
 

 

DEVELOPING METHODS FOR ANTAGONIZING TNF-α AND IL-1β 

IN THE CENTRAL NERVOUS SYSTEM 

 

 

 

 

A Senior Honors Thesis 

by 

ELIZABETH ASHLEY HARDIN 

 

 

Submitted to the Office of Honors Programs 
& Academic Scholarships 

Texas A&M University 
In partial fulfillment of the requirements of the 

 
UNIVERSITY UNDERGRADUATE 

RESEARCH FELLOWS 
 

 

April 2006 
 

Major: Biology/Genetics 



 

DEVELOPING METHODS FOR ANTAGONIZING TNF-α AND IL-1β 

IN THE CENTRAL NERVOUS SYSTEM  

A Senior Honors Thesis 

by 

ELIZABETH ASHLEY HARDIN 
 

 

 

Submitted to the Office of Honors Programs 
& Academic Scholarships 

Texas A&M University 
In partial fulfillment for the designation of 

 
 

UNIVERSITY UNDERGRADUATE  
RESEARCH FELLOWS 

Approved as to style and content by: 
 
 
---------------------------------------------     ------------------------------------------ 

      Mary Meagher             Edward A. Funkhouser 
        (Fellows Advisor)           (Executive Director) 
 
 

April 2006 
 

Major: Biology/Genetics 
 
 
 
 
 
 

 

 



iii 

ABSTRACT 

 

Developing Methods for Antagonizing TNF-α and IL-1β in the Central 

Nervous System 

 

Elizabeth Ashley Hardin 
Department of Psychology 

Texas A&M University 
 

Fellows Advisor: Dr. Mary Meagher 
Department of Psychology 

 
 

Stressful life events have been linked to the onset, susceptibility, and even 

progression of neurodegenerative diseases such as multiple sclerosis (MS).  

Theiler’s murine encephalomyelitis virus (TMEV) infection, a well-characterized 

animal model of MS, is used in our laboratory to investigate the interaction 

between social stressors and disease development.  Social disruption (SDR), a 

model of social stress used in our laboratory, appears to worsen Theiler’s virus 

infection through excessive inflammation.  Prior findings from our laboratory 

indicate that pro-inflammatory cytokine IL-6 is partially mediating the negative 

effects of SDR in the development of Theiler’s virus infection.  In order to 

examine the role of other pro-inflammatory cytokines, our objective was to 

develop techniques to block the cytokines TNF-α and IL-1β.  Prior studies have 

indicated stress-induced release of these cytokines (TNF-α and IL-1β) may 

mediate the adverse effects of disease development in subsequent immune 

challenges.  Balb/cJ mice were implanted with a permanent indwelling cannula in 



iv 

the left lateral ventricle of the brain and allowed to recover for one week prior to 

manipulations.  Once the animals recovered from cannulation surgery, 

neutralizing antibody to TNF-α or IL-1β was administered during the period of 

SDR.  Antibody-SDR treatments continued for one week.   Mice were sacrificed 

the morning following last day of SDR.  Brains and sera were collected to 

measure TNF-α or IL-1β levels.  Spleens were harvested to examine the 

development of glucocorticoid resistance (GCR), a hallmark of SDR, in the TNF-

α study only.  The ELISA assay was not sensitive enough to the tissue levels of 

TNF-α, therefore successful antagonism was undetectable.  In contrast, IL-1β 

was elevated during SDR; however, it appears that the antibody was only 

partially effective at the dose administered.  The GCR assay indicated that 

resistance occurred in antibody treated and control mice in the TNF-α study, 

signifying that antibody treatment does not interfere with the development of 

normal social stress effects.  Future studies are necessary to identify an effective 

blocking dose for the neutralizing antibody to IL-1β.  In addition, we also need to 

develop alternative assays, such as RT-PCR or an RNase protection assay, that 

are sensitive to the levels of TNF-α associated with SDR.
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I INTRODUCTION 

Numerous studies have established that chronic stress suppresses the ability 

of the immune system to respond to challenge and, thereby, increases 

vulnerability to opportunistic infection (Ader et al., 1991; Kiecolt-Glaser et al., 

1995).  Prior research also indicates that the onset, development, and even 

severity of neurodegenerative diseases are stress-related (Rosch, 1979; McGeer 

& McGeer, 1995; Njenga et al., 1997; Busciglio et al., 1998; Floyd, 1999; Nguyen 

et al., 2002).  Additionally, stressful life events and poor social support appear to 

play a role in the onset and progression of autoimmune diseases, such as 

rheumatoid arthritis (Curtis et al., 2005; Straub et al., 2005; Veldhuijzen van 

Zanten et al., 2005) and multiple sclerosis (MS) (Ackerman et al., 1998; Mohr et 

al., 2000).  Our laboratory has been using Theiler’s murine encephalomyelitis 

virus (TMEV) infection, an animal model of MS, to better understand the 

mechanisms that underlie the effects of stress in neurodegenerative diseases, 

such as MS.  Developing techniques to block cytokines will aid in our ability to 

determine these mechanisms. 

Theiler’s virus infection is a well-characterized animal model of MS that allows 

us to investigate central nervous system (CNS) inflammation as it relates to 

stress (Lipton, 1975; Oleszak et al., 2004).  Theiler’s virus infection induces a 

biphasic disease in susceptible strains of mice, such as the Balb/cJ strain used in 

these experiments.  The early acute phase of the disease is primarily CNS 

inflammatory and is characterized by the infection of central neurons and glia 

(astrocytes, microglia, and oligodendrocytes).  The chronic phase, which serves 
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as a model for MS, is primarily neuroinflammatory and demyelinating.  In order to 

develop the chronic phase of Theiler’s virus infection, the virus must remain in 

the CNS beyond the resolution of the acute phase (Aubert et al., 1987; Oleszak 

et al., 2004).  The chronic phase is characterized by massive mononuclear 

inflammatory infiltration, demyelinating lesions, and behavioral manifestations 

similar to MS (Lipton, 1975; Njenga et al., 1997; Oleszak et al., 2004).  

Previous studies in our laboratory investigated the impact of stress, restraint 

(RST) or social disruption (SDR), on the disease course of Theiler’s virus 

infection.  RST involves restraining mice in plastic syringes for a designated 

period of time (Sheridan et al., 1991; Campbell et al., 2001), whereas SDR 

involves introducing an intruder mouse into a cage of resident mice for a 

designated period of time (Avitsur et al., 2001; Stark et al., 2001).  These studies 

have demonstrated that stress exacerbates disease development in Theiler’s 

virus infection in both the acute and chronic phases of the disease (Johnson et 

al., 2004; Johnson et al., in press; Sieve et al., 2004).   

RST led to decreased CNS inflammation during acute infection, and 

increased behavioral manifestations of encephalitis, mortality rates, and viral 

titers (Campbell et al., 2001; Sieve et al., 2004).  The association between RST 

and decreased inflammation is further supported by studies using LPS (a 

bacterial endotoxin) induced endotoxemia, which also found that RST led to 

decreased inflammation (Padgett et al., 1998; Konstantinos et al., 2001; Quan et 

al., 2001).   In contrast to RST, SDR leads to an increase in systemic 
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inflammation in mice exposed to LPS (Quan et al., 2001), as well as central 

inflammation in Theiler’s virus infection (Johnson et al., 2004). 

Although RST and SDR cause divergent effects on inflammation, both 

stressors lead to exacerbations of Theiler’s virus infection.  Mice exposed to SDR 

developed a more severe disease course, greater inflammation, and were unable 

to clear Theiler’s virus from the CNS over time (Johnson et al., 2004).  As 

mentioned previously, the inability to clear the virus over time is necessary in 

developing chronic phase illness.  SDR also led to the development of 

glucocorticoid resistance (GCR), or the failure of immune cells to down-regulate 

in the presence of glucocorticoids (GC), whereas RST typically does not lead to 

GCR (Johnson et al., 2004; Avitsur et al., 2002; Quan et al., 2001).   

GCR develops in the macrophages of the spleen due to SDR, and leads to a 

dysregulation of pro-inflammatory cytokine function (Avitsur et al., 2002).  One 

function of corticosteroids is to mediate the innate immune response by 

suppressing the production and proliferation of pro-inflammatory cytokines (IL-6, 

IL-1β, and TNF-α) and enhancing the action of anti-inflammatory cytokines (IL-10 

and IL-4) (Angeli et al., 1999; Lew et al., 1988; Franchimont et al., 1999; Hart et 

al., 1990).  However, in SDR mice, increased inflammation and decreased viral 

clearance are found even though corticosteroid levels are elevated (Johnson et 

al., 2004).  These findings imply that the development of GCR may exacerbate 

the inflammatory response due to an immune challenge.  The development of 

GCR (and commensurate dysregulation of pro-inflammatory cytokines) in SDR 

mice may then be mediating the differential development of inflammation when 
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comparing RST and SDR (Quan et al., 2001; Johnson et al., 2004; Sieve et al., 

2004). 

However, pro-inflammatory cytokines may also mediate the development of 

GCR.  For example, elevated levels of IL-6 are associated with an increase in the 

expression of the beta subtype of the GC receptor (and down-regulation of the 

alpha subtype receptor).  The GC receptor subtype beta has been associated 

with the development of GCR (Necela et al., 2004).  Thus, elevated pro-

inflammatory cytokines may be related to the development of GCR, while GCR 

also results in the production of elevated pro-inflammatory cytokines.  The 

exacerbated inflammatory response associated with the development of GCR 

may then mediate previously noted impaired clearance of the virus, and other 

disease exacerbations (Johnson et al., 2004).  

The SDR-induced exacerbated inflammatory response with Theiler’s virus 

infection is not only associated with high circulating levels of corticosteroids and 

GCR (Quan et al., 2001; Johnson et al., 2004), but also elevated cytokine levels 

(Johnson et al., in press).  Others have shown that elevated levels of pro-

inflammatory cytokines are associated with an activation of the hypothalamic-

pituitary-adrenal (HPA) axis and the sympathetic nervous system in response to 

stress (Watkins et al., 1998).  Activation of the HPA-axis ultimately results in the 

release of GC from the adrenal glands, and the sympathetic nervous system 

releases catecholamines (norepinephrine and epinephrine) that control the 

activity of various immune organs such as the spleen and thymus (Felten et al., 

1998; Watkins et al., 1998).  
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Cytokines released in the brain and in the periphery serve to mediate the 

development of inflammatory reactions to stress or immune challenges (Watkins 

et al., 1998).  Cytokine mediated responses to stress are very similar to those 

seen with an immune challenge alone, such as viral infection or exposure to LPS 

(Dantzer et al., 1999; Watkins et al., 1998).  For example, cytokines alone have 

been found to cause weight loss, anorexia, decreased motor activity, 

hypersomnia, reduced interest in social activity, and anhedonia (or the loss of 

interest in normally pleasurable activities) (Barak, 2002a, 2002b; Pollack et al., 

2000).  Of interest to the current studies, the levels of pro-inflammatory cytokines 

(IL-6, IL-1β and TNF-α) are elevated in both the acute phase of Theiler’s virus 

infection (for a review see Oleszak et al., 2004), and separately in SDR (Avitsur 

et al., 2005; Stark et al., 2002).  

Because there is a correlation between stress-induced pro-inflammatory 

cytokine levels, the development of GCR, and worsening of Theiler’s virus 

disease development, our laboratory investigated the effect of blocking IL-6 on 

the development of GCR.  Based on the relationship between GCR and IL-6 

(Necela et al., 2004), it was postulated that IL-6 may induce GCR, and that 

blocking IL-6 would restore a normal response to GC in mice.  Then, 

normalization of GC sensitivity would lead to a less severe disease course.  

Antagonism of IL-6 did not affect the development of GCR.  However, the 

negative effects of SDR-induced Theiler’s virus infection were reversed (Johnson 

et al., in submission).  Therefore, IL-6 seems to be acting through a mechanism 

independent of this phenomenon.  The idea that stress-mediated inflammation of 
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the CNS and exacerbation of disease course may be caused by cytokine 

activation in response to stress is intriguing, and is the focus of ongoing work in 

our laboratory. 

The present studies seek to further examine the immunological mechanisms 

whereby stress has an effect on the disease course of subsequent immune 

challenges, and is the first of several subsequent studies.  In order to begin to 

elucidate the role of cytokines other than IL-6, we must first determine methods 

to block their action, as well as measure the effects of such antagonism.  This 

study is necessary in that it serves to evaluate whether or not SDR results in 

subsequent increases in pro-inflammatory cytokines TNF-α or IL-1β, and whether 

or not techniques used previously in our laboratory are effective in blocking these 

elevated levels.  The current studies will effectively lay the groundwork for future 

studies to investigate the action of these cytokines in mediating the adverse 

effects of stress on Theiler’s virus infection. 
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II GENERAL METHODS 

1.  Animals 

Male Balb/cJ mice were acquired from Jackson Labs (Bar Harbor, ME).  

Mice arrived from the breeder at post-natal day (pnd) 23 and were weighed and 

assigned to individual cages.  On pnd 24 mice were cannulated (see below).  

Following cannulation, mice continued to be individually housed for 48 h.  On pnd 

26, mice were placed in group-housing, 3/cage, counterbalanced by weight.  

Mice were maintained on a 12-h light/dark cycle (0500-h/ 1700-h) with ad libitum 

access to food and water, with the exception of the 2 h SDR sessions.   

Intruders for the SDR were retired male breeders, 6-to-8 mo of age, 

housed with sterilized females to increase territoriality and aggressive behavior.  

The intruders were selected based on latency to attack both peers and 

adolescents.  All intruders consistently attacked peers within 30 s and 

adolescents within 2 min on 3 separate occasions.  All animal care protocols 

were in accordance with NIH Guidelines for Care and Use of Laboratory Animals 

and were approved by the Texas A&M University Laboratory Animal Care and 

Use Committee (ULACC). 

2.  Cannulation surgery 

Mice were anesthetized with isoflurane gas (2-5%), heads shaved, eyes 

coated with petroleum jelly, and placed in a mouse adapted stereotaxic device 

fitted with a mouse nose cone (#51625, #51609, Stoelting, Wood Dale, IL).  The 

isoflurane delivery system was purchased from Vet Equip (#901806, Pleasanton, 

CA), and the gas recovery system was purchased from Surgivet (model AES, 
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Waukesha, WI).   An incision was made longitudinally along the midline of the 

skull and the skull was exposed (hemostats were not needed).  The periosteum 

was removed with a sterile cotton swab, and 2% lidocaine was applied to the 

wound.  Bregma was located and noted.  Rostral-caudal leveling was 

accomplished by measuring the vertical position (z plane) of lambda and bregma 

and ensuring that they were equalized.  The skull was swabbed dry, and the 

cannulation hole was drilled at +1 mm lateral to bregma and -.4 mm rostral to 

bregma over the left lateral ventricle (based on Paxinos & Franklin).  Guide 

cannulas (33g), purchased from Plastics One (Roanoke, VA, C315GS-2/SPC), 

were pre-cut to a depth of 1.75 mm, and implanted and secured with 

cyanoacrylic gel according the manufacturer’s suggestion.  Mice were then 

wrapped with bubble wrap to aid in insulation to combat hypothermia induced by 

anesthesia, and placed back in the home cage that was warmed over a heating 

pad.  Mice were monitored until fully awake and ambulatory.  Once ambulatory, 

bubble wrap was removed, and mice were returned to the animal colony.  For 

pain control post-surgery, mice were provided with water treated with Tylenol 

(325 mg/2000 mL).  To aid in recovery, mice were also provided with food 

softened with the Tylenol treated water in the cage.  Mice were allowed to 

recover approximately 6 d prior to any further procedures.   

3.  Social disruption (SDR) stress 

For the stressed mice, intruders were introduced into the cage of resident 

mice at dark cycle onset (1700 h) for a period of 2 h for a total of 6 SDR sessions 

the week prior to infection, beginning on pnd 30.  SDR occurred for 3 consecutive 
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sessions, then 1 night off, followed by 3 additional consecutive sessions (Avitsur 

et al., 2001; Stark et al., 2001), in a separate procedure room.  SDR sessions 

were monitored to ensure that the intruder attacked the residents and that the 

residents demonstrated submissive behaviors.  Intruders that did not attack 

within 10 min of session initiation were replaced, and the session continued for 

the remaining 2 h. 

4.  Sacrifice 

Mice were sacrificed the morning following the last session of SDR.  Each 

mouse was overdosed with ketamine (100mg/kg)/xylazine (5 mg/kg), and bled 

from the brachial artery.  Spleen, brain, and spinal cord were harvested 

appropriately and weighed.  Brains and spinal cords were flash frozen in liquid 

nitrogen, and stored at -80 ºC until an ELISA was performed. 

5.  Corticosteroid sensitivity assay 

On the sacrifice day, spleens were harvested to determine sensitivity of 

splenocytes to GC regulation (as per Stark et al., 2001).  Briefly, spleens were 

placed in ice-cold Hank’s balanced salt solution (HBSS), and mashed to obtain a 

single cell solution.  Red blood cells were then lysed (red blood cell lysis, Sigma, 

St. Louis, MO), followed by a wash of HBSS+10% heat inactivated fetal bovine 

serum (FBS-HI, Equitech, Kerrville, TX).  Viable cells were then counted using 

trypan blue dye exclusion and re-suspended at 2.5 X 106 cells/mL in 

supplemented RPMI (Sigma)+10% FBS-HI (supplementation: 75% sodium 

bicarbonate, 10 mM Hepes buffer, 100 U/mL penicillin, 100 μg/mL streptomycin 

sulfate, 1.5 mM l-glutamine, and .00035% 2-mercaptoethanol).  LPS (Sigma # 
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L6529) in 2% ethanol was added at a concentration of 1 μg/mL for mitogen 

stimulation.  GC resistance was tested by exposing aliquots of each suspension 

to dilutions of corticosteroid (0-5 μM, Sigma, St. Louis, MO, #C2505) dissolved in 

2% ethanol and supplemented RPMI.  Cell suspensions were placed in triplicate 

in flat-bottomed 96-well micro-titer plates in 100 μL aliquots and incubated for 48-

72 h at 37°C and 5% CO2.  After incubation, the cell survival assay was 

performed. 

Cell proliferation was assessed following the manufacturer’s instructions 

with the CellTiter 96 Aqueous non-radioactive proliferation assay kit from 

Promega (Madison, WI).  Color changes were quantified by optical density 

readings at 490 nm from an EMAX ELISA plate reader (Molecular Devices, 

Sunnyvale, CA).  Mean optical density values for the 3 replications for each 

sample were used, and the percentage of the corticosteroid-exposed cells versus 

the LPS stimulated cells was determined for statistical analysis.  

6.  Statistical analyses 

Data are presented as mean + SEM.  Analysis of variance (ANOVA) was 

used to evaluate differences across SDR-antibody and SDR-vehicle conditions. 

These analyses were followed by post hoc mean comparisons using Duncan's 

New Multiple Range Test. 
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III EXPERIMENT 1: TNF-α 

1. Introduction 

Our laboratory has previously demonstrated that pro-inflammatory 

cytokine IL-6 is necessary in mediating the adverse effects of Theiler’s virus 

infection.  However, IL-6 alone is not sufficient in replicating the negative effects 

of SDR on the development of Theiler’s virus infection.  This indicates that pro-

inflammatory cytokine IL-6 is not solely responsible for the SDR-induced 

exacerbations of Theiler’s virus infection.  Theiler’s virus infection is not only 

associated with high transcript levels of pro-inflammatory cytokine IL-6, but also 

TNF-α, in susceptible strains of mice (Oleszak et al., 2004).  High levels of TNF-α 

are also associated with SDR and challenges to the immune system (Avitsur et 

al., 2005).  Therefore, based on previous experiments, TNF-α may play a 

significant role in the mechanism mediating the adverse effects of Theiler’s virus 

infection.  Before behavior and illness measures can be conducted, the 

successful blockage of TNF-α in the CNS must be verified.  This study 

investigated whether or not SDR elevated levels of pro-inflammatory cytokine 

TNF-α and, if so, whether these elevations could be antagonized using the 

neutralizing antibody technique.  Therefore, this study is necessary to begin 

further investigation into the role of other pro-inflammatory cytokines (TNF-α and 

IL-1β) in mediating the adverse effects of Theiler’s virus infection. 
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2.  Methods 

2.1 Procedure 

Upon arrival, mice were weighed and caged individually.  The next 

morning, cannulation surgeries occurred.  Mice were allowed to recover in 

individual housing for 2 d.  On pnd 27, mice were weighed again and assigned to 

cages in a counterbalanced manner, based on weight.  The Tylenol water was 

removed and plain water was added to each cage.  On pnd 30, antibody or 

vehicle was administered daily beginning at 1300 h, and then the stressed 

animals were administered SDR at from 1700-1900 h.  Mice were sacrificed the 

morning following the last session of SDR. 

2.2 Antibody to TNF-α 

Polyclonal antibody to mouse TNF-α was purchased from R&D Systems 

(AF-406-NA, Madison, WI).  To provide the stock solution, the original 100 μg 

was dissolved in 1 mL sterile PBS.  The stock solution was then further diluted by 

1:20 to result in a 5 ng/μL solution.   

2.3 Antibody administration 

The 5 ng/μL solution of neutralizing antibody was administered using a 25-

μL Hamilton syringe and a pump set to administer 60 μL/hour through a 36-g 

cannula (Plastics One, Roanoke, VA, C315IDC/SPC).  2 μL was then 

administered over 2 min, followed by a 30 s delay to prevent backwash of the 

solution before the cannula was removed.  The total dose per animal was then 

10 ng.  This dose was based on the 50% neutralizing dose information provided 

by the manufacturer.  Control animals were administered mouse immunoglobulin 
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(Ig, Santa Cruz Biotechnology, Inc #SC-2025) in the same volume of sterile 

saline as the vehicle, in order to account for generalized responses to proteins. 

2.4 Efficacy of antibody treatment in blocking TNF-α 

In order to assess the efficacy of the antibody dose in blocking TNF-α, 12 

mice were used.  These animals arrived from breeder, were cannulated, and 

underwent SDR as described in the general methods section.  A 1 (SDR) x 2 

(antibody, vehicle) was used.  At 1300 h daily, 4 h prior to SDR, antibody or 

vehicle administration occurred.  Following SDR/treatment sessions, all animals 

were sacrificed and spleens were harvested for GCR assessment, while brain 

tissue and sera were assessed for TNF-α levels, using an ELISA assay. 

2.5 TNF-α ELISA 

An ELISA for the TNF-α assay was purchased from R & D Systems (R & 

D Systems Madison, WI), and sera (frozen at -80°C between sacrifice and the 

time of the assay) was assessed according to the manufacturer’s instructions.  

Brain tissue was homogenized in 1 mL of Dulbecco’s Eagle Medium (Sigma) and 

flash frozen.  Tissue was stored at -80°C until the time of the assay.  Tissue was 

then thawed and centrifuged at 2000 rpm for 5 min.  50 μL of the supernatant per 

well was used to assess TNF-α levels in the brain. 

3. Results 

3.1 Arrival Body Weights 

 Mice were weighed upon arrival at pnd 23, prior to all experimental 

manipulations, and were counterbalanced and housed in groups of three.  Figure 
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1A shows initial body weights across groups.  ANOVA was used to confirm that 

there were no group differences prior to manipulations, F(1,10) =.368, p>.05.  

3.2 Spleen Weights 

Spleens were harvested from mice immediately upon sacrifice and 

weighed.  Figure 1B shows spleen weights in the antibody and vehicle treatment 

groups.  ANOVA confirmed that there were no group differences in these 

animals, F(1,10) =.238, p>.05.  Splenomegaly is often associated with the 

development of GCR, and the spleen sizes found here (.077g) are somewhat 

higher than our laboratory typically finds in non-stressed animals (.069g). 

 3.3 GCR Assay 

 Figure 1C shows GCR development with IL-6 antibody treatment at day 7 

post infection, from a previous study in our laboratory (top panel, Johnson et al., 

in submission), and GCR from the current study (bottom panel).  The data from 

the previous study is included in order to illustrate both normal GC sensitivity 

(NON-AbTx, NON-VEH, and SDR-VEH groups) and GCR (SDR-AbTx).  The 

bottom panel of Figure 1C shows that SDR-antibody treated mice in the TNF-α 

experiment developed GCR (cell survival rates of 80% or greater, regardless of 

corticosteroid level).  ANOVA confirmed that no significant decrease in cell 

survival occurred over increasing corticosteroid level, F(4,32) =.139, p>.05.  

Therefore, as with antibody to IL-6, antibody treatment to TNF-α does not 

interfere with the development of GCR.
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Figure 1A.  Arrival body weights for TNF-α mice 

Mice arrived at pnd 23 and were weighed prior to all 
manipulations.  No significant differences were found across 
groups prior to surgery or social disruption (p>.05). 
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Figure 1B.  Spleen weights for TNF-α mice 
 
Spleens were harvested from mice immediately upon sacrifice and 
weighed.  GCR is often highly associated with enlarged spleens.  
There were no significant differences in spleen weights between 
antibody and vehicle treatment groups in TNF-α mice (p>.05).  
Therefore, antibody treatment did not interfere with the 
development of GCR.
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Figure 1C. Glucocorticoid resistance (GCR) with IL-6 (top graph) 
and TNF-α antibody (bottom graph) treatment 
 
GCR development with IL-6 antibody treatment at day 7 post 
infection is shown in the graph on the top.  Both SDR groups 
developed GCR prior to infection.  Non-SDR mice, in comparison 
with SDR mice, did not develop GCR, indicated by the low cell 
survival rate at increasing levels of corticosteroids.  SDR-VEH and 
SDR-AbTx mice both developed glucocorticoid resistance, 
indicating that the IL-6 antibody treatment did not interfere with 
this phenomenon.  The graph on the bottom shows that TNF-α 
antibody treatment in SDR-antibody mice does not interfere with 
the development of GCR
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3.4 Verification of antibody treatment 

In order to verify that TNF-α was elevated due to SDR in the current 

study, and that this elevation was blocked by the neutralizing antibody treatment, 

an ELISA for TNF-α was used to test both brains and sera.  The levels of TNF-α 

were not quantifiable, in either the brain or sera, using an ELISA.  Therefore, 

successful antagonism of TNF-α was not measurable. 

4. Discussion 

Previous studies in our laboratory investigating pro-inflammatory cytokine 

IL-6 indicated that SDR alone elevates cytokine levels, and that the neutralizing 

antibody treatment successfully blocked cytokine levels in both the brain and 

periphery (Johnson et al., in submission).  This study examined whether SDR 

elevated levels of TNF-α in the brain and periphery, and if so, whether or not 

these elevations could be antagonized using the neutralizing antibody technique.  

Splenomegaly and the development of GCR occurred in both antibody and 

vehicle groups in the TNF-α experiment, indicating successful application of 

SDR.  These findings also show that antibody treatment does not interfere with 

the development of GCR.  An ELISA conducted in this study indicated that levels 

of TNF-α were not quantifiable in either the CNS or the periphery in mice 

receiving either antibody or vehicle treatments.  Therefore, blockage of the 

cytokine was not able to be measured.  Before we are able to verify whether or 

not TNF-α can be successfully blocked in the CNS and periphery, and further 

investigate the role of this cytokine in the mechanisms mediating the adverse 
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effects on disease course development, more sensitive assays must be 

developed, such as RT-PCR or using blood plasma. 
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IV EXPERIMENT 2: IL-1β 

1. Introduction 

 The aim of the second study in this series was to develop methods to 

adequately block IL-1β, as well as to measure successful antagonism.  Similar to 

TNF-α, IL-1β is also dysregulated by GCR.  IL-1β plays an important role in the 

development of inflammatory responses, both due to stress and infection 

(Watkins et al., 1998).  Thus, the current study will use methods similar to 

Experiment 1 to develop antagonism methodologies for IL-1β. 

2.  Methods 

2.1 Procedure 

Upon arrival, mice were weighed and caged individually.  The next 

morning, cannulation surgeries occurred.  Mice were allowed to recover in 

individual housing for 2 d.  On pnd 27, mice were weighed again and assigned to 

cages in a counterbalanced manner, based on weight.  The Tylenol water was 

removed and plain water was added to each cage.  On pnd 30, antibody or 

vehicle was administered daily beginning at 1300 h, and then the stressed 

animals were administered SDR at from 1700-1900 h.  Mice were sacrificed the 

morning following the last session of SDR. 

2.2 Antibody to IL-1β 

Polyclonal antibody to mouse IL-1β was purchased from R&D Systems 

(AF-406-NA, Madison, WI).  To provide the stock solution, the original 100 μg 

was dissolved in 1 mL sterile PBS.  The stock solution was then further diluted by 

1:33 to result in a 2 ng/μL solution.  
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2.3 Antibody administration 

The 2 ng/μL solution of neutralizing antibody was administered using a 25-

μL Hamilton syringe and a pump set to administer 60 μL/hour through a 36-g 

cannula (Plastics One, Roanoke, VA, C315IDC/SPC).  2 μL was then 

administered over 2 min, followed by a 30 s delay to prevent backwash of the 

solution before the cannula was removed.  The total dose per animal was then 

10 ng.  This dose was based on the 50% neutralizing dose information provided 

by the manufacturer.  Control animals were administered mouse immunoglobulin 

(Ig, Santa Cruz Biotechnology, Inc #SC-2025) in the same volume of sterile 

saline as the vehicle, in order to account for generalized responses to proteins. 

2.4 Procedure 

In order to assess the efficacy of the antibody dose in blocking elevations 

in IL-1β, 12 mice were used.  These animals arrived from breeder, were 

cannulated, and underwent SDR as described in the general methods section.  A 

1 (SDR) x 2 (antibody, vehicle) was used.  At 1300 h daily, 4 h prior to SDR, 

antibody or vehicle administration occurred.  Following SDR/treatment sessions, 

all animals were sacrificed and brain tissue and sera were assessed for IL-1β 

levels, using an ELISA assay. 

2.5 IL-1β ELISA 

An ELISA for the IL-1β assay was purchased from R & D Systems (R & D 

Systems Madison, WI), and sera (frozen at -80°C between sacrifice and the time 

of the assay) was assessed according to the manufacturer’s instructions.  Brain 

tissue was homogenized in 1 mL of Dulbecco’s Eagle Medium (Sigma) and flash 
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frozen.  Tissue was stored at -80°C until the time of the assay.  Tissue was then 

thawed and centrifuged at 2000 rpm for 5 min.  50 μL of the supernatant per well 

was used to assess IL-1β levels in the brain. 

3. Results 

3.1 Arrival Body Weights 

 Mice were weighed upon arrival at pnd 23, prior to all experimental 

manipulations, and were counterbalanced and housed in groups of three.  Figure 

2A shows initial body weights across groups.  ANOVA was used to confirm that 

there were no group differences prior to manipulations, F(1,10) =.488, p>.05.  

3.2 Spleen Weights 

Spleens were harvested from mice immediately upon sacrifice and 

weighed. Figure 2B shows spleen weights in the antibody and vehicle treatment 

groups.  Splenomegaly is often associated with the development of GCR.  While 

animals receiving SDR alone had enlarged spleens compared to the animals 

receiving both SDR and antibodies, the difference was not significant.  ANOVA 

confirmed that there were no group differences in these animals, F(1,10) =2.747, 

p >.05.   

3.3 Verification of antibody treatment 

In order to verify that IL-1β was elevated due to SDR in the current study, 

and that this elevation was blocked by the neutralizing antibody treatment, an 

ELISA for IL-1β was used to test both brains and sera.  The data in Figure 2C 

indicate that levels of IL-1β were elevated due to SDR.  There was a marginal 

reduction effect only in the CNS of the IL-1β treated mice, F(1,9) =2.159, p =.1.  
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The IL-1β antibody treatment was not successful in blocking IL-1β in the 

periphery, F(1,9) =.63, p >.05. 
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Figure 2A.  Arrival body weights for IL-1β mice 
 
Mice arrived at pnd 23 and were weighed prior to all manipulations.  
These graphs demonstrate that there were no significant differences 
across groups prior to surgery or social disruption (p>.05). 
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Figure 2B.  Spleen weights for IL-1β mice 
 
Spleens were harvested from mice immediately upon sacrifice and 
weighed. GCR is often highly associated with enlarged spleens.  
There were no significant differences in spleen weights between 
antibody and vehicle treatment groups in IL-1β mice (p>.05).  
Therefore, antibody treatment did not interfere with the 
development of GCR. 
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Figure 2C.  Efficacy of neutralizing antibody treatment in IL-1β mice 
 
Mice were sacrificed the morning after their final SDR session, and 
brains and blood sera were collected to analyze the remaining levels 
of IL-1β using an ELISA.  A trend was seen in the reduction of IL-1β 
in the brain (p=.1). 
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4. Discussion 

This study examined whether IL-1β in the brain and periphery could be 

antagonized using the neutralizing antibody technique.  Splenomegaly was 

marginal in the vehicle group in the IL-1β experiment, indicating probable 

successful application of SDR.  Thus, the development of GCR is likely in these 

mice.  Although spleen weights were lower (not significantly) in the antibody 

treated animals, they probably also developed normal GCR, based on our 

previous findings.  Prior studies indicated that GCR developed in socially 

stressed mice receiving antibody to both IL-6 and TNF-α (Johnson et al., in 

submission).  Based on those prior studies, as well as time and money 

constraints, we did not perform a GCR assay on IL-1β mice.  Unlike the TNF-α 

study, an ELISA run on IL-1β mice revealed elevated levels of cytokine, and a 

marginal blocking effect was found in the CNS of antibody treated mice.  

However, the levels of IL-1β in the periphery were not altered.  This indicates that 

the blocking dose for IL-1β needs to be explored in future studies before the role 

of IL-1β in the mechanisms mediating the adverse effects of Theiler’s virus 

infection can be further investigated. 
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V SUMMARY AND CONCLUSIONS 

1. Summary 

These studies examined techniques used to antagonize pro-inflammatory 

cytokines TNF-α and IL-1β in the CNS.  Previous studies have indicated that the 

exacerbated effects of SDR on Theiler’s virus infection may be due to the action 

of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α).  Our laboratory previously 

found IL-6 to be necessary, but not sufficient, in mediating the negative effects of 

Theiler’s virus infection (Johnson et al., in submission).  Therefore, IL-6 alone is 

not responsible for the exacerbations in motor impairment, excessive 

inflammation, and decreased viral clearance.  Therefore, this study began to 

investigate the roles of other pro-inflammatory cytokines, TNF-α and IL-1β. 

 The objective of the TNF-α study was to detect whether or not SDR 

elevated the levels of TNF-α in the CNS and periphery, and if so, whether these 

elevations could be successfully antagonized using techniques previously 

developed in our laboratory.  Neutralizing polyclonal antibody against murine 

TNF-α was administered through a permanent, chronic indwelling cannula 

implanted in the left lateral ventricle of the brain.  A GCR assay indicated that 

antibody treatment did not interfere with the development of GCR.  Levels of 

TNF-α were not quantifiable by an ELISA.  An assay that is more sensitive to 

levels of TNF-α, such as RT-PCR or an RNase protection assay, is needed.  

Because levels of TNF-α were not detected, successful antagonism of TNF-α is 

unknown. 
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 The objective of the IL-1β experiment was also to detect whether or not 

SDR altered the levels of IL-1β in the CNS and periphery, and whether these 

elevations could be successfully antagonized using techniques previously 

developed in our laboratory.  Neutralizing polyclonal antibody against murine IL-

1β was administered through a permanent, chronic indwelling cannula implanted 

in the left lateral ventricle of the brain.  An ELISA indicated that levels of IL-1β 

were elevated in the CNS and periphery.  Partial antagonism in the CNS of IL-1β 

was indicated by the low, however insignificant, p-value (p=.1).  Therefore, a 

dose response curve is needed in order to block the action of IL-1β, and begin 

investigating the role of IL-1β in mediating the adverse effects of Theiler’s virus 

infection. 

2. General Discussion and Conclusions 

These studies showed that the antagonism of pro-inflammatory cytokines 

TNF-α and IL-1β requires different techniques than those previously used in our 

laboratory to block the action of IL-6.  Previous studies in our laboratory have 

shown that SDR leads to exacerbations of Theiler’s virus infection including 

elevated motor impairment, elevated inflammation, and decreased viral 

clearance (Johnson et al., 2004; Johnson et al., in submission).  These studies 

also indicated that SDR led to the development of GCR.  As stated previously, 

GCR is the failure of immune cells to down-regulate in the presence of GC, and 

results in the dysregulation of pro-inflammatory cytokines.  Elevations in 

inflammation due to SDR may result in the exacerbation of acute Theiler’s virus 

infection. 
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Prior studies in our laboratory have indicated that antagonism of IL-6, 

using the methods previously described, led to the reversal of the adverse effects 

of Theiler’s virus infection (Johnson et al., in submission).  Antagonism of IL-6 

was found to reverse SDR-induced exacerbations of motor impairment, elevated 

inflammation, and decreased viral clearance (Johnson et al., 2004; Johnson et 

al., in submission).  Although IL-6 is necessary in mediating the adverse effects 

of Theiler’s virus infection, it is not sufficient in mimicking the effects of SDR 

alone.  Therefore, IL-6 is not the only mediator of the SDR-induced adverse 

effects of Theiler’s virus infection.  Thus, previously noted elevations in pro-

inflammatory cytokine IL-6 led to the hypothesis that other pro-inflammatory 

cytokines (IL-1β and TNF-α) may also be mediating the adverse effects of 

Theiler’s virus infection. 

This study was necessary in order to begin elucidating the roles of pro-

inflammatory cytokines TNF-α and IL-1β in mediating the adverse effects of 

Theiler’s virus infection due to stress.  Before beginning an expensive, time-

consuming study, our laboratory was interested in whether SDR alone elevated 

levels of pro-inflammatory cytokines TNF-α and IL-1β.  Our laboratory was also 

interested in whether these elevated levels of cytokines could be successfully 

antagonized by replicating the methodology used in the previous IL-6 study.  

Since previous studies in our laboratory have shown that cytokine levels of IL-6 

were elevated in SDR mice in comparison to control mice (Johnson et al., in 

submission), control mice were not incorporated into this study.  Once techniques 

have been developed to successfully block elevated levels of TNF-α and IL-1β, a 
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study analyzing the acute and chronic phase development of Theiler’s virus 

infection involving SDR and control mice will be conducted. 

In the TNF-α experiment, the successful application of SDR is indicated by 

the development of splenomegaly (enlarged spleens highly correlated with SDR), 

in both antibody and vehicle treated mice, and GCR, a hallmark of SDR.  

Spleens of antibody and vehicle mice were larger than spleens of mice not 

experiencing SDR (based on previous spleen weights of control mice in our 

laboratory).  A GCR assay performed on the spleens of TNF-α mice indicated 

that resistance of macrophages to GC was present.  The development of GCR in 

mice receiving antibody to TNF-α or vehicle treatment implies that this cytokine is 

not necessary for the development of the insensitivity to this hormone.  The 

inability of an ELISA to detect levels of TNF-α in the CNS or periphery indicates 

the need to develop more sensitive assays to the cytokine, as stated previously.  

In addition to an RT-PCR or RNase assay, blood plasma, instead of blood sera, 

could be used in the ELISA.   

The IL-1β experiment also indicated that SDR was successfully applied.  

The spleens of IL-1β mice were enlarged (above the average weight of spleens 

from previous control mice in our laboratory).  A GCR assay was not performed 

on IL-1β mice due to data provided by the IL-6 and TNF-α studies that indicated 

the development of GCR in the presence of neutralizing antibodies.  Our 

laboratory also wanted to ensure successful blockage of IL-1β before spending 

our resources on a GCR assay.  An ELISA detected elevations in cytokine levels 

in the CNS and periphery of IL-1β mice receiving antibody treatment.  However, 
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the antagonism of IL-1β in the CNS was only partially effective, indicated by the 

low, but insignificant, p-value obtained (p=.1).  Unlike the partial antagonism 

achieved in the CNS, no blockage of IL-1β was detected in the periphery. 

Adjustments to the techniques used in the TNF-α and IL-1β studies are 

necessary.  Once levels of TNF-α are successfully detected, an adequate 

blocking dose can be found.  Future studies will then be able to explore a dose 

response curve for antibodies to TNF-α.  Because levels of IL-1β were marginally 

blocked in the CNS, a dose-response curve needs to be investigated.  The 

selective homogenization of certain portions of the brain could also be employed, 

due to the uneven production of cytokines in different regions of the brain.  This 

could provide better insight into the ability of polyclonal antibodies to successfully 

antagonize IL-1β levels in the periphery. 

Once methods to antagonize pro-inflammatory cytokines TNF-α and IL-1β 

have been developed, future studies in our laboratory will further explore the 

roles of these cytokines in mediating the adverse effects of SDR on the 

development of neurodegenerative diseases, such as rheumatoid arthritis and 

MS.  These studies will seek to investigate the necessity and sufficiency of pro-

inflammatory cytokines (TNF-α and IL-1β) in the development of the adverse 

effects of Theiler’s virus infection.  These studies could provide insight into 

possible human interventions.  MS patients, for example, seem to experience 

stressful life events prior to the onset of symptoms.  In addition, GCR in MS 

patients has been previously associated with chronic stress (Mohr et al., 2005).  

These studies and others show the complex interactions of social stressors and 
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the immune system.  Ultimately, our goal is to understand the mechanisms by 

which social stressors alter immune function. 
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