

OPTICAL BIOPSY: COMPLEMENTING HISTOLOGY WITH

NONLINEAR OPTICAL MICROSCOPY

C

Submitte

In partial f

UNIV

Ma

A Senior Honors Thesis

by

HRISTINA M. SHAFER

d to the Office of Honors Programs
& Academic Scholarships
Texas A&M University

ulfillment of the requirements of the

ERSITY UNDERGRADUATE
RESEARCH FELLOWS

April 2006

jor: Biomedical Engineering

OPTICAL BIOPSY: COMPLEMENTING HISTOLOGY WITH

NONLINEAR OPTICAL MICROSCOPY

A Senior Honors Thesis

by

CHRISTINA M. SHAFER

Submitted to the Office of Honors Programs
& Academic Scholarships
Texas A&M University

In partial fulfillment for the designation of

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOWS

Approved as to style and content by:

--- --
 Alvin T. Yeh Edward A. Funkhouser
 (Fellows Advisor) (Executive Director)

April 2006

Major: Biomedical Engineering

 iii

ABSTRACT

Optical Biopsy: Complementing Histology with Nonlinear Optical

Microscopy (April 2006)

Christina M. Shafer

Department of Biomedical Engineering
Texas A&M University

Fellows Advisor: Professor Alvin T. Yeh
Department of Biomedical Engineering

Histology, though widely used for cellular imaging, suffers from its destructive nature;

cells are not viewed in their natural living environment. Nonlinear optical microscopy

(NLOM) has been widely used to view cells in situ without a need for sample

processing. NLOM uses a high-powered ultrafast laser to generate nonlinear optical

signals within living tissue. These signals are used to render two- and three-dimensional

images. One improvement to be made on this imaging system is the capability to

produce spectral images rather than merely intensity images. Spectral information

provides insight to the sample’s chemical environment; this insight may lead to

increased efficiency in disease diagnosis, since pathological development begins at the

 iv

microscopic level. Additional detectors added to the system will allow wavelength

discrimination and the creation of spectral images. To achieve this type of system,

additional hardware must be built and software must be written to allow simultaneous

data acquisition from 32 detectors. The initial task competed involved the scanning

mechanism; a program was created to control motorized optical scanning mirrors. The

next task required a circuit board to be built to interface the detectors with the computer.

A sub-program was then designed to save tissue response matrices (images) as binary

files. The files were able to be opened in MATLAB® and converted into scaled intensity

images. The final program created used information from the circuit board (i.e. from

each detector) to create the response matrix to be saved as a binary file. All hardware

and software was then integrated into the current imaging system to be tested with two

detectors. At this point, the new system cannot adequately render images. Future work

will involve software and hardware correction until images are correctly formed. At this

point, the tissue response to two different ranges of light wavelengths will able to be

viewed separately, and the matrices can be added to create a grayscale image. At this

point, work on this project will involve expanding the hardware and software to

incorporate 30 additional detectors. The spectral detection system will allow image

 v

segmentation of biological components, and chemical markers associated with cellular

abnormalities as well as different genetic markers can be viewed on a microscopic level.

Therefore, this system is of great value to medicine and science.

 vi

ACKNOWLEDGEMENTS

This research was supported, in part, by funds from the Honors Programs Office and

Academic Scholarships. Additional support was provided by the National Science

Foundation and the National Institutes of Health.

 vii

TABLE OF CONTENTS

 Page

ABSTRACT……………………………………………………….. iii

ACKNOWLEDGEMENTS……………………………………….. vi

TABLE OF CONTENTS………………………………………….. vii

LIST OF TABLES AND FIGURES………….…………..……….. viii

INTRODUCTION…………………………...…….........…………. 1

PREVIOUS RESEARCH ON IMAGING….……..………………. 3

PROBLEM…..……………………..………………...……………. 10

 Lab Setup……...………………………….………………….. 11
 Setup Limitations….…………….…….....………………….. 14

METHODOLOGY AND RESULTS………………......….………. 16

 Scanning: Basic Methods…………………………..……….. 17
 Scanning: Results and Calculations………………….……... 23
 Detection Hardware...…...…………………………..…….… 31
 Detection Software: Saving Binary Files.…………………... 42
 Detection Software: Data Acquisition and Image

 Generation…...……………………………………….. 46
 Testing of Hardware and Software…………………...……... 52
 Limitations………………………………….….…………….. 54

CONCLUSIONS AND FUTURE WORK………………………… 65

REFERENCES……………………………………..……………... 68

 viii

TABLE OF CONTENTS CONTINUED

 Page

APPENDIX A……………………………………………………... 70

APPENDIX B…………………………………………………...…. 85

APPENDIX C…………………………………………………...…. 86

APPENDIX D……………………………………………………... 87

APPENDIX E…………………………………………………...…. 88

APPENDIX F…………………………………………………...…. 89

CURRICULUM VITA…………………………………………….. 90

 ix

LIST OF TABLES AND FIGURES
FIGURE Page
1 Lab equipment schematic..………………………………….... 11
2 Current laser scanning patterns.………………………………. 12
3 Front and side views of lab microscope…………………….... 12
4 Effects of image filtering……………………………………... 15
5 Connector block setup……...……………………………….... 20
6 General mirror waveform patterns…………………………..... 22

7 LabWindows/CVI triangle function………………………...... 24

8 LabVIEWTM mirror motion waveforms.….………………….... 28
9 Actual mirror response to LabVIEWTM waveforms………….... 30
10 Detection circuit schematic………………………………….... 33
11 Actual detection circuit board……………………………….... 34
12 Basic count-up circuit schematic……………………………... 36
13 Voltage waveform for count-up circuit test………………....... 38
14 Carry look-ahead circuit schematic………………………....... 39
15 Voltage waveform for look-ahead circuit test……………....... 41
16 MATLAB® image of matrix with zeros…………………….... 45
17 Image created with random matrix values…………………..... 47
18 Setup for hardware and software testing……………………... 53
19 Control image of mouse tail tendon………………………....... 54
20 First image generated with software………………………….. 55
21 Example of LabVIEWTM formula node………………………... 60
22 Image generated with modified software…………………….. 61
23 Generated image with limited viewing window…………….... 62
24 Control image with limited viewing window............................ 63

 1

INTRODUCTION1

In the past, clinics and the labs have relied upon histo(path)ology in order to observe

tissue on a cellular level. The histological process involves excising tissue of interest

from the patient and processing it for viewing purposes (in two dimensions only). Since

this process is time consuming, difficult to control, and quite invasive, it has become

increasingly important to find an alternate method of viewing cells and tissues. One

method, referred to as optical biopsy, involves microscopy and will enable the

performance of time-dependent studies on living tissue in the laboratory and, clinically,

could greatly reduce patient discomfort. New improvements to be made to optical

biopsy focus on development of acquiring color images of live tissues. Spectral data

provides chemical information about the scanned subject, and since a cell’s response

depends on its chemical environment, having spectral data is crucial to the determination

of cellular response to certain stimuli. These observations will also lead to more

efficient disease diagnosis, since pathological development begins at the microscopic

level. Moreover, the spectral detection system will allow image segmentation of

1 This thesis follows the style and format of the Journal of Biomedical Optics.

 2

biological components, and the use of ultrashort broadband laser pulses characteristic to

nonlinear optical microscopy (NLOM) will enable multiplexing experiments to be

performed. Likewise, simultaneous excitation of multiple fluorophores will allow

multiple molecular interactions to be viewed with one scan. Thus, the development of a

spectral detection system based on NLOM will be a very important breakthrough in

biomedical research.

 3

PREVIOUS RESEARCH ON IMAGING

Research similar yet not identical to the idea of a spectral, three-dimensional non-linear

optical microscopy has been conducted in the past. Some conventional modes of the

non-invasive imaging of live tissues are the x-ray, the computerized tomography (CT

scan), and magnetic resonance imaging (MRI). Though these methods are quite

successful, they lack the ability to capture images on a microscopic level. As far as

disease diagnosis is concerned, early detection is often crucial to patient survival; most

pathologies begin development on a cellular (microscopic) level.

Recently, there has been much development in terms of non-invasive microscopic

imaging (microscopy). Perhaps the oldest method (seen as early as 1962) is second-

harmonic generation (SHG). SHG is a second-order nonlinear optical process that has

constraints confining the signal to regions of the specimen that lack a center of

symmetry.1 The phenomenon of SHG requires intense laser light passing through a

highly polarizable material with a noncentrosymmetric molecular structure and the

second-harmonic light protruding from the material is half the wavelength of that

entering. The SHG process thus changes two near-infared incident photons within the

 4

material into one emerging visible photon at twice the energy.2 Near-infared laser

excitation minimizes scattering and absorption of the source; this optimizing imaging of

tissues at greater depths.3 Thus, SHG is successful in obtaining non-damaging (no stain

required), non-invasive images in three-dimensions but currently lacks spectral

information.

Similar to SHG, third-harmonic generation (THG) microscopy has recently been

studied as a probe to characterize transparent specimens. Third-harmonic light is

generated at the focal point of a tightly focused short-pulse laser beam. Like SHG, THG

relies on inhomogeneities near the focal point (such as interfaces between two media);

thus the symmetry along the optical axis is broken and a measurable amount of the third-

harmonic is generated. THG can be used for specimens as thick as 3mm, but it only

provides structural information. Both SHG and THG are often combined with two-

photon excited fluorescence imaging so that a single laser source (such as titanium

sapphire) may be used.4

Another form of microscopy recently explored is two-photon fluorescence (TPF)

spectroscopy. This type of imaging has mostly been used to study certain nucleotides

and flavoproteins to quantify cell metabolism. Though studying the fluorescence of

 5

nucleotides and flavoproteins minimizes absorption of excitation by intrinsic

chromophores, light scattering, and variations in mitochondrial density, it is desired for

spectral information such as that obtained by this two-photon fluorescence spectroscopy

imaging to enable study of overall chemical composition rather than merely that of cell

metabolism.5 Like SHG, current TPF involves use of up to two detectors (a maximum

of two colors may be collected from the specimen at a time). TPF is often combined

with SHG or another similar process called third-harmonic generation so that a single

laser source (such as titanium sapphire) may be used.4

Likewise, optical coherence tomography (OCT) has been used much in clinical

practice due to its noninvasive nature dating back to 1991.6 OCT is similar to ultrasound

but measures light rather than acoustic waves. In OCT, cross-sectional images are

generated by scanning a tissue sample with an optical beam and measuring the echo time

delay and intensity of backscattered light. This light is quantified by correlating it with

light that has traveled a known reference path.7 The light data obtained is then

displayed at a logarithmic grayscale image (no spectral information provided).8 Perhaps

the key element for this type of imaging is an inferometer (radiation from a broadband

light source is split into two parts: one directed onto the surface of the specimen and the

 6

other launched to a reference mirror). Reflected beams from these two paths are them

recombined to interfere, and this interference signal is detected by a photodiode (non-

zero only when the two path lengths match within the light coherence length, thus

providing very high sensitivity and spatial resolution).9 OCT has been used extensively

in dermatological diagnosis9 and perhaps more so in ophthalmic imaging.8

The imaging modality of differential interference contrast is commonly used for

studies on intracellular vescicle trafficking and cellular substrate interaction. After

passing through a prism, the differences in amplitude of visible light result in enhanced

contrast in areas close to the cell membrane and bound substrate. An image may then be

reconstructed in conjunction with phase or reflection contrast microscopy with a

somewhat low resolution of 0.3 µm.10

Another mode of imaging called confocal laser scanning microscopy has most

recently been used for quality control of engineering tissues and nanofibers. In this type

of imaging, light from a point laser is introduced into the sample and light of the same

wavelength reflected back into the microscope objective is detected. The light thus is

scattered at interfaces or medium transitions (from media to collagen fiber or cell

membrane). This process is most successful with the use of reflective dyes or metallic

 7

decoration of fixed samples.10 The first account of time-lapse confocal reflection

microscopy (CRM) was documented in 2000 by Brightman, et al. Specifically, CRM

was used to determine and compare the 3D structure and assembly attributes of

reconstituted matrices prepared with purified collagen or interstitial matrix

components.11 It proved to be a very sensitive technique, but this study was performed

in vitro rather than in vivo and again only obtained intensity images.

Moreover, multiphoton microscopy (MPM) requires the quasi-simultaneous

absorption of multiple photons (two or three) to fulfill the energy requirement for dye

excitation.12 However, since multiphoton excitation occurs only in a very small

intratissue focal volume (on the order of about one femtoliter), with the use of a fast

galvoscanner and piezodriven objective positioner, the position of the multiphoton

excitation volume can be changed in three different directions in order to scan deeply

into the tissue.13 The actual image obtained consists of a matrix of fluorescence intensity

measurements made by digitizing the detector signal as the laser scans the specimen.14

Thus, again only intensity images are able to be obtained.

Specifically, one study briefly discussed by Peter Friedl in Summer 2004 deals with

dynamic imaging of the immune system using various imaging techniques. Stimulated

 8

emission depletion (STED) has been used to improve resolution in optical imaging in

which a second laser pulse eliminates the outer edge of the first laser beam. This

narrowing causes an improvement from radial and axial resolution of 200 nm and 300

nm, respectively, to below 100 nm in each direction. Fluorescence-resonance energy

transfer (FRET) involves the transfer of photons from one fluorphore to a neighboring

fluorescent molecule, selectively detecting molecular proximity (1-10 nm). Thus, FRET

indicates when molecular partners engage with each other or dissociate.15 Again, though

these techniques improve conventional microscopy (STED) and can detect interactions

between cells, again no spectral information may be obtained.

The most recent developments toward spectral detection have been accomplished by

the companies Leica, Zeiss, and Nikon. Leica has developed an electronically

controlled, freely definable Acousto-Optical Beam Splitter (AOBS). This beam splitter

allows simultaneous imaging of up to four fluorescence proteins due to enhanced

transmittance. Moreover, input ports for additional lasers, external detectors for non-

descanned imaging, and an output port for coupling external devices (such as more

detectors or spectrometers) have been added.16 Zeiss has developed a META detector

and method for metatracking that combines fast switching of incident laserlines with

 9

simultaneous switching of the spectral readout from the detector. Thus, different

spectral ranges of interest may be acquired by using electronic switches; this process is

not entirely simultaneous (only one color or range of wavelengths may be obtained at a

time).17 Nikon’s C1 Plus confocal microscope system allows four detector channels as

well, but, unlike Zeiss, information from these four channels may be obtained

simultaneously.18 Though these instrument companies have developed methods for

spectral imaging, only four wavelengths may be viewed, and much more detailed

information about the specimen may be acquired if many more detector channels are

incorporated.

 10

PROBLEM

Although many features of optical biopsy have been previously explored and developed,

one imaging method incorporating all desired attributes is yet to be developed. Thus,

this research qualifies as being original and has not been previously attempted.

Currently, in the lab of Professor Alvin T. Yeh at Texas A&M University, the main

focus is on SHG and TPF. Commercially-available software is used to control the

system and render images. However, the software limits this rendering to grayscale

images, which provide no spectral information about the tissue specimen. The main

focus for this research is to add hardware to the current lab setup and generate new

software to enable the creation of spectral images.

 11

Lab Setup

Currently, in the Tissue Microscopy Lab, the imaging system (seen in Figure 1) involves

a laser beam focused to a point of approximately 1 µm3 by a microscope objective, and

its position is determined by the swivel angle of two galvanized mirrors connected to a

computer. The current laser scanning pattern is seen in Figure 2. The actual microscope

as seen in the lab is presented in Figure 3.

Figure 1: Lab equipment schematic

 12

Figure 2: Current laser scanning pattern

Figure 3: Front (left) and side (right) views of lab microscop

As the laser beam scans the object on the two-dimensional plane (as

tissue), photons are emitted by the specimen. These photons are detect

PMTs

PMTs
e

sum

ed b
mirrors

ed to be live

y two photo-

 13

multiplier tubes (PMTs) set on top of the microscope (Figure 1). A discriminator is used

after each PMT that will emit a TTL pulse for each photon detected. Binary counter

chips are used to count the number of TTL pulses for each image pixel. A digital-analog

converter takes the resulting TTL-pulse count and converts this binary count into a

voltage value. Therefore, at each pixel (a 256x256 pixel image will have 65,536 scan

divisions), a voltage value will be recorded; the voltage value at matrix element (i,j)

corresponds to the photon count. A color map may be applied to voltage values to

render a false color image. In other words, the lowest and highest values in the voltage

matrix will be set to two color extremes (black and white, for example), and matrix

values between these extremes will be scaled accordingly to form a grayscale image.

The image frame rate was programmed to be 1 Hz. The residence time per pixel is 1s /

65,536 or 15.259 µs per pixel.

 14

Setup Limitations

Commercially-available software exists that controls the mirror swivel angles as well as

information processing for up to two detectors. The main focus for this research is to

ultimately add 30 detectors and modify each to sense a certain range of visible light

wavelengths. With this spectral selectivity feature, various cell components may be

viewed. Currently, the only method of viewing spectral wavelengths selectively is to

render an image using a band-pass filter. For each wavelength chosen, another scan

must be performed. For example, the image in Figure 4(a) shows a cell with its

surrounding collagen matrix. Figure 4(b) shows the cell alone; this image was obtained

by rendering a second image using a green (520 nm) filter. Likewise, Figure 4(c)

showing the collagen matrix was obtained by taking a third image using a blue (400 nm)

filter.7

 15

a b c

Figure 4: Effects of image filtering: (a) cell and collagen matrix without filtering; (b) cell alone

imaged with green (520 nm) filter; (c)collagen matrix imaged with blue (400 nm) filter

Adding 30 detectors to the current setup will allow all of these views with the ease of

only one scan rather than one scan per wavelength. This addition of detectors will

require software creation and hardware modification.

 16

METHODOLOGY AND RESULTS

For the sake of practicality, the creation process for this spectral detection system was

divided into two separate modules: scanning and detection. All programming,

interfacing, and testing of hardware and software was completed in the Tissue

Microscopy Lab in the Wisenbaker Engineering Research Center of Texas A&M

University.

 17

Scanning: Basic Methods

The first aim completed towards the final goal of the project was the movement of the

optical scanning mirrors. The initial task to be accomplished was the creation of

multiple functions that would serve as appropriate mirror motion patterns. The mirror

set used was Cambridge Technology’s Model 6220 Galvanometer Optical Scanner (set

of two mirrors – Figure 3). Each mirror is essentially a galvanometer in that it receives a

voltage signal and converts that signal into a swivel angle or mirror position. Therefore,

in order to scan an image in the pattern seen in Figure 1(b), one mirror needs to move the

laser beam across the image while another mirror moves the beam down the image. If

one “sweep” of a mirror is defined as a line across the image (each arrow in Figure 1b),

the mirror responsible for the pixel rows will need a periodic function. The mirror

needed to dictate the particular row of the scan will need only one sweep per scan.

 Various periodic functions were possible for each mirror, including sinusoidal,

raster, and triangular functions. Possible functions were designed first on paper and

analyzed for simplicity and efficiency in order to select the best option. Since it is most

convenient in most cases to deal with linear or quasi-linear functions, a triangular

 18

function was chosen to be the periodic function of choice for the fast mirror (Mirror 1).

A raster function was chosen for the slower-moving mirror (Mirror 2).

 NI LabWindows/CVI was used to create and send functions to the scanning mirrors.

LabWindows/CVI takes the programming language C and adds a graphical user

interface (GUI) and many previously-defined functions. All programming was

performed in C which allows for much greater user control and customization than that

of a graphical program such as NI LabVIEWTM. LabWindows/CVI was therefore used

initially to create a program that would generate the aforementioned mirror waveforms

and display them on the GUI. At first, the program included only user-defined

parameters. This allowed the programmer to debug the program and discover how

changes in the different parameters affected each created waveform. Once debugging

was complete, basic calculations were performed to determine the ideal frequency and

phase of each waveform. These values were then tested by being manually entered into

the GUI. When the program correctly displayed the two mirror waveforms concurrently

on one graph, the calculated frequency and phase of each waveform was set in the

source code rather than being left as user-specified controls. The only controls left on

the GUI were for the user to set the signal voltage range for each galvanometer.

 19

 The next step was the integration of the aforementioned program with the National

Instruments PCI-6259 data acquisition (DAQ) card and SCB-68 68-pin shielded

connector block. The card was properly installed and appropriate self-tests were run to

ensure proper device communication. Once the card was properly tested, one connector

block was connected to the DAQ with the included SHC68-68-EPM shielded cable.

Two connector blocks will be needed when the detection portion of the project is

attempted. However, for current purposes, only one connector block was connected to

allow two analog outputs. The SCB-68 circuit diagram included with the device was

used to select the analog output (AO) and ground pins. To test the outputs and

eventually connect them to the galvanometers, wires were connected to the appropriate

pins summarized in Table 1. Once connected, the wires were appropriately soldered to a

male BNC connector (one connector was used for each analog output channel for a total

of two connectors). The setup and connections are shown in Figure 5

.

 20

Pin
Number

Pin Name Description

22 DAC0OUT voltage output channel for AO channel 0
21 DAC1OUT voltage output channel for AO channel 1
55 AOGND ground reference signal for both AO channels

Table 1: Description of SCB-68 pins used for output signals

Figure 5: Connector block setup

 Once the device was properly wired, the program created had to be modified so that

the waveforms would be sent to the DAQ card rather than the GUI. Two waveforms

 21

were created and stored in arrays; both arrays were combined and sent to a function

responsible for taking an array and writing these values to the DAQ card as analog

waveforms. A digital- analog converter (DAC) was thus intrinsic.

 The source code and GUI were modified so that the program functioned more like

the original commercial software for a two-detector system. The user was allowed to

specify the voltage range, image size (for a 256x256- or 512x512-pixel image), signal

output speed, scan mode (continuous or finite number of scans during each program

run), and number of scans for the finite scanning mode. Moreover, the user can stop the

scan sequence with a toggle switch on the GUI (once depressed, the scanning sequence

will stop after the current scan is complete). The program also displays the estimated

time (in seconds) for each scan to complete. To evaluate the program and to test

whether it behaved as desired, the male BNC connector soldered to the output wires

(Figure 4) was connected to a Tektronix TDS 3052B oscilloscope. Once waveforms

similar to those seen in Figure 6 were observed, and all of the user controls functioned as

planned, the program written was considered complete.

 22

Figure 6: General mirror pattern waveforms (triangular – regular, and raster – bold);

note: frequencies not drawn to scale

 23

Scanning: Results and Calculations

To make each waveform suitable for image scanning, a number of parameters needed to

be determined. In deciding the most appropriate frequency and phase shift for each

mirror function, a number of criteria were followed. As mentioned previously, an image

acquisition rate of 1 Hz was programmed. For an image of 256 x 256 pixels, Mirror 1

would thus need to move back and forth 128 times to create 256 total rows across the

image (256 pixels in the vertical direction); the triangle wave used for Mirror 1’s

position would thus need to have a frequency of 128 Hz. While Mirror 1 must move at

128 Hz, the raster waveform for Mirror 2 had a frequency of 1 Hz.

 Though the time-domain frequencies were easily determined, converting into

parameters for LabWindows/CVI functions required further calculations. The pre-

defined triangle wave function in LabWindows/CVI, TriangleWave(), was generated

with Equation 1:

(1))*0.360*(* 0 iftriAxi += φ ,

where tri() is defined by the waveform in Figure 7, xi is the current array element, A is

the amplitude of the triangle, φ0 is the phase shift of the waveform, f is the frequency

 24

factor, and i is the index of the current array element. LabWindowTM takes user-

specified values for φ0, A, and f to create an array of basic triangles; the net result of the

array is a triangle waveform. A triangle waveform in LabWindows/CVI is thus created

from a sum of scaled, shifted triangles.

2

1

-3 -2 -1 1 2 3
-1

Figure 7: LabWindows/CVI triangle function (bold)

From Equation (1), the magnitude of the shift from triangle to triangle (the distance

between adjacent triangles in the waveform, f*360.0) is equivalent to the fundamental

period of the waveform, or

(2) fT 3600 = ,

where T0 is the fundamental period of the triangle waveform. A desired Mirror 1

waveform frequency of 128 Hz would thus imply a fundamental period of 0.0078125 s.

Using Equation (2), the correct f value was calculated to be 2.170*10-5. To obtain the

 25

frequency for Mirror 2’s raster waveform created with the SawtoothWave() function,

the previously-calculated f for Mirror 1 was taken and divided by 256 because the

triangle waveform moves 256 times faster than the raster waveform. This process

yielded a value of 8.477*10-8. Once these parameters were incorporated into the

program, the waves were viewed on a graphical control added to the GUI and verified

for accuracy.

 The phase for each waveform needed to be chosen such that the beginning of the fall

of the raster scan lined up with the beginning of a rise or fall of the triangular scan

waveform (Figure 6). The raster waveform would cycle 360o in one scan because of its

1 Hz frequency. In the 360o cycle of the raster waveform, the triangle waveform goes

through 128 cycles. Therefore, each cycle of the triangle wave corresponds to 2.8125o

of the raster wave; to line up with the triangle wave, the raster wave had to be 90o +

2.8125o out of phase with the triangle wave. The reason for the 90o lies in the fact that

the default position (0o phase shift) is for the midpoint between the peak and the valley

of the waveform to lie at the y-axis. For the peak to be at the y-axis, a 90o phase shift

was necessary. The phase shift values chosen were -90.0o for the triangle wave (so that

the y-axis position corresponded to the valley of a triangle) and -185.625o for the raster

 26

waveform. The 5.625o ensures that the raster will line up with the triangle wave because

5.625 is a multiple of 2.8125. This value also leaves some space in the beginning of the

function plot; the large rise in voltage can be used later in the project as a trigger for the

scan to begin.

 The next parameter of concern in LabWindows/CVI for both raster and triangle

waveforms was the number of elements for each array. When this value was entered

into the GUI as a user-control, it was modified using methods to determine its ideal

value for the purpose of this project. First, with the triangle wave, an arbitrary value of

1/360 was chosen for f so that the factor in Equation (1), f*360.0*i became i. With the

aforementioned f value set, it was discovered that one full period of the waveform occurs

when the number of elements is 360. Using the triangular waveform (f = 2.170*10-5

or
46080

1), a full period of the waveform will occur when the number of array elements is

46080. Since one scan of a 256 x 256 pixel image will require 128 periods of the

waveform, the number of elements should be 128*46080 or 5,898,240. To ensure that

the waveforms are of appropriate length on the GUI, the actual number of array elements

for each waveform was set to 6,000,000. Likewise, if the user chooses to create a 512 x

512 pixel image, the number of array elements for each waveform would be 12,000,000.

 27

Basic conditional logic statements were set up to handle both cases (256 x 256 and 512 x

512 images). Therefore, the number of array elements for each size option was set in the

source code rather than on the GUI. The complete LabWindows/CVI source code

created for mirror motion and image generation can be seen in Appendix A.

 Due to DAC constraints on the DAQ card, the highest sampling rate was found to be

2,000,000 samples per second. Since a 256 x 256 pixel image had 6,000,000 array

elements, the sampling speed limit means that a 256 x 256 pixel image will take at least

3 seconds to obtain. Likewise, the creation of a 512 x 512 image will take at least 6

seconds. Moreover, there is an initial time delay that occurs because the computer must

perform many loops with 6,000,000 – 12,000,000 iterations and deal with 6,000,000 –

12,000,000 element arrays. This hypothesis was tested by creating a very simple

program that added two 12,000,000-element arrays. There was a somewhat significant

delay (5-10 seconds) in program completion; when the number of elements in the arrays

was reduced to 12,000, the program ran with almost no delay.

 To overcome the time constraints of LabWindows/CVI, the same waveforms

mentioned previously were created in NI LabVIEWTM with the Basic Function

Generator pre-built virtual instrument (VI). A raster and a triangular waveform were

 28

created with frequencies of 1 Hz and 128 Hz, respectively; these waveforms were sent

through the DAQ card and viewed on the oscilloscope (Figure 8). The LabVIEWTM

block diagram for this mirror motion program is seen in Appendix B.

 Figure 8: LabVIEWTM mirror motion waveforms

After verifying that the output waveforms behaved as expected, the two output BNC

cables were disconnected from the oscilloscope and connected to the galvanometers. At

 29

first, a very small output voltage amplitude was chosen (0.5 V) to place minimal stress

upon the mirrors. Once very small motions were observed in the larger mirror (the

smaller mirror was moving too quickly to observe with the naked eye), the voltage

amplitude was increased to 1 V so that mirror motion was more easily observed. No

major faults were found with the LabVIEWTM waveforms. LabVIEWTM proved to be

easier to follow among multiple users as well as easier to program (the language is

graphical rather than C-based). To verify correct mirror motion, the output of each

mirror was connected via BNC-BNC connectors to the oscilloscope. The output

waveforms in Figure 9 verify that the mirrors moved as expected. However, as seen

when comparing Figures 8 and 9, a response of about 80% was observed in the mirror

output waves. This small loss of voltage magnitude is probably due to internal

impedance found within the galvanometers. The resistance of the BNC cables in this

case is considered negligible.

 30

Figure 9: Actual mirror response to LabVIEWTM waveforms

 31

Detection Hardware

For the detection portion of the spectral detection system, programming was again

performed with NI LabVIEWTM. The initial task completed toward spectral detection

was the creation of data acquisition circuit boards. During detection, photons are

represented by TTL pulses emitted by a discriminator. Four Texas Instruments

SN74ALS161B binary counter chips were used to count the TTL pulses with 16-bit

resolution. The TTL pulse output of the discriminator was sent into the least-significant

bit of the counter chip setup. Thus, with each TTL pulse, the total count (the counts of

all four counters added together) incremented by one. Since each counter contained four

bits, maximum number of photons able to be counted at any given point in the tissue (or

any pixel in the image) was 216 – 1, or 65535. To divide the image into pixels, the

counters had to be reset at the aforementioned pixel resonance time, or once every 15 µs,

so a 65,536 Hz square wave was generated with the waveform generator tool in

LabVIEWTM and put into the clock input terminal of each counter chip. Therefore, as

the laser beam scans the tissue on a two-dimensional plane, each photon detected by the

PMTs is converted into a TTL pulse by a discriminator. Each pulse is then counted by

 32

the counter chips; after 15 µs, the count is brought back to zero, and the detection

process begins again at a slightly different laser position.

The total count after each 15-µs time interval then had to be sent into the computer

so that image rendering could be performed. A Burr-Brown DAC712 16-bit digital-

analog converter (DAC) was used to complete this task. All bit outputs from each

counter (16 bits total) were connected to the 16 binary input terminals of the DAC. The

circuit board setup containing the discriminator, binary counter chips, and DAC is seen

in Figure 10. The actual circuit board built for data acquisition is seen in Figure 11.

 33

r

t

r

tt

Analog Outpu
t

Fig
Rese
TTL Outpu
ar
y

C
ou

nt
 In

pu
t
PMT Curren
Discriminato

B
in

C

u

Binary Counter Chips
re 10: Detection circuit sc

Voltage Output to Compute
hematic
DA

 34

counters
DAC

Figure 11: Actual detection circuit board (for two detectors)

The DAC takes the binary value seen at its input terminals, converts the value to a

voltage, and outputs the voltages as a continuous waveform. Thus, as the count changes,

the amplitude of the DAC voltage waveform will also change.

Once one circuit board was built that could count photons from two detectors,

LabVIEWTM was used to create a program to use the photon counts at each “point” in

the tissue to create a scaled intensity image. The first step toward the design of this

program was to use the DAQ Assistant pre-built sub-VI to read the voltage waveform

coming from the DAC. LabVIEWTM’s DAQ Assistant sub-VI allows the user to specify

the physical connector block channel from which to read data. The data range must also

 35

be specified as well as the data acquisition mode and internal clock settings (number of

samples to read and sampling rate). The data range for the DAC is -10 V to +10 V, so

these values were specified in the program. The sampling mode in this case was chosen

to be continuous, and modifying the clock settings ultimately changed the rate at which

the program generated an image; the clock settings were changed multiple times

throughout the design process such that adequate debugging could take place.

For testing purposes, an external 15-MHz TTL pulse waveform was connected to

the clock terminal (CLK) of the least-significant counter. For the sake of simplicity, a

basic up-counting circuit was used with the binary counters. A basic diagram for this

circuit with labeled terminals as seen in the Texas Instruments specification sheet for the

binary counters is seen in Figure 12.

 36

Figure 12: Basic count-up circuit for binary counters

 37

The carry-out bit (RCO) from the least-significant counter (LSB) was connected to the

clock terminal of the next counter; this connection pattern was repeated up through the

most-significant counter; all counter output terminals (QA – QD) were connected to the

input terminals of the DAC. Nothing was connected to the reset terminals (CLR) of the

counters. Thus, the counters would count the TTL pulses until the maximum possible

count was achieved (in this case 65,536), and at that point, all counters would reset to

zero. The DAC would start at zero (with the counters), increase its voltage output to 10

V at a count of 215 (or 32,768), jump to -10 V at a count of 32,769, and then return to 0

V for the next resetting of the counters. Since the computer was set to continuously read

the voltage waveform from the DAC, and the DAC was set to receive a count that

increased to a maximum and then returned to zero, the DAC the expected waveform to

be seen on the LabVIEWTM front panel with the program running was a sawtooth wave.

As seen in Figure 13, the resulting waveform from the DAC behaved mostly as

expected. The voltage values from the DAC could easily have been converted into

binary counts by dividing the voltage signal by 0.000305; this factor was found by

dividing the maximum voltage range (20 V) by the maximum binary count (216 or

65,536).

 38

Figure 13: Voltage waveform for count-up circuit test (with 15-MHz TTL pulse input)

One unexpected effect observed in Figure 13 is the narrow “peaks” that arise throughout

the voltage waveform. Ideally, the rising slops of the sawtooth wave produced during

constant counting and resetting should be smooth and continuous. This problem was

overcome by trying an alternative configuration for the binary counters; since they are

often known for being more efficient and reliable, a carry look-ahead circuit was used.

The basic configuration for this circuit obtained from the Texas Instruments

specification sheet is seen in Figure 14.

 39

Figure 14: Carry look-ahead circuit schematic

 40

For the carry look-ahead circuit, the RCO from the LSB counter was connected to the

ENP terminals of the more significant counters. The RCO from the next counter was

connected to the ENT terminal of the following counter, and the same connection pattern

was repeated up to the most significant counter. For the LSB counter, the ENT and ENP

terminals were connected together and then were connected to the ENT terminal of the

next counter. All of these connections may be easily visualized in Figure 14. This

circuit was outlined in the specification sheet for the counters.

When the same testing process was repeated for the new counter configuration, the

resulting waveform was a smooth sawtooth wave; the waveform as seen on the

LabVIEWTM front panel is shown in Figure 15.

 41

Figure 15: Voltage waveform for look-ahead circuit test

Since the waveform in Figure 15 appears as desired, the carry look-ahead counter

configuration was used for all other circuit boards.

 42

Detection Software: Saving Binary Files

The data collected from the tissue would be placed into a 256 x 256 matrix that would be

converted into a 256 x 256 pixel intensity image. Since one desired feature for this

spectral detection system is the ability to stack many 2-D images to form a 3-D image as

well as view the tissue response to various light wavelengths, matrices created in

LabVIEWTM needed to be saved as files that could be opened and converted into an

image in MATLAB®. To perform this task, another program was designed to save each

256 x 256 matrix as a binary-format file able to be opened in MATLAB®. Binary format

is preferred because of its space-efficiency. To perform the file-saving task, first a 256 x

256 matrix of numbers able to be set from the front panel was created using two nested

for-loops. The LabVIEWTM sub-vi “Open_Create_Replace file” was used first to create

a file with its name specified by the user on the front panel and then open that file. The

reference location from the opened file was then sent to the LabVIEWTM sub-VI “save

.MAT.” This function saves a 2-D array of numbers to a binary MATLAB® file. The

aforementioned 256 x 256 matrix was also sent to the “save .MAT” input terminal. The

reference location of the file was then connected to the location input terminal of the

 43

“rem .MAT” sub-vi. This VI will add a user-specified string remark to the beginning of

the file; once opened in MATLAB®, the written remark may be seen at the top of the

file. Currently, the remark input has been left blank. Finally, the reference location of

the file was connected to the input terminal of the “Close File” VI; this VI, as its name

suggests, closes the open file.

Since creating an entire 3-D image will require saving many 2-D images at a time,

features were added to the program that would enable the user to specify the number of

scans to have a certain file name. The file directory was specified, but the user is

allowed to type in the desired name for the file sequence. For example, if a person is to

take an image of a rat tail tendon, he or she might choose to take five scans of the

tendon. So, on the front panel, he or she would type “tendon” or another descriptor into

the appropriate text field, and the first scan would be saved as “tendon01.” The final

scan would likewise be saved as “tendon05.” The scans would then be complete after

five scans because the saving sequence was placed inside a for-loop that would iterate

for the amount of times specified by the user on the front panel. The block diagram for

the LabVIEWTM program used to save files in binary format can be seen in Appendix C.

When the final program for photon counting and image generation is complete, the

 44

matrix of photon counts will be connected to the input of the “save .MAT” VI in this

program. The proper function of the program was verified by using MATLAB® to open

and view some of the files created.

To view a 256 x 256 matrix of binary numbers as an image in MATLAB®, first the

fopen(‘scan01.mat’) command was used to open the binary file (scan01.mat) created in

LabVIEWTM for reading purposes. Additionally, the fopen() command creates a scalar

MATLAB® integer valued double, called a file identifier. Next, the fread(file identifier,

[A,B], ‘data type’) command was used to read the binary data from the specified file

and write it into a A x B matrix of the data type specified. For instance, to store the

binary values in the file scan01.mat in a 256 x 256 matrix of integers called A, the

command needed would be fread(fileopen(‘scan01.mat’), [256,256], ‘int’). When a

matrix was created in LabVIEWTM with all elements equal to zero, the resulting image

was solid black, given the chosen grayscale color map. This image is seen in Figure 16.

 45

50 100 150 200 250

50

100

150

200

250

10

20

30

40

50

60

Figure 16: MATLAB® image of matrix with zeros

Since Figure 16 is, as expected, a 256 x 256 pixel image of all black pixels that represent

a 256 x 256 matrix of all zeros, this program was considered a success. The

LabVIEWTM block diagram for the program is seen in Appendix C.

 46

Detection Software: Data Acquisition and Image Generation

Once the circuit board was tested and a program was created to save the image matrices

as binary files, software was designed in LabVIEWTM to acquire photon counts from the

circuit board and use these counts to render images. For data acquisition, a program in

LabVIEWTM had to be designed to record the maximum count seen for every 15.259 µs

into a 256 x 256 matrix. This matrix would then be converted into a scaled intensity

image and displayed on the LabVIEWTM front panel.

The first step toward the creation of this software was to create 256 x 256 matrices

of randomly-generated values that could be displayed as 256 x 256 pixel images on the

front panel. The Replace Array Subset function in LabVIEWTM was used to create an

array within a for-loop. For loop iteration, a different random value would be stored at

each index of the array. The loop was set to iterate 256 times, and the iteration number

was set equal to the array index. Thus, at the end of the for-loop iterations, the array

would have 256 different random elements in it. Another for-loop created outside the

aforementioned for-loop was then used to place each complete array of 256 elements

into a matrix. This loop was also set to iterate 256 times, so at the end of the outside

 47

loop’s iterations, a 256 x 256 matrix of random values was generated. The Intensity

Graph function of LabVIEWTM takes a 2-D array of values and creates a scaled intensity

plot of those values, with each value representing one pixel in the plot. After all

iterations of the aforementioned loops are complete, the 256 x 256 matrix of values was

converted into an image with lighter pixels in the image corresponding to higher values

from the matrix. One example of an intensity plot obtained from the above procedure is

seen in Figure 17.

Figure 17: Image created with random matrix values

 48

At this point, the program used for scanning and image generation was modified so

that, rather than having random images created and a count signal that continuously

maximizes and then resets, the system would count photons from tissue and use these

photon counts to create an image. Basically, during each 15.259 µs time interval (for

each pixel in the image), the photons emitted from the tissue at that specific point would

gradually increase. Thus, it is expected that the maximum photon count at each position

in the tissue would be achieved just before the counters reset and the laser moves to a

new position. Therefore, the expected waveform to be seen from the DAC output is very

similar in shape to that seen in Figure 15. However, since the photon count at each

position within the tissue should be different from the surrounding areas, the magnitude

of the waveform should vary somewhat from peak to peak. The values chosen in the

DAQ Assistant used to read the voltage waveform from the DAC depend on the desired

time for each full scan. Equation 3 can be used to calculate the Rate parameter using the

number of samples to read for each line of the image and the amount of time needed to

generate each line:

[]
⎟
⎠
⎞

⎜
⎝
⎛

==
s

lines
ageTime

LineSamplesPer
tionTimeLineGenera

adSamplesToHzRate
Im

Re , (3)

 49

where ImageTime for a one-second scan would be 1. Likewise, if the desired time for a

scan to be performed is four seconds, ImageTime would be 4. The SamplesToRead

parameter represents the number of samples to read per line (SamplesPerLine). The

lines parameter represents the number of lines in each image (i.e. the number of rows for

each image matrix). For example, a 256 x 256 pixel image would require a value of 256

for SamplesPerLine and another value of 256 for lines.

Initially, the peak detector sub-VI in LabVIEWTM was used to find the peak value

for every group of samples. The number of elements in each group was determined by

finding the size of the data array with the LabVIEWTM Array Size sub-VI and then

dividing that number by the desired size of the image array, or 65,536. The peak

detector VI, “NI_AALPro.lvlib:Peak Detector,” finds the location, amplitude, and

second derivative of peaks or valleys within each group of elements in the input array (in

this case, the voltage signal from the DAC); the number of elements in each group is

specified by the user at the “width” terminal. Due to noise found within the DAC signal,

the peak detector did not always find the peak at the correct location. Peaks did not

always seem to be found just before the counters reset and the voltage returned to 0. The

 50

same VI was then used with the valley detection option chosen. When a valley was

detected, its location was sent from the peak detector VI into a for-loop. The loop

contained the Index Array sub-VI that takes the original array (the DAC voltage signal

converted from dynamic data to an array) and returns the element at the location

specified by the number at the index terminal of the sub-VI. The location of the valley

(the array index) was sent through the for-loop, one was subtracted from it, and the final

answer (valley location – 1) was sent to the index terminal of the Index Array sub-VI.

Thus, the sub-VI will return the element in the location directly before the valley. Each

element returned from the for-loop throughout the entire DAC voltage array was

assumed to be the maximum value for every 15-µs time interval. These values were

divided by 0.000305 to obtain the actual photon count and then placed in a 256 x 256

matrix using the Build Array Subset sub-VI. The resulting matrix was then converted

into an intensity image and displayed on the front panel with the Intensity Graph sub-VI.

The resulting LabVIEWTM block diagram for image generation and data acquisition

using the peak detector sub-VI can be seen in Appendix D.

Ultimately, after each matrix, or image, is created in LabVIEWTM, the

aforementioned program used to save the images as binary files will be incorporated into

 51

the image generation program. The matrix used to form the image on the LabVIEWTM

front panel in the image generation program will also be connected to the input of the

“save .MAT” sub-VI.

 52

Testing of Hardware and Software

To test the circuit board and LabVIEWTM software for mirror motion, data acquisition,

and image generation, the current lab setup seen in Figure 1 was modified to include the

new hardware and software. However, before the connections were changed to

incorporate the new hardware and software, an image of a mouse tail tendon was

generated with the current image acquisition system as a basis for comparison (i.e. a

control image). Then, the output of the discriminator attached to each PMT was

connected to the least significant bit of the sets of binary counters on the circuit board.

The DAC output terminals from the circuit board were then connected to the appropriate

terminals of the connector block (Figure 5), where the DAC signal would be read by the

LabVIEWTM software. Other terminals of the connector block were connected to the

scanning mirror input so that the LabVIEWTM software could control the motorized

mirrors as mentioned previously. The setup for testing including the circuit board,

connector block, oscilloscope, and computer is seen in Figure 18.

 53

oscilloscope

circuit board

connector blocks

Figure 18: Setup for hardware and software testing

 54

Limitations

Images were rendered and displayed on the LabVIEWTM front panel with the new

software and hardware without any LabVIEWTM syntax errors. The control image of the

mouse tail tendon is seen in Figure 19, while the image generated using the LabVIEWTM

software is seen in Figure 20.

Figure 19: Control image of mouse tail tendon

 55

Figure 20: First image generated with software

As seen in Figure 20, much of the striated pattern seen in Figure 19 had been correctly

duplicated. However, many discontinuities were seen throughout the image, and the

image also appears to be separated into different parts that have been incorrectly

organized. Rather than one continuous image of the mouse tail tendon, it appeared as

though the image had been separated into about eight different parts that had been

rearranged.

To begin to solve these issues, different components of the imaging system were

analyzed individually to more easily isolate the main cause of the problems. The

 56

oscilloscope was used to view input and output signals of the system one at a time, and

signal parameters such as the amplitude, shape, and frequency were verified. First, the

scanning was debugged by viewing the mirror response waveforms as the system

generated images. It was noted that there were some fluctuations in the waveform

amplitudes that were not present when the scanners were previously tested without the

data acquisition and image rendering software running. A sensible explanation for this

phenomenon was that the mirror wave generation portion of the program had difficulty

sending out continuous data when other CPU-intensive processes were ongoing. The

amplitude fluctuations in the mirror motion waveforms could be causing some confusion

in the software about the actual laser position in the tissue at a given instant; therefore,

the pixel intensities in the image may not accurately resemble the photon counts from

the tissue. One way to overcome the issue of CPU processes interfering with the mirror

waveforms was to use LabVIEWTM functions to store the mirror waveforms, wait a

small amount of time, and then send the waveforms out of the computer; this task

division will ensure that a waveform will be stored and ready to be sent to the mirrors at

all times throughout scanning. One method of pre-storing waveforms was to use a

LabVIEWTM buffering program rather than the waveform generation sub-VIs alone.

 57

Specifically, the pre-built Waveform Buffer Generation sub-VI was used for the

waveforms to be sent out from the computer (i.e. the two mirror motion waveforms and

the 65.536 kHz square wave for resetting the binary counters. The Waveform Buffer

Generation sub-VI has terminals for the user to designate the waveform type, the desired

frequency and amplitude, and the square wave duty cycle. In this case, the 65kHz

square wave was generated by the sub-VI, and the sub-VI then returned the waveform

along with the actual, coerced, sample clock rate. This rate was then used as an input to

the Basic Function Generator sub-VI to generate the mirror motion waveforms. The

resulting waveforms (triangle, raster, and square) were then stored in an array. The task

timing was then manipulated by adding a while-loop that waits a multiple of 100

milliseconds to begin the actual task of generating the waveforms. This waveform

generation method waits a short time to enable buffer generation, and during continuous

runs of the program, waveform and buffer generation for future waveforms occur

simultaneously. The program was run with the data acquisition and image generation

program, and the mirror output waveforms were again checked for amplitude

discrepancies. The waveforms appeared very similar to those in Figure 8; the

amplitudes remained constant throughout the trial. From this point, the new mirror

 58

motion program including buffer generation was used for testing. The LabVIEWTM

block diagram for the updated mirror motion VI is seen in Appendix E.

After the scanning mechanism was assessed and the system was tested again, the

image appeared to be the same as that seen in Figure 20. Next, the detection portion of

the program was debugged. The initial steps taken in the detection analysis was to study

the images generated as they appeared on the LabVIEWTM front panel, rather than

immediately changing the program code. As in the current image acquisition system, the

images generated with the new imaging system should update after each scan. As

expected, with a fixed tissue sample being imaged, the images generated should remain

roughly the same with each scan if the laser focus depth is kept constant. However, even

with a constant focus depth, the components in each new image seemed to shift relative

to that of the preceding image. These phenomena meant that the mirrors were not

synchronized to the data acquisition portion of the program. In other words, the mirrors

did not begin scanning at the time that the program began to record photon counts.

To solve the synchronization problem, the mirror waveforms need to be saved as

files in the mirror generation sub-VI shown on the block diagram for the data acquisition

and image generation VI; once the mirror waveforms are saved, the file can be opened,

 59

and the waveforms will be sent to the mirrors at the beginning of data acquisition within

the LabVIEWTM program. Also, to avoid timing issues in which the mirror waveform

file may be opened before it is created, rather than having the mirror motion program

incorporated as a sub-VI, the entire mirror motion block diagram must be manually

copied and pasted directly into the data acquisition block diagram. If the mirror motion

block diagram is placed in the same loop as the data acquisition algorithm, the mirror

motion and data acquisition will be synchronized.

The data acquisition and image rendering VI was then modified such that the peak

detector was no longer necessary. Rather than detecting the valleys in the data and then

storing the previous array element, for every given number of samples in the data array,

one sample would be sent to the final image array. This approach assumes that the

maximum value for every 15 µs was evenly spaced from other maxima in the array. To

correct this, only elements that are a multiple of eight will be stored in the final image

array. This algorithm will need further testing to determine the actual spacing (in terms

of array elements) for each maximum.

To enact this change to the data acquisition and image generation VI, the data array

from the DAQ Assistant was sent through a LabVIEWTM formula node. C-based code

 60

was created to perform certain operations on variables defined at the borders. The code

basically used a for-loop to go through the entire data array and store every element that

was a multiple of the number specified. For example, the formula node seen in Figure

21 creates an array for matrix variable Y with 256 elements. The variable X is the

incoming data array from the DAQ Assistant, and the variable “size” represents the size

of the data array. The for-loop basically takes every 64th element from the data array and

stores it in matrix Y. The loop terminates once its index reaches the value specified by

“size.”

Figure 21: Example of LabVIEWTM formula node

After the matrix Y is created in the formula node, another for-loop is used in

LabVIEWTM to divide each element in matrix Y by the aforementioned factor 0.000305;

this operation converts the DAC voltage values to actual photon counts. As in the

previously-built VI for image generation, each matrix of photon counts is displayed on

 61

the LabVIEWTM front panel with the Intensity Graph sub-VI. The modified data

acquisition and image generation VI is seen in Appendix F.

Again, the system was tested with the improved image generation software. This

time, as the program ran, the value used to store the maximum data value for every 15 µs

was changed slightly, with the initial value determined by the aforementioned method of

dividing the data array size by 65,536. The image generated is seen in Figure 22.

Figure 22: Image generated with modified software

 62

Even when this method was carried out, the image still appeared disorganized.

Another limitation was discontinuities observed within the image, though the

discontinuities were less pronounced than those seen in Figure 20. The image with a

limited viewing window of 10 pixels by 50 pixels is seen in Figure 23.

Figure 23: Generated image with limited viewing window

As seen in Figure 23, these discontinuities appeared as black pixels adjacent to

colored pixels. When a similar viewing window was used with the control image, the

 63

pixels appear much more continuous. The control image with a smaller viewing window

is seen in Figure 24.

Figure 24: Control image with limited viewing window

Discontinuities arose from incorrect formation of the image matrix in the data

acquisition and image generation VI. The data acquisition portion of the program

appeared to be “skipping” some of the peaks in the DAC signal. Thus, another method

must be developed to store the highest photon counts into a matrix.

To solve this image generation problem, longer scan times need to be used to ensure

that the counters have enough time to reset. If the maximum voltage does not occur

 64

every 15 µs, the algorithm cannot be used, and an alternative method for determining the

photon counts for the image matrices will need to be developed.

 65

FUTURE WORK AND CONCLUSIONS

A complete spectral detection system remains unfinished at this point, even though much

progress has been made toward its completion. Overall, the software for the movement

of the scanning mirrors was complete, and one circuit board for two detectors was

correctly built and made to interface the LabVIEWTM software with the discriminators to

enable photon counting. Future work on this project will include debugging and

rectifying the data acquisition and image generation software. Once the new

LabVIEWTM software and circuit board hardware create an image comparable to the

control image created with the lab’s current hardware and software, the new setup will

considered successful with two detectors. An additional 15 circuit boards will be needed

for the spectral detection system. Additional features in software may be needed to

account for possible cross-talk between detectors.

Once the system is expanded to incorporate 32 detectors, a set of 256 x 256 x 32

matrices will be stored in binary files. Each set will be opened in MATLAB® and

converted into a 3-D grayscale image by stacking all of the 2-D images for each

detector. Therefore, 32 different 3-D grayscale images will be created for each scan.

 66

The spectral response of tissue may be viewed separately, or all 32 channels may be

integrated to form a grayscale image. Post-image processing may be used to view

certain spectral components of interest.

In conclusion, the new spectral detection system will introduce many new features

to conventional nonlinear optical microscopy. The introduction of spectroscopic

information from live tissue will provide insight into its underlying chemistry.

Furthermore, spectral detection allows image segmentation of biological components.

For example, the collagen matrix of tissue may be selectively imaged by displaying

channels corresponding to SHG. Many different biological components may be

simultaneously viewed within each scan.

Because of its unusual features, this system will have a wide range of applications

in both science and medicine. Simultaneous excitation of multiple fluorophores will

allow multiple interactions to be viewed within a single scan. Likewise, in medicine,

chemical markers characteristic to cancers and other cellular aberrations may be viewed

microscopically. This microscopic imaging capability may lead to earlier diagnoses, and

timing becomes extremely crucial with fast-spreading abnormalities such as cancer.

Moreover, temporal gene expression profiling may be accomplished by injection of

 67

different genetic markers into the DNA of a parent cell. With the spectral detection

system, a number of genetic markers may be viewed simultaneously within a single

scan.

The aforementioned examples are but a few applications of this spectral detection

system. Further modifications of the spectral detector, such as the addition of an optical

fiber or an endoscope, will enable interrogation of specimens, such as small animals, not

amendable to a microscope stage. Once the spectral detection system is perfected,

NLOM capabilities can be expanded to include longitudinal studies of in vivo systems.

 68

REFERENCES

1. A. O. Brightman, B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson, and
S. L. Voytik-Harbin, “Time-Lapse Confocal Reflection Microscopy of Collagen
Fibrillogenesis and Extracellular Matrix Assembly In Vitro,” Biopolymers. 54,
222-234 (2000).

2. P.J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W.

A. Mohler, “Three-Dimensional High-Resolution Second-Harmonic Generation
Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophysical
Journal. 81, 493-508 (2002).

3. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for

visualizing biomolecular arrays in cells, tissues, and organisms,” Nature
Biotechnology. 21(11), 1356-1360 (2003).

4. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser,

“Multiphoton excitation spectra in biological samples,” Journal of Biomedical
Optics. 8(3), 329-338 (2003).

5. S. E. Fraser, “Crystal gazing in optical microscopy,” Nature Biotechnology.

21(11), 1272-1273 (2003).

6. P. Friedl, “Dynamic imaging of cellular interactions with extracellular matrix,”

Histochemistry and Cell Biology. 122, 183-190 (2004).

7. P. Friedl, “Immunological techniques: Dynamic imaging on the immune system

(Editorial overview),” Current Opinion in Immunology. 16, 389-393 (2004).

8. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical Coherence

Tomography: An Emerging Technology for Biomedical Imaging and Optical
Biopsy,” Neoplasia. 2(1-2), 9-25 (2000).

 69

9. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo
imaging,” Nature Biotechnology. 21(11), 1361-1367 (2003).

10. T. Fukuchi, K. Takahashi, M. Uyama, and M. Matsumura, “Comparative Study of

Experimental Choroidal Neovascularization by Optical Coherence Tomography
and Histopathology,” Japanese Journal of Ophthalmology. 45, 252-258 (2001).

11. N. D. Gladkova, G. A. Petrova, N. K. Nikulin, S. G. Radenska-Lopovok, L B.

Snopova, Y. P. Chumakov, V. A. Nasonova, V. M. Gelikonov, G. V. Gelikonov,
R. V. Kuranov, A. M. Sergeev, and F. I. Feldchtein, “In vivo optical coherence
tomography imaging of human skin: norm and pathology,” Skin Research and
Technology. 6, 6-16 (2000).

12. S. Huang, A. A. Heikal, and W. W. Webb, “Two-Photon Fluorescence

Spectroscopy and Microscopy of NAD(P)H and Flavoprotein,” Biophysical
Journal. 82, 2811-2825 (2002).

13. K. König and I. Reimann, “High-resolution multiphoton tomography of human

skin with subcellular spatial resolution and picosecond time resolution,” Journal of
Biomedical Optics. 8(3), 432-439 (2003).

14. A. T. Yeh, N. Nassif, A. Zoumi, and B. J. Tromberg, “Selective corneal imaging

using combined second-harmonic generation and two-photon excited
fluorescence,” Optics Letters. 27(23), 2082-2084 (2002).

15. D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic

microscopy with a titanium-sapphire laser,” Applied Physics B: Lasers and Optics.
74(Supplement), S97-S101 (2002).

16. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton

microscopy in the biosciences,” Nature Biotechnology. 21(11), 1369-1377 (2003).

 70

APPENDIX A: LABWINDOWS/CVI PROGRAM FOR MIRROR
MOTION AND IMAGE GENERATION

/* Description:
* This program demonstrates how to output multiple continuous periodic
* waveforms of different frequencies using an internal sample clock.
*
* Instructions for Running:
* 1. Select the Physical Channel/Channels to correspond to where your signal
* is output on the DAQ device. For multiple channels, select browse then select
* the desired output channels.
* 2. Enter the Minimum and Maximum Voltage Ranges.
* 3. Enter the desired rate for the generation. The onboard sample
* clock will operate at this rate.
*
* Steps:
* 1. Create a task.
* 2. Create an Analog Output Voltage channel/s.
* 3. Define the update Rate for the Voltage generation. Additionally,
* define the sample mode to be continuous.
* 4. Write the waveform to the output buffer.
* 5. Call the Start function.
* 6. Loop continuously until the user presses the Stop button. Check
* for errors every 100 ms using the IsTaskDone function.
* 7. Call the Clear Task function to clear the Task.
* 8. Display an error if any.
*
* I/O Connections Overview:
* Make sure your signal output terminal matches the Physical Channel
* I/O Control. For further connection information, refer to your
* hardware reference manual.
*
* Recommended use:
* Call Configure, Write and Start functions.

 71

* Call IsDone function in a loop.
* Call Stop function at the end.
*
 Note: comments indicated in bold
***/

#include <windows.h>
#include <analysis.h>
#include <cvirte.h>
#include "userint_mod.h"
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include "toolbox.h"
#include <formatio.h>
#include "NIDAQmx.h"
#include "DAQmxIOctrl.h"
#include "MultFreqContGen-IntClk.h"
#include "MultFreqContGen-IntClk_Fn.h"
#define NUMCHANS 2

static int panelHandle; //reference to panel location (user interface, UI)
static int gRunning;
int bitmap;

int check,mode; //mode describes the sample acquisition (continuous or
 finite)
// check allows the user to stop scanning after current scan is complete (toggle
switch on UI)

 72

int main (int argc, char *argv[])
{
 if(InitCVIRTE(0,argv,0)==0) /*needed if linking in external compiler;
harmless otherwise*/
 return -1; /* out of memory */
//loads specified panel
 if((panelHandle=LoadPanel(0,"MultFreqContGen-IntClk.uir",PANEL))<0)
 return -1;

//creates a new DAQmx IO control for selecting physical analog output channels.

NIDAQmx_NewPhysChanAOCtrl (panelHandle, PANEL_CHANNEL, 1);

 DisplayPanel(panelHandle); //displays panel stored in specified location
 RunUserInterface(); //runs the UI (user allowed to select values and
 control the UI)
 DiscardPanel(panelHandle); //removes anything previously stored in the
 panel
 return 0;
}

int CVICALLBACK PanelCallback(int panel, int event, void *callbackData, int
eventData1, int eventData2)
{
 if(event==EVENT_CLOSE) {
 gRunning = 0;
 QuitUserInterface(0); //destroys event when program terminates
 }
 return 0;
}

int CVICALLBACK StartCallback(int panel, int control, int event, void *callbackData,
int eventData1, int eventData2)
{

 73

 int outwfm[2]; //definition of waveform characteristics (one for each
 wave)
 double outamp[2];
 double outfreq[2];
 double offset[2];

 int typeofwaveform=0, typeofwaveform2=1; //defines waveform types
 (see switch commands later
 in program)
 int error=0,pixels; //defines error check variable and number of
 pixels (set in UI)
 short int pixelfactor; //defines number of full scans (max of 1 for 512x512

 and 2 for 256x256, set in UI)
 int scans;
 TaskHandle taskHandle=0;

 char chan[256]; //needed for color of waveforms in plot
 double min,max,min2,max2; //waveform parameters set in UI
 double rate; //rate of waveform generation set in UI

 uInt32 numChannels, TotalsampsPerCycle=0, arrayspot = 0;
 float64 *data=NULL,*temp=NULL;

 static double line[12000000]; //needed to create vertical offset of each
 wave
 char errBuff[12000000]={'\0'};
 bool32 done=0;
 double phase=0.0; //sets initial phase value at 0
 int j,k,i,place=0; //integers used for loop increments

 double xposition[256][256];
 double xposition2[512][512];

 74

//used for plotting scaled intensity graph
 int xpixels[262144],loCol,hiCol;
 int hiColor=VAL_BLACK;
 ColorMapEntry colors[256];

 if(event==EVENT_COMMIT) {

 DeleteGraphPlot(panel,PANEL_GRAPH,-1,VAL_DELAYED_DRAW);

 GetCtrlVal (panel, PANEL_MIN, &min); //GetCtrlVal gets values
 entered by the user from the UI
 GetCtrlVal (panel, PANEL_MAX, &max);
 GetCtrlVal (panel, PANEL_MIN2, &max2);
 GetCtrlVal (panel, PANEL_MAX2, &min2);

 GetCtrlVal(panel,PANEL_CHANNEL,chan);

 GetCtrlVal(panel,PANEL_RATE,&rate);

 GetCtrlVal(panel,PANEL_PIXELS,&pixels);
 GetCtrlVal(panel,PANEL_MODE,&mode);
 GetCtrlVal(panel,PANEL_CHECK,&check);

 GetCtrlVal(panel,PANEL_LOCOL,&loCol);
 GetCtrlVal(panel,PANEL_HICOL,&hiCol);

 if (pixels==256) { //sets correct frequency
 parameters for specified image size
 outfreq[0] = 0.0000217;
 outfreq[1] = 0.00000008477;
 pixelfactor=1;

 }

 75

else { //sets lower frequency for slow waveform and
 doubles number of scans for a 512x512 image

 outfreq[0] = 0.0000217;
 outfreq[1] = 0.000000042385;
 pixelfactor=2;

 }

 SetCtrlAttribute(panelHandle,PANEL_TIME,ATTR_CTRL_VAL,pixelfactor*6
000000/r
 ate);

 outwfm[0] = typeofwaveform; //specifies waveform types
 outwfm[1] = typeofwaveform2;

 outamp[0] = (max-min)/2; //sets correct amplitudes given
 user-specified voltage ranges
 outamp[1] = (max2-min2)/2;

 offset[0]=min+outamp[0]; //sets correct vertical offset given
 user-specified voltage ranges
 offset[1]=min2+outamp[1];

 colors[0].color= loCol; //sets high and low colors for
 scaled intensity plot (chosen on the UI)
 colors[1].color= hiCol;

 76

 //double xposition[256*pixelfactor][256*pixelfactor];

 Clear1D(line,12000000); //clears array used to create
 appropriate vertical offset
 //creates arrays used for images

for (i=0;i<256*pixelfactor;i++){
 for (j=0;j<256*pixelfactor;j++){
 xposition[i][j]=0;
 xposition2[i][j]=0;
 }

 TotalsampsPerCycle = pixelfactor*12000000; //checks for error
 given the specified
 parameters

 if((data=malloc(TotalsampsPerCycle*sizeof(float64)))==NULL)
{
 MessagePopup("Error","Not enough memory");
 goto Error;
 //functions check for sufficient memory
 }
 if((temp=malloc(TotalsampsPerCycle*sizeof(float64)))==NULL
) {
 MessagePopup("Error","Not enough memory");
 goto Error;
 }

//for loop and switch statement define the two waveforms used for mirror motion

for(j=0;j<2;j++){
 switch(outwfm[j]) {
 case 0: phase=-90.0; //phases ensure that peaks of both
 waveforms line up

 77

 TriangleWave(5898240*pixelfactor,outamp[0],outfreq[0],&phase,temp);
 Ramp(5898240*pixelfactor,offset[0],offset[0],line);
 for(i=0;i<5898240*pixelfactor;i++)
 temp[i]=temp[i]+line[i];
 break;

 case 1: phase=-90.0;

 TriangleWave(5898240*pixelfactor,outamp[1],outfreq[1],&phase,temp);
 Ramp(5898240*pixelfactor,offset[1],offset[1],line);
 for(i=0;i<5898240*pixelfactor;i++)
 temp[i]=temp[i]+line[i];
 break;
 }
 for(k=0;k<5898240*pixelfactor;k++){ //stores both waveforms in
 a large array for
 simultaneous output
 data[arrayspot+k] = temp[k];
 }
 arrayspot = arrayspot + 5898240*pixelfactor; //sets appropriate array
 index for second loop
 iteration
 }

 if (mode==1) { //continuous scanning
 while (check==1) {
 //configures internal clock for data acquisition

DAQmxErrChk (Configure_ContGenPerWfmIntClk(chan,rate,
&numChannels,&taskHandle,pixelfactor));

//creates a grayscale image from a 256x256 matrix of values
representing the voltages (positions) of the fast mirror
//currently the matrix contains mirror voltages normalized by
maximum fast mirror motion value from UI

 78

 //position matrix
 if (pixels==256) { //256x256 pixel image
 place=0;
 for (i=0;i<256;i++){
 for (j=0;j<256;j++){
 xposition[i][j] = data[place*90/pixelfactor];
 place++;
 }
 }
 }

 else { //512x512 pixel image
 place=0;
 for (i=0;i<512;i++){
 for (j=0;j<512;j++){
 xposition2[i][j] = data[place*90/pixelfactor];
 place++;
 }
 }
 }

 //deletes previous values in UI graph and plot
 DeleteGraphPlot(panel,PANEL_GRAPH,-
1,VAL_IMMEDIATE_DRAW);
 DeleteImage(panel,PANEL_PICTURE);

//commands used to create array of pixels from fast mirror voltages
(normalized for grayscale image)

place=0;

 for (j=0;j<256*256*pixelfactor*pixelfactor;j++){

 79

xpixels[j]=MakeColor(255*(data[place*90/pixelfactor]-
min)/(max-min),255*(data[place*90/pixelfactor]-min)/(max-
min),255*(data[place*90/pixelfactor]-min)/(max-min));

 place++;
 }

 //creates bitmap from colors defined above

NewBitmap(-1,32,256*pixelfactor,256*pixelfactor,NULL,xpixels,NULL,
&bitmap);

 SetCtrlBitmap(panel,PANEL_PICTURE,0,bitmap); //displays bitmap
 created

//creates intensity plots of fast mirror waveform (for later use, values will be
changed to photon counts)

 if (pixels==256) //256x256 pixel image
PlotScaledIntensity(panel,PANEL_GRAPH, xposition,256,256,

VAL_INTEGER, .0,0,1.0,0,colors,hiColor,2,1,1);
 else //512x512 pixel image

PlotScaledIntensity(panel,PANEL_GRAPH,xposition2,512,512,
VAL_DOUBLE,1.0,0,1.0,0,colors,hiColor,2,1,0);

 //sends position voltages of fast mirror to a text file for opening in
 MATLAB®

ArrayToFile("c:\\Christy\\LabWindows Programs\\mirrors\\position
voltages.txt",xposition,VAL_DOUBLE,256*256*pixelfactor*pixe
lfactor,256*pixelfactor,VAL_DATA_MULTIPLEXED,VAL_GR
OUPS_AS_COLUMNS,VAL_SEP_BY_TAB,0,VAL_ASCII,VA
L_TRUNCATE);

 SetCtrlAttribute(panel,PANEL_START,ATTR_DIMMED,1);
 //sets appropriate panel attributes for waveform display
 ProcessDrawEvents();
 gRunning = 1;

 80

 DAQmxErrChk
(Write_ContGenPerWfmIntClk(taskHandle,data,pixelfactor));
//function writes waveform data to DAQ device

DAQmxErrChk (Start_ContGenPerWfmIntClk(taskHandle));
 //function sets internal clock for DAQ

 while(gRunning) { //checks for task completion
 Sleep(100);
 DAQmxErrChk
(IsDone_ContGenPerWfmIntClk(taskHandle,&done));
 if(done)
 gRunning = 0;
 else
 ProcessSystemEvents();
 }
 //clears the task for the next loop iteration
 DAQmxErrChk (Stop_ContGenPerWfmIntClk(taskHandle));
 DiscardBitmap(bitmap); //clears bitmap from memory

 GetCtrlVal(panel,PANEL_CHECK,&check); //checks if user has set
 toggle switch to "stop"
 }
 //if user has chosen "stop", loop is exited
 }

 else { //finite scans

 GetCtrlVal(panel,PANEL_SCANS,&scans); //obtains the desired
 number of scans to
 perform
 for (i=0;i<scans;i++) {
 while (check==1){

 81

 //position matrix
 place=0;
 for (i=0;i<256*pixelfactor;i++){
 for (j=0;j<256*pixelfactor;j++) {

xposition[i][j] =
data[place*90/pixelfactor]; //creates intensity values
 for plot

 place++;
 }
 }

//plots intensity values
PlotScaledIntensity(panel,PANEL_GRAPH,xposition,256*pixelfactor,25
6*pixelfactor,VAL_DOUBLE,1,0,1,0,colors,hiColor,2,1,0);

//deletes intensity plot
 DeleteGraphPlot(panel,PANEL_GRAPH,-
1,VAL_IMMEDIATE_DRAW);
 //deletes bitmap image

DeleteImage(panel,PANEL_PICTURE);

place=0; //used for bitmap image creation

 for (j=0;j<256*256*pixelfactor*pixelfactor;j++){

xpixels[j]=MakeColor(255*(data[place*90/pixelfactor]-
min)/(max-min),255*(data[place*90/pixelfactor]-min)/(max-
min),255*(data[place*90/pixelfactor]-min)/(max-min));

 place++;
 }
 //creates bitmap of previously defined colors

NewBitmap(-1,32,256*pixelfactor,256*pixelfactor,NULL,xpixels,
NULL,&bitmap);

 //sends bitmap to UI
 SetCtrlBitmap(panel,PANEL_PICTURE,0,bitmap);

 82

 //sends mirror position values to text file (for opening in MATLAB®)
ArrayToFile("c:\\Christy\\LabWindows Programs\\mirrors\\position

voltages.txt",xposition,VAL_DOUBLE,256*256*pixelfactor*pixelf
actor,256*pixelfactor,VAL_DATA_MULTIPLEXED,VAL_GROU
PS_AS_COLUMNS,VAL_SEP_BY_TAB,0,VAL_ASCII,VAL_TR
UNCATE);

 //sets appropriate panel attributes for waveform display
 SetCtrlAttribute(panel,PANEL_START,ATTR_DIMMED,1);

 //configures internal waveform clock for DAQ

DAQmxErrChk
(Configure_ContGenPerWfmIntClk(chan,rate,&numChannels,
&taskHandle,pixelfactor));

 //function writes waveform data to DAQ device
 DAQmxErrChk
(Write_ContGenPerWfmIntClk(taskHandle,data,pixelfactor));
 //functions starts internal clock

DAQmxErrChk (Start_ContGenPerWfmIntClk(taskHandle));

 ProcessDrawEvents();
 gRunning = 1;

 while(gRunning) { //checks for task completion
 Sleep(100);
 DAQmxErrChk
(IsDone_ContGenPerWfmIntClk(taskHandle,&done));
 if(done)
 gRunning = 0;
 else
 ProcessSystemEvents();

 }
 check=0;

 83

 }
 //clears task for next loop iteration
 DAQmxErrChk (Stop_ContGenPerWfmIntClk(taskHandle));

 //clears bitmap from memory
 DiscardBitmap(bitmap);
 //checks for control switch value
 GetCtrlVal(panel,PANEL_CHECK,&check);

 }

}
 //exits loop when switch set to "stop"

}

Error:
 if(DAQmxFailed(error)) //checks for errors and outputs the correct error
 description
 DAQmxGetExtendedErrorInfo(errBuff,12000000);
 if(taskHandle!=0) {
 SetCtrlAttribute(panel,PANEL_START,ATTR_DIMMED,0);
 }
 if(data)
 free(data);
 if(DAQmxFailed(error))
 MessagePopup("DAQmx Error",errBuff);
 return 0;

}

return 0;
}

int CVICALLBACK StopCallback(int panel, int control, int event, void *callbackData,
int eventData1, int eventData2)

 84

{
 if(event==EVENT_COMMIT)
 gRunning = 0;
 return 0;
}

int CVICALLBACK QuitCallback (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)
{
 switch (event)
 {
 case EVENT_COMMIT:
 QuitUserInterface (0); //closes the UI

 break;
 }
 return 0;
}

 85

APPENDIX B: FIRST LABVIEWTM BLOCK DIAGRAM FOR DATA
ACQUISITION AND IMAGE GENERATION

 86

APPENDIX C: LABVIEWTM BLOCK DIAGRAM FOR SAVING
BINARY FILES TO BE OPENED IN MATLAB®

 87

APPENDIX D: FIRST MIRROR MOTION BLOCK DIAGRAM (NO
BUFFER)

 88

APPENDIX E: MODIFIED MIRROR MOTION BLOCK DIAGRAM
(WITH BUFFER)

 89

APPENDIX F: MODIFIED DATA ACQUISITION AND IMAGE
GENERATION BLOCK DIAGRAM

90

91

