 meq Kg-1 H2O (i.e. pCO2 = 0.32 bar).  Perhaps as a result of 

waste gas injection or from the mixing of subsurface waters (Morse et al., 1997; 

Dreybrodt, 1981), the pCO2 increases to 1.0 bar causing the system to become 

undersaturated (Ω = 0.3) with respect to calcite, developing a renewed capacity for 

dissolving CaCO3.  The distance this newly undersaturated solution must travel to 

reestablish equilibrium will now be calculated. 

 The change in solution composition as a result of calcite dissolution is calculated 

for small incremental changes in travel distance (dx) assuming steady-state.  For a 

closed-system the dissolution results in an increase in alkalinity (TA) and dissolved 

inorganic carbon (TCO2) and a decrease in pCO2.  The following relations are utilized: 

dmTCOTCO in += )(22  (5–1) 

and  

dmTATA in ×+= 2)(  (5–2) 

where the subscript (in) refers to the initial concentration entering a discrete segment and 

dm refers to the moles of calcite dissolved.   

The carbonate ion ( ) at each segment is calculated from the TA and TCO−2
3CO

m 2 

using equation 2–6 in Chapter II, where the stoichiometric dissociation constants 

( and ) have been calculated for each brine using EQPITZER.  For the 50 g L∗
1K ∗

2K -1 
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TDS brine used in this example, 55.1
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The activity coefficients for the calcium and carbonate ions were calculated using 

EQPITZER.  Given the extremely small change in solution composition that occurs, a 

good approximation is that the calcium activity and the activity coefficient of the 

carbonate ion remain constant.  Therefore, the saturation state at each segment could be 

closely approximated by 

∗∗
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−−+
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CO

eq
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a

a

K

aa
 (5–4) 

where and  are the apparent equilibrium IAP and carbonate ion activities as 

defined in Chapter III.  The rate of dissolution (mol m

∗
eqK ∗

−2
3CO

a

-2 hr-1) can then be calculated at 

each segment as a function of degree of disequilibrium from the general rate equation R 

= k(1-Ω*)1, where the rate constant (k) is calculated as a function of solution 

composition, temperature and pCO2 based on the MR model presented in Chapter IV. 

 In order to calculate the moles of calcite dissolved at each segment (dm), the 

relationship between surface area (A) per unit volume of solvent (V) must be specified.  

Since concentration is given in molal, it is necessary to apply the conversion α (m3 kg-1 
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H2O).  In the case of the 50 g L-1 TDS brine, α = 9.8x10-4 and the resulting equation that 

describes the rate in terms of concentration change in solution is: 

R
V
A

dt
dm

⎟
⎠
⎞

⎜
⎝
⎛= α . (5–5) 

Surface area (A) of a cylinder is defined as 

LrA ×= π2  (5–6) 

where r is the cylinder diameter and L is the length.  Cylinder volume (V) is given by 

LrV ×= 2π  (5–7) 

and surface area to volume ratio (A/V) of the ideal pore is simply 2/r.  The value of dm 

can now be derived from the flow rate (F; m hr-1) and the length of the segment (dx), 

Fdt
dmdxdm 1

××=  (5–8) 

where the length of dx (m) is dependent on the solution conditions.  It is selected such 

that the solution would achieve equilibrium within 103 segments.  In this first example 

we will consider a pore diameter of 200 µm (i.e., r = 100 µm) and a flow rate of 1 m a-1.  

This necessitates that the length of dx = 1.8x10-9 m.  The resulting change in saturation 

state with distance is presented in Figure 5–1.  The calculation was replicated for 125 

and 200 g L-1 TDS brines with similar initial conditions (i.e., Ω*
(in) = 0.3, 25 ºC, pCO2(in) 

= 1.0 bar) and are compared in Figure 5–1.
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Figure 5–1.  The change in apparent saturation state as a function of distance as a brine 
travels along an ideal solution channel composed of pure calcite with a radius of 100 
µm.  The initial conditions are Ω = 0.3, 25 ºC, pCO2 = 1 bar and a flow rate of 1 m a-1.  
The example considers a 50 (open square), 125 (half full square) and 200 (full square) g 
L-1 Na-Ca-Mg-Cl brine.
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 The reaction front has been described in terms of second derivative, 2

2

dx
d Ω , and 

illustrated in Figure 5–2.  Here the reaction front length (RFL) has been mathematically 

defined as the length at which the concavity maximum occurs in the change in saturation 

state (dΩ) as a function of travel distance (dx).  The relative “sharpness” of the reaction 

front (RFM) is given by the magnitude of the 2

2

dx
d Ω  at its maximum.  The saturation 

length is the length at which the solution achieves Ω > 0.999 and effectively denotes 

equilibrium.  Table 5–1 provides a summary of the parameters resulting from a series of 

initial conditions. 

 
Table 5–1.  Calculation results for a series of initial conditions that describe the reactive 
front and saturation length of a Na-Ca-Mg-Cl brine traveling though an ideal solution 
channel.  The table summarizes the effects of concentration (TDS), pore radius (r), flow 
rate (F) and initial pCO2.  The saturation length is the length at which the solution 
achieves Ω > 0.999.  The reaction front length (RFL) and reaction front maximum 
(RFM) describe the relative “sharpness” of the reaction front. 
Case TDS  

(g L-1) 
r  

(µm) 
F  
 

pCO2(in) Saturation 
Length (mm) 

RFL (mm) RFM  
 

1 50 100 1 m a-1 1.0 2.8x10-3 0.46 x10-3 1.0x1012

1 125 100 1 m a-1 1.0 1.9x10-3 0.30 x10-3 2.2 x1012

1 200 100 1 m a-1 1.0 1.5x10-3 0.23 x10-3 3.8 x1012

2 50 50 1 m a-1 1.0 1.4x10-3 0.23 x10-3 4.1x1012

2 125 50 1 m a-1 1.0 1.0x10-3 0.15 x10-3 9.9 x1012

2 200 50 1 m a-1 1.0 0.7x10-3 0.11 x10-3 15.1 x1012

3 50 50 3 m d-1 1.0 36.2 6.0 6.0x103

3 125 50 3 m d-1 1.0 25.2 3.9 13.0x103

3 200 50 3 m d-1 1.0 19.5 3.0 21.8 x103

4 50 50 3 m d-1 0.25 31.0 6.3 7.1x103

4 125 50 3 m d-1 0.25 33.2 5.7 7.0x103

4 200 50 3 m d-1 0.25 32.3 5.1 7.6x103
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Figure 5–2.  The saturation length.  The saturation length is defined here as equivalent to 
the length at which maximum concavity occurs in Figure 5–1 and is calculated as the 

maximum in the second derivative 2

2

dx
d Ω  shown by the arrows. 
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5.3.  Conclusion 

 These calculations reveal that, as a consequence of the high calcium 

concentrations, small carbonate carrying capacities result that manifest in very short 

saturation lengths.  Even at high flow rates (3 m d-1, cases 3 and 4) that might be 

expected in the vicinity of an injection well, the solutions achieve equilibrium in less 

than 40 mm.  The reaction front is sharpest in the more concentrated brines but this is 

only true at higher pCO2 where the compositional effect on the dissolution rate is more 

pronounced.  At lower pCO2, the reaction fronts are virtually the same amongst the 

brines (case 4). 

 These findings offer important insights into the relative importance of calcite 

dissolution kinetics with regard to carbonate transport in the subsurface.  In these 

calcium-rich brines, thermodynamic rather than kinetic considerations may prove more 

critical in accurately modeling the transport processes since the rates are sufficiently 

rapid and the carbonate carrying capacities so small.  It can be expected that at the higher 

temperature, pressure, and pCO2 conditions of subsurface brines, reaction fronts would 

be even shaper and the saturation lengths even less.  Thus, equilibrium can be reasonably 

assumed, but we lack models capable of accurately predicting it in these complex 

solutions.
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CHAPTER VI 

RESEARCH SUMMARY AND GENERAL CONCLUSIONS 

 

Although the EQPITZER model reasonably (±10%) predicted equilibrium with 

respect to calcite at brine concentrations < 50 g L-1 TDS, with increasing brine 

concentration a systematic increase in the calculated saturation state was observed, 

achieving an apparent 2-fold supersaturation in the most calcium-rich brine (~ 1 m).  

There are several possible explanations for the discrepancy but the exact cause is 

unknown.  It is possible the apparent increase in the equilibrium IAP is “real” and may 

represent an apparent increase in mineral solubility as a result of complex interaction 

between the mineral surface and these extremely concentrated solutions.  Perhaps the 

simplest explanation, however, is that this apparent increase in IAP is an artifact of the 

Pitzer-based model used to derive the activity coefficient for the carbonate ion which is 

present in exceedingly small quantities in these calcium-rich solutions.  A minor 

adjustment of the  stoichiometric association constant ( ) or activity 

coefficient (

0
3CaCO ∗

0
3CaCO

K

0
3CaCO

γ ) could correct for the error.   

Surface reaction-controlled calcite dissolution rates in a series of synthetic Na-

Ca-Mg-Cl brines across a range of CO2 partial pressures (0.1 to 1.0 bar) and 

temperatures (25 to 82.5 °C) could be adequately modeled using the general equation 

( ) in which first-order kinetics are assumed (n = 1).  The rate constant, k, 

was shown to be a function of temperature, pCO

( )n1kR Ω−=

2, ionic strength, and calcium and 

magnesium activity.  It can be estimated from the multiple regression (MR) model: 
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( ) ( ) ( ) ( ) ( )++ +++++= 22 5432210 MgCa
aaIpCOTk ββββββ . 

Surprisingly, ionic strength showed a stronger effect on the rate of dissolution than did 

calcium or magnesium concentration.  Magnesium showed only a minor inhibitory effect 

while calcium actually promoted the rate.  The effect of ionic strength may be related to 

reduced water activity with increasing brine concentration.  A reduced water activity 

would hinder the hydration of lattice-bond calcium ions thereby inhibiting the rate of 

dissolution.  The MR model was fit to experimental dissolution rate data measured in 

brines typical for formation waters as predicted by Hanor (1994b) (50–200 g L-1 TDS) 

with regard to their calcium, magnesium and ionic strength.  The model was also capable 

of predicting rates obtained in much more calcium-rich brines typical of the Gulf Coast 

basin formation waters.  Care must be taken, however, in extrapolating the model to 

other solutions.  Although the model was capable of predicting dissolution rates in brines 

containing close to 1 m calcium, caution is advised when applying the model to solutions 

beyond the domain of: 0.04 < Ca < 0.36 m; 0.02 < Mg < 0.12 m; 0.9 < I < 4.0 m; 25 < T 

< 80.0 °C; and 0.1 < pCO2 < 1.0 bars.  Accurate prediction outside this domain demands 

the correlation between the rate constant and the factor remain linear, which is probably 

an unreasonable assumption in most cases. 

 When SO4
2- was present, at concentrations typical for some subsurface formation 

waters, there was a strong inhibitory effect similar to that observed previously in 

seawater.  Sulfate’s effect was also very sensitive to calcium and magnesium 

concentration.  Due to this relation, even though sulfate’s presence in subsurface 

formation waters is generally less than that in seawater, at TDS concentrations greater 
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than 200 g L-1 (~0.01 m) its effect on the rate may be of similar magnitude to that 

measured in seawater. 

 A relatively high activation energy of 20.9 kJ mol-1 was calculated and no 

dependence on stirring rate was observed, consistent with surface reaction-controlled 

dissolution where transport processes are not rate limiting.  When rates were normalized 

to the geometric surface area, no substrate effect was observed and predicted rates 

obtained using powdered calcite were in excellent agreement with rates obtained from 

crushed rhombs.   

The findings of this research demonstrate that the reaction fronts in calcium-rich 

brines can be expected to be very sharp as a consequence of the small carbonate carrying 

capacities.  Even at high flow rates (3 m d-1) that might be expected in the vicinity of an 

injection well, the solutions achieve equilibrium in less than 40 mm.  The reaction front 

is sharpest in the more concentrated brines, but this is only true at higher pCO2 where the 

compositional effect on the dissolution rate is more pronounced.   

 These finding offer important insights into the relative importance of calcite 

dissolution kinetics with regard to carbonate transport in the subsurface.  In these 

calcium-rich brines, thermodynamic rather than kinetic considerations may prove more 

critical in accurately modeling the transport processes since the rates are sufficiently 

rapid and the carbonate carrying capacities so small.  Thus, equilibrium models of calcite 

reaction in the subsurface may be sufficient when such models are capable of accurate 

predictions in these complex solutions. 

An important carbon mitigation strategy under consideration is CO2 injection 

into geologic repositories.  Possible formations that may serve as these repositories 
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include deep saline aquifers, depleted oil and gas reservoirs, and coal seems.  Saline 

aquifers are the most abundant making them the most logical long-term storage 

reservoirs.   However, before large scale implementation of these technologies can 

occur, key questions must be resolved with regards to the carbon mass exchange though 

interactions between the injected gas, formation minerals and the aquifer brines.  

Geochemical models must be devised describing the ultimate fate of the injected carbon 

and its impact on formation integrity.   Modeling such processes requires the inclusion of 

rate kinetic terms such as those described in this study.   

Simulations describing the change in mineral saturation in the vicinity of 

injection wells (e.g., Shiraki and Dunn, 2000) make use of general rate equations similar 

to the one modeled here and assume first-order kinetics (i.e. n =1) for mathematical 

simplicity.  Considering the uncertainties with the other assumptions involved in these 

simple models, the assumption of first-order kinetics is probably reasonable in light of 

the findings of this study.  In calcium-enriched solutions where the carbonate carrying 

capacity is greatly diminished, first-order kinetics do appear to be able to adequately 

describe the solution kinetics of calcite at least in the surface-controlled region.
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APPENDIX I 

EQPITZER MODEL RESULTS FOR CALCITE SOLUBILITY 

EXPERIMENTS 

 In this appendix are presented the raw EQPITZER model results for the calcite 

solubility experiments.

 



 

Table I - 1.  EQPITZER model output for calcite solubility experiments.  All experiments were conducted at 25 °C and 1 bar.  The term “I” and “O” refer to ionic strength and osmotic coefficient respectively.  The model 

assumes unity γT for the ion pairs CaCO3
0 and MgCO3

0. 

Experiment Na Mg Ca Cl PCO2 H  MgOH  HCO3  CO3  OH  CO2  MgCO3 CaCO3 I O H2O pH Ω 

# γT γT γT γT molal molal γT molal γT molal γT molal γT molal γT molal γT molal molal molal  Activity   

KSP_Brine1_1 0.635 0.224 0.208 0.689 0.52 1.28E-06 0.805 7.88E-09 0.964 0.0137 0.558 9.84E-06 0.036 2.52E-08 0.382 0.0148 1.19 1.39E-06 4.47E-06 0.9377 0.931 0.9722 5.988 0.96 

KSP_Brine1_2 0.635 0.224 0.208 0.689 0.57 1.22E-06 0.804 8.38E-09 0.963 0.0158 0.558 1.19E-05 0.036 2.65E-08 0.380 0.0162 1.19 1.70E-06 5.39E-06 0.9383 0.931 0.9722 6.008 1.15 

KSP_Brine1_3 0.634 0.223 0.208 0.690 0.61 1.28E-06 0.804 8.56E-09 0.961 0.0161 0.558 1.15E-05 0.035 2.58E-08 0.372 0.0173 1.19 1.77E-06 5.11E-06 0.9384 0.931 0.9722 5.987 1.09 

KSP_Brine1_4 0.635 0.223 0.208 0.689 0.57 1.19E-06 0.802 8.83E-09 0.962 0.0163 0.559 1.24E-05 0.036 2.74E-08 0.378 0.0164 1.19 1.85E-06 5.57E-06 0.9243 0.930 0.9727 6.019 1.19 

KSP_Brine2_1 0.634 0.302 0.243 0.755 0.51 1.45E-06 1.145 2.50E-08 0.778 0.0090 0.491 1.28E-05 0.010 3.80E-08 0.149 0.0110 1.57 2.17E-06 6.82E-06 2.4854 1.020 0.9242 5.779 1.46 

KSP_Brine2_2 0.635 0.302 0.243 0.754 0.49 1.40E-06 1.145 2.52E-08 0.780 0.0089 0.492 1.31E-05 0.010 3.87E-08 0.151 0.0106 1.57 2.17E-06 7.00E-06 2.4820 1.020 0.9242 5.795 1.50 

KSP_Brine2_3 0.634 0.301 0.242 0.755 0.45 1.32E-06 1.144 2.68E-08 0.779 0.0088 0.492 1.37E-05 0.010 4.12E-08 0.152 0.0098 1.57 2.28E-06 7.38E-06 2.4811 1.020 0.9243 5.822 1.58 

KSP_Brine2_4 0.634 0.301 0.242 0.754 0.52 1.46E-06 1.142 2.34E-08 0.781 0.0091 0.492 1.26E-05 0.010 3.63E-08 0.155 0.0112 1.57 2.05E-06 6.79E-06 2.4716 1.019 0.9246 5.777 1.45 

KSP_Brine2_1 0.688 0.520 0.353 0.919 0.53 1.61E-06 1.711 6.00E-08 0.546 0.0056 0.471 1.30E-05 0.003 6.95E-08 0.046 0.0088 2.04 2.30E-06 8.15E-06 4.1137 1.148 0.8691 5.561 1.74 

KSP_Brine2_2 0.689 0.521 0.354 0.917 0.53 1.59E-06 1.711 6.11E-08 0.546 0.0056 0.471 1.33E-05 0.003 7.07E-08 0.046 0.0089 2.04 2.38E-06 8.30E-06 4.1093 1.148 0.8692 5.566 1.77 

KSP_Brine2_3 0.690 0.527 0.357 0.918 0.54 1.60E-06 1.723 6.07E-08 0.545 0.0056 0.471 1.33E-05 0.003 7.01E-08 0.046 0.0089 2.04 2.35E-06 8.28E-06 4.1280 1.149 0.8684 5.560 1.77 

KSP_Brine2_4 0.688 0.520 0.353 0.916 0.54 1.68E-06 1.708 5.70E-08 0.547 0.0055 0.471 1.23E-05 0.004 6.61E-08 0.047 0.0091 2.03 2.16E-06 7.67E-06 4.1014 1.147 0.8694 5.544 1.64 

MgFree_1 0.710 0.460 0.362 0.725 0.97 7.01E-07 1.596 0.00E+00 0.780 0.0247 0.455 1.75E-05 0.027 1.50E-08 0.539 0.0165 1.86 0.00E+00 5.54E-06 3.0908 1.049 0.8909 5.951 1.18 

MgFree_2 0.681 0.408 0.313 0.755 0.97 1.77E-06 1.448 0.00E+00 0.742 0.0107 0.476 9.24E-06 0.010 7.76E-09 0.459 0.0178 1.79 0.00E+00 6.37E-06 3.0456 1.052 0.8988 5.591 1.36 

MgFree_3 0.531 0.194 0.131 0.991 0.97 3.92E-06 0.846 0.00E+00 0.520 0.0071 0.589 1.58E-05 0.004 1.57E-08 0.184 0.0214 1.49 0.00E+00 9.94E-06 2.9712 1.045 0.9414 5.479 2.13 

MgFree_4 0.710 0.460 0.362 0.725 0.92 6.73E-07 1.596 0.00E+00 0.779 0.0255 0.455 1.90E-05 0.027 1.57E-08 0.539 0.0163 1.86 0.00E+00 6.07E-06 3.0921 1.049 0.8908 5.969 1.30 

MgFree_5 0.681 0.408 0.313 0.755 0.92 1.87E-06 1.448 0.00E+00 0.742 0.0104 0.476 8.46E-06 0.010 7.35E-09 0.459 0.0181 1.79 0.00E+00 5.83E-06 3.0451 1.052 0.8988 5.568 1.25 
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APPENDIX II 

MATLAB CALCITE DISSOLUTION RATE CALCULATION 

SOFTWARE 

 This appendix contains the MATLAB program written to derive the calcite 

dissolution rates from the experimental data and to empirically fit the rates as a first 

order function of the degree of disequilibrium.  The output plots are also provided for 

each if the kinetic experiments.
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% CALCITE DISSOLUION RATE PROGRAM 
% version 18 
% Dwight K Gledhill 
% 9 October 2004 
%   This program calculates dissolution rate from the derivative of a polynomial fit to TA-time data.  It corrects for changes in the 
%    specific surface area and for changes in calcite mass as function of reaction extent. 
%    Makes the simplifying assumption that calcium activity and the carbonate ion activity coefficient remain constant and that the 
rate %    can be modeled with first order kinetics R=k(1-Omega).               
%     imported variables: 
%                   t   = experimental time data 
%                   mv  = experimental millivolt data 
%                   A   = experimental and extrapolated alkalinity (molal) 
%                   pHp = EQPITZER pH 
%                   CO  = EQPITZER calculated carbonate ion activity 
%                   r = accepted surface roughness 
%               input variables: 
%                   pHs = EQPITZER pH of initial solution 
%                   Es  = millivolt of initial solution 
%                   S   = slope of electrode 
%                   Calcite_initial = initial mass of calcite (g) 
%                   Solvt = mass of solvent (kg) 
%                   BET = specific area of calcite as determined using BET 
%                   Alk_initial = initial alkalinity of solution (molal) 
%                   cull = minimum acceptable dTA/dt (truncation threshold)%                    
%                declared variables: 
%                   int =time interval between readings 
%                   nr,nc = number of rows and columns in 'geometry' 
%                   q = quarry to select different truncation threshold 
%                   truc = truncation points defined from 'cull' 
%_________________________________________________________________________________________ 
% Initializes the program 
clear 
close 
q=1 
[mv t] = textread('electrode.txt','%f %f',...; 
    'headerlines',1); 
[A pHp CO] = textread('EQPitzer.txt','%f %f %f',...; 
    'headerlines',1); 
load geometry.txt; 
r=geometry(2,1);     
%Obtain experimental inputs 
pHs=input('pH of standard: '); 
Es=input('Emf of standard: '); 
S=input('Slope of electrode: '); 
Calcite_initial=input('Calcite added(g): '); 
Solvt=input('kg_solvt: '); 
BET=input('BET specific surface area (m^2 g^-1):  '); 
Alk_initial=input('Initial Alkalinity (molal): '); 
%_________________________________________________________________________________________________________
_ 
%Relate pH to other species from EQPitzer calculations 
X_pHp=[ones(size(pHp)) pHp pHp.^2];         %generates a nx3 matrix of  Pitzer pH data 
X_A=[ones(size(A)) A A.^2];                 %generates a nx3 matrix of batch Alk values 
a=X_pHp\A;                                  %solves for 2rd order polynomial coefficients for Alk f(pHp) 
b=X_pHp\CO;                                 %solves for 2rd order polynomial coefficients for CO f(pHp) 
%Calibrate mv to pH 
pH=pHs+((Es-mv)/S);                      %Converts fit mV data to pH 
%Evaluates parameters from EQPitzer 
TA=[ones(size(pH)) pH pH.^2]*a;             %evaluates alkalinity f(EQPitzer pH) model 
CO_fit=[ones(size(pH)) pH pH.^2]*b;         %evaluates Carbonate activity f(EQPitzer pH) model 
%_________________________________________________________________________________________________________
_ 
%Empirically fit TA-time data 
c = polyfit(t,TA,6); 
TA_fit = c(7) + (c(6)*t) + (c(5)*t.^2) + (c(4)*t.^3) + (c(3)*t.^4) + (c(2)*t.^5) + (c(1)*t.^6); 
%_________________________________________________________________________________________________________
_%Calcite Loss 
Alk = [TA_fit]; 
for i =Alk' 
    Calcite(:,1)=(Calcite_initial)-(0.5*(Alk(:,1)-Alk_initial)*Solvt*100.09); 
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end 
figure,plot(t,Calcite),axis([0 1 min(Calcite) max(Calcite)]),xlabel('hr'),ylabel('Calcite (g)'),saveas(1,'calcite.fig'), pause 
%_________________________________________________________________________________________________________
_ 
% Calculate surface area 
Area_initial=(Calcite_initial*BET)/Solvt; 
Area_corrected=(Calcite.*BET)/Solvt; 
%_________________________________________________________________________________________________________
_ 
%Obtain Dissolution Rate  
RTA= c(6) + (c(5)*2*t) + (c(4)*3*t.^2) + (c(3)*4*t.^3) + (c(2)*5*t.^4) + (c(1)*6*t.^5); %dTA/dt 
while q==1 
    cull=input('input minimum acceptable dTA/dt: '); 
    trunc = max(find(RTA>=cull))                                                          % determines the truncation index for the dTA/dt data 
 
    RC=(0.5*(RTA(1:trunc)))/Area_initial;                                                    %dCaCO3/dt uncorrected for calcite loss 
    RCC=(0.5*(RTA(1:trunc)))./Area_corrected(1:trunc);                                       %dCaCO3/dt corrected for calcite loss 
    RCCC=RCC; 
    Rate = [RC(1:trunc) RCC(1:trunc) RCCC(1:trunc)]    
%_________________________________________________________________________________________________________
_    % Specific Surface Area Correction 
    int = diff(t)  %time interval 
    D = size(Rate); 
    for j=1:3 %reiterates calculation 3 times 
        row = 2; %initializes 'row' 
        %calculate volume (m^3) of grain fraction 
        volume(1,:) =((geometry(1,:)/6).^(3/2)) -Rate(1,3)*int(1,1)*(geometry(1,:))*0.00003693; %volume-(rate)(delta 
time)(Area)(Vm) 
        for i = Rate'         
            volume(row,:) =real(volume(row-1,:) -Rate(row,3)*int(row,1)*6*(volume(row-1,:)).^(2/3)*0.00003693); 
            row = row+1; 
            if row > D(1,1), break, end 
        end      
        %Calculate Mass fraction 
        d=2.71E6; %density of calcite (g/m^3) 
        mass = real(d*volume(:,:)); 
        %calculate Area (m^2) of grain fraction 
        area = real(6*volume(:,:).^(2/3)); 
        %normalizes individual Areas by total mass at each interval and multiplies by frequency 
        total=sum(mass')'; 
        [nr,nc]=size(geometry) 
        for i=1:nc 
            norm(:,i) = real(area(:,i)./total); 
        end     
        %Calculates corrected Specific Surface Area (m^2/g) 
        m=r*sum(norm')'; 
        SArea_corrected =(Calcite(1:trunc).*m(1:trunc))/Solvt; 
        Rate(:,3)=(0.5*(RTA(1:trunc)))./SArea_corrected(1:trunc); 
             j 
    end 
    RCCC = Rate(:,3); 
%_________________________________________________________________________________________________________
_ 
% Calculate Apparent saturations state 
    LR = polyfit(RCCC,CO_fit(1:trunc),1);  %determines the intercept equivalent to apparent carbonate ion activity at steady-state 
    Omega = CO_fit/(LR(2))              % LR(2) is the intercept 
    disEQ=1-Omega(1:trunc)      % degree of apparent disequilibrium 
    k=sum(RCCC.*disEQ)/sum(disEQ.^2)  %calculates the rate constant (k) for the first order rate equation Rate = k(1-Omega)    
%_________________________________________________________________________________________________________
_    % Plots 
    close all 
    plot(t(1:trunc),m(1:trunc));pause 
    close all 
    subplot(3,3,1),plot(t,mv),xlabel('time (hr)'),ylabel('mv'),pause 
    subplot(3,3,2),plot(t,pH),xlabel('time (hr)'),ylabel('pH'),pause 
    subplot(3,3,3),plot(pH,TA,'-',pHp,A,'x'),xlabel('pH'),ylabel('Alkalinity (molal)'),pause 
    subplot(3,3,4),plot(pH,CO_fit,'-',pHp,CO,'.'),xlabel('pH'),ylabel('carbonate activity'),pause 
    subplot(3,3,5),plot(t,TA_fit,'-',t,TA,'.'),xlabel('time (hr)'),ylabel('Alkalinity (molal)'),pause 
    subplot(3,3,6),plot(t,RTA),xlabel('time (hr)'),ylabel('dTA/dt'),pause 
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    subplot(3,3,7),plot(t(1:trunc),RC(1:trunc),'x',t(1:trunc),RCC(1:trunc),'+',t(1:trunc),RCCC(1:trunc),'o'),xlabel('time 
(hr)'),ylabel('moles m^-2 h^-1'),pause 
    subplot(3,3,8),plot(RCCC(1:trunc),CO_fit(1:trunc)),xlabel('moles m^-2 h^-1'),ylabel('carbonate activity'),pause 
    subplot(3,3,9),plot(Omega(1:trunc),RCCC(1:trunc)),xlabel('Apparent Omega'),ylabel('moles m^-2 h^-1'),pause 
    q=input('rerun [Y=1/N=0]?') 
end 
%______________________________________________________________________________________________________ 
% Save output data 
Rate = [RC(1:trunc) RCC(1:trunc) RCC(1:trunc) Omega(1:trunc)] 
Calcite = [t(1:trunc) Calcite(1:trunc) m(1:trunc)] 
Constants = [LR(2) k cull] 
saveas(1,'plots.jpg') 
save Rate.txt Rate -ascii -double       % calcite dissolution rate (uncorrected for changes in surface area, apparent saturation state 
save Calcite.txt Calcite -ascii -double       %The effect of dissolution of calcite mass and specific surface area 
save Constants.txt Constants -ascii -double  % apparent steady-state carbonate ion activity, rate constant (k)

 



 

 

Appendix II–1.  Experiment pseudo-seawater. 
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Appendix II–2.  Experiment brine 1. 
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Appendix II–3.  Experiment brine 2. 
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Appendix II–4.  Experiment brine 3. 
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Appendix II–5.  Experiment brine 4. 
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Appendix II–6. Experiment brine 5. 
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Appendix II–7.  Experiment brine 6. 
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Appendix II–8.  Experiment brine 7.
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