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ABSTRACT 

 

Organic Carbon Flux at the Mangrove Soil-Water Column Interface in the Florida 

Coastal Everglades. (May 2005) 

Melissa Marie Romigh, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Stephen Davis 

 Coastal outwelling of organic carbon from mangrove wetlands contributes to 

near-shore productivity and influences biogeochemical cycling of elements.  I used a 

flume to measure fluxes of dissolved organic carbon (DOC) between a mangrove forest 

and adjacent tidal creek along Shark River, Florida. Shark River’s hydrology is 

influenced by diurnal tides and seasonal rainfall and wind patterns.  Samplings were 

made over multiple tidal cycles in 2003 to include dry, wet, and transitional seasons.  

Surface water [DOC], temperature, salinity, conductivity and pH were significantly 

different among all sampling periods. [DOC] was highest during the dry season (May), 

followed by the wet (October) and transitional (December) seasons.  Net DOC export 

was measured in October and December, inferring the mangrove forest is a source of 

DOC to the adjacent tidal creek during these periods.  This trend may be explained by 

high rates of rainfall, freshwater inflow and subsequent flushing of wetland soils during 

this period of the year. 
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INTRODUCTION 

 

Background Information 

The dissolved organic carbon (DOC) pool in the oceans is one of the largest 

exchangeable organic reservoirs on the planet and the transfer of organic matter (OM) 

from land to sea is a key link in the global carbon cycle (Hedges 1992, Smith and 

Hollibaugh 1993).  A major step in defining this link is determining the rates and 

direction of carbon flux between wetlands and adjacent coastal waters, as these 

ecosystems can serve as both sources and sinks for carbon (Mitsch and Gosselink 2000). 

Particulate and dissolved organic matter (POM and DOM) from mangrove wetlands can 

be an important source of energy and nutrition to heterotrophic communities of 

surrounding estuarine and marine ecosystems (Odum and Heald 1975).  Mangroves 

provide food, shelter and nursery habitat for a wide assortment of wildlife that spend all 

or critical periods of their life cycle in these environments (Robertson 1986, Primavera 

1998, Ley and McIvor 2002). 

Beginning with the outwelling hypothesis in the 1960s, researchers have 

attempted a range of sampling techniques to identify and quantify sources and sinks of 

carbon and other nutrients in the estuarine and coastal environment (Twilley 1985, 1988, 

Lee 1990, Dittmar and Lara 2001a).  However, the role and extent that mangroves play in 

the coastal microparticulate and dissolved carbon budgets is still not clear (Dittmar and 

Lara 2001a).  Results from previous research in the Everglades have shown that the 

export of DOC to the adjacent ocean may be one of the dominant outputs of material  

_____________ 
This thesis follows the style of the journal Wetlands. 
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from a  mangrove wetland, accounting for greater than 80% of total organic carbon 

(TOC) export in some cases (Furukawa et al. 1997, Machiwa and Hallberg 2002).  It has 

been documented that the extent of tidal export depends on amplitude and frequency of 

tidal inundation, and may also be related to freshwater inflow, rainfall or seasonal and 

inter-annual fluctuation in sea level (Wolanski et al. 1980, Twilley 1985, 1995, Davis et 

al. 2001a, Dittmar and Lara 2001b).  Macro-invertebrates can also be an important factor 

in regulating the magnitude of organic carbon export from mangroves, as evident in 

Australia (Robertson 1986, Camilleri 1992).   

A flume sampling method was developed to evaluate how tidally inundated 

wetlands process nutrients specifically at the wetland soil-water column interface and has 

since been utilized in determining both carbon and nutrient fluxes in various wetland 

systems, including mangroves (Wolaver et al. 1985, Childers and Day 1988, Whiting et 

al. 1989, Rivera-Monroy et al. 1995, Davis et al. 2001a).  The present study utilized this 

flume method to consider possible short-term variability in fluxes over consecutive days 

by quantifying organic carbon flux between the wetland soil and inundating water 

column over multiple replicate tides.  Literature on OM export is not consistent about 

whether seasonal trends are present in OM flux in mangroves (Dittmar and Lara 2001a, 

Dittmar et al. 2001, Davis et al. 2001a, Sutula 2003).  The present study will also 

quantify seasonal variability related to freshwater inflow to understand the importance of 

seasonal freshwater inflow patterns in regulating carbon dynamics in mangrove forests of 

the Florida Coastal Everglades. 

Litter, mainly leaves and twigs, produced in the canopy of mangroves represents a 

significant source of the OM and nutrients available for outwelling to adjacent coastal 
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waters (Odum and Heald 1972, Twilley 1995, Davis et al. 2003).  Leaching of mangrove 

litterfall is a rapid decomposition process and provides an important source of labile 

organic material to the water column (Cundell et al. 1979, Benner and Hodson 1985, 

Robertson 1988, Davis et al. 2003).  The efficiency of microbial conversion of the 

leachable portion of mangrove leaves is 30-36%, making a significant amount of 

mangrove detritus potentially available to higher trophic levels in the aquatic food web 

(Benner and Hodson 1985). 

While leaf litter is typically the main component of mangrove litterfall (40-95%) 

(Day et al. 1996, Clough et al. 2000, Twilley and Rivera-Monroy, unpublished data), 

twigs and branches may also comprise a significant fraction of the total litterfall (Clough 

et al. 2000) and be an important source of leachable organic material.  Approximately one 

half of the OM of mangrove leaves are leachable water-soluble compounds (tannins and 

sugars) with the remainder consisting of more slowly degrading plant structural polymers 

(lignocellulose; Cundell et al. 1979, Benner and Hodson 1985).  Mangrove wood has a 

much higher lignocellulose content (83%) than leaves, rendering it a potentially smaller 

contributor to the labile DOC pool. 

 Previous leaching experiments of wetland leaf litter have focused on the change in 

leaf mass lost, bacterial growth and remaining leaf nutrient content (Chale 1993, Mann 

and Wetzel 1996).  Rapid loss of labile OM from leaf litter in the initial decay phase has 

been shown due to leaching of soluble organic compounds, with gradual decrease in 

weight loss due to microbial breakdown thereafter (Valiela et al. 1985, Chale 1993).  

Both short term (hours-days) and long term (weeks-months) decomposition studies have 

addressed changes in nutritional content of the leaf litter (Chale 1993, Davis et al. 2003).  
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However, there is a lack of information on carbon available from different mangrove 

species and litter types (i.e. leaf, wood, reproductive structures).  Further, there are few 

studies that budget carbon loss associated with this initial phase of decomposition for 

different mangrove species in a forest. 

 The use of isotopes has been used to trace the source and fate of mangrove OM in 

many estuarine environments (Zieman et al. 1984, Dittmar et al. 2001, Jaffe et al. 2001).  

Typically, mangrove-derived OM has δ13C values between -27‰ and -32‰, while 

marine phytoplankton have more enriched δ13C values between -15‰ and -22‰.  C:N 

ratios have been used as an indicator of nutritional value of organic matter, and a 

decrease in the C:N ratio from senescent leaves to partially decomposed leaves of 

Rhizophora mangle has been observed (Newell 1984).  Rather than comparing freshness 

of the litter types with nitrogen analysis, I expected to identify the stable carbon isotope 

signature of OM leached from several mangrove species to support the hypothesis that 

the OM export from mangrove wetlands in Shark River, Florida is terrestrially-derived. 

 From a laboratory litter leaching study, I report the amount DOC leached from 

leaf and wood litter during the initial 24-hour decay period of three species of mangrove, 

Laguncularia racemosa (white mangrove), Rhizophora mangle (red mangrove) and 

Avicennia germinans (black mangrove) and one freshwater sedge, Cladium jamaicense to 

compare differences in available leachable DOC to the mangrove zone of an estuarine 

environment.  The stable carbon isotope ratios of the dry litter are also reported to 

compare the signature of these OM sources to the δ13C values of related coastal waters 

reported in other mangrove studies.  These data may be used to construct a portion of the 
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mangrove forest carbon budget related to the organic carbon available for export from 

litterfall through the initial decay process. 

Few past studies have quantified mangrove-water column interactions directly, 

and there have been even fewer mangrove carbon exchange studies in the Everglades 

(Twilley 1985, Davis et al. 2001a, 2001b, Sutula et al. 2003) where landscape-scale 

hydrologic restoration efforts have begun.  Research utilizing in situ techniques to 

quantify carbon fluxes at the mangrove soil-water column interface is needed to solidify 

our understanding of carbon cycling in these coastal wetlands.   

 

Nature of the Problem 

Restoration of the Everglades is mandated by federal and state law.  The Federal 

Settlement Agreement of 1991 and Everglades Forever Act of 1994 established the need 

to reduce phosphorus in runoff waters and increase flows of freshwater through the 

Everglades to restore natural hydroperiods.  There are many different modeling 

approaches to assess Everglades hydrology and ecology, and to predict the positive and 

negative impacts of such a large scale hydrologic restoration (Sklar et al. 2001, Bolster 

and Saiers 2002). 

A result of increased freshwater flow through the Everglades will likely be 

increased water depth and hydroperiod, which are important environmental controls on 

vegetation patterns in this low nutrient environment.  At the level of the mangrove soil, a 

change in the flow and the content of source water can alter microbial processes in the 

soil and thus influence the rate of organic carbon turnover in the soils.  Further, soil 

accretion rates may be reduced as a result of higher freshwater flushing rates and reduced 



  6   

  

sediment inputs from the Everglades.  This would negatively affect the ability of the 

mangrove to maintain elevation over the long term.  Within the mangrove itself, 

aboveground and belowground plant biomass and production may be reduced in the 

short-term in response to less saline conditions.  Salinity is also important in regulating 

plant zonation patterns, and competitive exclusion of the inland extent of mangroves by 

freshwater plant species may occur under low salinity conditions.  This study will provide 

a basis for understanding the temporal variability and the importance of freshwater flow 

on organic carbon exchange in mangroves. 

 

Solution and Rationale 

To better understand the temporal variability in mangrove carbon dynamics and 

begin to address how it may be affected by freshwater inputs, this study focused on 

quantifying the flux of organic carbon between the water column and mangrove soil in a 

tidally influenced riverine mangrove wetland in Shark River, Florida.  There is evidence 

that net export of DOM reaches the same order of magnitude as litter export in some 

mangrove areas (Twilley 1985).  Therefore, this study expected to identify both the 

particulate and dissolved fractions of OM import and export.  The study area was located 

in a riverine mangrove forest, which, due to high flushing rates, was expected to be a net 

source of DOC and TOC to the water column and tidal river for part of the year, in 

response to intra-annual variations in freshwater inputs and litter production.  The study 

was designed to incorporate sampling periods during the characteristic wet season, dry 

season and ‘Norte’ season (an intermediate between wet and dry seasons, characterized 

by cold fronts moving through the region). 
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In addition to the field study, a laboratory litter leaching experiment was 

conducted to determine DOC leaching rates for different litter types of three mangrove 

species.  The DOC leaching rates combined with litterfall data from the study site were 

used to create a small DOC budget indicating the amount of DOC potentially available 

for export from the initial 24-hour leaching of mangrove litter.  This research is also part 

of a larger effort seeking to elucidate net ecosystem exchanges of carbon in the 

mangroves of the Florida Everglades.  Findings from this study will contribute to a better 

understanding of the short-term influence of season and water source (Everglades vs. 

Gulf of Mexico) on mangrove carbon cycling along the Florida Coast.   
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METHODS 

 
Site Description 

Everglades National Park is located in southern Florida and comprises 610,483 

hectares, of which 189,644 hectares are mangrove forest (Lewis et al. 1985).  Average 

annual rainfall in the region is 138 cm, with distinct wet (approximately 60% average 

annual rainfall from June to September) and dry (approximately 25% average annual 

rainfall from November to April) seasons (Figure 1) (Duever et al. 1994).  Shark River is 

a mangrove dominated tidal river along the southwest coast of Everglades National Park 

and is one of the largest estuaries in South Florida.  Discharge of freshwater from Shark 

River Slough to the estuary follows patterns of seasonal and inter-annual rainfall (Chen 

and Twilley 1999).  Tides in Shark River are predominantly diurnal with a mean 

amplitude of 1.1 m. 

 The flume study was conducted in a riverine mangrove forest along a tidal creek 

connected to Shark River (Figure 2), approximately 1.8 km inland from the mouth of the 

estuary (25°21.852 N, 81°04.667 W).  The width of the tidal creek at the site of the flume 

is approximately 2 m.  The surrounding mangrove forest is tidally inundated and 

dominated by the white, red and black mangroves. 

 

DOC Sampling Techniques 

This study was designed to characterize temporal variability in DOC 

concentrations and flux from the coastal Everglades mangroves.  Flux measurements 

were made during 2003 covering three seasons within a Shark River mangrove forest: dry  
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Figure 1. Seasonal pattern of temperature and precipitation in Southwest Florida from 1994-2003.  Long-
term pattern of temperature (○) and precipitation (□) represented as mean (±SD) values for 1994-2003. 

Precipitation for 2003 alone represented as monthly values (●).  Data collected by United States Geological 

Survey. 
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Figure 2. Map of South Florida and the experimental flume study site (SRS-6) along Shark River 

within Everglades National Park. 
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(May), wet (October) and the transitional ‘Norte’ season (December).  Exchange patterns  

over multiple tidal cycles (4-6 tides per sampling), were examined during each season. 

A flume was used to measure organic carbon exchange between the mangrove 

soil and inundating water column.  The experimental flume was located approximately 30 

m inland from Shark River, in a fringe mangrove along a small tidal creek (2.5 m width 

and 1 m depth) draining the area.  The flume was open to flow at both ends and measured 

approximately 2 m wide and 12.5 m in length, extending from the tidal creek into the 

basin mangrove forest (Figure 3).  The flume walls were positioned perpendicular to the 

tidal creek and parallel to the direction of flow of the flooding tidal water, so as to mimic 

natural flooding patterns in the enclosed area of wetland.  Panels on the flumes, 

consisting of clear, corrugated fiberglass, were removed after each sampling to prevent 

long-term panel effects such as shading, edge scouring, and detritus accumulation 

(Childers and Day 1988).  

During each sampling period, an ISCO autosampler was placed at each end of the 

flume and programmed to collect a 1-liter water sample every 30 minutes from a single 

point inside the flume.  Samples were collected simultaneously from each end of the 

flume during replicate flood and ebb half tides.  Samples were retrieved every 12 hours, 

packed in ice and transported to the field laboratory for processing.   

The temperature, salinity, pH, conductivity and dissolved oxygen concentration of 

the tidal creek water were also recorded simultaneously using a Hydrolab mini-sonde.  

This study was conducted at a monitoring station for the Florida Coastal Everglades Long 

Term Ecological Research (FCE-LTER) program where continuous data on surface water 

level, salinity and concentrations of total nitrogen and total phosphorus are collected.   
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Figure 3. Map of experimental flume layout including Shark River and sampling points.  
Flood and ebb tide diagrams illustrate the change in “upstream/downstream” designation of 

the two flume sampling points. 
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Microtopography within the flume was surveyed in August 2003 to build a detailed map 

of elevation, which was used in estimating volumetric changes in the flume. 

 

DOC Laboratory Analyses 

DOC samples were filtered through pre-rinsed (triplicate 5 mL rinses with de-

ionized water), pre-combusted (4 hours at 500°C) and pre-weighed 47 mm Whatman 

GF/F papers.  Filtration was performed within 24 hours of collection and both filtered 

and unfiltered samples were refrigerated at 4 °C in 125 ml bottles.  Particulate matter 

trapped on the filter was dried at 70°C for 24 hours and weighed for total suspended 

sediment (TSS) calculation, then combusted (500°C for 4 h) to determine losses on 

ignition.   

DOC and TOC concentrations in filtered and unfiltered samples were assayed by 

high temperature catalytic oxidation (HTCO) and infrared detection using a Shimadzu 

TOC-5000.  Carbon concentrations were determined against potassium hydrogen 

phthalate standards.  Samples were measured in triplicate with a fixed c.v. of 2%; 

otherwise, further replicates were automatically carried out by the instrument.  Duplicate 

samples were analyzed periodically to check for reproducibility of results and to evaluate 

the precision of measurements.  Fluxes of organic carbon were calculated from the 

measurements of water level and concentration change within the flume following the 

methods of Childers and Day (1988) and later modified by Rivera-Monroy et al. (1995). 
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Flux Calculations and Statistical Analyses 

I used formulas described in Childers and Day (1988) to calculate fluxes of 

organic carbon (Appendix A).  One formula was modified by Rivera-Monroy et al. 

(1995) to obtain net areal fluxes of regularly flooded fringe mangroves when a constant 

area of the experimental flume was inundated.  I also utilized this equation and calculated 

net areal fluxes for half tides (flood and ebb) only when both ends of the flume were 

inundated (Equation 1).  Net fluxes were obtained by adding flood and ebb fluxes for 

each tide. 

total fluxupstream – total fluxdownstream (1) Net areal flux (g m-2 h-1) = 

          flume area x total time  

    

Using a hypsometric approach, I inferred fluxes of water from changes in water 

level collected at 30-minute intervals during several whole-tides.  Direct measurements of 

water level within the flume over the course of one complete tidal inundation were 

correlated with the continuous water level recorder data supplied by the FCE-LTER 

station at the bank of Shark River (SRS-6).   This correlation was used to calculate water 

level within the flume for all additional sampling periods.  To best correlate water level in 

a system with asymmetrical tides, I developed separate correlation curves for flood- and 

ebb-tides (adjusted R2 values of 0.999 and 0.997 for ebb- and flood-tide correlations, 

respectively). 

Paired t-tests between upstream and downstream DOC concentrations over each 

half tide were used to determine if fluxes of organic carbon within the flume were 
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significant (p<0.05).  No difference in concentration between upstream and downstream 

pairs was interpreted as no net flux over a given half-tide (net area flux = 0 µmoles C  

m-2h-1).  For example, higher concentrations during flood tide at the streamside end 

(upstream) indicated a net uptake of carbon by the wetland, while lower concentrations at 

the streamside end indicated a nutrient release.  Net areal fluxes were calculated only 

when water was present at both ends of the flume and a significant difference was 

observed.   

Seasonal differences in temperature, salinity, conductivity, pH, dissolved oxygen 

and organic carbon concentration were analyzed using a one-way ANOVA and LSD 

post-hoc analysis to test between sampling seasons (p<0.05).  Seasonal differences in 

TSS concentrations were analyzed using a one-way ANOVA and Dunnett’s T3 post-hoc 

analysis (p<0.05). 

 

Mangrove Litter Analysis Techniques 

Senescent leaves and wood litter from each of the white, red and black mangroves 

were collected from the surrounding riverine fringe mangrove forest along Shark River.  

One freshwater sedge, Cladium jamaicense, was collected approximately two kilometers 

upstream as an upstream OM source comparison.  Three replicate samples of each litter 

type were refrigerated separately in plastic bags at 4°C for one week before analysis.  

Litter was dried at 60 °C for 72 h and 3.000 g of each sample was weighed for 

incubation.  Each litter sample was incubated in 150 mL of deionized water in 250 mL 

clear glass bottles for a 24-hour period. 
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 Leachate samples collected from each bottle were filtered through Whatman GF/F 

glass fiber filters and divided into two separate 60 mL HDPE sample containers (one 

each for DOC content and stable carbon isotope analysis).  The samples to be used for 

isotope analysis were acidified, each with 1 mL 10% HCl, and both sets of water samples 

were then refrigerated until analyzed.  DOC analysis was performed using a Shimadzu 

TOC-5000 total organic carbon analyzer.  Isotope analysis was performed using an 

elemental analyzer for dry tissue samples and a new method by Cifuentes et al. (in prep.) 

with a TOC analyzer interfaced with an IRMS analyzer in order to determine δ13C of the 

organic carbon in liquid samples. 

Using SPSS, single factor analyses of variance were used to determine significant 

difference in DOC leachate content between litter type and species (p<0.05).  Tree 

species composition and average monthly litterfall estimates (January 2001 to June 2003) 

for a Shark River mangrove forest were used to calculate the proportion of mangrove 

species present and litterfall composition at the study site (Twilley and Rivera-Monroy, 

unpublished data).  I estimated the amount of DOC available from initial (24 h) leaching 

of mangrove litter at the soil-water column interface using a summation formula 

(Equation 2; Appendix A).  This formula combined the DOC leaching rates obtained 

during the leaching experiment with actual litterfall composition from the study site. 

DOC (g m-2 yr-1) = ∑ (LLx * Rl,x) + (WLx * Rw,x)           (2) 

where LL is leaf litter produced (g m-2 yr-1), WL is wood litter produced (g m-2 yr-1) and 

R is the DOC leaching potential of leaf or wood litter (g DOC/g dry tissue) of a particular 

species, x. 
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RESULTS 

 

DOC Concentrations and Physical Parameters 

Water temperature in the flume ranged from 17.9 to 30.6 °C and was significantly 

different between all sampling seasons (ANOVA, p<0.05).  Highest temperatures 

occurred in May, followed by October and then December [Figure 4(a)].  Salinity in the 

flume ranged overall from 6.4 to 29.8 ppt.  Lowest salinities were observed in the wet 

season when freshwater flow was greatest (October), followed by December, and highest 

salinities in the dry season (May) [Figure 4(b)].  A tidal salinity pattern of increased 

salinities during flood tide and decreased salinities during ebb tide was observed for all 

tides sampled.  The percent saturation of dissolved oxygen in the water column was 

significantly highest during May and lowest during October (ANOVA, p<0.05).  

Dissolved oxygen content of the inundating water column also followed a tidal pattern of 

decreasing % saturation with increasing duration of inundation, indicating oxygen 

depletion of the water column due to respiration.  The pH of the inundating water column 

was between 7.3 and 7.6 during all sampling seasons. 

 Mean concentration of both TSS and DOC were significantly different between 

sampling seasons (ANOVA, p<0.05).  TSS concentrations ranged from 1 to 192 mg l-1.  

Significantly higher mean TSS concentrations occurred in May (112 mg l-1), while 

concentrations were very low in both October (22 mg l-1) and December (24 mg l-1) 

[Figure 4(c)].  DOC concentrations were significantly different between seasons 

(ANOVA, p<0.05) and ranged from 1.7 to 17.9 mg l-1.  Overall, DOC was highest in 

May and lowest in October [Figure 4(d)].  DOC concentrations during ebb tide were 
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Figure 4. Seasonal patterns of (a) temperature, (b) salinity, (c) DOC concentration and (d) TSS 

concentration of water during tidal inundation of the flume at the study site.  Sampling periods followed by 

different letters were significantly different from one another (ANOVA, p<0.05). 
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higher than flood tide during May, while ebb tide concentrations were lower than flood 

tide during October (Figure 5).  During December, average DOC concentrations were 

similar for both ebb and flood tide, though highly variable between the flood tides 

sampled.  Significant changes in DOC concentration within the flume were observed for 

one-half of the tides sampled. 

 

Fluxes 

DOC exchange occurred both vertically between the wetland soil and inundating 

water column and horizontally between the tidal creek, fringe and basin mangrove 

forests.  Total exchanges of DOC were much greater between the tidal creek and fringe 

forest than between the fringe and basin forests (Figure 6).  There was a net import of 

DOC to the fringe forest from both the basin forest and the tidal creek during the dry 

season.  The highest significant import rate of DOC (0.3227 g m-2 h-1) occurred in the dry 

season.  The average import rate of DOC to the mangrove soil during the dry season was 

0.0908 g m-2 h-1, based on significant fluxes during the sampling period.  On average, 

86% of the DOC imported to the fringe mangrove occurred during flood tide.  There was 

a net export of DOC from the fringe forest to both the tidal creek and basin forest during 

the wet season.  The highest export rate of DOC to the inundating water column (0.5784 

g m-2 h-1) occurred in the wet season.  The average export rate of DOC to the inundating 

water column during the wet season was 0.0606 g m-2 h-1, based on significant fluxes 

during the sampling period.  On average, 65% of the DOC exported from the fringe 

mangrove occurred during ebb tide.  Difficulty in the field due to equipment malfunction 

and low tidal inundation at the site  
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Figure 5. Seasonal flood- vs. ebb-tide mean (± SD) concentrations of (a) TSS 

and (b) DOC.  Sampling periods followed by different letters are significantly  

different (ANOVA, p<0.05). 

a) 

b) 



  21   

  

 
 
 
 
 
 
 
 
 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

M M M M M M O O O O O D D D D

D
O

C
 (

g
 m

-2
 h

-1
 )

Import from tidal creek Import from basin forest

Export to tidal creek Export to basin forest

Figure 6. Net fluxes of whole tides for DOC in the experimental flume.  Positive flux is import to the 
mangrove soil; negative flux is export to the inundating water column. * Flux not significantly different 

(p>0.05). nd, No data. 

      �                          Wet                            �                     Dry                      �               ‘Norte’              � 

   

nd 

   

 nd 

 

 nd 



  22   

  

only allowed for the calculation of two tidal fluxes in December.  These tides indicate 

both import and export of DOC with an average DOC import rate of 0.0265 g m-2 h-1 

during the ‘Norte’ season. 

Twelve and 60% of the paired t-tests performed on DOC content for the half-tides 

were significantly different from zero (p<0.05).  Three tides during the ‘Norte’ season did 

not have both upstream and downstream paired samples.  Therefore, I could not 

determine fluxes for these tides.  To calculate an average yearly DOC flux, I used the 

average DOC flux rate of significant tides (-0.0403 g m-2 h-1), the average tidal 

inundation period (2 h) and the estimated number of tides at the site during 2003 (696 

tides).  The result of this was a net annual export of DOC from the fringe mangrove to 

both the tidal creek and basin mangrove forest (-56 g DOC m-2 yr-1). 

 

Mangrove Litterfall Leaching Rates 

There was a significant difference in the mass of carbon leached over a 24-hour 

period between mangrove leaves vs. twigs, and all litter types lost a significant amount of 

mass (ANOVA, p < 0.05).  Mangrove leaves of all three species leached significantly 

more carbon than wood litter (ANOVA, p<0.001).  A comparison of leaching between 

species shows that the black and red mangroves leached the greatest mass of DOC per 

gram dry mass, followed by the white mangrove and the least by the sawgrass (ANOVA, 

p<0.05; Figure 7). 

During this initial 24-hour decay phase, leaf litter leached on average 0.0502 g 

DOC/g dry tissue.  Wood litter and sawgrass leached less than 15% of this amount 

(0.0073 and 0.0064 g DOC/g dry tissue, respectively).  This translates to 5% of the dry 
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mass of leaves and less than 1% of the dry mass of wood litter and the sawgrass being 

lost as DOC in the first 24 hours of litter decomposition. 

Stable carbon isotope ratios of the mangrove dry litter tissue samples ranged from 

-26.08 to -28.1 (Table 1), which are consistent with other δ13C values reported for 

mangrove carbon (Lin and Sternberg 1992, Dittmar et al. 2001).  The sawgrass had a 

similar stable carbon isotope ratio (-28.07).  Distinction between species and litter type 

could therefore not be made based solely on the δ13C data.
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Figure 7. Comparison of DOC leached by different litter types in the 24-hour leaching experiment. 
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Table 1. δ13C values and amount of DOC leached over a 24-hour period 

for three mangrove species and one freshwater marsh sedge. 

Litter Type Dry Litter δ13C 

Black Leaf -26.5 

Red Leaf -27.19 

White Leaf -28.1 

Black Twig -26.4 

Red Twig -26.08 

White Twig -27.32 

Sawgrass -28.07 

Mean (SD) mass of leached DOC.  Letters represent groups of 

significantly different leached DOC mass (ANOVA, p<0.001). 



  26   

  

CONCLUSION 

 

DOC Flux 

The magnitude and direction of material fluxes in estuarine systems involve 

processes occurring at different spatial and temporal scales.  Small scale processes 

occurring directly at wetland exchange interfaces (i.e. water-soil, water-atmosphere or 

soil-atmosphere) are influenced by short-term variability in environmental conditions (i.e. 

material concentration, wind and rain events, duration of inundation, flushing time).  

Larger spatial scales broadening in area from tidal creeks draining these exchange 

interfaces to the landscape-scale of the entire estuary increasingly incorporate more 

general processes of estuarine mixing and long-term climate patterns in controlling 

carbon and nutrient exchange. 

Water flux estimates and paired upstream/downstream measurements of dissolved 

organic carbon concentration were used to quantify the flux of DOC between the 

mangrove soil and inundating water column of a fringe riverine mangrove wetland.  

Sampling over repeated tides within a season allowed for the examination of the short-

term variability in flux that occurs in the natural environment.  I measured vertical flux 

and found an indication of DOC import to the mangrove soil during the dry season 

(May), export to the inundating water column during the wet season (October) and import 

to the mangrove soil during the ‘Norte’ season (December) in 2003. 

Particulate organic carbon (POC) export can represent a significant amount of the 

organic matter leaving mangrove systems, though it most often varies with season.  

Export of POC measured in an Australian riverine mangrove forest was 420 g C m-2 yr-1 
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(Boto and Bunt 1981) whereas studies in Florida have measured 64 g C m-2 yr-1 (Twilley 

1985) and 186 g C m-2 yr-1 (Heald 1971).  For all sampling periods in this study, DOC 

accounted for >95% of the TOC in the water column.  However, nets were not used in 

this study to capture leaf-size particulate matter, which may make up a significant portion 

of export from mangrove forests (Boto and Bunt 1981, Twilley 1985).  Several other 

mangrove studies have also measured a high DOC fraction of TOC in the water column.  

Twilley (1985) estimated that up to 75% of all carbon exchanged in a basin mangrove 

forest in Florida was DOC, Davis et al. (2001b) estimated >90% of the TOC in mangrove 

island enclosures was DOC and Sutula et al. (2003) found that in Taylor River, Florida 

approximately 98% of TOC was in DOC form. 

Due to the sampling technique and asymmetrical tidal patterns, water samples 

could only be collected in the mangrove flume during high tide, and only during those 

high tides when the mangrove forest was inundated.  Samples at the beginning and end of 

a high tide may have been influenced by the resuspension of particulates produced by 

stronger currents flowing across the soil surface.  However, no significant difference in 

organic carbon content was detected between filtered and unfiltered samples, indicating 

very low POC in the water column and little influence of particulate resuspension on the 

water samples.     

Concentrations of DOC in this fringe riverine mangrove system were slightly 

higher than reported values for other mangrove systems (Table 2).  Actual DOC 

concentrations were highest during the dry season, possibly due to the occurrence of peak 

litterfall production in May, but freshwater inflow and tidal amplitude were at their 

lowest.  Tidal amplitude and freshwater inflow to the system play a factor in regulating  
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Table 2. Comparison of DOC and TOC concentrations of various wetland studies. 

Location Wetland Type Source TOC DOC 

Florida Riverine mangrove This study  1.7-17.9 

Florida 
Freshwater & 

mangrove 
Sutula et al. (2003)  8.4-19.2 

Zanzibar Fringe mangrove Machiwa and Hallberg (2002)  0.78-1.28 

Florida Mangrove creek Davis et al. (2001a)  8.4-21.6 

Florida Dwarf mangrove Davis et al. (2001b) 10.8-18 8.4-18 

Brazil Riverine mangrove Dittmar and Lara (2001) 7.20 4.32 

Australia Fringe mangrove Furukawa et al. (1997) 2.67 2.21 

Bahamas Fringe mangrove Moran et al. (1991)  2.3 

Louisiana Freshwater marsh Childers and Day (1988)  10.8-29.1 

Louisiana Brackish marsh Childers and Day (1988)  6.8-48.7 

Louisiana Saltmarsh Childers and Day (1988)  2.5-12.6 

Australia Fringe mangrove Boto and Wellington (1988)  1-2 

Florida Basin mangrove Twilley (1985) 9.4-21  

DOC and TOC concentrations reported in mg l-1. 
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DOC flux from wetland soils by influencing the amount of time the soil has to interact 

with the inundating water column and by regulating the amount of water discharged 

through the interface.  Increased freshwater input has been shown to increase DOC flux 

from estuaries to adjacent coastal waters, sometimes by as much as 300% (Miller 1999).  

The greater the tidal amplitude and freshwater inflow, the longer the wetland is 

submerged and the more water flows through the system.  Vertical flux data in this study 

indicate that the highest export of DOC from the wetland soil to the inundating water 

column occurred during the wet season.  Tidal amplitude and freshwater inflow are 

correlated in this study, as tides reached a minimum amplitude of 2.3 feet during the dry 

season, a maximum of 2.9 feet during the wet season and 2.6 feet during the ‘Norte’ 

season.  These flux results indicate DOC flux from the wetland is controlled to a greater 

extent by freshwater discharge rather than DOC concentration. 

Flux estimates from the riverine fringe mangrove forest in this study were similar 

in magnitude to findings of previous mangrove carbon flux studies (Table 3).  Seasonal 

fluxes indicated net import of DOC to the wetland soil during the dry season and export 

of DOC to the inundating water column during the wet season, with an overall net DOC 

export of 56 g DOC m-2 yr-1 from the mangrove wetland to the adjacent tidal creek.  A 

flux study in a fringe mangrove forest in Australia using a ‘eulerian’ approach was unable 

to detect net flux of dissolved materials, including DOC (Boto and Wellington 1988).  

Previous estimates of total carbon export from mangroves range from 2 to 400 g C m-2  

yr-1 with an average of about 200 g C m-2 yr-1, while salt marshes typically export about 

half this amount (Twilley 1998). 
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Table 3. Estimates of net annual TOC and DOC flux from mangrove wetlands. 

Location TOC DOC Method Source 

Florida  -56 mangrove flume This Study 

Florida -7.1  mangrove creek Sutula et al. 2003 

Florida  3.04 mangrove creek flume Davis et al. 2001a 

Florida  - 381 mangrove enclosures Davis et al. 2001b 

Florida -64  basin mangrove Twilley 1985 

Australia  7.3 mangrove channel Boto & Wellington 1988 

World Average -210  mangroves (review) Twilley 1998 

TOC and DOC flux reported in g C m-2 yr-1. 
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Generally, terrestrially derived DOM undergoes conservative mixing down the 

estuarine gradient, forming an inverse linear relationship between salinity and 

concentration.  A previous study by Jaffe et al. (2004) indicated that fluxes of DOC are 

controlled to a great extent by discharge rather than concentration, indicating lower DOC 

concentration with increasing freshwater input.  The wet and ‘Norte’ season data indicate 

an inverse linear relationship of salinity vs. DOC and support previous findings of 

conservative mixing of DOC within the Shark River estuary (Figure 8; Jaffe et al. 2004).  

Consistent high salinities (25-30 ppt) due to depleted freshwater input to Shark River 

during May coupled with high variation in DOC concentration indicate similar import 

and export processes occurring at the wetland soil-water column interface even during the 

dry season.  Riverine mangrove forests generally have higher flushing than fringe, basin 

and shrub forests (Lugo and Snedaker 1974), which may help explain why flux results 

from this study are higher than in other mangrove systems. 

 

Mangrove Litterfall 

The production of mangrove litter and its consequent degradation and 

consumption in the coastal environment is considered to be a major pathway of energy 

transfer through mangrove systems (Odum and Heald 1975).  Main sources of DOM to 

the southwest coastal Everglades are from freshwater marsh plant biomass, mangrove 

forests and marine organisms (Jaffe et al. 2004).   

The magnitude of litterfall in this riverine mangrove forest (12640 kg ha-1 yr-1) is 

consistent with findings in other riverine mangrove forests, and higher than reported for 

basin and fringe mangrove forests (Lugo et al. 1988, Day et al. 1996).  Litterfall  
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Figure 8. Salinity vs. DOC concentration plot of water samples during study sampling periods. 
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composition varies greatly throughout the year, with leaf litterfall representing 40-94% 

and wood litterfall ranging from 1-33% of the total litterfall (Twilley and Rivera-Monroy, 

unpublished data).  Net primary productivity of mangrove forests is generally high 

compared to upland forests of the same latitude (Twilley et al. 1992, Saenger and 

Snedaker 1993).  Laguncularia racemosa (1063 trees ha-1) and Rhizophora mangle (900 

trees ha-1) are the dominant mangrove species present at the study site, with Avicennia 

germinans interspersed (125 trees ha-1) (Twilley and Rivera-Monroy, unpublished data).  

Based on these tree densities, L. racemosa (51%) and R. mangle (43%) contribute the 

highest amount of litterfall available for leaching.  However, R. mangle leaves leach 

significantly more DOC than L. racemosa and therefore provide 55% of the DOC 

potentially leached into the water column during the initial decay phase while L. 

racemosa provides only 37%.  Due to higher litterfall and initial DOC leaching rates, leaf 

litter represents a much greater source of leachable DOC than wood material from this 

riverine mangrove forest.  Comparisons made in a deciduous forest also found that fresh 

leaf litter is a more important source of DOC to the forest floor than labile substrates 

(glucose and cellulose), forest floor materials or wood litter (Park et al. 2002).  The 

mangrove leaf litter was also a more significant source of labile DOC than the marsh 

grass C. jamaicense, which leached DOC in an amount similar to mangrove wood litter. 

Litterfall studies in both mangrove and upland tropical forests have suggested that 

environmental conditions including low tides, lack of precipitation and high 

evapotranspiration due to high temperature may promote leaf senescence and higher 

litterfall rates during dry seasons (Duke et al. 1981, Day et al. 1996, Wright and Cornejo 

1990).  This higher available litter fall may lead to greater leaching and in turn cause 
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higher DOC concentrations of the inundating water column during the dry season.  

However, there is indication that DOC is imported to the mangrove soil during this 

period.  It is possible that this imported DOC is flushed out of the soil during the wet 

season or that mangrove uptake from the soil serve to control the import of DOC to the 

soil during periods of high concentration. 

Using tree densities combined with average monthly leaf and wood litterfall data, 

the total amount of DOC potentially leached during initial decay at the soil-water column 

interface is 450 kg DOC ha-1 yr-1 (Table 4).  This amount of DOC is around 4% of the dry 

weight of total litterfall, and assumes no significant grazing by herbivores.  However, this 

excludes litterfall of reproductive structures, which have the potential to leach additional 

DOC.  Based on a net annual export of 56 g DOC m-2 yr-1, the initial 24-hour litterfall 

leaching phase could provide 43% of the DOC exported from the forest. 

In addition to higher litterfall rates, riverine mangrove forests generally have a 

significantly higher inundation frequency and duration, leading to greater in situ 

decomposition than basin and fringe mangrove forests.  This high turnover and export of 

OM leads to more extensive energy flow pathways to surrounding coastal communities 

(Twilley 1985, Lugo et al. 1988).  This study provided an interesting comparison of 

leaching rates of litterfall between species and litter types in a riverine mangrove forest.  

Combining litterfall rate, composition and a leaching experiment yielded quantitative 

information on the extent to which the initial decay phase of litterfall may provide the 

source of DOC measured as export from this system.   
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Table 4. Litterfall estimates and DOC available from the initial 24-hour leaching of litter from three 
mangrove species in South Florida. 

Mangrove 
Leaf litter 

(g m-2 yr-1) * 

Wood litter 

(g m-2 yr-1) * 

DOC  

(leaf + wood) 

(g m-2 yr-1) 

DOC  

(leaf + wood) 

(kg ha-1 yr-1) 

L. racemosa 507.6 35.8 16.50 165.0 

R. mangle 429.7 30.3 24.86 248.6 

A. germinans 59.7 4.2 3.68 36.8 

Total 997 70.3 45.04 450.4 

* Twilley and Rivera-Monroy, unpublished data. 
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Overall Conclusion 

The present study documents the ability to determine carbon flux at the wetland 

soil-water column interface using a flume and provides support to the argument that 

productive, riverine mangrove forests are sources of DOC to surrounding coastal waters.  

The flux of DOC at the mangrove soil-water column interface is seasonal, based on 

rainfall and freshwater inflow to the system.  There is short-term variation in organic 

carbon flux, with both import and export of DOC within seasons.  Overall, however, 

there is a trend of import of DOC to the mangrove soil during the dry season and export 

to the inundating water column during the wet season.  Seasonal fluxes of DOC were 

used in calculating a net annual export of 56 g DOC m-2 yr-1 at the mangrove soil-water 

column interface.  Import of DOC to the mangrove during the dry season and export 

during the wet season indicates that freshwater inflow has a strong influence on the 

direction of organic carbon flux to this mangrove forest.  Periods of rainfall and increased 

freshwater inflow facilitate export of DOC at the soil-water column interface.  It is 

unclear, however, whether atmospheric carbon fluxes mimic these patterns.  It is also 

unclear whether an increase in freshwater flow to the Everglades would affect DOC 

export, or whether the mangrove forests would suffer from inability to accumulate peat at 

a rate comparable to rising sea level. 

Based on 24-hour litterfall leaching rates, initial leaching of mangrove leaf and 

wood litter may provide 43% of the DOC exported from the forest.  Due to both higher 

litter fall rates and higher DOC leaching rates, mangrove leaf litter is a greater immediate 

source of this DOC to the mangrove environment than mangrove wood litter or 

freshwater marsh sedge.  Upstream, however, freshwater marsh sedge is the dominant 
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vegetation and may represent the significant source of DOM in the freshwater zone of the 

Everglades.  Different mangrove species leach differing amounts of DOC, and vegetation 

species composition determines the ultimate potential amount of DOC available for 

leaching to a system.   

This study only addressed a one-year period and does not have the power to 

identify long-term trends in organic carbon flux from this system.  Ongoing study would 

help determine the effect of long-term hydrologic influences (drought or mandated 

increases in freshwater flow) on carbon cycling in mangroves.  Combining the 

quantitative flux data from the mangrove soil-water column interface with atmospheric 

flux data will allow a more accurate depiction of the carbon budget in mangrove forests. 
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APPENDIX A 

 

Calculations 

1. Dissolved Organic Carbon Flux 

 
Dissolved organic carbon flux calculations in this study were based on volumetric flux 
calculations from Childers and Day (1988) and Rivera-Monroy et al. (1995). 
Note upstream/downstream designation of flume samples. 

Flood tide: upstream = creek side of flume; downstream = forest side of flume 

Ebb tide: upstream = forest side of flume; downstream = creek side of flume 

 
Steps 1.1 through 1.8 were calculated in order using Microsoft Excel. 
 
1.1 Water level correlations from water level at LTER water level recorder 
A. Flume water level (m) (flood tide) = -40.822386 + 0.005262x2 + 0.00000475831922x3 

† Adjusted R
2
 = 0.997 

B. Flume water level (m) (ebb tide) = -79.788354 + 1.022432x + 0.00000436898977x3 
† Adjusted R

2
 = 0.999 

 
1.2 Flume volume (m3) = flume water level * flume areax,y,z (m

2) 
 
1.3 Instantaneous volume flux (m3 s-1) = dV/dt = (Vt – Vt-1)/t  
* Calculated for both upstream and downstream ends of the flume. 

** Timestep (t) for this study was 1800s.  

*** An increase in volume in the flume is a positive volume flux. 

 
1.4 Instantaneous DOC Flux (g s-1) = dDOC/dt = dV/dt * [DOC] 
* Calculated for both upstream and downstream ends of the flume. 

 
1.5 Incremental DOC (g) = average instantaneous DOC flux * t  

= [(instantaneous fluxt + instantaneous fluxt-1)/2] * t 
* Calculated for both upstream and downstream ends of the flume. 

** Timestep (t) for this study was 1800s. 

 
1.6 Total Flux (g) of DOC for entire half-tide 

A. Total Flux (g) (flood tide) = Σ Incremental DOC Flux 
* Calculated for both upstream and downstream ends of the flume. 

B. Total Flux (g) (ebb tide) = Σ Incremental DOC Flux 
* Calculated for both upstream and downstream ends of the flume. 
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1.7 Net Flux (g h-1) of DOC 
A. Net Flux (g h-1) (flood tide)  

= (Σ Incremental DOC Fluxupstream - Σ Incremental DOC Fluxdownstream)/t (h) 
B. Net Flux (g h-1) (ebb tide)  

= (Σ Incremental DOC Fluxupstream - Σ Incremental DOC Fluxdownstream)/t (h) 
 

total fluxupstream – total fluxdownstream (1) 1.8 Net area flux (g m-2 h-1) = 

          flume area x total time  

 

 

2. DOC Leached from Mangrove Litter During Initial 24-hour Leaching Period 

Mangrove litterfall rates were measured at the study site, SRS-6, by Twilley and Rivera-
Monroy (unpublished data).  Litter leaching rates were calculated based on a 24-hour 
leaching period.  This summation formula utilizes actual litterfall rates from the study site 
and litterfall composition to determine the amount of DOC made available by different 
litter types to the water column during the initial 24-hours of decomposition at the 
wetland soil-water column interface. 
 
Table 5. Mangrove litterfall estimates at SRS-6. 

Month* 
Total 

Litterfall 

Total 
Leaf 

Litter 

White 
Leaf 

Litter 

Red 
Leaf 

Litter 

Black 
Leaf 

Litter 

Total 
Wood 

Litter 

White 
Wood 

Litter 

Red 
Wood 

Litter 

Black 
Wood 

Litter 

J 1.0044 0.7793 0.3967 0.3359 0.0467 0.1165 0.0593 0.0502 0.0070 

F 1.9042 1.6464 0.8382 0.7096 0.0986 0.0829 0.0422 0.0357 0.0050 

M 2.7900 2.3020 1.1719 0.9922 0.1379 0.2602 0.1325 0.112 0.0156 

A 2.8734 2.1442 1.0916 0.9241 0.1284 0.3335 0.1698 0.1437 0.0200 

M 2.9743 2.6025 1.3249 1.1217 0.1559 0.0982 0.0500 0.0423 0.0059 

J 5.5157 4.8641 2.4763 2.0964 0.2914 0.1571 0.0800 0.0677 0.0094 

J 4.9152 3.9240 1.9977 1.6912 0.2350 0.1404 0.0715 0.0605 0.0084 

A 3.8333 2.9305 1.4919 1.2630 0.1755 0.1378 0.0702 0.0594 0.0083 

S 9.1991 6.9773 3.5521 3.0072 0.4179 0.2197 0.1119 0.0947 0.0132 

O 3.6792 2.0496 1.0434 0.8834 0.1228 02715 0.1382 0.1170 0.0163 

N 1.8433 1.2509 0.6368 0.5391 0.0749 0.2690 0.1370 0.1159 0.0161 

D 1.0746 0.6929 0.3528 0.2987 0.0415 0.1934 0.0934 0.0791 0.0110 

Average 2.8695 2.6803 1.3645 1.1552 0.1606 0.1892 0.0963 0.0815 0.0113 

Litterfall estimates (g m-2 d-1) at SRS-6 from January 2001-June 2003. 

 
DOC (g m-2 h-1) = Σ (LLx * Rl,x) + (WLx * Rw,x)                       (2) 
* LL is leaf litter produced by a species (g m-2 yr-1), WL is wood litter produced by a 
species (g m-2 yr-1) and R is the DOC leaching potential of leaf or wood litter (g DOC/g 
dry tissue) of a particular species, x. 
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