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ABSTRACT 
 

Beyond Scientific Research: Tracing the Contributions Ernest Rutherford Made to the 

Next Generation of Scientists.  (May 2006) 

Andrew A. Armstrong, B.S., Texas A&M University  

Chair of Advisory Committee: Dr. Edward Walraven 
 
 

Before his death in 1937, Ernest Rutherford discovered the rate of radioactive decay of 

atoms.  In 1911 he proposed the nuclear structure of the atom, and in 1919 he 

successfully split the nucleus of an atom.  Rutherford also achieved success when 

advising his students to follow his research method in nuclear physics.  As a faculty 

advisor to research students, Rutherford advised courses, research topics, and 

experimental research.  To determine whether Rutherford made an impact on his 

students, this study focused on the relationship between Rutherford and 24 researchers 

and students at McGill University, the University of Manchester, and Cambridge 

University.  Rutherford had a significant impact through his advising efforts at each 

institution and contributed to the success of his students.  This study may not include a 

complete list of students at each institution because of a lack of records at each 

institution.  Instead, this study focused on the students included in the Rutherford 

biographies.   

 The study included a content analysis on Rutherford biographies and memoirs 

from students under Rutherford’s direct influence at McGill University, the University of 

Manchester, and Cambridge University.  Historical information from J.L. Heilbron, 

David Wilson, and J.G. Crowther supplied the timeline at each institution where 
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Rutherford conducted research.  The results show an overwhelming contribution by 

Rutherford’s leadership in the direction of his students.  Rutherford made a significant 

impact in the research direction of all his students examined in this study, including eight 

research students under Rutherford that were later honored with a Nobel Prize.   
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CHAPTER I 
 

INTRODUCTION 
 
Ernest Rutherford (1871-1937) became one of the greatest scientists of the twentieth 

century with his discoveries in radioactivity beginning in 1898, the nuclear model of the 

atom in 1911, and splitting of the atomic nucleus in 1919 (Heilbron, 2003).  Rutherford’s 

great scientific discoveries and political efforts during World War I, topics well covered 

in biographies, overshadow his advising efforts in student research.  Beyond scientific 

research, Rutherford’s greatest achievement came when guiding the next generation of 

nuclear physicists as a faculty member and research director.  Rutherford had a great 

impact on the students conducting research under his direction.  From tracing 

Rutherford’s advising record, today’s professional staff advisors and faculty advisors can 

learn how to advise today’s science research students.    

 Rutherford transferred from Canterbury College in New Zealand to the Cavendish 

Laboratory at Cambridge in 1895 (Crowther, 1952).  He brought experimental work in 

radio waves, initially winning him high praise, but soon redirected his research to gas 

ions under J.J. Thomson.  As a student, Rutherford’s relationship with teachers and 

professors produced a mentor-type mentality with a philosophy of open communication 

between professor and student.  At McGill University, in Montreal, Canada, Rutherford 

took on his first role as a professor, building the reputation of the physics research 

laboratory.  Rutherford worked with R.B. Owens for his first collaborative effort (Wilson, 

1983).  Others who worked with Rutherford at McGill include Harriet Brooks, R.K.  

 

This thesis follows the style of the NACADA Journal. 
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McClung, Arthur Grier, Samuel Allan, Frederick Soddy, and Otto Hahn.  From his work  

at McGill, Rutherford won the 1908 Nobel Prize in Chemistry for discovering radioactive 

decay in atoms.   

 Rutherford continued experimental research at his next position at the University 

of Manchester in Manchester, England.  Rutherford continued working in the laboratory, 

mentoring and advising his research students, but now a Nobel laureate, he attracted more 

students as compared to his time at McGill (Wilson, 1983).  The students at Manchester 

include Hans Geiger, Thomas Royds, Ernest Marsden, George de Hevesy, Charles 

Darwin, James Chadwick, Niels Bohr, Edward Andrade, Henry Moseley, and Harold 

Robinson.  Rutherford’s research students helped him discover the nuclear model of the 

atom and split the atomic nucleus of an atom.   

 After World War I, Rutherford accepted a new position moving him back to 

Cambridge in 1919.  As the research director of the Cavendish Laboratory there, 

Rutherford rebuilt British science after the war, directing the path of the famed 

laboratory.  By taking a less active approach in individual research, Rutherford 

maintained a few personal projects (Heilbron, 2003).  Students at the Cavendish who 

worked under Rutherford include Patrick Blackett, John Cockcroft, Charles Ellis, Ernest 

Walton, Thomas Allibone, Mark Oliphant, and Paul Harteck.   

 Research directors in a faculty advisor position guide students by creating an 

atmosphere for research.  Edward Bullard (1965, p. 264), the department head of 

Geodesy and Geophysics from 1957 to 1974 at the University of Cambridge, described to 

Rutherford’s atmosphere in the laboratory; “Some men, of whom Rutherford was the 

outstanding example, can make those who work with them not merely appear outstanding 
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but actually produce outstanding results.”  As research director, Rutherford advised 

students based on his expert knowledge of nuclear physics and formulated research 

projects based on student inquiries.  

 Rutherford’s unique educational background as a student, coupled with his own 

experience in radioactivity enabled him to advise students effectively as a laboratory 

research director.  Rutherford became a great scientist because he knew he had to be a 

great student first.  He understood the disciplined observations needed to formulate a 

scientific theory.  This made students follow him as a faculty advisor because he 

achieved outstanding results through closer collaborations with his students.  To 

understand the relationship between advisor and advisee, this study examines 

Rutherford’s guidance with his students, and proposes a model for current faculty 

advisors to follow.  This study adheres to the advisor/advisee definition given by the 

National Academic Advising Association (NACADA), “The purpose of academic 

advising is to help the student choose a program of study which will serve him in the 

development of his total potential” (O’Banion, 1994, p. 10) 

 NACADA outlined the role of faculty advisors in a 1995 monograph Reaffirming 

the Role of Faculty in Academic Advising, and again printed in the 2003 book Faculty 

Advising Examined.  Margaret King (Kramer, 2003, p. 125), Associate Dean for Student 

Development at Schenectady County Community College in New York, and a founding 

member of NACADA and past president, presented numerous advising models including 

the “faculty-only” delivery system.  In the “faculty-only” model she included two 

strengths faculty members exhibit when advising students; knowledge of academic 

discipline within a field and credibility.  Other advising delivery systems King included 
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in her study include “supplementary,” which includes a faculty advisor with an advising 

center for academic information and referrals; “Split,” where students begin their 

academics as a non-major, then are sent to faculty advisors once certain conditions are 

met; “Dual,” where both the faculty and staff advisors provide advising information; 

“Total intake,” where all students are in one major until credit hours are met, but assigned 

to a faculty member in their academic department; “Satellite,” where all advising offices 

are within each department and faculty may or may not have responsibilities in advising; 

and “Self-contained,” where all advising is administered in a central department without 

faculty input.  (King, 1995, pp. 22-23) 

 King (Kramer, 2003, p. 128) defined the “faculty-only” model as “each student is 

assigned to a specific faculty member for advising, generally someone in the student’s 

program of study.” This advising delivery system requires full-time faculty to provide 

academic assistance as part of their other assigned duties as a faculty member.  

Rutherford’s advising position parallels this definition of a faculty advisor.  Rutherford 

possessed these strengths with his unparalleled knowledge, including numerous awards 

and accolades, in nuclear physics.   

 This study demonstrates the “faculty-only” advising model and meets the 

NACADA charter “to enhance the educational development of students” by giving a 

historical representation of a research-based faculty advisor.  The textual searches are a 

result of traditional biographical and science writing designed to "advance science and 

innovation throughout the world for the benefit of all people,” as stated in the mission of 

the American Association for the Advancement of Science (AAAS, 2006).  Like the 
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AAAS, this study will “enhance the science and technology workforce and 

infrastructure” by providing a working “faculty-only” model for research institutions.   

The information collected in the study came from Rutherford’s students, early 

science writers, science institution sociologists, and biographers in primary and 

secondary sources.  By examining Rutherford’s educational background and his guidance 

of student research, faculty and professional advisors can understand the relationship 

needed for advising science research students.  This study will demonstrate a working 

model of the “faculty-only” advising model for current professional advisors to follow 

when advising science research students.         

Research Objectives 
 

1. List, from available sources, 24 students and researchers under Rutherford at each 

institution and their research outcomes.     

2. Examine the guidance or advice Rutherford gave so that current faculty advising 

profession can use for today’s students.   

Research Questions 
 

1. What guidance from Rutherford led to a student’s success in completing scientific 

research?   

2. From Rutherford’s model of advising, what can professional or faculty advisors 

learn for advising today’s student?  
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CHAPTER II 
 

RESEARCH METHODOLOGY 
 
In order to advance science and innovation, the mission of the AAAS, the organization 

established a goal to “foster communication among scientists, engineers and the public” 

(AAAS, 2006).  This study will allow a professional advisor to gain a better 

understanding and appreciation for the research conducted by scientists and engineers.  

By systematic observation that reviews historical trends in science, science journalists 

help professional advisors understand research focused students in a research institution 

where the “faculty-only” model approach to advising exists.  Research students rely on 

faculty advisors to understand their research background, previous courses, and ability to 

conduct experiments based on educational knowledge.   

 Data collection came from published biographical information on Rutherford, but 

did not include journal articles.  Once collected, a content analysis determined if advising 

by Rutherford made an impact on his students’ research results.  Rutherford’s efforts in 

advising students show an impact in their research direction in nuclear physics.   

 While all of these works provide valuable insight into the researchers under 

Rutherford, they are limited in supplying a complete list of students at each institution.  

Compiling a complete list of students at each institution was not the focus of Rutherford’s 

biographers.  Instead they focused on published research.  In following the results from 

Rutherford’s biographies, the results in this study examined a possibly incomplete list of 

students at each institution.  A complete list of students could not be obtained through  
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records at each institution.  1

 This thesis searched for examples of the “faculty-only” advising model.  Students 

under his direct guidance and leadership that produced an outcome of the benefits from 

advising were used for this study.   If communication between Rutherford and student 

occurred and influence from Rutherford advanced the student’s research outcome, it was 

indicated during the content analysis and included in determining a relationship between 

professor and student.  Each individual had different relationships, but the contact 

influenced the students’ research objective, scientific achievement, and is included with 

personal remarks made by the students of how Rutherford affected their research.  In 

each of the references made in this study, communication from advisor to advisee 

determined the direction and outcome of results.   

This thesis focused on published biographical material covering Rutherford’s 

lifetime of contributions in science from 1890 to 1937.  Although Rutherford passed 

away 70 years ago, his contributions to science and his leadership abilities in guiding 

scientific research continue to play a vital role in today’s scientific research.  Rutherford 

started his scientific career under J.J. Thompson at Cambridge in 1894, completing a few 

experiments previously in New Zealand.  Rutherford passed away in 1937, leaving 

behind his many research students to continue efforts in understanding radioactivity.  

 Arthur S. Eve, a former colleague and friend of Rutherford, published Rutherford, 

in 1939 as the first biography on Rutherford.  Eve started with Rutherford’s childhood in 

New Zealand until his death using notes and letters Rutherford had written to family, 

                                                 
1 A complete record of students for this study was unattainable through communication with McGill 
University, University of Manchester, and the University of Cambridge.  Further investigation into 
university records containing student enrollment data would be required in order to comprise a complete 
list of students that studied under Rutherford at each institution.  
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colleagues, and students.  The book presented Rutherford’s thoughts and feelings as he 

explored new discoveries in radioactivity.  

 David Wilson, a former Cambridge graduate, although not a student of 

Rutherford, in 1983 wrote a complete biography of Rutherford’s life in Rutherford: 

Simple Genius.  Similar to other biographies on Rutherford, Wilson (1983) begins with 

Rutherford’s childhood and ends with the few years following Rutherford’s unexpected 

death.  Wilson added details concerning Rutherford’s years as the leader in nuclear 

physics and the relationship between the scientist and his students.  From Wilson’s work 

a reader can fully appreciate and understand Rutherford’s significance and the 

contributions he made to helping others. 

 Wilson included students and research colleagues who worked with Rutherford 

from McGill to Cambridge, including those with very little contact with Rutherford.  

Some researchers only spent a semester or two under Rutherford before continuing their 

research at another institution.  Wilson portrayed the major contributors to Rutherford’s 

success and wrote extensively about Frederick Soddy, Hans Geiger, George von Hevesy, 

Otto Hahn, Niels Bohr, Henry Moseley, Peter Kapitsa, Ernest Marsden, James Chadwick, 

and John Cockcroft.  Others who contributed to Rutherford’s research included Thomas 

Royds, Patrick Blackett, Charles Wilson, Ernest Walton, Mark Oliphant, and Edward da 

Andrade.  Testimonials from these students gave insight into how they felt about their 

professor and what type of impact faculty advising can have on research students.  The 

completed list used for this study, including each student’s time with Rutherford, appears 

in Appendix A. 
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 The research for this study included viewpoints from different students, authors, 

and biographers that captured the time spent between their subjects and Rutherford.  To 

present how Rutherford advised students, several resources were used to describe the 

“faculty-only” relationship and research situation.  As Rutherford moved from one 

position to another he shifted his time from conducting research to advising student 

research.  Rutherford’s directorial efforts at the Cavendish placed more emphasis on 

directing research goals, no longer the hands-on experiments in the laboratory.   

Biographical Work  

Students, science writers, and biographers provided the information used for this study.  

Several former Rutherford students wrote about their life and time spent working with 

Rutherford in some capacity.  Former students provided insight on Rutherford’s advising 

based on his knowledge of investigative inquiry in research.  Science writers, such as J.G. 

Crowther, contributed to understanding science by providing historical references in a 

timeline.  Unlike magazine and journal articles, biographical books require a greater 

depth of research and time.     

 A qualitative content analysis of this work identified details about Rutherford, 

colleagues, research students, advising statements, and outcomes.   The coding of the 

analysis quickly identified useful sources that added to the research study.  Previous 

biographers include Arthur Eve, 1939; J.G. Crowther, 1952; David Wilson, 1983; and 

J.L. Heilbron, 2003.    

 Using John L. Heilbron’s biography on Rutherford, this study focused on 

Rutherford’s life and contributions to mentoring others in science.  The writers and 

scientists who studied Rutherford, his students, and his efforts in radioactivity for nearly 
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a century provided the advising information from Rutherford.  From these works this 

current study focused on interaction between Rutherford and his students, then the 

eventual outcome of the advising.  Heilbron, a former history professor at University of 

California, Berkeley, used several books written by Rutherford’s students when 

compiling his notes.  For scientific discoveries prior to Rutherford, Heilbron used J.G. 

Crowther’s The Cavendish Laboratory, 1874-1974.  Heilbron did not include British 

Scientists of the Twentieth Century, Discoveries and Inventions of the Twentieth Century, 

and A Short History of Science.  These additional resources contained information on 

Rutherford’s many discoveries, research colleagues, and a timeline of discoveries.   

Identification of Individuals  

Students used in this faculty advisor to student relationship came from the source 

material listed.  All books reviewed for content on Rutherford’s students came from 

Heilbron’s Ernest Rutherford and the Explosion of Atoms and Wilson’s Rutherford: 

Simple Genius.  The two authors focused on Rutherford’s life and his relationships with 

researchers and students (Appendix A).  Wilson’s work produced the most 

comprehensive list of students and colleagues under Rutherford, along with an extensive 

bibliography for other references.  Wilson’s book aided in establishing which student 

attended where, and where more information could describe the situation between the 

student and Rutherford. 

 Wilson covered the beginning with Rutherford’s first chair appointment at McGill 

University to his final position back at Cambridge and the student researchers at each 

institution.  The students discussed by Wilson and Heilbron who worked with Rutherford 

comprised the list of students to review for this research study.  The final group of 
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students used to explain the faculty advisor role in advising students consisted of 24 

students.   

Data Collection and Analysis 

The initial reading of results looked for guidance from Rutherford on student research.  

The collected results were placed onto a data sheet for further review (Appendix B).  

Each reviewed passage from Appendix B produced the results of this study.  The 

descriptions were included on a collection sheet identifying the student, the time the 

student spent with Rutherford, publication, and author.  Within this data section a 

separate question asked if the student gave personal remarks about Rutherford.    

All collected and compiled data made a time frame split into the three institutions: 

McGill, Manchester, and Cambridge.  Within each institution the referenced material was 

placed in sequence as it occurred during Rutherford’s life.  This study focused on 

Rutherford’s advising ability for students conducted research, and exemplifies the role 

between faculty advisor and the student researcher.     

The students covered in this study were advised by Rutherford in their experimental 

research.  His advising efforts made a significant impression on their research and their 

future in nuclear physics.  This study included some students whom Rutherford directed 

in their research efforts, but their success was not recorded by those referenced.  These 

parameters defined the total number of students to an acceptable number needed to 

portray the faculty-to-student advising relationship.  By following a large number of 

students this study will give a representation of the faculty advisor relationship.   

Heilbron provided an outline of Rutherford’s life, work, and accomplishments, 

highlighting his work with others: however, he excluded all students and their 
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relationship with Rutherford.  Crowther’s research on Rutherford and other science 

discoveries created the time frame in which to research more information on the students 

under Rutherford.  Crowther’s work portrayed the everlasting impact Rutherford made on 

his students.  Wilson included the most comprehensive details about Rutherford and the 

students that worked for him throughout his career.    
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CHAPTER III 
 

STORY REVIEW 
 

Faculty Advising and Research Institutions 

Faculty advising evolved with the changing scene at growing universities and colleges in 

the United States.  To confront new problems faced by many institutions, faculty advisors 

assumed unexpected roles in the evolutionary process.  Wes Habley (1995, pp. 11-12), a 

founding board member of NACADA, stated , “To the role of faculty member as teacher 

and mentor were added ever-increasing expectations of the faculty member as researcher, 

writer, grant procurer, and participant in faculty governance, as well as a number of other 

activities.”  Rutherford took on more responsibility at each institution as his role changed 

from a professorial chair at McGill University to research director at the Cavendish. 

 In considering the “worthwhileness” of a research laboratory, Bullard examined 

the contributing factors at laboratories based on financial contributions as compared to 

application uses in discoveries.  Scientists interested in joining a research institution can 

form an impression of a laboratory by talking to researchers at the institution to determine 

the quality of its work.  Bullard, however, claims this decision can come with very little 

knowledge of the research topic or other related issues.  Bullard (1965, p. 263) argued, 

“Such judgments are based, I believe, on recognition of an attitude of mind of the staff to 

the work and to the establishment.”  He recommended a research institution must form 

the right climate for those wanting to do research suggesting, “that the first consideration 

in the organization of a research establishment is the fostering of the right climate of 

opinion” (Bullard, 1965, p. 263). He continues, “This consideration is, perhaps, more 

important even than the intellectual quality of the staff.” (p. 263) 
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 The limited number of research institutions in nuclear physics during this time, 

including Cambridge University, the Radium Institute in Paris, University of Göttingen in 

Germany and later the University of California, Berkeley (Segre, 1966), gave little choice 

for students continuing research beyond undergraduate work.  Rutherford, according to 

Bullard (1965, p. 264), represented an “outstanding” example of how an institution can 

maintain quality research without an elaborate facility.  The atmosphere research 

directors create, Bullard claimed, was crucial to research production.     

Nelson College 

In a lecture delivered to the Physical Society in November 1942, Harold Robinson (1942) 

described Rutherford as a great scientist because of his legacy.  In the lecture, Robinson 

traced Rutherford’s life starting at New Zealand.  Unlike most of the young European 

science students in the early 1900s, Rutherford came from New Zealand.  Robinson 

outlined Rutherford’s early life in New Zealand before leaving for Cambridge.  Robinson 

claimed New Zealand’s culture and educational system contributed to Rutherford’s 

development into a studious pupil.  New Zealand attracted settlers interested in 

developing a strong educational system reasserted by Parliament’s Education Act of 

1877, allowing a free “secular and compulsory” education (Robinson, 1942, p. 55).  

Without this unique educational background, Robinson explained, the modern world of 

physics would not be where it is today. 

The significance of Rutherford’s education and his rise to an authoritative figure 

in nuclear physics begin on 30 August, 1871, when James and Martha Rutherford gave 

birth to Ernest.  Born in Brightwater, New Zealand, Rutherford moved during his early 

years, but his family continually stressed education.  Rutherford attended the state 
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primary school and won a scholarship to the more progressive Nelson College in 1886.  

At Nelson College, Rutherford received academic awards in mathematics, Latin, French, 

English, literature, history, physics, and chemistry.  A strong work ethic led Rutherford to 

the top of his class at Nelson.   

 Rutherford’s broad educational background in New Zealand covered topics 

ranging from history and literature to multiple foreign languages, but his true talent came 

from his voracious appetite for learning.  Crowther (Crowther, 1952, p. 50) commented, 

“His greatness of style was an uncultivated expression of a natural greatness of physical 

imagination and achievement.”  Crowther described Rutherford as a “Homeric figure,” or 

a warrior coming from an agrarian society that brought a sense of passion and 

wholesomeness to science (1952, p. 54).  Rutherford’s friendly approach with honesty 

and trustworthiness enabled him to excel along with those around him. 

 In New Zealand when Rutherford studied at Nelson College, he started exploring 

the passage of transient currents in conductors leading him to a paper written by Kelvin 

and Rayleigh titled “An accidental illustration of the shallowness of transient current in 

an iron bar” (Crowther, 1952, p. 51).  Rutherford disagreed with Faraday’s time integrals 

of induced currents passing through very fine or thick wires.  His disagreement led him to 

review research studies to help create in-class practical experiments, a method Rutherford 

continued to use in his professional career.  While trying to disprove Faraday’s research, 

Rutherford showed an ability to replicate laboratory experiments.  His efforts failed to 

disprove Faraday, but his judgment coincided with Sir W. Thomson and Kelvin, two of 

the greatest scientists at that time.   
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 Rutherford’s first paper, “Magnetization of Iron by High-frequency Discharges” 

in the Transaction of the New Zealand Institute, examined the transient behavior in an 

iron bar (Crowther, 1952, p. 51).  His research started with the experiments of Oliver 

Lodge, J.A. Fleming, and Hertz.  Lodge’s research concluded that iron could not be 

magnetized by an oscillatory discharge from a Leyden jar.  Rutherford found the claims 

in the relatively old study using steel needles inaccurate.  Rutherford’s experiments 

proved Hertz’s oscillator had a strong iron magnetization.  Crowther discussed 

Rutherford’s attitude as he compared his discovery to that of Thomson and the science 

behind Rutherford’s discovery.  In 1893, just before Rutherford’s New Zealand paper, 

Thomson conducted experiments on the energy absorption between iron and copper 

cylinders.  Crowther (1952, p. 51) quoted Rutherford as saying “the experimental 

methods pursued here is entirely different from Professor Thomson, but the final results 

obtained are the same.  The results are also quantitative, while Thomson’s method only 

admitted of qualitative results.”  

 An outsider to England’s academic culture, Rutherford’s style by the first paper 

soon differentiated himself from other student researchers.  Crowther (1952, p. 51) 

described Rutherford’s voice as “authentic,” expressing himself with “magisterial style, 

which came natural to him.”  Crowther questioned Rutherford’s academic survival if 

born and educated in England.   According to Crowther (1952), New Zealand’s 

educational atmosphere, especially at Canterbury College with Bickerton, influenced 

Rutherford’s free thinking. 

 In later years, Rutherford’s roots in New Zealand became more apparent in his 

dedication towards experimental research and limited laboratory equipment.  As a non-
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capitalist, Crowther (1952) explained, Rutherford could never fit into the mold of 

European society as capitalists changed the agrarian culture made of farmers and 

craftsmen.  New Zealanders worked together as equals striving to contribute to the 

community for the benefit of the entire group.  Crowther made the analogy of Rutherford 

working hard for science through his research efforts.  Students benefited from the 

positive atmosphere in Rutherford’s laboratories as he welcomed new and fresh ideas.     

Canterbury College 

Rutherford continued his education at Canterbury College in 1890, on a Junior University 

Scholarship.  Robinson (Robinson, 1942, p. 56) described the teaching style of A.W. 

Bickerton, one of Rutherford’s teachers at Canterbury, as having “lively and unbounded 

enthusiasm for experimental science in all its manifestations.”  Robinson recognized the 

role Bickerton played inspiring Rutherford’s curiosity stating, “It is doubtful whether 

Rutherford’s scientific curiosity ever needed sharpening from without, but it is certain 

that if he had needed a stimulus he would have found it in Bickerton’s laboratory” (1942, 

pp. 56-57). 

Bickerton introduced Rutherford to chemistry and physics.  According to 

Crowther (1952, p. 50), Bickerton inspired Rutherford, helping him to develop his 

boldness and imagination, a characteristic Rutherford used when advising his own 

students later in life. 

Bickerton died in 1929, and at his funeral Rutherford spoke affectionately of his 

former professor, saying his “enthusiasm and encouragement of original investigations 

helped promote science in New Zealand” (Robinson, 1942, p. 57).  Rutherford 
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biographers, like Crowther, contend Bickerton’s research in novae collisions gave 

Rutherford an image for formulating his planetary theory. 

Rutherford’s research at Canterbury College consisted of Hertzian waves, 

described by Robinson as remarkable for such a young researcher, especially considering 

the poor working conditions and crude laboratory equipment (Robinson, 1942).  Meager 

laboratory conditions plagued Rutherford throughout his career as laboratories fell short 

in funding scientific experiments.       

 Rutherford joined Canterbury’s unofficial college science society to study 

physics.  The society openly discussed Bickerton’s teaching style and the philosophical 

evolution of the elements.  Rutherford, described as an outsider, formed an understanding 

of the world of physics, but lacked the research experience.  Rutherford started his 

research during his last two years at Canterbury on secondary circuits and the passage of 

transient currents in conductors.  This sparked Rutherford’s interest in papers written by 

Kelvin and others on transient currents.   

Mark Oliphant (1901-2000), a biographer and former research student under 

Rutherford at Cambridge, focused on Rutherford’s scientific studies while at Canterbury 

College.   According to Oliphant (1972, p. 5), Rutherford experimented with 

electromagnetic magnetizing waves discovered by Hertz.  His research results showed 

only the outer metal layer, the Hertzian oscillator, received magnetization and detected 

wireless waves that could travel through brick walls.  Rutherford replicated high voltage 

experiments first conducted by Tesla.  By using his own resonant transformer, Rutherford 

measured intervals down to ten microseconds.  His experiments led to lectures in the 

Science Society and two published papers in Transactions of the New Zealand Institute.  



 19

From Canterbury College Rutherford received his B.A. degree in English, French, 

Mathematics, Mechanics, and Physical Science.  Rutherford also received his M.A. as 

Canterbury’s first double major in mathematics and physical science. 

 During Rutherford’s senior year at Canterbury College, J.S. MacLaurin of 

Auckland won the 1851 Exhibition Science Scholarship, a scholarship that allowed 

students to transfer to a university in England to continue their studies.  MacLaurin 

eventually turned down the scholarship, citing family reasons, giving second place 

winner Rutherford the opportunity.  Rutherford traveled to Cambridge in 1895 to study at 

the Cavendish under Thomson. 

Cambridge University 

Thomson (1937) later wrote about the policies that allowed Rutherford and other transfer 

students full admission to Cambridge.  Rutherford arrived in 1895, after the university 

changed admission requirements to admit graduate research students from other 

universities.  The policy allowed transfer students to submit a research thesis to a 

committee to earn a M.A. degree, later replaced with a Ph.D.  Others students who took 

advantage of the admission standards included J.S.E. Townsend from Trinity College and 

J.A. McClelland from Queen’s College.  

Heilbron (2003) described the atmosphere surrounding Cambridge as tension 

mounted between the traditionally admitted students, who worked their way to become 

Cavendish junior members, and the new transfer students.   Rutherford and other transfer 

students won academic prizes and scholarships, gaining professorships as research 

students.  The transfer students were faced with overwhelming adversity in their new 

educational surroundings.  Heilbron (2003, p. 17) said of Rutherford, “He needed the 
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support Thomson gave, especially during his first few months, when the native 

demonstrators (teaching assistants) sneered at the barbaric newcomers without 

Cambridge degrees.”  

 At Cambridge, Rutherford continued his research in radio waves using a magnetic 

detector.  Crowther (1952, p. 56-57) stated the first scientific achievement that separated 

Rutherford from his peers at Cambridge when at the request of Thomson, Rutherford 

demonstrated his detector to the Physical Society gaining him much honor and praise.  At 

one point the detector gained the long distance record of over half a mile.  Townsend and 

others took note of Rutherford’s work and spoke enthusiastically about his experiments.  

Rutherford’s radio detector opened research opportunities including the dinner invitation 

by Sir Robert Ball, the Lowndean Professor of Astronomy, at King’s College.  Three 

months after his arrival at Cambridge, Rutherford made a name for himself in the 

laboratory with his radio detector and on the social ladder with Ball.   

 Not all writers viewed Rutherford’s ability to pick up and drop scientific research 

as beneficial.  According to Crowther (1952, p. 57), Rutherford once said scientists 

should know when to start and when to stop research.  Furthermore, a great researcher 

should know an exhausted subject, the readiness of a subject for further scientific inquiry, 

or when the researcher’s skills do not suit the subject.  In other instances students should 

become aware of the bias demonstrated by their school.  As an example, Crowther (1952, 

p. 57) referred to the German school that favored wave-theories over particles, which 

kept Goldstein and Hertz from determining cathode rays as the latter.  Rutherford could 

determine his own limitations and abilities as a researcher enabling him to stop research 

whenever he thought necessary.  After a short-term thought of selling his invention for 
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profit, Rutherford dropped the magnetic detector to work with Thomson on the gases 

produced by x-rays. 

 Crowther (1952, p. 57) described Rutherford’s change in research as having 

“profound significance.”  Although Rutherford succeeded in demonstrating his own 

invention from New Zealand with the added benefit of possibly making a fortune from 

his efforts, he changed direction; instead of leading, Rutherford followed the leadership 

of another.  Crowther (1952, p. 57) explained this incident as the “fundamental humility 

and social discipline” of Rutherford.  Crowther believed this quality of Rutherford 

separated him from other students.   

 The New Zealand native traveled nearly halfway around the world to study at the 

Cavendish under Thomson.  This determination, as Crowther (1952, p. 57) indicates, 

dictated Rutherford’s passing up of financial gain in order to continue his studies and 

research.  Rutherford’s quick acceptance by his Cambridge professors allowed him to 

achieve acceptance from the Cavendish junior members.  Rutherford embarked with 

Thomson on a new study, which no one at that time knew anything about, including the 

junior members.   

 In the late nineteenth century, scientists observed radioactivity, the emission of α, 

β, and/or γ rays (particles), in certain elements, creating the field of nuclear physics.   

Only financially established European institutions contributed to the new research field 

until the early 1930s.  Prior to this discovery, physicists studied radio waves and 

electromagnetic waves.  In 1895, Wilhelm Roentgen (1845-1923), at the University of 

Munich produced the first x-ray (Nobel Prize Foundation, 1967b).  A year later Henri 

Becquerel (1852-1908), a professor at the Paris Museum, discovered the fluorescing of 
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crystals in uranium (Nobel Prize Foundation, 1967a).  Becquerel’s discovery inspired 

new experiments using Roentgen rays.   

Rutherford experimented, according to Crowther (1952, p. 58-59), in wireless 

telegraphy with a magnetic detector at Cambridge until he started research on gas ions 

with Joseph John (J.J.) Thomson (1856-1940).  Roentgen’s tube aided Thomson and 

Rutherford with their discovery method of ionizing gases, and then Rutherford turned to 

examining ions produced by Becquerel rays.  Becquerel’s discovery of radioactivity in 

1896 prompted Rutherford, already an accomplished student under Thomson, to change 

his research focus from electrical properties of gases to the new physics field.  Rutherford 

concentrated his research efforts in radioactivity for his remaining time at the Cavendish 

and continued at McGill University.  Discoveries from Pierre and Marie Curie escalated 

the curiosity in radioactivity with their radium observations.  Radium, an element more 

radioactive than uranium, made research studies easier to conduct in laboratory 

experiments.    

 In Discoveries and Inventions of the 20th Century, Crowther (1966) focused on the 

growth in radioactivity research as physics mixed electrical conductivity in gases and 

electron physics.  From this point x-rays included “classical electricity and magnetism,” a 

scientific study dating back to research conclusions in the early nineteenth century 

(Crowther, 1966, p. 395).  Using radium, Rutherford found and identified three distinct 

radiations named α, β, and γ rays.  The α-particles carried a positive charge that was 

twice the charge of an electron, and was four times as heavy as a hydrogen atom.  

Rutherford had discovered ionized helium atoms. 
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 Crowther (1966, p. 395) described Rutherford’s diverse educational background 

and boldness in the laboratory by writing, “He was in a perfect position to look at new 

phenomena in a new way.”  The view of radioactivity changed as Rutherford studied the 

newly discovered α-particles as they passed through atoms.  Rutherford’s views of the α-

particles drastically differed from Thomson’s, and the differences were seen as both 

physicists described their own α-particle structure.  Thomson described the atoms, in 

which α-particles pass through, as having a “positive sphere of electrification in which 

electrons were embedded.” (Crowther, 1966, p. 395)  If applied to testing the α-particles 

in Thomson’s atom, they would only deflect slightly.  Rutherford identified the α-particle 

using his imaginative thinking and his knowledge as he surpassed his own mentor’s 

knowledge in the field.    

 X-rays caught Rutherford’s attention for their unknown physical nature and 

ability to produce a skeleton image of living people on a screen.  Crowther (1966) argued 

that during this period physics needed a new direction from that of classical physics.  

Previous theories became increasingly harder to explain new discoveries.  Studying a 

new field of physics, such as x-rays, gave researchers a new field of study, a sign of the 

end for classical physics.   

 Others experimented with the new x-rays, but Thomson soon discovered that x-

rays made gases electrically conductive.  This discovery helped further his previous 

research interest in the electrical conductivity of gases.  By February 1896, Thomson 

invited Rutherford to help with his newest investigation into how x-rays affect gases 

during the x-ray process.  The x-rays, Thomson found, made gases conductors of 

electricity because they split the molecules of gases into electrified particles.  At this 
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point, unregretful, Rutherford dropped all his research in magnetic detectors to work 

solely with Thomson on x-rays. (Crowther, 1966) 

 Thomson and Rutherford presented their results on x-rays to the Liverpool 

Meeting of the British Association in 1896.  The following year Rutherford’s 

demonstration of his magnetic detector was published in the Philosophical Transactions 

of the Royal Society.  Rutherford continued working on the x-ray gases by applying 

voltages, enabling him to measure the velocities of the positive and negative-charged 

ions.  These experiments produced quantitative formulas based on exact measurements, 

which later enabled Thomson, in 1897, to prove the existence of the electron in and later 

calculate its mass.  Although Thomson’s discovery would bring new areas of research for 

physicists, Rutherford decided to focus his efforts in a different direction away from 

Thomson’s discovery.   

 In 1897 Rutherford was awarded a B.A. Research Degree and the Coutts-Trotter 

Studentship of Trinity College.  The following year Rutherford ended his work with 

Thomson by accepting his first professorship.  Rutherford continued his quantitative 

research in the electrical effects produced by uranium radiations and his research to 

identify α- and β-rays.   

McGill University (1898-1907) 

In 1898, Rutherford accepted the MacDonald Research Professorship of Physics at 

McGill University in Montreal, Canada.  Whether politics at Cambridge pressured 

Rutherford or pressure from his fiancée Mary Newton to marry, he took the appointment 

and continued researching the disintegration of atoms in radioactivity (Robinson, 1942, p. 

63).  Rutherford’s accomplishments grew at each institution throughout his career, but at 
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McGill he lacked a developed research laboratory with research students to help carry out 

experiments.  Rutherford continued his research by studying thorium radiations with R.B. 

Owens, who held the title of Professor of Electrical Engineering at McGill.   

 Owens found thorium radiations very unsteady and easily affected by air drafts 

and varying results in the penetration ability of thorium as compared to uranium 

radiations.  Owens’ work with thorium puzzled Rutherford.  The work of Owens, guided 

by Rutherford, started the research on examining thorium radiations (Wilson, 1983).  

Owens and Rutherford published their thorium experiments and outcomes in the 

Transactions of the Royal Society of Canada in May 1899.  Over the summer Rutherford 

coined the term “emanation” to describe the process in which radioactive particles change 

properties (Wilson, 1983, pp. 136-137). 

Owens did not stay long at McGill University, departing for Cambridge and 

leaving Rutherford to continue research.  After a multitude of experiments, Rutherford 

found radioactive particles emitted from the thorium compounds.  The particles kept their 

radioactive power for several minutes, and were capable of ionizing the gas around the 

particles (Wilson, 1983, p. 137).  The radioactive particles could pass through thick paper 

and thin metal layers.   

Further experiments found the gas absorption rates of α- and β-rays to be 

proportional to their density.  Rutherford found a connection between the fixed quantity 

of gases and the ions they produced after absorption.  His experiments led to the 

discovery of thorium emanation.  Rutherford published the results in “Uranium Radiation 

and the Electrical Conduction Produced by It” in January 1899 (Wilson, 1983). Besides 
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thorium emanations, the paper focused on uranium radiations, including the 19 different 

aspects of uranium, another discovery from the experiments.   

Rutherford moved his attention from β-rays to α-rays when he found a smaller 

quantity of β-rays compared to α-rays.  During this time Marie (1867-1934) and Pierre 

(1859-1906) Curie published their work on radiation found in pitchblende.  Rutherford 

concluded the radiation came from the division of a substance instead of a new powerful 

radiating substance. The Curies later identified the radiation as polonium and radium, not 

a division of elements as Rutherford predicted.  Crowther (1952, p. 62) labeled 

Rutherford’s mistake as “probably the biggest scientific misjudgment that he ever made.”  

Crowther (1952) explained how this difference came from the different research 

ideologies from each school.   In France, research excelled in qualitative discoveries, 

whereas in British schools research excelled in quantitative. 

“Excited radioactivity,” coined by Rutherford, described what happened when 

radioactive particles come in contact with other substances creating radioactivity 

(Crowther, 1952, p. 64). Rutherford hoped for artificial radioactivity, but instead it 

became the starting point for identifying the differences between thorium and an 

emanated thorium compound.  Emanation particles, Rutherford found, were not 

electrically charged when they were moving in an electric field.  Instead, emanation 

particles acted similar to atoms of an ordinary gas. 

There were many views as to how the atomic properties of a substance could 

change when subjected to radioactivity.  Marie Curie concluded radioactivity is an atomic 

property based on the ability of radioactive atoms coming into contact with other atoms.  

No one predicted the atom could undergo a fundamental change when subjected to 
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radioactivity.  When Rutherford discovered emanation, he found a new way for creating 

radioactivity by adding radioactive substances to taking away atomic particles through 

disintegration (Crowther, 1952). 

 Hugh L. Callendar (1863-1930), a former student under Thomson at Cambridge, 

started his career at McGill prior to Rutherford’s appointment.  Like Rutherford, 

Callendar showed great success at an early age receiving a position at McGill five years 

earlier.  Callendar received praise for his improvements to the Siemens thermometer and 

was elected fellow to the Royal Society in 1894.  Rutherford viewed Callendar as an 

engineer tinkering with equipment rather than a devoted physicist using laboratory 

apparatus for scientific discoveries (Crowther, 1952).  In describing Rutherford’s view of 

scientific research, Crowther (1952, p. 63) wrote, “The kernel of his genius was 

imaginative, to see the possible explanation of phenomena, and in simple terms which 

could be tested.”  Rutherford never spent time improving laboratory apparatus.  Instead 

he concentrated his time and energy on producing results from experimentations 

(Crowther, 1952). 

 Rutherford first used his honors physics students and fellow McGill researchers, 

including Harriet Brooks (1876-1933), R.K. McClung, Samuel Allan, A.G. Grier and 

H.T. Barnes, to help with research (Wilson, 1983).  Brooks, a physics honors student, and 

Barnes, part of the McGill faculty, measured emanation rates from thorium.  Barnes 

worked later with Rutherford in 1904 on radium heating effects.  Rutherford published a 

research paper with McClung on measuring heat and heating effects.  Rutherford’s first 

paper at McGill was significant, according to Wilson (1983, p. 131), because it was 

“Rutherford’s first jointly-authored paper with himself as senior partner.”  Rutherford 
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believed the emanation process came from a chemical change, requiring Rutherford to 

find a chemist to join his research team in order to test his theory (Wilson, 1983, p. 152).  

Rutherford’s life changed in the summer of 1900, when he sailed for New 

Zealand to marry his fiancé of five years, Mary Newton.  When he returned to McGill, a 

young chemist from Oxford, Frederick Soddy (1877-1956), joined the staff in the McGill 

Chemistry Department.  With the lines between chemistry and physics blurring, 

Rutherford used Soddy’s knowledge in chemistry to help him understand the chemical 

changes in atoms.  Soddy devoted all his time at McGill to working with Rutherford to 

understand the properties occurring during emanation and radiation.   

 Rutherford and Soddy worked together insisting their discoveries resulted from 

collaborative efforts, yet Rutherford, Merricks (1996, p. 32) claimed, received the 

majority of the credits and awards for the discoveries.  This is understandable considering 

the two collaborated in Rutherford’s laboratory, their experiments were inspired by 

Rutherford, and Rutherford held senior partnership in the group.  Differences between the 

two grew after Rutherford received the 1908 Nobel Prize in chemistry.  Rutherford never 

considered himself a chemist, which was the very reason he needed Soddy for the 

experiments at McGill.  

 Merricks tried to make sense of these complicated issues that made the two 

scientists separate, describing Rutherford as a “pragmatic experimentalist, while Soddy, 

although a brilliant practical chemist, was also a philosopher” (Merricks, 1996, p. 33).  

After the experiments, Soddy wanted to look at the historical and social significance of 

their discoveries as they related to the world of alchemy.  Rutherford had other ideas for 
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the use of their discoveries, which did not include chemistry.  Soon afterward Soddy went 

back to England to study under Sir William Ramsay. 

Crowther (1952. p.43) argued that Rutherford’s profound imagination made up 

for his lack of math knowledge needed for theorizing complex experiments.  Rutherford 

used little philosophical or mathematical theories when conducting experiments, unlike 

Galileo Galilei (1564-1642), Isaac Newton (1642-1727), Clerk Maxwell (1831-1879) and 

Gustav Hertz (1887-1975).  And unlike the pure theorists Albert Einstein (1879-1955), 

who used thought experiments, and Max Planck (1858-1947), who used mathematics, to 

establish new ideas, Rutherford directed his efforts towards spending long hours in the 

laboratory with experiments (Crowther, 1952). Peers and students of Rutherford saw his 

imagination, energy and focus in the laboratory.   

Rutherford and Soddy first examined thorium alone with a small concentrate 

chemically separated from the original element.  As the radioactivity in the concentrate 

decayed, the thorium recovered to a non-radioactive state.  Radium’s discovery made by 

the Curies explained how neighboring objects became excited by radioactivity.  

Becquerel, duplicated Rutherford and Soddy’s experiments with thorium, found a way to 

chemically separate uranium, and the separated sources decayed equally.  Unlike 

uranium, thorium could create radioactive properties from within itself as long as the 

radioactivity was not removed.  Rutherford and Soddy published the “Spontaneous 

Transformation Theory of Radioactivity” in the 1902 Cause and Nature of Radioactivity.  

They connected the rate of decay to the proportional amount of radioactive material. 

Radioactivity, they concluded, came from a chemical change within the atom 

transforming the radioactive element (Crowther, 1952).   
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Once again after a major scientific accomplishment in radioactivity, Rutherford 

turned his attention to another topic.  Crowther (1952, p. 66) remarked that “Rutherford’s 

imagination began to turn from the study of radioactivity itself to the use of it to discover 

the secrets of the interior of the atom.”  From results in previous studies Rutherford knew 

α-rays contained a positive charge, could be deflected by electric and magnetic fields, and 

had a greater mass than hydrogen.  Rutherford concluded the α-rays were in fact “atomic 

fragments” projected out of the atom during experiments (Crowther, 1952, p. 66).  The β-

rays, known as electrons, discovered by Thomson in 1897, were not the prominent 

component in radioactive matter like α-rays.  Crowther (1952, p. 66) quoted Rutherford 

describing the importance of α-rays as playing “the most prominent part in the changes 

occurring in radioactive matter.” 

Rutherford secured a liquid-air machine for his research with Soddy in order to 

liquefy the emanations.  Thorium emanation liquefied at -120°C, and radium emanation 

at -150°C.  Their results included the argon gas group and their theory of Radioactive 

Change, which they published in 1903 (Crowther, 1952).  Their paper included their 

calculations for α-particles and the magnitude of atomic energy in atoms.  The rate of 

energy output allowed them to calculate the half-life of radioactive elements.   

 Their published work from 1902-1903 made a great contribution to the study of 

radioactivity; as Crowther (1952, p. 67) described it, “the ideas and the experiments were 

easily understood, and their novel implications were thrilling.”  Soddy played a big role 

in contributing to the success of the research.  Crowther described the balance of the two-

man team stating Soddy “was strong enough in talent to influence Rutherford and, 

besides chemical skill, he contributed a speculative quality, which lightened Rutherford’s 
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exceedingly power imagination, relentlessly bent to the demands of experimental 

procedure” (1952, p. 67).  Rutherford constantly worried about counterparts in France, 

Becquerel and the Curies, publishing their discoveries before him since his publications 

took a month to travel from McGill to London (Crowther, 1952).   

 Rutherford’s first book, Radioactivity, was published in 1904, along with various 

lectures from the Silliman Lectures at Yale University published under the title 

Radioactive Transformations in 1906.  In 1905 Rutherford received the Rumford Medal, 

including a £1000 gift, from the Royal Society “in recognition of an outstanding 

important recent discovery in the field of thermal or optical properties” (The Royal 

Society, 2005).  

 In 1905, Otto Hahn (1879-1968) joined Rutherford’s research team at McGill 

University.  Hoffmann (Hoffmann and Cole, 1993), a biographer of Hahn, expressed the 

important relationship between student and mentor.  Hoffmann (1993, p. 39) described 

the relationship between Hahn and his mentor Rutherford as open and helpful.  In 

describing the atmosphere of Rutherford’s laboratory, Hoffmann stated, “Rutherford’s 

institute was unconventional and friendly.  The liberal deep discussions about only 

factual arguments Hahn felt stimulating.”  To explain Rutherford’s personal influence on 

Hahn, Hoffmann (1993, p.40) said, “Rutherford’s bubbling enthusiasm for scientific 

research and his joy at work were proverbial, and awoke in Otto Hahn the love of science 

and a restless spirit of research.”   Hahn continued his research at the Chemistry Institute 

of Berlin University less than a year later.  

Rutherford introduced Hahn to radioactive thorium during a speech given to 

welcome newcomers to the McGill physics research department.  During this time 
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Rutherford focused on α-particles emitted from radioactive thorium.  Rutherford and his 

research students counted the number of α-particles that collided with a fluorescent 

screen, known as the scintillation method.  Hahn published their radioactive thorium 

scintillation results, titled “On Some Characteristics of the Alpha Rays of Radio-

Thorium,” in the Philosophical Magazine of June/July 1906 (Hoffmann, 1993, p. 38).   

 Rutherford introduced Hahn to his next scientific problem: to find the charge to 

mass ratio of α-particles.  They found similar particle masses, regardless of the 

radioactive element.  Their results were published in the October 1906 issue of the 

Philosophical Magazine.   

 At McGill University, Rutherford researched thorium radiations with Owens then 

α- and β-rays experiments discovering thorium emanation.  His work and leadership role 

with Owens demonstrated his collaborative efforts, a characteristic Rutherford exercised 

throughout the rest of his career.  Rutherford’s research with Soddy, beginning in 1900, 

garnered attention from the scientific community for his work on α-rays.  Rutherford 

worked with Hahn during his last few years at McGill, but combined with his work with 

Soddy, Rutherford demonstrated leadership in the laboratory guiding the two research 

students in radioactivity research.   

 Universities, including several schools in the United States, offered department 

research chairs to Rutherford, but Rutherford denied all offers until 1906, when offered 

the chair at Manchester.  Rutherford moved back to England the following year. 

 Before Rutherford took his new position at Manchester, he traveled throughout 

the United States to give several lectures, including a short stay in San Francisco, 

California.  In Jacques Loeb’s laboratory at Berkeley, Rutherford reconstructed a famous 
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experiment on parthenogenesis, or reproduction without sexual union, of sea urchins.  

Demonstrating his mastery of the biology laboratory, Rutherford added chemicals to 

unfertilized sea urchin eggs, and then watched the sea urchin grow in maturity (Wilson, 

1983, p. 205).  At this point Rutherford’s reputation at McGill for his research in 

radioactivity inspired students to study nuclear physics as he spoke at universities across 

the United States.   

Manchester (1907-1918) 

Rutherford continued his experimental research at the University of Manchester in 

Manchester, England.  Now a Nobel laureate, Rutherford attracted research students to 

help with his experiments.  Rutherford’s discoveries at McGill established his reputation, 

but his Manchester position established his legacy in advising students.  Rutherford’s 

open-mindedness to physical inquiry inspired students including Niels Bohr, a student 

under Rutherford at Manchester.  In a letter commemorating Rutherford’s achievements, 

Bohr (1942, p.44) said, “Equally those of us who have benefited from Rutherford’s 

unique gifts as a leader of scientific cooperation have had much occasion to remember his 

beliefs and hopes regarding the opportunities which science offers for promoting 

understanding and confidence between individuals from different nations.” 

 Rutherford’s reputation in the science community grew with his work at McGill 

University, but his ability to lead research students, like Soddy and Hahn, solidified his 

reputation as a research director.  This characteristic would flourish at Manchester.  Like 

Bickerton, his former teacher at Nelson, Rutherford made an impact on his students’ 

learning and research.  From previous research conducted under Thomson, along with his 
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close associations with teachers back in New Zealand, Rutherford committed himself to 

advising students in the laboratory.   

 At Manchester, Rutherford and others in 1908 directed α-particles towards thin 

pieces of gold foil to measure the deflection of α-particles.  Rutherford found Thomson’s 

theory to only work capriciously as the experiments found “an accumulation of slight 

deflections through impingements on successive atoms” (Crowther, 1966, p.395).  

Rutherford continued experimenting with α-particles until he found a larger deflection 

with bigger angles than expected, especially for the atom theorized by Thomson.  The 

team found the α-particles bouncing back when directed towards thin sheets of gold foil.  

Crowther (1966, p.395) described the situation as bullets being fired at a sheet of paper 

only to bounce off. 

Thomas Royds (1884-1955) worked exclusively with Rutherford at Manchester in 

1908-1909.  Their collaborative work produced the “first correct spectrum of radium 

emanation,” published in a 1908 issue of Nature (Wilson, 1983, p.286).  Their work 

produced conclusive evidence that α-particles were helium atoms.   Their results, titled 

“The Nature of the Alpha-Particle,” were published in the February 1909 Philosophical 

Magazine, delayed a year due to Rutherford winning the Nobel. 

From these studies Rutherford deduced that the atom’s main mass contained a 

“high positive electric charge” that allowed it to strongly repel the positive α-particle 

charge. (Crowther, 1966, p.395) In 1911 Rutherford based his nuclear theory of an atom 

on this study.  His theory claimed that electrons circulated around the nucleus, which had 

a relatively heavy positive charge.  In an atom’s normal condition, the positive charges in 

the nucleus balanced the negative charges of the circulating electrons (Crowther, 1966).   
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 When Rutherford arrived at Manchester he inherited a working laboratory and 

staff, unlike the situation when he arrived at McGill.  William Kay helped with laboratory 

set-ups, diagram preparations, and the handling of radioactive substances (Andrade, 

1962, p.30-31).  Kay and a young laboratory assistant from Germany, Hans Geiger 

(1882-1945), remained at Manchester for Rutherford.  Geiger worked with Rutherford in 

the laboratory researching the α-particle.  Manchester purchased three hundred 

milligrams of radium in 1908, allowing Rutherford to continue research in radioactivity 

(Andrade, 1964, p.103).  Rutherford worked with Geiger creating the Geiger counter in 

1913. 

 Rutherford and Geiger’s α-particle research produced underlying knowledge for 

further research studies.  They increased measurement accuracies in the particle charges 

released by radioactive elements such as radium.  This allowed them to find the 

electronic charge of the element in its natural state.  The two-man team measured the 

electronic charge, e, more accurately than anyone before them.  Later in 1908, the two 

developed a method for counting single alpha particles.  This method, called the 

scintillation method, required the researcher’s eyes to adjust to complete darkness 

(Crowther, 1952, p.71).  The researcher sat in complete darkness at least half an hour 

before starting the experiments in order to see the small flashes of light.   

 Rutherford completed this research within his first year at Manchester.  The small 

monetary prize Rutherford received in early 1908 from the Academy of Sciences of Turin 

did not compare to the nearly £11,000, or $20,000, award for the Nobel Prize in 

Chemistry in November.  In typical Rutherford humor, his speech focused on his research 

as it dealt with transformations on an atomic level.  He then equated it to his own sudden 
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transformation from physicist to chemist (Andrade, 1964, p.108). 

 After receiving his Nobel Prize at Stockholm, he continued his α-particle 

research.  In 1908, Geiger applied the scintillation method to measuring the scattering of 

α-particles using photographic plates Rutherford devised back at McGill.  A new research 

student, Ernest Marsden (1889-1970), aided Geiger in the laboratory.  Fleming (1971, 

p.464), author of a biographical memoir of Marsden, wrote “Rutherford immediately 

suggested that Marsden, under Geiger’s direction, should examine whether any α-

particles were scattered through large angles from a metal surface.”  Geiger and Marsden 

demonstrated how α-particles were capable of traveling backwards.  Rutherford saw this 

discovery as one of the greatest achievements in his life.  From one of Rutherford’s last 

lectures, Andrade (1964, p.111) quoted his professor as once saying, “It was quite the 

most incredible event that has ever happened to me in my life.   It was almost as 

incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and 

hit you.” 

 Geiger and Marsden’s complex research results, completed in 1909, took 

Rutherford two years to process in order to formulate a theory.  Rutherford responded to 

Geiger that he could imagine the structure of an atom.  He put Geiger back to work in 

order to test his theory.   

Rutherford’s nuclear structure of the atom shaped the modern study of nuclear 

physics.  To explain both the chemical properties of matter and the radioactivity of atoms 

required the knowledge of chemistry and physics. In explaining the difference between 

the two studies, Crowther (1966, p.395) noted, “the chemical properties of matter 

depended on the electrons outside the nucleus, while radioactivity, which was 
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independent of the chemical properties of atoms, depended on the nucleus.”  The ability 

to explain the processes going on in the laboratory grew more difficult requiring 

collaboration between physicist and chemists, similar to the work completed by 

Rutherford and Soddy.     

By 1911, Rutherford’s image of the atom required laboratory research to garner 

scientific credibility.  To complete the laboratory work, Rutherford appointed Geiger, 

Marsden and Charles Darwin (1887-1962).  Darwin worked on the mathematical 

evidence to back their experiments, and later helped Rutherford with a mathematical 

problem developing Rutherford’s theory on the hydrogen atom.   

At the request of Rutherford, Marsden came back to Manchester, leaving his 

position at Queen Mary College in London.  Marsden projected α-rays at hydrogen 

causing some hydrogen atoms to move, an incident later called playing marbles (Eve, 

1939, p.232).  Marsden discovered how larger atoms passed momentum to smaller atoms.  

According to Eve (1939, p.232), Marsden’s work might have helped Rutherford adding, 

“Perhaps this effect simmered in the mind of Rutherford and helped towards the nuclear 

theory, and to the greater transmutation work of 1919.”  Marsden and Geiger published 

their results in the 1913 Philosophical Magazine giving credit to Rutherford’s theory and 

leadership (Wilson, 1983, p.305).   

Not all of Rutherford’s theories were as successful as his work with Geiger and 

Marsden.  Working with Edward Andrade (1887-1971) and Harold Robinson (1889-

1955) in 1913-1914, Rutherford used β- and γ-radiations to look for atomic structures to 

complement research conducted on α-particles.  Andrade succeeded Moseley at 

Manchester and led experiments modifying the Bragg method of x-ray crystal reflections.  
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Less significant than α-ray, their research on β-rays produced several published papers 

for the young researchers under Rutherford (Wilson, 1983).  In 1914, Andrade left 

Manchester and his work with Rutherford when he received a military commission as an 

artillery officer during World War I. Rutherford’s lasting influence on Andrade became 

evident when the student decided to write a book about his time spent with his professor, 

for “the inspiration which he felt from his contact with Rutherford led him to write a 

book, The Structure of the Atom, a standard work on the subject” (Cottrell, 1972, p.3). 

James Chadwick (1891-1974) was another student Rutherford made a long-lasting 

impact on.  Chadwick started his education at Manchester at 16 as a prospective 

mathematics or physics student.  In a memoir of Chadwick, biographers Massey and 

Feather (1976) described Chadwick’s education.  During his second year at Manchester 

he took an electromagnetism course taught by Rutherford.  The third year course required 

the execution of a physics research project.  Rutherford gave Chadwick “the task of 

developing a method for assaying radium” (Massey & Feather, p.12).  Chadwick 

graduated with a Master of Science in 1913.  Like Rutherford, he won the Exhibition of 

1851 Senior Research Studentship award, requiring the winner to continue his research at 

another institution.  Chadwick attended the Reichsanstalt in Berlin to continue his 

research efforts with Geiger.   

German universities, unlike the British research schools, offered students a chance 

to earn a Ph.D., drawing many of Rutherford’s students after completing their 

experimental research at Manchester.  By 1918, the British schools adopted the notion of 

offering a Ph.D. in order to compete with other nations, and to meet growing demands 

from students (Ashby, 1963, p.22).   



 39

Wilson addressed Rutherford’s ability to attract the greatest students in 

radioactivity: Niels Bohr (1885-1962) and Henry Moseley (1887-1915).  Wilson (1983, 

p.307) said, “if the director of a modern research laboratory had recruited two such men 

in a life-time of work he would be regarded as a genius for that alone.”  Moseley had 

previously worked with Darwin passing x-rays through crystals to demonstrate the work 

done by the father and son team of William Henry Bragg (1862-1942) and William 

Lawrence Bragg (1890-1972) at Cambridge, to prove that x-rays were actually waves.   

After returning to Manchester from the first Solvay Conference at Brussels, 

sponsored by Ernest Solvay, in which Rutherford met Einstein and Max Planck, 

Rutherford met a young physicist Niels Bohr.  Bohr, from Denmark, showed interest in 

studying radioactivity at Cambridge and met with Rutherford to discuss radioactivity’s 

future.  Moore (1966) wrote that Rutherford’s ability to recruit Bohr away from 

Cambridge for his own institution demonstrates Rutherford’s ability to assess research 

talent.   

 Bohr, under Rutherford’s advice, enrolled in a class on experimental methods of 

radioactive research taught by Geiger, Marsden, and Walter Makower (1879-1945) 

(Moore, 1966, p.39).  The course discussed the structure of the atom and the experimental 

methods behind them.  To help gain experience in the laboratory, Rutherford would 

gather all the research students each afternoon for tea as they conversed about physics 

and life.   As an empiricist, Rutherford taught in his laboratory that all knowledge came 

from experience, including ideas.   Rutherford allowed everyone to add their own 

opinion, even the new research student Bohr.  Bohr discussed the implications 
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Rutherford’s atom could make when arranging elements in the periodic table based on 

the element’s properties, such as dividing them into solids and gases.   

 Bohr suggested many radical ideas, but his greatest idea came out of a problem 

another young researcher faced separating some radioactive materials (Moore, 1966, p. 

40).  Rutherford assigned George von Hevesy (1885-1966), who followed Rutherford 

from McGill to Manchester, to separate the materials, but Hevesy found the separation of 

the material impossible.  Hevesy decided to devise a way to understand why the material 

would not separate by comparing the radioactive material to the materials non-radioactive 

counterparts.  Bohr, hearing of Hevesy’s problem, combined Rutherford’s atom theory 

with the problem (Moore, 1966).  Bohr believed the materials only differed in the nucleus 

holding the same number of circling electrons.  From this he concluded that the elements 

became inseparable because an element’s chemical property gives it the number of 

electrons, but if they contain the same number of electrons they are chemically identical.  

This meant the elements were inseparable.  Lacking any physical evidence, Rutherford 

did not accept Bohr’s theory, citing his distrust in theorizing without experimenting.     

 Rutherford used an inductive method of science when understanding nature.  This 

characteristic of Rutherford is predominately visible when Bohr announced a theory to 

Rutherford, yet lacked any physical evidence to support it.  Rutherford performed 

scientific experiments and proposed his ideas based on results.   

 Bohr’s theory would soon find physical evidence after an independent discovery 

from Soddy, Kasimir Fajans, and A.S. Russell (Moore, 1966).  Their discovery found that 

elements could transform chemical properties to the next element on the period table 

when they emit a β-particle.  The loss of one negative charge produced a gain in one 
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positive charge.  The same principle applied to α-particles meant the loss of two in 

atomic number of that element.  Bohr’s theory finally had physical evidence.  While 

Soddy received the attention and praise from the scientific community for the discovery, 

Bohr continued to study under Rutherford at Manchester.     

Bohr studied the new discovery to identify how the atom’s nucleus could be at the 

center of radioactivity.  Bohr considered electrons circling the nucleus and that the 

electrons would determine the structure of the element along with its properties.  

Contrary to the popular notions discussed in the laboratory, Bohr used thermal radiation 

and light theories, called “quanta” first proposed by Planck and Einstein (Moore, 1966, 

p.43).  Bohr used quantum theory to show the placement of electrons circling an atom’s 

nucleus, but in a fixed orbit, unlike Rutherford’s original model. 

 Like Rutherford, Bohr used every aspect of his education when trying to 

formulate theories.  Bohr sought Rutherford’s approval for a paper demonstrating the 

connectivity between Rutherford’s atom and quantum physics.  Bohr determined that 

electrons circle an atom’s nucleus without losing energy, this time arming his theory with 

mathematical calculations.  Bohr’s proposal, accepted by Rutherford, questioned the 

differences between one element and the next element (Moore, 1966). 

 Bohr left Manchester, but his work with Rutherford created profound effects in 

nuclear physics.  Bohr applied Rutherford’s atom to theories first used by Planck and 

Einstein, different from Newtonian physics.  Electric charges of the nucleus govern how 

electrons configure around the center, enabling Bohr’s discovery to explain the facts in 

Mendeleev’s Periodic Table of the Elements.  For researchers, spectroscopy made a little 

more sense as Bohr’s theory aided in the study of observing and measuring spectral lines.   
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 Hevesy was a student intellectually comparable to Bohr, and started at 

Manchester about the same time.  Hevesy started his academic career at Manchester in 

January 1911, by measuring radioactivity.  Hilde Levi (1985), author of George de 

Hevesy: Life and Work, referred to the first encounter between Hevesy and Rutherford.  

As proposed by Rutherford, Hevesy determined the solubility of actinium emanation in 

water, his first task at Manchester.  According to Levi (1985, p.23), this was very difficult 

for anyone to accomplish since actinium had a half-life of four seconds.  Hevesy’s second 

task, again given by Rutherford, separated radium-D from pitchblende.  Hevesy often 

referred to his second task as a humorous story for young researchers dealing with 

complicated tasks (Levi, 1985, p.23).  The results from his second task started his career 

in radioactivity.  Hevesy, unable to separate chemically identical elements, eventually 

traced elements using radioactive isotopes.  Rutherford’s discovery of the atomic nucleus 

aided Hevesy’s understanding of chemically identical elements with different atomic 

weights.  Levi (1985, p.24) described Hevesy’s time under Rutherford:  

 Aside from the immense influence of Rutherford and his school on the scientific 
career of the young Hevesy, one can hardly overestimate the imprint they made on 
Hevesy’s personal development.  Rutherford’s personality and his approach to 
scientific as well as to personal and political questions put his stamp on his co-
workers, many of whom were – or grew to become – outstanding scientists and very 
special characters. 

 
 Moseley studied under Rutherford’s after graduating from Oxford in 1910.  He 

studied under Rutherford’s guidance for two years before finding his passion in 

radioactive research.  His final research calculations started with relating the atomic 

weight of the lower elements in the periodic table.  In 1912, Moseley started using x-rays 

to relate the elements from calcium to zinc.  Using Z, the number of positive charges in 

the nucleus as the placement order of elements, Moseley used Rutherford’s atom to build 
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the periodic table.  Moseley showed that periodic arrangement of the elements depends 

on the atomic number of an element (Z).  He arranged the elements according to their 

increasing atomic numbers (Heilbron, 2003, pp. 75-77).  Unfortunately for science, 

Moseley was killed in 1915 in action at Gallipoli during World War I.   

 At Manchester, Rutherford established his legacy in science by using his Nobel 

fame to attract students and his talents in advising research.  Working with Royds, 

Rutherford starting researching the structure of the atom beginning with the atom’s mass.  

Geiger and Rutherford fired the α-particle at thin gold sheets, and with Marsden found 

the particles bouncing back.  Two years later, in 1911, Rutherford formed his theory on 

the structure of the atom on these results.  Finishing research on β- and γ-radiations, 

Rutherford published research conducted with Andrade and Robinson.  Bohr came to 

Manchester in 1912, and in 1913 produced his theory of electrons circling the atom in a 

fixed orbit based on quantum mathematics.  Hevesy conducted several research 

experiments proposed by Rutherford.  From one of his experiments Hevesy separated 

chemically identical elements using radioactive isotopes.  Moseley, after studying under 

Rutherford’s research guidance for two years, embarked on his own research establishing 

the order of elements in the periodic table based on the atomic number of each element.  

Rutherford’s success at Manchester proved his ability to produce scientific research and 

his ability to lead students.   

The Cavendish Laboratory (1919-1937) 

In 1919, after World War I, Thomson retired from the Cavendish, giving Rutherford the 

coveted position (Heilbron, 2003).  Rutherford became the fourth Cavendish Professor of 

Experimental Physics at the University of Cambridge, in charge of all teaching and 
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research.  Rutherford made the post-war Cavendish Laboratory functional for scientific 

research by creating research initiatives in radioactivity.  He directed a campaign to start 

recruiting faculty and staff needed for the laboratory.   

The newly formed Department of Scientific and Industrial Research (DSIR) gave 

some financial resources.  Rutherford’s other task of recruiting credible researchers 

seemed more problematic as Rutherford looked for help from his former students.  Bohr 

remained in Copenhagen, but Chadwick, who left prior to the war, returned from 

Germany, becoming the Cavendish’s Assistant Director for Research from 1919 until he 

left for a professorship at the University of Liverpool in 1935 (Heilbron, 2003). 

 Heilbron (2003) claimed that Rutherford’s new position in science made more 

progress securing the future for nuclear physics than towards physical research.  Many of 

his students gained fellowships, grants, and professorships to continue research.  Three of 

the students attending the Cavendish under Rutherford’s direction earned a Nobel Prize, 

making Cambridge the center of physics in the world.  Female enrollment at the 

Cavendish improved, especially after the war, under Rutherford’s direction (Heilbron, 

2003).   

 Rutherford continued researching α-particles using the radium obtained from 

Vienna.  With Chadwick, the two worked on experiments colliding α-particles with 

radioactive nuclei.  After careful consideration of the many possibilities from the 

experiment results, Rutherford found the emitted particles before disintegration in the 

nucleus started.  This agreed with the nuclear structure of an atom he first proposed in 

1911.  Rutherford looked for the neutral charge in the atom, but in the wrong place 

thinking it was gamma radiation.  In 1932, Irene Curie (1897-1956) and Frederic Joliot 
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(1900-1958) discovered the neutral particle in their Paris laboratory, but did not realize 

what they had in their results (Heilbron, 2003, pp.109-110).  Chadwick quickly replicated 

their experiment at the Cavendish.  The 1932 experiment resulted in neutrons ejected 

from the nucleus, proving Rutherford’s atomic model that the nucleus contained 

neutrons.     

 Patrick Blackett (1897-1974), a recent Cavendish graduate, stayed to work with 

Rutherford as a researcher until 1933.  Rutherford worked briefly with Blackett as they 

researched the interaction between hydrogen gas and α-particles (Heilbron, 2003).  

Rutherford continued the research with Charles D. Ellis (1895-1980) (Wilson, 1983, p. 

448).  Ellis came to the Cavendish as a junior research officer in 1922, working with 

Blackett and Chadwick.  Rutherford’s book, originally titled Radioactive 

Transformations (1911), was revised with assistance from Chadwick and Ellis.  With 

their contributions added, Rutherford renamed the book Radiations from Radioactive 

Substances (1930) (Mackintosh, 1995, pp. 227-228).   Rutherford played a role in Ellis’s 

success in founding nuclear spectroscopy.  In a 1995 speech to the Royal Society, 

Mackintosh (p. 290) stated “Like many of Rutherford’s students, Ellis was fortunate in 

being given a research project with the potential of leading to a major advance in 

physics.”  Ellis contributed his research success, the method of using nuclear 

spectroscopy, and direction to Rutherford.   

 During a speech about his time at Cambridge, Blackett (1962, p.107) described 

Rutherford as possessing “great physical energy and power of work and concentration – 

without these even his experimental genius could not have borne such fruit.”  To help 

guide his students’ research, Rutherford reviewed their completed laboratory results.  



 46

Blackett (1962, p.110) recalled the years at the Cavendish when Rutherford, already 

pressed with other duties, would “give the new student a fertile problem, leave him to it 

for a year or two, ignore all the years of travail, but welcome the eventual results with 

enthusiasm.”   

Mark Oliphant (1972), a former student of Rutherford, recalled his first research 

work with John Cockcroft (1897-1967) in Rutherford: Recollections of the Cambridge 

Days.  Cockcroft joined the Cavendish as a research student in 1925, working on vacuum 

glass equipment, a similar field in which Oliphant researched.  Cockcroft shared 

laboratory space with another newcomer to the Cavendish, Ernest Walton (1903-1995).  

Rutherford persuaded Cockcroft to work with Peter Kapitsa, a Russian researcher at the 

Cavendish, in discovering magnetic fields, which found a use in engineering applications 

(Oliphant & Penney, 1968). 

Rutherford suggested to Walton, along with Thomas Allibone (1904-2003), to 

research electron accelerations in a glass tube, but each attempt failed.  Guy Hartcup and 

Allibone (1984), authors of Cockcroft and the Atom, viewed Walton’s contribution to the 

Cavendish as an important step in the new age of nuclear physics.  In 1928, Walton 

proposed to Rutherford the method of linear acceleration using cesium ions (Hartcup & 

Allibone, 1984, p.39).  The method accelerated positively charged particles in a chamber, 

and through the next four years Walton added other mechanisms to the accelerator 

including a small magnetic energy booster.  Physicists later called this apparatus a 

cyclotron.   

In 1929, Cockcroft studied the wave-mechanical theory of Russian theoretical 

physicist George Gamow (1904-1968), realizing that bombarding light atoms with 
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artificially accelerated protons would produce nuclear disintegration.  Rutherford gave 

the green light on Cockcroft’s proposal to produce millions of disintegrations using the 

wave-mechanics theory.  Walton worked with Cockcroft in assembling the needed pieces 

for the experiment, including an accelerator tube developed by Allibone (Heilbron, 

2003). 

 The two continued manipulating the accelerating tubes until finally an impatient 

Rutherford wanted results.  In April 1932, their experiments produced α-particle 

scintillations, first witnessed by Walton then later by Cockcroft.  Rutherford confirmed 

their discovery and they immediately began writing a letter for publication.  Walton and 

Cockcroft started the new age in nuclear physics involving a cyclotron (Heilbron, 2003, 

p. 114-115, 118). 

From this point, nuclear physics and the instruments used to study radioactivity 

changed forever. Rutherford’s era in simplistic nuclear physics modeling was over.  In 

order to study nuclear physics, researchers required complex instruments and machines.  

The apparatus Rutherford used for research grew in size, complexity, and power.  The 

Cavendish kept pace in research efforts with world-wide research institutions by 

acquiring larger particle accelerators that pushed protons to 710,000 electron volts, the 

same energy as turning on nearly 24 cathode-ray tube color televisions at the same time.  

Tired of waiting on new equipment, an impatient Rutherford directed Cockcroft and 

Walton to begin experimentations.  Their discovery in 1932 demonstrated the split of an 

atomic nucleus; the Cavendish, as Heilbron (2003, p.115) described it, was now the 

center of the world’s attention.   



 48

 Rutherford’s impatience paid off for Cockcroft and Walton.  At Berkeley, 

California, the physics department, led by Ernest Orlando Lawrence (1901-1958), could 

push protons faster than Cockcroft and Walton, but because they never attempted an 

experiment with their cyclotron, they failed at discovering first how to split an atomic 

nucleus.  The Berkeley laboratory offered to help the Cavendish build a cyclotron, but 

Rutherford and Cockcroft elected to keep their method of proton acceleration.  The next 

year, after Chadwick left, Rutherford authorized the building of a cyclotron, but it was 

already too late for the Cavendish.  Heilbron (2003, p.119) estimated, “The delay put the 

Cavendish two generations of accelerators behind Berkeley at the end of World War II.”   

 Oliphant, a research student from Australia, had the privilege of working with 

Rutherford during his last few years of life (Eve, 1939, p. 370).  Oliphant originally 

considered joining other research groups, but after meeting Rutherford he decided to 

focus on experimental research at the Cavendish instead of the theoretical school in 

Göttingen, Germany.  Their work, with the aid of another research student Paul Harteck 

(1902-1985), included the transmutation of atoms along with the search for hydrogen and 

helium isotopes.  Before Rutherford’s untimely death in 1937, their results concluded 

with the discovery tritium.   

 As director of the Cavendish Laboratory at Cambridge, Rutherford moved from 

directing individual research to setting long-term goals for a research institution.  Unlike 

his previous positions at McGill and Manchester, Rutherford’s first task was to recruit 

faculty, staff, and students following World War I.  Chadwick rejoined his professor from 

Manchester to help lead the laboratory.  Rutherford worked with Blackett researching 

hydrogen gas and α-particles, continuing the research with Ellis.  Rutherford’s era in 
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basic experiments changed with the introduction of particle accelerators.  Cockcroft, 

Walton, and Allibone bombarded atoms in a artificial accelerator producing nuclear 

disintegration in 1932.  Competing against Lawrence at Berkeley, Rutherford’s 

Cavendish Laboratory split an atomic nucleus first.         

Conclusions 

 Rutherford brought experimental work in radio waves, initially winning him high 

praise, but soon redirected his research to gas ions under J.J. Thomson.  As a student, 

Rutherford’s relationship with teachers and professors produced a mentor-type mentality 

with a philosophy of open communication between professor and student.  At McGill 

University, Rutherford took on his first role as a professor building the reputation of the 

physics research laboratory.  Rutherford worked with Owens for his first collaborative 

effort.  Others that worked with Rutherford at McGill include Brooks, McClung, Grier, 

Allan, Soddy, and Hahn.  From these students at McGill Soddy and Hahn would win a 

Nobel Prize.  In his 1921 Nobel Prize speech Soddy mentioned his work conducted with 

Rutherford at McGill (Soddy, 1922, p. 371).  Hahn, winning the Nobel in Chemistry in 

1944, never recognized Rutherford as a contributor to his success in research; but he did 

recognize Rutherford’s scientific achievements.  Rutherford’s success in the artificial 

transmutation of atoms in 1919 started the research direction in which Hahn studied in 

order to produce a transmutation of uranium in 1939.   

 He continued experimental research as he moved to his next position at the 

University of Manchester in Manchester, England.  Rutherford continued working in the 

laboratory, mentoring and advising his research students, but now a Nobel laureate, he 

attracted more students as compared to his time at McGill.  The students at Manchester 
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include Geiger, Royds, Marsden, Hevesy, Darwin, Chadwick, Bohr, Andrade, Moseley, 

and Robinson.  Rutherford’s research students helped him discover the nuclear model of 

the atom and split the atomic nucleus of an atom.   

 From these students Hevesy, Chadwick, and Bohr won Nobel Prizes in their 

respected fields.  Hevesy won the 1943 Nobel Prize in Chemistry for his application of 

isotopic indicators.  In his Nobel Lecture, Hevesy (1964, p. 9) acknowledged 

Rutherford’s inspiration and leadership in isotope research, while a student at Manchester  

 Chadwick won the 1935 Nobel Prize in Physics for discovering the neutron and 

its properties in 1932.  In his lecture speech Chadwick (1935, p. 339) credited his 

discovery to Rutherford’s 1920 suggestion of a neutral particle within the atom.   

Bohr won the 1922 Nobel Prize in Physics for his theory of the structure of the atom he 

published while a student under Rutherford at Manchester in 1913.  Bohr (1922, p. 7) 

gave credit to Rutherford in his Nobel lecture stating “The present state of our knowledge 

of the elements of atomic structure was reached, however, by the discovery of the atomic 

nucleus, which we owe to Rutherford, whose work on the radioactive substances 

discovered towards the close of the last century has much enriched physical and chemical 

science.”  

 After World War I, Rutherford accepted a new position moving him back to his 

Cambridge in 1919.  As the research director of the Cavendish, Rutherford rebuilt British 

science after the war directing the path of the famed laboratory.  By taking a less active 

approach in individual research, Rutherford maintained a few personal projects.  Students 

at the Cavendish under Rutherford include Blackett, Cockcroft, Ellis, Walton, Allibone, 

Oliphant, and Harteck.   
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 From the researchers under Rutherford’s guidance at Cambridge, three received a 

Nobel Prize.  Blackett received the 1948 Nobel Prize in Physics for his research on cloud 

chambers.  In his prize lecture, Blackett (1948, p. 97) described the first experiments 

using the cloud chamber.  Blackett acknowledged his research started when Rutherford 

turned from using the scintillation method to using Wilson’s cloud method to collide 

alpha particles with a nitrogen nucleus.   

 Cockcroft shared the 1951 Nobel Prize in Physics with Walton.  Cockcroft 

received the prize for his experiments at the Cavendish where, along with Rutherford and 

Walton, he produced transmutations.  Cockcroft expanded his research in artificial 

radioactivity by building the first cyclotron at the Cavendish Laboratory.   

Walton, while working with Cockcroft at Cambridge, received the prize for accelerating 

particles.  Walton (1951, p.187), in his Nobel Prize lecture speech, credited the first 

transmutation of atoms to Rutherford’s experiments conducted in 1919.   

 Starting as a research student under Thomson and then gaining world-wide fame 

in the scientific community helped Rutherford become the most predominant scientific 

figure in nuclear physics research.  His leadership roles at each institution created the 

next generation of nuclear physicists.  The listed examples of Rutherford’s advising given 

at each institution demonstrate the impact Rutherford made when advising student 

researchers.   
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CHAPTER IV 
 

SUMMARY 
 
The content analysis performed using published biographical data on Rutherford and his 

students provide overwhelming evidence of Rutherford’s advising impact on the students 

under his direction at each institution.  At each institution Rutherford followed the 

advising guidelines defined by NACADA by advising students when choosing a program 

to develop their potential.  Professional and faculty advisors can follow Rutherford’s 

example when advising today’s science research student.   

 An empiricist, Rutherford gained from his experiences with Bickerton at Nelson 

and his time under Thomson while a student at Cambridge.  At the beginning of his 

career, Rutherford collaborated with other faculty members, undergraduate research 

students, and graduate students as a professor at McGill University.  Rutherford made an 

impact by leading and conducting the research efforts with each individual.  The 1921 

Nobel Laureate Soddy and the 1944 Nobel Laureate Hahn started their award winning 

research under Rutherford’s guidance at McGill.     

 At the University of Manchester, Rutherford expanded his role as an advisor as he 

attracted students to his lab.  Rutherford made an impact on all his students listed, 

especially for those that received a Nobel Prize.  As found in the content analysis, 

Rutherford impacted the research of Geiger, Royds, Marsden, Darwin, Andrade, 

Moseley, and Robinson.  For Nobel Laureates Hevesy, Chadwick, and Bohr, Rutherford 

started them in research that ended in the highest level of scientific accomplishment.    

 Returning to Cambridge University after World War I, Rutherford impacted the 

future of nuclear physics by advising new areas in research and rebuilding a post-war 
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laboratory with faculty, staff, and students.  The content analysis proved Rutherford 

impacted the research of Ellis, Allibone, Oliphant, and Harteck.  The remaining students 

at Cambridge impacted by Rutherford, Blackett, Cockcroft, and Walton, received the 

Nobel Prize in their respective fields.  In each case the Nobel Laureates based their 

success as a direct result of Rutherford’s impact on their research.  Rutherford guided his 

students based on his expert knowledge in nuclear physics and projected himself as a 

model for his research students to follow as an example.      

 Rutherford’s advising at McGill, Manchester, and Cambridge is a working model 

of NACADA’s “faculty-only” model.  Rutherford demonstrated the two strengths 

outlined by King in the “faculty-only” model of advising students.  Rutherford’s 

education background from Nelson, to Canterbury, and finally at Cambridge, plus his 

knowledge in radioactivity earning him a Nobel Prize in Chemistry, gave him credibility 

within the science community.   

Conclusions 

This study identified the significant achievements made by Rutherford and the advising 

efforts he gave to students.  His advising gave students a directed path in science research 

based on their abilities and interest in nuclear physics.  The “faculty-only” model outlined 

in this study provides a historical model for current day faculty advisors to follow and a 

working relationship that professional advisors need to understand when advising 

research-oriented students.  Rutherford’s students gave credit to their professor for their 

success, a perfect example of how a faculty member directs the research efforts of 

students.  By understanding the research field, Rutherford guided his students in 

directions that developed more understanding of nuclear physics.   
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 Rutherford’s attitude and guidance shaped the research atmosphere at all three 

institutions.  This attitude came directly from his days with Bickerton in New Zealand 

and Thomson in Cambridge.  Rutherford concentrated on experimental research in 

nuclear physics, laying the foundation for discovering the atom and radioactivity.  From 

these discoveries he gained international fame, giving him a reputation for admitting the 

best research students throughout European.    

 Rutherford became more than a physics professor and creator of nuclear physics; 

he became an amazing advisor to the next generation of nuclear physicists.  Because of 

Rutherford, many students from around the world studied in his laboratories and made 

significant impacts in science.  Lord Rutherford of Nelson inspired and motivated the 

scientific community by pushing experimental research in radioactivity.  His legacy 

played a role for the next generation of scientific discoveries; including the role of 

researcher’s in World War I and World War II.  Rutherford’s educational background led 

him to success in an unknown area, inspiring scientists to continue researching atomic 

physics for the next century. 

 In a 1954 lecture delivered to the Imperial College Physics Department, Blackett 

recalled a comparison of Rutherford’s teaching style to that of the French General 

Napoleon, who once said “There are no bad soldiers, only bad generals” (Blackett, 110).  

Blackett believed Rutherford never saw bad students, just bad professors unable to 

inspire their students in research.   

Professional advisors and NACADA should consider using historical studies 

similar to this when explaining the significant impact made by faculty advisors.  The 

dedicated faculty advisors in each department should provide adequate advising based on 
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their research knowledge in the field and their knowledge from working with the 

individual students. 
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1913 - 1914 Harold Robinson 

1908 - 1909 Thomas Royds 
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1924 – John Cockcroft 
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QUESTION 2

Student: ___________________

Time Period:________________

QUESTION 1

Author:________________________________________________
Title: ________________________________________________

Chapter:______________ Pages: ________________________

Previously Referenced?
Yes No

Location:___________________

QUESTION 3 QUESTION 4

Type of Book:
Biography
Autobiography
General
Other

QUESTION 5

Book Topic:
Student
Rutherford

General Science

QUESTION 6

Theme:
Direct
Indirect
Direct Advances

Indirect Advances

Other

QUESTION 7

Time period with Rutherford:
McGill University
Manchester University
Cambridge University

Personal Remarks made by student:
               Yes             No

Received Nobel Prize in Science:
             Yes            No

Rutherford mentioned in
Nobel acceptance:
        Yes          No

QUESTION 9QUESTION 8

Influence from Rutherford:
Yes  No

Significant scientific achievements:
            Yes            No
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RUTHERFORD AND THE NATURE OF THE ATOM
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RUTHERFORD AT MANCHESTER
RUTHERFORD
NIELS BOHR: THE MAN, HIS SCIENCE
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