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ABSTRACT 

 

Optical Biopsy:  Complementing Histology with Nonlinear Optical 

Microscopy (April 2006) 

 
Christina M. Shafer 

Department of Biomedical Engineering 
Texas A&M University 

 
Fellows Advisor:  Professor Alvin T. Yeh 
Department of Biomedical Engineering 

 
 

Histology, though widely used for cellular imaging, suffers from its destructive nature; 

cells are not viewed in their natural living environment.  Nonlinear optical microscopy 

(NLOM) has been widely used to view cells in situ without a need for sample 

processing.  NLOM uses a high-powered ultrafast laser to generate nonlinear optical 

signals within living tissue.  These signals are used to render two- and three-dimensional 

images.  One improvement to be made on this imaging system is the capability to 

produce spectral images rather than merely intensity images.  Spectral information 

provides insight to the sample’s chemical environment; this insight may lead to 

increased efficiency in disease diagnosis, since pathological development begins at the 
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microscopic level.  Additional detectors added to the system will allow wavelength 

discrimination and the creation of spectral images.  To achieve this type of system, 

additional hardware must be built and software must be written to allow simultaneous 

data acquisition from 32 detectors.  The initial task competed involved the scanning 

mechanism; a program was created to control motorized optical scanning mirrors.  The 

next task required a circuit board to be built to interface the detectors with the computer.  

A sub-program was then designed to save tissue response matrices (images) as binary 

files.  The files were able to be opened in MATLAB® and converted into scaled intensity 

images.  The final program created used information from the circuit board (i.e. from 

each detector) to create the response matrix to be saved as a binary file.  All hardware 

and software was then integrated into the current imaging system to be tested with two 

detectors.  At this point, the new system cannot adequately render images.  Future work 

will involve software and hardware correction until images are correctly formed.  At this 

point, the tissue response to two different ranges of light wavelengths will able to be 

viewed separately, and the matrices can be added to create a grayscale image.  At this 

point, work on this project will involve expanding the hardware and software to 

incorporate 30 additional detectors.  The spectral detection system will allow image 
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segmentation of biological components, and chemical markers associated with cellular 

abnormalities as well as different genetic markers can be viewed on a microscopic level.  

Therefore, this system is of great value to medicine and science. 
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INTRODUCTION1

 
 

In the past, clinics and the labs have relied upon histo(path)ology in order to observe 

tissue on a cellular level.  The histological process involves excising tissue of interest 

from the patient and processing it for viewing purposes (in two dimensions only).  Since 

this process is time consuming, difficult to control, and quite invasive, it has become 

increasingly important to find an alternate method of viewing cells and tissues.  One 

method, referred to as optical biopsy, involves microscopy and will enable the 

performance of time-dependent studies on living tissue in the laboratory and, clinically, 

could greatly reduce patient discomfort.  New improvements to be made to optical 

biopsy focus on development of acquiring color images of live tissues.  Spectral data 

provides chemical information about the scanned subject, and since a cell’s response 

depends on its chemical environment, having spectral data is crucial to the determination 

of cellular response to certain stimuli.  These observations will also lead to more 

efficient disease diagnosis, since pathological development begins at the microscopic 

level.  Moreover, the spectral detection system will allow image segmentation of 

                                                 
1 This thesis follows the style and format of the Journal of Biomedical Optics.  
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biological components, and the use of ultrashort broadband laser pulses characteristic to 

nonlinear optical microscopy (NLOM) will enable multiplexing experiments to be 

performed.  Likewise, simultaneous excitation of multiple fluorophores will allow 

multiple molecular interactions to be viewed with one scan.  Thus, the development of a 

spectral detection system based on NLOM will be a very important breakthrough in 

biomedical research.   
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PREVIOUS RESEARCH ON IMAGING 

 

Research similar yet not identical to the idea of a spectral, three-dimensional non-linear 

optical microscopy has been conducted in the past.  Some conventional modes of the 

non-invasive imaging of live tissues are the x-ray, the computerized tomography (CT 

scan), and magnetic resonance imaging (MRI).  Though these methods are quite 

successful, they lack the ability to capture images on a microscopic level.  As far as 

disease diagnosis is concerned, early detection is often crucial to patient survival; most 

pathologies begin development on a cellular (microscopic) level.   

Recently, there has been much development in terms of non-invasive microscopic 

imaging (microscopy). Perhaps the oldest method (seen as early as 1962) is second-

harmonic generation (SHG).  SHG is a second-order nonlinear optical process that has 

constraints confining the signal to regions of the specimen that lack a center of 

symmetry.1   The phenomenon of SHG requires intense laser light passing through a 

highly polarizable material with a noncentrosymmetric molecular structure and the 

second-harmonic light protruding from the material is half the wavelength of that 

entering.  The SHG process thus changes two near-infared incident photons within the 
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material into one emerging visible photon at twice the energy.2  Near-infared laser 

excitation minimizes scattering and absorption of the source; this optimizing imaging of 

tissues at greater depths.3  Thus, SHG is successful in obtaining non-damaging (no stain 

required), non-invasive images in three-dimensions but currently lacks spectral 

information. 

Similar to SHG, third-harmonic generation (THG) microscopy has recently been 

studied as a probe to characterize transparent specimens.  Third-harmonic light is 

generated at the focal point of a tightly focused short-pulse laser beam.  Like SHG, THG 

relies on inhomogeneities near the focal point (such as interfaces between two media); 

thus the symmetry along the optical axis is broken and a measurable amount of the third-

harmonic is generated.  THG can be used for specimens as thick as 3mm, but it only 

provides structural information.  Both SHG and THG are often combined with two-

photon excited fluorescence imaging so that a single laser source (such as titanium 

sapphire) may be used.4 

Another form of microscopy recently explored is two-photon fluorescence (TPF) 

spectroscopy.  This type of imaging has mostly been used to study certain nucleotides 

and flavoproteins to quantify cell metabolism.  Though studying the fluorescence of 
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nucleotides and flavoproteins minimizes absorption of excitation by intrinsic 

chromophores, light scattering, and variations in mitochondrial density, it is desired for 

spectral information such as that obtained by this two-photon fluorescence spectroscopy 

imaging to enable study of overall chemical composition rather than merely that of cell 

metabolism.5  Like SHG, current TPF involves use of up to two detectors (a maximum 

of two colors may be collected from the specimen at a time).  TPF is often combined 

with SHG or another similar process called third-harmonic generation so that a single 

laser source (such as titanium sapphire) may be used.4   

Likewise, optical coherence tomography (OCT) has been used much in clinical 

practice due to its noninvasive nature dating back to 1991.6  OCT is similar to ultrasound 

but measures light rather than acoustic waves.  In OCT, cross-sectional images are 

generated by scanning a tissue sample with an optical beam and measuring the echo time 

delay and intensity of backscattered light.  This light is quantified by correlating it with 

light that has traveled a known reference path.7   The light data obtained is then 

displayed at a logarithmic grayscale image (no spectral information provided).8  Perhaps 

the key element for this type of imaging is an inferometer (radiation from a broadband 

light source is split into two parts:  one directed onto the surface of the specimen and the 
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other launched to a reference mirror).    Reflected beams from these two paths are them 

recombined to interfere, and this interference signal is detected by a photodiode (non-

zero only when the two path lengths match within the light coherence length, thus 

providing very high sensitivity and spatial resolution).9 OCT has been used extensively 

in dermatological diagnosis9 and perhaps more so in ophthalmic imaging.8

The imaging modality of differential interference contrast is commonly used for 

studies on intracellular vescicle trafficking and cellular substrate interaction.  After 

passing through a prism, the differences in amplitude of visible light result in enhanced 

contrast in areas close to the cell membrane and bound substrate.  An image may then be 

reconstructed in conjunction with phase or reflection contrast microscopy with a 

somewhat low resolution of 0.3 µm.10

Another mode of imaging called confocal laser scanning microscopy has most 

recently been used for quality control of engineering tissues and nanofibers.  In this type 

of imaging, light from a point laser is introduced into the sample and light of the same 

wavelength reflected back into the microscope objective is detected.  The light thus is 

scattered at interfaces or medium transitions (from media to collagen fiber or cell 

membrane).  This process is most successful with the use of reflective dyes or metallic 
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decoration of fixed samples.10 The first account of time-lapse confocal reflection 

microscopy (CRM) was documented in 2000 by Brightman, et al.  Specifically, CRM 

was used to determine and compare the 3D structure and assembly attributes of 

reconstituted matrices prepared with purified collagen or interstitial matrix 

components.11  It proved to be a very sensitive technique, but this study was performed 

in vitro rather than in vivo and again only obtained intensity images. 

Moreover, multiphoton microscopy (MPM) requires the quasi-simultaneous 

absorption of multiple photons (two or three) to fulfill the energy requirement for dye 

excitation.12  However, since multiphoton excitation occurs only in a very small 

intratissue focal volume (on the order of about one femtoliter), with the use of a fast 

galvoscanner and piezodriven objective positioner, the position of the multiphoton 

excitation volume can be changed in three different directions in order to scan deeply 

into the tissue.13  The actual image obtained consists of a matrix of fluorescence intensity 

measurements made by digitizing the detector signal as the laser scans the specimen.14  

Thus, again only intensity images are able to be obtained. 

Specifically, one study briefly discussed by Peter Friedl in Summer 2004 deals with 

dynamic imaging of the immune system using various imaging techniques.  Stimulated 
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emission depletion (STED) has been used to improve resolution in optical imaging in 

which a second laser pulse eliminates the outer edge of the first laser beam.  This 

narrowing causes an improvement from radial and axial resolution of 200 nm and 300 

nm, respectively, to below 100 nm in each direction.  Fluorescence-resonance energy 

transfer (FRET) involves the transfer of photons from one fluorphore to a neighboring 

fluorescent molecule, selectively detecting molecular proximity (1-10 nm).  Thus, FRET 

indicates when molecular partners engage with each other or dissociate.15  Again, though 

these techniques improve conventional microscopy (STED) and can detect interactions 

between cells, again no spectral information may be obtained. 

The most recent developments toward spectral detection have been accomplished by 

the companies Leica, Zeiss, and Nikon.  Leica has developed an electronically 

controlled, freely definable Acousto-Optical Beam Splitter (AOBS).  This beam splitter 

allows simultaneous imaging of up to four fluorescence proteins due to enhanced 

transmittance.  Moreover, input ports for additional lasers, external detectors for non-

descanned imaging, and an output port for coupling external devices (such as more 

detectors or spectrometers) have been added.16  Zeiss has developed a META detector 

and method for metatracking that combines fast switching of incident laserlines with 
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simultaneous switching of the spectral readout from the detector.  Thus, different 

spectral ranges of interest may be acquired by using electronic switches; this process is 

not entirely simultaneous (only one color or range of wavelengths may be obtained at a 

time).17  Nikon’s C1 Plus confocal microscope system allows four detector channels as 

well, but, unlike Zeiss, information from these four channels may be obtained 

simultaneously.18  Though these instrument companies have developed methods for 

spectral imaging, only four wavelengths may be viewed, and much more detailed 

information about the specimen may be acquired if many more detector channels are 

incorporated. 
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PROBLEM 

 

Although many features of optical biopsy have been previously explored and developed, 

one imaging method incorporating all desired attributes is yet to be developed.  Thus, 

this research qualifies as being original and has not been previously attempted.  

Currently, in the lab of Professor Alvin T. Yeh at Texas A&M University, the main 

focus is on SHG and TPF.  Commercially-available software is used to control the 

system and render images.  However, the software limits this rendering to grayscale 

images, which provide no spectral information about the tissue specimen.  The main 

focus for this research is to add hardware to the current lab setup and generate new 

software to enable the creation of spectral images.   
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Lab Setup 

 

Currently, in the Tissue Microscopy Lab, the imaging system (seen in Figure 1) involves 

a laser beam focused to a point of approximately 1 µm3 by a microscope objective, and 

its position is determined by the swivel angle of two galvanized mirrors connected to a 

computer.  The current laser scanning pattern is seen in Figure 2.  The actual microscope 

as seen in the lab is presented in Figure 3. 

 

 

Figure 1:  Lab equipment schematic 

 

 



 12

 

Figure 2:  Current laser scanning pattern 

 

  

Figure 3:  Front (left) and side (right) views of lab microscop

 

As the laser beam scans the object on the two-dimensional plane (as

tissue), photons are emitted by the specimen.  These photons are detect
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multiplier tubes (PMTs) set on top of the microscope (Figure 1).  A discriminator is used 

after each PMT that will emit a TTL pulse for each photon detected.  Binary counter 

chips are used to count the number of TTL pulses for each image pixel.  A digital-analog 

converter takes the resulting TTL-pulse count and converts this binary count into a 

voltage value.  Therefore, at each pixel (a 256x256 pixel image will have 65,536 scan 

divisions), a voltage value will be recorded; the voltage value at matrix element (i,j) 

corresponds to the photon count.  A color map may be applied to voltage values to 

render a false color image.  In other words, the lowest and highest values in the voltage 

matrix will be set to two color extremes (black and white, for example), and matrix 

values between these extremes will be scaled accordingly to form a grayscale image.   

The image frame rate was programmed to be 1 Hz.  The residence time per pixel is 1s / 

65,536 or 15.259 µs per pixel.   
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Setup Limitations 

 

Commercially-available software exists that controls the mirror swivel angles as well as 

information processing for up to two detectors.  The main focus for this research is to 

ultimately add 30 detectors and modify each to sense a certain range of visible light 

wavelengths.  With this spectral selectivity feature, various cell components may be 

viewed.  Currently, the only method of viewing spectral wavelengths selectively is to 

render an image using a band-pass filter.  For each wavelength chosen, another scan 

must be performed.  For example, the image in Figure 4(a) shows a cell with its 

surrounding collagen matrix.  Figure 4(b) shows the cell alone; this image was obtained 

by rendering a second image using a green (520 nm) filter.  Likewise, Figure 4(c) 

showing the collagen matrix was obtained by taking a third image using a blue (400 nm) 

filter.7   
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a b c 

Figure 4:  Effects of image filtering:  (a) cell and collagen matrix without filtering; (b) cell alone 

imaged with green (520 nm) filter; (c)collagen matrix imaged with blue (400 nm) filter  

 

Adding 30 detectors to the current setup will allow all of these views with the ease of 

only one scan rather than one scan per wavelength.  This addition of detectors will 

require software creation and hardware modification.   

 



 16

METHODOLOGY AND RESULTS 

 

For the sake of practicality, the creation process for this spectral detection system was 

divided into two separate modules: scanning and detection.  All programming, 

interfacing, and testing of hardware and software was completed in the Tissue 

Microscopy Lab in the Wisenbaker Engineering Research Center of Texas A&M 

University.   
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Scanning:  Basic Methods 

 

The first aim completed towards the final goal of the project was the movement of the 

optical scanning mirrors.  The initial task to be accomplished was the creation of 

multiple functions that would serve as appropriate mirror motion patterns.  The mirror 

set used was Cambridge Technology’s Model 6220 Galvanometer Optical Scanner (set 

of two mirrors – Figure 3).  Each mirror is essentially a galvanometer in that it receives a 

voltage signal and converts that signal into a swivel angle or mirror position.  Therefore, 

in order to scan an image in the pattern seen in Figure 1(b), one mirror needs to move the 

laser beam across the image while another mirror moves the beam down the image.  If 

one “sweep” of a mirror is defined as a line across the image (each arrow in Figure 1b), 

the mirror responsible for the pixel rows will need a periodic function.  The mirror 

needed to dictate the particular row of the scan will need only one sweep per scan. 

 Various periodic functions were possible for each mirror, including sinusoidal, 

raster, and triangular functions.  Possible functions were designed first on paper and 

analyzed for simplicity and efficiency in order to select the best option.  Since it is most 

convenient in most cases to deal with linear or quasi-linear functions, a triangular 
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function was chosen to be the periodic function of choice for the fast mirror (Mirror 1).  

A raster function was chosen for the slower-moving mirror (Mirror 2). 

 NI LabWindows/CVI was used to create and send functions to the scanning mirrors.  

LabWindows/CVI takes the programming language C and adds a graphical user 

interface (GUI) and many previously-defined functions.  All programming was 

performed in C which allows for much greater user control and customization than that 

of a graphical program such as NI LabVIEWTM.  LabWindows/CVI was therefore used 

initially to create a program that would generate the aforementioned mirror waveforms 

and display them on the GUI.  At first, the program included only user-defined 

parameters.  This allowed the programmer to debug the program and discover how 

changes in the different parameters affected each created waveform.  Once debugging 

was complete, basic calculations were performed to determine the ideal frequency and 

phase of each waveform.  These values were then tested by being manually entered into 

the GUI.  When the program correctly displayed the two mirror waveforms concurrently 

on one graph, the calculated frequency and phase of each waveform was set in the 

source code rather than being left as user-specified controls.  The only controls left on 

the GUI were for the user to set the signal voltage range for each galvanometer. 
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 The next step was the integration of the aforementioned program with the National 

Instruments PCI-6259 data acquisition (DAQ) card and SCB-68 68-pin shielded 

connector block.  The card was properly installed and appropriate self-tests were run to 

ensure proper device communication.  Once the card was properly tested, one connector 

block was connected to the DAQ with the included SHC68-68-EPM shielded cable.  

Two connector blocks will be needed when the detection portion of the project is 

attempted.  However, for current purposes, only one connector block was connected to 

allow two analog outputs.  The SCB-68 circuit diagram included with the device was 

used to select the analog output (AO) and ground pins.  To test the outputs and 

eventually connect them to the galvanometers, wires were connected to the appropriate 

pins summarized in Table 1.  Once connected, the wires were appropriately soldered to a 

male BNC connector (one connector was used for each analog output channel for a total 

of two connectors).  The setup and connections are shown in Figure 5 

 

 

 

. 
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Pin 
Number 

Pin Name Description 

22 DAC0OUT voltage output channel for AO channel 0 
21 DAC1OUT voltage output channel for AO channel 1 
55 AOGND ground reference signal for both AO channels 

Table 1:  Description of SCB-68 pins used for output signals 

 

 

Figure 5:  Connector block setup 

 

 Once the device was properly wired, the program created had to be modified so that 

the waveforms would be sent to the DAQ card rather than the GUI.  Two waveforms 
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were created and stored in arrays; both arrays were combined and sent to a function 

responsible for taking an array and writing these values to the DAQ card as analog 

waveforms.  A digital- analog converter (DAC) was thus intrinsic. 

 The source code and GUI were modified so that the program functioned more like 

the original commercial software for a two-detector system.  The user was allowed to 

specify the voltage range, image size (for a 256x256- or 512x512-pixel image), signal 

output speed, scan mode (continuous or finite number of scans during each program 

run), and number of scans for the finite scanning mode.  Moreover, the user can stop the 

scan sequence with a toggle switch on the GUI (once depressed, the scanning sequence 

will stop after the current scan is complete).  The program also displays the estimated 

time (in seconds) for each scan to complete.  To evaluate the program and to test 

whether it behaved as desired, the male BNC connector soldered to the output wires 

(Figure 4) was connected to a Tektronix TDS 3052B oscilloscope.  Once waveforms 

similar to those seen in Figure 6 were observed, and all of the user controls functioned as 

planned, the program written was considered complete. 
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Figure 6:  General mirror pattern waveforms (triangular – regular, and raster – bold);   

note: frequencies not drawn to scale 
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Scanning:  Results and Calculations 
 
 

To make each waveform suitable for image scanning, a number of parameters needed to 

be determined.  In deciding the most appropriate frequency and phase shift for each 

mirror function, a number of criteria were followed.  As mentioned previously, an image 

acquisition rate of 1 Hz was programmed.  For an image of 256 x 256 pixels, Mirror 1 

would thus need to move back and forth 128 times to create 256 total rows across the 

image (256 pixels in the vertical direction); the triangle wave used for Mirror 1’s 

position would thus need to have a frequency of 128 Hz.  While Mirror 1 must move at 

128 Hz, the raster waveform for Mirror 2 had a frequency of 1 Hz. 

 Though the time-domain frequencies were easily determined, converting into 

parameters for LabWindows/CVI functions required further calculations.  The pre-

defined triangle wave function in LabWindows/CVI, TriangleWave( ), was generated 

with Equation 1: 

(1) )*0.360*(* 0 iftriAxi += φ , 

where tri( ) is defined by the waveform in Figure 7, xi is the current array element, A is 

the amplitude of the triangle, φ0 is the phase shift of the waveform,  f is the frequency 
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factor, and i is the index of the current array element.  LabWindowTM takes user-

specified values for φ0, A, and  f  to create an array of basic triangles; the net result of the 

array is a triangle waveform.  A triangle waveform in LabWindows/CVI is thus created 

from a sum of scaled, shifted triangles.   

2 

1 

-3 -2 -1 1 2 3 
-1

 

Figure 7:  LabWindows/CVI triangle function (bold) 

 

From Equation (1), the magnitude of the shift from triangle to triangle (the distance 

between adjacent triangles in the waveform, f*360.0) is equivalent to the fundamental 

period of the waveform, or 

(2) fT 3600 = , 

where T0 is the fundamental period of the triangle waveform.  A desired Mirror 1 

waveform frequency of 128 Hz would thus imply a fundamental period of 0.0078125 s.  

Using Equation (2), the correct f value was calculated to be 2.170*10-5.  To obtain the 
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frequency for Mirror 2’s raster waveform created with the SawtoothWave( ) function, 

the previously-calculated f for Mirror 1 was taken and divided by 256 because the 

triangle waveform moves 256 times faster than the raster waveform.  This process 

yielded a value of 8.477*10-8.  Once these parameters were incorporated into the 

program, the waves were viewed on a graphical control added to the GUI and verified 

for accuracy. 

 The phase for each waveform needed to be chosen such that the beginning of the fall 

of the raster scan lined up with the beginning of a rise or fall of the triangular scan 

waveform (Figure 6).  The raster waveform would cycle 360o in one scan because of its 

1 Hz frequency.  In the 360o cycle of the raster waveform, the triangle waveform goes 

through 128 cycles.  Therefore, each cycle of the triangle wave corresponds to 2.8125o 

of the raster wave; to line up with the triangle wave, the raster wave had to be 90o + 

2.8125o out of phase with the triangle wave.  The reason for the 90o lies in the fact that 

the default position (0o phase shift) is for the midpoint between the peak and the valley 

of the waveform to lie at the y-axis.  For the peak to be at the y-axis, a 90o phase shift 

was necessary.  The phase shift values chosen were -90.0o for the triangle wave (so that 

the y-axis position corresponded to the valley of a triangle) and -185.625o for the raster 
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waveform.  The 5.625o ensures that the raster will line up with the triangle wave because 

5.625 is a multiple of 2.8125.  This value also leaves some space in the beginning of the 

function plot; the large rise in voltage can be used later in the project as a trigger for the 

scan to begin. 

 The next parameter of concern in LabWindows/CVI for both raster and triangle 

waveforms was the number of elements for each array.  When this value was entered 

into the GUI as a user-control, it was modified using methods to determine its ideal 

value for the purpose of this project.  First, with the triangle wave, an arbitrary value of 

1/360 was chosen for f  so that the factor in Equation (1), f*360.0*i became i.  With the 

aforementioned f value set, it was discovered that one full period of the waveform occurs 

when the number of elements is 360.  Using the triangular waveform (f = 2.170*10-5 

or
46080

1 ), a full period of the waveform will occur when the number of array elements is 

46080.  Since one scan of a 256 x 256 pixel image will require 128 periods of the 

waveform, the number of elements should be 128*46080 or 5,898,240.  To ensure that 

the waveforms are of appropriate length on the GUI, the actual number of array elements 

for each waveform was set to 6,000,000.  Likewise, if the user chooses to create a 512 x 

512 pixel image, the number of array elements for each waveform would be 12,000,000.  
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Basic conditional logic statements were set up to handle both cases (256 x 256 and 512 x 

512 images).  Therefore, the number of array elements for each size option was set in the 

source code rather than on the GUI.  The complete LabWindows/CVI source code 

created for mirror motion and image generation can be seen in Appendix A. 

 Due to DAC constraints on the DAQ card, the highest sampling rate was found to be 

2,000,000 samples per second.  Since a 256 x 256 pixel image had 6,000,000 array 

elements, the sampling speed limit means that a 256 x 256 pixel image will take at least 

3 seconds to obtain.  Likewise, the creation of a 512 x 512 image will take at least 6 

seconds.  Moreover, there is an initial time delay that occurs because the computer must 

perform many loops with 6,000,000 – 12,000,000 iterations and deal with 6,000,000 – 

12,000,000 element arrays.  This hypothesis was tested by creating a very simple 

program that added two 12,000,000-element arrays.  There was a somewhat significant 

delay (5-10 seconds) in program completion; when the number of elements in the arrays 

was reduced to 12,000, the program ran with almost no delay. 

 To overcome the time constraints of LabWindows/CVI, the same waveforms 

mentioned previously were created in NI LabVIEWTM with the Basic Function 

Generator pre-built virtual instrument (VI).  A raster and a triangular waveform were 
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created with frequencies of 1 Hz and 128 Hz, respectively; these waveforms were sent 

through the DAQ card and viewed on the oscilloscope (Figure 8).  The LabVIEWTM 

block diagram for this mirror motion program is seen in Appendix B. 

 

 Figure 8:  LabVIEWTM mirror motion waveforms 

 

After verifying that the output waveforms behaved as expected, the two output BNC 

cables were disconnected from the oscilloscope and connected to the galvanometers.  At 
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first, a very small output voltage amplitude was chosen (0.5 V) to place minimal stress 

upon the mirrors.  Once very small motions were observed in the larger mirror (the 

smaller mirror was moving too quickly to observe with the naked eye), the voltage 

amplitude was increased to 1 V so that mirror motion was more easily observed.  No 

major faults were found with the LabVIEWTM waveforms.  LabVIEWTM proved to be 

easier to follow among multiple users as well as easier to program (the language is 

graphical rather than C-based).  To verify correct mirror motion, the output of each 

mirror was connected via BNC-BNC connectors to the oscilloscope.  The output 

waveforms in Figure 9 verify that the mirrors moved as expected.  However, as seen 

when comparing Figures 8 and 9, a response of about 80% was observed in the mirror 

output waves.  This small loss of voltage magnitude is probably due to internal 

impedance found within the galvanometers.  The resistance of the BNC cables in this 

case is considered negligible.   
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Figure 9:  Actual mirror response to LabVIEWTM waveforms 
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Detection Hardware 
 
 

For the detection portion of the spectral detection system, programming was again 

performed with NI LabVIEWTM.  The initial task completed toward spectral detection 

was the creation of data acquisition circuit boards.  During detection, photons are 

represented by TTL pulses emitted by a discriminator.  Four Texas Instruments 

SN74ALS161B binary counter chips were used to count the TTL pulses with 16-bit 

resolution.   The TTL pulse output of the discriminator was sent into the least-significant 

bit of the counter chip setup.  Thus, with each TTL pulse, the total count (the counts of 

all four counters added together) incremented by one.  Since each counter contained four 

bits, maximum number of photons able to be counted at any given point in the tissue (or 

any pixel in the image) was 216 – 1, or 65535.  To divide the image into pixels, the 

counters had to be reset at the aforementioned pixel resonance time, or once every 15 µs, 

so a 65,536 Hz square wave was generated with the waveform generator tool in 

LabVIEWTM and put into the clock input terminal of each counter chip.  Therefore, as 

the laser beam scans the tissue on a two-dimensional plane, each photon detected by the 

PMTs is converted into a TTL pulse by a discriminator.  Each pulse is then counted by 

 



 32

the counter chips; after 15 µs, the count is brought back to zero, and the detection 

process begins again at a slightly different laser position. 

The total count after each 15-µs time interval then had to be sent into the computer 

so that image rendering could be performed.  A Burr-Brown DAC712 16-bit digital-

analog converter (DAC) was used to complete this task.  All bit outputs from each 

counter (16 bits total) were connected to the 16 binary input terminals of the DAC.  The 

circuit board setup containing the discriminator, binary counter chips, and DAC is seen 

in Figure 10.  The actual circuit board built for data acquisition is seen in Figure 11. 
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counters 
DAC 

Figure 11:  Actual detection circuit board (for two detectors) 

 

The DAC takes the binary value seen at its input terminals, converts the value to a 

voltage, and outputs the voltages as a continuous waveform.  Thus, as the count changes, 

the amplitude of the DAC voltage waveform will also change. 

Once one circuit board was built that could count photons from two detectors, 

LabVIEWTM was used to create a program to use the photon counts at each “point” in 

the tissue to create a scaled intensity image.  The first step toward the design of this 

program was to use the DAQ Assistant pre-built sub-VI to read the voltage waveform 

coming from the DAC.  LabVIEWTM’s DAQ Assistant sub-VI allows the user to specify 

the physical connector block channel from which to read data.  The data range must also 
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be specified as well as the data acquisition mode and internal clock settings (number of 

samples to read and sampling rate).  The data range for the DAC is -10 V to +10 V, so 

these values were specified in the program.  The sampling mode in this case was chosen 

to be continuous, and modifying the clock settings ultimately changed the rate at which 

the program generated an image; the clock settings were changed multiple times 

throughout the design process such that adequate debugging could take place.   

For testing purposes, an external 15-MHz TTL pulse waveform was connected to 

the clock terminal (CLK) of the least-significant counter.  For the sake of simplicity, a 

basic up-counting circuit was used with the binary counters.  A basic diagram for this 

circuit with labeled terminals as seen in the Texas Instruments specification sheet for the 

binary counters is seen in Figure 12.   
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Figure 12:  Basic count-up circuit for binary counters 
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The carry-out bit (RCO) from the least-significant counter (LSB) was connected to the 

clock terminal of the next counter; this connection pattern was repeated up through the 

most-significant counter; all counter output terminals (QA – QD) were connected to the 

input terminals of the DAC.  Nothing was connected to the reset terminals (CLR) of the 

counters.  Thus, the counters would count the TTL pulses until the maximum possible 

count was achieved (in this case 65,536), and at that point, all counters would reset to 

zero.  The DAC would start at zero (with the counters), increase its voltage output to 10 

V at a count of 215 (or 32,768), jump to -10 V at a count of 32,769, and then return to 0 

V for the next resetting of the counters.  Since the computer was set to continuously read 

the voltage waveform from the DAC, and the DAC was set to receive a count that 

increased to a maximum and then returned to zero, the DAC the expected waveform to 

be seen on the LabVIEWTM front panel with the program running was a sawtooth wave.  

As seen in Figure 13, the resulting waveform from the DAC behaved mostly as 

expected.  The voltage values from the DAC could easily have been converted into 

binary counts by dividing the voltage signal by 0.000305; this factor was found by 

dividing the maximum voltage range (20 V) by the maximum binary count (216 or 

65,536). 
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Figure 13:  Voltage waveform for count-up circuit test (with 15-MHz TTL pulse input) 

 

One unexpected effect observed in Figure 13 is the narrow “peaks” that arise throughout 

the voltage waveform.  Ideally, the rising slops of the sawtooth wave produced during 

constant counting and resetting should be smooth and continuous.  This problem was 

overcome by trying an alternative configuration for the binary counters; since they are 

often known for being more efficient and reliable, a carry look-ahead circuit was used.  

The basic configuration for this circuit obtained from the Texas Instruments 

specification sheet is seen in Figure 14. 
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Figure 14:  Carry look-ahead circuit schematic 
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For the carry look-ahead circuit, the RCO from the LSB counter was connected to the 

ENP terminals of the more significant counters.  The RCO from the next counter was 

connected to the ENT terminal of the following counter, and the same connection pattern 

was repeated up to the most significant counter.  For the LSB counter, the ENT and ENP 

terminals were connected together and then were connected to the ENT terminal of the 

next counter.  All of these connections may be easily visualized in Figure 14.  This 

circuit was outlined in the specification sheet for the counters. 

When the same testing process was repeated for the new counter configuration, the 

resulting waveform was a smooth sawtooth wave; the waveform as seen on the 

LabVIEWTM front panel is shown in Figure 15. 
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Figure 15: Voltage waveform for look-ahead circuit test 

 

Since the waveform in Figure 15 appears as desired, the carry look-ahead counter 

configuration was used for all other circuit boards. 

 



 42

Detection Software:  Saving Binary Files 

 

The data collected from the tissue would be placed into a 256 x 256 matrix that would be 

converted into a 256 x 256 pixel intensity image.  Since one desired feature for this 

spectral detection system is the ability to stack many 2-D images to form a 3-D image as 

well as view the tissue response to various light wavelengths, matrices created in 

LabVIEWTM needed to be saved as files that could be opened and converted into an 

image in MATLAB®.  To perform this task, another program was designed to save each 

256 x 256 matrix as a binary-format file able to be opened in MATLAB®.  Binary format 

is preferred because of its space-efficiency.  To perform the file-saving task, first a 256 x 

256 matrix of numbers able to be set from the front panel was created using two nested 

for-loops.  The LabVIEWTM sub-vi “Open_Create_Replace file” was used first to create 

a file with its name specified by the user on the front panel and then open that file.  The 

reference location from the opened file was then sent to the LabVIEWTM sub-VI “save 

.MAT.”  This function saves a 2-D array of numbers to a binary MATLAB® file.  The 

aforementioned 256 x 256 matrix was also sent to the “save .MAT” input terminal.  The 

reference location of the file was then connected to the location input terminal of the 
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“rem .MAT” sub-vi.  This VI will add a user-specified string remark to the beginning of 

the file; once opened in MATLAB®, the written remark may be seen at the top of the 

file.  Currently, the remark input has been left blank.  Finally, the reference location of 

the file was connected to the input terminal of the “Close File” VI; this VI, as its name 

suggests, closes the open file.   

Since creating an entire 3-D image will require saving many 2-D images at a time, 

features were added to the program that would enable the user to specify the number of 

scans to have a certain file name.  The file directory was specified, but the user is 

allowed to type in the desired name for the file sequence.  For example, if a person is to 

take an image of a rat tail tendon, he or she might choose to take five scans of the 

tendon.  So, on the front panel, he or she would type “tendon” or another descriptor into 

the appropriate text field, and the first scan would be saved as “tendon01.”  The final 

scan would likewise be saved as “tendon05.”  The scans would then be complete after 

five scans because the saving sequence was placed inside a for-loop that would iterate 

for the amount of times specified by the user on the front panel.  The block diagram for 

the LabVIEWTM program used to save files in binary format can be seen in Appendix C.  

When the final program for photon counting and image generation is complete, the 

 



 44

matrix of photon counts will be connected to the input of the “save .MAT” VI in this 

program.  The proper function of the program was verified by using MATLAB® to open 

and view some of the files created. 

To view a 256 x 256 matrix of binary numbers as an image in MATLAB®, first the 

fopen(‘scan01.mat’ ) command was used to open the binary file (scan01.mat) created in 

LabVIEWTM for reading purposes.  Additionally, the fopen( ) command creates a scalar 

MATLAB® integer valued double, called a file identifier.  Next, the fread( file identifier, 

[A,B], ‘data type’) command was used to read the binary data from the specified file     

and write it into a A x B matrix of the data type specified.  For instance, to store the 

binary values in the file scan01.mat in a 256 x 256 matrix of integers called A, the 

command needed would be fread( fileopen(‘scan01.mat’), [256,256], ‘int’).  When a 

matrix was created in LabVIEWTM with all elements equal to zero, the resulting image 

was solid black, given the chosen grayscale color map.  This image is seen in Figure 16. 
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Figure 16:  MATLAB® image of matrix with zeros 

 

Since Figure 16 is, as expected, a 256 x 256 pixel image of all black pixels that represent 

a 256 x 256 matrix of all zeros, this program was considered a success.  The 

LabVIEWTM block diagram for the program is seen in Appendix C. 
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Detection Software:  Data Acquisition and Image Generation 

 

Once the circuit board was tested and a program was created to save the image matrices 

as binary files, software was designed in LabVIEWTM to acquire photon counts from the 

circuit board and use these counts to render images.  For data acquisition, a program in 

LabVIEWTM had to be designed to record the maximum count seen for every 15.259 µs 

into a 256 x 256 matrix.  This matrix would then be converted into a scaled intensity 

image and displayed on the LabVIEWTM front panel.   

The first step toward the creation of this software was to create 256 x 256 matrices 

of randomly-generated values that could be displayed as 256 x 256 pixel images on the 

front panel.  The Replace Array Subset function in LabVIEWTM was used to create an 

array within a for-loop.  For loop iteration, a different random value would be stored at 

each index of the array.  The loop was set to iterate 256 times, and the iteration number 

was set equal to the array index.  Thus, at the end of the for-loop iterations, the array 

would have 256 different random elements in it.  Another for-loop created outside the 

aforementioned for-loop was then used to place each complete array of 256 elements 

into a matrix.  This loop was also set to iterate 256 times, so at the end of the outside 
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loop’s iterations, a 256 x 256 matrix of random values was generated.  The Intensity 

Graph function of LabVIEWTM takes a 2-D array of values and creates a scaled intensity 

plot of those values, with each value representing one pixel in the plot.  After all 

iterations of the aforementioned loops are complete, the 256 x 256 matrix of values was 

converted into an image with lighter pixels in the image corresponding to higher values 

from the matrix.  One example of an intensity plot obtained from the above procedure is 

seen in Figure 17. 

 

 

Figure 17:  Image created with random matrix values 
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At this point, the program used for scanning and image generation was modified so 

that, rather than having random images created and a count signal that continuously 

maximizes and then resets, the system would count photons from tissue and use these 

photon counts to create an image.  Basically, during each 15.259 µs time interval (for 

each pixel in the image), the photons emitted from the tissue at that specific point would 

gradually increase.  Thus, it is expected that the maximum photon count at each position 

in the tissue would be achieved just before the counters reset and the laser moves to a 

new position.  Therefore, the expected waveform to be seen from the DAC output is very 

similar in shape to that seen in Figure 15.  However, since the photon count at each 

position within the tissue should be different from the surrounding areas, the magnitude 

of the waveform should vary somewhat from peak to peak.  The values chosen in the 

DAQ Assistant used to read the voltage waveform from the DAC depend on the desired 

time for each full scan.  Equation 3 can be used to calculate the Rate parameter using the 

number of samples to read for each line of the image and the amount of time needed to 

generate each line: 
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where ImageTime for a one-second scan would be 1.  Likewise, if the desired time for a 

scan to be performed is four seconds, ImageTime would be 4.  The SamplesToRead 

parameter represents the number of samples to read per line (SamplesPerLine).  The 

lines parameter represents the number of lines in each image (i.e. the number of rows for 

each image matrix).  For example, a 256 x 256 pixel image would require a value of 256 

for SamplesPerLine and another value of 256 for lines. 

Initially, the peak detector sub-VI in LabVIEWTM was used to find the peak value 

for every group of samples.  The number of elements in each group was determined by 

finding the size of the data array with the LabVIEWTM Array Size sub-VI and then 

dividing that number by the desired size of the image array, or 65,536.  The peak 

detector VI, “NI_AALPro.lvlib:Peak Detector,” finds the location, amplitude, and 

second derivative of peaks or valleys within each group of elements in the input array (in 

this case, the voltage signal from the DAC); the number of elements in each group is 

specified by the user at the “width” terminal.  Due to noise found within the DAC signal, 

the peak detector did not always find the peak at the correct location.  Peaks did not 

always seem to be found just before the counters reset and the voltage returned to 0.  The 
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same VI was then used with the valley detection option chosen.  When a valley was 

detected, its location was sent from the peak detector VI into a for-loop.  The loop 

contained the Index Array sub-VI that takes the original array (the DAC voltage signal 

converted from dynamic data to an array) and returns the element at the location 

specified by the number at the index terminal of the sub-VI.  The location of the valley 

(the array index) was sent through the for-loop, one was subtracted from it, and the final 

answer (valley location – 1) was sent to the index terminal of the Index Array sub-VI.  

Thus, the sub-VI will return the element in the location directly before the valley.  Each 

element returned from the for-loop throughout the entire DAC voltage array was 

assumed to be the maximum value for every 15-µs time interval.  These values were 

divided by 0.000305 to obtain the actual photon count and then placed in a 256 x 256 

matrix using the Build Array Subset sub-VI.  The resulting matrix was then converted 

into an intensity image and displayed on the front panel with the Intensity Graph sub-VI.   

The resulting LabVIEWTM block diagram for image generation and data acquisition 

using the peak detector sub-VI can be seen in Appendix D. 

Ultimately, after each matrix, or image, is created in LabVIEWTM, the 

aforementioned program used to save the images as binary files will be incorporated into 
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the image generation program.  The matrix used to form the image on the LabVIEWTM 

front panel in the image generation program will also be connected to the input of the 

“save .MAT” sub-VI. 
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Testing of Hardware and Software 

 

To test the circuit board and LabVIEWTM software for mirror motion, data acquisition, 

and image generation, the current lab setup seen in Figure 1 was modified to include the 

new hardware and software.  However, before the connections were changed to 

incorporate the new hardware and software, an image of a mouse tail tendon was 

generated with the current image acquisition system as a basis for comparison (i.e. a 

control image).  Then, the output of the discriminator attached to each PMT was 

connected to the least significant bit of the sets of binary counters on the circuit board.  

The DAC output terminals from the circuit board were then connected to the appropriate 

terminals of the connector block (Figure 5), where the DAC signal would be read by the 

LabVIEWTM software.  Other terminals of the connector block were connected to the 

scanning mirror input so that the LabVIEWTM software could control the motorized 

mirrors as mentioned previously.  The setup for testing including the circuit board, 

connector block, oscilloscope, and computer is seen in Figure 18. 
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Figure 18:  Setup for hardware and software testing 
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Limitations 

 

Images were rendered and displayed on the LabVIEWTM front panel with the new 

software and hardware without any LabVIEWTM syntax errors.  The control image of the 

mouse tail tendon is seen in Figure 19, while the image generated using the LabVIEWTM 

software is seen in Figure 20.   

 

 

Figure 19:  Control image of mouse tail tendon 

 

 



 55

 

Figure 20:  First image generated with software 

 

As seen in Figure 20, much of the striated pattern seen in Figure 19 had been correctly 

duplicated.  However, many discontinuities were seen throughout the image, and the 

image also appears to be separated into different parts that have been incorrectly 

organized.  Rather than one continuous image of the mouse tail tendon, it appeared as 

though the image had been separated into about eight different parts that had been 

rearranged.   

To begin to solve these issues, different components of the imaging system were 

analyzed individually to more easily isolate the main cause of the problems.  The 

 



 56

oscilloscope was used to view input and output signals of the system one at a time, and 

signal parameters such as the amplitude, shape, and frequency were verified.  First, the 

scanning was debugged by viewing the mirror response waveforms as the system 

generated images.  It was noted that there were some fluctuations in the waveform 

amplitudes that were not present when the scanners were previously tested without the 

data acquisition and image rendering software running.  A sensible explanation for this 

phenomenon was that the mirror wave generation portion of the program had difficulty 

sending out continuous data when other CPU-intensive processes were ongoing.  The 

amplitude fluctuations in the mirror motion waveforms could be causing some confusion 

in the software about the actual laser position in the tissue at a given instant; therefore, 

the pixel intensities in the image may not accurately resemble the photon counts from 

the tissue.  One way to overcome the issue of CPU processes interfering with the mirror 

waveforms was to use LabVIEWTM functions to store the mirror waveforms, wait a 

small amount of time, and then send the waveforms out of the computer; this task 

division will ensure that a waveform will be stored and ready to be sent to the mirrors at 

all times throughout scanning.  One method of pre-storing waveforms was to use a 

LabVIEWTM buffering program rather than the waveform generation sub-VIs alone. 
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Specifically, the pre-built Waveform Buffer Generation sub-VI was used for the 

waveforms to be sent out from the computer (i.e. the two mirror motion waveforms and 

the 65.536 kHz square wave for resetting the binary counters.  The Waveform Buffer 

Generation sub-VI has terminals for the user to designate the waveform type, the desired 

frequency and amplitude, and the square wave duty cycle.  In this case, the 65kHz 

square wave was generated by the sub-VI, and the sub-VI then returned the waveform 

along with the actual, coerced, sample clock rate.  This rate was then used as an input to 

the Basic Function Generator sub-VI to generate the mirror motion waveforms.  The 

resulting waveforms (triangle, raster, and square) were then stored in an array.  The task 

timing was then manipulated by adding a while-loop that waits a multiple of 100 

milliseconds to begin the actual task of generating the waveforms.  This waveform 

generation method waits a short time to enable buffer generation, and during continuous 

runs of the program, waveform and buffer generation for future waveforms occur 

simultaneously.  The program was run with the data acquisition and image generation 

program, and the mirror output waveforms were again checked for amplitude 

discrepancies.  The waveforms appeared very similar to those in Figure 8; the 

amplitudes remained constant throughout the trial.  From this point, the new mirror 
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motion program including buffer generation was used for testing.  The LabVIEWTM 

block diagram for the updated mirror motion VI is seen in Appendix E. 

After the scanning mechanism was assessed and the system was tested again, the 

image appeared to be the same as that seen in Figure 20.  Next, the detection portion of 

the program was debugged.  The initial steps taken in the detection analysis was to study 

the images generated as they appeared on the LabVIEWTM front panel, rather than 

immediately changing the program code.  As in the current image acquisition system, the 

images generated with the new imaging system should update after each scan.  As 

expected, with a fixed tissue sample being imaged, the images generated should remain 

roughly the same with each scan if the laser focus depth is kept constant.  However, even 

with a constant focus depth, the components in each new image seemed to shift relative 

to that of the preceding image.  These phenomena meant that the mirrors were not 

synchronized to the data acquisition portion of the program.  In other words, the mirrors 

did not begin scanning at the time that the program began to record photon counts.   

To solve the synchronization problem, the mirror waveforms need to be saved as 

files in the mirror generation sub-VI shown on the block diagram for the data acquisition 

and image generation VI; once the mirror waveforms are saved, the file can be opened, 
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and the waveforms will be sent to the mirrors at the beginning of data acquisition within 

the LabVIEWTM program.  Also, to avoid timing issues in which the mirror waveform 

file may be opened before it is created, rather than having the mirror motion program 

incorporated as a sub-VI, the entire mirror motion block diagram must be manually 

copied and pasted directly into the data acquisition block diagram.  If the mirror motion 

block diagram is placed in the same loop as the data acquisition algorithm, the mirror 

motion and data acquisition will be synchronized. 

The data acquisition and image rendering VI was then modified such that the peak 

detector was no longer necessary.  Rather than detecting the valleys in the data and then 

storing the previous array element, for every given number of samples in the data array, 

one sample would be sent to the final image array.  This approach assumes that the 

maximum value for every 15 µs was evenly spaced from other maxima in the array.  To 

correct this, only elements that are a multiple of eight will be stored in the final image 

array.  This algorithm will need further testing to determine the actual spacing (in terms 

of array elements) for each maximum.   

To enact this change to the data acquisition and image generation VI, the data array 

from the DAQ Assistant was sent through a LabVIEWTM formula node.  C-based code 
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was created to perform certain operations on variables defined at the borders.  The code 

basically used a for-loop to go through the entire data array and store every element that 

was a multiple of the number specified.  For example, the formula node seen in Figure 

21 creates an array for matrix variable Y with 256 elements.  The variable X is the 

incoming data array from the DAQ Assistant, and the variable “size” represents the size 

of the data array.  The for-loop basically takes every 64th element from the data array and 

stores it in matrix Y.  The loop terminates once its index reaches the value specified by 

“size.” 

 

Figure 21:  Example of LabVIEWTM formula node 

After the matrix Y is created in the formula node, another for-loop is used in 

LabVIEWTM to divide each element in matrix Y by the aforementioned factor 0.000305; 

this operation converts the DAC voltage values to actual photon counts.  As in the 

previously-built VI for image generation, each matrix of photon counts is displayed on 
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the LabVIEWTM front panel with the Intensity Graph sub-VI.  The modified data 

acquisition and image generation VI is seen in Appendix F. 

Again, the system was tested with the improved image generation software.  This 

time, as the program ran, the value used to store the maximum data value for every 15 µs 

was changed slightly, with the initial value determined by the aforementioned method of 

dividing the data array size by 65,536.  The image generated is seen in Figure 22. 

 

 

Figure 22:  Image generated with modified software 
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Even when this method was carried out, the image still appeared disorganized.  

Another limitation was discontinuities observed within the image, though the 

discontinuities were less pronounced than those seen in Figure 20.  The image with a 

limited viewing window of 10 pixels by 50 pixels is seen in Figure 23. 

 

 

Figure 23:  Generated image with limited viewing window 

 

As seen in Figure 23, these discontinuities appeared as black pixels adjacent to 

colored pixels.  When a similar viewing window was used with the control image, the 
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pixels appear much more continuous.  The control image with a smaller viewing window 

is seen in Figure 24. 

 

 

Figure 24:  Control image with limited viewing window 

 

Discontinuities arose from incorrect formation of the image matrix in the data 

acquisition and image generation VI.  The data acquisition portion of the program 

appeared to be “skipping” some of the peaks in the DAC signal.  Thus, another method 

must be developed to store the highest photon counts into a matrix. 

To solve this image generation problem, longer scan times need to be used to ensure 

that the counters have enough time to reset.  If the maximum voltage does not occur 
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every 15 µs, the algorithm cannot be used, and an alternative method for determining the 

photon counts for the image matrices will need to be developed.  
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FUTURE WORK AND CONCLUSIONS 

 

A complete spectral detection system remains unfinished at this point, even though much 

progress has been made toward its completion.  Overall, the software for the movement 

of the scanning mirrors was complete, and one circuit board for two detectors was 

correctly built and made to interface the LabVIEWTM software with the discriminators to 

enable photon counting.  Future work on this project will include debugging and 

rectifying the data acquisition and image generation software.  Once the new 

LabVIEWTM software and circuit board hardware create an image comparable to the 

control image created with the lab’s current hardware and software, the new setup will 

considered successful with two detectors.  An additional 15 circuit boards will be needed 

for the spectral detection system.  Additional features in software may be needed to 

account for possible cross-talk between detectors. 

Once the system is expanded to incorporate 32 detectors, a set of 256 x 256 x 32 

matrices will be stored in binary files.  Each set will be opened in MATLAB® and 

converted into a 3-D grayscale image by stacking all of the 2-D images for each 

detector.  Therefore, 32 different 3-D grayscale images will be created for each scan.  
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The spectral response of tissue may be viewed separately, or all 32 channels may be 

integrated to form a grayscale image.  Post-image processing may be used to view 

certain spectral components of interest. 

In conclusion, the new spectral detection system will introduce many new features 

to conventional nonlinear optical microscopy.  The introduction of spectroscopic 

information from live tissue will provide insight into its underlying chemistry.  

Furthermore, spectral detection allows image segmentation of biological components.  

For example, the collagen matrix of tissue may be selectively imaged by displaying 

channels corresponding to SHG.  Many different biological components may be 

simultaneously viewed within each scan. 

Because of its unusual features, this system will have a wide range of applications 

in both science and medicine.  Simultaneous excitation of multiple fluorophores will 

allow multiple interactions to be viewed within a single scan.  Likewise, in medicine, 

chemical markers characteristic to cancers and other cellular aberrations may be viewed 

microscopically.  This microscopic imaging capability may lead to earlier diagnoses, and 

timing becomes extremely crucial with fast-spreading abnormalities such as cancer.  

Moreover, temporal gene expression profiling may be accomplished by injection of 
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different genetic markers into the DNA of a parent cell.  With the spectral detection 

system, a number of genetic markers may be viewed simultaneously within a single 

scan. 

The aforementioned examples are but a few applications of this spectral detection 

system.  Further modifications of the spectral detector, such as the addition of an optical 

fiber or an endoscope, will enable interrogation of specimens, such as small animals, not 

amendable to a microscope stage.  Once the spectral detection system is perfected, 

NLOM capabilities can be expanded to include longitudinal studies of in vivo systems. 
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APPENDIX A:  LABWINDOWS/CVI PROGRAM FOR MIRROR 
MOTION AND IMAGE GENERATION 

 
/* Description: 
*    This program demonstrates how to output multiple continuous periodic 
*    waveforms of different frequencies using an internal sample clock. 
* 
* Instructions for Running: 
*    1. Select the Physical Channel/Channels to correspond to where your signal 
*       is output on the DAQ device. For multiple channels, select browse then select 
*       the desired output channels. 
*    2. Enter the Minimum and Maximum Voltage Ranges. 
*    3. Enter the desired rate for the generation. The onboard sample 
*       clock will operate at this rate. 
* 
* Steps: 
*    1. Create a task. 
*    2. Create an Analog Output Voltage channel/s. 
*    3. Define the update Rate for the Voltage generation. Additionally, 
*       define the sample mode to be continuous.  
*    4. Write the waveform to the output buffer. 
*    5. Call the Start function. 
*    6. Loop continuously until the user presses the Stop button. Check 
*       for errors every 100 ms using the IsTaskDone function. 
*    7. Call the Clear Task function to clear the Task. 
*    8. Display an error if any. 
* 
* I/O Connections Overview: 
*    Make sure your signal output terminal matches the Physical Channel 
*    I/O Control. For further connection information, refer to your 
*    hardware reference manual. 
* 
* Recommended use: 
*    Call Configure, Write and Start functions. 
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*    Call IsDone function in a loop. 
*    Call Stop function at the end. 
*  
       Note:  comments indicated in bold 
*********************************************************************/ 
 
#include <windows.h> 
#include <analysis.h> 
#include <cvirte.h> 
#include "userint_mod.h" 
#include <stdlib.h> 
#include <math.h> 
#include <stdio.h> 
#include "toolbox.h" 
#include <formatio.h> 
#include "NIDAQmx.h" 
#include "DAQmxIOctrl.h" 
#include "MultFreqContGen-IntClk.h" 
#include "MultFreqContGen-IntClk_Fn.h" 
#define NUMCHANS 2 
 
 
static int panelHandle;  //reference to panel location (user interface, UI) 
static int gRunning; 
int bitmap; 
 
int check,mode;  //mode describes the sample acquisition (continuous or  
                                               finite) 
// check allows the user to stop scanning after current scan is complete (toggle 
switch on UI) 
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int main (int argc, char *argv[]) 
{ 
 if( InitCVIRTE(0,argv,0)==0 )  /*needed if linking in external compiler; 
harmless otherwise*/ 
  return -1;  /* out of memory */ 
//loads specified panel  
 if( (panelHandle=LoadPanel(0,"MultFreqContGen-IntClk.uir",PANEL))<0 )
    return -1; 
 
//creates a new DAQmx IO control for selecting physical analog output channels. 

NIDAQmx_NewPhysChanAOCtrl (panelHandle, PANEL_CHANNEL, 1);
   
 
 DisplayPanel(panelHandle);  //displays panel stored in specified location 
 RunUserInterface();  //runs the UI (user allowed to select values and 
     control the UI) 
 DiscardPanel(panelHandle);  //removes anything previously stored in the 
     panel 
 return 0; 
} 
 
int CVICALLBACK PanelCallback(int panel, int event, void *callbackData, int 
eventData1, int eventData2) 
{ 
 if( event==EVENT_CLOSE ) { 
  gRunning = 0; 
  QuitUserInterface(0);   //destroys event when program terminates  
 } 
 return 0; 
} 
 
int CVICALLBACK StartCallback(int panel, int control, int event, void *callbackData, 
int eventData1, int eventData2) 
{ 
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 int outwfm[2];  //definition of waveform characteristics (one for each         
             wave) 
 double outamp[2]; 
 double outfreq[2]; 
 double offset[2]; 
 
 int typeofwaveform=0, typeofwaveform2=1;    //defines waveform types 
        (see switch commands later 
        in program) 
 int         error=0,pixels; //defines error check variable and number of 
     pixels  (set in UI) 
 short int pixelfactor; //defines number of full scans (max of 1 for 512x512 

   and 2 for 256x256, set in UI) 
 int scans; 
 TaskHandle  taskHandle=0; 
 
 char        chan[256];     //needed for color of waveforms in plot 
 double     min,max,min2,max2;  //waveform parameters set in UI 
 double      rate;     //rate of waveform generation set in UI 
  
 uInt32      numChannels, TotalsampsPerCycle=0, arrayspot = 0; 
 float64     *data=NULL,*temp=NULL; 
  
 static double line[12000000];  //needed to create vertical offset of each 
      wave 
 char        errBuff[12000000]={'\0'}; 
 bool32      done=0; 
 double      phase=0.0;   //sets initial phase value at 0 
 int         j,k,i,place=0;   //integers used for loop increments 
  
 double xposition[256][256]; 
 double xposition2[512][512]; 
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//used for plotting scaled intensity graph 
 int xpixels[262144],loCol,hiCol; 
 int hiColor=VAL_BLACK; 
 ColorMapEntry  colors[256]; 
  
  
 if( event==EVENT_COMMIT ) { 
   
  DeleteGraphPlot(panel,PANEL_GRAPH,-1,VAL_DELAYED_DRAW); 
   
  GetCtrlVal (panel, PANEL_MIN, &min);  //GetCtrlVal gets values 
       entered by the user from the UI 
  GetCtrlVal (panel, PANEL_MAX, &max); 
  GetCtrlVal (panel, PANEL_MIN2, &max2); 
  GetCtrlVal (panel, PANEL_MAX2, &min2); 
   
  GetCtrlVal(panel,PANEL_CHANNEL,chan); 
   
  GetCtrlVal(panel,PANEL_RATE,&rate); 
   
  GetCtrlVal(panel,PANEL_PIXELS,&pixels); 
  GetCtrlVal(panel,PANEL_MODE,&mode); 
  GetCtrlVal(panel,PANEL_CHECK,&check); 
   
  GetCtrlVal(panel,PANEL_LOCOL,&loCol); 
  GetCtrlVal(panel,PANEL_HICOL,&hiCol); 
   
  if (pixels==256) {  //sets correct frequency   
      parameters for specified image size 
   outfreq[0] = 0.0000217; 
   outfreq[1] = 0.00000008477; 
   pixelfactor=1; 
    
  } 
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else {  //sets lower frequency for slow waveform and  
                                            doubles number of scans for a 512x512 image
         

   outfreq[0] = 0.0000217; 
   outfreq[1] = 0.000000042385; 
   pixelfactor=2; 
    
  } 
 
   
 
 SetCtrlAttribute(panelHandle,PANEL_TIME,ATTR_CTRL_VAL,pixelfactor*6
000000/r 
                  ate); 
 
  outwfm[0] = typeofwaveform; //specifies waveform types 
  outwfm[1] = typeofwaveform2; 
   
  outamp[0] = (max-min)/2;  //sets correct amplitudes given 
       user-specified voltage ranges 
  outamp[1] = (max2-min2)/2;      
    
   
  offset[0]=min+outamp[0];  //sets correct vertical offset given 
       user-specified voltage ranges 
  offset[1]=min2+outamp[1]; 
   
  colors[0].color= loCol;  //sets high and low colors for 
      scaled intensity plot (chosen on the UI) 
  colors[1].color= hiCol; 
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  //double xposition[256*pixelfactor][256*pixelfactor]; 
   
  Clear1D(line,12000000);  //clears array used to create  
                                                                                   appropriate vertical offset 
             //creates arrays used for images 

for (i=0;i<256*pixelfactor;i++){ 
     for (j=0;j<256*pixelfactor;j++){ 
      xposition[i][j]=0; 
      xposition2[i][j]=0; 
     } 
   
   TotalsampsPerCycle = pixelfactor*12000000;  //checks for error  
                                                                                                    given the specified 
         parameters 
   
   if( (data=malloc(TotalsampsPerCycle*sizeof(float64)))==NULL ) 
{ 
     MessagePopup("Error","Not enough memory"); 
     goto Error;     
     //functions check for sufficient memory 
   } 
   if( (temp=malloc(TotalsampsPerCycle*sizeof(float64)))==NULL 
) { 
     MessagePopup("Error","Not enough memory"); 
     goto Error; 
   } 
    
//for loop and switch statement define the two waveforms used for mirror motion     
   

for(j=0;j<2;j++){ 
        switch( outwfm[j] ) { 
  case 0:     phase=-90.0;    //phases ensure that peaks of both  
                                           waveforms line up   
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 TriangleWave(5898240*pixelfactor,outamp[0],outfreq[0],&phase,temp); 
   Ramp(5898240*pixelfactor,offset[0],offset[0],line); 
   for(i=0;i<5898240*pixelfactor;i++) 
    temp[i]=temp[i]+line[i]; 
  break; 
        
  case 1:  phase=-90.0; 
  
 TriangleWave(5898240*pixelfactor,outamp[1],outfreq[1],&phase,temp);  
   Ramp(5898240*pixelfactor,offset[1],offset[1],line); 
   for(i=0;i<5898240*pixelfactor;i++) 
    temp[i]=temp[i]+line[i];   
  break;   
   }      
  for(k=0;k<5898240*pixelfactor;k++){ //stores both waveforms in 
        a large array for  
        simultaneous output 
   data[arrayspot+k] = temp[k]; 
  } 
  arrayspot = arrayspot + 5898240*pixelfactor;   //sets appropriate array 
        index for second loop 
        iteration  
 }  
   
 if (mode==1) {    //continuous scanning  
  while (check==1) { 
  //configures internal clock for data acquisition  

DAQmxErrChk (Configure_ContGenPerWfmIntClk(chan,rate,  
&numChannels,&taskHandle,pixelfactor)); 

//creates a grayscale image from a 256x256 matrix of values 
representing the voltages (positions) of the fast mirror 
//currently the matrix contains mirror voltages normalized by 
maximum fast mirror motion value from UI 
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 //position matrix 
   if (pixels==256) { //256x256 pixel image 
    place=0; 
    for (i=0;i<256;i++){ 
     for (j=0;j<256;j++){ 
     xposition[i][j] = data[place*90/pixelfactor]; 
     place++; 
     } 
   } 
  } 
   
  else {   //512x512 pixel image 
   place=0; 
    for (i=0;i<512;i++){ 
     for (j=0;j<512;j++){ 
     xposition2[i][j] = data[place*90/pixelfactor]; 
     place++; 
     } 
   } 
  } 
   
 //deletes previous values in UI graph and plot 
  DeleteGraphPlot(panel,PANEL_GRAPH,-
1,VAL_IMMEDIATE_DRAW); 
  DeleteImage(panel,PANEL_PICTURE); 
   

//commands used to create array of pixels from fast mirror voltages 
(normalized for grayscale image) 

   
place=0; 

  for (j=0;j<256*256*pixelfactor*pixelfactor;j++){ 
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xpixels[j]=MakeColor(255*(data[place*90/pixelfactor]-
min)/(max-min),255*(data[place*90/pixelfactor]-min)/(max-
min),255*(data[place*90/pixelfactor]-min)/(max-min)); 

   place++; 
  } 
  
 //creates bitmap from colors defined above 

NewBitmap(-1,32,256*pixelfactor,256*pixelfactor,NULL,xpixels,NULL, 
&bitmap); 

  SetCtrlBitmap(panel,PANEL_PICTURE,0,bitmap);  //displays bitmap 
         created 
  

//creates intensity plots of fast mirror waveform (for later use, values will be 
changed to photon counts) 

  if (pixels==256)  //256x256 pixel image 
PlotScaledIntensity(panel,PANEL_GRAPH, xposition,256,256, 

VAL_INTEGER, .0,0,1.0,0,colors,hiColor,2,1,1); 
  else    //512x512 pixel image 

PlotScaledIntensity(panel,PANEL_GRAPH,xposition2,512,512, 
VAL_DOUBLE,1.0,0,1.0,0,colors,hiColor,2,1,0); 

   
 //sends position voltages of fast mirror to a text file for opening in 
 MATLAB®

ArrayToFile("c:\\Christy\\LabWindows Programs\\mirrors\\position 
voltages.txt",xposition,VAL_DOUBLE,256*256*pixelfactor*pixe
lfactor,256*pixelfactor,VAL_DATA_MULTIPLEXED,VAL_GR
OUPS_AS_COLUMNS,VAL_SEP_BY_TAB,0,VAL_ASCII,VA
L_TRUNCATE); 

   
  SetCtrlAttribute(panel,PANEL_START,ATTR_DIMMED,1); 
     //sets appropriate panel attributes for waveform display 
  ProcessDrawEvents(); 
  gRunning = 1; 
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  DAQmxErrChk 
(Write_ContGenPerWfmIntClk(taskHandle,data,pixelfactor));     
//function writes waveform data to DAQ device 

DAQmxErrChk (Start_ContGenPerWfmIntClk(taskHandle)); 
    //function sets internal clock for DAQ  

   
   
   
  while( gRunning ) {   //checks for task completion 
   Sleep(100); 
   DAQmxErrChk 
(IsDone_ContGenPerWfmIntClk(taskHandle,&done)); 
   if( done ) 
    gRunning = 0; 
   else 
    ProcessSystemEvents(); 
  } 
  //clears the task for the next loop iteration 
  DAQmxErrChk (Stop_ContGenPerWfmIntClk(taskHandle));    
  DiscardBitmap(bitmap); //clears bitmap from memory 
   
  GetCtrlVal(panel,PANEL_CHECK,&check);      //checks if user has set 
        toggle  switch to "stop" 
  }         
  //if user has chosen "stop", loop is exited   
 } 
   
   else {  //finite scans 
    
    GetCtrlVal(panel,PANEL_SCANS,&scans);  //obtains the desired 
        number of scans to  
        perform  
  for (i=0;i<scans;i++) { 
   while (check==1){ 
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    //position matrix 
     place=0; 
      for (i=0;i<256*pixelfactor;i++){ 
       for (j=0;j<256*pixelfactor;j++) { 

xposition[i][j] = 
data[place*90/pixelfactor]; //creates intensity values 
    for plot 

      place++; 
     } 
    } 

//plots intensity values       
PlotScaledIntensity(panel,PANEL_GRAPH,xposition,256*pixelfactor,25
6*pixelfactor,VAL_DOUBLE,1,0,1,0,colors,hiColor,2,1,0);  

//deletes intensity plot    
  DeleteGraphPlot(panel,PANEL_GRAPH,-
1,VAL_IMMEDIATE_DRAW);     
 //deletes bitmap image     

DeleteImage(panel,PANEL_PICTURE);    
   

   
place=0;  //used for bitmap image creation 

  for (j=0;j<256*256*pixelfactor*pixelfactor;j++){ 
 
xpixels[j]=MakeColor(255*(data[place*90/pixelfactor]-
min)/(max-min),255*(data[place*90/pixelfactor]-min)/(max-
min),255*(data[place*90/pixelfactor]-min)/(max-min)); 

   place++; 
  } 
 //creates bitmap of previously defined colors 

NewBitmap(-1,32,256*pixelfactor,256*pixelfactor,NULL,xpixels, 
NULL,&bitmap);  

 //sends bitmap to UI 
  SetCtrlBitmap(panel,PANEL_PICTURE,0,bitmap);   
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 //sends mirror position values to text file (for opening in MATLAB®) 
ArrayToFile("c:\\Christy\\LabWindows Programs\\mirrors\\position 

voltages.txt",xposition,VAL_DOUBLE,256*256*pixelfactor*pixelf
actor,256*pixelfactor,VAL_DATA_MULTIPLEXED,VAL_GROU
PS_AS_COLUMNS,VAL_SEP_BY_TAB,0,VAL_ASCII,VAL_TR
UNCATE); 

  
 //sets appropriate panel attributes for waveform display   
 SetCtrlAttribute(panel,PANEL_START,ATTR_DIMMED,1);  
   
 //configures internal waveform clock for DAQ 

DAQmxErrChk 
(Configure_ContGenPerWfmIntClk(chan,rate,&numChannels, 
&taskHandle,pixelfactor)); 

 //function writes waveform data to DAQ device 
  DAQmxErrChk 
(Write_ContGenPerWfmIntClk(taskHandle,data,pixelfactor));    
 //functions starts internal clock  

DAQmxErrChk (Start_ContGenPerWfmIntClk(taskHandle)); 
     

  ProcessDrawEvents(); 
  gRunning = 1; 
 
  while( gRunning ) {   //checks for task completion 
   Sleep(100); 
   DAQmxErrChk 
(IsDone_ContGenPerWfmIntClk(taskHandle,&done)); 
   if( done ) 
    gRunning = 0; 
   else 
    ProcessSystemEvents(); 
      
   }  
   check=0; 
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  } 
 //clears task for next loop iteration 
  DAQmxErrChk (Stop_ContGenPerWfmIntClk(taskHandle)); 
  
 //clears bitmap from memory 
  DiscardBitmap(bitmap); 
  //checks for control switch value 
  GetCtrlVal(panel,PANEL_CHECK,&check);   
   
  } 

}          
     //exits loop when switch set to "stop" 

} 
     
Error: 
 if( DAQmxFailed(error) ) //checks for errors and outputs the correct error 
     description 
  DAQmxGetExtendedErrorInfo(errBuff,12000000); 
 if( taskHandle!=0 ) { 
  SetCtrlAttribute(panel,PANEL_START,ATTR_DIMMED,0); 
 } 
 if( data ) 
  free(data); 
 if( DAQmxFailed(error) ) 
  MessagePopup("DAQmx Error",errBuff); 
 return 0; 

} 
 
return 0;  
} 
 
int CVICALLBACK StopCallback(int panel, int control, int event, void *callbackData, 
int eventData1, int eventData2) 
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{ 
 if( event==EVENT_COMMIT ) 
  gRunning = 0; 
 return 0; 
} 
 
int CVICALLBACK QuitCallback (int panel, int control, int event, 
  void *callbackData, int eventData1, int eventData2) 
{ 
 switch (event) 
  { 
  case EVENT_COMMIT: 
   QuitUserInterface (0);    //closes the UI 
 
   break; 
  } 
 return 0; 
} 

 



 85

APPENDIX B:  FIRST LABVIEWTM BLOCK DIAGRAM FOR DATA 
ACQUISITION AND IMAGE GENERATION 
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APPENDIX C:  LABVIEWTM BLOCK DIAGRAM FOR SAVING 
BINARY FILES TO BE OPENED IN MATLAB®
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APPENDIX D:  FIRST MIRROR MOTION BLOCK DIAGRAM (NO 
BUFFER)
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APPENDIX E:  MODIFIED MIRROR MOTION BLOCK DIAGRAM 
(WITH BUFFER) 
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APPENDIX F:  MODIFIED DATA ACQUISITION AND IMAGE 
GENERATION BLOCK DIAGRAM 
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