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ABSTRACT 
 
 

LMS-Based Method for Damage Detection Applied to Phase II of  
 

the Structural Health Monitoring Benchmark Problem.  (May 2006) 
 

Robin Huckaby Preston, B.S.,  Texas Tech University 
 

Chair of Advisory Committee:   Dr. Luciana Barroso 
 
 

 Structural Health Monitoring (SHM) is the process of monitoring the state of a 

structure to determine the existence, location, and degree of damage that may exist 

within the entire structure.  A structure’s health or level of damage can be monitored by 

identifying changes in structural or modal parameters. In this research, the structure’s 

health is monitored by identifying changes in structural stiffness.  The Adaptive Least 

Mean Square (LMS) filtering approach is used to directly identify changes in structural 

stiffness for the IASC-ASCE Structural Health Monitoring Task Group Benchmark 

problem for both Phase I and II.  The research focuses primarily on Phase II of the 

benchmark problem.  In Phase II, modeling error and noise is introduced to the problem 

making the problem more realistic.  The research found that the LMS filter approach can 

be used to detect damage and distinguish relative severity of the damage in Phase II of 

the benchmark problem in real time.  Even though the LMS filter approach identified 

damage, a threshold below which damage is hard to identify exists.  If the overall 

stiffness changes less than 10%, then identifying the presence and location of damage is 

difficult.  But if the time of damage is known, then the presence and location can be 

determined.  The research is of great interest to those in the structural health monitoring 

community, structural engineers, and inspection practitioners who deal with structural 

damage identification problems. 
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INTRODUCTION 

 
 The ability to monitor the integrity of a structure at the earliest possible time is of 

great importance for engineers.   The knowledge that a structure is safe for use allows 

the structure to be optimally used and can prevent possible catastrophic events from 

occurring.  Throughout the service life of engineering structures, various types of 

damage, from cracking in an individual member to complete failure of several members, 

are often observed.  The ability to detect this damage quickly, in real time, is of great 

importance so that the safety and integrity of the structure can be ensured.  Current 

damage detection methods are based on knowing the general area of damage so various 

localized experiments can be performed in that area.  These local methods include visual 

inspection, ultrasonic, x-ray, and magnet field methods but localized methods are only 

used on small sections due to cost.   A need exists for a method that is able to detect 

damage on a global scale of the engineering system and that can be implemented in real 

time which will assist in long term maintenance and immediate analysis of the structure 

in catastrophic events.  

 Structural Health Monitoring (SHM) is the process of monitoring the state of a 

structure to determine the existence, location, and degree of damage that may exist 

within the entire structure.  Vibration-based SHM methods are based on the fact that 

damage can be determined from changes in dynamic properties of a structure.  A change 

in the structure’s physical properties, mass, damping or stiffness, corresponds to a 

change in its modal parameters (Doebling et al. 1996).  Modal parameters or physical 

properties from the undamaged and damaged structure are compared to establish the 

presence, location and severity of damage.  The problem lies in that modal parameters 

can be insensitive to localized damage and sensitive to variations in the physical 

properties of the structure and added noise in the input signals.  And most importantly,  
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 SHM methods based on modal parameters can not be implemented in real time, on a 

sample to sample basis as the event occurs, because the entire measured response needs 

to be processed to identify damage (Chase et al  2003a).   The ability to access damage 

in a structure without using modal parameters is needed.   

 Research has been completed on a technique that applies the Adaptive Least 

Mean Square (LMS) filtering theory directly to identify changes in the structure’s 

stiffness parameters in real time.  The method based on the adaptive LMS filter takes 

advantage of the filter’s ability to adaptively model noisy signals to identify changes in 

structural parameters in comparison to a base structural model.  The algorithm presented 

in this thesis is computationally simple and can be run in real time to detect damage in 

the structure.  The LMS method has been applied to a 4 degree-of-freedom and a 12 

degree-of-freedom SHM benchmark problem with successful results (Chase et al 2003a).  

 The SHM benchmark problem was developed by a SHM Task group in order to 

study the efficacy of various SHM methods.  The benchmark problem comprises of two 

phases.  Chase et al’s work focused on Phase I which was a simple model intended to 

test various concepts (2003a).  The second phase is more complex because a 120 degree-

of-freedom system with modeling error is included.  On a real structure, both the actual 

mass and stiffness values will not match the design mass and stiffness values so the 

addition of modeling error replicates a more realistic situation.  In addition while 

gathering data from accelerometers, noise will indirectly enter in the data record and 

need to be added to Phase II of the benchmark problem.     In order to expand the range 

of application of this method to more realistic applications, the adaptive filter will need 

to be expanded to Phase II of the benchmark problem. 

 Although the primary focus of this thesis is Phase II of the benchmark problem, 

the concept was used on simple systems to replicate and validate the previous work 

completed by Chase et al (2003a).  The results show that it is easy to distinguish the 

presence and severity of damage when the damage is large and noise is small.  The LMS 

method was then tested in Phase II where all cases contained noise and error to test the 

robustness of the method.  The LMS method was able to identify the presence and 
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location of damage in real time even with the presence of noise and modeling data.  If 

the overall stiffness of the structures changes below a certain percentage then the 

damage can not be identified with the presence of noise and error.  The threshold with 

the given model error and noise contained in the benchmark problem is 10%.  Below 

10%, the change due to damage and change due to error are hard to distinguish.  If each 

degree of freedom is studied individually, then identifying damage below the 10% 

threshold if the time of damage is known becomes easier.  When looking at specific 

degrees of freedom that were damaged, sharp changes in stiffness were seen at the time 

of damage.  In degrees-of-freedom that didn’t undergo damage, sharp changes were seen 

at random times indicative of modeling error or noise.  In the cases where full failure of 

members and alpha changes are more than 10%, the sharp changes at random times are 

only seen as noise and not possible damage.  So the tests on Phase II prove that the 

method does indicate the presence of damage but is limited in when it can detect the 

exact severity of the damage.    The severity is detected when damage is above a 

threshold or the time of damage is known. 

 This research shows that the LMS method can identify damage when applied to 

Phase II of the SHM benchmark problem.   Even with the addition of modeling error and 

noise, the LMS method is robust enough to filter out the noise.  But the most important 

aspect of the LMS method is that it is able to identify presence and severity of damage in 

real time.   The filter can be used to quickly asses the structural health of a system during 

a catastrophic event.    
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REVIEW OF TECHNICAL STATE OF ART 

 
Structural Health Monitoring  

 Structural Health Monitoring (SHM) is the process of monitoring the state of a 

structure to determine the existence, location, and degree of damage that may exist 

within the entire structure.  Structural Health Monitoring can be divided into two 

categories: local and global methods.   Local methods focus on individual parts of the 

system in great detail while global methods focus on analyzing the general health of the 

entire system.  Currently, most methods used are local methods, like visual inspection, 

magnetic methods and strain measurements.  These methods are limited in their 

applications because they require on prior knowledge of the general location of damage 

in the structure and rely on human expertise.  Unfortunately, damage that occurs in civil 

structures usually is obscured from view.   For example after the 1995 Hyogo-Ken 

Nanbu (Kobe) earthquake, damage in buildings was only found after intensive one-by-

one visual inspections were conducted (Mita 1999).  The earthquake also brought to 

light to the problem of determining damage in foundations, piles, and other parts of the 

structure that can not be seen in visual inspections.  Also, even if human inspection of 

the structures located all forms of damage, the integrity of a structure between 

inspections cannot be evaluated.    The need to be able to effectively and efficiently 

inspect civil structures has brought about a development in global monitoring techniques.  

 Global techniques consisting of vibrational analysis can be implemented on an 

entire structure to evaluate the integrity of the entire structure (Doebling et al 1996).  

Vibration analysis methods are categorized based on four levels of damage identification 

(Rytter 1993): 

• Level 1: Determination that damage is present in the structure 

• Level 2: Determination of the location of the damage 

• Level 3:  Quantification of the severity of the damage 

• Level 4:  Prediction of the remaining service life the structure 
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Currently most methods predict level 1 and level 2 damage. As SHM becomes more 

developed, the ability to continually asses a structure’s health will be achieved.  The 

methods will be able to quickly assess the integrity of the structure so plans of 

remediation and possibly evacuation can be developed. 

 

Structural Health Monitoring Benchmark Problem 

 Numerous global SHM methods have been studied by various researchers and 

documented in summary reviews (Doebling et al 1996).   The techniques could not be 

compared to one another because the different methods were tested on different 

structures with varying loading conditions.  A common problem that all the techniques 

could be applied to would provide a platform for consistent evaluation of the SHM 

methods (Johnson et at 2000). The International Association for Structural Control 

(IASC) and the Dynamics committee of the American Society of Civil Engineers (ASCE) 

Engineering Mechanics Division formed the SHM committee to develop a series of 

benchmark problems (Johnson et al 2000).  The benchmark problems consist of simple 

examples to more realistic and difficult situations where noise and modeling error are 

included.  

 The purpose of the benchmark problem was to create a common problem on an 

existing structural model where the input and response of the structure was known. A 

picture of the model is shown in Figure 2.1 (Dyke et al 2000). The existing structural 

model consists of a 4-story, 2-bay, by 2-bay steel frame scale-model and is located at the 

University of British Columbia (Black and Ventura 1998).  The model was built to scale 

size of one third.    The model was excited by an electromagnetic shaker and added mass 

on the top floor (Dyke et al 2000).  Accelerometers were placed along each perimeter 

frames at each floor to accurately capture measurements of the structure’s responses.   

Two finite element models, a 12 degree-of-freedom model, and a 120 degree-of-freedom 

model were created of the structure to analyze the simulated data.  The 12 degree-of-

freedom model assumes that the structure acts like a shear building with three degree-of-

freedom per floor: translation in x and y direction and rotation.  Based on the assumption 
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that no constraints on the rotation of the floor nodes and horizontal translation are 

present, the 120 degree-of-freedom model was created. 

 

 

 
Figure 2.1. Benchmark Problem Model (Dyke et al 2000) 

 

 

The benchmark problem was divided into two phases with different levels of 

complexity.  Both phases consist of simulated acceleration data from the undamaged 

structure and several damage scenarios.  Each damage scenario was simulated by the 

removal of varying bracing in the structure that caused reduction in stiffness and the loss 

of rotational stiffness (Dyke et al 2000). Data for each scenario and case is generated 

with a MATLAB (MathWorks 2002) program, datagen.m, which can be downloaded 

form the Structural Health Monitoring website, http://wusceel.cive.wustl.edu/asce/shm . 

The first phase of the benchmark problem consisted of five simulation cases and five 

damage patterns.    A summary of the five cases is shown in Table 2.1.  Case 1, 3, and 4 

dealt with the 12 degree-of-freedom model while Case 2 and 5 dealt with the 120 

degree-of-freedom model.  Case 1 and 2 are more complex than Case 3, 4, and 5 because 

ambient vibration which is small in comparison to vibration due to excitation is included 
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in the simulated data and the input force from the ambient vibrations is unknown.   The 

small vibrations result in data that is hard to process.  Case 1 and 2 consisted of loading 

at each floor in the y direction and the ambient vibration.  In Case 3, 4, and 5, the 

structure was excited by a shaker positioned on the roof in a diagonal direction to excite 

the structure in both the x and y direction.  In addition, Case 1, 2, and 3 have symmetric 

loading on each floor while Case 4 and 5 have asymmetric loading on the top floor.  A 

summary of the five damage scenarios is shown in Table 2.2.  In addition, noise is 

included in all acceleration data mimicking realistic test conditions.  

 

 

Table 2.1.  Five Case Simulations from Phase 1 
Case 
(1) 

# DOF 
(2) 

Excitation 
(3) 

Mass Distributions 
(4) 

1 12 All Stories Symmetric 
2 120 All Stories Symmetric 
3 12 Only At Roof Symmetric 
4 12 Only At Roof Asymmetric 
5 120 Only At Roof Asymmetric 

 

 

Table 2.2.  Five Damage Scenarios from Phase 1 
Pattern 

(1) 
Damage Description 

(2) 
1 All Braces of 1st Story are Removed 
2 All Braces of 1st and 3rd Stories are Removed 
3 1 Brace  of 1st Story is Removed 
4 1 Brace of Each 1st and 3rd Stories are Removed 
5 Pattern 4 and Unscrew the Left End of Element 18 

 

 

Phase II of the Benchmark Problem only deals with the 120 degree-of-freedom 

model and includes more complexities than Phase I.  Modeling error of up to 10% of 

mass values and 5% of stiffness values is added to the problem and the modeling error 

within the data set varies.  The same degree of noise in the acceleration data from Phase 
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I is included.  This allows the benchmark problem to resemble more realistic test 

situations.   The fully braced case has four damage scenarios, the partially braced case 

has three damage scenarios, and the blind case has two damage scenarios.  The damage 

scenarios are summarized in Table 2.3.  No information is given regarding the two blind 

cases.   

 

 

Table 2.3.  Damage Scenarios from Phase II 
Pattern 

(1) 
Bracing 

(2) 
Damage Description 

(3) 
DP1B Braced 50% Loss of Stiffness on 2 Braces on 1st Floor 
DP2B Braced 25% Loss of Stiffness on 2 Braces on 1st Floor 
DP3B Braced DP1B and 25 % Loss of Stiffness on 2 Braces on 3rd Floor 
DP1U Unbraced Loss of Rotational Stiffness in 5 Connections on Level 1 and 2 
DP2U Unbraced Loss of Rotational Stiffness in 2 Connections in Level 1 
DP3Bu Braced DP1B and 25 % Loss of Stiffness on 2 Braces on 3rd Floor 
DP1Uu Unbraced Loss of Rotational Stiffness in 5 Connections on Level 1 and 2 

  

 

SHM Methods Based on Change in Frequency 

 The earliest work in SHM focused on methods based on changes in frequency.  

Natural frequencies of structures are shown in peaks of the dynamic response spectrum.  

Shifts in the spectrum are changes in frequency and are directly correlated to the 

existence of damage.  Identifying damage from frequency alone has shown to have many 

limitations.  It is only effective when large damage is present and only verifies the 

existence of that damage (Chase et al 2003a). Also apparent damage can be mistaken for 

modeling error or noise.  Also the entire response data must be known before analysis 

can be completed making real time implementation impossible.  Although these methods 

have been shown to be impractical, they have laid the foundation for more advanced 

methods. 

 The change in frequency methods were developed from studies completed in the 

1970s by the offshore oil industry.  Vandiver (1975) analyzed change in the frequency of 
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the first bending modes of an offshore pile supported tower to identify damage after a 

ship impact.   Measurements of the two fundamental bending mode frequencies and the 

first torsional mode frequency had been obtained before the collision.  A lumped mass 

model of the tower was created to predict the lowest natural frequencies of both 

undamaged and damaged cases of the tower.  The differences in frequency between 

undamaged and damaged cases were compared.   Because only the lowest frequencies 

were analyzed, damage could not be easily identified.  In addition, changes in mass, 

marine growth, modeling error, and sea floor shifts were shown to mask inherent 

damage.   

 In 1976, Loland and Dodds monitored three platforms in the North Sea over a 

period of nine months to record changes in frequencies, mode shapes, and response 

spectra (Loland and Dodds 1976).   The main downfall with this method was that of data 

collection.  Data was only collected above the water line.  And as with Vandiver’s work, 

only the lowest frequencies were predicted so the actual location of damage could not be 

determined.   

 In 1983, Nataraja also conducted research on the responses of three offshore 

platforms in the North Sea for two years (Nataraja 1983).  New developments in 

technology allowed Nataraja to monitor ambient vibration thus allowing measurements 

to be collected continually.  Results showed that only the lowest frequencies could be 

collected with accuracy.  Changes in deck mass were seen in the frequency shifts so it 

was concluded that changes in mass would have to be monitored.  Again as with the 

previous methods, determine presence and location of damage with accuracy solely from 

frequency shifts proved to be impossible. 

 In 1994, Friswell et al. cataloged frequency shifts based on known damage 

scenarios.   Damage scenarios were selected from the most likely damage cases.  The 

ratio between the undamaged frequency for several modes and those corresponding to 

the damage scenarios were compiled.  They assumed no error in the model and no noise 

in the data.  Both assumptions make the method hard to implement in real situations.  
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SHM Methods Based on Change in Mode Shape 

 Damage is also characterized by shifts in a structure’s eigenvalues and 

eigenvetors.  Research has been conducted on the correlation between a structure’s mode 

shape and the location and severity of damage.   The location of damage was shown to 

occur at the greatest change in the mode shape.  The combination of change in frequency 

and mode shape was used to determine the existence of damage.   Like methods based 

on frequency, methods based on mode shape requires the entire finite response data for 

analysis limiting real time implementation. 

In 1985, Yuen examined changes in the mode shape of a cantilever beam 

undergoing various damage cases (Yuen 1985).  The modulus of elasticity was varied to 

simulate the damage cases.  The cantilever beam had two degrees of freedom, one 

translation and one rotation.  The two degrees-of-freedom were separated and the mode 

shapes analyzed.  When the modulus of elasticity was varied, the first modes changed 

shape which indicated damage while changes in higher modes were harder to 

characterize.   

 In 1994, Salawu and Williams compare the results of various techniques based 

on changes in mode shapes to determine damage (Salawu and Williams 1994).  They 

calculate a ratio between the undamaged mode shape and the damaged mode shape.  

They concluded that the correct selection of the modes analyzed determined how 

successful the analysis was.  Again, the location of damage was not able to be 

determined from this method.   

Modal shapes can be used to detect damage if used in conjunction with other 

methods.  In 2000, Dyke et al used the modal parameters to determine the optimal 

stiffness which can be an indicator of damage (Dyke et al 2000).  The method was tested 

on a reduced 4 degree-of-freedom version of the SHM benchmark problem.  The cross 

correlation function, Rxx, was calculated from the acceleration data and has the same 

form as the response data. This approach was effective for determining modal 

parameters because it can be averaged over a number of samples.  The eigensystem 

realization algorithm (ERA) was used to identify the modal parameters from the free 
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response data because it can be applied to multi-input/multi-output (MIMO) systems.  

The optimal stiffness coefficients are then determined by using a nonlinear constrained 

optimization.  Changes in the stiffness matrix are correlated to damage in the structure.  

Although this method was able to identify damage and the degree-of-freedom in which 

the damage was located, the method could not be implemented in real time. 

 

SHM Methods Based on Change in Flexibility Matrix 

 The flexibility matrix is the inverse of the static stiffness matrix and it relates 

applied force to the response of the structure (Doebling 1996). Each column of the 

flexibility matrix represents the displacement pattern of the structure when a unit force is 

applied at each degree-of-freedom.  The flexibility matrix can be estimated by using the 

mass-normalized mode shapes.  Because usually only the lowest modes are recorded, 

this method produces only an approximation of the flexibility matrix.   By comparing the 

flexibility matrix of an undamaged structure to that of a flexibility of a damaged 

structure, damage can be detected.   Like the previous method, analysis of the flexibility 

matrix is done on the complete response data limiting real time implementation. 

 Pandey and Biswas studied the flexibility matrices of simple analytical beam 

models and an actual wide-flange steel beam (Pandey and Biswas 1994).  The flexibility 

matrix can be estimated from the lower frequency modes of the structure to allow for 

quick calculation time.  Once the presence of damage has been established, full modal 

data can be collected and analyzed so the location of the damage can be determined.   In 

both the analytical and experimental cases, changes in flexibility matrix corresponded to 

damage in the structure.   Because both test cases were simple, the method needed to be 

tested on more complex models.   

 In 2000, Bernal and Gunes analyze the flexibility matrix to detect damage on the 

SHM benchmark problem (Bernal and Gunes 2000).  First, they used the ERA with a 

Kalman Observer to identify eigenvalues and eigenvectors when input was known.  In 

cases where the input was not measured, a Subspace Identification algorithm was used.  

The flexibility matrix was then computed from the modal parameters.    The level of the 
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structure where the damage occurred can be determined by computing a singular value 

decomposition of the change in the flexibility matrix.  Although the results of this study 

match those of the benchmark study, the method can not be applied in real time. 

 

SHM Methods Based on Using the Wavelet Method 

 Damage and the moment when damage occurred can be determined by spikes 

from the wavelet decomposition of the acceleration response data (Corbin et al 2000).   

The location of damage can be determined by patterns in the spatial distribution of the 

spikes.  Wavelet analysis is an extension of the Fourier transform but with the ability to 

focus in on signal at particular locations.  Because wavelet analysis can determine the 

presence of damage and the time of damage, the information can be used to give a better 

understanding of the cause of the damage.    This method is limited in that it can not be 

implemented in real time. 

 Corbin et al applied a wavelet method to a 3 degree-of-freedom system, a 

cantilever beam, and the SHM benchmark problem (Corbin et al 2000).  Wavelet 

analysis was applied to the simulation data from all three cases.  In Case 1, random 

excitation with added noise was applied to the system and damage was modeled as 

completed loss of stiffness in certain parts of the system.  Because the damage was large, 

it was easily detectable as spikes.  In Case 2, harmonic excitation was applied to the 

beam and damage was simulated by decreasing rotation constraints between two 

elements of the Finite Element Method, FEM.  Examination of the spikes of the 

acceleration data demonstrated the existence of damage.  Case 3 used the acceleration 

data in the x direction of Case 3 with damage scenario 2 of the SHM benchmark 

problem.   Spikes occurred at floors 1, 2, and 3 at the time of damage.  The method used 

in the research identified the presence and location of damage.  It still can not be 

implemented in real time because it needs the entire finite response to process and 

identify damage. 

 In 2000, Hou et al examined how noise in the acceleration data affected the 

ability of the wavelet method to detect damage (Hou et al 2000).  The method is applied 
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to simulation data from a single degree-of-freedom model subjected to a harmonic 

excitation and to real acceleration data from the 1971 San Fernando earthquake.   A 

detectability map is proposed to study the effects of noise and damage severity on the 

ability to detect damage.  It is shown that this method is not robust in the presence of 

strong noise and can be insensitive to small amounts of damage.   

 

SHM Methods Based on Adaptive Identification 

 A SHM method that can continually monitor the integrity of a structure in real 

time is needed.  Many techniques require that the entire response data be completed 

before analysis can begin.  Adaptive methods are used to achieve real time results by 

continually monitoring the various states of a structure.  In 2000, Loh et al used a fading 

Kalman filter technique to achieve real-time capability.   Although the methods were 

able to detect damage, they were computationally costly.   

   The Least Mean Squares (LMS) and Recursive Least Squares (RLS) algorithms 

can be used to detect damage because they are both simple to implement and not 

computationally costly (Haykin 1991).   The Adaptive Filters are digital filters that aid in 

signal processing.  The filter’s algorithm consists of two basic processes: a filtering 

process, which estimates the output given an input signal and generates the error in this 

estimation, and an adaptive process which adjusts the parameters in the filter depending 

on the error calculated (Haykin 1991).   

 Chase et al applied the LMS filter on the SHM benchmark problem to detect 

damage (Chase et al 2003a).  The LMS algorithm is one of the most widely used of all 

the adaptive filtering algorithms because it is simple to implement (Haykin 1991).  It is 

an approximation of the Steepest Descent Method using an estimator of the gradient 

instead and is used to track changes in the stiffness of the structure.  When damage 

occurs, it is assumed that a member of the system has fractured or completely failed.  

This failure of a member directly correlates with a reduction is the overall stiffness of the 

system.  In addition, damage will greatly change the stiffness of steel structures and can 

easily be modeled (Zimmerman and Kauk 1994).   
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 The methods were tested on a simplified 4 degree-of-freedom version of the 

SHM benchmark problem, and the Case 1,3, and 4 with damage scenarios 1 thru 4 of 

Phase I of the SHM benchmark problem. Descriptions of the damage scenarios and cases 

are shown in Table 2.1 and 2.2.   Noise was included in the data, but no modeling error 

was present.  It was shown that in all cases that the method was able to identify the 

presence and location of damage and converge quickly.  

In addition, Chase et al present a procedure for using the adaptive RLS filter on 

the SHM benchmark problem to detect damage (Chase et al 2003b).  Although the RLS 

is more computationally complex then the LMS filter, it is a faster method.   The filter 

contains self-adjusting coefficients that are used to model a noisy signal.  The objective 

is to minimize the Mean Square Error (MSE) between the original noisy signal and the 

modeled signal.   

The RLS method is applied to a simplified 4 degree-of-freedom version of the 

SHM benchmark problem, and the Case 1, 3, and 4 with damage scenarios 1 thru 4 of 

Phase I of the SHM benchmark problem.  Noise is included in the data but no modeling 

error is present.  The 4 degree-of-freedom model was used to verify the ability of the 

method to detect damage.   All cases proved that the RLS method was able to identify 

presence and location of damage in real time.   Although both the RLS method and the 

LMS method both identify damage in real time, the LMS method is less complex and 

easier to implement.   

The LMS method has been shown to identify damage in Phase I of the SHM 

benchmark problem in real time.    The method needs to be applied to a more complex 

system that closer resembles an actual scenario. On a real structure, both the actual mass 

and stiffness values will not match the design mass and stiffness values so the addition 

of modeling error replicates a more realistic situation.  In addition while gathering data 

from accelerometers, noise will indirectly enter in the data record and need to be added 

to Phase II of the benchmark problem.     In addition, the method needs to be expanded 

to find both the existence and location of damage.   
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PROBLEM STATEMENT 

 

    The main objective of the proposed research is to further evaluate the Adaptive 

LMS method’s ability to model changes in stiffness parameters of a system so presence 

and location damage can be identified as applied to the SHM benchmark problem.   The 

Adaptive LMS method is being studied because of its ability to model changes in 

stiffness in real time.  The ability to detect this damage quickly, in real time, is of great 

importance so one can ensure the safety and integrity of the structure.   Specific issues to 

be investigated are: 

1. The evaluation of the effectiveness of the LMS method  on a 12 and 

120 degree-of-freedom systems and the comparison of these results to 

those of the 4 degree-of-freedom system. 

2. The LMS method will be expanded to Phase II of the SHM benchmark 

problem.  The effectiveness of the LMS method to identify damage in 

real time with the introduction of modeling error in the form of noisy 

data and uncertain structural parameters will be evaluated. 

 The LMS method has been applied to Phase I of the benchmark problem where it 

was successfully shown to be an accurate method that can be applied in real time (Chase 

et al 2003a).   The method needs to be tested on more complex situations so it can 

eventually be used on real buildings to locate real damage.  In order to test the method 

on more complex situations, the LMS method will need to be expanded to Phase II of the 

SHM Benchmark Problem where modeling error in the form of noisy data and uncertain 

structural parameters is introduced.   

 As the LMS method is tested on more complex situations, its ability to be used in 

real situations effectively and efficiently will be realized.  Because the method is 

computationally simple and can be conducted in real time, the method will be of great 

use by the SHM professional community.   Then structures can be properly instrumented 

to detect damage in real time thus helping in long term maintenance of buildings and 

identifying damage in catastrophic events.   
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RESEARCH STRATEGY 

 
 This study will focus on the use of the Adaptive LMS method as an efficient 

methodology for predicting changes in stiffness parameters in order to detect damage in 

steel frame structures.  In order to validate the method, it was first tested on simple cases 

and then expanded to specific cases of the SHM benchmark problem.  All model testing 

was implemented in MATLAB (MathWorks 2002).  In addition, all tests use a sampling 

rate of 100 Hz.  100 Hz is used throughout the SHM benchmark problem because of the 

problem’s setup.  Data acquisition systems were used to record the structural responses.  

The system had anti-aliasing filters set to 100 Hz ( Dyke et al. 2001). 

 

Tracking Changes in Stiffness 

Changes in the stiffness of structures have also been used to identify damage 

(Zimmerman and Kauk 1994).  When damage occurs, it is assumed that a member of the 

system has fractured or completely failed.  This failure of a member directly correlates 

with a reduction is the overall stiffness of the system.  In addition, damage will greatly 

change the stiffness of steel structures and can easily be modeled.  The equation of 

motion can be refined to include a change is stiffness as:  

                         

gxMxKKxCxM &&&&& ⋅−=⋅Δ++⋅+⋅ }{)(}{}{                       (4.1) 

 

where M, C, and K are the mass, damping, stiffness matrices of the model, respectively, 

ΔK is the change of stiffness of the structure, {x},{x}, and {x} are the actual 

displacement, velocity, and acceleration vectors, respectively, and xg is the ground 

motion acceleration (Chase et al 2003a).  

 In order to model the change in stiffness per degree of freedom, ΔK is defined 

with time varying scalar parameters, αi.  In a three story example, is defined as: 
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So the change in stiffness becomes: 
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which can be termed as yk at each discrete time step, k (Chase et al 2003a). 
 

Development of Adaptive Filter 

The adaptive filter has been used to model the individual, scalar elements of the 

signal, yk at each discrete time step, k (Chase et al 2003a).  The filter estimates yk by 

calculating nk.  The modeled value, nk, is calculated from: 

 

      n w xk k
T

k=      (4.5) 

 

where wk is the adjustable filter coefficient vector or weight vector at time k, and xk is the 

vector of the current and previous filter outputs.   The modeled value, nk, is compared to 

the yk to calculate the Mean Square Error (MSE): 

 

e y nk k k= −                             (4.6) 

 

The adjustable filter coefficient vector of weight is updated each time step with the 

Widrow-Hopf LMS algorithm to minimize the error, ek, and is defined as (Ifeachor and 

Jervis 1993): 
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w w e xk k k k+ = + ⋅ ⋅1 2μ     (4.7) 

 

The equation is solved at each time step to create a number of degree-of-

freedoms by length of time matrix.   If the stiffness of the system does not change, then 

yk should be zero.  It should be noted that any modeling error or noise in the data will be 

complied and will show up as change in stiffness.  It is necessary to be able to separate 

the change in stiffness from damage and that from modeling error.   

 The LMS filter ability to model the noisy signal, yk, depends on two  

variables, μ and m.  Even though the various cases tested could be further refined by 

varying these variables, the parameters need to be fixed in a practical application.  The 

variable, μ, is a positive scalar that controls the stability and rate of convergence of the 

filter.  It was selected for each degree-of-freedom and was based on the range of 

displacement of the corresponding degree-of-freedom.  For each damage scenario and 

degree of freedom, μ  was selected based on trial and error methods.  The individual 

μ  used for each case can be seen in the MATLAB code in Appendix (MathWorks 2002).  

The number of taps, m, is the number of previous time steps’ displacement that are 

included in calculating n.  Even though by varying m the problem would be optimized, 

the number was fixed for practical application.  Chase et al chose the number of taps, m, 

as 5 (Chase et al 2003a).  In order to improve the results from Chase et al’s study, the 

number of taps, m, was chosen to be 6. 

A two-step and an one-step approach are available to model the output signal.  

The two-step method models nk  with multiple LMS filters for each degree-of-freedom.  

The two-step approach is fast, simple and robust to noise but can be computationally 

complex because it requires matrix solutions each time step.  As the number of degree-

of-freedom rises, the two-step method becomes difficult to solve so a method without a 

matrix solution is required. The one-step approach combines the two steps of modeling 

the noisy signal and solving for alpha without a matrix solution. 
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Sample Rate Issues 

 All tests use a sampling rate of 100 Hz.  100 Hz is used throughout the SHM 

benchmark problem because of the problem’s setup.  Data acquisition systems were used 

to record the structural responses.  The system had anti-aliasing filters set to 100 Hz 

(Dyke et al. 2001).  It should be noted that the convergence rate in adaptive LMS 

depends significantly on the sampling rate.  Previous work has been done on analyzing 

the effect of the sample rate on the convergence rate (Chase et al 2003a).    The 100 Hz 

sampling rate provides an adequate convergence rate in the SHM benchmark problem. 

 In addition, the effects of the frequency of the forcing function on capturing the 

acceleration data was addressed (Dyke et al 2001).  Density spectrums of acceleration of 

the shaker mass and  the acceleration responses from the SHM benchmark problem were 

analyzed.   The spectrum of the shaker mass shows that the shaker is unable to input 

significant forces at low frequencies due to stroke limitation.    Low Frequency noise is 

found in the density spectrums of the acceleration responses.  The low frequency noise is 

due to the lack of significant force input in this region. 

 

Single Degree-of-Freedom Model 

 As a proof of concept, the LMS algorithm was first tested on a one degree-of-

freedom system.  The model consisted of one floor of the four story model used in the 

SHM Benchmark problem.   The first floor was further simplified to act as a lump mass 

model.  Many excitation forces varying in complexity and modeling error were 

introduced to the problem to ensure the method could accurately predict damage 

regardless of complexity of input.  The following input forces were used on the single 

degree-of-freedom system: 

• Constant force of 100 kN  

• Harmonic force of 100 sin (5t) kN 

• Random generated force that ranged from 50 kN to 150 kN  

 The response of the model to each force was simulated using the MATLAB 

function ode45 with a sample rate of 100Hz (MathWorks 2002).  Damage scenario1 in 
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Phase I of the benchmark problem was used and the scenario involves complete removal 

of all braces in the first floor.   The overall stiffness of the single degree-of-freedom was 

reduced from 106.6 MN/m to 58.4 MN/m, a 45% reduction.  The response data of the 

undamaged system was spliced with the response data from the damaged system.  The 

combined simulation data was then processed by the filter to determine the presence of 

damage.  In addition, modeling error and noise was added to each model.   The modeling 

error was consistent with Phase II of the benchmark problem and consisted of: 

• 10 % error in mass 

• 5 % error in stiffness 

• 10 % noised added to the acceleration data 

The data with the error was then processed through the filter to determine the presence 

of damage.  

 The calculation of alpha on the single degree-of-freedom case was relatively 

simple to implement.  From equation 4.4, n is substituted for y and the new equation is 

solved for alpha: 

  

α k k kn x=                                                             (4.8) 

 

Because the system is a single degree-of-freedom, the calculation is simple leaving alpha 

as column vector.  More complicated situations will be discussed later.  

Because alpha is calculated by dividing the filter signal, n, by the displacement, x, 

alpha is sensitive to near zero displacements that occur during sign changes.  Where 

displacement oscillates around zero, it is necessary to filter out small displacements to 

ensure that alpha converges.   The absolute maximum value of xk was found and g 

becomes 70% of this maximum value.   

 

g x= 0 70 1. * max( ( ,:))                                                (4.9) 
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For the 3, 4, 12, and 120 degree-of-freedom model, the percentage was determined 

through a trial and error process.  The percentage of the maximum value of xk depends 

on the damage scenario and degree-of-freedom.  For each time step, if xk is less than g, 

then alpha for that time step is equal to the alpha from the previous time step.  This 

method filters out the spikes in the alpha versus time graph so changes in alpha due to 

damage can be identified. 

 

Four Degree-of-Freedom Model 

 To further refine the process of using the LMS adaptive filter, it was applied to a 

four degree-of-freedom model of the benchmark problem.   The four degree-of-freedom 

model was used in Chase et al’s work and comparison between the results of both 

studies could be made (Chase et al 2003a).   The assumption was made that the structure 

in the benchmark problem was acting as a lump mass model thus each degree-of-

freedom modeled consisted of an individual floor.  So the four degree-of-freedom is a   

2-D model of the building.   The four degree-of-freedom model was tested to ensure that 

the interaction of the four floors was being captured in the model.  The interaction of the 

four degrees-of-freedom could be seen in that damage to one story was seen in the 

adjacent degrees-of-freedom.  Again, many excitation forces varying in complexity and 

modeling error were tested on the model.  The same three forces from the single degree-

of-freedom model: 

• Constant force of 100 kN  

• Harmonic force of 100 sin (5t) kN  

• Random generated force that ranged from 50 kN to 150 kN 

were applied to the system.  The response of the model to each force was simulated 

using the sample rate of 100Hz, using MATLAB function ode45, the damage scenario 1 

of Phase I, and the combination of the undamaged simulation data with the damaged 

simulation data were identical to that of the single degree-of-freedom model 

(MathWorks 2002).  The combined simulation data was then processed by the same 

filter to determine the presence of damage.  Also, the addition of the same modeling 
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error and noise was added to the simulation data to test the ability of the filter to predict 

damage in the presence of error. 

 The calculation of alpha was more challenging to implement because of the 

interaction between degree-of-freedoms in the system.  Equation 4.4 with the 

substitution of n for y in a four degree-of-freedom system at each time step becomes: 
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Solving for alpha for each time step results in: 
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Since alpha is calculated by various combinations of displacements, near zero 

denominators of alpha cause spikes to appear in alpha.  To help alpha converge, near 

zero values were filtered out as discuss in Equation 4.9.   The maximum value of the 

denominator of each alpha over the length of time is found.   As discussed previously, 

individual alphas with corresponding denominators below a certain percentage below the 
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maximum value are filtered out.  The percentage was determined through a trial and 

error process and depended on the damage scenario and degree-of-freedom.  The 

percentage ranged from 70 % to 85 %.  For each time step, if the denominator of alpha at 

a particular time is less than the certain percentage of the maximum value of x, then the 

alpha for that time step is equal to the alpha from the previous time step.  This method 

filters out the spikes in the alpha versus time graph so changes in alpha due to damage 

can be identified. 

 

Three Degree-of-Freedom System 

 In order to investigate the effects of translational and rotational degrees-of-

freedom on the filter, a three degree-of-freedom model was constructed.   The model is a 

3-D portal frame and consisted of the translation in the x and y directions and the 

rotation of the first floor of the SHM benchmark problem.  Again, many excitation 

forces varying in complexity and modeling error were tested on the model.  The same 

three forces as before were used but the forces had to be applied to all degrees-of-

freedom in order to simulate response.  The third degree-of-freedom is in the rotational 

direction and is measure in radians.  Because the output of the rotational degree-of-

freedom is small in comparison to the response of the other two degrees-of-freedom, the 

force applied to the rotational degree-of-freedom needed to be reduced by an order of 

magnitude.  Damage scenario 1 from the benchmark problem consists of removal of all 

bracing so the stiffness in the x, y, and rotational directions will be reduced.  The 

stiffness in the x-direction is reduced by 45%, the stiffness in the y-direction is reduced 

by 71%, and the stiffness in the rotational direction is reduced by 65% (Johnson et al 

2000).   The other variables including the sample rate of 100Hz, using MATLAB 

function ode45, and the combination of the undamaged simulation data with the 

damaged simulation data were identical to that of the single degree-of-freedom model 

(MathWorks 2002). The combined simulation data with and without the addition of error 

was then processed by the same filter to determine the presence of damage.   The 

calculation of alpha was similar to that on the single degree-of-freedom system. 
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Phase I: 12 Degree-of-Freedom Model 

 In order to compare results with Chase et al, a 12 degree-of-freedom model, a 3-

D four story portal frame,  was constructed and tested using simulation data from Phase I 

of the SHM benchmark problem (Chase et al 2003a).   The process for performing 

structural health monitoring is illustrated in the flowchart in Figure 4.1.   Acceleration 

data from the various damage scenarios was simulated by running the MATLAB 

program, datagen.m, which was downloaded from the IASC-ASCE SHM task group 

website (IASC-ASCE SHM Task group 2004).  Acceleration data is gathered from 16 

accelerometers, two in each the x and y directions per floor.  Each accelerometer is 

located along the perimeter of the frame in the middle of bay it is located in.  Per floor, 

the x-translational acceleration in the middle of the floor is found by averaging the two 

x-translational accelerations along the perimeter of the frame.   
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The y-translational acceleration in the middle of the floor is calculated in the same 

manner.   The rotational acceleration of each floor is computed as the difference between 

the two x-translational accelerations on that floor divided by the distance between the 

two x-translational accelerations which is 2.5 m (Chopra 2001). 
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Figure 4.1.  Flowchart of SHM of 12 Degree-of-Freedom System
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 The initial values of velocity and displacement of the simulated data are 

unknown because the acceleration record was started in the middle of the disturbance.  

Even with simple numerical methods, displacements without known initial values can be 

difficult to calculate from the acceleration data.  In order to generate velocity and 

displacement data from the given acceleration data, the System Identification Toolbox 

from MATLAB was used to estimate the velocity and displacement data (MathWorks 

2002).    The Toolbox allows you to build and evaluate linear models of dynamic 

systems from measured input-output data.   

 With the initial values of displacement and velocity known, a similar method as 

used in the single, three, and four degrees-of-freedom systems was used to determine the 

entire displacement and velocity responses.   In the previous cases, the forcing function 

was designated, but in this case the forcing function is given in the benchmark problem.   

The velocity and displacement of the undamaged and damaged model was simulated 

using the MATLAB function ode45 with a sample rate of 100Hz.   Because the 

displacement data was generated with so many unknowns, additional error was 

introduced into the system.  With the advancement of GPS sensors, the ability to gather 

acceleration and displacement data is possible thus eliminating the need to simulate data.  

With a GPS sensor both the acceleration and displacement data is know so simple 

numerical methods can be used to solve for the velocity data.     

The response data for both the undamaged case and the damaged cases were then 

combined so the LMS filter could process the data.  The alphas for each degree-of-

freedom are calculated in a similar manner as the alphas in the four degree-of-freedom 

model.  The individual equations for alpha are solved and can be seen in the MATLAB 

code in Appendix A.  The process for  

This process was completed on Case 1, 3, and 4 with damage scenarios 1 thru 4.  

The data for the self-generated data with and without data was also processed through 

the filter.  The data was then processed to identify the presence and location of the 

damage scenarios.   
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Phase II: 120 Degree-of-Freedom Model 

 Phase II of the SHM benchmark problem introduces modeling error to the 

problem.  Because only the 120 degree-of-freedom model is used, the model needs to be 

simplified to the 12 degree-of-freedom case.  This is a relatively easy progress because 

the acceleration data is gathered from the same geometry of accelerometers as before.  In 

addition, the mass and stiffness matrices for the reduced 12 degree-of-freedom system 

were simply the first 12 by 12 matrix from the full 120 degree-of-freedom model.  So 

similar methods from Phase I were used to process the data in Phase II.   Self generated 

response data was imported into the System Identification Toolbox and the models 

generated were used to obtain velocity data from the benchmark’s acceleration data.  

The displacement data was again estimated by setting the equation of motion to zero.  

The filter was then used to process the data to identify the presence, severity and 

location of damage.   
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RESULTS 

 
Single Degree-of-Freedom Results 

 The single degree-of-freedom results show that the LMS approach accurately and 

quickly tracks the change in alpha.  The results for the constant force without error are 

shown in Figure 5.1. This basic case is the benchmark for the results in all the phases 

and cases.  The approximation converges in 2.5 seconds to the actual change and shows 

a 45 % change in alpha.   

 

 

 
Figure 5.1.  Single Degree-of-Freedom System with Constant Force and No Error 
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 Phase II of the benchmark problem introduces modeling error into the problem of  

with a 10% error in mass, a 5% error in stiffness, and 10% noised added to the 

acceleration data.  In order to test the effects of the method in the presence of error, error 

was added to the simple case of the single-degree-of-freedom system as shown in Figure 

5.2.    

 

 
Figure 5.2.  Single Degree-of-Freedom System with Constant Force and Added Error 

 

 

As shown in the graph, the approximation does not match the actual change in alpha.  

The baselines developed with no damage present are different between the case with and 

without modeling error and noise.  The overall step change of each line needs to be 

compared instead of the final percent change in alpha.   A sharp change, which can be 

seen in each line, indicates change in stiffness.  The LMS approximation shows a  net 
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change of 59 % in alpha compared with the actual change being 42 %.  The error in the 

system adds to the overall change in alpha but what is important to note is that there is a 

change in alpha.  This principle will be used in the more complicated cases in Phase II.  

Even though there is modeling error added, the LMS filter is able to identify damage in 

real time.    

 A random force was used to excite the single degree-of-freedom system to test 

the Adaptive Filter’s application to random excitations. The results from the random 

force with no error are shown in Figure 5.3.    

 

 

 
Figure 5.3.  Single Degree-of-Freedom System with Random Force and No Error 
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The approximation does not converge to the same number as the actual change although 

it does converge.  The change in alpha in the LMS approximation is  47 % compared 

with the actual change of 45 % in alpha.   This slight difference can be accounted by the 

variability in the random force used to excite the system.  These results confirm that the 

Adaptive Filter application does accurately and quickly tracks changes in alpha and thus 

stiffness.  The remainder of the results can be seen in Appendix B. 

 

Four Degree-of-Freedom Results 

 The results from the four degree-of-freedom system show how damage to one 

floor is reflected.  The results from the case with constant force and no error are shown 

in Figure 5.4.  Only α1 changes because the damage only occurred to the first floor.  The 

results converge to 45 % change in alpha in 2.6 seconds and have the same pattern as 

shown in Figure 5.1.  The results confirm that if damage is confined to a story then only 

the alpha representative of the story should change.  The remainder of the results is 

shown in Appendix B.  This principle will be shown in more complicated cases in Phase 

II. 
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Figure 5.4. Four Degree-of-Freedom System with Constant Force and No Error 

 

  

 

Three Degree-of-Freedom Results 

 The results for the three degree-of-freedom system show that change in the three 

directions, x, y, and translational, can be tracked by the adaptive filter method.  Figure 

5.5 shows the result of using constant force with added error.  All three alphas 

correspond with the percent change in stiffness in the given direction.  As discussed 

earlier, the added error in mass, stiffness, and signal causes the baseline of the 

approximated results to differ from the actual results.  The net change in alpha is the 

important number to look at.  The alpha in the first degree-of-freedom changes 47 %, the 

second alpha changes 74 %, and the third alpha changes  69 %.   
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Figure 5.5.  Three Degree-of-Freedom System with Constant Force and Added Error 

 

 

Figure 5.6 shows the results from a random force with no error.  It should be 

noted that as the system becomes more and more complicated and more noise is added, 

the approximation will not converge to a single number but varies around a single 

number.  By filtering out the near zero response, the band of variation of the 

approximation narrows but it still does not converge.  The main thing that is determined 

from the graph in the percent change in alpha that can be estimated even with variance in 

the line.  The alpha in the first degree-of-freedom changes 48 %, the second alpha 

changes 72 %, and the third alpha changes 65 %. Again the LMS filter is predicting the 

change in stiffness in the three degree-of-freedom system in real time and with accurate 

results.  The important trend to watch for is a sharp change in alpha that predicts the 
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presence of damage to the structure.  The remainder of the results can be seen in 

Appendix B.  

 

 

 
Figure 5.6.  Three Degree-of-Freedom System with Random Force and No Error 

 

 

Phase I: 12 Degree-of-Freedom Results for Case 1 

 Case 1 involves excitation on all stories in one direction.   Damage Pattern 1 is 

the complete removal of bracing on the first floor and the results are shown in Figure 5.7.  

It was expected that damage would be shown in the change in alpha 1, 2 and 3 because 

they correspond to the first floor of the model. The alpha in the first degree-of-freedom 

changes 45 %, the second alpha changes 48 %, and the third alpha changes 65 %.  

Because the bracing is completely removed, the percent change in alpha is significant 
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and can be seen even with the inclusion of error.  Damage Pattern 2 involves the 

complete removal of bracing on the first and third floor and the results are shown in 

Figure 5.8.  The alpha in the first degree-of-freedom changes 45 %, the second alpha 

changes 51 %, the third alpha changes 65 %, the seventh alpha changes 45 %, the eighth 

alpha changes 60 %, and the ninth alpha changes 65 %. The results show that the filter 

can indicate damage in the form of  changes in α  for multiple stories even though they 

are not adjacent stories.  All results converge within 2 seconds and give indication of 

where damage has occurred. 

 

 

 
Figure 5.7.  Phase I: Case 1 with Damage Pattern 1 
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Figure 5.8.  Phase I: Case 1 with Damage Pattern 2 

 

 

 Damage Pattern 3 and 4 involve the partial removal of bracing on the first and 

first and third floors respectively.  Because the bracing is only partially removed, the 

percent change in alpha is significantly less than the change in alpha of damage pattern 2.  

The results for Damage Pattern 3 are shown in Figure 5.9.   Because the loading in Case 

1 occurred in one direction, the response in the other two directions is small in 

comparison.   In Figure 5.9, only the change in the y direction can be seen.  Also in 

comparison to the y response, the rotational response is incredibly small.  In the presence 

of large error, damage in the rotational direction is hard to estimate. Damage is hard to 

find in this case but the filter does shown  a reduction in overall stiffness of the 2nd 

degree-of-freedom to be 12 %.  The remainder of the results can be seen in Appendix B.   
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Figure 5.9.  Phase I: Case 1 with Damage Pattern 3 

 

 

Phase I: 12 Degree-of-Freedom Results for Case 3 and Case 4 

 Case 3 data is generated by exciting the structure only on the roof in the diagonal 

direction.  In addition, the loading in Case 3 is symmetric where the loading in Case 4 is 

asymmetric.  Because all degrees-of-freedom are excited by the diagonal shaker, the 

responses in all the degrees-of-freedom for Case 3 and 4 are larger then those in Case 1.  

Figure 5.10 shows the result from Case 3 with Damage Pattern 2.  The change is alpha 

corresponds to the damage on the 1st and 3rd floors with the removal of all braces on 

those floors.  With response data that is larger in magnitude, changes in α are easier to 

identify because near zero response are less frequent.  
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Figure 5.10.  Phase I: Case 3 with Damage Pattern 2 

 

 

 The alpha in the first degree-of-freedom changes 45 %, the second alpha changes 

71 %, the third alpha changes 65 %, the seventh alpha changes 45 %, the eighth alpha 

changes 71 %, and the ninth alpha changes 65 %.  Figure 5.10 shows such a distinct 

change because of the form of excitation and the large amount of damage occurring.  In 

all the six degrees-of-freedom where damage has occurred, the predicted results match 

and converge in less than a second to the actual results.   The damage is harder to 

identify in damage patterns where partial damage occurs.  Figure 5.11 shows the results 

for Case 3 with Damage Pattern 4 where there is partial removal of the bracing on the 1st 

and 3rd floor in the y direction.  Because of the small change in alpha, change from 

damage is harder to identify than the change from error. Even though the approximations 

do not converge to a single number, the presence of damage in the y direction can be 
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detected from the graph.  The change in the alpha in the second degree-of-freedom is 19 

% and change in alpha in the eighth degree-of-freedom is 12 %. Results for Case 4 are 

similar to those of Case 3 because of the similar force being applied to the system.  The 

results can be seen in Appendix B. 

 

 

 
Figure 5.11.  Phase I: Case 3 with Damage Pattern 4 

 

 

 

Phase II: 120 Degrees-of-Freedom Results 

  Phase II of the Benchmark Problem only deals with the 120 degree-of-freedom 

model and includes more complexities than Phase I.  Also modeling error of up to 10 % 
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of mass values and 5 % of stiffness values is added to the problem.  The modeling error 

varies within the data set.  The same degree of noise in the acceleration data from Phase 

I is included.  This allows the benchmark problem to reassemble more realistic test 

situations.   There are four damage scenarios for the fully braced case, three for the 

partially braced case, and two blind cases.  The cases for the partially braced case 

involve loss of rotational stiffness and were not tested.   

In all scenarios when the alpha was monitored for all degrees-of-freedom, change 

due to damage can only be identified if the change in alpha is greater than the noise data.  

This can be seen in Figure 5.12 for damage pattern Braced 1 with symmetric loading. 

The damage in the first degree-of-freedom can clearly be seen because it is larger than 

10% change in alpha.  Below the 10 % change in alpha mark, the change in alpha is due 

to noise and error in the system  It shows that there is a threshold at which it is hard to 

distinguish between various changes in alpha.  This threshold has been determined to be 

about 10 % in this situation.  In this benchmark problem, the 10 % change in alpha 

correlates roughly with 50 % loss of stiffness on two braces on a floor.  When looking at 

the graph of change in alphas for the entire system, it is hard to distinguish damage less 

than 50 % loss of stiffness on two braces.   
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Figure 5.12.  Phase II: Damage Pattern for Braced 1 with Symmetric Loading  

 

 

Now if individual alphas were monitored separately, then changes due to damage 

that are less than the 10 % threshold could be detected if the time of damage is known.  

Figure 5.13 demonstrates the 10 % threshold where degrees-of-freedom one through 

three for the damage pattern of Braced 2 with symmetric loading is monitored.  Because 

the time of damage is known to be at 20 seconds it is easy to identify damage in second 

degree-of-freedom as  7 % change in alpha because of the sharp change at that time.  In 

Figure 5.14, damage due to noise at a time other than 20 seconds is shown.   The change 

in alpha in Figure 5.14 mirrors that of Figure 5.13, but does not occur at the time of 

damage so it can be assumed not to be damage.  In situations of catastrophic failure, the 

time of failure is known so sudden failure can be detected.  In terms of long term 
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maintenance when the time of failure is uncertain, the ability to identify damage can be 

more difficult.  Complete failure of a member is easy to detect at any time but partial 

failure can be hard to distinguish.  In this benchmark problem, damage less than 50 % of 

a brace is hard to capture.  That specific threshold will vary depending on the system.   

 

 

 
Figure 5.13.  Phase II: Damage Pattern for Braced 2 Showing Damage on 1st Floor 
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Figure 5.14.  Phase II: Damage Pattern for Braced 3 Showing All Alphas 

 

 
In addition, two blind cases were included in Phase II of the benchmark problem.  

In both blind cases, neither the loading nor the amount of error or noise was known.  The 

results for the 1st blind case showing just the damage on the 1st floor are shown in Figure 

5.15.  The graph shows damage in the 2nd degree-of-freedom which looks very similar to 

the damage seen in Figure 5.12 and has a change of 12 %.  It can be assumed that the 

blind case 1 involves around 50 % loss of 2 braces on the 1st floor in the strong direction.   

If the filter is tested with various data from various damage patterns, then filter can be 

used to estimate what type of real damage has occurred to the structure.  The remainder 

of the results is shown in Appendix B. 
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Figure 5.15.  Phase II:  Blind Damage Pattern 1 Showing Damage on 1st Floor
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CONCLUSIONS 

 
Conclusions 

 This thesis presents a Structural Health Monitoring technique for civil structures 

using adaptive Least Mean Square filtering theory.  The method was applied to Phases I 

and II of the SHM benchmark problem.  The method was applied to Phase I to confirm 

previous research that had been completed by Chase et al (2003).  Phase II was 

developed in order to make the problem resemble a more realistic situation by 

introducing modeling error and noise.  The robustness and adaptively of the adaptive 

LMS filtering method was tested by applying the method to Phase II of the benchmark 

problem.  The results show that the adaptive LMS filtering method can be an effective 

tool in identifying damage in real time depending on the situation.   

 It was shown that for Phase I the method was able to identify damage in real time 

effectively.  As stated previously, showing the results for Phase I was verification of the 

work done by Chase et al (2003).  Phase I is a simpler case than Phase II because the 

damage scenarios were only for a 12 degree-of-freedom model and contained no 

modeling error or noise.  In replicating the results from Phase I, a difficultly in 

monitoring changes in the rotational degree-of-freedoms was found.  Monitoring 

changes in the rotational degree-of-freedoms is difficult because the rotational response 

is incredibly small in comparison to the y response.  As a result in the presence of large 

error, damage in the rotational direction was hard to identify.  In order to overcome this 

difficultly,  

Phase II introduced modeling error and noise to the benchmark problem.  In 

addition, the damage scenarios involved partial damage as opposed to complete damage 

of bracing in the structure found in Phase I.   With the combination of noise and small 

damage, identifying damage became more difficult.  This research determined that there 

is a threshold at which various changes in alpha are hard to distinguish. The change in 

alpha of a particular degree-of-freedom directly correlates to change in the overall 

stiffness of that degree-of-freedom.  If damage in a degree-of-freedom results in a 
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change of stiffness below 10 % of the overall stiffness of that particular degree-of-

freedom, then it hard to determine is the change is due to damage or modeling error.  In 

this benchmark problem, the 10 % change in alpha or stiffness correlates roughly with 

50 % loss of stiffness on two braces on a floor.  When looking at the graph of change in 

alphas for the entire system, it is hard to distinguish damage less than 50 % loss of 

stiffness on two braces.  The threshold and its correlated damage level changes 

depending on the structure being monitored.   

If individual alphas were monitored separately, then changes due to damage 

could be detected if the time of damage is known.  Because the time of damage in the 

benchmark problem is know, it is easy to identity changes in alpha due to damage.   In 

situations of catastrophic failure, the time of failure is known so sudden failure can be 

detected.  In terms of long term maintenance when the time of failure is uncertain, the 

ability to identify damage can be more difficult.  The LMS filter can definitely detect 

damage in real time when the time of damage is known and the damage results in more 

than 10% loss of stiffness of the individual degree-of-freedom being monitored. 

Two blind cases were also included in Phase II of the SHM benchmark problem.  

No information regarding type and time of damage was given regarding the blind cases.  

Because various damage patterns had been run beforehand, the results from the other 

damage scenarios were compared with the results from the blind test cases to determine 

location and severity of damage.   The results from the blind case matched that of the 

results from a previous damage case.   The LMS filter was used to identify both the 

location and severity of damage in the blind cases in real time.   

   

Summary of Contributions 

 The LMS filtering method has the ability to identify presence and location of 

damage of civil structures in real time with certain constraints.  In the case of the 

benchmark problem with the inclusion of modeling error and noise, identifying  changes 

in alpha due to damage or noise can be difficult.  For this case in the presence of 

modeling error and noise,  a limit to which damage can be detected was determined.  If 
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there is a greater change than 10 % in the overall stiffness of a particular degree-of-

freedom, then damage can be easily identified.  In cases where the change in stiffness is 

less than 10 %, the individual degree-of-freedom can be separated out so each can be 

monitored for sharp changes which indicate damage.  In this situation, the time of 

damage is needed so one can distinguish between change in alpha due noise or damage.  

Most importantly, the LMS filter approach can be used to predict location and severity 

of damage depending on what prior damage cases were run.  In the blind case, both 

location and severity were determined because the graph of alpha matched that of a 

previously run damage scenario.   

 

Future Research 

 The results point to the validity of using the LMS filtering technique to detect 

damage in civil structures.  Not only can the technique be used in real time but it is 

simple to implement.  Also it can detect damage in the presence of noise and modeling 

error and has the ability to predict location and severity of damage.  Future research 

needs to focus on fine tuning the methods ability to predict location and severity.  More 

test cases need to be run on the filter so it can be used as a predicting tool.   
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APPENDIX A  
 

MATLAB COMPUTER CODE 
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Single Degree-of-Freedom 
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%============================================================ 
%============================================================ 
% Determining Response of SDOF to Generated Load Input 
% Constant Force with No Error 
 
% Created by: Robin Preston 
clear 
clc 
%============================================================= 
% Input Variables 
%-------------------------------------------------------------------------- 
% Stiffness Parameter 
K1 = 106600000;            %N/m 
K2 =  58400000;            %N/m 
 
% Mass 
M = 3200;                  %kg 
 
% Damping 
Xil = 0.01; 
C = 2*Xil*(K1*M)^(1/2); 
 
% Initial conditions 
x0 = 0; 
xd0 = 0; 
 
% Filter Variables 
u      =5000; 
m      = 6;             %Number of Taps 
 
%============================================================= 
% Response with K1 
%-------------------------------------------------------------------------- 
%... Force Matrix  
t       = 40; 
t_1     = 20;                    %seconds  pt where stiffness changes 
dt      = 0.001;                 %seconds 
 
time   = 0:dt:t; 
t_span1 = 0:dt:t_1; 
t_span2 = t_1:dt:t; 
 
po     = 100000;                % magnitude of force 
F      = po * ones(size(time)); 
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F2     = F(20001:length(time)); 
 
%============================================================= 
% Solve for Response 
%-------------------------------------------------------------------------- 
[t,x1] = ode45(@sdof_New,t_span1,[x0 xd0],[],M,C,K1,F,time); 
 
% Generate xdd data 
for k=1:length(t_span1) 
    x1dd(k,1) =  (F(k)-K1*x1(k,1)-C*x1(k,2))/M; 
end 
 
%============================================================= 
% Response with K2 
%-------------------------------------------------------------------------- 
% Force Matrix  
 
x20 = x1(length(x1),1);     %... take info at end of first segment and make 
x2d0 = x1(length(x1),2);    % it initial condition for next segment 
 
[t,x2] = ode45(@sdof_New,t_span2,[x20 x2d0],[],M,C,K2,F,time); 
% Generate xdd data 
for k=1:length(t_span2) 
    x2dd(k,1) =  (F2(k)-K2*x2(k,1)-C*x2(k,2))/M; 
end 
 
%============================================================= 
% Combination of Two Responses 
%-------------------------------------------------------------------------- 
x = [x1(:,1); x2(2:length(x2),1)]; 
xd = [x1(:,2); x2(2:length(x2),2)]; 
xdd = [x1dd(:,1); x2dd(2:length(x2dd),1)]; 
 
%============================================================= 
% Adaptive LMS Filter 
%-------------------------------------------------------------------------- 
% Calculate yk 
 for k = 1: length(time) 
    yk(k) = F(k)-M*xdd(k)-K1*x(k)-C*xd(k); 
 end 
% Adaptive Filter 
w(1) = 1; 
for k =1 
    n(k)=w(k)*x(k); 
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    e(k) = yk(k)-n(k); 
    w(k+1) = w(k)+2*u*e(k)*x(k); 
end 
for k =2 
    n(k)=w(k)*x(k)+w(k)*x(k-1); 
    e(k) = yk(k)-n(k); 
    w(k+1) = w(k)+2*u*e(k)*x(k); 
end 
for k=3 
    n(k)=w(k)*x(k)+w(k)*x(k-1)+w(k)*x(k-2); 
    e(k) = yk(k)-n(k); 
    w(k+1) = w(k)+2*u*e(k)*x(k); 
end 
for k=4 
    n(k)=w(k)*x(k)+w(k)*x(k-1)+w(k)*x(k-2)+w(k)*x(k-3); 
    e(k) = yk(k)-n(k); 
    w(k+1) = w(k)+2*u*e(k)*x(k); 
end 
for k=5 
    n(k)=w(k)*x(k)+w(k)*x(k-1)+w(k)*x(k-2)+w(k)*x(k-3)+w(k)*x(k-4); 
    e(k) = yk(k)-n(k); 
    w(k+1) = w(k)+2*u*e(k)*x(k); 
end 
for k=6:length(time) 
    n(k)=w(k)*x(k)+w(k)*x(k-1)+w(k)*x(k-2)+w(k)*x(k-3)+w(k)*x(k-4)+w(k)*x(k-5); 
    e(k) = yk(k)-n(k); 
    w(k+1) = w(k)+2*u*e(k)*x(k); 
end 
% Back Calculate Alpha or Change in Stiffness 
warning off MATLAB:divideByZero 
 
for k=1:length(time) 
    alpha(k) =n(k)/(x(k)*K1); 
end 
for k=1:length(time) 
    test(k) =yk(k)/(x(k)*K1); 
end 
figure(1) 
plot(time,alpha,time,test) 
xlabel('Time (sec)') 
ylabel('Change in a (N/m)') 
grid 
%============================================================ 
%============================================================ 
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%============================================================ 
%============================================================ 
% Define’s SDOF system in state-space format 
 
 function [y_prime] = sdof(t,y,m,c,k,F,time) 
%-------------------------------------------------------------------------- 
 
% System matrices -- State-Space 
 
A =  [    0       1 
 
       -(k/m)  -(c/m) ]; 
 
    
B =  [    0 
 
       -(1/m)  ]; 
 
 
% Pull out current force vector -- uses linear interpolation for 
 
% values between points available in time history 
 
F_t = interp1(time,F,t); 
 
 
% Compute first derivative values at this time step.    
 
y_prime = A*y + B*F_t; 
 
%============================================================ 
%============================================================ 



 

 

57

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Four Degrees-of-Freedom 
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%============================================================ 
%============================================================ 
% Determining Response of Four-DOF of Benchmark Problem 
% Constant Force with No Error 
 
% Created by: Robin Preston 
clear 
clc 
%============================================================= 
%Input Variables 
%-------------------------------------------------------------------------- 
% Load Data 
load Case1Damage1 
 
K2 = [58400000  0 0 0 
      0 106600000 0 0 
      0 0 106600000 0 
      0 0 0 106600000] ; 
 
K  = [106600000 0 0 0 
      0 106600000 0 0 
      0 0 106600000 0 
      0 0 0 106600000] ; 
 
M  = [3452.4 0 0 0 
      0 2652.4 0 0 
      0 0 2652.4 0 
      0 0 0 1809.9];  
  
% Degree of Freedom 
ndof=4; 
 
% Damping 
Xil = 0.01; 
C = 2*Xil*(K*M)^(1/2); 
C2 = 2*Xil*(K2*M)^(1/2); 
 
%=============================================================
% Build K, M, and C matrices for filter.   
 
%All values based on benchmark problem 
%-------------------------------------------------------------------------- 
disp('Building Matrices...'); 
% Mass 
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M1  = 3200;              %kg 
M2  = 2400;              %kg 
M3  = 2400;              %kg 
M4  = 1600;              %kg 
 
% Build  Mass Matrix 
MM = [M1  0  0  0   
      0  M2  0  0   
      0  0  M3  0 
      0  0   0 M4]; 
 
% Stiffness Parameter 
KK = [106600000 0 0 0 
     0 106600000 0 0 
     0 0 106600000 0 
     0 0 0 106600000] ; 
  
% Build Damping Matrix 
CC = 2*Xil*(KK*MM)^(1/2); 
   
% Initial Conditions 
x0  = zeros(ndof,1); 
xd0 = zeros(ndof,1); 
 
%============================================================= 
% Time Vector and Force Matrix 
%-------------------------------------------------------------------------- 
disp('Building Force Matrix...') 
% Force Matrix  
t       = 40; 
t_1     = 20;                   %seconds  pt where stiffness changes 
dt      = 0.001;                 %seconds 
 
time   = 0:dt:t; 
t_span1 = 0:dt:t_1; 
t_span2 = t_1:dt:t; 
 
FF  =  100000;                   %Force for translational DOF 
f   = zeros(1,length(time)); 
f2  = f(1,20001:length(time)); 
force      = FF*ones(1,length(time)); 
force2     = force(1,20001:length(time)); 
 
F   = [force; force; force; force]; 
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FF = F(:,1:20001); 
F2  = [force2; force2; force2; force2]; 
 
%============================================================= 
% RESPONSE IN ORIGINAL COORDINATES 
%-------------------------------------------------------------------------- 
disp('Solving for Response 1...') 
% Solve for Response 1-- ode45 
% Initial Conditions 
x0  = zeros(ndof, 1); 
xd0 = zeros(ndof,1); 
 
[t,x1] = ode45(@mdof,t_span1,[x0; xd0],[],M,C,K,FF,t_span1); 
  
%Generate xdd data 
xd1 = [x1(:,5) x1(:,6) x1(:,7) x1(:,8)]'; 
x1  = [x1(:,1) x1(:,2) x1(:,3) x1(:,4)]'; 
 
xdd1 = zeros(ndof, length(t_span1)); 
for k = 1:length(t_span1) 
    xdd1(:,k)=inv(M)*[F(:,k)-C*xd1(:,k)-K*x1(:,k)]; 
end 
 
%============================================================= 
% Response with K2 
%-------------------------------------------------------------------------- 
disp('Solving for Response 2...') 
% Solve for Response 2 -- ode45 
 
x20 = x1(:,length(x1));     %... take info at end of first segment and make 
x2d0 = xd1(:,length(x1));    % it initial condition for next segment 
 
[t,x2] = ode45(@mdof,t_span2,[x20; x2d0],[],M,C2,K2,F2,t_span2); 
  
 %Generate xdd data 
xd2 = [x2(:,5) x2(:,6) x2(:,6) x2(:,8)]'; 
x2  = [x2(:,1) x2(:,2) x2(:,3) x2(:,8)]'; 
 
xdd2 = zeros(ndof, length(t_span2)); 
for k = 1:length(t_span2) 
    xdd2(:,k)=inv(M)*[F2(:,k)-C2*xd2(:,k)-K2*x2(:,k)]; 
end 
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%=============================================================
% Combination of Two Responses 
%-------------------------------------------------------------------------- 
x = [x1(:,1:length(t_span1)) x2(:,2:length(x2))]; 
xd = [xd1(:,1:length(t_span1)) xd2(:,2:length(xd2))]; 
xdd = [xdd1(:,1:length(t_span1)) xdd2(:,2:length(xdd2))]; 
 
% Adaptive LMS Filter 
%-------------------------------------------------------------------------- 
disp('Running Adaptive LMS Filter...'); 
% Filter Variables 
u      = [10000;1000;1000;1000]; 
m      = 6;             %Number of Taps 
  
% Run Filter Function 
yk = zeros(ndof, length(time)); 
n  = zeros(ndof, length(time)); 
e  = zeros(ndof, length(time)); 
w  = zeros(ndof, length(time)); 
 
for k = 1:length(time) 
    yk(:,k) = F(:,k)-M*xdd(:,k)-KK*x(:,k)-CC*xd(:,k); 
end 
for m = 1: ndof 
    [n,e,w] = ff(time,yk,n,e,w,x,m,u); 
end 
 
%============================================================= 
% Calculate Change in Alpha 
%-------------------------------------------------------------------------- 
disp('Solving for Alpha...') 
 warning off MATLAB:divideByZero 
 warning off MATLAB:singularMatrix 
 
Alpha = zeros(4,length(time)); 
for k = 2:length(time) 
    Alpha(4,k) =n(4,k)/((-x(3,k)+x(4,k))*KK(4,4)); 
end 
 
for k = 2:length(time) 
    Alpha(3,k) = (n(3,k)-[Alpha(4,k)*(x(3,k)-x(4,k))])/((-x(2,k)+x(3,k))*KK(3,3)); 
end 
for k = 2:length(time)     
    Alpha(2,k) = (n(2,k)-[Alpha(3,k)*(x(2,k)-x(3,k))])/((-x(1,k)+x(2,k))*KK(2,2)); 
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end 
Alpha(2,:)= 0; 
 
for k = 2:length(time) 
    Alpha(1,k) = (n(1,k)-Alpha(2,k)*(x(1,k)-x(2,k)))/((x(1,k))*KK(1,1)); 
end 
 
g1  = -0.65*min(x(1,:)); 
g2  = -0.65*min(x(2,:)); 
g3  = -0.65*min(x(3,:)); 
g4  = -0.65*min(x(4,:)); 
for k = 2:length(time) 
    if abs(x(1,k)) < g1 
        Alpha(1,k) = Alpha(1,k-1); 
    end 
end 
for k = 2:length(time) 
    if abs(x(2,k)) < g2 
        Alpha(2,k) = Alpha(2,k-1); 
    end 
end 
for k = 3:length(time) 
    if abs(x(3,k)) < g3 
        Alpha(3,k) = Alpha(3,k-1); 
    end 
end 
for k = 2:length(time) 
    if abs(x(4,k)) < g4 
        Alpha(4,k) = Alpha(4,k-1); 
    end 
end 
 
test = zeros(ndof, length(time));   
for m = 1:4 
    test(m,20001:40001) = -(1-(K2(m,m)/K(m,m))); 
end 
 
figure(1) 
plot(time,test,time,Alpha) 
xlabel('Time (sec)') 
ylabel('Percent Change in Alpha') 
grid 
%============================================================ 
%============================================================ 



 

 

63

 
%============================================================ 
%============================================================ 
% ADAPTIVE LMS FILTER 
% created by Robin Preston 
 
function [n,e,w] = ff(time,yk,n,e,w,x,m,u); 
%-------------------------------------------------------------------------- 
% Adaptive Filter 
w(m,1) = 1; 
 
for k =1 
    n(m,k)=w(m,k)*x(m,k); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k =2 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=3 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=4 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-3); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=5 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=6:(length(time)-1) 
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    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4)+w(m,k)*x(m,k-5); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=length(time) 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4)+w(m,k)*x(m,k-5); 
    e(m,k) = yk(m,k)-n(m,k); 
end 
 
%============================================================ 
%============================================================ 
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%============================================================ 
%============================================================ 
% Defines Four-DOF system in state-space format 
 
% Created by Robin Preston 
 
function [y_prime] = mdof(t,y,M,C,K,F,time) 
%-------------------------------------------------------------------------- 
% System matrices -- State-space        
inv_mass = inv(M); 
 
A11 = zeros(4,4);    
A12 = eye(4,4); 
A21 = [-inv_mass*K]; 
A22 = [-inv_mass*C]; 
A= [A11  A12 
    A21  A22]; 
 
E  = eye(4,4); 
B1 = zeros(4,4); 
B2 = [-inv_mass*E]; 
B  = [B1 
      B2]; 
 
% Pull out current force vector -- uses linear interpolation for 
% values between points available in time history 
F_t = interp1(time,F',t)'; 
 
% Compute first derivative values at this time step.    
y_prime = A*y + B*F_t; 
 
%============================================================ 
%============================================================ 
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Three Degrees-of-Freedom 
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%============================================================
%============================================================ 
% Determining Response of Three-DOF of Benchmark Problem 
% Constant Force and No Error 
 
% Created by: Robin Preston 
clear 
clc 
%============================================================= 
%Input Variables 
%-------------------------------------------------------------------------- 
% Load Data 
load Case1Damage1 
 
K2 = [58400000 0 0 
    0 19700000 0 
    0 0 81300000]; 
 
K  = [106600000 0 0 
     0 67900000 0 
     0 0 232000000]; 
 
M  = [3452.4 0 0 
     0 3542.4 0 
     0 0 3819.4]; 
% Degree of Freedom 
ndof=3; 
 
% Damping 
Xil = 0.01; 
C = 2*Xil*(K*M)^(1/2); 
C2 = 2*Xil*(K2*M)^(1/2); 
 
%============================================================= 
% Build K, M, and C matrices for filter.   
 
%All values based on benchmark problem 
%-------------------------------------------------------------------------- 
disp('Building Matrices...'); 
% Mass 
M1  = 3200;              %kg 
Io1 = 3333.33;           %kg-m^2 
 
% Build  Mass Matrix 
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MM = [M1  0  0     
      0  M1  0     
      0  0 Io1]; 
 
% Stiffness Parameter 
KK = [106600000 0 0 
     0 67900000 0 
     0 0 232000000]; 
  
% Build Damping Matrix 
CC = 2*Xil*(KK*MM)^(1/2); 
   
% Initial Conditions 
x0  = zeros(ndof,1); 
xd0 = zeros(ndof,1); 
 
%============================================================= 
% Time Vector and Force Matrix 
%-------------------------------------------------------------------------- 
disp('Building Force Matrix...') 
% Force Matrix  
t       = 40; 
t_1     = 20;                   %seconds  pt where stiffness changes 
dt      = 0.001;                 %seconds 
 
time   = 0:dt:t; 
t_span1 = 0:dt:t_1; 
t_span2 = t_1:dt:t; 
FF  =  100000;                   %Force for translational DOF 
FFF = -10000;                    %Force for rotational DOF 
f   = zeros(1,length(time)); 
f2  = f(1,20001:length(time)); 
force      = FF*ones(1,length(time)); 
fforce     = FFF*ones(1, length(time)); 
force2     = force(1,20001:length(time)); 
fforce2    = fforce(1,20001:length(time)); 
 
F   = [force; force; fforce]; 
FF = F(:,1:20001); 
F2  = [force2; force2; fforce2]; 
 
%============================================================= 
% RESPONSE IN ORIGINAL COORDINATES 
%-------------------------------------------------------------------------- 
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disp('Solving for Response 1...') 
% Solve for Response 1-- ode45 
% Initial Conditions 
x0  = zeros(ndof, 1); 
xd0 = zeros(ndof,1); 
 
[t,x1] = ode45(@mdof,t_span1,[x0; xd0],[],M,C,K,FF,t_span1); 
  
%Generate xdd data 
xd1 = [x1(:,4) x1(:,5) x1(:,6)]'; 
x1  = [x1(:,1) x1(:,2) x1(:,3)]'; 
 
xdd1 = zeros(ndof, length(t_span1)); 
for k = 1:length(t_span1) 
    xdd1(:,k)=inv(M)*[F(:,k)-C*xd1(:,k)-K*x1(:,k)]; 
end 
 
%=============================================================
% Response with K2 
%-------------------------------------------------------------------------- 
disp('Solving for Response 2...') 
% Solve for Response 2 -- ode45 
 
x20 = x1(:,length(x1));     %... take info at end of first segment and make 
x2d0 = xd1(:,length(x1));    % it initial condition for next segment 
 
[t,x2] = ode45(@mdof,t_span2,[x20; x2d0],[],M,C2,K2,F2,t_span2); 
  
 %Generate xdd data 
xd2 = [x2(:,4) x2(:,5) x2(:,6)]'; 
x2  = [x2(:,1) x2(:,2) x2(:,3)]'; 
 
xdd2 = zeros(ndof, length(t_span2)); 
for k = 1:length(t_span2) 
    xdd2(:,k)=inv(M)*[F2(:,k)-C2*xd2(:,k)-K2*x2(:,k)]; 
end 
 
%============================================================= 
% Combination of Two Responses 
%-------------------------------------------------------------------------- 
x = [x1(:,1:length(t_span1)) x2(:,2:length(x2))]; 
xd = [xd1(:,1:length(t_span1)) xd2(:,2:length(xd2))]; 
xdd = [xdd1(:,1:length(t_span1)) xdd2(:,2:length(xdd2))]; 
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%============================================================= 
% Adaptive LMS Filter 
%-------------------------------------------------------------------------- 
disp('Running Adaptive LMS Filter...'); 
% Filter Variables 
u      = [10000;1000;50000]; 
m      = 6;             %Number of Taps 
  
% Run Filter Function 
yk = zeros(ndof, length(time)); 
n  = zeros(ndof, length(time)); 
e  = zeros(ndof, length(time)); 
w  = zeros(ndof, length(time)); 
 
for k = 1:length(time) 
    yk(:,k) = F(:,k)-M*xdd(:,k)-KK*x(:,k)-CC*xd(:,k); 
end 
 
for m = 1: ndof 
    [n,e,w] = ff(time,yk,n,e,w,x,m,u); 
end 
 
%============================================================= 
% Calculate Change in Alpha 
%-------------------------------------------------------------------------- 
disp('Solving for Alpha...') 
 warning off MATLAB:divideByZero 
 warning off MATLAB:singularMatrix 
  
Alpha = zeros(ndof,length(time)); 
 
for k=2:length(time) 
    for m = 1:2 
        Alpha(m,k) =n(m,k)/(x(m,k)*KK(m,m)); 
    end 
end 
 
for k=2:length(time) 
    for m = 3 
        Alpha(m,k) =yk(m,k)/(x(m,k)*KK(m,m)); 
    end 
end 
 
g1  = 0.90*max(x(1,:)); 
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g2  = 0.90*max(x(2,:)); 
g3  = 0.99*max(x(3,:)); 
 
for k = 2:length(time) 
    if abs(x(1,k)) < g1 
        Alpha(1,k) = Alpha(1,k-1); 
    end 
end 
for k = 2:length(time) 
    if abs(x(2,k)) < g2 
        Alpha(2,k) = Alpha(2,k-1); 
    end 
end 
for k = 2:length(time) 
    if abs(x(3,k)) < g3 
        Alpha(3,k) = Alpha(3,k-1); 
    end 
end 
 
test = zeros(ndof, length(time));   
for m = 1:ndof 
    test(m,20001:40001) = -(1-(K2(m,m)/K(m,m))); 
end 
 
figure(1) 
plot(time,test,time,Alpha) 
xlabel('Time (sec)') 
ylabel('Percent Change in Alpha') 
grid 
 
%============================================================
%============================================================ 
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%============================================================ 
%============================================================ 
% ADAPTIVE LMS FILTER 
% created by Robin Preston 
 
function [n,e,w] = ff(time,yk,n,e,w,x,m,u); 
%-------------------------------------------------------------------------- 
% Adaptive Filter 
w(m,1) = 1; 
 
for k =1 
    n(m,k)=w(m,k)*x(m,k); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k =2 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=3 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=4 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-3); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=5 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=6:(length(time)-1) 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4)+w(m,k)*x(m,k-5); 
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    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=length(time) 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4)+w(m,k)*x(m,k-5); 
    e(m,k) = yk(m,k)-n(m,k); 
end 
 
%============================================================ 
%============================================================ 
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%============================================================ 
%============================================================ 
% Defines Four-DOF system in state-space format 
 
% Created by Robin Preston 
 
function [y_prime] = mdof(t,y,M,C,K,F,time) 
%-------------------------------------------------------------------------- 
% System matrices -- State-space        
inv_mass = inv(M); 
 
A11 = zeros(4,4);    
A12 = eye(4,4); 
A21 = [-inv_mass*K]; 
A22 = [-inv_mass*C]; 
A= [A11  A12 
    A21  A22]; 
 
E  = eye(4,4); 
B1 = zeros(4,4); 
B2 = [-inv_mass*E]; 
B  = [B1 
      B2]; 
 
% Pull out current force vector -- uses linear interpolation for 
% values between points available in time history 
F_t = interp1(time,F',t)'; 
 
% Compute first derivative values at this time step.    
y_prime = A*y + B*F_t; 
 
%============================================================ 
%============================================================ 
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Phase I: 12 Degrees-of-Freedom 



 

 

76

 
%=============================================================
%============================================================= 
% Determining Response of 12-DOF of Benchmark Problem 
% Case 1 Damage1: Web Simulated Data 
 
% Created by: Robin Preston 
 
%============================================================= 
% Input Variables 
%-------------------------------------------------------------------------- 
% Load Variable 
load Case1Undamaged 
force1 = force; 
K1 = K; 
M1 = M; 
load Case1Damage1 
force2 = force; 
K2 = K; 
M2 = M; 
 
% Degree of Freedom 
[ndof,ndof] = size(M); 
 
% Damping 
Xil = 0.01; 
C1 = 2*Xil*(K1*M1)^(1/2); 
C2 = 2*Xil*(K2*M2)^(1/2); 
 
%============================================================= 
% Build K, M, and C matrices for filter.   
% All values based on benchmark problem 
%-------------------------------------------------------------------------- 
disp('Building Matrices...'); 
% Mass 
MM1 = 3200;              %kg 
MM2 = 2400;              %kg 
MM3 = 2400;              %kg 
MM4 = 1600;              %kg 
 
Io1 = 3333.33;          %kg-m^2 
Io2 = 2500.00;          %kg-m^2 
Io3 = 2500.00;          %kg-m^2 
Io4 = 1666.67;          %kg-m^2 
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% Build  Mass Matrix 
MM = [MM1  0  0  0  0  0  0  0  0  0  0  0   
      0  MM1  0  0  0  0  0  0  0  0  0  0   
      0  0 Io1  0  0  0  0  0  0  0  0  0   
      0  0  0  MM2  0  0  0  0  0  0  0  0   
      0  0  0  0  MM2  0  0  0  0  0  0  0   
      0  0  0  0  0 Io2  0  0  0  0  0  0   
      0  0  0  0  0  0  MM3  0  0  0  0  0   
      0  0  0  0  0  0  0  MM3  0  0  0  0   
      0  0  0  0  0  0  0   0 Io3 0  0  0 
      0  0  0  0  0  0  0   0  0 MM4  0  0 
      0  0  0  0  0  0  0   0  0  0 MM4  0 
      0  0  0  0  0  0  0   0  0  0 0 Io4]; 
   
% Stiffness Parameter 
KX1 = 106600000;        %N/m 
KX2 = 106600000;        %N/m 
KX3 = 106600000;        %N/m 
KX4 = 106600000;        %N/m 
 
KY1 = 67900000;        %N/m 
KY2 = 67900000;        %N/m 
KY3 = 67900000;        %N/m 
KY4 = 67900000;        %N/m 
 
Ko1 = 232000000;       %N/m           
Ko2 = 232000000;       %N/m 
Ko3 = 232000000;       %N/m 
Ko4 = 232000000;       %N/m 
 
% Build Stiffness Matrix Components 
KK = zeros(ndof, ndof); 
 
for m = 1 
    KK(m,m) = KX1+KX2; 
    KK(m+3,m)=-KX1; 
    KK(m,m+3)=-KX1; 
end 
for m = 4 
    KK(m,m) = KX1+KX2; 
    KK(m+3,m)=-KX1; 
    KK(m,m+3)=-KX1; 
end 
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for m = 7 
    KK(m,m) = KX1+KX2; 
    KK(m+3,m)=-KX1; 
    KK(m,m+3)=-KX1; 
end 
for m=10 
    KK(m,m)=KX4; 
end 
for m = 2 
    KK(m,m) = KY1+KY2; 
    KK(m+3,m)=-KY1; 
    KK(m,m+3)=-KY1; 
end 
for m = 5 
    KK(m,m) = KY1+KY2; 
    KK(m+3,m)=-KY1; 
    KK(m,m+3)=-KY1; 
end 
for m = 8 
    KK(m,m) = KY1+KY2; 
    KK(m+3,m)=-KY1; 
    KK(m,m+3)=-KY1; 
end 
for m=11 
    KK(m,m) = KY4; 
end 
for m = 3 
    KK(m,m) = Ko1+Ko2; 
    KK(m+3,m)=-Ko1; 
    KK(m,m+3)=-Ko1; 
end 
for m = 6 
    KK(m,m) = Ko1+Ko2; 
    KK(m+3,m)=-Ko1; 
    KK(m,m+3)=-Ko1; 
end 
for m = 9 
    KK(m,m) = Ko1+Ko2; 
    KK(m+3,m)=-Ko1; 
    KK(m,m+3)=-Ko1; 
end 
for m = 12 
    KK(m,m) = Ko4; 
end 
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% Build Damping Matrix 
CC = 2*Xil*(KK*MM)^(1/2); 
 
%============================================================= 
% Time Vector and Force Matrix 
%-------------------------------------------------------------------------- 
time = 0:dt:40; 
 
force = [force1(1:length(force1)-1,:); force2]; 
f = zeros(1,40001); 
FF = [f; force(:,1)'; f; f; force(:,2)'; f; f; force(:,3)'; f; f; force(:,4)'; f]; 
 
%============================================================= 
% Load Data 
%-------------------------------------------------------------------------- 
% Manipulate Acc data to generate displacement, velocity and  
% acceleration matrices 
disp('Loading Data'); 
 
load XXun1; 
load XXdun1; 
load XXddun1; 
 
%=============================================================
% Adaptive LMS Filter 
%-------------------------------------------------------------------------- 
disp('Running Adaptive LMS Filter'); 
% Filter Variables 
u      = [10;1;100;10;1;100;10;1;100;10;1;100]; 
m      = 6;                         %Number of Taps 
  
% Run Filter Function 
yk = zeros(ndof, length(time)); 
n  = zeros(ndof, length(time)); 
e  = zeros(ndof, length(time)); 
w  = zeros(ndof, length(time)); 
for k = 1:length(20001) 
    yk(:,k) = FF(:,k)-M1(:,:)*xdd(:,k)-K1(:,:)*x(:,k)-C1(:,:)*xd(:,k); 
end 
for k = 20002:length(time) 
    yk(:,k) = FF(:,k)-M1(:,:)*xdd(:,k)-K1(:,:)*x(:,k)-C1(:,:)*xd(:,k); 
end 
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for m = 1:ndof 
    [n,e,w] = ff(time,yk,n,e,w,x,m,u); 
end 
 
%============================================================= 
% Calculate Change in Alpha 
%-------------------------------------------------------------------------- 
disp('Solving for Alpha...') 
 warning off MATLAB:divideByZero 
 warning off MATLAB:singularMatrix 
  
KKK = [KX1 KY1 Ko1 KX2 KY2 Ko2 KX3 KY3 Ko3 KX4 KY4 Ko4]; 
   
    g1  = 0.75*max(x(1,:)); 
    g2  = 0.75*max(x(2,:)); 
    g3  = 0.90*max(x(3,:)); 
    g4  = 0.75*max(-x(1,:)+x(7,:)); 
    g5  = 0.75*max(-x(2,:)+x(8,:)); 
    g6  = 0.95*max(-x(3,:)+x(9,:)); 
    g7  = 0.75*max(-x(4,:)+x(10,:)); 
    g8  = 0.75*max(-x(5,:)+x(11,:)); 
    g9  = 0.95*max(-x(6,:)+x(12,:)); 
    g10  = 0.75*max(x(10,:)-x(7,:)); 
    g11  = 0.75*max(x(11,:)-x(8,:)); 
    g12  = 0.95*max(x(12,:)-x(9,:)); 
 
 
Alpha = zeros(ndof,length(time)); 
for k = 2:length(time) 
    for m = 10:12 
        Alpha(m,k) =n(m,k)/((x(m,k)-x(m-3,k))*KKK(1,m)); 
    end 
    for m = 7:9 
        Alpha(m,k) = (n(m,k)-[Alpha(m+3,k)*(x(m,k)-x(m+3,k))])/((-x(m-
3,k)+x(m,k))*KKK(1,m)); 
    end 
     
    for m = 4:6 
        Alpha(m,k) = (n(m,k)-[Alpha(m+3,k)*(x(m,k)-x(m+3,k))])/((-x(m-
3,k)+x(m,k))*KKK(1,m)); 
    end 
    for m = 1:3 
        Alpha(m,k) = (n(m,k)-Alpha(m+3,k)*(x(m,k)-x(m+3,k)))/((x(m,k))*KKK(1,m)); 
    end 
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end 
 
for k = 2:length(time) 
    for m = 1 
        if abs(x (m,k)) < g1 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 2 
        if abs(x (m,k)) < g2 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
   for m = 3 
        if abs(x (m,k)) < g3 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m =4 
        if abs(-x(m-3,k)+x(m,k)) < g4 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 5 
        if abs(-x(m-3,k)+x(m,k)) < g5 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 6 
        if abs(-x(m-3,k)+x(m,k)) < g6 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 7 
        if abs(-x(m-3,k)+x(m,k)) < g7 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 8 
        if abs(-x(m-3,k)+x(m,k)) < g8 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 9 
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        if abs(-x(m-3,k)+x(m,k)) < g9 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
   for m = 10 
        if abs(x(m,k)-x(m-3,k)) < g10 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
     for m = 11 
        if abs(x(m,k)-x(m-3,k)) < g11 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
     for m = 12 
        if abs(x(m,k)-x(m-3,k)) < g12 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
end 
 
plot(time, Alpha) 
xlabel('Time (sec)') 
ylabel('Percent Change in Alpha  ') 
grid 
 
%=============================================================
%============================================================= 
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%=============================================================
%============================================================= 
% MANIPULATION OF ACCELERATION DATA 
% Derive Velocity and Displacement of Each Time Step 
% Derive Response in rotational DOF 
 
% created by Robin Preston 
%-------------------------------------------------------------------------- 
%  acc      =  simulated acceleration time-history. 
%              It is a Nt by Nmdof array: 
%              Nt    =  number of time steps 
%              Nmdof =  number of measured dof 
%              ============================================== 
%              column number (x-coordinate, y-coordinate): 
%              7 (   0, 2.5)  8 (1.25, 2.5)  9 ( 2.5, 2.5) 
%              4 (   0,1.25)  5 (1.25,1.25)  6 ( 2.5,1.25) 
%              1 (   0,   0)  2 (1.25,   0)  3 ( 2.5,   0) 
%              ============================================== 
%              for each floor, sensors are located at columns  
%              2, 6, 8 and 4. 
%              acc(:,1)  - floor 1 of column 2 in x-direction 
%              acc(:,2)  - floor 1 of column 6 in y-direction 
%              acc(:,3)  - floor 1 of column 8 in x-direction 
%              acc(:,4)  - floor 1 of column 4 in y-direction 
%              acc(:,5)  - floor 2 of column 2 in x-direction 
%              acc(:,6)  - floor 2 of column 6 in y-direction 
%              acc(:,7)  - floor 2 of column 8 in x-direction 
%              acc(:,8)  - floor 2 of column 4 in y-direction 
%              acc(:,9)  - floor 3 of column 2 in x-direction 
%              acc(:,10) - floor 3 of column 6 in y-direction 
%              acc(:,11) - floor 3 of column 8 in x-direction 
%              acc(:,12) - floor 3 of column 4 in y-direction 
%              acc(:,13) - floor 4 of column 2 in x-direction 
%              acc(:,14) - floor 4 of column 4 in y-direction 
%              acc(:,15) - floor 4 of column 6 in x-direction 
%              acc(:,16) - floor 4 of column 8 in y-direction 
%-------------------------------------------------------------------------- 
 
% Calculate Accleration for 12 DOF for Undamaged 
load Case1Undamaged 
 
acc1  = (acc(:,3)+acc(:,1))/2; 
acc2  = (acc(:,4)+acc(:,2))/2; 
acc3  = (acc(:,3)-acc(:,1))/2.5; 
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acc4  = (acc(:,7)+acc(:,5))/2; 
acc5  = (acc(:,8)+acc(:,6))/2; 
acc6  = (acc(:,7)-acc(:,5))/2.5; 
acc7  = (acc(:,11)+acc(:,9))/2; 
acc8  = (acc(:,12)+acc(:,10))/2; 
acc9  = (acc(:,11)-acc(:,9))/2.5; 
acc10 = (acc(:,15)+acc(:,13))/2; 
acc11 = (acc(:,16)+acc(:,14))/2; 
acc12 = (acc(:,15)-acc(:,13))/2.5; 
 
% Calculate Accleration for 12 DOF for Damage Case 
load Case1Damage1 
 
Acc1  = (acc(:,3)+acc(:,1))/2; 
Acc2  = (acc(:,4)+acc(:,2))/2; 
Acc3  = (acc(:,3)-acc(:,1))/2.5; 
Acc4  = (acc(:,7)+acc(:,5))/2; 
Acc5  = (acc(:,8)+acc(:,6))/2; 
Acc6  = (acc(:,7)-acc(:,5))/2.5; 
Acc7  = (acc(:,11)+acc(:,9))/2; 
Acc8  = (acc(:,12)+acc(:,10))/2; 
Acc9  = (acc(:,11)-acc(:,9))/2.5; 
Acc10 = (acc(:,15)+acc(:,13))/2; 
Acc11 = (acc(:,16)+acc(:,14))/2; 
Acc12 = (acc(:,15)-acc(:,13))/2.5; 
 
%=============================================================
%============================================================= 
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%=============================================================
%============================================================= 
% Model Simulation Using Models from System ID session vela and Val 
 
% Must be run in Workspace, then dies saved as dis.mat 
 
% created by Robin Preston 
%-------------------------------------------------------------------------- 
% Undamaged Case 
clear vela 
clear Vela 
clear xdd1 
clear xd1 
clear xdd2 
clear xd2 
clear x 
clear xd 
clear xdd 
 
vel1  = idsim(acc1,vel_1); 
vel2  = idsim(acc2,vel_2); 
vel3  = idsim(acc3,vel_3); 
vel4  = idsim(acc4,vel_4); 
vel5  = idsim(acc5,vel_5); 
vel6  = idsim(acc6,vel_6); 
vel7  = idsim(acc7,vel_7); 
vel8  = idsim(acc8,vel_8); 
vel9  = idsim(acc9,vel_9); 
vel10 = idsim(acc10,vel_10); 
vel11 = idsim(acc11,vel_11); 
vel12 = idsim(acc12,vel_12); 
 
xdd1 = [acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8 acc9 acc10 acc11 acc12]'; 
xd1  = [vel1 vel2 vel3 vel4 vel5 vel6 vel7 vel8 vel9 vel10 vel11 vel12]'; 
 
CC = zeros(12, 20001); 
for k = 1:20001 
    CC(:,k)=inv(K1)*[FF(:,k)-C1*xd1(:,k)-M1*xdd1(:,k)]; 
end 
 
% Damage Case 
Vel1  = idsim(Acc1,Vel_1); 
Vel2  = idsim(Acc2,Vel_2); 
Vel3  = idsim(Acc3,Vel_3); 
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Vel4  = idsim(Acc4,Vel_4); 
Vel5  = idsim(Acc5,Vel_5); 
Vel6  = idsim(Acc6,Vel_6); 
Vel7  = idsim(Acc7,Vel_7); 
Vel8  = idsim(Acc8,Vel_8); 
Vel9  = idsim(Acc9,Vel_9); 
Vel10 = idsim(Acc10,Vel_10); 
Vel11 = idsim(Acc11,Vel_11); 
Vel12 = idsim(Acc12,Vel_12); 
 
xdd2 = [Acc1 Acc2 Acc3 Acc4 Acc5 Acc6 Acc7 Acc8 Acc9 Acc10 Acc11 Acc12]'; 
xd2  = [Vel1 Vel2 Vel3 Vel4 Vel5 Vel6 Vel7 Vel8 Vel9 Vel10 Vel11 Vel12]'; 
 
CCC = zeros(12, 20001); 
for k = 1:20001 
    CCC(:,k)=inv(K2)*[FF(:,k+20000)-C2*xd2(:,k)-M2*xdd2(:,k)]; 
end 
 
% Combine Data 
xdd = [xdd1(:,1:length(xdd1)-1) xdd2(:,:)]; 
 
xd = [xd1(:,1:length(xd1)-1) xd2(:,:)]; 
 
x= [CC(:,1:length(CC)-1) CCC(:,:)]; 
 
%=============================================================
%============================================================= 
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%=============================================================
%============================================================= 
% Generate Model Data for Simulation Model 
% Creates individual displacement and velocity vectors to be inputted into 
% System Identification Models 
 
% Created by Robin Preston 
%-------------------------------------------------------------------------- 
xd1=xd(1,1:20001)'; 
xd2=xd(2,1:20001)'; 
xd3=xd(3,1:20001)'; 
xd4=xd(4,1:20001)'; 
xd5=xd(5,1:20001)'; 
xd6=xd(6,1:20001)'; 
xd7=xd(7,1:20001)'; 
xd8=xd(8,1:20001)'; 
xd9=xd(9,1:20001)'; 
xd10=xd(10,1:20001)'; 
xd11=xd(11,1:20001)'; 
xd12=xd(12,1:20001)'; 
xdd1=xdd(1,1:20001)'; 
xdd2=xdd(2,1:20001)'; 
xdd3=xdd(3,1:20001)'; 
xdd4=xdd(4,1:20001)'; 
xdd5=xdd(5,1:20001)'; 
xdd6=xdd(6,1:20001)'; 
xdd7=xdd(7,1:20001)'; 
xdd8=xdd(8,1:20001)'; 
xdd9=xdd(9,1:20001)'; 
xdd10=xdd(10,1:20001)'; 
xdd11=xdd(11,1:20001)'; 
xdd12=xdd(12,1:20001)'; 
Xdd1=xdd(1,20002:40001)'; 
Xdd2=xdd(2,20002:40001)'; 
Xdd3=xdd(3,20002:40001)'; 
Xdd4=xdd(4,20002:40001)'; 
Xdd5=xdd(5,20002:40001)'; 
Xdd6=xdd(6,20002:40001)'; 
Xdd7=xdd(7,20002:40001)'; 
Xdd8=xdd(8,20002:40001)'; 
Xdd9=xdd(9,20002:40001)'; 
Xdd10=xdd(10,20002:40001)'; 
Xdd11=xdd(11,20002:40001)'; 
Xdd12=xdd(12,20002:40001)'; 
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Xd1=xd(1,20002:40001)'; 
Xd2=xd(2,20002:40001)'; 
Xd3=xd(3,20002:40001)'; 
Xd4=xd(4,20002:40001)'; 
Xd5=xd(5,20002:40001)'; 
Xd6=xd(6,20002:40001)'; 
Xd7=xd(7,20002:40001)'; 
Xd8=xd(8,20002:40001)'; 
Xd9=xd(9,20002:40001)'; 
Xd10=xd(10,20002:40001)'; 
Xd11=xd(11,20002:40001)'; 
Xd12=xd(12,20002:40001)'; 
 
%=============================================================
%============================================================= 
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%============================================================ 
%============================================================ 
% ADAPTIVE LMS FILTER 
% created by Robin Preston 
 
function [n,e,w] = ff(time,yk,n,e,w,x,m,u); 
%-------------------------------------------------------------------------- 
% Adaptive Filter 
w(m,1) = 1; 
 
for k =1 
    n(m,k)=w(m,k)*x(m,k); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k =2 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=3 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=4 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-3); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=5 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=6:(length(time)-1) 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4)+w(m,k)*x(m,k-5); 
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    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=length(time) 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4)+w(m,k)*x(m,k-5); 
    e(m,k) = yk(m,k)-n(m,k); 
end 
 
%============================================================ 
%============================================================ 
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%============================================================ 
%============================================================ 
% Defines Four-DOF system in state-space format 
 
% Created by Robin Preston 
 
function [y_prime] = mdof(t,y,M,C,K,F,time) 
%-------------------------------------------------------------------------- 
% System matrices -- State-space        
inv_mass = inv(M); 
 
A11 = zeros(4,4);    
A12 = eye(4,4); 
A21 = [-inv_mass*K]; 
A22 = [-inv_mass*C]; 
A= [A11  A12 
    A21  A22]; 
 
E  = eye(4,4); 
B1 = zeros(4,4); 
B2 = [-inv_mass*E]; 
B  = [B1 
      B2]; 
 
% Pull out current force vector -- uses linear interpolation for 
% values between points available in time history 
F_t = interp1(time,F',t)'; 
 
% Compute first derivative values at this time step.    
y_prime = A*y + B*F_t; 
 
%============================================================ 
%============================================================ 
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Phase II: 120 Degrees-of-Freedom 



 

 

93

%=============================================================
%============================================================= 
% Determining Response of 120-DOF of Benchmark Problem 
% Phase II Damage Pattern 1B: Web Simulated Data 
 
% Created by: Robin Preston 
 
%============================================================= 
% Input Variables 
%-------------------------------------------------------------------------- 
% Load Variable 
load RB 
force1 = force; 
K1 = K(1:12,1:12); 
M1 = M(1:12,1:12); 
accun=acc; 
load DP1B 
force2 = force; 
K2 = K(1:12,1:12); 
M2 = M(1:12,1:12); 
Acc=acc; 
 
% Degree of Freedom 
[ndof,ndof] = size(M1); 
 
% Damping 
Xil = 0.01; 
C1 = 2*Xil*(K1*M1)^(1/2); 
C2 = 2*Xil*(K2*M2)^(1/2); 
 
%============================================================= 
% Build K, M, and C matrices for filter.   
% All values based on benchmark problem 
%-------------------------------------------------------------------------- 
disp('Building Matrices...'); 
% Mass 
MM1 = 3200;                 %kg 
MM2 = 2300;                 %kg 
MM3 = 2300;                 %kg 
MM4 = 1600;                 %kg 
 
Io1 = 3333.33;              %kg-m^2 
Io2 = 2500.00;              %kg-m^2 
Io3 = 2500.00;              %kg-m^2 
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Io4 = 1666.67;              %kg-m^2 
 
% Build  Mass Matrix 
MM = [MM1  0  0  0  0  0  0  0  0  0  0  0   
      0  MM1  0  0  0  0  0  0  0  0  0  0   
      0  0 Io1  0  0  0  0  0  0  0  0  0   
      0  0  0  MM2  0  0  0  0  0  0  0  0   
      0  0  0  0  MM2  0  0  0  0  0  0  0   
      0  0  0  0  0 Io2  0  0  0  0  0  0   
      0  0  0  0  0  0  MM3  0  0  0  0  0   
      0  0  0  0  0  0  0  MM3  0  0  0  0   
      0  0  0  0  0  0  0   0 Io3 0  0  0 
      0  0  0  0  0  0  0   0  0 MM4  0  0 
      0  0  0  0  0  0  0   0  0  0 MM4  0 
      0  0  0  0  0  0  0   0  0  0 0 Io4]; 
   
% Stiffness Parameter 
KX1 = 106600000;            %N/m 
KX2 = 106600000;            %N/m 
KX3 = 106600000;            %N/m 
KX4 = 106600000;            %N/m 
 
KY1 = 67900000;             %N/m 
KY2 = 67900000;             %N/m 
KY3 = 67900000;             %N/m 
KY4 = 67900000;             %N/m 
 
Ko1 = 232000000;            %N/m           
Ko2 = 232000000;            %N/m 
Ko3 = 232000000;            %N/m 
Ko4 = 232000000;            %N/m 
 
% Build Stiffness Matrix Components 
KK = zeros(12, 12); 
 
for m = 1 
    KK(m,m) = KX1+KX2; 
    KK(m+3,m)=-KX1; 
    KK(m,m+3)=-KX1; 
end 
for m = 4 
    KK(m,m) = KX1+KX2; 
    KK(m+3,m)=-KX1; 
    KK(m,m+3)=-KX1; 
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end 
for m = 7 
    KK(m,m) = KX1+KX2; 
    KK(m+3,m)=-KX1; 
    KK(m,m+3)=-KX1; 
end 
for m=10 
    KK(m,m)=KX4; 
end 
for m = 2 
    KK(m,m) = KY1+KY2; 
    KK(m+3,m)=-KY1; 
    KK(m,m+3)=-KY1; 
end 
for m = 5 
    KK(m,m) = KY1+KY2; 
    KK(m+3,m)=-KY1; 
    KK(m,m+3)=-KY1; 
end 
for m = 8 
    KK(m,m) = KY1+KY2; 
    KK(m+3,m)=-KY1; 
    KK(m,m+3)=-KY1; 
end 
for m=11 
    KK(m,m) = KY4; 
end 
for m = 3 
    KK(m,m) = Ko1+Ko2; 
    KK(m+3,m)=-Ko1; 
    KK(m,m+3)=-Ko1; 
end 
for m = 6 
    KK(m,m) = Ko1+Ko2; 
    KK(m+3,m)=-Ko1; 
    KK(m,m+3)=-Ko1; 
end 
for m = 9 
    KK(m,m) = Ko1+Ko2; 
    KK(m+3,m)=-Ko1; 
    KK(m,m+3)=-Ko1; 
end 
for m = 12 
    KK(m,m) = Ko4; 
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end 
 
% Build Damping Matrix 
CC = 2*Xil*(KK*MM)^(1/2); 
 
%============================================================= 
% Time Vector and Force Matrix 
%-------------------------------------------------------------------------- 
t       = 40; 
t_1     = 20;                       %seconds  pt where stiffness changes 
dt      = 0.001;                    %seconds 
 
time   = 0:dt:t; 
t_span1 = 0:dt:t_1; 
t_span2 = t_1:dt:t; 
 
f = zeros(1,20001); 
F  = [force(:,1)'; force(:,2)'; f; force(:,3)'; force(:,4)'; f; force(:,5)'; force(:,6)'; f; force(:,7)'; 
force(:,8)'; f]; 
F2 = [force2(:,1)'; force2(:,2)'; f; force2(:,3)'; force2(:,4)'; f; force2(:,5)'; force2(:,6)'; f; 
force2(:,7)'; force2(:,8)'; f]; 
 
%============================================================= 
% Load Data 
%-------------------------------------------------------------------------- 
FF = [F F2(:,2:length(F2))]; 
 
 
% load XXun1; 
% load XXdun1; 
% load XXddun1; 
 
load XXun1extra; 
load XXdun1extra; 
load XXddun1extra; 
 
%============================================================= 
% Adaptive LMS Filter 
%-------------------------------------------------------------------------- 
disp('Running Adaptive LMS Filter'); 
% Filter Variables 
u      = [.5;.5;1000;10;10;1000;10;10;1000;10;10;1000]; 
 
m      = 6;                 %Number of Taps 
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% Run Filter Function 
yk = zeros(12, length(time)); 
n  = zeros(12, length(time)); 
e  = zeros(12, length(time)); 
w  = zeros(12, length(time)); 
for k = 1:length(t_span1) 
    yk(:,k) = FF(:,k)-MM(:,:)*xdd(:,k)-KK(:,:)*x(:,k)-CC(:,:)*xd(:,k); 
end 
for k = 20002:length(time) 
    yk(:,k) = FF(:,k)-MM(:,:)*xdd(:,k)-KK(:,:)*x(:,k)-CC(:,:)*xd(:,k); 
end 
 
for m = 1: 12 
    [n,e,w] = ff(time,yk,n,e,w,x,m,u); 
end 
 
%============================================================= 
% Calculate Change in Alpha 
%-------------------------------------------------------------------------- 
 warning off MATLAB:divideByZero 
 warning off MATLAB:singularMatrix 
 disp('Calculating Alpha Values...'); 
 
 
KKK = [KX1 KY1 Ko1 KX2 KY2 Ko2 KX3 KY3 Ko3 KX4 KY4 Ko4]; 
   
    g1  = 0.85*max(x(1,:)); 
    g2  = 0.85*max(x(2,:)); 
    g3  = 0.95*max(x(3,:)); 
    g4  = 0.85*max(-x(1,:)+x(7,:)); 
    g5  = 0.85*max(-x(2,:)+x(8,:)); 
    g6  = 0.90*max(-x(3,:)+x(9,:)); 
    g7  = 0.85*max(-x(4,:)+x(10,:)); 
    g8  = 0.85*max(-x(5,:)+x(11,:)); 
    g9  = 1.10*max(-x(6,:)+x(12,:)); 
    g10  = 0.85*max(x(10,:)-x(7,:)); 
    g11  = 0.85*max(x(11,:)-x(8,:)); 
    g12  = 0.95*max(x(12,:)-x(9,:)); 
 
 
Alpha = zeros(12,length(time)); 
for k = 2:length(time) 
    for m = 10:12 
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        Alpha(m,k) = yk(m,k)/((x(m,k)-x(m-3,k))*KKK(1,m)); 
    end 
    for m = 7:9 
        Alpha(m,k) = (yk(m,k)-[Alpha(m+3,k)*(x(m,k)-x(m+3,k))])/((-x(m-
3,k)+x(m,k))*KKK(1,m)); 
    end 
     
    for m = 4:6 
        Alpha(m,k) = (yk(m,k)-[Alpha(m+3,k)*(x(m,k)-x(m+3,k))])/((-x(m-
3,k)+x(m,k))*KKK(1,m)); 
    end 
    for m = 1:3 
        Alpha(m,k) = (yk(m,k)-Alpha(m+3,k)*(x(m,k)-x(m+3,k)))/((x(m,k))*KKK(1,m)); 
    end 
end 
 
for k = 2:length(time) 
    for m = 1 
        if abs(x (m,k)) < g1 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 2 
        if abs(x (m,k)) < g2 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
   for m = 3 
        if abs(x (m,k)) < g3 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m =4 
        if abs(-x(m-3,k)+x(m,k)) < g4 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 5 
        if abs(-x(m-3,k)+x(m,k)) < g5 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 6 
        if abs(-x(m-3,k)+x(m,k)) < g6 



 

 

99

            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 7 
        if abs(-x(m-3,k)+x(m,k)) < g7 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 8 
        if abs(-x(m-3,k)+x(m,k)) < g8 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
    for m = 9 
        if abs(-x(m-3,k)+x(m,k)) < g9 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
   for m = 10 
        if abs(x(m,k)-x(m-3,k)) < g10 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
     for m = 11 
        if abs(x(m,k)-x(m-3,k)) < g11 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
     for m = 12 
        if abs(x(m,k)-x(m-3,k)) < g12 
            Alpha(m,k) = Alpha(m,k-1); 
        end 
    end 
end 
 
plot(time, Alpha) 
xlabel('Time (sec)') 
ylabel('Percent Change in Alpha') 
grid 
 
%=============================================================
%============================================================= 
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%=============================================================
%============================================================= 
% MANIPULATION OF ACCELERATION DATA 
% Derive Velocity and Displacement of Each Time Step 
% Derive Response in rotational DOF 
 
% created by Robin Preston 
%-------------------------------------------------------------------------- 
%  acc      =  simulated acceleration time-history. 
%              It is a Nt by Nmdof array: 
%              Nt    =  number of time steps 
%              Nmdof =  number of measured dof 
%              ============================================== 
%              column number (x-coordinate, y-coordinate): 
%              7 (   0, 2.5)  8 (1.25, 2.5)  9 ( 2.5, 2.5) 
%              4 (   0,1.25)  5 (1.25,1.25)  6 ( 2.5,1.25) 
%              1 (   0,   0)  2 (1.25,   0)  3 ( 2.5,   0) 
%              ============================================== 
%              for each floor, sensors are located at columns  
%              2, 6, 8 and 4. 
%              acc(:,1)  - floor 1 of column 2 in x-direction 
%              acc(:,2)  - floor 1 of column 6 in y-direction 
%              acc(:,3)  - floor 1 of column 8 in x-direction 
%              acc(:,4)  - floor 1 of column 4 in y-direction 
%              acc(:,5)  - floor 2 of column 2 in x-direction 
%              acc(:,6)  - floor 2 of column 6 in y-direction 
%              acc(:,7)  - floor 2 of column 8 in x-direction 
%              acc(:,8)  - floor 2 of column 4 in y-direction 
%              acc(:,9)  - floor 3 of column 2 in x-direction 
%              acc(:,10) - floor 3 of column 6 in y-direction 
%              acc(:,11) - floor 3 of column 8 in x-direction 
%              acc(:,12) - floor 3 of column 4 in y-direction 
%              acc(:,13) - floor 4 of column 2 in x-direction 
%              acc(:,14) - floor 4 of column 4 in y-direction 
%              acc(:,15) - floor 4 of column 6 in x-direction 
%              acc(:,16) - floor 4 of column 8 in y-direction 
%-------------------------------------------------------------------------- 
 
% Calculate Acceleration for 12 DOF for Undamaged 
load Case1Undamaged 
 
acc1  = (acc(:,3)+acc(:,1))/2; 
acc2  = (acc(:,4)+acc(:,2))/2; 
acc3  = (acc(:,3)-acc(:,1))/2.5; 
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acc4  = (acc(:,7)+acc(:,5))/2; 
acc5  = (acc(:,8)+acc(:,6))/2; 
acc6  = (acc(:,7)-acc(:,5))/2.5; 
acc7  = (acc(:,11)+acc(:,9))/2; 
acc8  = (acc(:,12)+acc(:,10))/2; 
acc9  = (acc(:,11)-acc(:,9))/2.5; 
acc10 = (acc(:,15)+acc(:,13))/2; 
acc11 = (acc(:,16)+acc(:,14))/2; 
acc12 = (acc(:,15)-acc(:,13))/2.5; 
 
% Calculate Acceleration for 12 DOF for Damage Case 
load Case1Damage1 
 
Acc1  = (acc(:,3)+acc(:,1))/2; 
Acc2  = (acc(:,4)+acc(:,2))/2; 
Acc3  = (acc(:,3)-acc(:,1))/2.5; 
Acc4  = (acc(:,7)+acc(:,5))/2; 
Acc5  = (acc(:,8)+acc(:,6))/2; 
Acc6  = (acc(:,7)-acc(:,5))/2.5; 
Acc7  = (acc(:,11)+acc(:,9))/2; 
Acc8  = (acc(:,12)+acc(:,10))/2; 
Acc9  = (acc(:,11)-acc(:,9))/2.5; 
Acc10 = (acc(:,15)+acc(:,13))/2; 
Acc11 = (acc(:,16)+acc(:,14))/2; 
Acc12 = (acc(:,15)-acc(:,13))/2.5; 
 
%=============================================================
%============================================================= 
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%=============================================================
%============================================================= 
% Model Simulation Using Models from System ID session vela and Val 
 
% Must be run in Workspace, then dies saved as dis.mat 
 
% created by Robin Preston 
%-------------------------------------------------------------------------- 
% Undamaged Case 
clear vela 
clear Vela 
clear xdd1 
clear xd1 
clear xdd2 
clear xd2 
clear x 
clear xd 
clear xdd 
 
vel1  = idsim(acc1,vel_1); 
vel2  = idsim(acc2,vel_2); 
vel3  = idsim(acc3,vel_3); 
vel4  = idsim(acc4,vel_4); 
vel5  = idsim(acc5,vel_5); 
vel6  = idsim(acc6,vel_6); 
vel7  = idsim(acc7,vel_7); 
vel8  = idsim(acc8,vel_8); 
vel9  = idsim(acc9,vel_9); 
vel10 = idsim(acc10,vel_10); 
vel11 = idsim(acc11,vel_11); 
vel12 = idsim(acc12,vel_12); 
 
xdd1 = [acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8 acc9 acc10 acc11 acc12]'; 
xd1  = [vel1 vel2 vel3 vel4 vel5 vel6 vel7 vel8 vel9 vel10 vel11 vel12]'; 
 
CC = zeros(12, 20001); 
for k = 1:20001 
    CC(:,k)=inv(K1)*[FF(:,k)-C1*xd1(:,k)-M1*xdd1(:,k)]; 
end 
 
% Damage Case 
Vel1  = idsim(Acc1,Vel_1); 
Vel2  = idsim(Acc2,Vel_2); 
Vel3  = idsim(Acc3,Vel_3); 
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Vel4  = idsim(Acc4,Vel_4); 
Vel5  = idsim(Acc5,Vel_5); 
Vel6  = idsim(Acc6,Vel_6); 
Vel7  = idsim(Acc7,Vel_7); 
Vel8  = idsim(Acc8,Vel_8); 
Vel9  = idsim(Acc9,Vel_9); 
Vel10 = idsim(Acc10,Vel_10); 
Vel11 = idsim(Acc11,Vel_11); 
Vel12 = idsim(Acc12,Vel_12); 
 
xdd2 = [Acc1 Acc2 Acc3 Acc4 Acc5 Acc6 Acc7 Acc8 Acc9 Acc10 Acc11 Acc12]'; 
xd2  = [Vel1 Vel2 Vel3 Vel4 Vel5 Vel6 Vel7 Vel8 Vel9 Vel10 Vel11 Vel12]'; 
 
CCC = zeros(12, 20001); 
for k = 1:20001 
    CCC(:,k)=inv(K2)*[FF(:,k+20000)-C2*xd2(:,k)-M2*xdd2(:,k)]; 
end 
 
% Combine Data 
xdd = [xdd1(:,1:length(xdd1)-1) xdd2(:,:)]; 
 
xd = [xd1(:,1:length(xd1)-1) xd2(:,:)]; 
 
x= [CC(:,1:length(CC)-1) CCC(:,:)]; 
 
%=============================================================
%============================================================= 
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%=============================================================
%============================================================= 
% Generate Model Data for Simulation Model 
% Creates individual displacement and velocity vectors to be inputted into 
% System Identification Models 
 
% Created by Robin Preston 
%-------------------------------------------------------------------------- 
xd1=xd(1,1:20001)'; 
xd2=xd(2,1:20001)'; 
xd3=xd(3,1:20001)'; 
xd4=xd(4,1:20001)'; 
xd5=xd(5,1:20001)'; 
xd6=xd(6,1:20001)'; 
xd7=xd(7,1:20001)'; 
xd8=xd(8,1:20001)'; 
xd9=xd(9,1:20001)'; 
xd10=xd(10,1:20001)'; 
xd11=xd(11,1:20001)'; 
xd12=xd(12,1:20001)'; 
xdd1=xdd(1,1:20001)'; 
xdd2=xdd(2,1:20001)'; 
xdd3=xdd(3,1:20001)'; 
xdd4=xdd(4,1:20001)'; 
xdd5=xdd(5,1:20001)'; 
xdd6=xdd(6,1:20001)'; 
xdd7=xdd(7,1:20001)'; 
xdd8=xdd(8,1:20001)'; 
xdd9=xdd(9,1:20001)'; 
xdd10=xdd(10,1:20001)'; 
xdd11=xdd(11,1:20001)'; 
xdd12=xdd(12,1:20001)'; 
Xdd1=xdd(1,20002:40001)'; 
Xdd2=xdd(2,20002:40001)'; 
Xdd3=xdd(3,20002:40001)'; 
Xdd4=xdd(4,20002:40001)'; 
Xdd5=xdd(5,20002:40001)'; 
Xdd6=xdd(6,20002:40001)'; 
Xdd7=xdd(7,20002:40001)'; 
Xdd8=xdd(8,20002:40001)'; 
Xdd9=xdd(9,20002:40001)'; 
Xdd10=xdd(10,20002:40001)'; 
Xdd11=xdd(11,20002:40001)'; 
Xdd12=xdd(12,20002:40001)'; 
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Xd1=xd(1,20002:40001)'; 
Xd2=xd(2,20002:40001)'; 
Xd3=xd(3,20002:40001)'; 
Xd4=xd(4,20002:40001)'; 
Xd5=xd(5,20002:40001)'; 
Xd6=xd(6,20002:40001)'; 
Xd7=xd(7,20002:40001)'; 
Xd8=xd(8,20002:40001)'; 
Xd9=xd(9,20002:40001)'; 
Xd10=xd(10,20002:40001)'; 
Xd11=xd(11,20002:40001)'; 
Xd12=xd(12,20002:40001)'; 
 
%=============================================================
%============================================================= 
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%============================================================ 
%============================================================ 
% ADAPTIVE LMS FILTER 
% created by Robin Preston 
 
function [n,e,w] = ff(time,yk,n,e,w,x,m,u); 
%-------------------------------------------------------------------------- 
% Adaptive Filter 
w(m,1) = 1; 
 
for k =1 
    n(m,k)=w(m,k)*x(m,k); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k =2 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=3 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=4 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-3); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=5 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4); 
    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=6:(length(time)-1) 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4)+w(m,k)*x(m,k-5); 
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    e(m,k) = yk(m,k)-n(m,k); 
    w(m,k+1) = w(m,k)+2*u(m,1)*e(m,k)*x(m,k); 
end 
 
for k=length(time) 
    n(m,k)=w(m,k)*x(m,k)+w(m,k)*x(m,k-1)+w(m,k)*x(m,k-2)+w(m,k)*x(m,k-
3)+w(m,k)*x(m,k-4)+w(m,k)*x(m,k-5); 
    e(m,k) = yk(m,k)-n(m,k); 
end 
 
%============================================================ 
%============================================================ 
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%============================================================ 
%============================================================ 
% Defines Four-DOF system in state-space format 
 
% Created by Robin Preston 
 
function [y_prime] = mdof(t,y,M,C,K,F,time) 
%-------------------------------------------------------------------------- 
% System matrices -- State-space        
inv_mass = inv(M); 
 
A11 = zeros(4,4);    
A12 = eye(4,4); 
A21 = [-inv_mass*K]; 
A22 = [-inv_mass*C]; 
A= [A11  A12 
    A21  A22]; 
 
E  = eye(4,4); 
B1 = zeros(4,4); 
B2 = [-inv_mass*E]; 
B  = [B1 
      B2]; 
 
% Pull out current force vector -- uses linear interpolation for 
% values between points available in time history 
F_t = interp1(time,F',t)'; 
 
% Compute first derivative values at this time step.    
y_prime = A*y + B*F_t; 
 
%============================================================ 
%============================================================ 
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APPENDIX B  
 

GRAPHICAL RESULTS OF ALL SCENARIOS 
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Single Degree of Freedom with Harmonic Force (No Error) 
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Single Degree of Freedom with Harmonic Force and Added Error 
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Single Degree of Freedom with Random Force and Added Error 
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Three Degree of Freedom with Constant Force (No Error) 
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Three Degree of Freedom with Harmonic Force (No Error) 
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Three Degree Freedom with Harmonic Force and Added Error 
 
Three Degree of Freedom with Random Force (No Error) 
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Three Degree of Freedom with Random Error and Added Error 
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Four Degree of Freedom with Constant Force and Added Error 
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Four Degree of Freedom with Harmonic Force (No Error) 



 

 

119

 
Four Degree of Freedom with Harmonic Force and Added Error 
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Four Degree of Freedom with Random Force (No Error) 
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Four Degree of Freedom with Random Force and Added Error 
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12 DOF in Case 1 and Damage Pattern 1: Own Generated Data with No Error 
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12 DOF in Case 1 and Damage Pattern 1: Own Generated Data with Added Error 
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12 DOF in Case 1 and Damage Pattern 2: Own Generated Data with No Error 
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12 DOF in Case 1 and Damage Pattern 2: Own Generated Data with Added Error 
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12 DOF in Case 1 and Damage Pattern 3: Own Generated Data with No Error 
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12 DOF in Case 1 and Damage Pattern 3: Own Generated Data with Added Error 
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12 DOF in Case 1 and Damage Pattern 4: Own Generated Data with No Error 
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12 DOF in Case 1 and Damage Pattern 4: Own Generated Data with Added Error 
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12 DOF in Case 1 and Damage Pattern 4: Data from Benchmark Problem 
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12 DOF in Case 3 and Damage Pattern 1: Own Generated Data with No Error  
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12 DOF in Case 3 and Damage Pattern 1: Own Generated Data with Added Error  
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12 DOF in Case 3 and Damage Pattern 1: Data with Benchmark Problem  
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12 DOF in Case 3 and Damage Pattern 2: Own Generated Data with No Error  
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12 DOF in Case 3 and Damage Pattern 2: Own Generated Data with Added Error  
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12 DOF in Case 3 and Damage Pattern 3: Own Generated Data with No Error  
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12 DOF in Case 3 and Damage Pattern 3: Own Generated Data with Added Error 
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12 DOF in Case 3 and Damage Pattern 3: Data with Benchmark Problem 
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12 DOF in Case 3 and Damage Pattern 4: Own Generated Data with No Error  
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12 DOF in Case 3 and Damage Pattern 4: Own Generated Data with Added Error  
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12 DOF in Case 4 and Damage Pattern 1: Own Generated Data with No Error  
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12 DOF in Case 4 and Damage Pattern 1: Own Generated Data with Added Error  
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12 DOF in Case 4 and Damage Pattern 1: Data from Benchmark Problem  



 

 

144

 
12 DOF in Case 4 and Damage Pattern 2: Own Generated Data with No Error  
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12 DOF in Case 4 and Damage Pattern 2: Own Generated Data with Added Error  
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12 DOF in Case 4 and Damage Pattern 2: Data from Benchmark Problem  



 

 

147

 
12 DOF in Case 4 and Damage Pattern 3: Own Generated Data with No Error  
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12 DOF in Case 4 and Damage Pattern 3: Own Generated Data with Added Error  
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12 DOF in Case 4 and Damage Pattern 3: Data from Benchmark Problem  
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12 DOF in Case 4 and Damage Pattern 4: Own Generated Data with No Error  
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12 DOF in Case 4 and Damage Pattern 4: Own Generated Data with Added Error  
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12 DOF in Case 4 and Damage Pattern 4: Data from Benchmark Problem  
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120 Degree of Freedom Phase II:  Case 1   



 

 

154

 
120 Degree of Freedom Phase II:  Case 1 showing first 6 DOFs 
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120 Degree of Freedom Phase II:  Case 2 
 
 
 
 
 
 
 
 
 
 
 



 

 

156

 
 
120 Degree of Freedom Phase II:  Case 3 showing individual damage 
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120 Degree of Freedom Phase II:  Case 3 showing individual damage 
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120 Degree of Freedom Phase II:  Case 3 Unbraced 
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120 Degree of Freedom Phase II:  Case3 Unbraced showing first 3 DOFs 
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120 Degree of Freedom Phase II:  Blind Case 1 
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120 Degree of Freedom Phase II:  Blind Case 2 
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120 Degree of Freedom Phase II:  Blind Case 2 showing first 3 DOFs 
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TABLES AND CHARTS 
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Single DOF Convergence Time and Percent Change in Alpha 
DOF 
(1) 

Damage 
(2) 

Case 
(3) 

Error
(4) 

Method 
(5) 

Time 
(6) 

% 
(7) 

1 1 Constant No Own 2.5 0.45 
1 1 Constant Yes Own 2.9 0.59 
1 1 Harmonic No Own 1.9 0.45 
1 1 Harmonic Yes Own 1.8 0.33 
1 1 Random No Own 0.6 0.47 
1 1 Random Yes Own 0.8 0.42 

 
 
 

Four DOF Convergence Time and Percent Change in 
Alpha 
DOF Damage Case Error Method 1 DOF 

 (1) (2)  (3)  (4)  (5)  
Time 
(6)  

% 
(7) 

4 1 Constant No Own 2.6 0.45 
4 1 Constant Yes Own 1.3 0.46 
4 1 Harmonic No Own 1.2 0.45 
4 1 Harmonic Yes Own 2.4 0.43 
4 1 Random No Own 1.3 0.45 
4 1 Random Yes Own 1.5 0.49 

 
 
 

Three DOF Convergence Time and Percent Change in 
Alpha        
DOF Damage Case Error Method  1 DOF 2 DOF 3 DOF 

 (1) (2) (3) (4) (5) 
Time
(6)  

% 
(7) 

Time 
(8)  

% 
(9) 

Time
(10) 

% 
(11)

3 1 Constant No Own 2.2 0.45 4.6 0.71 0.6 0.65
3 1 Constant Yes Own 3.1 0.47 4.4 0.74 0.05 0.69
3 1 Harmonic No Own 3.3 0.43 4.4 0.7 0.05 0.65
3 1 Harmonic Yes Own 1.9 0.43 4.4 0.7 0.05 0.64
3 1 Random No Own 0.3 0.46 0.2 0.72 0.05 0.65
3 1 Random Yes Own 0.4 0.48 0.4 0.72 0.05 0.65
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DOF Damage Case Error Method
Time % Time % Time % Time % Time % Time %

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17)
12 1 1 No Own 4.5 0.45 0.7 0.75 4.4 0.7
12 1 1 Yes Own 4.9 0.44 0.6 0.71 4.4 0.67
12 1 1 Yes Web 0.4 0.45 0.5 0.48 0.7 0.65
12 2 1 No Own 4.8 0.45 0.5 0.71 4.8 0.65 4.8 0.45 0.5 0.71 4.8 0.65
12 2 1 Yes Own 4.1 0.45 0.9 0.72 3.8 0.66 4.1 0.45 1.1 0.73 3.7 0.66
12 2 1 Yes Web 0.4 0.45 2.1 0.51 0.7 0.65 0.5 0.45 1.4 0.6 0.7 0.65
12 3 1 No Own 3.1 0.2
12 3 1 Yes Own 2.5 0.21
12 3 1 Yes Web 1.3 0.13
12 4 1 No Own 2.5 0.2 1.7 0.12
12 4 1 Yes Own 2.5 0.21 1.7 0.12
12 4 1 Yes Web 2.2 0.21 0.5 0.12
12 1 3 No Own 0.05 0.45 1.6 0.71 0.5 0.65
12 1 3 Yes Own 0.2 0.44 1.6 0.68 0.6 0.66
12 1 3 Yes Web 0.05 0.45 1.6 0.71 3 0.65
12 2 3 No Own 0.05 0.45 0.9 0.71 1.9 0.65 0.05 0.45 1.1 0.71 3.5 0.64
12 2 3 Yes Own 2.1 0.44 0.7 0.68 2.1 0.64 0.7 0.45 1.5 0.69 4.5 0.69
12 2 3 Yes Web 0.8 0.45 0.9 0.71 0.2 0.65 0.7 0.45 0.9 0.71 0.5 0.65
12 3 3 No Own 1.5 0.19
12 3 3 Yes Own 0.5 0.2
12 3 3 Yes Web 0.5 0.2
12 4 3 No Own 1.5 0.2 2.9 0.12
12 4 3 Yes Own 0.5 0.2 2.1 0.14
12 4 3 Yes Web 1.5 0.19 2.1 0.12

Twelve DOF Convergece Time and Percent Change in Alpha: Phase I, Case 1 and 3
1 DOF 2 DOF 3 DOF 7 DOF 8 DOF 9 DOF
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DOF Damage Case Error Method
Time % Time % Time % Time % Time % Time %

12 1 4 No Own 0.05 0.45 1 0.71 0.4 0.65
12 1 4 Yes Own 0.05 0.45 2.4 0.67 1.5 0.67
12 1 4 Yes Web 0.05 0.45 1 0.71 0.6 0.65
12 2 4 No Own 0.1 0.45 1.8 0.71 1.1 0.65 2.1 0.45 0.9 0.71 1.9 0.65
12 2 4 Yes Own 0.1 0.44 1.3 0.68 1.1 0.63 2.3 0.46 1.1 0.68 2.3 0.65
12 2 4 Yes Web 0.05 0.45 0.9 0.71 1.1 0.65 0.1 0.45 1.1 0.71 0.6 0.65
12 3 4 No Own 0.5 0.19
12 3 4 Yes Own 0.6 0.2
12 3 4 Yes Web 0.5 0.19
12 4 4 No Own 1.5 0.19 0.9 0.12
12 4 4 Yes Own 1.5 0.19 3 0.12
12 4 4 Yes Web 0.5 0.2 0.9 0.12

120 1 Yes Web
120 2 Yes Web 4.9 0.07 11.1 0.05
120 3 Yes Web 2.1 0.11
120 3u Yes Web 3.5 0.1
120 Blind 1 Yes Web 3.5 0.11
120 Blind 2 Yes Web 4.1 0.11

Twelve DOF Convergece Time and Percent Change in Alpha: Phase I, Case 4 and Phase II
1 DOF 2 DOF 3 DOF 7 DOF 8 DOF 9 DOF

 



167 

  

 
VITA 

 
 

Name:   Robin Huckaby Preston 
 

Address:  c/o Dr. Luciana Barroso 
   3136 TAMU College Station, TX  77843-3136   

 
Email Address: robinpreston@hotmail.com 

 
Education:  B.S. Civil Engineering, Texas Tech University, 2002 

  M.S. Civil Engineering, Texas A&M University, 2006 
 

 


