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ABSTRACT 

 

Applications of MRI in Fluidics:  

Single Echo Acquisition MRI Toward Microfluidics (April 2006) 

 
John C. Bosshard 

Department of Electrical Engineering 
Texas A&M University 

 
Fellows Advisor: Dr. Steven M. Wright 
Department of Electrical Engineering 

 
 

Microscale devices capable of manipulating fluids have potential to give rise to a 

paradigm shift in the fields of biology and medicine.  The purpose of this research is to 

assess the feasibility of applying single echo acquisition (SEA) magnetic resonance 

imaging (MRI) to microscale fluid flow quantification.  This is important because 

development and improvement of microfluidic devices requires the ability to accurately 

and non-invasively measure microscale flow.  Lab-on-a-chip aims to integrate an array 

of chemical laboratory tools onto a single chip, utilizing microfluidic flow for mass 

transport.  Use of microfluidics results in improved speed and efficiency and allows 

operations that harness physical properties unique to the microscale.  Current microscale 
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flow visualization methods rely on fluorescence, requiring optically non-opaque fluids 

and device boundaries.  Furthermore, these methods require insertion of labeled 

chemicals or seed particles into the flow, which may interfere with processes under 

observation.  MRI has an established history of non-invasively quantifying flow through 

opaque boundaries but is limited by its slow image acquisition rate.  SEA employs a 64-

channel array coil to acquire a full image with each echo, significantly improving 

temporal resolution.  Methods involve assessing the performance of SEA flow 

velocimetry on a scale of several millimeters by utilizing time-of-flight techniques.  By 

taking a series of 5 ms snapshots, quantitative velocity information is obtained for 

laminar, transitional, and turbulent flow with Reynolds numbers ranging from 100 to 

1200.  Findings show that the turbulent eddies are visible and velocity information can 

be extracted from images, which means that SEA can accurately asses flow at the 

millimeter scale.  In addition, SEA allows visualization of turbulent flow not accessible 

to standard MRI velocimetry techniques.  It is concluded that SEA could be adapted as 

new tool for non-invasive quantification of optically inaccessible flow.  Implications of 

this are that through integrated radio frequency microcoils, SEA MRI could be adapted 

as a new tool to study microfluidic flow resulting in improved microfluidic devices. 
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I. INTRODUCTION1

 

The ability to visualize microfluidic flow is of paramount importance to the 

development of new microfluidic devices.  As indicated by the literature, leading 

visualization methods have several disadvantages.   The purpose of this work is to assess 

the feasibility of extending Single Echo Acquisition (SEA) Magnetic Resonance 

Imaging (MRI) to microscale fluid flow visualization.  Better microfluidic flow 

visualization would benefit the creation of new microfluidic devices and lab-on-a-chip 

systems.  Such devices could impact biology and medicine, and have the potential to 

improve the quality of life of many.  It is expected that by demonstrating SEA MRI’s 

ability to study macroscale flow, its utility at the microscale will be established.  

Significant findings are that SEA is able to visualize flow in a separation channel at up 

to 200 frames per second, showing complex phenomena such as mixing and rotation.   

Lab-on-a-chip 

Lab-on-a-chip, also called a micro total analysis system (μTAS), is a developing 

technology that seeks to integrate many of the tools employed in analytical chemistry 

onto a single chip.  While this concept is not new, the tools to miniaturize analytical 

                                                 
1 This thesis follows the style and format of Magnetic Resonance in Medicine. 
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systems have only become available with advances in integrated circuit production 

techniques, such as photolithography (1).  The initial concept of μTAS states that it is 

capable of performing all sample handling extremely close to the place of measurement 

and includes provisions for sample pretreatment, separation, and detection (2).  

Advantages include greater speed and efficiency, reduced consumption of reagents, and 

capability of multiple simultaneous measurements.  Also, human error and 

contamination are reduced by eliminating the need for many manual manipulations (1).  

Several lab-on-a-chip systems have been realized and many of the microfluidic devices 

to be implemented in a lab-on-a-chip have undergone extensive research and 

development by both academia and industry.  Further improvement of these devices is a 

critical step in forming a fully integrated device. 

Lab-on-a-chip holds the potential to dramatically change the way biology and 

medicine are performed.  One application of lab-on-a-chip is in point-of-care testing in 

clinical chemistry (3).  By creating small, fast, and easy to operate devices, healthcare 

testing could be moved from central laboratories and into the doctor’s office.  This offers 

a number of advantages.  Highly complex tests can be performed by relatively unskilled 

workers through the integration of multiple steps of procedures within one lightweight 

 



 3

portable device (4).  The need to maintain sophisticated laboratories of costly equipment 

and skilled technicians to perform tests would be eliminated (1).  While this reduces the 

cost of performing tests, a chemical analysis performed on-chip is also less expensive 

due to decreased reagent consumption and analysis time.  No longer would a separate 

visit to the hospital be necessary to provide a sample for laboratory analysis.  Rather, 

during a visit with the physician a single drop of blood could be analyzed on the spot.  

This could result in quick and efficient disease diagnosis and treatment monitoring.   

With increasing understanding of genetic information, physicians will become 

more reliant on molecular diagnostics, which use DNA or RNA along with molecular 

genetics to perform diagnostic testing on patients (5).  Lab-on-a-chip may be applied to 

replace current labor-intensive molecular diagnostic technologies, facilitating detection 

of genetic diseases.  Many of these devices will likely be manufactured at little expense 

and thus will be disposable, eliminating any carry-over in analysis.  There are also 

applications in intensive care units, such as monitoring of cardiac markers (3).  By 

detecting an abnormal presence or absence of several cardiac proteins, or cardiac 

markers, better emergency room diagnosis may be possible for patients with chest pain, 

such as detection of acute myocardial infarction (6).  Point-of-care testing could enable 
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fast diagnostic monitoring in close proximity to the patient as in operating rooms, aiding 

in decision-making.  Finally, patients could monitor themselves daily at home. 

Through speed, automation, and parallel operation, lab-on-a-chip could 

revolutionize drug discovery.  Combinational chemistry generates many drug candidates 

by liking several chemical building blocks in all possible combinations (7).  This 

demands simultaneous, rapid, and automatic testing of candidate drugs.  Because only 

limited quantities of candidate drugs are available, testing must be performed on 

microvolumes (8), for which microfluidics based devices are well suited.  By integrating 

cell treatment steps, a lab-on-a-chip for cellomics may allow the study of the effects of 

drugs on single living cells and enable fast delivery of drugs to cells (9).  Genomic and 

proteomic analysis have great potential in drug discovery by providing information 

about the effect of environment, disease, and chemicals upon an organism.  While 

genomics seeks to characterize all of the genes of an organism, proteomics seeks to 

characterize and identify all proteins expressed within a cell at a given time (10).  

Devices approaching a lab-on-a-chip for DNA analysis have already been demonstrated 

(11), however because cell function and biochemical regulation depend on protein 

activity, among other reasons, interest has shifted to proteomics in drug discovery (12).  
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Because protein levels vary widely and because there is no protein amplification method 

comparable to the polymerase chain reaction (PCR) used in genomics, an ideal 

proteomics method must be highly sensitive.  Lab-on-a-chip may be able to offer 

suitable sensitivity and allow handling of small sample volumes without loss in the 

processing steps along with greater speed and automation (13,14). 

A handheld lab-on-a-chip may provide law enforcement with a mobile laboratory 

for forensic applications, such as analysis of illegal drugs.  Another possibility is a 

portable detector of explosive residues (15).  NASA is considering microfluidics based 

systems to send to Mars (7).  While these are but a sampling of possible applications of 

lab-on-a-chip currently being explored, upon its realization, it appears this technology 

will satisfy scientific needs not yet conceived. 

Microfluidics 

 Physicist Richard Feynman noted in his lectures that physical laws do not simply 

scale down leaving the behavior of matter unchanged (16).  He later proposed in his 

1959 lecture entitled “There’s Plenty of Room at the Bottom” that the extremely small 

should be utilized, noting that the laws of physics do not prevent vast miniaturization, 

only that no one had “gotten around to it” (17).  While his lecture did not mention it 
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specifically, microfluidics exemplifies his thoughts about miniaturization.  Microfluidics 

can be defined as fluid flow in channels of dimension ranging from 1 μm to 1 mm (18). 

One of the first examples of a device employing microfluidic flow, considered to 

be the first μTAS, was a gas chromatographic air analyzer (19).  Preceding the coining 

of the term μTAS by Manz et al., this device received little attention possibly because of 

the lack of experience in the scientific community (20).  Other early research utilizing 

microfluidics include IBM’s work on the ink jet printer nozzle (21).  There are also 

several interesting properties useful to biology at this scale (22).  First, as mentioned in 

the context of lab-on-a-chip, the fluid volumes are dramatically reduced.  The surface 

area to volume ratio is several orders of magnitude greater than at the macroscale.  This 

allows more rapid heat transfer, useful in capillary electrophoresis.  At the microscale, 

surface tension forces become significant, increasing the distance liquids travel due 

solely to capillary forces, useful in some pumping systems.   

 Perhaps the most important difference at the microscale is the dramatic decrease 

in the Reynolds number, a unitless number representing the ratio of the inertial forces to 

the viscous forces.  The Reynolds number is used to determine whether flow will be 

laminar or turbulent.  If the Reynolds number is less than 2300, which is predominantly 
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the case in microfluidics, the flow follows a laminar regime.  Because of laminar flow, 

two streams can flow parallel to one another, mixing only by diffusion.  Diffusion is the 

process by which particles move from a more concentrated to a less concentrated area, 

resulting in a more uniform distribution.  This property is useful in some biological 

situations, such as diffusion based separation and detection (23).  The predictability of 

laminar flow also makes it useful in moving packets of fluid in a controlled manner (22). 

 While the diffusive mixing employed in microfluidics allows for greater control 

of mixing processes, diffusion can be a slow process, especially when attempting to mix 

large particles (22).  One of the most important features of microfluidic based lab-on-a-

chip systems is greater speed than comparable macroscale systems, so methods to 

improve microfluidic mixing must be devised.  While chaotic, turbulent flow is 

frequently used to achieve rapid mixing at the macroscale, it is typically unavailable at 

the microscale (24).  In order to improve the rate of mixing, much research has gone into 

constructing passive and active micromixers (60).  Bend-induced vortices can enable a 

process called “chaotic advection,” which accelerates mixing (25).  One group has called 

the mixing of macromolecular analytes in times of less than 10-20 seconds the “Achilles 
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heel” of lab-on-a-chip systems with channel width greater than 50 μm that rely on 

diffusive mixing (26).   

Design and improvement of mixers and other microfluidic components requires 

accurate understanding of flow within microchannels (27).  Currently, flow is modeled 

using computational fluid dynamics (CFD) software and measured using optical based 

flow visualization methods.  The most popular of these methods is particle image 

velocimetry (PIV) (27,28).  In PIV, fluorescently labeled seed particles are placed within 

the flow and observed using a microscope and camera.  While this method provides high 

resolution, the seed particles are small enough to be affected by Brownian motion, 

making them move randomly.  Because they do not follow the flow exactly, time 

averaging is necessary, making PIV unsuited for unsteady flows (29).  This system 

requires that at least part of the structure under study be optically transparent.  Also, the 

presence of fluorescently labeled chemicals may interfere with processes being observed 

(22). 

Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a non-invasive imaging method that uses 

magnetic fields and radio frequency (RF) pulses to interact with nuclear spins in order to 
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collect signals.  Through a Fourier transform, these signals are converted into images.  

The most prominent application of MRI is in clinical diagnosis, where it provides 

detailed images of soft tissue without the ionizing radiation of X-ray or computed 

tomography (CT).  Nuclear magnetic resonance (NMR) spectroscopy is another 

application useful in biology, physics, and chemistry.  MRI is capable of providing a 

multitude of environmental variables about matter, and has an established history of non-

invasively quantifying fluid flow (30). 

 MR flow measurement techniques have been employed in clinical magnetic 

resonance angiography (MRA) to study blood flow, but because of the lack of temporal 

resolution of clinical scanners, these images are frequently constructed using a gating 

mechanism such that each MR echo occurs at the same point of the cardiac cycle.  MRI 

is also capable of studying flow in non-clinical settings.  However, because of its low 

temporal resolution, its usefulness is often limited to slow and steady or pulsate flows.  

Faster MR imaging techniques such as echo planar imaging (EPI) have had some 

success in imaging faster and more complex turbulent flows by increasing the temporal 

resolution of MRI, and new techniques continue to be developed. 
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 Recent advances at the Magnetic Resonance Systems Laboratory (MRSL) at 

Texas A&M University have enabled dramatically accelerated image acquisition rates 

using a 64-channel array coil.  Single Echo Acquisition (SEA) imaging allows for 

complete image acquisition with one echo (31), a rate two orders of magnitude faster 

than standard scanners.  This increased imaging rate allows observation and 

quantification of flow phenomena not accessible by conventional MRI systems, such as 

fast or turbulent flow.   
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II. BACKGROUND 

Microfluidics 

 The field of microfluidics has seen tremendous growth due largely to the 

applications of microfluidic devices in life sciences and due to the availability of 

microscale manufacturing techniques stemming from the developments of the integrated 

circuit industry.  Microfluidic devices seek to harness the unique physical properties of 

the microscale, allowing experiments not possible at the macroscale (22). 

Construction 

Microfluidic devices employ several fabrication techniques including 

micromachining, soft lithography, in situ construction, and micromolding, each suited to 

different applications (22).  Micromachining methods can be applied to silicon and glass 

(32), providing a high degree of precision.  Silicon and glass are beneficial to chemistry 

applications by withstanding many temperatures and strong solvents; however silicon is 

not always desirable in biological applications due to its optical opacity, which prevents 

use of microscopy.  Glass offers optical transparency, but there are fewer 

micromachining processes available.  The highly specialized labor and equipment 

employed in micromachining results in high costs, making this method less desirable.  
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Soft lithography overcomes such high costs by offering less specialized fabrication 

methods involving molding of Polydimethylsiloxane (PDMS), a two-part polymer.  It is 

convenient, fast, and is well suited for features of dimension greater than 50 μm, 

commonly used in biology (33).  In situ construction uses liquid-phase 

photopolymerization, lithography, and laminar flow to create microfluidic systems (34).  

This method requires little specialized equipment or skills, resulting in lower cost, but it 

offers limited device dimensions.  Micromolding utilizes injection of heated 

thermoplastic polymer materials, facilitating quick and inexpensive creation of a molded 

part (22).  Both soft lithography and micromolding require use of masters for molding, 

which can be created with micromachining. 

Physics 

The physics of the microscale offer several challenges as well as advantages over 

comparable macroscale methods.  The Reynolds number (Re) is a unitless number used 

to classify flow.  The flow regime is laminar for Reynolds numbers less than 2300, 

turbulent for Reynolds numbers greater than 2300, and at Reynolds numbers near 2300.  

Laminar flow is streamline and predictable, while turbulent flow is chaotic.  The 

Reynolds number is the ratio of the inertial forces to the viscous forces, defined as 
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μ
ρυ HD

=Re , 

where ρ  is density, υ  is velocity,  is hydraulic diameter, and HD μ  is dynamic 

viscosity.  The hydraulic diameter is four times the cross-sectional area divided by the 

wetted perimeter, and is on the order of micrometers in microfluidic systems.  Thus, at 

microscale dimensions, the Reynolds number is low and flow occurs predominantly in a 

laminar regime, meaning that streams flowing in parallel will not turbulently mix as is 

common at the macroscale.  Laminar flow offers the benefit of controlled movement of a 

packet of fluid, useful in cellular analysis (22).  An interesting property of fluid with 

Reynolds numbers significantly less than 1 is that time makes no difference, allowing 

motion to be symmetric and processes to be reversible (35).  For instance, a scallop 

propels itself by opening its shell slowly to take in water and then closing it quickly to 

squirt water.  At such low Reynolds numbers inertia has little effect and the scallop 

would simply move back and forth, retracing the same path (36).   

At the microscale, diffusion becomes more significant and can facilitate mixing.  

Because diffusion time varies with the square of the diffusion distance, decreasing 

distances to the microscale allows diffusion to take place much more quickly (22,35).  

However, diffusion constants for solutions containing macromolecules are high, 
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resulting in slower diffusion (37).  Surface area to volume ratios are large in 

microfluidics, allowing rapid heat transfer while at the same time reducing pumping 

efficiency.  In addition, surface tension forces become more significant at the 

microscale, increasing the effects of capillary forces.    

Components 

 Microfluidic devices integrate several key microfluidic components that take 

advantage of microscale physics (22).  Valves are necessary for control and 

manipulation of fluid flow.  Both active and passive valves have been developed, where 

active valves use energy and passive valves do not.  Mixers, discussed later, seek to 

overcome the mixing limitations imposed by unavailability of turbulence by increasing 

the area over which diffusion occurs.  Microscale fluid motion can be generated using 

mechanical pumps, or through nonmechanical means (20).  Forces can be applied within 

a microchannel or at its inlets and outlets (38).  Electro-osmotic flow, for example, 

causes flow to move relative to stationary charged boundaries, which offers several 

advantages such a flat rather than parabolic velocity profile and easy control of flow in 

multiple channels (39).  Development of these and other components would benefit from 

new microfluidic visualization techniques. 
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Microfluidics Toward Lab-on-a-Chip 

 Several of the necessary processes for integrating a full laboratory onto a chip are 

sample preparation, injection, fluid and particle handling, mixing and chemical reaction, 

separation, and detection (40).  While only a few examples are mentioned, there are 

many microfluidic devices capable of these tasks.  Sonication, for instance, is a method 

of sample preparation that uses acoustic energy to physically disrupt bacteria spores for 

PCR analysis of DNA.  This decreases analysis time by removing the need for manual 

pre-PCR processing of samples (41).  Preparation of nucleic acids for PCR analysis is 

also performed using microchip-based solid-phase extraction, which isolates PCR 

amplifiable DNA (42).  There are many methods of preconcentration of samples, such as 

through generation of concentration gradients (43). 

 Sample injection methods have been utilized for rapid screening for explosives 

and nerve agents such that upon their detection, an alarm is triggered and detailed 

identification is performed (44).  Fluid and particle handling has been accomplished 

using electrokinetic control to transport reactants (45).  Chemical microreactors have 

been constructed, such as one capable of derivatization of amino acids through heating 

(46).  In derivatization, the original structure of an analyte is converted into another 
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molecule or mixture of reaction products (47).  Separations can be performed at the 

microscale using capillary electrophoresis, which has the potential to assay hundreds of 

samples in minutes or less (48).  Rapid heat transfer due to high surface area to volume 

ratios allows higher voltages in capillary electrophoresis, improving separation 

performance and analysis speeds (49).   

 Also crucial to microfluidic systems are microscale sensors, which allow 

detection.  If a microfluidic system is used to perform an analysis, detection is needed to 

retrieve the results.  Because of the small volumes, detection systems must be highly 

sensitive (22).  Several methods include chemiluminescence, electrochemical detection, 

fluorescence, and mass spectrometry (40).  For instance, a chemical reaction monitored 

with chemiluminescence has been used to detect chromium (III) in the presence of 

chromium (VI) (50). 

Microfluidic Systems 

Various microfluidic systems with biological and medical applications have been 

developed (22).  These integrate multiple microfluidic devices, many approaching or 

realizing full labs-on-a-chip.  Several systems for macromolecular analysis have been 

developed.  A system capable of performing PCR amplification and electrophoretic size 
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separation for DNA analysis (51) integrates reaction and separation steps.  Enzyme 

assays are performed with microfluidic systems to determine an enzyme’s reaction 

kinetics, allowing decreased times, decreased reagent consumption, and higher 

sensitivity (22).  One of the first microscale enzyme assays uesd electrokinetic flow to 

control the dilution and mixing of reagents (52).  Immunoassays are capable of 

exploiting the sensitivity and selectivity of antibody-antigen interactions (53) and have 

applications in pharmaceutical research and development (22).  Immunoassay 

microfluidic systems that integrate mixing, reaction, and separation steps have been 

developed (54).  DNA hybridization arrays allow the simultaneous study of changes in 

the expression of thousands of genes (55). 

There are several microfluidic systems for cellular analysis (22).  Microfluidic 

flow cytometry systems attempt to sort, analyze, and count single cells.  Flourescence-

activated cell sorting systems do this by placing cells in lines (14).  Use of cell-based 

assays for high throughput drug discovery screening has been discussed (56).  Cell-

based biosensors use living cells to detect biologically active agents, allowing screening 

of an agent’s functional activity without knowing its chemistry.  This is beneficial to 

pharmacology, cell biology, toxicology, and environmental monitoring.  Microfluidics 
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based cellular biosensors allow greater portability by addressing issues such as sample 

preparation, maintenance of the biological environment, and integration of electronics 

for data collection and analysis (57).  Microfluidic cell culturing systems study the 

properties of isolated single cells with their environments (58).  Experimental culturing 

of mouse embryos indicates that a microchannel culture system may more closely match 

in vivo environments than traditional in vitro culture methods (59).  

Microscale Mixing 

 As discussed above, low Reynolds numbers are a key feature of microfluidics.  

Consequently, flow through almost all microscale channels occurs in a laminar regime.  

This lack of turbulence means that mixing occurs only due to diffusion, which while 

faster at the microscale, remains in many instances inferior to the rapid turbulent mixing 

common to the macroscale.  Diffusion is not fast enough in some microfluidic settings, 

such as those requiring mixing of large particles or cells (22).  Rapid mixing is important 

in microfluidic systems for biochemistry analysis, drug delivery, and nucleic acid 

sequencing or synthesis (60).  Immunoassay, DNA hybridization, and cell-molecule 

interaction are analyses that require rapid mixing (61).  In addition, many biological 

processes and lab-on-a-chip systems require mixing of reactants for chemical reactions.  
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An understanding of micromixers is important to forming a better understanding 

microscale transport phenomena (60).  Micromixers can be classified as either passive or 

active, with passive requiring no external energy and active using external forces. 

Passive Micromixers 

Because of laminar flow conditions, passive micromixiers operate by diffusion 

and chaotic advection.  Diffusion based passive micromixers seek to increase the surface 

area over which diffusion can occur, allowing the diffusion path to be shortened.  

Parallel lamination micromixers separate flow into several smaller streams which are 

laterally alternated to increase the boundary surface between them, increasing diffusion 

(62).  Serial lamination micromixers split and join streams horizontally and next 

vertically, achieving multi-level lamination (63).  Injection micromixers function by 

splitting a solute into streams and injecting them into the solvent (60), which is useful in 

sample preparation (64).  Chaotic advection is a phenomena in which simple velocity 

fields produce chaotic particle trajectories, indicative of elongation and distortion of 

material interfaces, which increases diffusion and leads to rapid mixing (37).  It can by 

achieved by altering the channel shape to split, stretch, fold and break the flow, such as 

by insertion of obstacles (60) and can occur in laminar flow regimes (65). 
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Active Micromixers   

Active micromixers function by using external fields to cause mixing, however 

they are often more complex, more difficult to integrate into systems, and more 

expensive than passive micromixers (60).  Pressure field disturbance can facilitate 

mixing, such as by using pulsatile flow micropumps (66).  Electro-hydrodynamic forces 

can cause fluids with different electrical properties to mix when placed in an electric 

field (67).  Electrokinetic forces can be used to drive parallel and serial mixing in a T-

mixer (45).  Mageto hydrodynamic mixers use arrays of electrodes, an electrolyte 

solution, and a magnetic field to induce Lorentz forces in a fluid, causing complex flow 

fields (68). 

Microscale Flow Visualization 

 The continued development of microfluidic devices must be met with suitable 

methods of visualizing microscale fluid flow, such as determination of velocity 

information.  Microfluidic flow visualization is essential for understanding microscale 

fluid behavior and in analyzing, developing, and evaluating new microfluidic processes 

(27).  Development of medical micro-assay systems also requires understanding of blood 

flow mechanics at the microscale (69).  Flow visualization methods seek to alter the 
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fluid only enough to detect fluid transport, such that the motion of the fluid is not 

affected, that is, the method should be non-invasive.  Because this is often impossible, 

flow visualization methods must be validated by demonstration that disturbances to the 

flow are negligible.  Alternatively, methods are validated if it can be shown that despite 

introduction of disturbances, the undisturbed flow information can be resolved.  Many 

macroscale flow visualization techniques, such as the injection of dyes (70), cannot be 

employed at the microscale because of their invasiveness (27).   

Particle Image Velocimetry 

 The leading method of microscale flow visualization is particle image 

velocimetry (PIV), in which seed particles are placed within flow and optically observed 

to obtain velocity information.  PIV was first developed at the macroscale, where two-

component velocity information is obtained for a two-dimensional plane by pattern 

matching velocimetry (PMV) and particle tracking velocimetry (PTV).  PMV commonly 

obtains two sequential images at a set time delay using a laser and charge-coupled 

device (CCD) camera.  Each image is of a small area, and by comparing patterns of the 

particles within images, a vector field is obtained for that area.  This method enables 

instantaneous velocity measurements, but uses averaging for steady flow to improve 
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accuracy (27).  PTV determines the velocity field by tracking individual particles, giving 

more velocity information per interrogation than PMV, however PTV requires more 

image acquisitions for reliable particle pairing.  PMV and PTV were combined to create 

so called “super-resolution PIV” (27,71). 

Micro-Particle Image Velocimetry (μPIV) 

The first microscale resolution particle image velocimetry (μPIV) system used an 

epifluorescent microscope, 100–300 μm diameter seed particles, and an intensified CCD 

camera to obtain particle-image fields, yielding spatial resolutions of 6.9 x 6.9 x 1.5 μm 

(28).  This system operates similarly to macroscale PIV, with several differences.  The 

seed particles are much smaller, small enough to exactly follow the flow without 

blocking channels, yet large enough to allow imaging and to dampen Brownian motion.  

Polystyrene particles were labeled with fluorescent dye, causing them to absorb blue 

light at a wavelength of 469 nm and in turn emit green light at a wavelength of 509 nm.   

The bulk velocity of this setup was 50 μm/s and the time delay between successive 

images was 68.5 ms.  One improvement on this method involves using a pulsed laser to 

achieve spatial resolutions of 13.6 x 0.9 x 1.8 μm and a 500 ns delay between sequential 

images (72).   
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There are several disadvantages inherent in using fluorescent microspheres as 

seed particles.  As this is an optical technique, a fundamental limitation is the need for 

optical access to the flow, requiring transparent boundaries.  Because of the small size of 

the particles, they are affected by Brownian motion.  This causes them to move 

randomly, initially resulting in error of 9%, which was reduced by ensemble averaging 

(28).  Particles typically fluoresce only on the surface or weakly through the volume due 

to quenching effects, resulting in lower signal-to-noise ratios (27,73).  Also, particles are 

generally hydrophobic due to polystyrene construction, which can lead to aggregation of 

particles, nonspecific absorption of hydrophobic solutes on particle surfaces, and 

adhesion of particles to microchannel walls (73).  Problems may arise in using 

electroosmotic flow because the particles exhibit interfacial phenomena, have 

electrophoretic motion, and can affect electrokinetic flow and interfacial phenomena at 

the boundary (73).   

Fluorescence 

 In fluorescence, a photon is absorbed by a fluorosphore, the fluorosphore 

becomes excited for 1-10 ns, and a photon of a lower energy is emitted (27).  

Fluorescence intensity fields resulting from mixing a dyed fluid with an undyed fluid 
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provide concentration fields, allowing assessment of mixing performance (61).  Presence 

of fluorescently labeled chemicals may also interfere with processes under investigation 

(22).  When using top-down fluorescence microscopy to assess the degree of mixing, 

incomplete mixing along the depth of the channel cannot be experimentally detected 

(74).  Because of the short fluorescent lifetime, this technique does not allow tagging, 

however photobleaching is a process in which fluorospheres are chemically altered by 

exposure to excitation light (61).  The resulting “tagged” dark area can then be followed, 

allowing velocimetry.   

Magnetic Resonance Imaging 

Imaging 

 Magnetic resonance imaging (MRI) is based on the interaction of protons in a 

strong magnetic field with radio frequency (RF) energy (75).  When placed in a strong 

magnetic field (BB0), the magnetic moments of protons align with and against the field, 

precessing around it.  A slight imbalance in the number of protons in each of these states 

is present yielding a net magnetization for MR imaging.  Exposure to a time varying 

radio frequency (RF) magnetic field (B1B ) at the resonance frequency causes protons to 

shift states.  This allows magnetic moments, or “spins,” to be tipped 90˚ such that they 
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precess in a plane orthogonal to B0.  While the net magnetization has components in this 

plane (during T1 decay) with coherent phase (during T2 decay), a signal is detectable by 

an RF coil. 

Based on a concept originally proposed by Paul Lauterbur (76), for which he was 

awarded a Nobel Prize, gradient magnets create spatially dependent variations in B0, 

which are used for slice selection and to spatially encode frequency and phase into the 

spins.  Phase encoding requires a repetition of RF pulses and gradient magnets, each 

with a phase encoding gradient of different magnitude.  This set of pulses, called a pulse 

sequence, has a set repetition time (TR) between RF pulses and echo time (TE) between 

excitation and received signal.  The signals or “echoes” resulting from exposure to an RF 

pulse are demodulated and sampled, each forming one line of what is called Fourier 

space, or k-space.  After data collection, a 2-dimensional inverse Fourier transform is 

performed on k-space, extracting the encoded spatial information to form an image.  A 

gradient echo sequence uses one RF pulse per echo, while a spin-echo sequence employs 

a second RF “refocusing” pulse.  This second pulse causes the precession of the 

magnetic moments to re-phase, creating a greater signal while at the same time lessening 

the effects of magnetic field inhomogeneities.   
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Velocity Measurement 

 The motion sensitivity of MRI has an established history and has undergone 

many developments to form tools for non-invasive blood flow measurement 

(30,75,77,78,79).  For instance, heart motion has been observed using an MR imaging 

method based on tagging (explained below) myocardial tissue with RF saturation before 

acquiring images, allowing study of biomechanical properties of normal and abnormal 

heart muscle (80).  In an improvement on this method, higher resolution spatial patterns 

of altered magnetization have been used to assess motion of the heart (81).  Non-clinical 

flow velocity studies can also benefit from the non-invasiveness of MRI.  Measurements 

of flow through a step stenosis were performed to assess the limitations of MRI 

velocimetry in complex geometries (82).  Both spin tagging, a time-of-flight effect, and 

phase contrast measurements were compared to computational fluid dynamics results. 

 Spin-tagging operates by selectively tagging spins and observing them a fixed 

time later to assess motion.  This is done by saturating spins prior to imaging so that they 

yield no signal during subsequent echoes until they have undergone T1 decay.  Selective 

saturation can be used to insert a grid of lines, which appear black in the images due to a 

lack of signal.  This has been accomplished using a DANTE pulse train (83) and a sinc-
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modulated pulse train (84).  Velocity information is obtained by dividing the 

displacement of a grid square by time between images.  Spin-tagging can provide a 

qualitative picture of two-components of complex motion within a slice, but the 

resolution of quantitative velocity information is limited by size of the grid squares 

(82,85).   

 Phase contrast methods are based on flowing fluid acquiring a different amount 

of phase than its stationary surroundings.  This can be accomplished using a bipolar 

gradient pulse, which has no effect on stationary spins but causes moving spins to 

acquire phase, where the amount of phase acquired is dependent on the velocity of the 

fluid.  Single component velocity information for each pixel can be acquired for flow 

through a slice.     

Complex Flow Studies 

 While MRI is commonly used in flow studies, many of these rely on steady or 

periodic flow due to the limitations in temporal resolution of conventional MR imaging.    

For instance, in clinical MR angiography, a gating mechanism can ensure that echoes 

occur at the same point of the cardiac cycle.  Alternative MR imaging methods have 

been used to image complex unsteady flow phenomena, such as turbulence.  Several of 
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these methods have been reviewed.  Echo planar imaging (EPI) (86) has been used to 

accelerate image acquisition by employing time dependent magnetic field gradients to 

acquire multiple lines of k-space in one excitation. 

The structure of a turbulent puff has been imaged using a one-shot imaging 

technique based on echo-planar imaging.  These puffs occur in flow with a transitional 

Reynolds number when a disturbance is introduced at the pipe inlet.  Images of turbulent 

puffs in flow of Reynolds numbers 2000 and 2250 were acquired in 20.48 ms, with 150 

ms between consecutive images (87).  An echo-planar approach has also been applied to 

acquire “instantaneous” velocity measurements of a turbulent puff across a two-

dimensional plane (88).  This approach is limited by the time difference between spin 

echoes, which becomes significant for unsteady flows.  Data acquisition time was 48 ms 

and velocity measurements are acquired at different times, meaning that measurements 

are not truly instantaneous.  EPI has been used to image the distribution of local shearing 

motion in circular pipes (89), yielding agreement with theory at the downstream region 

of a turbulent puff.  Image acquisition time was 20.48 ms and consecutive images were 

taken 200 ms apart.  Spatial tagging with EPI has also been used to image turbulent 
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motion (85), allowing visualization of complex motions by a single image.  Image 

acquisition time was 21.12 ms and consecutive images were taken 200 ms apart.   

EPI has been used to study the dependence of the NMR signal from turbulent 

flow on velocity (90).  Images of 64 x 64 resolution were acquired with a TE of 28 ms.  

Total acquisition time per image was 33 ms and the sequence was repeated every 250 

ms.  This allowed acquisition of 32 consecutive images in 8 s.  Re was varied from 0 to 

6270.  Inspection of the images shows increasing complexity with increasing Re.  

Individual vortices and eddies can be seen, and their movement is visible when images 

are viewed as movies.  The degree of turbulence was quantified by calculating the 

standard deviation of each pixel.  The amount of shear present was related to the signal 

amplitude, and the mean cross-stream velocity was related to the phase. 

More recently, an EPI based imaging sequence called the gradient echo rapid 

velocity and acceleration imaging sequence (GERVAIS) has been used to acquire three 

velocity components from a single excitation over a timescale of 60 ms (91).  Image 

resolution of 64 x 32 was obtained.  This was used to study laminar and turbulent flow, 

with Re up to 5000.  The velocity fluctuations are shown to be small compared to local 

velocities, establishing that the acquisition times are short enough that the images are 
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effectively instantaneous.  As Re was increased, qualitative observation showed loss of 

radial symmetry and parabolic velocity profiles, turbulent eddies, and high shear at the 

walls.  

Single Echo Acquisition Magnetic Resonance Imaging 

 SEA MRI drastically reduces image acquisition time by eliminating phase 

encoding using a 64-element array of planar pair coils (31).  The concept of using 

multiple receive coils to decrease acquisition time has been demonstrated before, such as 

in sensitivity encoding (SENSE), which is based on the encoding effect of receiver 

sensitivity (92).  Using RF coils with highly localized field sensitivity patterns, SEA 

performs spatial localization by combining conventional frequency encoding along the 

axis of the array elements with the spatial information provided by each element.  A one-

dimensional FFT is performed on the echo from each coil, spatially resolving the 

encoded frequencies and providing one line of the image (93).   

Using a gradient echo sequence modified to eliminate phase encoding, a TE of 3 

ms and a TR of 5 ms have been achieved, allowing imaging at 200 frames per second 

(94).  These MR “snapshots” allow visualization of dynamic processes, such as motion, 

which cause artifacts in conventional MRI.  The parallel array is 13 cm by 8.1 cm, with 
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the 64 parallel elements along the 13cm length.  This gives the array a resolution of 2 

mm along the array encoding direction and 1 mm along the frequency encoding 

direction. 

Microscale Magnetic Resonance 

 As discussed earlier, detection is critical in retrieving results from a μTAS.  

Nuclear magnetic resonance (NMR) spectroscopy, therefore, has been integrated into a 

microfluidic system to perform analysis on the output of a chip-based capillary 

electrophoresis device (95).  This system incorporates a planar RF detector coil for 

NMR, however its sensitivity was not adequate for detection of concentrations typical of 

the output of capillary electrophoresis.  Another system was developed using multiple 

solenoidal microcoils (96), which have higher sensitivity.  This approach splits the flow 

from a separation capillary into multiple outlets and stops one segment of it to obtain 

high resolution NMR spectra while flow continues through the other segment.  Research 

continues into development of planar microcoils because they can be built using 

processes based on photolithography and predictions indicate that performance may 

approach that of solenoid microcoils (97). 
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 While these methods focus on detection, MRI velocimetry has also been 

performed in microchannel networks (J. Georgiadis, personal communication).  

Conventional MR phase-contrast velocimetry was performed using a standard flow-

compensated spin-echo sequence with bipolar gradients.  Imaging was performed in a 

7.6 cm inner diameter RF coil with an acquisition time of 12 min 51 s for each of two 

velocity components.  This system yielded high resolution ( ~ 100 μm2 pixel size ) 

velocity images for Re of order 1. 
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III. METHODS 

Conventional MR Flow Imaging 

 It is important first to establish the limitations of conventional MR flow imaging 

before demonstrating the advantages of SEA flow imaging.  A flow phantom, a device 

for assessing the performance of an MRI system, was constructed (Fig. 1) with 3/16” 

(0.476 cm) and 5/16” (0.794 cm) inner diameter tubing connected in series to provide 

two flow velocities, each traversing both directions along the main magnetic field.  The 

tubing passed through a 3” (7.62 cm) inner diameter PVC pipe cylinder containing 

copper sulfate doped water.  This solution yields a strong uniform background signal, 

making the flow information easily visible, while also lessening magnetic field 

inhomogeneities near the imaged fluid.  Copper sulfate solution was pumped through the 

tubing by a Cole-Parmer variable flow rate peristaltic pulsating pump. 
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a 

 

 

b 
FIG. 1.  Cylindrical phantom. (a) Cross section sketch (cm). (b) Photograph. 

 Imaging of this phantom was performed with a 4.7 Tesla/33 cm Bruker/GE 

Omega MRI system using a lab-built birdcage radio frequency coil.  Spin-echo imaging 

was performed with a TE of 15 ms and a TR of 300 ms.  Gradient echo imaging was also 

performed and the pulse sequence was configured for a TE of 28 ms and a TR of 300 

ms.  Images were acquired at pump settings of 2, 4, and 6, which resulted in the flow 
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velocities indicated in Table 1.  At resolutions of 128x256, scan time was 38 seconds.  

The k-space data was imported into MATLAB and a 2-dimensional Fourier transform 

was performed, yielding magnitude and phase images.   

 

 
Table 1 
Flow in cylindrical phantom 
Pump 
Setting 

Volumetric flow rate 
(mL/sec) 

3/16” tubing average 
velocity (cm/s) 

5/16” tubing average 
velocity (cm/s) 

2 7 39 14 
4 13 73 26 
6 20 112 40 

 

SEA Flow Imaging 

A separation channel phantom (Fig. 2), modeled after a microfluidic device 

studied by the Lab for Quantitative Visualization in Energetics at the University of 

Illinois at Urbana-Champaign (UIUC) (J. Georgiadis, personal communication), was 

constructed for analysis with SEA imaging.  Because the MRSL operates a printed 

circuit board (PCB) prototyper, the phantom was constructed of several layers of PCB.  

The boards were precisely cut using the prototyper and copper surfaces were removed 

using PCB etching solution.  Four layers of PCB were glued together with epoxy to form 
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the phantom, and a thin sheet of plastic served as a boundary between the fluid and the 

parallel array.  The signal to noise ratio decreases rapidly with distance from the array, 

so this layer must be as thin as possible.   

Fluid enters and exits from the sides, where two 3/16” (0.476 cm) inner diameter 

tubes terminate.  These tubes then bend 90 degrees to leave the magnet.  The limited 

bending radius allowed by the tubes resulted in making the phantom smaller.  Water 

flows into the phantom, strikes a rectangular obstruction, separates, travels around the 

obstruction, and recombines to exit.  The same pump as before was operated at settings 

of 0.5, 1, and 2, resulting in the flow velocities in Table 2.   

 

                

 

a b

FIG. 2.  First separation channel phantom. (a) Sketch (cm).  (b) Photograph. 

 

 



 37

 
Table 2 
Flow in first separation channel 
Pump 
setting 

Volumetric flow 
rate (mL/sec) 

Average velocity 
entering phantom (cm/s) 

Average velocity while 
separated (cm/s) 

0.5 1.5 8.4 3 
1 3 16.8 6 
2 7.7 43.2 15.4 

 

A second separation channel phantom (98) (Fig. 3) has been constructed using 

the same methods as the first, only with more robust X-ray film as the boundary between 

the fluid and the parallel array.  This design incorporates ducts so that the fluid enters 

and exits from a different side than the previous phantom.  Moving the fluid entry ports 

proved key to expanding the phantom to cover more of the parallel array while still 

allowing room for termination of the tubing.  The larger size enables better matching of 

the phantom to capabilities of SEA.  Also, this phantom more strictly adheres to the 

proportions of the device studied by UIUC.    
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    a 

    
b 

 
FIG. 3.  Second separation channel phantom. (a) Sketch (cm).  (b) Photograph. 

Table 3 indicates the flow velocities at different locations within the phantom at 

various pump settings.  These velocities are averaged over the cross sectional area of the 

channels and also time averaged over the pulses of the pump.  Table 4 indicates 

Reynolds numbers in the second separation channel.  Because the flow does not have 

adequate distance to fully develop into a laminar or turbulent regime, these values 

cannot indicate with complete accuracy the flow regime in any part of the phantom.  

 



 39

They are based on a rectangular channel and do not take into account the effects of the 

obstruction.  However, these values give a general order-of-magnitude idea of what 

regime might be expected. 

 

 
Table 3 
Flow in second separation channel (98) 
Pump 
Setting 

Volumetric 
flowrate 
(mL/sec) 

Average velocity 
3/16” tubing 
(cm/s) 

Average velocity 
entry/exit (cm/s) 

Average velocity 
separated (cm/s) 

0 0 0 0 0 
1 3.0 17.0 2.5 2.1 
2 7.7 43.2 6.3 5.4 
3 12.5 70.2 10.2 8.8 
4 15.6 87.7 12.8 11.0 
5 20 112.3 16.4 14.1 

 

 
Table 4 
Reynolds numbers in second separation channel 

Volumetric flow 
rate (mL/sec) 

Re 3/16" 
tubing 

Re  
entry/exit 

Re 
separated 

Pump 
Setting 
1 3.0 910 232 177 
2 7.7 2310 588 450 
3 12.5 3753 955 731 
4 15.6 4691 1194 914 
5 20.0 6005 1528 1170 
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The same MR system described above was used, with a parallel plate RF volume 

coil and a 64-element array of planar pair coils.  The first separation phantom was 

imaged using both conventional and SEA modes, while the second was imaged with 

SEA only.  In conventional imaging, the volume coil was used for transmit and receive, 

TE was 20 ms and TR was 250 ms.  SEA imaging was performed using the volume coil 

for transmission, the array for receive, and a conventional non-refocused gradient echo 

pulse sequence with a phase compensation gradient pulse rather than a phase encoding 

table (98).  This sequence was modified to include spin-tagging based on DANTE pulses 

(Fig. 4), which saturate grids of spins for subsequent tracking.   

 

 

 
FIG. 4.  Spin-tagging sequence.  Uses 2-dimensional DANTE pulse train preceding a 
recalled gradient echo sequence. (98) 
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Initially, only vertical tag lines were saturated, then a diagonal grid of tag lines 

was employed.  Application of the spin-tags took 14 ms.  The first separation channel 

was imaged at 40 fps, while the second separation channel was imaged at 200 fps.  The 

200 fps pulse sequence had a TE of 3 ms and a TR of 5 ms.  Distilled water flowed 

through the phantom rather than copper sulfate solution in order to increase the T1 

relaxation time, allowing the spin-tags to remain longer.  However, this is at the cost of 

weaker signals.  Fig. 5 illustrates how each phantom rests on the parallel array. 

 

    a b

 

 

FIG. 5.  Separation phantoms on array. (a) First separation channel.  (b) Second 
separation channel. 
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IV. RESULTS 

Conventional MR flow imaging shows limits 

Conventional MR spin-echo magnitude images illustrate flow artifacts.  Fig. 6 is 

of volumetric flow rates of 7, 13, and 20 mL/sec (see Table 1).  The four circles are the 

tubes in which flow is occurring, the larger two are the 5/16” (0.794 cm) tubing and the 

smaller the 3/16” (0.476 cm) tubing.  In all images, the flow direction is perpendicular to 

the imaged slice and the velocity is fastest in the smaller tubes, causing artifacts to 

present there first.  As the flow rate is increased, time of flight artifacts appear as 

complete signal void (black) in the areas of high velocity, such as in all but one tube in 

Fig. 4c.  Phase artifacts present as distortion above and below the flow area along the 

phase encoding direction. 

 
a b c

 

 

FIG. 6.  Conventional MR magnitude images of cylindrical phantom. (a) 7 mL/s.  (b) 
13 mL/s. (c) 20 mL/s. 
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Spin-echo phase images (Fig. 7) show wrapped flow information due to excess 

flow sensitization, indicating a non-uniform velocity profile, consistent with pressure 

driven flow.  Looking at the tubes in each image, the wrapping is indicated by the 

number of alternations of black and white, which increases with velocity. 

   
a b c

 
FIG. 7. Phase maps of cylindrical phantom. (a) 7 mL/s.  (b) 13 mL/s. (c) 20 mL/s. 
 

The gradient echo sequence with a short echo time has less sensitization, 

decreasing the amount of phase wrapping.  Figs. 8a, 8b, and 8c illustrate flow rates of 0, 

7 and 13 mL/sec, respectively.  The time of flight signal void artifact as well as the 

ghosting phase artifacts are less pronounced in the resulting magnitude images.  
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a b c

 
FIG. 8.  Gradient echo magnitude images of cylindrical phantom. (a) 0 mL/s.  (b) 7 
mL/s. (c) 13 mL/s. 

 

The shorter gradient echo time decreased the wrapping in the phase images (Fig. 

9), however the inhomogeneities of the magnetic field were more pronounced, making 

velocity information difficult to extract.  Qualitative information can be obtained by 

comparing the brightness within the tubes to that of the surrounding area.  With no flow 

(Fig. 9a), both sets of tubes show no contrast with the surrounding area.  At 7 mL/sec 

(Fig. 9b), the offset begins to present, indicating flow.  The lowest tube is beginning to 

show wrapping, indicating that velocity is exceeding measurement capabilities.  At 

13mL/sec (Fig. 9c), all of the tubes show some degree of wrapping. 
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a b c

 

 

FIG. 9.  Gradient echo phase images of first phantom. (a) 0 mL/s.  (b) 7 mL/s.  
(c) 13 mL/s. 
 

Advantages of SEA are clear 

 Conventional spin-echo images of the first separation channel phantom (Fig. 10) 

again demonstrate limitations in temporal resolution.  Velocities are listed in Table 2.  

Fig. 10a shows stationary flow with no tags, Fig. 10b shows flow at a pump setting of 

0.5 with spin tags and 4 averages.  Artifacts begin to present in the areas of fastest flow, 

where the fluid strikes the obstruction from below.  Figs. 10c and 10d indicate pump 

settings of 1 and 2, respectively, with 16 averages.  Artifacts intensify in Fig. 10c and the 

complete loss of signal in Fig. 10d is because fluid leaves the imaged slice before it can 

experience both 90 degree and 180 degree RF pulses.  
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a b c

d

 

 

FIG. 10. Conventional images of first separation channel.  (a) Stationary with no tags.  
Images with tags at (b) 1.5 mL/s, (c) 3 mL/s, (d)  7.7 mL/s. 

 SEA images of the first separation channel (Fig. 11) are of limited resolution due 

to the small size of the phantom relative to the resolution of SEA, however, qualitative 

information is available.  The time between acquisitions of each of the following images 

was 25 ms, for an image acquisition rate of 40 frames per second.  The images in Fig. 11 

were taken at a flow rate between that of 10b and 10c, however no such artifacts present 

in the SEA images.  Fig. 11a was acquired immediately after tagging, 11b was 50 ms 

after tagging, and 11c was 100 ms after tagging.  Flow enters at the top and exits at the 
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bottom.  When viewed in rapid succession as a movie, rotation is visible in the upper 

half of the phantom, and the tag lines in the bottom move toward the center as fluid from 

each half of the phantom recombines.  At the same time, the tag lines fade as time passes 

due to T1 decay of the spin tags. 

 
a b c

 
FIG. 11. SEA images of first separation channel. (a) 1st frame.  (b) 2nd frame.  
(c) 4th frame. 

 

 As the second separation channel spans more of the array, the tag lines are more 

visible.  Fig. 12 shows vertical tag line images at a pump setting of 2.75, while the pump 

setting for Fig. 13 is 4.5.  Corresponding velocities may be interpolated from Table 3.  

These images were captured from a movie, with each frame separated by 5 ms.  

Observation of the tag line motion along the lowest horizontal boundary of the images 

yields the velocity at which the fluids flow parallel to the boundary as the two halves 

recombine.  At a pump setting of 2.75 (Fig. 12), the tag lines at the boundary move at 11 
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cm/s, and at a pump setting of 4.5 (Fig. 13), this velocity is 13.7 cm/s.  Rotation is 

visible in the upper right corner, indicative of turbulence. 

 

a b c

d e

  

 

FIG. 12. SEA vertical tag line images of second separation channel at a pump setting 
of 2.75. (a) 1st frame.  (b) 5th frame.  (c) 10th frame.  (d) 15th frame. (e) 20th frame.  
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FIG. 13. SEA vertical tag line images of second separation channel at a pump setting of 
4.5. (a) 1st frame.  (b) 5th frame.  (c) 10th frame.  (d) 15th frame. (e) 20th frame.  

The SEA images of the second separation channel in Figs. 14 and 15 (98) have 

diagonally oriented tag lines.  The lines are 2 mm wide and are separated by 6 mm.  This 

allows better visualization of motion with the resolution of the 64-channel array coil, 

which is lower in the array encoded direction.  The position of the phantom on the array 

in relation to the images is indicated in Fig. 16.  Each row in Figs. 14 and 15 represents 

an increasing pump setting (Table 3), starting at 0.  For each pump setting, 64 images 

were acquired, followed by a 3 second delay to allow T1 decay.  During this delay, the 
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pump setting was increased by 1 unit.  The first column of Figs. 14 and 15 represents the 

1st frames, the second column represents the 10th frames, and the third column represents 

the 20th frames.  Thus, the images in the first column were taken immediately after the 

tagging, those in the 2nd column were taken 50 ms after the tagging, and those in the 3rd 

column were taken 100 ms after the tagging. 

While viewing the images as animations provides the best visualization of the 

fluid dynamics, the isolated frames in Figs. 14 and 15 can provide some details (98).  

Row 2, with a pump setting of 1, shows that the flow travels on the left side of the entry 

port, which can be expected due to the bend shown in Fig. 16.  At higher flow rates, an 

area of stationary fluid can be seen above the obstruction, as the fluid travels around that 

area to exit the phantom.  In the animations, eddies are visible in the lower left corner.  

Complex flow can also be seen as the fluid recombines to exit the phantom.  

Quantitative velocity information can also be extracted.  By comparing the images in the 

1st and 20th frame in row two, the fastest flow in the inlet channel moves 1 cm, meaning 

that its bulk velocity is 10 cm/s.  
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FIG. 14.  SEA diagonal tag line images of second separation channel (Pump settings 0 
through 2).  Each row corresponds to a pump setting indicated in Table 3.  The 1st, 2nd, 
and 3rd columns are the 1st, 10th and 20th frames acquired following the application of 
spin-tags. (98)  
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FIG. 15.  SEA diagonal tag line images of second separation channel (Pump settings 3 
through 5).  Each row corresponds to a pump setting indicated in Table 3.  The 1st, 2nd, 
and 3rd columns are the 1st, 10th and 20th frames acquired following the application of 
spin-tags. (98)  
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FIG. 16. Second separation channel orientation. (a) Sketch, including termination ducts. 
The box indicates the array coil.  (b) MR image of stationary flow for comparison. (98)
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V. DISCUSSION 

 SEA imaging couples the non-invasiveness of MRI that is relied upon daily in 

the clinical setting with real-time visualization capability.  By demonstrating the ability 

to view complex flow phenomena inaccessible to conventional MRI, SEA is shown to 

hold promise as a tool for quantifying flow.  Building on the research seeking to 

integrate NMR spectroscopy in microfluidic devices, RF microcoils could also be 

integrated in microfluidic devices in a parallel array configuration.  This would enable 

SEA imaging and thus provide a noninvasive method of visualizing microfluidic flow at 

high temporal resolution without requiring optically transparent boundaries.   

The capability of visualizing complex flow phenomena, such as turbulence and 

mixing, could prove key in refinement and development of new microfluidic devices.  

Although turbulence is unavailable at the microscale, other complex flows are, such as 

chaotic advection utilized in micromixers.  Improved microscale flow visualization 

techniques will aid in the development of microfluidic devices, furthering novel 

biological technologies such as lab-on-a-chip.  Such technologies are posed to usher in a 

new age of medical discovery and treatment. 
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