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ABSTRACT

Effects of Localized Geometric Imperfections on the

Stress Behavior of Pressurized Cylindrical Shells. (August 2003)

Adam James Rinehart, B.A., Grinnell College;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Peter B. Keating

The influence of dent imperfections on the elastic stress behavior of cylindrical shells

is explored. This problem is of central importance to the prediction of fatigue failure

due to dents in petroleum pipelines. Using an approximate technique called the

Equivalent Load Method, a semi-analytical model of two-dimensional dent stress

behavior is developed. In the three-dimensional situation, decreased dent localization,

in particular dent length, and increased dent depth are confirmed to cause dent stress

concentration behavior to shift from having a single peak at the dent center to having

peaks at the dent periphery. It is demonstrated that the equivalent load method

does not predict this shift in stress behavior and cannot be relied upon to analyze

relatively small, deep imperfections. The two stress modes of dents are associated

with two modes of dent fatigue behavior that have significantly different fatigue lives.

A method for distinguishing longer lived Mode P dents from shorter lived Mode C

dents based on two measured features of dent geometry is developed and validated.

An approach for implementing this analysis in the evaluation of real dents is also

suggested.
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CHAPTER I

INTRODUCTION

Pipelines are relied upon to transport hazardous liquids and gasses over long dis-

tances. A significant threat to the integrity of this infrastructure is mechanical dam-

age resulting from what are termed “outside force” events by the U.S. Department

of Transportation, Office of Pipeline Safety, the federal regulatory authority for on-

shore pipelines in the United States [1]. As the name implies, outside force events

are events in which an externally applied force acts on a pipeline and causes dam-

age or immediate pipeline failure. Outside force events commonly occur when heavy

equipment being operated within the pipeline right-of-way inadvertently comes into

contact with the pipe wall. Other sources of onshore outside force damage include

pipeline settlement onto rocks [2],construction induced damage, intentional attempts

at pipeline damage, and bullets. Outside force events are also a problem in offshore

pipelines, which, in most cases, are regulated in the United States by the Minerals

Management Service. Outside force damage in an offshore setting can be caused in

a variety of ways, including settlement onto rocks, mishandling during construction,

ship collisions, mis-located ship anchors, and mis-located jack-up barge legs.

According to statistics made available by the Office of Pipeline Safety, 26% of

liquid pipeline failures in 2001 were caused by outside force damage [1]. For gas

pipelines, outside force damage caused 80.2% of all failures [1]. In a review of Office

of Pipeline Safety statistics, Smith and Gideon note outside force damage as the

leading cause of gas pipeline failures [3]. They note sources of outside force incidents.

They also note that outside force incidents generally create some combination of a

The journal model is ASME Journal of Pressure Vessel Technology.
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gouge and a dent in the pipe. A dent is essentially a local flaw in the geometry of the

pipe wall. A gouge is a scratch, groove, or other local sharpened flaw that typically

coincides with the location of indentor contact. Thus, a leading threat to pipeline

integrity is the presence of gouges, gouges and dents, or plain dents. The threat posed

by combinations of dents and gouges was noted in early reviews of pipeline failure

origins [4, 5, 6]. These early reviews point to local stress concentrations resulting

from dent and gouge combinations as the reason this damage class leads to pipeline

failure [4, 5, 6].

The problem of dent and gouge failure in pipelines has been studied, to varying

degrees, since at least 1983. An overview of much of this work is given by Alexan-

der [7]. There are two primary failure modes for dent gouge combinations. In the

first mode, the dent–gouge region bursts when the pipeline is subjected to some static

pressure that is below the nominal undamaged pipeline burst pressure. In the sec-

ond mode, the dent–gouge succumbs to fatigue failure. During operationally induced

pressure fluctuations the locally heightened stress fluctuations may be sufficient for

the initiation and propagation of fatigue cracks. This process is exacerbated by the

presence of a gouge or other localized sharpened flaws.

There have been three major experimental studies that have been published

dealing with the problem of pipeline dent fatigue [8, 9, 10]. This work has led to

qualitative insights about dent fatigue behavior. In particular, certain parameters

have been shown to play significant roles. There is general agreement that dent

depth is important. In fact, the conventional understanding of pipeline dent behavior

correlates dent severity to dent depth [7, 11, 12, 13] and neglects the influence of other

dent parameters, such as length and width.

Other experimental [8] and analytical [14, 8, 15, 16] work has suggested that

dent length also plays a role. This role has only been characterized qualitatively. In
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essence, relatively long dents develop stress concentration factors in the dent center

while smaller dents develop them at the periphery. The longer dents have markedly

shorter fatigue lives than to the shorter dents. Thus, there is some indication that

a length effect exists in dent stress behavior. However, the current understanding of

dent stress behavior and of this length effect is very qualitative.

Shell theory literature does address the problem of dent stress behavior [17,

18, 19, 20]. However, this literature is primarily interested in the application of an

approximate method of imperfection analysis called the equivalent load method to

the problem. The shell theory literature does not indicate the existence of a size

effect.

Finally, some work has been done to develop methods for predicting dent fatigue

life [21, 22, 9, 23]. All of this work has pointed to the fact that dent fatigue life can

be predicted if dent stress concentration factors can be quantified. Thus, it becomes

important to have a more quantitative understanding of dent stress behavior not only

for the sake of better understanding the underlying mechanics of dent behavior but

also for purposes of predicting the fatigue life of dents found in the field.

Little work exists on the specific problem of quantifying dent stress behavior.

At the same time, this problem is both interesting and central to developing safe,

accurate pipeline dent acceptance tools. As a result, the present body of work will

explore several issues relating to dent stress behavior.

First, a means of solving for stresses in dents is sought. The equivalent load

method [17, 20], an approximate method of analyzing imperfections in shells, is used

to study the elastic stress concentration behavior of dents. This method is used

to develop a semi-analytical model of two-dimensional dent stress behavior that is

appropriate for understanding the behavior of relatively long dents. This model

contains clear quantitative information about the influence of various features of dent
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and pipe geometry on the stress concentration behavior of such dents..

Next, the discrepancy between observations of a dent size effect in the dent

fatigue literature and lack of such observations in the equivalent load shell litera-

ture is explored. In particular, the applicability of the equivalent load method to

three-dimensional imperfections is studied. It is shown that the stress behavior of

three-dimensional imperfections undergoes a fundamental change as imperfection lo-

calization increases. The fact that the equivalent load method does not predict this

shift in behavior is discussed. Finally, fundamental mechanical behavior leading to

the size-dependent shift in dent stress behavior is explored.

Having clearly established the existence of a size effect in general dent stress

behavior, attention shifts to a practical problem. It will be shown in Chapter II

that experiments [8] have demonstrated that shorter dents with peripheral stress

behavior have long fatigue lives and that longer dents with center stress behavior

have shorter fatigue lives. It would be very useful to be able to determine, based on

simple geometry measurements, which stress mode, and thus which fatigue mode, a

given dent in a petroleum pipeline falls into. If this categorization could be made, an

initial step in accurate dent fatigue assessment could be taken.

Improved understanding of the fundamentals of dent stress behavior is impor-

tant to advancing the present understanding of pipeline dent failure mechanics. In

addition, the problem of shell imperfection behavior appears to have been largely

overlooked in general. Thus, the focus taken here on details of the stress behavior of

dent imperfections in cylindrical shells is believed to be warranted.
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CHAPTER II

EXISTING WORK

In this chapter, important details of the dent fatigue problem will be introduced. Up-

to-date approaches for predicting dent fatigue life will be discussed. This discussion

will show that in order to develop a better understanding of dent fatigue one must

develop a better understanding of dent stress behavior. Several methods that can be

used to study dent stress behavior will be introduced.

A. Current Understanding of Dent Fatigue

Given that dents can threaten pipeline integrity, the practical problem becomes one

of determining which dents actually threaten integrity, characterizing the nature of

this threat, and responding to the threat. Current methods of understanding and

dealing with these problems can be categorized in terms of codified approaches and

methods discussed in the developing body of pipeline dent literature.

Liquid pipelines in the United States typically are governed by the code ASME

B31.4, Liquid Transportation Systems for Hydrocarbons, Liquid Petroleum Gas, An-

hydrous Ammonia and Alchohols [11]. Gas pipelines are governed by ASME B31.8,

Gas Transmission and Distribution Piping Systems [12]. A broad overview of conven-

tional, codified approaches to non-sharpened pipeline flaws, such as dents, is available

in [13]. These codes both take a binary, accept/reject approach to dent management,

prescribing removal of unacceptable damage. In both liquid and gas pipelines, dents

that alter pipe curvature at either seam or girth welds are deemed unacceptable.

In addition, for both types of pipelines dents containing sharpened flaws such as

scratches, gouges, grooves, or arc burns are not acceptable.

When it comes to assessing the severity of a dent without a gouge, codified ap-
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proaches consider the dent depth to pipe diameter ratio, d/D, to be the sole indicator

of dent severity [11, 12]. Dents in liquid pipelines where d/D exceeds 6% and the

operational hoop stress levels are in excess of 20% of the specified pipe yield stress

must be repaired [11]. In gas pipelines, repair is mandated when d/D exceeds 2% and

hoop stress exceeds 40% of the specified yield stress [12]. It will be shown shortly that

the depth based approach is of limited value, and may even be unsafe, in anticipating

dent failure through fatigue for certain types of dents.

The fatigue behavior of dents has been studied by several researchers. Most

notably, two published experimental studies have produced a body of full–scale dent

fatigue test data. Fowler, et al. studied a wide range of pipe diameter and wall

thickness combinations, a range of dent depths, and the effect of weld–dent proximity

in the laboratory [9]. In addition, Fowler, et al. considered various dent–gouge

combinations and explored means of gouge repair. Other than variable depth, dent

geometry was relatively fixed in this study.

This work clearly demonstrated that dents could fail through fatigue. It found

that final, rerounded dent depth is an indicator of dent severity. It pointed to stress

concentrations associated with dent damage as a source of dent fatigue failure. These

stress concentrations were found to vary with respect to pipe diameter–to–thickness

ratio, D/t. In addition, values for dent stress concentration factors (SCF’s) found

using three-dimensional finite element analyses were tabulated for different d/D values

over a range of practical D/t values.

A methodology is presented by Fowler et al. for predicting dent fatigue life using

the tabulated SCF information. The SCF is used to determine a local stress range

from nominal pressure range history. This local stress range history is then related

to a predicted fatigue life using a standard /textitS-N curve, the DOE-B curve. A

correction factor based on the presence of a gouge or weld is then used to adjust
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the fatigue life prediction. An example problem is presented in [9] for the case of a

plain dent with final a final d/D depth ratio of 5% in a pipe with a D/t ratio of 50

and uniform pressure fluctuations of 500 psi. The measured fatigue reported in [9]

for this case is 118,055. The predicted life, based on the method outlined in [9] is

56,068. Only this one example is given for plain dent analysis. Thus, an overall level

of agreement between this predictive approach and the complete experimental data

set does not appear to be available.

A second experimental study, conducted by Keating and Hoffmann [8], con-

tributed further to the set of available experimental data. In this study the effects of

variable dent depth, dent geometry, pipe D/t ratio, and the presence or absence of

dent restraint were studied. Figure 1 illustrates how dent depth, d, dent length, l, and

dent width, w, are measured relative to the axis of a pipe of diameter D and thickness

t. Pipe diameters ranged from 12′′ to 36′′ and thicknesses were either 1/4′′ or 3/8′′.

Steel grades varied among API 5L Gr. B, Gr. X42, and Gr. X60. These grades of

steel correspond to nominal yield strengths of 30 ksi, 42 ksi, and, 60 ksi, respectively,

and actual, measured yield strengths of 50 ksi, 50 ksi, and 60 ksi, respectively.

Four types of indenters were used in [8], as described in Table I. Indentor orien-

tation described in Table I is with respect to the longitudinal pipe axis. The Type A

indentor was a 6′′ long, 1′′ wide block of steel. The ends of this block were rounded

to a 1′′ radius and the edges were rounded to a 1/2′′ radius. The Type BH indentors

were actual teeth taken from a backhoe excavator bucket. The Type R indentors

were relatively round pieces of rock. Artificial damage in the form of scratches or

machined grooves were present in the center region of all Type A dents.

Multiple dents of variable depth were formed in a given pipe specimen. Each

pipe specimen was then subjected to cyclically applied, variable amplitude pressur-

ization sequences. These pressure sequences consisted of 100 pressure excursions from
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Fig. 1. Schematic diagram showing dent measurements relative to pipe axis and loca-

tion of center and peripheral cracking.

Table I. Indentor type details.

Indentor Description Orientation
A 6′′ long x 1′′ wide Longitudinal

BH–L Single Backhoe Tooth, 2′′ long x 0.3′′ wide Longitudinal
BH–T Single Backhoe Tooth, 2′′ long x 0.3′′ wide Transverse

R Rock n/a
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a low or high base pressure. In general, the maximum nominal pressure value used

in each pressure spectrum corresponded to a nominal hoop stress value ranging from

60% to 70% of the nominal yield stress of the material and the minimum hoop stress

value corresponded to a nominal hoop stress that was 10% of the yield stress. Discrete

pressure excursion values, evenly spaced between the maximum and minimum values,

were used. The number of excursions from the base pressure to each excursion value

conformed to a normal distribution whose peak was at the mean pressure value. Typ-

ical pressure histories with low and high base pressures are shown in Fig. 2. Pressure

was cycled until a dent failed due to through–thickness cracking or approximately

100,000 cycles were reached. Pressure history magnitudes were specimen specific.

Upon failure of a given dent in a pipe specimen, pressure cycling was stopped so

that the failed dent could be repaired. After pressure cycling, all unfailed dents were

subjected to a high pressure proof test of 77% of the given pipe’s nominal yield pres-

sure [8]. Dent depth was measured at indentation, after elastic rebound following

indentor removal, at various stages of rerounding during the initial pressure ramp-up,

and at zero pressure following rerounding.

The study by Keating and Hoffmann [8] confirmed the importance of dent depth.

It also demonstrated that at least one other aspect of dent geometry, namely dent

length, plays a major role in determining dent fatigue life for unrestrained dents. It

was seen that relatively long dents created by Type A indenters developed fatigue

cracks in the dent center. The relatively short dents, created by Type BH-L and

BH-T indenters, developed cracks at the dent periphery. Other researchers have also

noted that distinct dent geometry leads to distinct crack location or stress behavior

but have not dwelled on this point [24, 25].

More importantly than simply influencing crack location, dent length was seen

in [8] to strongly influence dent fatigue life. Long dents had much shorter fatigue lives
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a)

b)

Fig. 2. Representative pressure histories used in experimental study [8], a) low base,

high excursion; b) high base, low excursion.
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Table II. Comparison of fatigue behavior for long Type A and short Type BH-T dents

in 24′′ diameter 1/4′′ API 5L X60 pipe seen in data taken from [8].

Indentor Induced Initial Failure Cycles to
Type Defect d/D (%) Mode Failure

A scratch 5 crack, center of dent 30,108
A scratch 7.5 crack, center of dent 18,608
A scratch 10 crack, center of dent 12,711

BH-T none 5 no cracking 109,332+
BH-T none 7.5 peripheral crack, post-proof test 109,332+
BH-T none 10 peripheral crack, post-proof test 109,332+

compared to short dents of similar initial depth. In fact, many short dents did not

develop any cracking within 100,000 pressure cycles while most long dents developed

failure depth cracks much earlier than 100,000 pressure cycles. This difference is

illustrated in Table II. Table II shows measured fatigue lives taken from [8] for Type

A and Type BH-T dents of equal initial depth in a 24′′x1/4′′ X60 pipe. The fact that

otherwise similar long and short dents have dramatically different fatigue life raises

questions about a purely depth based approach to dent acceptance.

It was noted previously that artificial flaws were introduced in the centers of many

dents, especially long dents, in [8]. However, the presence or absence of artificial flaws

is not what accounts for the geometry dependence of dent fatigue crack location [16].

The dent is a geometric imperfection in the pipe wall. If no imperfection were present,

the pipe wall would develop a uniform tensile membrane hoop stress. However, a dent

imperfection alters the fundamental stress flow situation present in the pipe wall and

induces nonuniform membrane forces as well as bending moments [17, 20]. Different

dent geometries have been shown to produce different pipe wall stress redistributions.

Perhaps the earliest to note that short dents and long dent have different hoop stress

profiles was Beller [14] who used finite element analysis to demonstrate this difference.
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Similar results were seen in more extensive finite element studies done by Keating and

Hoffmann [8].

Rinehart and Keating have explored some of the fundamentals and ramifications

of the dent length effect on the stress profile [15, 16]. One fundamental is the fact

that the effect of dent size is relative to the pipe diameter [16]. For example a dent

of a given geometry may have a short dent stress profile in a large diameter pipe

but a long dent type stress profile in a small diameter pipe. Second, it has been

proposed [15] that the geometry dependent shift in dent stress behavior has to do

with the relative stiffness of the dent. Longer dents are fairly broad and may have a

stiffness similar to the surrounding pipe wall. Thus, stress flows through the center

of these dents and bending develops. Shorter dents may behave in a manner similar

to a hole in plate due to their reduced stiffness, producing peripheral stress features.

Finally, it has been shown that when long dents are restrained against freely moving

in response to pressure they develop peripheral stress features similar to those seen

in short dents [16]. This effect accounts for the fact that long dents restrained in the

laboratory actually developed long-life, peripheral cracks instead of short-life center

cracks [8].

The primary result of dent stress analysis conducted by Beller [14], Keating and

Hoffmann [8], and Rinehart and Keating [15, 16] is that features of the hoop stress

concentration profile along the longitudinal centerline of the dent vary with dent

length. These features can be correlated to fatigue crack location in short and long

dents [16]. Figure 3 shows typical short and long dent hoop stress concentration

profiles along the centerline of the top of the pipe. These profiles were determined

using a finite element analysis model that will be discussed shortly. As shown in Fig. 3,

short dents have a single peak in their hoop SCF profile and this peak is located at

the dent periphery. Long dents may have a noticeable peripheral stress feature but
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Fig. 3. Hoop stress concentration profiles determined using FEA along the dent cen-

terline and top of pipe for short dent with initial d/D = 17.5% and long dent

with initial d/D = 7.5% in 18′′x1/4′′ X60 pipes.

always have a much larger center peak at the dent center. Recalling that short dents

suffer from peripheral cracking and long dents experience center cracking, it becomes

apparent that the geometry dependent stress profile behavior is what fundamentally

drives fatigue crack location [8, 16, 15]. It should also be noted that the profiles

shown in Fig. 3 are not for otherwise similar short and long dents. The short dent

initial d/D is 17.5% while the long dent initial d/D is only 7.5%. Thus it appears

that the long dent stress condition not only has a center peak where sharpened flaws

are likely to be present, but that it also has a much higher stress concentration factor

relative to an otherwise similar short dent.

It is important to point out that during the dent formation and rerounding

process residual stresses develop in the dent region. It will be shown later in this
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Fig. 4. Post–rerounding residual hoop stress profiles determined using FEA along the

dent centerline and top of pipe for short dent with initial d/D = 17.5% and

long dent with initial d/D = 7.5% in 18′′x1/4′′ X60 pipes.

chapter that these residual stresses play an important role in determining dent fatigue

behavior. The residual stress profiles of short and long dents differ, as shown in Fig. 4

which shows the post–rerounding residual hoop stress profiles of the dents with the

SCF profiles shown in Fig. 3. Although dent length influences the overall residual

stress profile, at the fatigue critical location of the dent where the hoop stress SCF

is maximum, the residual stress is typically compressive at the outer surface.

An additional difference between short and long dents is different levels of in-

elastic rerounding. After an indentor is released a dent may undergo a significant

amount of inelastic rerounding, or shallowing out, during early pressure cycles. This

behavior has been noted by several sources [8, 7, 24]. Long dents undergo much more

rerounding than short dents of equal initial depth. Figures 5 and 6 are photographs
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Fig. 5. Photograph of rerounded short dent taken from [8], note concavity in dent

interior.

taken from [8] and show rerounded short and long dents, respectively. The short dent

in Fig. 5 remains deep and concave while the long dent in Fig. 6 has been forced out

in the interior and has become convex. Because of rerounding, dangerous long dents

are considerably shallower than less dangerous short dents.

Differences in rerounding have fundamental meaning because they alter dent

geometry, which in turn alters dent stress behavior. Rerounding differences also

raise serious questions about using a single, depth–based dent acceptance criteria

for all dent geometries. In order to reject dangerous, but shallow, long dents, the

standard would apparently have to reject a number of possibly benign, but deeper,

short dents. Thus, extensive long dent rerounding may push a uniform depth based

standard further into overconservatism. However, a second concern exists with the

existing depth based standard. As will be shown shortly, long, shallow dents which

have short fatigue lives are deemed acceptable under current dent acceptance criteria.

To explore both the conservatism and safety of the existing dent acceptance
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Fig. 6. Photograph of rerounded long dent taken from [8], note convexity in dent

interior.

standards [11, 12], Rinehart and Keating [16] applied these standards to the data

of Keating and Hoffmann [8]. When measured fatigue life is plotted in terms of

rerounded dent depth, as shown in Fig. 7 two important results are evident. First,

the depth based standard does not correlate well with measured behavior. While

one would expect dent life to decrease with increasing dent depth, the overall data

trend in Fig. 7 is the opposite. Within geometry groups the expected inverse relation

is present. This group-specific depth dependency is illustrated by the straight lines

drawn through limited groups of short and long dent data. While these lines are not

based on a rigorous curve fit, they do demonstrate the inverse trend between life and

depth within a dent geometry type.

Second, a more serious concern with existing depth–based standards is that they

seem to actually accept low–life long dents. For the analysis shown in Fig. 7, dent

depth measurements taken from [8] are depths at the center of the dent after reround-

ing. Because long dents reround the most in the dent center these depth measurements

are the shallowest possible. Thus, analysis based on these long dent depth measure-
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ments will give a worst–case interpretation. In Fig. 7, all long dent d/D values are

well below 6% and are marginally less than 2%. Even if Fig. 7 represents a worst–case

interpretation, the fact that long dents can be easily deemed acceptable by the 6%

liquid pipeline rule leads one to question the safety of the code. At the same time

that the code accepts long dents it prescribes the rejection a great number of short

dents that either never failed or never even developed visible cracks during 100,000

cycles of testing. Thus, the code actually accepts unsafe long dents and rejects short

dents that do not pose a large fatigue threat.

It is true that current standards require removal of any dent with sharpened flaws

and that the long dents in Fig. 7 did have sharpened flaws. However, short dents that

failed in Fig. 7 did not have sharpened flaws. The stress concentration associated

with long dent is typically higher than that associated with short dents. Also, it

has been shown that short dent fatigue initiation life only accounts for a relatively

small portion of total short dent fatigue life [22]. Thus, long dents without sharpened

flaws would still seem likely to pose a significant fatigue threat. At the same time, as

indicated in Fig. 7, current acceptance standards do not reject this dangerous class

of dent geometries. These facts lead to serious questions about existing depth-based

dent acceptance criteria.

Figure 7 raises serious questions about whether existing depth based standards

are safe. Indeed, it has been reported that dents in the field occasionally develop

leaks when dent d/D is less than 3% [26]. Furthermore, it has been noted that dents

in different length categories have order of magnitude differences in fatigue life [8]

and have different rerounding characteristics. As a result, even if purely depth based

approaches were safe, they would have to be highly overconservative for a common

dent configuration. Thus, it appears that a need exists for improved accept/reject

dent assessment approaches. In particular, it would be useful to be able to determine
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whether to accept or reject a dent based on dent geometry characteristics, including

depth and length.

In order to develop an improved geometry-based dent acceptance criterion, two

issues must be addressed. First, geometry values must be established that distinguish

different dent classes, especially short and long dents. Second, within a given class,

geometry values that distinguish safe dents from unsafe dents must be determined. In

order to determine improved geometry based assessment criteria without resorting to

large amounts of experimental testing it is necessary to develop methods of predicting

dent behavior mode and dent fatigue life. These methods could then be used to

analyze a range of cases and to make assessment recommendations.

Aside from concerns about safety and/or overconservatism, the depth-based ap-

proach to dent acceptance has a second problem. This binary approach does not give

any information about probable dent fatigue lifetime. Such information has at least

three practical uses. First, multiple dents are present in a given pipeline system, dent

life information would permit informed prioritization of repair needs. Second, remain-

ing dent life could be compared to remaining pipeline life or to existing maintenance

plans, so an efficient dent maintenance strategy could be adopted. Finally, tools to

predict dent fatigue lifetime would permit operators to be able to judge the effects of

operational pressure history decisions on dent life. Current industry practice is to cut

out any dent encountered in a pipeline. However, more knowledge about dent fatigue

behavior might lead to more efficient dent management programs or more efficient

repair prioritization. Thus, dent fatigue life prediction methods have practical value.
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B. Dent Fatigue Life Prediction Models

It has been shown qualitatively in the previous section that dent fatigue behavior is

driven, in large part, by the influence that dent geometry has on dent stress behavior.

In what follow, several approaches to predicting dent fatigue life are discussed and a

general approach to predicting fatigue behavior is introduced. This approach is based

on a fundamental fracture mechanics based approach to fatigue. It appears to accu-

rately predict dent fatigue life in a wide variety of dent situations. The general stress

based nature of this approach reduces the problem of understanding the influence of

dent geometry on dent fatigue to one of understanding the influence of dent geometry

on dent stress behavior.

An early approach to dent fatigue life life prediction was developed by Fowler, et

al. [9]. In this approach tabulated stress concentration values and gouge correction

factors are used in conjunction with an S − N type of fatigue life curve to predict

fatigue life. It is not clear how generally accurate this approach is as it was only

applied to a case study in [9]. It appears to be quite conservative. This approach is

also somewhat empirical, as the gouge correction factors are based on full-scale test

data and the S −N curve used is a general “code” type of fatigue curve.

One of the main drawbacks of an S − N approach is the material resistance

curve that relates stress range, S, to N , the number of cycles to failure. This curve is

determined experimentally and is often highly case specific given the expense involved

in performing a wide range of tests. Not only is it material specific, but it can be

flaw specific, geometry specific, residual stress specific, and load history specific (in

particular with regard to the R ratio). A second problem with S − N approaches

is that it is not entirely clear how to deal properly with variable amplitude loading.

Some sort of cumulative damage law must be used to average individual Ni predictions
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for each stress range case, Si in a load history. A standard approach is to use the

rain-flow method to count cycles in a load history and then use the Palmgren-Miner

rule to calculate cumulative damage [27]. However, the presence of residual stress

induced crack-closure effects in dents complicates damage accumulation by rendering

it nonlinear. There is some question as to how to calculate damage accumulation

properly for these general circumstances since the Palmgren-Miner approach assumes

linear damage accumulation.

Another approach to dent fatigue life prediction has been developed by Hagi-

wara et al. [10, 28]. This approach is empirical and focused on dents with clear

mechanical damage in the form of a gouge in the dent center. Based on a study

of a number of pipes with different dent depths, gouge depths, pipe diameters, and

steel grades an empirical expression relating dent fatigue life to these parameters is

developed using linear regression analysis. Dent depth, the only dent geometry factor

apparently considered in this study, was shown to have the greatest influence on fa-

tigue life, followed by gouge depth and steel grade. This empirical approach appears

to be very successful at predicting the laboratory results it is calibrated against and

appears to be simple to apply. However, it does not provide a great deal of insight into

the fundamental processes of pipeline dent fatigue. Furthermore, it may be limited

to specific circumstances.

A much more general and less empirical approach to fatigue life prediction is the

fracture-mechanics based approach. This approach relates remote stress change values

to local stress change values present at the crack tip, expressed in terms of the change

in the crack tip stress intensity factor, ∆K. Expressions exist for this relationship for

a wide variety of crack and specimen geometries. The change in crack tip stress is then

related empirically to the amount of incremental crack extension, da through a power

law relationship. The number of cycles required to achieve a certain crack depth a is
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then determined by integration. While the expression relating ∆K and da is empirical

it is specific only to material type and the microstructural mechanism involved in

crack formation. Thus, the fracture mechanics approach is more general than the

S-N approach in terms of range of application. Furthermore, because crack growth

can be calculated on a cycle by cycle basis, variable amplitude situations may be dealt

with more directly. The fracture mechanics approach to fatigue is a well-developed

and highly successful application of the theory of fracture mechanics [29, 30, 27]

A fracture mechanics based approach to dent fatigue assessment has been pro-

posed by Dinovitzer et al. [23, 31]. In this approach, introduced in [23] situational

inputs are established, including dent profile, pipe characteristics, pressure history,

state of indentor contact, and local issues such as a weld proximity. A finite element

model of the dent is created so that dent stress behavior can be determined. Then,

these inputs are combined with a power–law fatigue crack propagation model to pre-

dict dent fatigue life. This procedure is apparently fairly automated and can evaluate

three-dimensional measurements of dent profiles taken from the field using pigs or

other pipe inspection tools. The dent geometry is forced into the mesh by deforming

the initial pipe geometry to match the geometry found in the field [23]. The stress

values of the dent that are associated with pressure cycling are then found using the

finite element model.

Work in [31] describes efforts to expand this dent fatigue prediction model to

account for effects of residual stress fields associated with welds and corrosion effects.

The weld residual stress field is modelled by establishing thermal gradients in the

initial pipe mesh. The stress concentration associated with weld geometry is applied

to the local dent stress condition that is found using the finite element model. Corro-

sion effects are also accounted for including both reduction of wall thickness through

corrosion and corrosion influences on fatigue processes.
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The Dinovitzer model is impressive in scope. However, because it is apparently

proprietary many details about implementation are unavailable. In addition, there

is only limited published evidence of good agreement between this model and full

scale experiments, so that the generality of model success is in question. Also, it is

not entirely clear how the model incorporates the rerounding phenomenon. As noted

earlier, some dents experience a great deal of rerounding before they achieve the

stable configuration in which they spend the majority of their operational life. Dent

rerounding influences the final dent residual stress configuration. As a result, there

is some concern that the Dinovitzer model doesn’t include accurate dent residual

stress values. Regardless of these issues, the Dinovitzer approach seems promising.

However, its proprietary nature means it is not available for use in a fundamental

study of dent fatigue mechanics.

An independent dent fatigue life prediction model has been developed by Rine-

hart and Keating [22, 21]. Because this model is based on a fracture mechanics

approach it appears to be similar to that developed by Dinovitzer et al. [23, 31].

This model does not account for the range of situations covered by Dinovitzer et al.,

especially the influences of welds and corrosion effect discussed in [31]. However, it

is based in fundamentals of fracture mechanics and stress analysis and could be ex-

tended to consider a wider range of situations, such as the presence of gouges, weld

proximity, and corrosion effects. In addition, this approach has some unique features.

First, it accounts for crack initiation behavior, an important part of the problem that

must be considered when obvious sharpened defects are not present in the dent [22].

In addition, this model takes a fundamental, general approach to accounting for resid-

ual stress effects by considering crack closure behavior. Third, the Rinehart–Keating

model has been verified against a set of experimental data for a range of cases. Finally

details of this model are openly available in the literature.
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Because the Rinehart–Keating [22, 21] model is experimentally validated for a

range of dent geometries and because it is easily accessible through the literature,

it will be used here to demonstrate that a thorough understanding of dent fatigue

behavior depends on an understanding of dent stress behavior.

The fracture–mechanics based approach to dent fatigue suggested by Rinehart

and Keating [21, 22] is based primarily on the idea that incremental growth, or

propagation, of an existing crack can be correlated to changes in the crack tip stress

intensity factor through a power-law relationship:

da

dN
= C(∆KI)

n (2.1)

The Eq. 2.1 power-law relationship is a widely accepted model of fatigue crack prop-

agation [29, 30, 27]. In Eq. 2.1, the change in crack length a over a given cycle N is

correlated to the change in the crack tip stress intensity factor ∆KI . The parameters

C and n are material specific constants and are taken to be 3.6x10−6 and 3.0 re-

spectively. These values are appropriate for analyzing crack growth in ferrite-pearlite

steels such as API 5L pipeline steels [30]

The crack tip stress intensity factor KI is essentially a measure of the load condi-

tion present at a crack tip. It is dependent on the mode of crack opening. There are

three possible opening modes and Mode I is assumed here [30, 27]. The power law

understanding of fatigue, Eq. 2.1, suggests that the larger the change in the crack tip

load condition the larger the increase in fatigue crack length. The change in the crack

tip stress intensity factor is related to several parameters. As might be expected, load

magnitude influences KI . In addition, the existing crack size and shape as well as the

specimen geometry itself all influence KI .

A crack tip stress intensity model suggested by Isida et al. [32] for a semi-elliptical

thumbnail type crack in a plate subjected to both bending and axial loads was used
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by [22, 21] to study fatigue behavior in pipeline dents:

∆KI =
√

πa
(
kAFA

C + kBFB
C

)
∆σ nominal (2.2)

In Eq. 2.2, axial and bending stress change components are determined from the

nominal stress change ∆σ by axial and bending stress concentration factors kA and

kB. These stress concentration factors are calculated in [22, 21] from inner and

outer surface stress concentration factors,kinner and kouter, found using finite element

analysis:

kA = 1
2

(
k outersurface + k innersurface

)

kB = 1
2
|koutersurface − kinnersurface|

(2.3)

Equations 2.1, 2.2 and 2.3 indicate that the stress concentration behavior of a dent

is directly related to the fatigue behavior of the dent.

As noted, crack geometry also plays a role in determining the stress intensity

factor. In Eq. 2.2 the terms FA
C and FB

C are empirical terms related to crack aspect

ratio. Because these terms of are somewhat complicated and because crack aspect

ratio effects do not play a significant role in the existing fatigue model [21, 22] the

reader is referred to [32, 21, 22] for details.

It was pointed out earlier in this chapter, especially in Fig. 3, that dent stress

concentration values can change considerably from dent to dent. The fatigue model

describing crack behavior, summarized by Eqs. 2.1 and 2.2, does contain influential

parameters other than the stress concentration descriptors kA and kB. However,

these other parameters, in particular material type and crack aspect ratio, are not

assumed to vary significantly from dent to dent. As a result, dent fatigue behavior

seems to depend, in large part, on dent stress concentration behavior. Thus a better
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understanding of dent stress concentration behavior would appear to be valuable in

terms of improved understanding of dent fatigue behavior.

In some cases, dents do not have preexisting sharpened flaws and a fatigue crack

must first initiate before propagation behavior described by Eqs. 2.1 and 2.2 begins.

A method for estimating the number of cycles required to initiate a crack 0.00984 in.

(0.25 mm) deep in a dent is discussed in [22]. This method is based on work discussed

by Dowling [33] that relates crack initiation life to the local strain range. A cumulative

damage approach is used in [22] to deal with variable amplitude loading. Local strain

range is related to nominal strain range in [22] by assuming elastic behavior and using

dent specific stress–strain concentration factors. Thus, dent fatigue crack initiation

life can also be viewed as being fundamentally influenced by dent stress concentration

behavior.

One major finding of Rinehart and Keating’s study of dent fatigue behavior

in [22, 21] was that dent residual stress behavior also plays a significant role. To

check fatigue model validity in [22, 21] case-by-case dent fatigue life predictions were

made for situations for which experimentally measured fatigue life and fatigue crack

size data were available in [8]. When residual stress effects were ignored, agreement

between prediction and experiment was poor, as shown in Fig. 8. This observation

illustrates that the effect of dent residual stress on fatigue crack closure behavior

needs to be accounted for.

The concept of fatigue crack closure is that a fatigue crack can’t grow if the crack

tip can’t physically open. If some force acts to hold a crack shut, then this force must

be overcome before a crack will open and fatigue crack extension can occur at the

crack tip. Crack closure effects can stem from crack tip residual streses that act

to close the crack, mechanical or chemical adhesion of the fracture surfaces, or the

presence of a global residual stress field that acts to keep the crack closed. In Fig. 4
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Fig. 8. Plot of predicted versus measured dent fatigue lives generated using approach

presented in [21] and [22] with data available in [8] and developed without

accounting for the effect of dent residual stress on fatigue crack closure behavior

(adapted with permission from [21] courtesy of ASME).
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it was shown that a compressive residual stress can exist at the outer surface location

where fatigue cracks initiate and propagate in both long and short dents. In [22, 21]

it was assumed that these outer surface residual stresses lead to crack closure effects

that significantly influence dent fatigue life.

A number of approaches exist for accounting for crack closure effects. A very

simple approach proposed by Bloom [34] was used in [22, 21]. Bloom suggests trun-

cating the total stress range experienced by a crack to include only that portion of

the stress range spent in tension [34]. This approach does not account for R-ratio

effects but it is not clear how significant these effects are compared to global residual

stress effects in the case of dent fatigue. Rinehart and Keating further simplify this

approach by only considering the outer surface value of residual stress at the location

of fatigue crack growth. It would be more accurate to evaluate the residual stress

value at the exact crack depth. However, it is assumed that since dent fatigue cracks

spend most of their life as relatively small cracks at the outer surface of the pipe

wall it is reasonable to assume the residual stress value can be fixed at the outer

surface value. Truncating the stress range to include only the tensile portion of the

range and then calculating fatigue life using this effective stress range improves overall

agreement between dent fatigue life prediction and measurement, as seen in Fig. 9.

Overall root–mean–squared agreement in Fig. 9 is approximately 1.36. For long

dents the R.M.S. error in Fig. 9 is approximately 1.38 and for short short dents it is

approximately 1.33. There is some question as to whether the power law approach

to fracture mechanics is applicable for cases with relatively short lives. If long dent

data with lives below 12,000 cycles are neglected, then long dent R.M.S. agreement

becomes 1.09. In general, the model used in [22, 21] tends to overestimate life,

probably due to limitations of assumptions. Certainly a more refined fatigue model

could be developed. However, it seems fairly clear that given an understanding of
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Fig. 9. Plot of predicted versus measured dent fatigue lives generated using approach

presented in [21] and [22] with data available in [8] and developed accounting

for the effect of dent residual stress on fatigue crack closure behavior through

use of an effective stress range (adapted with permission from [21] courtesy of

ASME).
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dent stress behavior dent fatigue behavior can be predicted.

Several concepts are found in the preceding review of dent fatigue analysis mod-

els. First, dent fatigue processes can be modelled in either an empirical or a fracture–

mechanics based manner. Second, these models can be calibrated to be accurate for

the cases in which experimental data is available. Third, these models, especially the

Dinovitzer and Rinehart–Keating models, show that dent fatigue behavior is driven

in large part by dent stress behavior. In particular, dent geometry effects on fatigue

life are due to dent geometry effects on dent stress. If an improved general under-

standing of the relationship between dent stress and dent fatigue can be developed

then an improved understanding of dent fatigue behavior will result. Finally, while

these models provide case-by-case predictive tools that may be accurate they do not

provide a great deal of detail as to how dents behave from a mechanical standpoint.

The issue of dent mechanics is interesting and not just academic. Recall, Keating and

Hoffmann’s demonstration that long and short dents have markedly different fatigue

lives [8]. A more fundamental and general understanding of dent mechanics could

lead to simple, general guidelines that would aid in dent assessment. In particular,

two practical questions of dent mechanics would contribute to current understandings

of dent fatigue. First, it is important to establish what measurable features of dent

geometry distinguish long dents from short dents. Second, the possibility exists that

simple, fairly accurate dent fatigue life predictions could be made without constantly

needing to resort to finite element analysis if a fairly accurate understanding could

be developed of the dependency of important dent stress values on dent geometry

features.
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C. Approaches to Dent Stress Analysis

The mechanics of a pipeline dent are quite complicated. To fully model all phases of

the dent life cycle one would have to consider contact mechanics and nonlinearities

in both material and geometry. However, it has been noted that after a few initial

pressure cycles dents achieve a stable rerounded configuration [8, 24]. Dent residual

stresses are determined by what happens during the early inelastic cycles. If the

early pressure cycles are not exceeded in magnitude by later cycle pressure and if a

significant amount of strain hardening does not occur, then the dent residual stress

distribution can be assumed to remain relatively fixed throughout the life of the

rerounded dent. This result has been shown to be strictly true in the case of a beam

cross-section composed of elastic–perfectly plastic material [35]. If one assumes a

stable rerounded configuration is achieved early in the dent life, the problem of finding

the residual stress distribution becomes separated from the problem of finding the dent

stress concentration behavior. Furthermore, if one neglects the fact that dent stress

concentration behavior is mildly influenced by geometric nonlinearity, one can treat

the dent stress concentration problem as a linear elastic problem of shell mechanics.

It has been proposed here that dent residual stress is developed during early

rerounding pressure cycles and is constant throughout the rest of the dent life and that

dent stress concentration behavior is linear elastic. These assumptions were used in

the fatigue studies carried out by Rinehart and Keating[22, 21]. As noted previously,

these studies, and their assumptions, led to good agreement with experimental dent

fatigue data. Thus, while special cases will certainly exist in reality, these assumptions

appear sound for general application.

Ideally, to understand mechanical relationships it would be best to develop a

closed–form analytical model of the situation. However, this approach does not appear
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feasible for the case of pipeline dents. Even with the assumptions stated and with

regard to the elastic stress concentration part of the problem, the local geometry of

the dent is too complicated to readily permit direct analysis. Two other approaches,

however, do exist. One may treat the problem with finite element analysis or with

approximate semi-analytical approaches.

Finite element analysis has been used widely to study dent mechanics [8, 16,

9, 14, 23, 31, 22, 21, 2, 36]. General-use finite element analysis packages such as

ABAQUS [37] are well suited to study all aspects of the dent stress problem. In

particular, finite element analysis offers an efficient and accurate means of studying

the contact and inelastic phases of the dent life cycle so that dent residual stresses

may be fully and accurately characterized. Finite element analysis is a valuable and

important tool that should be included in any investigation of dent mechanics.

Finite element analysis does, however, have drawbacks. Mainly, any understand-

ing of a problem developed using this approach will be empirical in nature. Empirical

approaches to dent analysis have had limited success. Prime examples are the lack

of agreement in the literature over the importance of dent length and the highly

qualitative nature of many existing results in dent mechanics. These problems arise

because empirical studies are, by nature, bounded. In addition, the large amount of

data generated by a finite element analysis of even a simple instance of a complicated

feature like a pipeline dent means that it is difficult to gauge important aspects of the

problem. A second drawback of finite element analysis of the complete dent problem

is that each analysis is computationally intensive. Running the wide range of cases

necessary to sufficiently characterize the influence of several dent parameters becomes

quite time consuming.

While an analytical solution to the dent stress problem is desirable because it

overcomes the shortcomings of the finite element approach, it is not feasible. How-
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ever, an approximate approach exists which appears to offer a promising means for

studying the elastic stress concentration behavior of dents. This approach, called

the Equivalent Load Method, has been used to study the stress behavior of local

imperfections in shell structures with apparently reasonable accuracy [17, 20]. It was

developed in the late 1970’s and early 1980’s as a means of studying geometrically

imperfect shells with a greater degree of computational efficiency than that which

was available using finite element analysis. While the Equivalent Load Method is

no longer necessary as a computational tool, it does have certain features that are

attractive. It can be implemented in a semi-analytical formulation and so can provide

some functional information about the problem it is applied to. The semi-analytical

formulation is also easily used to characterize a range of cases. In fact, a combina-

tion of finite element analysis and equivalent load analysis appear to offer a way in

which an accurate and fairly complete understanding of dent stress behavior can be

developed for a range of dent conditions.

As illustrated by the foregoing discussion, a fair amount of work has been done

on the problem of dent fatigue. However, a clear, general understanding of the phe-

nomenon does not yet exist. In addition, accurate, simple–to–use dent assessment

guidelines do not exist. Previous research has clearly demonstrated that dent geom-

etry features such as depth and length play a major role in determining dent fatigue

life. In addition, it has been shown that these features influence fatigue life because

they influence dent stress features that drive fatigue crack growth. Models exist that

can be used to predict dent fatigue life if dent stress information is available. At the

same time, the current understanding of dent stress behavior is poor. However, tools

exist that can be used to study dent stress behavior. As a result, a study needs to be

performed of the influence dent geometry features have on fatigue inducing dent stress

characteristics. Where possible, the results of this study need to be used to address
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the dent fatigue problem. In particular, geometry boundaries that distinguish classes

of dent stress behavior need to be established for the purposes of dent assessment.

Also, accurate models describing dent stress behavior in terms of geometry need to

be developed.



35

CHAPTER III

THE EQUIVALENT LOAD APPROACH

It would be practical to be able to assess dent fatigue life based on dent geometry

features. Models of dent fatigue behavior currently exist [22, 21] that can be used to

predict dent fatigue behavior given information about the stress concentration factor

and the outer surface residual stress value present at the location of fatigue cracking.

However, qualitative evidence [8, 16, 14, 15] indicates that these dent stress features

are dependent, in large part, on dent geometry. Thus, if the relationship between dent

stress geometry and dent stress behavior can be understood, then the relationship

between dent geometry and dent fatigue behavior can be calculated directly.

During formation and early pressure cycling, dent behavior is highly inelastic.

In particular, once a dent is formed and the indentor removed, early pressure cycles

may force the dent to permanently flatten out or reround [8, 24]. This behavior

has been investigated experimentally and numerically [8, 24]. If later pressure cycles

never exceed the magnitude of the early rerounding pressure cycles, then the dent will

achieve a stable rerounded configuration after relatively few cycles and subsequent

dent behavior is elastic. A fundamental consideration of multi-cycle inelastic bending

has corroborated this result [35].

The assumption of a stable rerounded dent configuration considerably simplifies

the analysis of dent fatigue. First, this assumption means that the residual stresses

created during early cycle inelastic deformation remain unchanged during later pres-

sure cycling. Second, this assumption permits the problem of the behavior of the sta-

ble rerounded dent to be treated as an elastic problem. This assumption was made

in case–by–case finite element models used in dent fatigue life predictions [22, 21]

that were validated with reasonable accuracy against experimental data. These two
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simplifications permit the problem to be split into two simpler problems. The first

problem is that of determining the relationship between stable dent geometry and

elastic dent stress concentration behavior. The second problem is that of determining

the residual stress values associated with a given stable dent geometry.

The determination of the elastic stress concentration behavior may be approached

in at least three ways. Ideally, one would like to determine an exact analytical so-

lution. Such a solution directly provides information about the relationship between

dent geometry and elastic dent behavior. However, such a solution is either difficult

or impossible to find for the general dent situation because the dent has complex local

geometry. Another approach is to use Finite Element Analysis. This approach has

been demonstrated to provide very accurate results in many situations. However, the

finite element approach has drawbacks as well. First, it is empirical, so that informa-

tion about the relationship between geometry and stress behavior must be inferred.

Second, each dent geometry case will require the generation and analysis of a new

finite element mesh, which will be time consuming.

A third option does exist. An approximate but fairly accurate approach called

the Equivalent Load Method (ELM) has been developed to study the stress behavior

of thin–shell structures containing geometric imperfections. In this approach, the

effects of complicated geometry are shown to be approximately equivalent to the ef-

fects of complicated load patterns. Figure 10 illustrates the equivalent load approach.

Essentially, the stress behavior of a geometrically imperfect shell under load is equiv-

alent to the sum of two stress fields. The first stress field is produced by the original

load acting on the geometrically perfect version of the shell. The second stress field

results from applying to the perfect version of the shell a load pattern that results

in perturbation stress behavior equivalent to that which would be induced by the

geometric imperfection. It should be emphasized that the equivalent load does not
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Fig. 10. Schematic illustration of equivalent load analysis of 2–D dented cylinder under

internal pressure.

produce the correct dent shape but instead acts to produce a stress effect that is

similar to that which would have been produced by the dent.

The Equivalent Load Method can be implemented in a semi–analytical form, as

will be shown in Chapter IV. Thus, some functional information about the relationship

between dent geometry and dent stress behavior will likely result. This fact means

that equivalent load analysis is not purely empirical. Furthermore, the problem of

an perfect shell subject to a complicated load pattern can be solved efficiently with

a simple numerical routine. As a result, the equivalent load method may provide for

examining a wide variety of cases without requiring a new model to be developed for
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each one, like in Finite Element Analysis.

The Equivalent Load Method will be explored as a means of developing an under-

standing of dent stress concentration behavior that is both general and fairly accurate.

Where successful, the results of this approximate analysis will then be adjusted for

accuracy based on more accurate results taken from a limited number of finite element

studies. It will be shown, however, that the equivalent load method has a previously

unreported limited range of application.

A. The Equivalent Load Method

The equivalence between a geometric imperfection in a thin–shell and an externally

applied load distribution was first established by Calladine in 1972 [17]. The equiva-

lent load approach was used extensively in the late 1970’s and early 1980’s to study

the implications of geometric imperfections in hyperbolic reinforced concrete cooling

towers [38, 39, 18, 40, 19, 41, 42, 43] following the collapse of such a structure in

Ardeer, Scotland. It has also been applied to spherical pressure vessels containing

imperfections [44] and dented cylindrical shell axial members used in offshore plat-

forms [45, 46]. A book dealing with the subject of imperfections in shell structures [20]

also presents this technique. Although the method is approximate, it has been re-

ported to be fairly accurate, especially when second order equivalent load terms are

included [47]. In addition, it can be implemented in a semi-analytical manner, so as to

give functional information about the role different parameters play in the functional

stress behavior of the shell.

The fundamental basis for the Equivalent Load Method has been shown in three

ways. Calladine wrote the governing equations for a thin-shell of revolution and

considered the influence of small deviations in radius through the application of a
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variational operator [17]. In the formulation that results, the situation of an imperfect

shell under loading is shown to be approximately equivalent to that of a perfect shell

under the same loading with an appropriate additional load distribution acting on

it. In a slightly different approach, the imperfection is represented as a displacement

from an initially perfect geometry [20, 40]. The total displacement value used in the

shell strain-displacement relations is then replaced with the sum of the displacements

due to the loading acting on the perfect shell and the imperfection’s displacement

profile. The formulation that results also demonstrates the equivalence shown by

Calladine. A final approach is to use equilibrium to relate geometric deviations to

membrane and bending forces in a differential shell element and show these forces to

be equivalent to those resulting from an appropriate equivalent load distribution [42].

Although all of these arguments suggest the Equivalent Load Method could be used

in a variety of structural mechanics problems, application of the technique has been

confined primarily to problems of shell analysis.

In his paper [17], Calladine considered the effect of a geometric imperfection in

a thin–shell of revolution. The geometry, as considered by Calladine, is shown is

Fig. 11. As shown in Fig. 11, a point on the shell surface is given in terms of the

meridional angle, φ, and the circumferential angle, θ and two of several important

radii. The term r0 is the perpendicular distance of a point on the shell surface from

the axis of revolution, r1 is the meridional radius of curvature, r2 is the circumferential

radius of curvature, and r3 is the distance along the meridional tangent from the point

on the surface to the axis of revolution. Using this definition of shell geometry, the

membrane equation of equilibrium that relates the meridional and circumferential

membrane forces N∗
φ and N∗

θ to the applied pressure p is:

Nφ
∗

r1

+
Nθ

∗

r2

= p (3.1)



40

r3

r1

r2

r0ds

φ

axis of
revolution

dφ

Fig. 11. Geometry of meridian of shell of revolution considered by Calladine.

Calladine’s definitions of shell geometry also lead to bending equilibrium equations.

However, to derive the standard expression for the equivalent load Calladine considers

only the shell membrane equation. Thus, the resulting equivalent load expression is

only approximate.

Calladine considers the effect of a deviation in geometry by examining the effect

of such a deviation on membrane equilibrium:

∆Nφ
∗

r1

+ Nφ
∗∆

(
1

r1

)
+

∆Nθ
∗

r2

+ Nθ
∗∆

(
1

r2

)
= p (3.2)

The imperfection is described by the function ξ(s), which gives the magnitude of the

imperfection in terms of location, s, on the meridian. Using geometric arguments
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Calladine approximates two of the terms in Eq. 3.2 in terms of the function ξ:

∆
(

1

r1

)
≈ d2ξ

ds2
(3.3)

∆
(

1

r2

)
≈ −dξ/ds

r3

− ξ

r2
2

(3.4)

Calladine then shows that for typical imperfections:

∆
(

1

r2

)
� ∆

(
1

r1

)
(3.5)

Thus, the fourth term in Eq. 3.2 is neglected. Next, the membrane equilibrium of the

shell “cap” is considered. The cap is the rounded top portion of the shell of revolution

where the meridional angle θ approaches zero. This consideration shows that ∆Nφ
∗

is approximately zero. As a result of this condition and Eqs. 3.2 and 3.3, the changes

in membrane forces due to a meridional imperfection ξ are:

∆Nφ
∗ ≈ 0 (3.6)

and

∆Nθ
∗ ≈ r2Nφ

∗d
2ξ

ds2
(3.7)

As a result, the membrane forces present in a shell with an imperfection can be

approximated as:

Nθ
∗ ≈ Nθ

p + r2Nφ
∗d

2ξ

ds2
(3.8)

Nφ
∗ ≈ Nφ

p (3.9)

In Eqs 3.8 and 3.9, the terms Nθ
p and Nφ

p represent the membrane forces that would

be present in the shell if no imperfection existed. Substitution of Eqs 3.8 and 3.9 into

Eq. 3.1 leads to the idea of an equivalent load describing the effect on shell forces of
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a geometric imperfection. This equivalent load has the form:

p ≈ Nφ
∗d

2ξ

ds2
(3.10)

Calladine’s equivalent load term only describes the effect of an axially symmetric

meridional imperfection. Croll et al. appear to be the first to have adapted Calladine’s

expression to consider a general, localized three-dimensional imperfection [38]. In this

case, the equivalent load is given as:

p∗ ≈ N1χ
∗
1 + 2N12χ

∗
12 + N2χ

∗
2 (3.11)

In Eq. 3.11, χ∗1 and χ∗2 are the changes in curvature in the two principal directions

and χ∗12 is the change in twist. The terms N1, N12, and N2 refer to the membrane

forces present in the equivalent perfect shell due to the actual loading acting on the

imperfect shell. Eq. 3.11 is the standard form of the equivalent load that has been

used by most researchers studying the stress behavior of shells with imperfections [20,

38, 40, 46]. Godoy [47] has emphasized that imperfections that are deeper than the

shell thickness should be modelled in an iterative nonlinear scheme using an equivalent

load expression that takes into account higher order terms. He shows that such an

approach considerably improves accuracy for deep imperfections.

The first order equivalent load representation of Eq. 3.11 will be used in the

present study. While it is not as accurate as the scheme proposed by Godoy [47], its

simple form will permit semi–analytical expression to be developed that give direct

information about the relationship between dent geometry and stress behavior in the

dent region. Finally, because finite element analysis will be used to validate results,

a correction factor can be applied to account for inaccuracies that may exist.
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B. Implementation of Equivalent Load Method for Dents in Pipes

1. Analytical Approach

Pipelines are cylindrical shells. The equations describing the linear–elastic small–

deformation behavior of this class of shells are widely available. Flügge’s notation for

cylindrical shells will be used here and are taken from [48]. While Flügge’s discus-

sion of shell mechanics is clear it has a practical orientation. A more fundamental

discussion of the origins of classical shell equations is given by Novozhilov [49].

Because they will become useful, the complete set of cylindrical shell equations

will be given here. The coordinate system used here is presented in Fig. 12. Because

the cylinder has constant radius R, every point on the shell surface can be described

in terms of its longitudinal distance x from a reference circumference, its angular

location φ relative to a reference meridian, and its distance z from the shell middle

surface. The assumptions of classical shell theory are used. Specifically, shell thickness

is small compared to shell radius, perpendiculars to the shell middle surface remain

perpendicular after deformation, deflections are small, and deformations across the

shell thickness vary linearly. These assumptions reduce the problem of shell analysis

to a consideration of the behavior of the middle surface, since all thru-thickness

variations in mechanical quantities can be related to middle surface behavior.

The strains in the shell wall εx, εφ, and γxφ can be found in terms of the middle

surface displacements u, v, and w:

εx =
u′

R
− z

w′′

R2
(3.12)

εφ =
v.

R
− z

R

w..

R + z
+

w

R + z
(3.13)

γxφ =
u.

R + z
+

R + z

R2
v′ − w′.

R

(
z

R
+

z

R + z

)
(3.14)
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Fig. 12. Coordinate system of cylindrical shell.

where the operators (). and ()′ are defined as:

()′ = R
∂ ()

∂x
(3.15)

(). =
∂ ()

∂φ
(3.16)

The constituitive relations between the strains, εx, εφ, and γxφ, and the stresses, σx,

σφ, and τxφ, are those of a linear elastic material:

σx =
E

1− ν2
(εx + νεφ) (3.17)

σφ =
E

1− ν2
(εφ + νεx) (3.18)

τxφ =
E

2 (1 + ν)
γxφ (3.19)

In these expressions, E is Young’s Modulus and ν is the Poisson Ratio. From

the stresses the resultant forces, Nx, Nφ, Nxφ, and Nφx, and resultant bending

moments,Mx, Mφ, Mxφ, and Mφx can be determined. The meaning of these forces

and moments in terms of shell geometry is shown in Fig. 13. The resultant–stress
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relations consist of simple integrals performed over the shell thru-thickness:

Nx =
∫+t/2
−t/2 σx

(
1 + z

R

)
dz Nφ =

∫+t/2
−t/2 σφdz

Nxφ =
∫+t/2
−t/2 τxφ

(
1 + z

R

)
dz Nφx =

∫+t/2
−t/2 τφxdz

(3.20)

−Mx =
∫+t/2
−t/2 σx

(
1 + z

R

)
zdz Mφ = −

∫+t/2
−t/2 σφzdz

Mxφ = −
∫+t/2
−t/2 τxφ

(
1 + z

R

)
zdz Mφx = −

∫+t/2
−t/2 τφxzdz

(3.21)

In Eqs. 3.20 and 3.21, t is the shell thickness. The forces and moments shown in

Fig. 13 and applied tractions or pressures, px, pφ, and pr can be related by equilibrium:

N ′
x + N .

φx + pxR = 0 (3.22)

RN .
φ + RN ′

xφ −Mφ −M ′
xφ + pφR

2 = 0 (3.23)

M ..
φ + M ′.

xφ + M .
φx + M ′′

x + RNφ − prR
2 = 0 (3.24)

RNxφ −RN .
φx + Mφx = 0 (3.25)

Knowing the equilibrium relations and the other preceding relations it is possible

to express equilibrium in terms of the displacements. It is found that the fourth

equilibrium condition, Eq. 3.25, is satisfied identically so that the shell problem is

reduced to set of three differential equations:

u′′ +
1− ν

2
u.. +

1 + ν

2
v′. + νw′ + k

(
1− ν

2
u.. − w′′′ +

1− ν

2
w′..

)
+

pxR
2

D̄
= 0 (3.26)

1 + ν

2
u′. + v.. +

1− ν

2
v′′ + w. + k

(
3

2
(1− ν) v′′ − 3− ν

2
w′′.

)
+

pφR
2

D̄
= 0 (3.27)

νu′+v.+w+k
(

1− ν

2
u′.. − u′′′ − 3− ν

2
v′′. + w′′′′ + 2w′′.. + w.... + 2w.. + w

)
+

prR
2

D̄
= 0

(3.28)

In Eqs. 3.26 through 3.28 the terms D̄ and k are:

D̄ =
Et

1− ν2
(3.29)
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Fig. 13. Illustration of cylindrical shell membrane forces and bending moments.
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k =
t2

12R2
(3.30)

Alternatively,

k =
K

D̄R2
(3.31)

where:

K =
Et3

12 (1− ν2)
(3.32)

It can be shown that the displacement equilibrium equations, Eqs. 3.26 to 3.28,

are satisfied if the load terms and displacement terms can be written in the form of a

Fourier Series [48]. Thus, if the pressure loading applied to the shell can be expressed

as a Fourier Series, the form of the displacement solution is known and the problem

of finding the particular solution reduces to one of solving for the Fourier Coefficients

of the displacement Fourier Series. Once the displacement functions are known other

useful information, such as the stress functions, can be determined. In the present

situation, the pipe is assumed to be infinitely long, so that the particular solution is

the solution of interest.

Most dents have a smooth profile. In addition, although dents are localized,

unique features in a real pipeline, the idealized dent profile might be modelled as a

periodic function if an adequate spacing is maintained so as to prevent interaction

between dents. Thus, the geometric imperfections of many pipeline dents can be

modelled as smooth, periodic functions. Equation 3.11 relates the equivalent load

function to the imperfection geometry. The curvature terms χ1, χ2, and χ12 in Eq. 3.11

are simply second partial derivatives of the function which describes the imperfection

profile. Because the imperfection profile can be expressed as a Fourier Series, the

equivalent load function can also be expressed as a Fourier Series. Thus, the problem

of the perfect cylinder subjected to the equivalent load can be solved with a Fourier

Series Approach and an approximate solution for the elastic stresses present in the
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dented pipe may be found.

Many dents essentially have double symmetry about some reference circumfer-

ence and reference meridian pair. Assuming double symmetry and taking the in-

tersection of the meridian and circumference of symmetry as the origin of the shell

coordinate system, the pressure loads in Eqs. 3.26 to 3.28 may be given as Fourier

Series:

px = px,mncos (mφ) sin
(

λx
R

)
pφ = pφ,mnsin (mφ) cos

(
λx
R

)
pr = pr,mncos (mφ) cos

(
λx
R

) (3.33)

The λ term conveniently represents the longitudinal Fourier Series index n and period

l:

λ = n
πR

l
(3.34)

While it was noted that the load has even symmetry, there are sine terms in Eq. 3.33.

These sines are a result of sign convention requirements at the coordinate system

origin. The three shell differential equations Eqs. 3.26 to 3.28 are satisfied if the loads

are of the form given in Eq. 3.33 and the displacement are of a similar form:

u = umncos (mφ) sin
(

λx
R

)
v = vmnsin (mφ) cos

(
λx
R

)
w = wmncos (mφ) cos

(
λx
R

) (3.35)

As noted, when loads and displacements are written as Fourier Series in the

forms of Eqs. 3.33 and 3.35, the three equilibrium equations, Eqs. 3.26 to 3.28, are

satisfied. In particular, one is left with a set of three coupled linear equations that
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must be solved for each m, n combination:
k11 k12 k13

k21 k22 k23

k31 k32 k33




umn

vmn

wmn

 =


R2px,mn

D̄

R2pφ,mn

D̄

R2pr,mn

D̄

 (3.36)

The kij coefficients of the matrix are given in terms of m and λ = (nπR)/l:

k11 = λ2 +
(

1− ν

2

)
(1 + k) m2 (3.37)

k12 = k21 =
1 + ν

2
mλ (3.38)

k13 = k31 = νλ + k
(
λ2 −

(
1− ν

2

)
λm2

)
(3.39)

k22 = m2 +
(1− ν)(3k + 1)

2
λ2 (3.40)

k23 = k32 = m + k
(

3− ν

2

)
λ2m (3.41)

k33 = 1 + k(λ4 + 2m2λ2 + m4 + 2m2 + 1) (3.42)

Equation 3.36 and Eqs. 3.37 through 3.42 may be used to determine the Fourier

components of the displacement functions from the Fourier components of the load

terms. The displacement functions may be reassembled from these coefficients, as in

Eq. 3.35, and the resulting membrane and moment results may be determined based

on equations given in [48]:

Nφ =
D̄

R
(v. + w + νu′) +

K

R3
(w + w..) (3.43)

Nx =
D̄

R
(u′ + νv.w + νw)− K

R3
(w′′) (3.44)

Nφx =
D̄

R

(
1− ν

2

)
(u. + v′) +

K

R3

1− ν

2
(u. + w′.) (3.45)

Nxφ =
D

R

(
1− ν

2

)
(u. + v′) +

K

R3

1− ν

2
(v′ − w′.) (3.46)
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Mφ =
K

R2
(w + w.. + νw′′) (3.47)

Mx =
K

R2
(w′′ + νw.. − u′ − νv.) (3.48)

Mφx =
K

R2
(1− ν)

(
w′. +

1

2
u. − 1

2
v′
)

(3.49)

Mxφ =
K

R2
(1− ν) (w′. − v′) (3.50)

Substituting for u, v, and w in Eqs. 3.43 through 3.50 with the Fourier Series

version of the displacements, Eq. 3.35, leads to a set of equations for Fourier Series

components of membrane and bending resultants. For example, the Nφ resultant can

be written as:

Nφ = Nφ,mncos (mφ) cos
(

nπx
L

)
=∑M

m=0

∑N
n=0

[
D̄
R

(
mvmn + wmn + νRnπ

L
umn

)
+ K

R3 (1−m2) wmn

]
cos (mφ) cos

(
nπx
L

)
(3.51)

Equation 3.51, demonstrates that relationships exist between resultant coefficients

and displacement coefficients. For Nφ,mn and Mφ,mn These relationships take the

form:

Nφ,mn =
D̄

R

(
mvmn + wmn +

νRnπ

L
umn

)
+

K

R3

(
1−m2

)
wmn (3.52)

Mφ,mn =
K

a2

(
1−m2 − ν

a2n2π2

l2

)
wmn (3.53)

Thus, coefficients for Fourier Series representing resultants can be determined

directly from the displacement coefficients.

Stress terms can be written in terms of membrane and moment resultants.

Flugge[48] gives these relationships as:

σx =
Nx

t
− 12Mx

t3
z (3.54)

σφ =
Nφ

t
− 12Mφ

t3
z (3.55)
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τxφ =
Nxφ

t
− 12Mxφ

t3
z (3.56)

τφx =
Nφx

t
− 12Mφx

t3
z (3.57)

Equations 3.54 through 3.57 represent stress components over the through-thickness

variable z. Outer and inner surface stress values can be obtained by substituting

z = ±t/2. The stress function can be written as double Fourier Series in terms of

the force and moment resultant Fourier Series coefficients. As noted in Eq. 3.52 these

coefficients can then, in turn, be written in terms of the displacement coefficients umn,

vmn, and wmn. As a result, the stress functions can be written directly in terms of the

displacement coefficients. The resulting expressions for the inner and outer surface

values of σx and σφ are:

σx = D̄
tR

∑M
m=0

∑N
n=0(

Rnπ
L

) (
1± t

2R

)
umn

+νm
(
1± t

2R

)
vmn

+ν
(
1± t

2R
m2
)
wmn + R2n2π2

L2

(
t2

12R2 ± t
2R

)
wmn

cos (mφ) cos
(

nπx
L

)
(3.58)

and

σφ = D̄
tR

∑M
m=0

∑N
n=0(

νRnπ
L

)
umn

+mvmn

+
(
1 + t2

12R2 (1−m2)∓
(
1−m2 − νR2n2π2

L2

))
wmn

cos (mφ) cos
(

nπx
L

)
(3.59)

Using the preceding equations one can solve for stress in a pipe produced by

the application of an equivalent load, and thus can solve approximately in a semi-

analytical manner for the stresses produced by imperfections in the pipe. First, the

equivalent load distribution is calculated based on knowledge of the imperfection
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geometry and the membrane forces present in the perfect structure. The double

Fourier Series coefficients of this equivalent load distribution are then found. This

approach has been taken by Godoy to study spherical shells with imperfections [44].

Using Eq. 3.36 the displacement coefficients resulting from the load coefficients may

be calculated in a term by term manner. Then, the hoop and longitudinal stress

distributions may be determined directly using Eqs. 3.58 and 3.59. This process can

be implemented through a computer program.

2. Computational Approach

It is believed that the equivalent load approach was developed as a computation

approach for studying imperfect shells at a time when limited computation resources

were available. Computational speed has increased tremendously in the last few

decades, mitigating the need for efficient computational approaches to imperfections.

The primary value of the equivalent load approach appears to be that it can provide

analytical information not offered by a completely numerical approach. However, it

is important to be able to validate that the equivalent load approach is capable of

accurately studying a problem before time is invested in seeking analytical insight.

Much of the effort in the analytical approach to applying the equivalent load

method is expended in taking an equivalent load distribution and solving for the

resulting stress behavior. As a means of checking the veracity of the equivalent load

method itself a simpler approach to solving the actual shell problem would be useful.

In fact, a general finite element software package can serve as a solver which can be

used to check the accuracy of the equivalent load method. Once reasonable accuracy

has been confirmed, the possibility of the equivalent load method providing useful

functional information can be pursued with classical approaches like the one outlined

in the previous section.
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There are two main numerical approaches to shell analysis other than the semi-

analytical approach outlined in the previous section. The first is finite differences

and the second is finite elements. The finite difference method is well suited for shell

analysis, however it is a geometry specific approach. As a result, it is not well-suited

to provide both a solution platform and an independent evaluation of the stresses

produced by a geometric imperfection in a shell.

Finite element analysis is capable of much more general application from a geom-

etry standpoint. All that is needed to study the elastic stress behavior of an imperfect

shell is a mesh of the shell geometry. In addition, finite element analysis can be used

to check the accuracy of the equivalent load method.

Figure 14 illustrates the approach that can be taken to use finite element analysis

as the solver engine for equivalent load analysis. A computer code or spreadsheet can

be used to calculate the equivalent load distribution. The value of the equivalent

load is determined at each nodal location. This value is converted into a nodal load

by multiplying by the tributary area, typically the element surface area. The nodal

load is decomposed into x- and y-components and list of nodal loads is prepared.

This list is imported into an input file that sets up the problem of a perfect cylinder

subject to the imported nodal loads. The analysis is then conducted. Finite element

analysis results are processed to determine the stress predicted in the imperfect shell

by adding the analysis result produced by the equivalent load to the stresses present

in the perfect shell due to the original loading. Some authors [38, 42] have implied

that iteration of the equivalent load analysis may improve the analysis accuracy.

Further manipulation of results can be carried out and a second iteration list of nodal

equivalent loads can be prepared and incorporated into another finite element model.

Using this computational approach the suitability and accuracy of the equivalent
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Fig. 14. Schematic representation of process in which equivalent load method calcula-

tion can be carried out using existing finite element solver routines for pur-

poses of confirming accuracy of equivalent load method.
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load method itself can be judged in a simple and direct manner. Where the equivalent

load method is judged to be accurate the analytical approach can be used to seek

functional information about the behavior of imperfections in shells. The next chapter

explores some of these issues for dents in pipes.
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CHAPTER IV

APPLICATION OF EQUIVALENT LOAD ANALYSIS TO PIPELINE DENTS

In the preceding chapter an analytical framework was established for studying geo-

metric imperfections in cylindrical shells using the equivalent load method. In this

chapter two main applications of this approach are carried out. First, the simplified

situation of a two-dimensional dent is considered. A simple, semi-analytical solu-

tion is found that describes behavior in this situation. Second, the application of

the equivalent load method to the case of three-dimensional imperfections in shells is

studied. In particular, localized, dent–like imperfections are emphasized as opposed

to more broad ranging and shallow structural imperfections. Interestingly, a size ef-

fect is shown to exist in the behavior of localized three-dimensional damage. The

equivalent load method is shown not to predict either this size effect or the correct

behavior of highly local imperfections.

A. A Two-Dimensional Dent Model

The simplest geometric imperfections in shells are those that exist only in one co-

ordinate direction. Indeed, in deriving the equivalent load method Calladine only

considered a one-dimensional imperfection and only derived a one-dimensional ver-

sion of the equivalent load distribution [17]. The early applications of the equivalent

load method to analysis of cooling tower shells also restricted their attention to im-

perfections either in the circumferential or meridional directions [19, 38, 18].

For the case of a cylinder, the one-dimensional imperfection that makes most

sense to analyze is an imperfection in the circumferential direction. This imperfection

direction results in a two-dimensional dent model, where the same dented cross-

section exists uniformly throughout the length of the cylinder. Figures 15 and 16
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Fig. 15. Front view of half of a pipe with a two-dimensional longitudinal dent gen-

erated using a finite element mesh of a two-dimensional dent and ABAQUS

VIEWER.

show profile and three-dimensional views generated in ABAQUS VIEWER of halves

of a two-dimensional dent mesh. The simplified two-dimensional dent model does

have some practical meaning. Presumably, the center of a long three-dimensional

dent will behave in a manner similar to that of a two-dimensional longitudinal dent.

In addition, a two-dimensional model might be adapted to consider the effects of weld

misalignment, another important class of pipe imperfection.

1. Problem Solution

The first issue needing to be addressed in applying the equivalent load method is the

matter of the imperfection geometry. Early work with hyperbolic cooling towers took

direct measurements of structural imperfections from the structures themselves. In
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dent generated using a finite element mesh of a two-dimensional dent and

ABAQUS VIEWER.
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the present case, measurements of real dents could be used. However, it would be

difficult to study the influence of dent parameter variations with such an approach.

A functional description of dent geometry would be helpful.

Some authors have used a portion of a cosine function to describe the deviation

from the undamaged shell profile [20, 50, 51]. This defect description must be written

with a conditional statement:

r(φ) =


R |φ| > φ0

R− ξ
2

(
1 + cos

(
2π φ

φ0

))
|φ| ≤ φ0

 (4.1)

In Eq. 4.1, the circumferential profile r(φ) is given as a deviation from the pipe radius

R. The magnitude of the deviation is controlled by the ξ term and the circumferential

extent is controlled by the φ0 term. The fact that Eq. 4.1 is a conditional statement

means that this approach to modelling the dent profile requires some care in handling

with closed-form analysis. Because the present interest is to use the equivalent load

method to seek functional information about the influence of dent imperfections it

would seem that Eq. 4.1 may not be the best choice.

One readily available, smooth function appears to offer an alternative to the half

cosine dent model for modelling two-dimensional dents. The normal distribution is

simple to implement, decays and is smooth. As a result, the normal function can be

subtracted from the pipe radius to give a description of dent profile:

r(φ) = R− ξexp
(
−1

2
(φ/φ0)

2
)

(4.2)

In Eq. 4.2 the normal distribution is subtracted from the radius R to give the profile

r(φ) around the circumference of the pipe of a dent centered at φ = 0. The dent

depth is controlled by the magnitude of ξ and the spatial extent, or width, of the

dent is controlled by the angular “decay” term φ0. Figure 17 shows normalized dent
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cross-sections generated using Eq. 4.2 and a relative d/D of 5%, or ξ = 0.05. To

demonstrate the flexibility of the normal distribution dent model, four φ0 values

were used to generate the cross-sections in Fig. 17 and are indicated in the figure.

The normal distribution dent model appears capable of producing a range of dent

geometries from narrow and deep to broad and flat.

The normal and cosine dent models actually result in similar two-dimensional

dent geometries, as shown in Fig. 18. In the two methods the decay coefficient φ0

influences dent width differently. As a result, the profiles generated in Fig. 18 are

based on model specific φ0 values given in the caption. The cosine model of the dent

tapers off more abruptly than the normal dent model. Since both approaches are

both idealized models such small differences are considered unimportant. The present

study will use the the normal distribution dent model since it is more straightforward

to implement. Other functions, such as Student’s t distribution, are available that

could also probably be used to develop successful dent models.

Assuming a normal distribution dent geometry model, e.g. Eq. 4.2, it is possi-

ble to determine an expression for the equivalent load distribution. The traditional

equivalent load distribution, discussed in Chapter III, is written for a cylinder as:

p∗ = Nxxχxx + 2Nxφχxφ + Nφφχφφ (4.3)

In the case of a two–dimensional dent, the change-in-curvature χxx and χxφ terms are

zero and:

χφφ =
1

R2

∂2r(φ)

∂φ2
=

ξ

R2φ2
0

1− ( φ

φ0

)2
 exp

−1

2

(
φ

φ0

)2
 (4.4)

Because there is no χxx term in the two-dimensional problem, longitudinal membrane

forces do not play a role in the equivalent load, Eq. 4.3. In addtion, in two-dimensions

there is no φx cross–term because both the change–in–curvature and membrane force
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Fig. 17. Normalized two-dimensional dent cross-sections generated using Eq. 4.2 with

ξ = 0.05, equivalent to d/D = 5% and four values of φ0, φ0 = π/36,π/24,π/12,

and π/8.
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generated with Eqs. 4.1 and 4.2 with R = 0.5 and ξ = 0.03, equivalent to

d/D = 30%. The φ0 values for the normal distribution and cosine models are

π/10 and π/4 respectively.

components are zero. Thus, the equivalent load expression follows from Eq. 4.4:

p∗ (φ) =
Nφξ

R2φ2
0

1− ( φ

φ0

)2
 exp

−1

2

(
φ

φ0

)2
 (4.5)

This equivalent load distribution is a radial pressure with a magnitude varying with

φ.

A fourier cosine series can be found for Eq. 4.5 such that:

p∗ = p∗0 +
∞∑

m=1

p∗mcos (mφ) (4.6)

The Fourier coefficients are found through the integrals:

p∗0 =
1

π

∫ π

−π

Nφξ

R2φ2
0

1− ( φ

φ0

)2
 exp

−1

2

(
φ

φ0

)2
 dφ (4.7)

p∗m =
1

π

∫ π

−π

Nφξ

R2φ2
0

1− ( φ

φ0

)2
 exp

−1

2

(
φ

φ0

)2
 cos (mφ) dφ (4.8)
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A drawback of the normal distribution dent model is that the integrals in Eqs. 4.7

and 4.8 are not easily solved in closed-form. However, for a given harmonic m the

integral is a constant that can be evaluated numerically, so that the equivalent load

coefficients are simply:

p∗0 =
Nφξ

R2φ2
0

I0 (4.9)

p∗m =
Nφξ

R2φ2
0

Im (4.10)

The I0 term and Im terms are constant for a given m and φ0 and represent the solution

to the integrals:

I0 =
1

π

∫ π

−π

1− ( φ

φ0

)2
 exp

−1

2

(
φ

φ0

)2
 dφ (4.11)

Im =
1

π

∫ π

−π

1− ( φ

φ0

)2
 exp

−1

2

(
φ

φ0

)2
 cos (mφ) dφ (4.12)

The coefficients represented by Eqs. 4.11 and 4.12 depend only on φ0 and can be

determined using numerical integration.

In Chapter III, Eq. 3.36 established that the Fourier coefficients for the displace-

ments are related to the Fourier coefficients of the loads. In the two-dimensional case

only one harmonic is present, the other being zero. This situation considerably sim-

plifies Eq. 3.36. The resulting relationship between load and displacement coefficients

for the the two-dimensional case is considerably simplified:
0 0 0

0 m2 m

0 m 1 + k (m4 + 2m2 + 1)




um

vm

wm

 =


0

0

R2pr,m

D̄

 (4.13)

The k and D̄ terms in Eq. 4.13 are given in Eqs. 3.29 and either 3.30 or 3.31. The

zeros appear on the load side of Eq. 4.13 because equivalent load analysis involves
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only the analysis of radial pressure coefficients, pr,m = p∗m. For the special case m = 0,

Eq. 4.13 reduces to:

w0 =
R2pr,0

D̄ (1 + k)
(4.14)

For situations in which m is nonzero, Eq. 4.13 can be solved for the displacement

coefficients:

vm = − a4pr,m

K (m5 + 2m3 + m)
(4.15)

wm =
a4pr,m

K (m4 + 2m2 + 1)
(4.16)

The K parameter in Eqs. 4.15 and 4.16 is given by Eq. 3.32. Equations 4.14, 4.15

and 4.16 provide a simple means of determining displacement Fourier coefficient di-

rectly from load Fourier coefficients for two-dimensional circumstances.

Since the two–dimensional situation involves no geometric deviations in the x di-

rection, the equivalent load will not result in longitudinal force or moment resultants.

Thus, attention will be restricted to Nφ, Mφ, and σφ. Equations 3.52 and 3.53 in

Chapter III gave the Fourier coefficients of Nφ and Mφ in terms of the displacement

coefficients. These general relationships simplify somewhat for the two-dimensional

case. Using these relationships, the force and moment resultants can be constructed

from the displacement coefficients as follows:

Nφ =
D

a

(
w0 +

M∑
m=1

(mvm + wm) cos (mφ)

)
+

K

R3

(
w0 +

M∑
m=1

(
1−m2

)
wmcos (mφ)

)
(4.17)

Mφ =
K

R2

(
w0 +

M∑
m=1

(
1−m2

)
wmcos (mφ)

)
(4.18)

Expressions were found in Eqs. 4.9 and 4.10 for the load coefficients associated

with the normal distribution dent model equivalent load. With solutions for the

two–dimensional cylindrical shell problem available in Eqs. 4.14 through 4.18 the

resultant forces and moments produced by the equivalent load can be determined.
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The deflection coefficients are found by substituting Eqs. 4.9 and 4.10 into Eqs. 4.14

and 4.15:

v∗m = − R2N0ξ

Kφ2
0 (m5 + 2m3 + m)

Im (4.19)

w∗
0 =

N0ξ

D̄ (1 + k) φ2
0

I0 (4.20)

w∗
m =

R2N0ξ

Kφ2
0 (m4 + 2m2 + 1)

Im (4.21)

The displacement coefficients, Eqs. 4.19 through 4.21, resulting from the equiv-

alent load can be substituted into Eqs. 4.17 and 4.18 and the resultant force and

resultant moment functions associated with the equivalent load can be found. These

may be added to the resultants that would exist in a version of the original shell that

does not contain the imperfection and that is subjected to the original loading. There

would be no “perfect” version of the resultant moment since only membrane action

is assumed present. The total predicted resultant force and moment expressions are:

Nφ,total = N0 +N∗
φ = N0 +

N0 (ξ/R)

φ2
0

[
I0 +

M∑
m=1

Im

(
1−m2

m4 + 2m2 + 1

)
cos (mφ)

]
(4.22)

Mφ,total = M∗
φ = R

N0 (ξ/R)

φ2
0

[
k

1 + k
I0 +

M∑
m=1

Im

(
1−m2

m4 + 2m2 + 1

)
cos (mφ)

]
(4.23)

These expressions describe the resultant hoop force and bending moment present

around the circumference of a pressurized cylinder that contains an imperfection that

can be described using the normal distribution. Recall that Eq. 3.55 in Chapter

III can be used to relate these resultants to the function describing the hoop stress

distribution:

σφ =
Nφ

t
− 12Mφ

t3
z (4.24)

To consider the outer and inner hoop stress situations, z = ±t/2 is substituted into
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Eq. 4.24:

σphi,outer =
Nφ

t
− 6Mφ

t2

σphi,outer =
Nφ

t
+

6Mφ

t2

(4.25)

It is now possible to write expressions for the hoop stress distributions present

at the outer and inner surfaces of a cylinder containing a two-dimensional dent. Sub-

stituting the total resultant force and moment expressions, Eqs. 4.22 and 4.23, into

the outer and inner hoop stress formulas in Eq. 4.25 the stress expressions are found.

Dividing these expression by the nominal hoop stress σnom that would be present in

an undamaged cylinder of the same radius R and thickness t, expressions for outer

and inner surface stress concentration factors result:

kouter =
σφ,outer

σφ,nom

= 1 +
ξ/R

φ2
0

(
1− 6

R

t

) [
1 + 2k

1 + k
I0 +

M∑
m=1

Im
1−m2

m4 + 2m2 + 1
cos (mφ)

]
(4.26)

kinner =
σφ,outer

σφ,nom

= 1 +
ξ/R

φ2
0

(
1 + 6

R

t

) [
1 + 2k

1 + k
I0 +

M∑
m=1

Im
1−m2

m4 + 2m2 + 1
cos (mφ)

]
(4.27)

In these expressions the term I0 and the sequence of terms Im are constants and are

found from the integrals:

I0 =
1

π

∫ π

−π

1− ( φ

φ0

)2
 exp

−1

2

(
φ

φ0

)2
 dφ (4.28)

Im =
1

π

∫ π

−π

1− ( φ

φ0

)2
 exp

−1

2

(
φ

φ0

)2
 cos (mφ) dφ (4.29)

The surface hoop stresses present in a pressurized cylinder containing a two-dimensional

dent described by a normal distribution dent profile are readily obtained from these

semi-analytical expressions. This solution can be implemented in a code that solves

numerically for I0 and the Im coefficients and carries out the summations in Eqs. 4.26

and 4.27. An example of such a code is given in Appendix A.
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2. Solution Accuracy

The accuracy and implications of Eqs. 4.26 and 4.27 now need to be addressed. In

terms of accuracy, two issues must be addressed. The first issue is whether enough

Fourier Series modes are included in the analysis. Enough modes must be included

in the analysis to insure that the solutions found through Eqs. 4.26 and 4.27 have

converged. The number of necessary modes is dependent on the width of the dent, or,

in terms of parameters, the value of φ0. The situation where φ0 = π/24 will be used

here. This situation represents a fairly narrow dent, as seen in Fig. 17. Figure 19

shows the convergence of the outer surface SCF value predicted by Eq. 4.26 and

indicates that twenty to thirty Fourier cosine series modes are apparently adequate

to represent Eq. 4.26 for φ0 = π/24. This convergence occurs over the entire φ

range modelled by Eq. 4.26, as shown in Fig. 20. In this figure, the five and ten

mode situations deviate substantially from the profiles predicted using twenty and

thirty modes. The twenty and thirty mode profiles are well converged enough to

be almost indistinguishable. If a certain number of modes leads to convergence for

φ0 = π/24 it should lead to convergence for larger φ0 values since these values are

associated with “wider” dents that do not require higher frequency cosine terms to

model. Although thirty modes appears to be adequate, fifty modes will be used as

there are no significant increases in computation time.

Having demonstrated that the Equivalent Load based solution for the two–

dimensional dent converges to an answer, the next question is whether the answer

obtained is a realistic model of two–dimensional dent stress behavior. The accuracy

of the equivalent load based solution can be judged by comparing it to the solution

obtained by an independent method. Finite element analysis of a two-dimensional

cylinder containing a normal distribution dent offers a means of independent verifi-
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cation of accuracy.

For comparison purposes, a finite element model of a two–dimensional dent was

set up using ABAQUS software [37]. Figure 21 is an image of the overall mesh

produced using ABAQUS VIEWER and Fig. 22 is a detail view. The mesh was

comprised of linear S4R elements and assumes the pipe cross-section to be symmetric.

There were 720 elements distributed around the half–pipe cross-section. This number

of elements is assumed to be adequate as a more complex model discussed elsewhere [8,

16, 21, 22] converges reasonably well with only 90 elements around the half–pipe

cross-section. The two–dimensional pipe model is elastic and the nonlinear geometry

analysis option is invoked. The mesh geometry is generated using the two–dimensional

normal distribution dented pipe profile given in Eq. 4.2. The FEM model is subjected

to uniform pressure distribution. The boundary conditions, illustrated in Fig. 23 are

selected to enforce symmetry and two–dimensional behavior. Both the FEM model

and the ELM model assume an 18′′ diameter 1/4′′ thick pipe for the purposes of

validating model accuracy. With each element having an angular extent of π/720 or

an arclength of 0.039′′, the longitudinal element length is taken to be 0.01′′ so as to

maintain a reasonable element aspect ratio.

Before proceeding to assess accuracy, it should be pointed out that the FEM so-

lution is itself only a numerical model of actual physical circumstances. It is assumed

that FEM solutions are more accurate because they are based on a less approximate

method. Experimentally measured dent strain behavior would be the ideal bench-

mark for assessing solution accuracy. Because this information is unavailable, finite

element solutions are used.

In comparing accuracy between the equivalent load based solutions of Eqs. 4.26

and 4.27 and the finite element solution for the same situation two issues need to be

addressed. Accuracy in terms of predicted profile shape and in terms of magnitude
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Fig. 21. View generated in ABAQUS VIEWER of finite element mesh used to check

accuracy of two-dimensional equivalent load model.

ABAQUSPrinted on: Sat May 24 13:25:29 CDT 2003

Viewport: 1     ODB: /home/ajr714a/wkfiles/5percpiby24normalmesh.odb

Step: Step-1
Increment      0: Step Time =   0.0000E+00

Deformed Var: U   Deformation Scale Factor: +0.000e+00

1 percent normal distribution dent model
ODB: 5percpiby24normalmesh.odb    ABAQUS/Standard 6.2-1    Sat May 24 13:19:18 CDT 2003

1

2

3

Fig. 22. Close-up view generated in ABAQUS VIEWER showing mesh structure

and boundary conditions of finite element mesh used to check accuracy of

two-dimensional equivalent load model.
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Fig. 23. Schematic diagram showing boundary conditions of two–dimensional finite

element model used to investigate accuracy of equivalent load dent model.

prediction must both be investigated. If the semi-analytical solution predicts pro-

file shape reasonably accurately but fails to predict magnitude, it can probably be

corrected and at a minimum will provide insight into the functional behavior of the

two-dimensional dent stress profile. If profile shape cannot be accurately predicted

then one begins to suspect the validity of the semi-analytical solution.

Figures 24 and 25 show comparisons between the finite element and the semi-

analytical, equivalent load based solutions for the outer surface SCF profiles of two-

dimensional dents with φ0 = π/12 and φ0 = π/24 respectively. Remembering that the

semi-analytical solution is based on an approximate approach to analyzing geometric

imperfections agreement seems fairly reasonable. Both approaches predict a large

central outer surface SCF and a smaller, off-center stress peak. It would appear

that the semi-analytical SCF solutions of Eqs. 4.26 and 4.27 provide a fairly accurate
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Fig. 24. Comparison of finite element and semi-analytical, equivalent load based, so-

lutions for the outer surface SCF profile of a φ0 = π/12, ξ = 0.9 dent in and

18′′ diameter, 1/4′′ thick cylinder.

understanding of the SCF profile developed by a two-dimensional normal distribution

dent model. The semi-analytical solution can be used to easily develop a parametric

understanding of the stress behavior of two-dimensional dents.

The next issue is that of accuracy at the location of main interest, φ = 0 or the

dent center. Figure 26 plots peak values predicted for the inner and outer SCF’s at

φ = 0 found using both Eqs. 4.26 and 4.27 and finite element analysis. Calculations

were made at a range of d/D or ξ values between 0.25% and 5%. In this case, a

φ0 = π/8 dent is considered. Figure 26 shows that the linear relationship between SCF

magnitude and ξ, or dent depth d/D, predicted by Eqs. 4.26 and 4.27 is apparently

correct. However, the equivalent load based solution underestimates the SCF value

at the dent center.

The FEM and semi-analytical solutions in Fig. 26 appear to differ by a constant
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Fig. 25. Comparison of finite element and semi-analytical, equivalent load based, so-

lutions for the outer surface SCF profile of a φ0 = π/24, ξ = 0.9 dent in an

18′′ diameter, 1/4′′ thick cylinder.

factor. Agreement between models is probably best judged in terms of predicted

deviation from the unit stress concentration value. This adjustment is helpful because

the unit SCF value consistently offsets inner and outer SCF values. Thus, the ratio

C is used to measure disagreement:

C =
SCFFEM − 1

SCFELM − 1
(4.30)

In Eq. 4.30, the terms SCFFEM and SCFELM refer to the SCF values at φ = 0 ob-

tained using the finite element and semi-analytical, equivalent load based approaches.

For the complete set of inner and outer SCF values for the eight d/D values consid-

ered in Fig. 26 the average value of C is 1.512. The standard deviation from this

average is 0.275%. Thus, the error parameter C is essentially constant over the range

of d/D for φ0 = π/8.
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1/4′′ thick cylinder.
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18′′ diameter, 1/4′′ thick cylinder.

It remains to be seen whether or not C is constant with respect to φ0. In fact, it

is not, as seen in Fig. 27. However, C appears to vary linearly with φ0. Furthermore,

the C function appears to be the same for both inner and outer surface SCF values.

A linear fit can be made of the C-φ0 dependence. As φ0 approaches zero the

imperfection must disappear and SCFFEM and SCFELM must approach 1.0. The

limit of Eq. 4.30 as these terms approach 1.0 is 1.0. In Fig. 27, the y-intercept value

indeed appears to be 1.0. Using this y-intercept value the slope of C with respect to φ0

is determined from Fig. 27 for both the inner and outer surface curves. The average C

slope values are 1.337 and 1.352 for outer and inner surface cases respectively. Taking

the slope of C to be 1.34 the following expression appears to describe the dependence

of C in terms of φ0:

C = 1 + 1.34φ0 (4.31)
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The adjusted semi-analytical SCF solution is then given as:

SCFELM,adjusted = 1 + (1 + 1.34φ0) (SCFELM − 1) (4.32)

The semi-analytical solution values used to generate the curve of the error function

in Fig. 27 may be adjusted using Eq. 4.32 and compared again to the finite element

prediction. The resulting root–mean–squared error between adjusted semi–analytical

and finite element solutions is 0.0094. Relative to the stress concentration values,

ranging from 1 to 5 in this case, this error indicates a good fit.

The question remains as to whether or not adjusting the semi-analytical solution

to match the more accurate finite element solution at one point significantly worsens

the overall agreement between predicted SCF profile shapes. If so, then the adjusted

semi–analytical solution should not be used to investigate the behavior of the entire

two-dimensional dent SCF profile. Figs. 28 and 29 show the adjusted semi–analytical

and finite element predictions of the outer SCF profile for the π/12 and π/24 cases.

These figures can be compared to the unadjusted semi-analytical situation shown in

Figs. 24 and 25.

The profile comparison made in Figs. 28 and 29 shows that the adjusted semi-

analytical solution does a better job at predicting the SCF profile in the dent interior,

or in the region of the central SCF peak. In addition, the profile agreement away

from the dent where no significant peaks are present is similar to that seen for the

unadjusted case in Figs. 24 and 25. The main problem with the adjusted solution is

agreement at the peripheral peak. The semi-analytical solution is less successful at

predicting the shape of this region of the SCF profile regardless of whether or not

magnitude adjustments have been made. Magnitude adjustments based on the center

stress value lead to an increased overestimate of the magnitude of the peripheral SCF

peak.
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Fig. 28. Comparison of finite element and adjusted semi-analytical, equivalent load

based, solutions for the outer surface SCF profile of a φ0 = π/12, ξ = 0.9 dent

in and 18′′ diameter, 1/4′′ thick cylinder.

One final check of the accuracy of the semi-analytical solution is necessary. Equa-

tions 4.26 and 4.27 describe a linear relationship between the stress concentration

factor and the pipe diameter to thickness ratio, D/t. Four D/t cases with φ0 = π/24

and d/D = 1% were analyzed both with the semi-analytical solution and the finite

element method. The semi-analytical solution was adjusted according to Eq. 4.32.

Results for the four cases, in which t was 1/4′′ and D was 12′′, 16′′, 18′′, 24′′, or

30′′ are shown in Fig. 30. The finite element model confirms the linear relationship

between SCF and D/t predicted by Eqs. 4.26 and 4.27 and adjusted using Eq. 4.32.

In addition to correctly predicting the qualitative nature of the relationship, actual

accuracy is maintained over the range of D/t ratios.

Comparisons with more accurate finite element estimates of the SCF profiles aris-

ing in two-dimensional dented cylinders suggest that the semi-analytical equivalent
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Fig. 29. Comparison of finite element and adjusted semi-analytical, equivalent load

based, solutions for the outer surface SCF profile of a φ0 = π/24, ξ = 0.9 dent

in an 18′′ diameter, 1/4′′ thick cylinder.

load based solution to the problem is a reasonable solution. This conclusion is espe-

cially true given the fact that the solution is based on an approximate approach to

the problem. In particular, estimates of the magnitude of the dent center SCF seem

reasonable. Only rough estimates of peripheral SCF behavior can be made using the

semi-analytical solutions. Accepting its limitations, the semi-analytical model can

be used to study aspects of the functional dependency of two-dimensional dent SCF

behavior on dent characteristics.

3. Discussion of Solution

As noted in Chapter II, current understanding of dent stress behavior is typically

either qualitative in nature or consists of case-specific, empirical results. The under-

lying mechanics of dent stress behavior have not been extensively developed. Other
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work has emphasized the analysis of imperfections in thin shells [17, 20] and has used

mechanics to develop the equivalent load approach to the problem. However, this

work has not payed a great deal of attention to the mechanics of the imperfection

itself once the analytical approach has been developed to study it.

The semi-analytical solution of Eqs. 4.26 and 4.27 appears to be accurate enough

to offer reasonable insight into the mechanics of two-dimensional dents. In their basic

form, Eq. 4.26 describe SCF dependency in terms of dent depth, ξ, dent width, φ0,

pipe radius-to-thickness ratio, R/t, and angular location, φ. The relations in Eqs. 4.26

and 4.27 can be adjusted for accuracy via Eq. 4.32, combined, and simplified:

kouter
inner = 1 +

(
ξ

R

)(
1 + 1.34φ0

φ2
0

)(
1∓ 6

R

t

)
f (φ, φ0) (4.33)

The superscript “outer” and subscript “inner” on k refer to which SCF is obtained

based on whether a minus or plus sign is used for the minus-plus symbol. The term

f(φ, φ0) represents the more complicated term:

f (φ, φ0) =

[
1 + 2k

1 + k
I0 +

M∑
m=1

Im
1−m2

m4 + 2m2 + 1
cos (mφ)

]
(4.34)

This term can be evaluated numerically.

Given conventions used elsewhere in other chapters, it is consistent to rewrite

the Eq. 4.33 replacing ξ and R with d and D as depth and pipe size indicators. In

this form Eq. 4.33 becomes:

kouter
inner = 1 + 2

(
d

D

)(
1 + 1.34φ0

φ2
0

)(
1∓ 3

D

t

)
f (φ, φ0) (4.35)

Several important aspects of two-dimensional dent behavior can be obtained from

Eq. 4.35. First, as alluded to in the previous subsection, SCF magnitude is depth

dependent. In particular it varies linearly with depth. The fact that depth is impor-

tant is not surprising, given the emphasis it has been given by existing approaches to
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assessing three-dimensional dents [11, 12, 9].

It has never been clear whether or not pipe diameter-to-thickness ratio plays a

role in determining dent behavior. Linear SCF dependency on D/t shown in Equa-

tion 4.35 and validated in Fig. 30 indicates that D/t plays a meaningful role in

determining SCF behavior. In particular, larger D/t ratios lead to increased SCF

magnitudes. While the result determined here applies only to two-dimensional dents

it seems likely that D/t plays a role in three-dimensional dent stress behavior. It

will be shown in Chapter V that D/t values do influence at least some aspects of

three-dimensional dent stress behavior.

Equation 4.35 also indicates that circumferential location, φ, influences SCF

value. This result is not surprising given that dent geometry varies with φ. As seen

in Figs. 25 and 24 or Figs. 29 and 28, SCF peaks occur at φ = 0 and at some

peripheral, nonzero value of φ. As φ0 increases, the SCF value at φ = 0 decreases

while the peripheral value appears to remain fixed or may even increase. Fowler et

al. [9] reported what appears to be circumferential peripheral cracking in many of

the dents tested in their study. These dents were wider and flatter than the narrow

dents studied by Keating and Hoffmann [8] that experienced cracking along the φ = 0

center-line. It is possible that decreased center SCF values predicted by the semi-

analytical model combine with some other stress feature present in wider dents to lead

to a circumferential peripheral crack location. More work on the wide dent problem

is warranted.

The circumferential decay rate, φ0, a measure of dent width, also plays a role

in determining dent SCF values. The nature of this role is not immediately clear

because the influence of φ0 is given through f(φ, φ0) or Eq. 4.34 and must be evaluated

numerically. Due to the present interest in narrow dents SCF behavior at φ = 0 is of
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primary interest. The function f(φ, φ0) is simplified for this case:

f (φ = 0, φ0) =
1 + 2k

1 + k
I0 +

M∑
m=1

Im
1−m2

m4 + 2m2 + 1
(4.36)

The terms I0 and Im do not simplify for φ = 0 and are still given by Eqs. 4.28 and 4.29.

Equation 4.36 can be further simplified with a slight approximation. In the

present case, attention is limited to a certain range of pipe D/t ratios. For instance,

a range of diameters from 12′′ to 30′′ with a thickness of 1/4′′ is reasonable. Using

Eq. 3.30 the value of the term (1+2k)/(1+k) in Eq. 4.36 may be determined. Where

the pipe diameter is 12′′ this term has a value of 1.00159 and where diameter is 30′′

this term is 1.000254. Thus, it seems safe for the range of application considered here

to assume (1 + 2k)/(1 + k) = 1.0. Thus, Eq. 4.36 is reduced to:

f (φ = 0, φ0) = I0 +
M∑

m=1

Im
1−m2

m4 + 2m2 + 1
=

M∑
m=0

Im
1−m2

m4 + 2m2 + 1
(4.37)

A variant of the computer program in Appendix A may be used to find f(0, φ0)

as it is given in Eq. 4.37. Figure 31 shows how f varies over φ0. Values of φ0 in Fig. 31

are varied from 0.001 to 0.700. The range of practical interest, as seen in Fig. 17, is

limited to a range of about π/36 to π/8 or 0.087 to 0.392. Values of φ0 outside of this

range may not have clear physical meaning as two-dimensional dents. However, it is

reassuring that f approaches roughly zero as φ0, or dent width, approaches zero. This

result means that the limit of Eq. 4.35 as φ0 goes to zero, or as the dent disappears

because width goes to zero, is an SCF value of 1.0.

As noted, for practical purposes attention in Fig. 31 should be restricted a limited

φ0 range. In the φ0 range 0.1 to 0.4, f becomes almost linear. In fact a linear regression

fit of f in this range has an R value of 0.999579 and gives f in terms of φ0 to be:

f = 9.659e−3 − 0.1706φ0 (4.38)
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Fig. 31. Plot of f(0, φ0), Eq. 4.37 over a range of φ0 values.

Figure 32 shows both the actual f result and the fit given in Eq. 4.38. Use of the

fitted f function seems reasonable for 0.1 <= f < 0.4. This range corresponds to a

φ0 range of about π/30 to π/8, which, as seen in Fig. 17, covers a considerable range

of dent width.

Although is it empirical, Eq. 4.38 gives a closed form version of f . Thus, the func-

tional influence of φ0 on two-dimensional dent SCF behavior can now be determined

by substituting Eq. 4.38 into the adjusted two-dimensional SCF equation Eq. 4.35.

The resulting empirical expression is a solution for the SCF in a two-dimensional

dent:

kouter
inner = 1 +

d

D

(
0.01932− 0.3154φ0 − 0.4572φ2

0

φ2
0

)(
1∓ 3

D

t

)
(4.39)

As discussed, the two-dimensional dent SCF depends linearly on relative dent depth

d/D and the pipe diameter-to-thickness ratio D/t. The term in Eq. 4.39 describing

φ0 dependence is plotted in Fig. 33 so that the effect of φ0 can be judged.
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Figure 33 shows that the value of φ0 has a significant influence on dent SCF

behavior. Over the range of practical interest, the φ0 term varies as a multiplier

from about 1.1 to 1.7. Narrow dents, characterized by low φ0 values, result in larger

SCF values. A peak in this influence is seen at a φ0 value of about 0.12 or π/26.

Values of φ0 less than this value, in other words, narrower dents, have less of an effect

on the SCF value. A primary result of Fig. 33 is that wider dents appear to have

decreased center SCF values. This result lends credence to the idea that dent width

is a significant and almost completely unexplored factor in dent mechanics.

A solution for the SCF produced by a two-dimensional dent in a pipe has been

developed in this section. A semi-analytical version of the solution is given in Eq. 4.35.

A closed-form, slightly empirical version of the solution describing the SCF at the dent

center is given in Eq. 4.39. The solution, based on the equivalent load method, appears

to be fairly accurate in comparison with more accurate finite element results. The

solution provides insight into the mechanics of two-dimensional dents. In particular,

functional relationships between dent SCF and dent geometry are predicted.

In reality, dents are not likely to be two-dimensional. However, it is possible

that the behavior of very long three-dimensional dents might be described by the

solution obtained in this section. In addition, other pipe imperfections, such as weld

misalignments, could be considered to be two-dimensional and could be treated in a

manner similar to that used here.

In addition to solving two-dimensional problems, two key results obtained from

the two-dimensional model inform the study of three-dimensional dents. First, the

pipe diameter-to-thickness ratio influences two-dimensional SCF magnitude. Presum-

ably this influence remains in the three-dimensional case. This influence has not been

clearly noted in the past. Second, dent width, in the form of φ0, has a significant

influence on dent SCF. The significance of dent width has seemed likely given the
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established importance of dent length [8, 16]. A width effect might also help account

for some clear differences that exist between the experimental results reported by

Fowler et al. [9], who studied relatively wide dents, and Keating and Hoffmann [8],

who studied narrower dents. Thus a two-dimensional solution has value in its own

right and also informs understanding of three-dimensional dent behavior. However,

it would be worthwhile to investigate three-dimensional dent behavior.

B. Limitations of the Equivalent Load Method in Studying Three-Dimensional Lo-

calized Damage

Given its success in developing a semi-analytical solutions for two-dimensional dents,

the equivalent load method might successfully be applied to the problem of three-

dimensional dents. This problem is much more complicated. First, since dent ge-

ometry varies in two directions, φ and x, dent geometry must be represented by a

double Fourier series. Second, the matrix relation, Eq. 3.36, between load and dis-

placement Fourier coefficients is complicated by the presence of all six terms. Third,

relations between stresses, forces and moments, and displacements are complicated

by the presence of more terms. The possibility exists that functional information

about three-dimensional dent SCF behavior may be difficult to determine.

In addition to practical implementation considerations, the following examination

of the literature uncovers a discrepancy that suggests that the equivalent load method

may not accurately model all three-dimensional imperfections. Much of the reported

use of the equivalent load method has involved analyzing cases with one dimension of

imperfection [17, 19, 18, 41]. As seen in the previous section, two-dimensional dents,

which are situations with one-dimension of imperfection, appear to be handled fairly

well by the equivalent load method.
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Several authors have applied the equivalent load method to specifically study

localized, three dimensional imperfections in shell structures [46, 44, 43]. Tam and

Croll [46] reported success in applying the equivalent load method to study localized

three-dimensional dents. They noted that as an imperfection becomes more localized

the magnitude of the local stress concentration increases. This effect was noted in

the previous section when two-dimensional dent SCF values increased as dent width

decreased. Tam and Croll did not verify their results with an independent model.

Godoy considered localized, three-dimensional imperfections in spheres [44]. He

notes that the equivalent load method is successful in studying localizations as long as

the imperfection amplitude is on the order of the shell thickness. It is not specifically

noted what occurs when imperfection depth is deeper than the shell thickness. It is

assumed that a loss of accuracy develops with increasing depth. A change in the shape

of the stress profile itself was not specifically noted. In this paper, the equivalent load

method is compared to an independent finite element analysis. In a later work [47] it

is suggested that a nonlinear implementation of the equivalent load method eliminates

inaccuracies for deeper imperfections.

In their analysis of cooling towers with local imperfections, Han and Tong [43]

also conclude that the equivalent load method is an acceptable approach to analyzing

“dimple” shaped imperfections as long as the imperfection is shallow. They verify

their results with independent finite element analysis and indicate that the equivalent

load method accurately predicts the stress profile but is somewhat inaccurate in

predicting magnitudes.

Thus, the equivalent load literature suggests that the equivalent load method will

treat general localized, three-dimensional damage with acceptable accuracy. Imper-

fection geometry is noted to alter the magnitude and extent of the stress concentration

profile. However, a change in profile shape, such as that seen in studies of long and



88

short dents and illustrated in Fig. 3, does not occur. This constant stress stress pro-

file shape result does not correspond to results obtained by research in the area of

pipeline dent stress behavior [14, 8, 15, 16]. As noted in Chapter II of the present

work, otherwise similar dents of different lengths can develop very different stress

concentration profile shapes. Equivalent load research has not noted this effect.

There are at least two possibilities for the apparent discrepancy between predic-

tions of SCF profile shape changes. One possibility is that equivalent load work did

not note the shape change because it did not investigate imperfection geometries in

the region where SCF shape transitions occur. This possibility would seem likely,

since important pieces of dent fatigue literature have also not noted this stress pro-

file change [9, 7, 13]. A second possibility is that the equivalent load method is not

well-suited to analyze all classes of localized imperfections.

Questions regarding the general applicability of the equivalent load method to

three-dimensional dents have been raised. Thus, this matter should be explored

more thoroughly. A simple dent model will permit the predictive success of the

equivalent load method to be gauged. If this model validates use of the equivalent

load method, a more advanced model specialized to study the dent stress problem can

be developed with confidence. To validate the equivalent load method, a simple-to-

implement, smooth, periodic imperfection profile is needed. The simplest such profile

for a cylinder might be the double-cosine profile:

r (φ, x) = R− ξcos (mφ) cos
(

nπx

L

)
(4.40)

The double-cosine profile, Eq. 4.40, does not generate a single localized imper-

fection but rather an entire imperfect surface. For high values of the harmonics m

and n the imperfection is small compared to the length and radius of the cylinder.

Imperfection magnitude is given by ξ. The double-cosine does not describe a single
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Fig. 34. ABAQUS VIEWER image of mesh generated using double-cosine imperfec-

tion profile, Eq. 4.40, in 18′′ diameter cylinder with ξ = 0.360 , or d/D = 2%

m = 2, and n = 2.

local dent. Instead, the resulting surface contains a set of multiple localized imper-

fections. These imperfections have the features necessary to determine whether or

not the equivalent load method accurately analyzes general localized imperfection

behavior. Examples of finite element meshes generated to contain double-cosine im-

perfection profiles are shown in Figs 34 and 35. These meshes correspond to 18′′

diameter pipes with double-cosine imperfection profiles with equal m and n values of

2 and 10, respectively.

To explore method accuracy, the equivalent load method is implemented in the

numerical manner described in Fig. 14 of Chapter III. The equivalent load distribution

is generated either in a computer program or using a spreadsheet and is pasted into

an ABAQUS input file as a set of nodal forces. These equivalent nodal forces are
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Fig. 35. ABAQUS VIEWER image of mesh generated using double-cosine imperfec-

tion profile, Eq. 4.40, in 18′′ diameter cylinder with ξ = 0.360 or d/D = 2%,

m = 10, and n = 10.
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applied to a perfect cylindrical mesh. The resulting stresses are added to the nominal

stresses developed by the perfect shell under uniform internal pressure.

The validating finite element model performs an elastic analysis of a mesh gen-

erated using Eq. 4.40. The analysis is geometrically nonlinear. In both cases of

analysis, the mesh is 100 elements long and 180 elements in the circumferential di-

rection. Symmetry is used. Elements are 0.25′′ in the longitudinal direction and have

an angular extent of π/180 or 0.0174 radians. Other, more complicated finite ele-

ment models that model both contact and inelastic rerounding have been discussed

elsewhere [8, 21, 22, 16] and have been demonstrated to have reasonable convergence

with 0.5′′ by 0.0262 radian elements. Because the mesh is finer in the present model

and because the modelling issues are more straightforward, convergence is assumed

to exist. The boundary conditions of this three-dimensional finite element model are

shown in Fig. 36. It should be noted that the figure does not indicate the fact that

the bottom nodes of the model are free to translate in the longitudinal direction.

With both a means of implementing the equivalent load method in three-dimensions

and a means of validating the results, the discrepancy between equivalent load and

dent fatigue literature regarding stress behavior of localized damage can be investi-

gated. The primary measure of stress behavior will be the outer surface hoop stress

behavior. This measure is selected because it is central to the dent fatigue problem.

In particular, outer surface hoop stress along the longitudinal meridian at the top of

the cylinder will be examined.

A general model of dent behavior must be applicable over a range of depths and

relative dent sizes. Thus, the applicability of the equivalent load method will assessed

for a series of imperfection depths with relatively large (m, n = 2) and relatively small

(m,n = 10) imperfection sizes. An 18′′ cylinder with 1/4′′ wall is studied. According

to [44] the equivalent load method will be successful if imperfection depth is of the
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Top View
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Fig. 36. Illustration of boundary conditions used for three-dimensional finite element

model.
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Fig. 37. Hoop stress profiles along center meridian predicted using equivalent load

method and finite element analysis for ξ = 0.180 or d/D = 1%, m, n = 2

double-cosine imperfection.

order 0.25′′ or d/D = 1.39%.

An imperfection depth of 0.18′′, corresponding to d/D = 1%, is considered first.

Hoop stress profiles along the center-line meridian are shown in Figs. 37 and 38 for

m, n = 2 and m, n = 10, respectively. It should be noted that profile non-uniformities

apparent at the far end of the profiles result from end conditions present in the finite

element model.

Several features are apparent in Figs. 37 and 38. For the relatively large im-

perfection case, Fig. 37, the equivalent load method makes an overall underestimate

of the result predicted by the finite element model. This result is consistent with

underestimates found in the previous section using the two-dimensional equivalent

load based solution. In the smaller imperfection case, Fig. 38, the equivalent load

method actually overestimates the magnitude of the stress deviation resulting from
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Fig. 38. Hoop stress profiles along center meridian predicted using equivalent load

method and finite element analysis for ξ = 0.180 or d/D = 1%, m, n = 10

double-cosine imperfection.

the imperfection. In both cases, the equivalent load method provides reasonably ac-

curate estimates of the stress profile shape. Magnitude accuracy problems were noted

previously in the application of the two-dimensional model. In that case, a correction

factor was determined and was found to depend on the defect size parameter φ0.

Thus, the results of Figs. 37 and 38 would seem to indicate at first inspection that

the equivalent load method, with adequate correction, offers a reasonable approach

to study general three-dimensional localized damage.

Further analysis using the equivalent load method indicates problems, however.

Figures 39 and 40 show hoop stress profile plots like those in Figs. 37 and 38. For

Figs. 39 and 40 d/D is 2% and m and n are either 2 or 10. Thus, imperfection depth

is 0.360′′ which is above the thickness value of 0.250′′ advocated by [44] as a method

limit. Indeed, for the larger, m = n = 2 imperfection case of Fig. 39 method accuracy
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Fig. 39. Hoop stress profiles along center meridian predicted using equivalent load

method and finite element analysis for ξ = 0.360 or d/D = 2%, m = n = 2

double-cosine imperfection.

has deteriorated compared to Fig. 37. In the two-dimensional case, the equivalent

load method’s accuracy seemed correctable even for deep imperfections.

A more serious problem is seen in the small, m = n = 10 imperfection situation.

A comparison of the finite element solutions in Figs. 38 and 40 indicates that the hoop

stress profile undergoes a change in shape as dent depth increases. In particular, the

sinusoidal stress profile predicted for the d/D = 1% case is replaced by a profile shape

in which the positive outer stress peaks have become flattened and even begin to have

slight peaks at the edges. These positive peak regions of the stress profile correspond

to the stress in the depression portion of the imperfection profile. Thus, the finite

element solution predicts the loss of central stress peaks and the development of stress

peaks at the periphery of the depression region. These peripheral stress peaks have

been noted in the pipeline dent literature [14, 8, 15, 16] for relatively small dents.
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Fig. 40. Hoop stress profiles along center meridian predicted using equivalent load

method and finite element analysis for ξ = 0.360 or d/D = 2%, m = n = 10

double-cosine imperfection.

However, the development of the trend as depth increases, as seen in comparing

Figs. 38 and 40, has not been noted. Importantly, this change in profile shape is

not predicted by the equivalent load method, which continues to predict a sinusoidal

stress profile that corresponds strictly to the imperfection profile shape.

The loss of a single, central stress peak for a given imperfection segment increases

with further dent depth for the small imperfection case. Figure 41 shows stress

imperfection profile predictions for the 3% d/D case. The equivalent load solution

continues to predict a sinusoidal stress profile. On the other hand, the finite element

solution now predicts clear outer stress peaks at the periphery of the concave portions

of the imperfection profile. For the larger imperfection case, shown in Fig. 42, both

methods continue to predict the same stress profile, however agreement in terms of

accuracy continues to deteriorate.
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Fig. 41. Hoop stress profiles along center meridian predicted using equivalent load

method and finite element analysis for ξ = 0.540 or d/D = 3%, m = n = 10

double-cosine imperfection.
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Fig. 42. Hoop stress profiles along center meridian predicted using equivalent load

method and finite element analysis for ξ = 0.540 or d/D = 3%, m = n = 2

double-cosine imperfection.
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In the above discussion, the finite element method, which is presumed to be ac-

curate, predicts a clear shift in stress profile behavior for the smaller imperfection case

when d/D is 2% and 3%. These depths are admittedly deeper than the wall thickness,

which has been advocated as a bound on the equivalent load method [44]. However,

the fact that the equivalent load method still does a reasonable job predicting profile

shape for the large imperfection case and the fact that accuracy problems were not

insurmountable for the two-dimensional case suggests that this depth bound given in

the literature is accuracy based. No remarks appear to be present in the equivalent

load literature that suggest the presence of a size effect in imperfection stress behav-

ior. In fact, localized imperfection size was studied [46]. The results were similar

to those seen for the two-dimensional dent situation of the previous section. In [46],

predictions of peak magnitude vary with imperfection size but the general shape of

the stress profile remains unchanged. Thus, it would seem that a previously unknown

limitation of the equivalent load method has been found.

The phenomenon of a size related shift in imperfection stress behavior is interest-

ing in its own right. In addition, it is relevant to the problem of dent fatigue behavior

as it appears to determine, in large part, whether or not dents are dangerous center

cracking dents or more benign peripheral cracking dents [15, 16]. The relationship

between stress profile features and defect size and depth will be explored more fully

in the next chapter where a practical resolution to the problem of size based dent

type determination is sought. In the remainder of the current chapter the source of

the shortcoming of the equivalent load method in dealing with three-dimensional im-

perfections will be explored. This exploration will indicate some fundamental aspects

of the size effect problem.

The outer hoop stress profile, while practical from a fatigue standpoint, is perhaps

not the best indicator of the mechanisms at work in shell behavior. The force and
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moment resultants give a much better indication of how a shell actually resists load.

The force resultant is a measure of the presence of membrane action while the moment

resultant is an indicator of the presence of bending action. These values can be

determined from inner and outer surface stress values, σφ,inner and σφ,outer. For the

case of hoop membrane and bending components, Nφ and Mφ can be found in terms

of inner and outer hoop stress values as follows:

Nφ =
t

2
(σφ,inner + σφ,outer) (4.41)

Mφ =
t2

12
(σφ,inner − σφ,outer) (4.42)

Figures 43 and 44 show resultant profiles predicted with finite element analysis

and equivalent load analysis for m, n = 2 double-cosine profiles with d/D values of

1% and 3%. These plots present both membrane and moment results. Care must

be taken to note that the two types of resultants have different y axes. Also, one

must realize that boundary effects obscure the behavior at the right of the cylinder,

so that resultant plots should be examined in the first half of the length range. In

both cases, the equivalent load method seems to accurately predict the shape of the

resultant profiles. When one emphasizes the portion of the plots from 0′′ to 12.5′′

where boundary effects don’t come into play, both resultants have similar sinusoidal

deviations from a uniform value. For the perfect version of the shell in question

there should be no moment and the membrane hoop force should be 9 k/in. In

Fig. 43, the finite element results indicate that some mix of membrane and bending

action develops in response to the presence of a shallow imperfection. In the deeper

imperfection case, shown in Fig. 44, the variation in moment resultant drops while the

membrane force deviation increases, indicating that more membrane action results

from a deeper, relatively large imperfection.
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Fig. 43. Hoop membrane and bending resultant force profiles along center merid-

ian predicted using equivalent load method and finite element analysis for

ξ = 0.180 or d/D = 1%, m = n = 2 double-cosine imperfection.
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ian predicted using equivalent load method and finite element analysis for
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Fig. 45. Hoop membrane and bending resultant force profiles along center merid-

ian predicted using equivalent load method and finite element analysis for

ξ = 0.540 or d/D = 3%, m = n = 10 double-cosine imperfection.

It has been established that imperfection-induced stress behavior shifts as the

imperfection becomes smaller and deeper. It remains to establish the corresponding

change in resultant force action that occurs. Figure 45 shows hoop resultant forces

for the d/D = 3%, m = n = 10 case. This case was shown in Fig. 41 to have a definite

loss of outer surface stress at the imperfection depression center. The distance axis

of Fig. 45 has been limited so that profile features can be examined more closely.

A sense of the dent profile shape can be obtained from the curves predicted by the

equivalent load. They have a period of 5′′ which corresponds to the n = 10 situation.

The equivalent load method does a poor job predicting magnitude for either resultant

and predicts the wrong shape for the membrane force resultant.

In Fig. 45, the finite element solution is assumed to be the most accurate pre-

dictor of actual imperfect shell behavior. The finite element solution predicts low
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membrane forces in the dent center regions and heightened membrane forces in the

region where one imperfection transitions to the next. In other words, deep, relatively

small imperfections appear to develop heightened membrane forces at the periphery.

At the same time, bending moment does not appear to play a significant role as a

load resisting action in this case. Results for relatively large imperfections, shown

in Figs. 43 and 44 indicate that while moment also is not particularly significant,

membrane action is and that membrane action arises primarily in the centers of the

imperfections. Thus, a fundamental shift in membrane stress takes place as defects

become smaller.

The equivalent load method does not anticipate the shift in membrane stress

behavior that takes place for highly localized imperfections. As discussed in Chapter

II, in the case of pipeline dent fatigue, a geometry dependent shift in dent stress

behavior occurs. This shift from a dent SCF profile having a center peak to having

a peripheral peak results in certain dents developing short lived center fatigue cracks

and others developing long-lived peripheral cracks [8, 15, 16]. Thus, it is of central

importance to be able to predict this behavior. The equivalent load method fails to

accurately predict this shift in stress behavior. Thus, it cannot be used to explore

important aspects of general dent behavior.

The present study based on the double-cosine imperfection model has shown

that the equivalent load method does not appear to be as general as believed for

studying geometric imperfections. However, this study may also have some more

constructive insights. In particular, a preliminary assessment of the role of depth

and imperfection size in determining imperfection behavior has been made. Also,

fundamental understanding of the mechanics of center stress and peripheral stress

behavior of imperfections has been improved.

Having established a characteristic behavior of relatively small imperfections, it
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Fig. 46. Hoop membrane and bending resultant force profiles along center merid-

ian predicted using equivalent load method and finite element analysis for

ξ = 0.180 or d/D = 1%, m = n = 10 double-cosine imperfection.

remains to be seen whether defects need to be both deep and small in order to develop

peripheral stress features. The hoop stress profile of the 1 %, m = n = 10 case did

not indicate a clear presence of a size effect. Figure 46 shows the equivalent load and

finite element predicted resultants for this case. In fact, the membrane force resultant

predicted using finite elements in Fig. 46 has clearly been influenced by the smaller

defect size. This profile contains peak membrane resultant values at dent periphery

locations along with reduced values at the imperfection centers. The behavior seen

in this case seems to be a transitional situation falling between center membrane

resultants seen for larger imperfection and clear peripheral membrane resultants seen

for smaller, deeper imperfections.

Thus, it appears that center stress behavior transitions gradually to peripheral

stress behavior. Qualitative work in the literature has shown that relative imperfec-
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tion size plays a role in determining whether the dominant imperfection stress mode

is center stress or peripheral stress [8, 15, 16]. A comparison of the resultant force

profiles, shown in Figs. 45 and 46, of 3% and 1% deep m = n = 10 double-cosine

imperfections demonstrates that the tendency toward peripheral dent stress behavior

increases with depth for a given defect size. Thus, depth seems to play a previously

unnoticed role in determining dent stress behavior.

Up to this point, analysis has been restricted to comparing the hoop stress profiles

predicted along the center line at the top of the pipe. Hoop stress behavior shifts as

damage becomes deeper and/or smaller relative to pipe diameter. More insight into

the problem may be gained by examining overall pipe stress behavior. Figure 47 shows

a contour plot of the outer surface hoop stress distribution predicted by finite element

analysis in an 18′′, 1/4′′ pipe subject to a 1 ksi pressure. The pipe in Fig. 47 contains a

double-cosine imperfection with d/D = 2% and a relatively large, m = n = 2, spatial

extent. As anticipated by Fig. 39, peak hoop stress values develop at the centers of

the dents in Fig. 47. Large, possibly shallow, imperfections lead to the development

of bending stresses, as seen in the alternation of red and blue portions of the stress

contour plot in Fig. 47.

As damage becomes more localized, the stress behavior shifts. In the d/D = 2%

case, it was seen in Fig. 40 that hoop stresses along the meridian start to lose their

peaks at the dent center and develop peripheral stress features when m and n change

from 2 to 10. Figure 48 shows an overall view of outer surface hoop stresses developed

for the d/D = 2%, m = n = 10 case. A clearer picture of the local dent stress behavior

is seen in Fig. 49, a magnified portion of Fig. 48. In this magnified view, the outer

surface peripheral hoop stress features that arise in the dent center region are seen.

These stress localizations might be interpreted as being slightly interconnected from

dent depression to dent depression.
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Fig. 47. Stress contour plot from ABAQUS VIEWER made of outer surface hoop

stress distribution predicted using finite element analysis for 18′′, 1/4′′ pipe

with ξ = 0.360 or d/D = 2%, m = n = 2 double-cosine imperfection.
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Fig. 48. Stress contour plot from ABAQUS VIEWER made of outer surface hoop

stress distribution predicted using finite element analysis for 18′′, 1/4′′ pipe

with ξ = 0.360 or d/D = 2%, m = n = 10 double-cosine imperfection.
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Fig. 49. Magnified stress contour plot from ABAQUS VIEWER made of outer surface

hoop stress distribution predicted using finite element analysis for 18′′, 1/4′′

pipe with ξ = 0.360 or d/D = 2%, m = n = 10 double-cosine imperfection.

The interpretation that hoop stress peaks at the periphery of relatively local

double-cosine imperfections become interconnected is supported by Figs. 50 and 51.

These figures show full and magnified contour stress plots for deeper m = n =

10 dents, this time with d/D = 3%. In Figs. 50 and 51, peak hoop stress values

are clearly located in the transition regions between dents. In fact, the zones with

heightened levels of hoop stress connect to form a sort of tensile lattice that flows

around the imperfections. Thus, pipes with deep, highly local imperfections seem to

resist pressure load not by developing bending moment and membrane force in the

dent center but by shifting membrane load so that it flows around the imperfections.

This phenomena has been noted in the past [8, 15] and has been compared to the

way in which load flows around a hole in a plate.

The behavior transition that takes place as imperfections go from being relatively

shallow and large to being deeper and more localized appears to have at its root
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Fig. 50. Stress contour plot from ABAQUS VIEWER made of outer surface hoop

stress distribution predicted using finite element analysis for 18′′, 1/4′′ pipe

with ξ = 0.540 or d/D = 3%, m = n = 10 double-cosine imperfection.
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Fig. 51. Magnified stress contour plot from ABAQUS VIEWER made of outer surface

hoop stress distribution predicted using finite element analysis for 18′′, 1/4′′

pipe with ξ = 0.540 or d/D = 3%, m = n = 10 double-cosine imperfection.

a change in the way the imperfect shell redistributes load. Some combination of

increased moment and membrane force at the center of the dent results from shallow,

broad imperfections. In more localized imperfections, membrane force appears to

flow around the imperfection. It is believed that ultimately the relative membrane

stiffness is the fundamental source of the imperfection size effect explored here. This

idea has been posited in previous work [8, 15]. Geometric imperfections exist in

a displacement controlled environment. Shallow, broad imperfections have a load-

displacement response, or stiffness, that is similar to that of surrounding undamaged

shell. Thus, adequate imperfection deformation can occur to develop load in the

center of the imperfection. Deeper, more localized imperfections are less stiff owing

to their increased local curvature. As a result, the global deformations associated with

a pressure load are inadequate for the imperfection to develop equilibrating forces in

the center. The neighboring shell material must then accommodate the imperfection
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by developing increased local stresses at the imperfection periphery.

The equivalent load method does not predict the imperfection size-effect on stress

behavior. This shortcoming is a result of assumptions made in its formulation. Calla-

dine derived the equivalent load formulation by assuming that variations in geometry

and force were inter-related at a given point [17]. He determined the nature of this

inter-relationship by considering the effect of these variations on the membrane equi-

librium equation as was shown in Eq. 3.2. It has been shown here that in the case

of broad imerfections there is a direct relation between the geometric deviation of a

point in a shell and the force deviation experienced by that point. However, in more

localized imperfections, the force deviation caused by the geometric deviation is at a

different location than the actual geometric deviation. Thus, the basic assumption

of the equivalent load method appears to break down. Support for this idea can

be seen in a situation such as that shown previously in Fig. 41. In the actual shell

stress profile, predicted by the finite element method, the stress profile differs signif-

icantly from the geometry profile as peripheral stress features develop. At the same

time, however, the equivalent load method continues to predict a stress profile that

essentially follows the imperfection profile.

In contrast to the three-dimensional situation studied in this chapter, the equiv-

alent load method appears to work well even for deep, localized imperfection in the

two-dimensional case studied in Chapter III. This difference is a result of the fact

that shell three-dimensionality is what leads the stress distribution to differ from the

imperfection shape. In the two-dimensional case there is no mechanism for load to

redistribute as the dent localizes and deepens. Thus, no size effect results.

In the first section of this chapter is was shown that the pipe diameter-to-

thickness ratio also plays a role in determining imperfection stress behavior. Thus,

three-dimensional imperfection stress behavior is influenced by at least three param-
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eters: size, depth, and pipe geometry. It was seen that a size effect exists for three-

dimensional dent damage. Relatively broad, shallow dents develop stress deviations

in the dent center. Deeper, more localized dents, on the other hand, develop stress

features at the dent periphery. It will be left for the next chapter to determine the

details of this transition in behavior for the specific case of pipeline dents.

The equivalent load method was shown in Chapter III to be a useful tool for

studying the behavior of two-dimensional imperfections. However, this chapter has

shown that it is of limited value in studying three-dimensional defects. In fact, un-

derlying assumptions appear to limit the application of the equivalent load method to

situations in which imperfection profile is essentially the same shape as the resulting

stress deviation profile. As a result, the equivalent load method is poorly suited to

studying relatively localized imperfections.
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CHAPTER V

A METHOD FOR PREDICTING DENT TYPE

A. Introduction

In Chapter II, the fact that dents of differing geometry may differ significantly in

terms of fatigue and rerounding behavior was discussed. In particular, it was noted

experimentally by Keating and Hoffmann [8] that unrestrained longer dents tend to

have relatively short fatigue lives, develop cracks in the dent center, and experience

large amounts of post-indentation rerounding. On the other hand, shorter dents tend

to have longer fatigue lives, develop cracks at the dent periphery, and experience only

some post-indentation rerounding.

The most important practical aspect of the geometry effect on dent fatigue be-

havior is that it can produce a large disparity between the fatigue lives of different

dent types. Table III compares measured fatigue lives of otherwise similar long and

short dents studied in [8]. The data in Table III are for dents in 24′′ diameter, 1/4′′

thick API 5L X60 pipe. All dents were subjected to the same pressure history and

started at the identical initial depths indicated. Type A indentors were about 6′′ long

while Type BH-T indentors were about 3/8′′ long in the direction of the pipe. The

orientation of the longitudinal axis of these two indentor types was perpendicular, as

indicated in Table I of Chapter II. However, the overall dent geometry of these cases

corresponds to long and short narrow dents for Type A and Type BH-T indentors,

respectively. Figures 5 and 6 are pictures of dents produced by the Type A and Type

BH-T indentors respectively.

In Table III, dents that differ initially only in terms of length are seen to have

significantly different fatigue lives. Testing in [8] was halted at approximately 100,000
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Table III. Comparison of fatigue behavior for long Type A and short Type BH-T dents

in 24′′ diameter 1/4′′ API 5L X60 pipe seen in data taken from [8].

Indentor Induced Initial Failure Cycles to
Type Defect d/D (%) Mode Failure

A scratch 5 crack, center of dent 30,108
A scratch 7.5 crack, center of dent 18,608
A scratch 10 crack, center of dent 12,711

BH-T none 5 no cracking 109,332+
BH-T none 7.5 peripheral crack, post-proof test 109,332+
BH-T none 10 peripheral crack, post-proof test 109,332+

cycles and a final proof test to 77% of yield pressure was run. The failure modes

indicated for Type BH-T dents in Table III are either “no cracking” or describe the

development of visible short dent type peripheral cracking only after the final proof

test. On the other hand, Type A dents all failed in the first 30,000 cycles of testing.

This contrasting behavior indicates that long dent fatigue lives in Table III are about

an order of magnitude less than those of otherwise similar short dents. Because long

dents pose an apparent heightened fatigue risk compared to short dents it would be

beneficial to be able to distinguish long dents from short dents in the field.

Work has already been done that explains qualitatively the fundamental mech-

anism that prompts long dent fatigue behavior to differ from short dent fatigue be-

havior. This work was reviewed in Chapter II. Work by Beller [14] and by Rinehart

and Keating [16, 15, 21, 22] has established that dent geometry has a strong effect on

dent type because dent geometry has a fundamental effect on the stress environment

that develops in the dent region. In particular, longer dents develop elastic stress con-

centrations profile peaks in the dent center while while shorter dents develop stress

concentrations at the dent periphery. The location of fatigue failure and the relative

presence or absence of dent rerounding can be associated with the location of the
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dent stress concentration factor peaks.

Furthermore, long dent stress concentration factors tend to be larger than those

of short dents and tend to contain more bending stress. These long dent stress

concentration features, coupled with the likelihood of sharpened defects in the long

dent center, may account in part for the relative shortness of long dent fatigue lives.

However, as noted in Chapter II, dent fatigue behavior is significantly influenced

by residual stress as well as by stress concentration features. In addition, it seems

likely that some inelastic bending behavior may sometimes take place in the center

of long dents. These large inelastic stress concentrations may result in Region III

fatigue behavior instead of the Region II behavior assumed in the power law model

introduced in Chapter II. Thus, the complicated overall mechanics of long dent fatigue

behavior make it difficult to establish the exact magnitude of the influence that elastic

SCF behavior has on accounting for shorter long dent fatigue lives. However, elastic

SCF behavior certainly is an important factor in this problem.

In Chapter IV it was shown that the dent type dependency in elastic dent stress

behavior is due to a general size effect feature of dent behavior. In particular, broader,

shallower dents developed elastic stress concentration distributions with peaks in the

dent center. In more localized, deeper dents elastic SCF behavior shifts and SCF

peaks arise at the dent periphery. This behavior was seen in shells containing dent

patterns where the elastic hoop stress distribution shifted from having magnitude

peaks in the center, as seen in Fig. 47 of Chapter IV, to having a tensile lattice, as

seen in Fig. 50 of Chapter IV.

Work has also investigated criteria for use in distinguishing long dents from short

dents. Most notably, Rinehart and Keating [16] showed that fatigue lives of unre-

strained dents in [8] have an inverse relationship with the nondimensional parameter

Ldfw/D2t. This relationship is shown in Fig. 52 where d is taken to be final, post-
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Fig. 52. Fatigue life data taken from [8] plotted in terms of the non-dimensional ratio

Ldfw/D2t where L and w are indentor width and df is final, rerounded dent

depth (taken with permission from [16] courtesy of ASME).

rerounding dent depth, df . A better correlation exists between fatigue data from [8]

and the parameter Ldfw/D2t than exists with the traditional df/D parameter, as

shown in Fig. 7 of Chapter II. In fact, criteria can be developed from Fig. 52 for

distinguishing long dents from short dents.

Although the Ldfw/D2t parameter proposed in [16] appears to offer a somewhat

successful approach to distinguishing long and short dents it has several drawbacks.

First and foremost, it is completely empirical and is specific to the data set in [8].

As a result, uncertainty exists regarding its applicability to cases with circumstances

and pressure histories deviating from those used in [8]. Such limiting circumstances

include the need for similar levels of damage in the contact region, similar material

types, and similar residual stress features resulting from pressure history details.

In addition, the dents in [8] are rather narrow in the transverse direction. Other
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sets of test results are available in [9] that indicate that wider dents may have a

different mode of failure than narrower dents. The parameter Ldfw/D2t does a poor

job of distinguishing between the effects of dent length L and dent width w. For

example, holding D, t, and df fixed, the factor Ldfw/D2t would return the same

value for short, wide and a long, narrow dents having the same Lw, length-width

product. At the same time, it appears that wide dents may have a different failure

mode compared to long narrow dents. Dents studied by Fowler et al. [9] were relatively

wide and may have developed cracks at the circumferential dent periphery. Also, the

two-dimensional dent stress concentration model of Chapter IV suggests that wide

dent stress concentration profiles have lower central stress peaks than those of narrow

dents. The possible role played by dent width means that it is important to be able

to distinguish length from width in a dent categorization model.

The Ldw/D2t parameter of [16] is case specific and may confuse the length and

width indicators that possibly distinguish categories of dent behavior. In addition,

this model is data-specific. Thus, a more general approach to dent classification is

desirable. It would also be interesting to determine how to classify dents based on

elastic stress concentration behavior because these mode bounds would also define

limits on the equivalent load method, which was shown in Chapter IV to be unable

to analyze relatively short, deep dents with peripheral stress features.

B. Experimental Insights and Modelling Issues

It was noted above and previously in Chapter II that dent stress behavior is the

most significant parameter influencing dent fatigue behavior. In particular, geometry

dependent changes in dent elastic stress concentration behavior appear to account

for the existence of geometry based modes of dent behavior. Thus, if one can deter-



117

mine dent geometry values that distinguish long and short dent stress behavior, the

same geometry values can be used to distinguish between long and short dent fatigue

behavior.

It has been shown in Chapter III, and illustrated in Fig. 3 of that chapter, that

short dents and long dents have type-specific peaks in elastic stress concentration

profile present along the top longitudinal axis of the pipe. In particular, short dents

have peripheral peaks in their outer surface stress ranges and long dents have a center

peak in their surface stress ranges. Presumably, in a given pipe diameter there is some

dent length range that marks a transition from short dent to long dent type stress

behavior. This length range has yet to be quantified.

In [8], Type A dents typically behaved as long dents while Type BH-T and BH-

L dents were typically short dents. However, in the largest specimen tested, a 36′′

diameter, 3/8′′ thick pipe, this correspondence was not observed. The results for all

36′′x3/8′′ specimens are shown in Table IV. In Table IV, two of three Type A dents

have long-life peripheral cracking. A large diameter was present in this case. Thus,

the Type A dent was relatively short in terms of the pipe diameter compared to other

situations in [8] involving smaller diameter pipes. The shift in fatigue behavior of

Type A dents in 36′′ pipe indicates that the long dent-short dent transition problem

involves relative length.

Another feature of dent stress behavior can be observed in the data of Table IV.

It is not immediately clear why some Type A dents in the 36′′ pipe behave like long

dents and others behave like short dents. One possibility is that relative length is

not the only parameter involved in distinguishing long dents from short dents. The

shallowest Type BH-L dent was reported to develop a groove crack. While it is

not entirely clear what is meant by “groove crack,” elsewhere in [8] “groove crack”

usually refers to center cracks. If this dent developed center cracking, then both dents
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Table IV. Fatigue failure data for Type A and Type BH-L dents in 36′′x3/8′′ Gr. B

pipe taken from [8].

Indentor Induced Initial Failure Cycles to
Type Defect d/D (%) Mode Failure

A scratch 5 crack, center of dent 79,975
A scratch 10 peripheral cracking 101,125+
A scratch 10 peripheral leak, post-proof 101,125+

BH-L none 5 groove crack, 2390 large cycles after proof test 111,42++
BH-L none 10 peripheral leak, post-proof test 111,425+
BH-L none 15 no cracking 111,425+

in Table IV with initial d/D ratios of 5% developed center cracking. On the other

hand, deeper dents in Table IV, with initial d/D values of 10% and 15%, developed

peripheral cracks. Thus, it appears that relative dent depth also plays a role in

determining whether dents are “long dents” or “short dents”.

The role of depth in determining dent mode was also seen in Chapter IV. Three-

dimensional dent patterns with a given amount of localization actually developed

more pronounced peripheral stress features as dent depth increased. For example,

compare the m = n = 10 stress profiles shown in Figs. 38 and 42 of Chapter IV.

Because dent type appears, based on experimental evidence, to be influenced by

relative length and relative depth the designators “short dent” and “long dent” no

longer appear appropriate. Dents exhibiting center cracking, short life, and significant

rerounding will subsequently be called Mode C dents, in reference to their center stress

feature and center mode of cracking. Dents exhibiting peripheral cracking, long life,

and low levels of rerounding will subsequently be called Mode P dents, in reference

to their peripheral stress feature and peripheral mode of cracking.

The fact that relative dent depth and relative dent length play a role in distin-
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guishing Mode C and P dents can also be shown by considering the effect of these

geometry values on dent stress. While this effect was shown in Chapter IV, a more

thorough investigation of the behavior of a single dent will be carried out here. Ap-

proaches to studying dent stress have been explored in earlier chapters. Finite element

analysis appears to offer the most direct approach and will be used in this chapter.

The discussion in Chapter III of the equivalent load approach led to a significant

conclusion. Namely, elastic dent stress concentration features are a direct result of

the geometric imperfection of the dent. This imperfection leads to a redistribution

of stress in the pipe wall and can lead to plate bending. Subtle differences in the

features of this imperfection no doubt lead to differences in stress behavior. However,

as a first approximation, it seems reasonable to assume that if one uses a typical

dent profile model then one should get a prediction of the typical stress behavior of

a range of dent configurations in which local profile features differ slightly from this

ideal profile. As a result, analysis of a simple profile that is easily modelled can lead

to an understanding of what dent geometry values distinguish Mode C and P dents.

The dent analysis problem is also complicated by the evolutionary nature of

the dent life-cycle. After indentor removal, unrestrained dents that are the focus here

reround to a different, stable configuration [8, 24]. Dents undergo a significant change

in geometry during rerounding. Figure 53 illustrates typical changes in longitudinal

profile produced by rerounding for Mode C and P dents. Mode C dents undergo a

relatively large geometry change.

Dent stress behavior is largely a result of profile shape. It would be useful to vary

dent length in an analysis of dent stress behavior and to determine when the hoop

stress concentration profile shifts from having a central peak to having a peripheral

peak. However, in the post-rerounding configuration, Mode C and Mode P dents

have very different profile shapes. These differences make it difficult to formulate a
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Fig. 53. Illustration of change in longitudinal profile from pre-rerounding to

post-rerounding state for Mode C (“long”) and Mode P (“short”) dents.

single dent profile model that can be used to find the transition geometry.

Unlike the post-rerounding profiles, the pre-rerounding profiles in Fig. 53 of Mode

C and P dents have very similar features. Furthermore, the fact that Mode C dents

undergo large amounts of dent center rerounding indicates that a central SCF peak

is still present in the pre-rerounding configuration. Mode P dents don’t experience

significant dent center rerounding. This observation suggests Mode P dents don’t have

central SCF features. Furthermore, because they always have the same approximate

shape, Mode P dents can be expected to have peripheral stress peaks in the pre- and

post-rerounding configurations.

Using a detailed, full life-cycle finite element model that considers indentation

and rerounding phases of dent life and that is described in [8, 16, 22, 21] it is possi-

ble to demonstrate more rigorously that central and peripheral stress features result

from more easily modelled pre-rerounding dent profiles. Figures 54 and 55 show outer

surface hoop stress concentration profiles determined using this finite element model.

In both cases, a longitudinal dent was formed to a depth of 10% in an 18′′x1/4′′ X60
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Fig. 54. Pre- and post-rerounding outer surface hoop stress concentration factor pro-

files from complete life-cycle FEM analysis of 18′′x1/4′′ X60 pipe with 1′′

indentor.

pipe. The models used to generate Figs. 54 and 55 had 1′′ and 7′′ indentors respec-

tively. Indentation occured when the pipe was unpressurized. After the indentor is

released, residual stress is determined and pressure is applied. The pre-rerounding

hoop stress concentration factor is based on the stress change that occurs during this

initial pressure ramp-up. Rerounding is modelled by two 0% to 70% to 0% pres-

sure ramp-ups cycles. Post-rerounding residual stress values are then determined and

stress concentration factors are determined from a third pressure ramp-up.

Although the SCF profiles in Figs. 54 and 55 differ considerably from the pre-

rounding state to the post-rerounding state, at least one important feature remains

consistent between the two states. Namely, the Mode P peripheral stress feature is

present in both the pre-rerounding and post-rerounding situations shown in Fig. 54.

Likewise, in Fig. 55 a definite center SCF feature is present in both the pre- and
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Fig. 55. Pre- and post-rerounding outer surface hoop stress concentration factor pro-

files from complete life-cycle FEM analysis of 18′′x1/4′′ X60 pipe with 7′′

indentor.

post-rerounding configuration.

A study seeking transition geometry values does not need highly accurate stress

magnitude information, only an accurate sense of whether a dent will have center or

peripheral stress features. Detailed finite element analysis as well as physical argu-

ments suggest that a simple, single-depression model of dent geometry will provide

information that can be used to predict whether a certain dent geometry is a Mode

C or P geometry.

C. A Simple Model

It appears likely that the main aspects of long and short dent stress features are not

highly dependent on precise details of dent geometry or pressure history. In addition,

one doesn’t necessarily need completely accurate magnitude information if one only
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seeks to distinguish Mode P dents from Mode C dents. These two facts suggest

that a simple finite element model can be used to determine dent length and depth

values that designate the transition zone between Mode C and P dents. These models

need not account for all stages of the dent life cycle. Instead, if a pipe with a dent

imperfection is meshed and analyzed as an elastic situation, an indication of whether

the dent behaves as Mode C or P should result.

The finite element package ABAQUS [37] is used to perform an elastic finite

element analysis. A doubly-symmetric model is used with boundary conditions like

those shown in Fig. 36 of Chapter IV. Four noded linear Type S4R elements are used

with an elastic material model. A Young’s Modulus of 29,000,000 ksi and a Poisson

Ratio of 0.30 are used as material properties. Because the influence of geometry

on elastic stress concentration behavior is being studied and because the purpose of

this study is not to obtain accurate stress magnitudes, inelastic material behavior is

not studied. The elements have 11 integration points and a geometrically nonlinear

analysis option is used. For every model, a uniform internal pressure of 1 ksi is

applied. These models are simple and as a result can be used to efficiently generate

data for a range of dent geometry cases.

The dent profile is included directly in the mesh geometry. A FORTRAN 77

code was written that generates the mesh. The dent profile is based on a normal

distribution similar to that used in the equivalent load analysis discussed in the pre-

vious chapter. This profile model generates single depression dents. Dent profile r is

determined over the longitudinal coordinate x and circumferential angle coordinate φ.

Given a pipe radius R, a dent depth ξ, and longitudinal and circumferential “decay”

terms x0 and φ0, the pipe wall profile can be written as:

r = R− ξ exp

(
−1

2

(
x

x0

)2
)

exp

−1

2

(
φ

φ0

)2
 (5.1)
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Fig. 56. Normalized longitudinal dent profiles developed using Eq. 5.1 with d/D ratios

of 5% and three values of x0.

This model of dent profiles was shown in Chapter IV to be capable of generating

a wide range of circumferential cross-sections. It is also capable of generating single

depression dents of a variety of lengths. Dent length is controlled through the value

of x0, essentially a spatial decay rate. The value of x0 can be related to actual dent

length. Figure 56 shows three longitudinal dent profiles generated using Eq. 5.1.

These profiles are normalized against pipe diameter. All three cases have a depth-

to-diameter ratio of 5%. While Eq. 5.1 can’t model a long flat dent it is capable

of representing long depressions. Because it requires only a single parameter, x0, to

describe a considerable range of dent lengths, Eq. 5.1 offers a simple means of easily

developing models for studying a range of dent configurations.

Finite elements used in this analysis have a longitudinal dimension of 0.25′′ and

an angular extent of π/180 or 0.0174 radians. Other, more complicated finite element

models of dent behavior that model both contact and inelastic rerounding have been

discussed elsewhere [8, 21, 22, 16] and have been demonstrated to have reasonable
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Fig. 57. Front view taken from ABAQUS VIEWER of mesh generated for the case

φ0 = π/24, x0 = 0.25, ξ/D = d/D = 0.05.

convergence with 0.5′′ by 0.0262 radian elements. Because the mesh is finer in the

present model and because the modelling issues are more straightforward here than

they are in the more complicated model, convergence is assumed to exist.

Images of example meshes generated using a mesh generation routine that im-

plements Eq. 5.1 are found in Figs 57 through 60. Figures 57 and 58 are front and

side views of a mesh containing a dent with x0 = 0.25′′. Figures 59 and 60 are front

and side views of a mesh containing a dent with x0 = 4.5′′. Both pairs of figures were

generated using the ABAQUS post-processer ABAQUS VIEWER and show front and

side views of typical generated meshes used in determining Mode C to P transition

dent geometries. In both cases φ0 = π/24, a narrow dent situation.
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Fig. 58. Side view taken from ABAQUS VIEWER of mesh generated for the case

φ0 = π/24, x0 = 0.25, ξ/D = d/D = 0.05.
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Fig. 59. Front view taken from ABAQUS VIEWER of mesh generated for the case

φ0 = π/24, x0 = 4.5, ξ/D = d/D = 0.05.
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D. Aspects of Stress Effects of Dent Geometry Features

Using the finite element model described in the previous section, a general sense of

the effects of certain geometry features on dent stress behavior can be developed. It

is important to remember that the simplified approach used in this chapter does not

offer a fully accurate picture of stress magnitudes. However, the approach can be

used to determine what role different parameters play in determining whether a dent

is Mode C, Mode P, or belongs to some other mode, perhaps associated with wider

dents.

Existing experimental data [8, 9] covers a wide range of dent situations. How-

ever, details about dent geometries in [9] are somewhat unclear. More information is

available about the dent geometries studied in [8]. As a result, analytical efforts will

focus on geometries for which there is data available in [8]. This approach is used

to avoid analysis results that can’t be judged in terms of experimental data. One

problem with the data set available in [8] is that it is confined to rather narrow dents.

As a result of both this fact and the need to focus analysis on cases for which exper-
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imental data is available, this study will be primarily restricted to a consideration of

narrow dents.

Although they will not be studied in detail here, wide dents are an important

class of damage. In fact, the possibility exists that they have their own dent fatigue

mode not covered by Mode C or P. Experimental work reported in [9] by Fowler, et

al. shows that many of the wider dents studied actually failed at what appears to

be the circumferential dent periphery. More analysis is needed to explore the relative

threat posed by this failure mode.

Using the finite element model and dent profile model described in the previous

section, qualitative aspects of the effect of dent geometry on dent stress behavior can

be studied. The stress behavior of a dent is complicated. Post-processor applications

like ABAQUS VIEWER can be used to look at color contour plots of stress over the

entire surface of a pipe model. These plots are useful to judge locations of interest

and general trends as was done in Chapter IV. However, these sorts of plots are

highly qualitative and, in the present case, tend to contain far more information than

necessary.

In the case of narrow dent fatigue, the location of interest is the longitudinal

centerline of the dent. This line falls on the approximate location where all Mode

C and P fatigue cracks were observed to develop in experiments. The dent fatigue

model [21, 22] discussed in Chapter II is based solely on hoop stress behavior behavior

at this location. While some multi-axial fatigue effects are no doubt present, the

overall accuracy of the fatigue model presented in [21, 22] suggests that hoop stress

behavior is the stress feature that plays the predominant role in driving dent fatigue.

Both residual stress and stress concentration factors are important. However, it is

hypothesized that the dent length effect on fatigue is largely due to dent length effect

on SCF behavior. As a result, this study will focus on understanding the influence
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Dent Length

Fig. 61. Illustration of definition of dent length: the shortest straight-line distance

between the two closest points on the longitudinal axis that are not noticeably

part of the local dent depression.

of dent geometry on hoop stress features present along the longitudinal centerline of

the dent.

Before hoop stress effects of dent geometry can be explored, one issue related to

the dent model in Eq. 5.1 must be addressed. Dent length and width are determined

in Eq. 5.1 through two spatial decay terms, x0 and φ0. These terms must be related to

actual dent geometry. The term x0 relates to dent length. An accurate measurement

of dent length is probably somewhat subjective. In this case, dent length is defined as

illustrated in Fig. 61. As shown in Fig. 61, dent length is defined as the straight-line

distance between the two closest longitudinal points that are not noticeably in the

dent depression. This measurement seems practical since it can be done with some

degree of accuracy and repeatability by laying a straight ruler along the longitudinal

axis of the pipe and reading the distance between the two points of the ruler that

first come in contact with the pipe.

To relate the spatial decay term x0 to actual dent length it is assumed that the

two closest points not noticeably part of the dent depression occur when the dent

profile term accounting for deviation from perfect radius R is 5% of its maximum
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value. In other words, the dent length L occurs when:

exp

(
−1

2

(
x

x0

)2
)

= 0.05 for x = L (5.2)

This condition can be shown to be satisfied when:

L = 2.4477 (2x0) (5.3)

Use of Eq. 5.3 provides a simple way to relate results obtained using the normal

distribution dent model in Eq. 5.1 to actual dent sizes measured using the definition

illustrated in Fig. 61.

With a dent model, an analysis approach, and a means of relating model param-

eters to physical parameters it is now possible to explore aspects of the influence of

dent geometry parameters on dent stress behavior. It makes sense to first demonstrate

that this approach indeed predicts the length dependent, Mode C to P transition seen

in Chapter IV and in the experimental results of [8]. Figure 62 shows elastic hoop

stress concentration factor profiles for increasing values of dent length. In Fig. 62,

an 18′′ diameter 3/8′′ thick pipe is modelled. In all cases, the dent width descrip-

tor φ0 is held fixed at π/24. All dents have a deepest depth of 0.540′′ or 3% of the

pipe diameter. As expected, for shorter dent situations, L = 1.33′′ and L = 4.90′′

(L0 = 0.5′′ and L0 = 2.5′′), clear peripheral stress features indicative of Mode P dent

behavior are exhibited. For long dent lengths, L = 9.79′′ and L = 14.69′′ (L0 = 4.0′′

and L0 = 6.0′′), center peak SCF profiles corresponding to Mode C behavior are seen.

Another feature worth pointing out in Fig. 62 is the fact that as dent length

increases, the peak hoop stress concentration magnitude increases. While the behav-

ior of real dents is considerably more complicated than the simplified problem being

considered here, this result is still interesting. It has been discussed in Chapters II
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and III that imperfections in shells lead to stress deviations. Presumably, longer

dents are actually larger deviations from the standpoint of hoop stress and lead to a

greater overall disturbance in the stress system associated with a given dent. From

a practical standpoint, increases in stress concentration magnitude associated with

increases in dent length help account for the fact that relatively long dents with center

stress peaks studied in [8] tended to have much shorter lives than shorter dents, as

was illustrated in Table III.

Another feature evident in Fig. 62 is the continued presence of a slight periph-

eral peak even in some longer dent cases where central SCF levels indicate Mode C

behavior. This feature is most evident in the curve for the L0 = 4.0, L = 9.79′′ case

shown in Fig. 62. However, a peripheral peak appears to remain as length increases.

At the same time, as length increases, the central region of the SCF zone increases

in magnitude until it achieves a magnitude on the same order of the peripheral peak.

This apparently gradual transition from Mode P to C behavior raises a question.

Namely, one must determine what ratio of center SCF value to peripheral SCF value

marks the transition from Mode P to Mode C behavior. This issue will be addressed

in the next section.

Discussion in a previous section of this chapter and work presented in [16] shows

that the significant dent length parameter in terms of fatigue effects is relative dent

length with respect to pipe diameter. This feature of dent fatigue behavior may be

motivated by the elastic nature of dent SCF behavior. If the dent SCF problem is

essentially elastic, then two pipes with differing absolute dimensions containing dents

will have the same elastic behavior if the relative sizes of all of the pipe and dent

features are kept consistent. This fact is illustrated by returning to finite element

analysis results. Figure 63 shows Mode C hoop SCF profiles predicted for 12′′x1/4′′

and 18′′x3/8′′ pipes containing dents that have an angular extent of φ0 = π/24. For
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Fig. 63. Hoop stress concentration profiles calculated for 18′′x3/8′′ and 12′′x1/4′′ pipe

containing dents with φ0 = π/24 and x0 = 6.0′′ and x0 = 4.0′′ respectively

and plotted in terms of absolute length in inches from dent center.

the SCF profiles shown, x0 = 4.0′′ for the 12′′x1/4′′ pipe and x0 = 6.0′′ for the

18′′x3/8′′ pipe. The pipe and dent geometry values are chosen to maintain consistent

aspect ratios. In both cases, the diameter-to-thickness ratio, D/t, is 48, the length

to diameter ratio is 1/3, and the width to diameter ratio is π/24. The resulting SCF

profiles in Fig. 63 do not match because the “Distance From Dent Center” axis on

the graph is still in absolute terms. In Fig. 64, this axis is put in relative terms

with respect to pipe diameter. The resulting hoop SCF profiles in Fig. 64 overlap.

Thus, the expected linear scaling of elastic dent models is demonstrated. Also, the

importance of relative dent geometry measurements is reinforced.

The preceding discussion has established several important aspects of the effect

of dent length on dent hoop SCF behavior using a simple finite element analysis
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approach. First, as expected, shorter dents result in Mode P stress behavior while

longer dents result in MOde C stress behavior. In addition, as analysis of data in [8]

indicates, dent length is considered long or short depending on its relative value

with respect to pipe diameter. This result is essentially due to the linear scaling of

elastic dent SCF behavior. While the current discussion has contributed to existing

qualitative understanding, one important practical question remains to be answered.

Namely, it is still not clear how to distinguish Mode C and Mode P dents over a

range of general cases. This problem will be addressed in the next section. However,

another aspect of the effect of dent geometry on dent stress behavior needs to be

explored first.

Conventionally, a great deal of attention has been given to dent depth. Existing

approaches for assessing dent damage in pipelines specify depth-to-diameter ratios

that indicate whether or not a dent requires repair [11, 12, 13]. Experimental research

has indicated that dent depth is an indicator of dent severity. This result was a

conclusion of the study conducted by Fowler et al. Although not a major conclusion

of the study by Keating and Hoffmann [8], the final observed dent depth-dent severity

relationship is still evident within a given dent mode in data taken from [8]. Consider

Table III, appearing earlier in this chapter and containing measured fatigue lives

taken from [8] for a 24′′x1/4′′ pipe. Within the set of Mode C dents in Table III,

in this case resulting from Type A indentors, fatigue life decreases as relative initial

depth of indentation increases.

Because no Mode P failures are shown in Table III, a different data set, taken

from [8] for a 12′′x1/4′′ pipe and Type BH-T indentors, is used. Table V shows initial

and final relative dent depths, cycles to failure, and final condition for these dents. In

Table V, deeper dents, specifically those with final d/D values of 6.58% and 7.75%,

fail due to fatigue while the shallower dents do not. For the two dents that failed in
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Table V. Experimentally observed fatigue behavior reported in [8] for Type BH-T

dents exhibiting Mode P behavior in 12′′x1/4′′ X60 pipe.

Initial Final Failure Cycles to
d/D (%) d/D (%) Mode Failure

5 4.41 Shallow Periph. Post-Proof 100,943
7.5 5.00 Shallow Periph. Post-Proof 100,943
10 5.42 Shallow Periph. Post-Proof 100,943

12.5 6.58 Peripheral Leak 89,684
15 7.75 Peripheral Leak 80,880

fatigue the deeper dent had the shorter life.

Tables III and V indicate that deeper dents within a failure mode appear ex-

perimentally to have shorter lives. This result was anticipated by the results of the

two-dimensional equivalent load model reported in Chapter III. This model predicted

that, at least in two dimensions, dent hoop SCF values increase linearly with dent

depth. Thus, deeper dents, particularly deeper Mode C dents, are predicted to have

shorter fatigue lives.

Data from [8] shown in Table IV indicates that dent depth may influence more

than just stress magnitude. As discussed previously, the shallowest dents in Table IV

appear to behave as Mode C dents while deeper dents appear to behave as Mode P

dents. This fact appears to hold true for both Type A and Type BH indentors in the

case of the 36′′ pipe data set in [8]. Because only a very limited set of experimental

evidence is available that exhibits this depth effect on dent mode type and because

some questions surround the terminology used in [8] to report one of these failures,

it makes sense to explore the problem further using the simple elastic finite element

dent model.

Figure 65 shows SCF profiles obtained from models of a 18′′x3/8′′ pipe containing

dents with x0 = 4, φ0 = π/24, and increasing values of depth. The depth value ξ
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Fig. 65. Hoop stress concentration profiles calculated for 18′′x3/8′′ pipe containing

dents with φ0 = π/24 and x0 = 4.0′′ and three increasing values of dent depth

d/D.

is converted to a relative dent depth value d/D. In Fig. 65, a clear Mode C SCF

profile is apparent for d/D values of 1% and 3%. In fact, the magnitude of the SCF

increases with depth for these cases. This increase was as anticipated by the preceding

consideration of experimental results [8], existing dent acceptance approaches, and

the equivalent load approach discussed in Chapter 3. However, when d/D becomes

5%, the center SCF peak in Fig. 65 disappears and a peripheral peak feature typical of

Mode P dents in Fig. 62 appears. Thus, at a fixed dent length, as dent depth increases,

stress behavior shifts from Mode C center stress peak behavior to Mode P peripheral

stress peak behavior. Limited experimental evidence introduced in Table IV indicates

that this shift in stress behavior is accompanied by a shift in fatigue behavior.

The way in which the parameters of depth and length influence dent categoriza-
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tion can be understood in terms of a simple hypothesis that has been presented in the

past by Keating and Hoffmann [8] and by Rinehart and Keating [15]. Essentially, dent

geometry differences can be viewed as leading to fundamentally different mechanical

responses. Dents have two features that distinguish them from the surrounding pipe

material. As shown in the overview of the equivalent load method presented in Chap-

ter II, dents alter the geometry of the pipe’s shell structure. These alterations perturb

the normal stress flow in the shell. For example, bending moments may arise. At the

same time, dents are also localized zones of reduced stiffness compared to the stiffness

of the surrounding, undamaged pipe material. If the dent geometry is especially deep

and abrupt the stiffness loss in the dent region becomes so large that membrane loads

will begin to flow around the dent as seen in the tensile lattices that developed in

Figs. 48 and 50 of Chapter IV. Intuitively, a round, short dent would be expected to

begin to behave like a hole in a plate as its depth approached some large value.

This two-part view of dent mechanics means that dents that are fairly long com-

pared to the pipe size and that are fairly shallow will act like structural imperfections,

developing bending stresses in the center. These situations are Mode C situations.

On the other hand, relatively localized, deep damage behaves like a lower stiffness in-

clusion in the pipe material and develops peripheral stress features. These situations

result in Mode P behavior. The transition between these limiting situations does not

appear to be abrupt.

This section has attempted to demonstrate several aspects of dent hoop stress

concentration behavior using a simple elastic finite element model. Dent residual

stress behavior, although important to understand the complete dent fatigue problem,

was not explored. First, dent behavior can be better understood if it is categorized

by length , as first suggested in [8]. Mode C dents have center cracking associated

with center SCF peaks and Mode P dents have peripheral cracking associated with
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peripheral SCF peaks. Other categories of dents may also exist. Dent categorization is

geometry dependent. For a fixed depth of dent, dent behavior transitions from Mode

P to Mode C as dent length increases. For categorization purposes, dent length should

be measured relative to pipe diameter. For a fixed length dent, dent SCF behavior

transitions from Mode C to Mode P as relative depth increases. Thus, in order to

know whether a dent is Mode C or Mode P one needs to know both the dent length

and the dent depth. This combined influence has not been remarked upon in the past

by other investigators.

E. A Simple Method for Distinguishing Mode C and P Dents

Mode C dents have much shorter fatigue lives than to Mode P dents [8]. Therefore a

simple means of determining, before failure, whether a given dent in the field is Mode

C or P would be of great practical value. It was established in the previous section

that this determination depends on the relative length and depth of the dent. In

fact, one could draw a map of dent behavior in terms of dent geometry, as illustrated

in Fig. 66. The map shown in Fig. 66 only describes whether a given dent falls into

Mode C or Mode P. No information is given regarding actual fatigue life, stress values,

or relative differences between dents within a mode. However, earlier discussion has

demonstrated that Mode C dents have much shorter fatigue lives than Mode P dents

and should be considered a definite repair priority.

A preliminary check of the merit of this ”dent mapping” approach is possible

by referring to the experimental record. Figure 67 shows dent fatigue results taken

from [8] and plotted in terms of relative dent length L/D and final relative dent

depth df/D. The only aspect of dent fatigue plotted is whether a given dent falls into

Mode C or Mode P. Mode C dents developed visible center fatigue cracking. Mode P
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Fig. 66. Schematic representation of “map” used to distinguish Mode C and Mode P

dents based on relative length L/D and relative depth d/D measurements of

dents.
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dents are all remaining unrestrained dents that either had visible peripheral cracking

or no cracking at all. Dent depth is taken from records in [8] that contain values

of dent depth at the dent center. For Mode C dents this value is probably not the

deepest possible measurement that could be obtained from a rerounded dent given the

local convexity resulting from high levels of rerounding associated with these dents.

Length measurements were taken from several available dent specimens based on the

definition illustrated in Fig. 61. Type A dents were roughly 10′′ long, Type BH-T

dents were roughly 8.25′′ long, and Type BH-L dents were roughly 8.5′′ long.

The data plotted in Fig. 67 is the complete set of unrestrained dent data in [8].

Possible effects of depth-to-diameter ratio, relative differences in width, and other

variables are not taken into account in Fig. 67. However, for almost the entire data

set, Mode C dents form a cluster in the left and upper-left region of the map while
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Mode P dents cluster in the right and lower-right regions of the map. This clustering

is similar to that predicted intuitively in Fig. 66

The existing experimental data set is limited. For example, only a limited range

of dent lengths are considered and only two types of pressure histories were applied.

In addition, it is not entirely clear how to move from Fig. 67 towards a reliable dent

categorization approach. It would be worthwhile to develop an analytical means of

determining dent type and to validate this approach with existing experimental data.

A validated approach could then be used to develop assessment tools that are much

broader in application than those permitted by relying only on existing test data.

The mode characterization analysis used here relies on elastic stress predictions

developed using the simple elastic finite element model of a normal distribution type

dent that was introduced earlier in this chapter. Earlier analysis showed that dents

with clear peripheral elastic SCF peaks are Mode P dents while dents with a single

central elastic SCF peak are Mode C dents. However, many dents fall into a transition

region of behavior and have both noticeable peripheral peaks and significant central

SCF values. These three types of SCF plots are shown, in normalized form, in Fig. 68.

All three plots were taken from models of 16′′x1/4′′ pipes containing dents with d/D =

3.0% and φ0 = π/24. For the Mode P, transitionary, and Mode C cases, x0 values were

0.75, 2.5, and 4.5 respectively. Figure 68 raises the question of how one demarcates

the boundary between Mode C and Mode P dents.

One approach to distinguishing Mode C and P dents is to determine the values

of the outer surface elastic SCF profile at the dent center and at the peak peripheral

value. A measure of the dent mode would then be the ratio of the center elastic SCF

value and the peripheral elastic SCF value. For example, a low ratio indicates that

the center elastic SCF is relatively low compared to the peripheral elastic SCF and

that the dent is likely going to behave as a Mode P dent. Using the information



143

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10
Distance From Dent Center (in.)

N
or

m
al

iz
ed

 S
C

F 
V

al
ue

s 
(k

22
/k

22
m

ax
)

Mode P SCF Profile
Transitionary SCF Profile
Mode C SCF Profile

Fig. 68. Three normalized outer surface SCF profiles illustrating clear Mode C and P

behavior and a typical transitional profile. Profiles are based on models of

16′′x1/4′′ pipes containing dents with d/D = 3%, φ0 = π/24, and variable

values of x0.



144

generated by finite element models, ratio values can be easily calculated for a variety

of different dent configurations. This ratio of center SCF to periphery SCF value is

called the C-P ratio here.

For each fixed center/periphery SCF ratio value a curve can be drawn on the

L/D-d/D map shown in Fig. 66. If a set of these curves is drawn for different constant

values of the C-P ratio, a “topographic” type of plot would result. Such a map could

provide a sophisticated understanding of the C-to-P transition zone and would provide

insight into the mechanics of dents.

Given the fact that this study is in many ways a first attempt at understanding

dent categorization and given the interest in practical dent assessment tools, a com-

plete center/periphery SCF ratio topography is not developed here. Instead, only

certain “elevations” on the dent topography map are sought. In particular, sets of

ratios of center SCF to periphery SCF are evaluated in terms of their ability to dis-

tinguish Mode C and P behavior. A single ratio line on the L/D-d/D map that

distinguishes dent mode is sought.

It is not entirely clear how to pick a single value of the ratio between the peak

center SCF and peak peripheral SCF that can be used to distinguish Mode C and P

dents. In reality, a range of these ratio values probably correspond to transitionary

cases. A center/peripheral SCF ratio value of 1.0 might be used as an indicator. This

value would select only situations without any peripheral stress features as Mode C.

However, a Mode C dent is clearly more of a fatigue threat than a Mode P dent so

it is important to pick a ratio value that is somewhat more conservative. A range of

ratio values and their relation to experimental results are considered here.

A fixed value C-P ratio line is determined by using linear interpolation to analyze

a matrix of SCF results obtained using finite element analysis. The SCF values are

obtained here using the simple elastic finite element model to analyze a variety of
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Table VI. Center SCF / Peripheral SCF values and corresponding C-P ratio values

predicted using elastic FEM model of normal distribution dent profiles for

indicated L0 and d/D values in a 12′′x1/4′′ pipe.
d/D (%)

L0 1 2 3 4 5 7
0.5 31.00/31.37 27.29/38.16

=99.0% =71.5%
2.5 71.85/80.50 60.58/90.57

=89.2% =66.9%
4.0 104.3/105.8 103.9/119.9 96.66/133.1

=98.5% =86.7% =72.6%
6.0 144.8/147.4 150.1/164.6 146.2/197.4

=98.2% =91.2% =74.1%

meshes generated using the normal distribution dent model. For example, Table

VI shows center SCF, peripheral SCF, and C-P ratio results for a 12′′x1/4′′ pipe

containing dents with d/D values ranging from 1% to 7% and L0 length parameters

ranging from 0.5 to 7.0.

As apparent in Table VI, it is not possible to know the exact L0 and d/D com-

binations that will lead to a given C-P ratio. It is possible, by varying parameters

adequately, to bound the value that is being sought. To then determine the actual

L0 and d/D values that would result in a given C-P ratio value, linear interpolation

is used. The L0 value is typically held fixed and the slope of the C-P ratio is found

in terms of the change in d/D. The d/D value that results in the desired C-P ratio

value for a given L0 is then found. Table VII illustrates this process for a C-P ratio of

75% based on the results shown in Table VI. An important feature apparent in Table

VII is that the C-P value slope is not fixed and decreases with increasing L0 values.

In addition, it is not clear even for a given L0 value that C-P ratios vary linearly

with d/D. As a result, the use of linear interpolation is expected to only produce
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Table VII. Illustration of method used to calculate dent geometries corresponding to

C-P ratios of 75% using results of the type presented in Table VI for a

12′′x1/4′′ pipe.

L0 d range C-D slope C-D start ∆d d75%

0.5 1% ⇒ 2% -27.5% 99% 0.873 1.873%

2.5 3% ⇒ 4% -22.3% 89.2% 0.637 3.637%

4.0 4% ⇒ 5% -14.1% 86.7% 0.830 4.830%

6.0 5% ⇒ 7% -8.55% 91.2% 1.894 6.894%

an approximate 75% C-P curve. However, inaccuracies in this line seem likely to be

reasonable given other uncertainties in the analysis.

Knowing L0-d/D combinations at which the C-P ratio is a given value, a curve

can be plotted and used to distinguish Mode C and P dents for the case in question.

The plotted C-P curve is most useful if it is presented in terms of actual dent length

L instead of L0 and the 2.4477 L0 to L conversion is used to affect this change.

Figure 69 shows the resulting 90%, 75%, and 60% C-P curves on a C-P map. The

curve is fairly linear and does not cross through the origin.

It was suggested in Fig. 66 that a type of map could be developed that would

classify dents in terms of Mode C or P behavior based on relative dent length, L/D,

and depth, d/D, measurements. Figure 67 demonstrated that experimental data

from [8] does indeed seem to fall into the sort of layout suggested in Fig. 66. Next, a

predictive method for developing criteria for distinguishing Mode C and P dents was

introduced and used to develop a line, shown in Fig. 69, that divides the C-P map

into Mode C and P regions. The next issue is whether or not the predictive approach

successfully predicts experimental results.
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Table VIII. List of pipe diameters and thicknesses along with corresponding D/t ratios

for pipes studied experimentally in [8].

D (in.) t (in.) D/t

12′′ 3/8′′ 32

12′′ 1/4′′ 48

16′′ 1/4′′ 64

18′′ 1/4′′ 72

24′′ 1/4′′ 96

30′′ 3/8′′ 80

36′′ 3/8′′ 96

Dent fatigue failure data is available in [8] for seven pipe situations. These seven

situations and the corresponding diameter-to-thickness, D/t, ratios are listed in Table

VIII. Typically both Type A and either Type BH-T or BH-L indenters were used in

each pipe type. Dents that developed center cracks are considered Mode C dents

and all other unrestrained dents that either developed peripheral cracks or no cracks

at all are considered Mode P dents. Because dents with no cracks do not possess

clear peripheral cracks there is some question about assuming they fall into Mode

P. However, the relatively short life of typical Mode C dents suggests that, in the

typical case, a dent that did not develop a center crack in 100,000 cycles is a longer-

lived Mode P dent. One might question whether the lack of peripheral cracking is an

indication of a third dent type. It is believed here that the consistently narrow width

of all dents in [8] means that non-Mode C dents are very likely all members of Mode

P.

Parametric studies of each of the seven pipe situations listed in Table VIII were
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Fig. 70. C-P map showing test results from [8] by failure mode for 12′′, 3/8′′ (D/t=32)

X60 pipe with a low-high pressure history and corresponding 75%, 50%, 40%,

and 30% C-P curves generated with interpolated finite element results.

carried out. As described above and as illustrated in Tables VI and VII, the results

of these studies were used to calculate the location of the C-P lines of several fixed

values on the C-P map for each pipe case. The resulting C-P lines are plotted along

with the appropriate experimental data in Figs. 70 through 76. The C-P ratio curves

shown in Figs. 70 through 76 are D/t case specific.

It is important to remember that the lines and points in Figs. 70 through 76

should not be viewed as curve fits. Rather, the correct C-P line should divide the

Mode C data points, shown as open diamonds, from the Mode P data points, shown

as solid circles. If the C-P line correctly distinguishes the experimental data points

by type, then it would seem to offer an accurate prediction of dent type for the given

situation.

Figures 70 through 76 indicate C-P lines that are successful indicators of dent



150

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10
d/D  (%)

L/
D

 (
%

)

Mode P Dents
60% C-P Line
75% C-P Line
90% C-P Line

Fig. 71. C-P map showing test results from [8] by failure mode for 12′′, 1/4′′ (D/t=48)

X42 pipe with a low-high pressure history and corresponding 90%, 75%, and

60% C-P curves generated with interpolated finite element results.
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Fig. 72. C-P map showing test results from [8] by failure mode for 16′′, 1/4′′ (D/t=64)

and corresponding 90%, 75%, and 60% C-P curves generated with interpolated

finite element results. Mode C dents were in a X60 pipe with a low-high

pressure history and Mode P dents were in X42 pipe with a high-low pressure

history.
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Fig. 73. C-P map showing test results from [8] by failure mode for 18′′, 1/4′′ (D/t=72)

and corresponding 90%, 75%, and 60% C-P curves generated with interpolated

finite element results. Mode C dents were in a X42 pipe subjected to a

high-low pressure history and Mode P dents were in either X42 or X60 pipes

with low-high pressure histories.
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Fig. 74. C-P map showing test results from [8] by failure mode for 30′′, 3/8′′ (D/t=80)

and corresponding 75%, 60%, 50%, 40%, and 30% C-P curves generated with

interpolated finite element results. All dents were in Gr. B pipes with high-low

pressure histories.
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Fig. 75. C-P map showing test results from [8] by failure mode for 24′′, 1/4′′ (D/t=96)

and corresponding 90%, 75%, and 60% C-P curves generated with interpolated

finite element results. All dents were in X60 pipes with high-low pressure

histories.
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type for each pipe case studied in [8] except for the 12′′ by 3/8′′ situation. In fact,

the 75% C-P line successfully distinguishes Mode C and P dents in every case where

the pipe wall thickness was 1/4′′, as seen in Figs. 71, 72, 73, and 75.

In three instances, the 75% C-P curve is not successful. These situations are

the 12”′′ by 3/8′′, 30′′ by 3/8′′, and 36′′ by 3/8′′ cases. It is important to establish

what distinguishes these cases from the 1/4′′ cases. While these three cases all have

a common thickness of 3/8′′ other reasons for the lack of success of the 75% C-P line

in these instances must be explored for the sake of completeness.

The three situations where the 75% C-P line fails to distinguish dent type occur

at edges of the diameter-to-thickness spectrum for which test data is available in [8].

One possible source of this failure is that the 75% C-P line has a limited range of

application in terms of D/t values. However, this idea is questionable when it is

noted that the 75% C-P curve works for one case where D/t = 96, namely the 24′′

by 1/4′′ case, but not another, namely the 36′′ by 3/8′′ case. These contrasting mode

predictions are seen in comparing Figs. 74 and 75. Because the D/t = 96 situation is

the extreme D/t situation for which data is available and because the 75% C-P line

succeeds in one instance of this case, it appears that the method has not necessarily

reached an upper D/t limit.

The contrasting mode predictions for the D/t = 96 cases are interesting when it

is seen that C-P curves are identical for a given D/t value. Figure 77 plots the 75%

C-P curves calculated for the 24′′, 3/8′′ and the 36′′, 3/8′′ cases shown in Figs. 75

and 76 respectively. Whatever small deviations that are present between the two C-P

curves in Fig. 77 are presumably due to errors introduced by the interpolation process.

Thus, for the two cases in question, the C-P curve is the same but the outcome of

the dent mode prediction is quite different. As a result, it seems difficult to attribute

the failure of the 75% C-P curves in Figs. 70, 74, and 76 to a limitation in terms of



157

0

20

40

60

80

100

120

140

160

0 2 4 6 8
d/D (%)

L
/D

 (
%

)

36"x3/8" 75% C-P Line

24"x1/4" 75% C-P Line

Fig. 77. 75% C-P curves predicted for 24′′ by 1/4′′ and 36′′ by 3/8′′ pipes (D/t = 96).

the D − t spectrum.

The possibility also exists that the problems evident in Figs. 70, 74, and 76 stem

from differences in steel type or pressure history. These factors are reported in the

captions to Figs. 70 through 76. With regard to pressure history effects, cases can

be found in which the 75% C-P line both fails and succeeds for instances of low-high

and high-low pressure histories. With regard to steel type X60 and X42 steels are

found in situations where the 75% C-P fails and succeeds. Grade B steel does appear

only where the 75% C-P curve fails to predict behavior. Uniaxial tension test results

are presented in [8] for many of the pipe specimens. The Gr. B stress-strain curve

available for the 30′′ pipe doesn’t differ significantly from those shown for other X42

pipes. The Gr. B stress-strain curve for the 36′′ pipe indicates much lower yield

and ultimate strengths, both being around 30 ksi, compared to the 40 ksi and 60 ksi

values for other Gr. B and X42 specimens. However, the lack of predictive success of
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the 75% C-P line shown in Fig. 76 for the 36′′ pipe with this lower yield steel is not

markedly different from that shown in Fig. 74. As a result, it is not believed that the

relative success or failure of the 75% C-P curve can be attributed to steel type.

Having considered other explanations, the fact remains that the 75% C-P curve

fails to predict experimentally observed dent type for all 3/8′′ wall thickness cases

but succeeds for all 1/4′′ wall thickness cases. This result suggests that the failure

mode of dents is dependent not only on D/t but also on wall thickness. Having

considered other sources of difference it appears that pipes with 3/8′′ thick walls

should be approached with a different C-P curve.

Examination of the 3/8′′ cases in Figs. 70, 74, and 76 suggests that the 30% C-P

line appears to successfully anticipate dent mode for the large diameter 3/8′′ cases. In

the 12′′ case, Fig. 70, it would seem that no C-P line successfully predicts dent type.

Two possibilities exist for this lack of success . First, all experimental data deemed

to be Mode P was so classified due to the fact that these dents developed no visible

cracking. This assumption was used for all cases studied here and seemed to result

in good C-P mode predictions. However, if one were to exclude all data where no

cracking occurred in the 12′′, 3-8′′ case then the 30% C-P line would successfully divide

the remaining data. Another possibility is that for the low D/t ratio in question the

C-P line categorization approach breaks down, perhaps because shell behavior begins

to move away from the thin-shell regime. This matter cannot be resolved without

more experimental data or a more thorough examination of the problem.

Finally, it has only been noted that the C-P transition occurs at different ratio

values for different pipe wall thicknesses. It has been established that outer surface

residual stress resulting from the indentation and rerounding process has a signif-

icant influence on dent fatigue behavior [21]. This result was discussed in Chap-

ter II. It seems possible that wall thickness effects on outer surface residual stress
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Fig. 78. SCF and residual hoop stress profiles predicted using complete finite element

model for 18′′ X60 pipes with 1/4′′ and 3/8′′ wall thicknesses indented with

1′′ long, 1′′ wide indentor.

magnitude could lead to the thickness dependent shift in the C-P curve value that

distinguishes Mode C and P dents. Using a full life-cycle finite element model that

considers indentation, inelastic rerounding, and elastic post-rerounding dent behavior,

the residual stress profile of dents can be determined. This model has been discussed

elsewhere [8, 15, 21, 22, 16].

Figures 78 and 79 show SCF and residual stress profiles predicted using the full

finite element model for 18′′ pipes composed of X60 steel. Indentors were 1′′ wide, had

round ends, and were 1′′ long in Fig. 78 and 3′′ long in Fig. 79. Residual stress profiles

predicted for two wall thicknesses of 1/4′′ and 3/8′′ are shown. Both length cases are

essentially Mode P cases with clear peripheral SCF features. The SCF profile can

thus be used to determine which portion of the residual stress profile occurs in the

dent center region.
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It was noted previously that a center-peripheral SCF ratio of 75% marks the

transition from center to peripheral cracking for 1/4′′ pipes while this ratio is only

30% for 3/8′′ pipes. In both cases, the center SCF value is less than the peripheral

SCF value and the profile resembles those shown in Figs. 78 and 79. For the two

thickness cases it takes relatively more center stress to shift the likely crack location

to the dent center in the 1/4′′ case. Thus, some mechanism inhibits center crack

growth in 1/4′′ pipes compared to 3/8′′ pipes. It can be seen in Figs. 78 and 79 that

dent center residual stress is relatively more compressive for the 1/4′′ pipe wall case.

In general, a situation with relatively higher compressive residual stress will tend to

have less of a tendency to develop fatigue cracks. Thus, it would seem that thickness

dependent residual stress differences in the dent center account for the thickness effect

on the value of the transition C-P ratio.

F. A Simple Dent Type Assessment Procedure

In the previous section it was shown that in almost all cases where experimental data

is available a constant value C-P line can be selected that successfully distinguishes

dangerous Mode C dents from less dangerous Mode P dents. This constant value C-P

line represents dents with combinations of relative depth, d/D, and length, L/D, that

result in a constant ratio of center and periphery SCF peak values. Furthermore, all

dents in pipes with 1/4′′ walls can be distinguished using 75% C-P lines while those

in large diameter 3/8′′ thick pipes can be distinguished using 30% C-P lines. It would

be useful to develop a procedure based on this result that can be easily applied to

distinguish dents.

The first matter of an assessment procedure is that of which dent parameters need

to be obtained. The depth measurement used in the previous section corresponded
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to the depth at the dent center relative to the undamaged pipe circumference as

reported in [8]. This depth value is not believed to be the depth to the deepest

portion of the dent. In many cases, rerounding results in a bulge in the dent center

and since depths reported in [8] are given as “Rebound Dent Depth” it is believed that

the depth recorded was that of the dent center. In fact, this measurement of dent

depth will tend to favor Mode C classification. This classification tendency would

be conservative, as Mode C dents are believed to pose the greatest threat to pipeline

integrity due to their low fatigue lives [8]. Dent length is defined as shown in Fig. 61 as

the distance between the closest undamaged portion of the longitudinal dent profile.

In making this measurement it is conservative to overestimate length. Dent width

seems to play a role in determining dent fatigue behavior. However, this role remains

to be addressed. Thus, the results obtained here are limited to dents with angular

extents of approximately π/12 or less. In addition, results are calibrated to dents

that have already undergone rerounding. Thus, the behavior of dents that have not

experienced a typical in-service pressure environment for at least a few cycles cannot

be judged using the 30% and 75% C-P curves suggested here. A dent would have

to be found at the time of indentation for this condition not to apply and so this

circumstance is considered a special case.

Given dent measurements, one must determine dent mode. One approach would

be to use an appropriate C-P diagram and determine the location in question based

on measured geometry. Then, one could see whether the geometry combination is

above or below the C-P transition line appropriate for the pipe thickness in question.

For example, consider a 12′′ long, 0.25′′ deep narrow dent found in an 18′′ by 1/4′′

pipe. In this case, L/D = 66.6% and d/D = 1.39%. When this point is found on the

appropriate C-P map, as shown in Fig. 80, it appears that the dent in question is a

Mode C dent and is likely to have a relatively short fatigue life.
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In fact, a set of C-P curves appropriate to various pipe situations can be assem-

bled on the same C-P map. Compiled C-P maps with curves validated in this study

are shown in Figs. 81 and 82 for the cases of 1/4′′ and 3/8′′ walls, respectively. One

could measure a dent and find its location on the appropriate chart. By determining

the dent location relative to the diameter specific C-P line one could assess whether

a given dent is Mode C or Mode P.

The 75% C-P curves in Fig. 81 appear to be roughly the same general shape, as

do the 30% C-P curves in Fig. 82. These curves seem to vary mainly due to changes

in pipe diameter D or diameter-to-thickness ratio D/t. These features and the fact

that the important judgement is whether the dent geometry combination falls above

or below the C-P line suggest that the curves might be combined into a more compact

dent type assessment approach.

In the case of 1/4′′ thick pipes, the 75% C-P curves appear to be roughly linear
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Table IX. Linear regression analysis results for C1, C2, and the R coefficient values for

12′′, 18′′, and 24′′ 75% C-P curves in Fig. 81.

Diameter D/t C1 C2 R Coefficient
12′′ 48 -30.57 22.48 0.9986
18′′ 72 -28.29 30.26 0.9997
24′′ 96 -24.771 30.54 0.9967

and might be fit with two D/t dependent parameters, C1 and C2, and the simple

function: (
L

D

∣∣∣∣
75%

= C1 (D/t) + C2 (D/t)

(
d

D

∣∣∣∣∣
75%

(5.4)

Linear regression analysis of the curves shown in Fig. 81 is used to find the values of

C1 and C2 for the diameter cases of 12′′, 18′′, and 24′′. The results appear in Table IX

The coefficient C1 is assumed to depend on D/t and a second linear regression

establishes that:

C1 ≈ −36.58 + 0.1208
D

t
(5.5)

Thus, the relationship in Eq. 5.4 can be specified as:

(
L

D

∣∣∣∣
75%

= −36.58 + 0.1208
D

t
+ C2 (D/t)

(
d

D

∣∣∣∣∣
75%

(5.6)

This expression can be rearranged so that the 75% C-P line can be specified as the

D/t dependent ratio:

C75%
2 =

1

(d/D|75%

(
(L/D|75% + 36.58− 0.1208

D

t

)
(5.7)

In Eq. 5.7 the values (L/D|75% and (d/D|75% describe the location of the 75%

C-P line. The 75% C-P line has been reduced to the ratio value C2. Values of C2

were found previously for certain cases and are listed in Table IX for some D/t values



166

of interest. For an actual dent in a pipe the pair of L/D and d/D dent geometry

measurements and the D/t value may be used to calculate the dent specific value of

Cdent
2 :

Cdent
2 =

1

(d/D|dent

(
(L/D|dent + 36.58− 0.1208

D

t

)
(5.8)

Knowing Cdent
2 and C75%

2 the mode of the dent may be determined. Where the dent

C2 value is larger than C75%
2 the dent is Mode C and where it is smaller the dent is

Mode P. Thus, a plot of C75%
2 in terms of D/t becomes a master curve by which dents

in all 1/4′′ pipes may be categorized as type C or P.

Figure 83 illustrates the application of this master curve approach. The Cdent
2

value is determined and plotted in terms of D/t for all available experimental cases

in 1/4′′ pipes in [8]. The C75%
2 categorization curve is also plotted so that its ability

to distinguish dent type may be assessed. It is seen in Fig. 83 that the compact C2

ratio approach is reasonably successful at determining dent mode. In one or two cases

Mode P data crosses the 75% line. However, this mis-characterization is conservative

as it appears to favor classifying dents as more dangerous Mode C dents.

A similar analysis may be performed for the 30% C-P curves appropriate for

assessing dents in 3/8′′ pipes. As seen in Fig. 82, these curves can probably not be

modelled as straight lines. Instead a parabola with the following form is fit to the

C-P curve data: (
d

D

∣∣∣∣∣
30%

= C1 (D/t) + C2 (D/t)
((

L

D

∣∣∣∣
30%

)2

(5.9)

Values of C1 and C2 are found by fitting Eq. 5.9 to the 30% C-P curves in Fig. 82.

Only two cases are available where the 30% C-P curve is known to work. Thus, C1

and C2 values are given on a case by case basis and a empirical version of C1 is not

determined. Table X contains C30%
1 and C30%

2 values found to describe the 30% C-P

curves in Fig. 82
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Fig. 83. Complete set of C2 values of dents in 1/4′′ pipe studied by [8] plotted along

with C75%
2 characterization curve.

Table X. Curve fit results for C30%
1 and C30%

2 values for 30′′, and 36′′ 30% C-P curves

in Fig. 82.

Diameter D/t C1 C2

30′′ 80 2.49 0.000711
36′′ 96 2.258 0.000543
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Fig. 84. Complete set of C2 values of dents in 3/8′′ pipe studied by [8] plotted along

with C30%
2 characterization curve.

Using the C1 and C2 values in Table X to describe the 30% C-P curve, dent mode

may be assessed. Dent measurements are converted to C2 values with the expression:

Cdent
2 =

d
D
− C1(
L
D

)2 (5.10)

Instead of using an empirical expression giving C1 in terms of D/t, as was done in the

1/4′′ case, C1 is found in Table X. As before, the dent Cdent
2 value is compared to the

C30%
2 value. If it is larger, then the dent is a Mode C dent. If it is smaller, then the

dent is a Mode P dent. Figure 84 shows Cdent
2 values for data taken from [8] plotted

along with the predicted C30%
2 curve. This unified approach to dent acceptance again

appears to give reasonable assessments of dent mode.

It was shown in Chapter IV that dent stress behavior undergoes a fundamental
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shift as dents become deeper or more localized. This result was anticipated by earlier

dent fatigue research [14, 8, 15, 16]. This shift in dent stress behavior is linked to

a shift in dent fatigue performance. In particular, dents with center stress features

have much shorter fatigue lives. Thus, there is practical value to understanding and

being able to predict the size effect on dent stress behavior.

In the present chapter, it was assumed that the change in dent stress profile

shape that accompanies a change in dent geometry could be studied with an elastic

approach. A simple finite element model was used to explore how geometry changes

influence dent stress behavior. A simple parametric model of dent geometry was

introduced that is based on the normal distribution. Using this model, it was shown

that the dent hoop stress profile changes shape across some range of dent depths and

dent lengths. It was shown that the size of a dent relative to pipe diameter is what

really determines the nature of the dent geometry effect.

A simple method for classifying actual dents as low-life, center-cracking or long-

life, peripheral cracking dents was developed. This method is based on the ratio,

called the C-P ratio, of the center stress value to the peripheral stress value predicted

by a finite element model. By considering a wide range of dent parameters, curves

with constant C-P ratio values may be calculated in the two-dimensional range of

dent L/D and d/D values. Experimental data plotted on this L/D-d/D map shows

that C-P curves with ratios of 75% and 30% correctly distinguish dents in 1/4′′ and

3/8′′ thick pipes, respectively. The set of C-P curves needed to distinguish dents in

a range of pipe situations may be reduced to a single, thickness-specific master curve

that varies with D/t. Using this curve, it appears that an accurate assessment of the

approximate threat to pipeline integrity posed by a given dent may be made.
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CHAPTER VI

CONCLUSIONS

A. Significant Findings

The preceding chapters have explored aspects of the behavior of dent imperfections

in cylindrical shells. This problem has practical value, as discussed in Chapter II, in

leading to a better understanding of an important mode of pipeline failure, namely the

fatigue fracture of pipeline dents. In addition, the general mechanics of the behavior

of shells with imperfections is fairly underdeveloped. As a result, any incremental

improvement in the understanding of shell imperfections contributes to present overall

understanding of shell behavior.

Because stress behavior, in large part, drives fatigue behavior, two main as-

pects of the relationship between dent geometry and dent fatigue behavior have been

explored. First, semi-analytical solutions have been sought that describe the magni-

tude of elastic stress features of dents in terms of dent geometry features. Second,

an attempt has been made to quantify the boundaries of two geometry-dependent

categories of dent stress behavior. During this investigation, a previously unknown

limit on an approximate method of shell imperfection analysis, the Equivalent Load

Method, has been found.

A semi-analytical solution that predicts the stress concentration profile around a

two-dimensional dented cylinder in terms of geometry values was found. This solution

was formulated using a classical Fourier Series based approach to shell analysis and

the Equivalent Load Method, an approximate method of shell imperfection analy-

sis. The circumferential stress concentration profile of two-dimensional dents has two

peaks, one at the center of the dent and one at the dent periphery. The solution was
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calibrated so as to accurately predict dent center stress concentration values. Predic-

tions of peripheral SCF peak values, while not strictly accurate, provide qualitative

insight into behavior in this region.

The two-dimensional SCF solution contributes several specific results to current

understanding of the behavior of two-dimensional shell imperfections:

• Stress concentration magnitude is linearly related to relative imperfection depth,

d/D.

• Cylinder diameter-to-thickness ratio influences stress concentration value. This

influence is linear.

• As implied by the experimental record [8, 9], dent width has a significant effect

on the dent stress concentration profile. In particular, wider dents have lower

dent center stress concentrations. At the same time, the peripheral dent stress

concentration appears to be relatively uninfluenced by dent width.

The results obtained from the two-dimensional model are based on analysis of a

single concavity in a two–dimensional cylindrical cross-section. However, these results

provide insight about the behavior of a broader class of situations. First, the semi-

analytical dent solution is based on Fourier Series representations of imperfection

profiles. Thus, the solution could apparently be expanded to consider a wide range

of two-dimensional imperfection geometries. In addition, defect depth is uncoupled

from defect profile shape in the analysis. Thus, it follows that, in two-dimensions,

stress concentration magnitude is always linearly related to imperfection depth. Sec-

ond, the two-dimensional solution provides insight about three-dimensional problems

where dent length is relatively long. In particular, the two-dimensional solution em-

phasizes the importance in three-dimensional dent behavior of two often overlooked

parameters, dent width and pipe diameter-to-thickness ratio.
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The equivalent load method was found to be unsuitable for studying relatively

local and/or deep imperfections. Some equivalent load authors [46, 44, 43] have noted

that the equivalent load method performs poorly in analyzing deeper imperfections.

However, this reported shortcoming appears to be primarily an accuracy problem.

In fact, as imperfections become more localized and deeper their stress behavior

undergoes a fundamental change in distribution profile shape. It was demonstrated

in Chapter IV that this change is not predicted by the equivalent load method. As a

result, the general applicability of the equivalent load method as an analysis tool for

three-dimensional shell imperfections becomes questionable.

It had been previously noted in the pipeline dent literature [14, 8, 15, 16] that

longer imperfections develop stress concentrations in the center while shorter imper-

fections develop them at the dent periphery. This shift in stress behavior is of great

practical importance because it is associated with a shift in fatigue performance from

short life to long life. In Chapter IV this length effect on dent stress behavior was

confirmed. In addition, the previously unknown fact that dent depth also influences

this shift in stress behavior was introduced.

In Chapter V attention was focused on the problem of classifying three-dimensional

dents in terms of whether they have center stress peaks or peripheral stress peaks.

In particular, an emphasis was placed on making this classification based on simple

measurements of dent geometry. Further evidence that both dent length and dent

depth influence this transition in stress behavior was provided. It was also demon-

strated that the influence of these values was based on their magnitude relative to

cylinder diameter.

A method of mapping dent stress categories in terms of relative depth, d/D,

and relative length, L/D was introduced in Chapter V. It was proposed that one can

determine whether a dent is a center stress Mode C dent or a peripheral stress Mode
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P dent by considering the dent location on this C-P map relative to a line defining

transition geometry values.

A simple means of determining the transition line on a C-P diagram was devel-

oped. A simple elastic finite element model was used to determine the center and

peripheral peak stress values of a dent imperfection of given depth and length. The

ratio of these stress values was then determined. A line of dent geometry combi-

nations with uniform center-to-periphery stress ratio values can be calculated and

drawn on a C-P map. Actual dents plotted on the C-P map that fall above this line

are Mode C dents. Those falling below the line are Mode P dents. As anticipated by

the two-dimensional semi-analytical dent model, the C-P line location is specific to a

given diameter-to-thickness ratio.

To provide a practical dent fatigue assessment tool, constant value C-P curves

distinguishing short-lived, center cracking dents from longer-lived, peripheral cracking

dents were found using existing experimental data from [8]. It was found that C-P

curves representing geometry combinations with center-to-periphery peak stress ratios

of 75% successfully characterize dents in 1/4′′ thick pipe in terms of Mode C or P

fatigue behavior. For the case of 3/8′′ thick pipe, a 30% C-P curve must be used.

Evidence was presented suggesting that this thickness effect is related to outer surface

residual stresses that influence fatigue life.

Sets of 75% and 30% C-P curves were numerically analyzed. Two master curves

were determined for use in distinguishing Mode C and P dents in 1/4′′ and 3/8′′

thick pipes. These master curves seem to successfully categorize all experimentally

observed dent fatigue data in [8] with the exception of the 12′′ by 3/8′′ situation.
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B. Suggested Future Work

There are a number of important open questions in the areas of dent fatigue behavior

and the mechanics of dent, or imperfection, stress behavior. Issues in these two areas

are, in fact, inter-related because it appears that improved understanding of dent

fatigue behavior relies on improved understanding of dent stress behavior.

First, attention needs to be given to the problem of dent width. Experimental

evidence in [9] and analytical evidence developed here suggests that relatively wide

dents may have stress behavior that differs significantly from that of narrower dents.

In fact, extra modes of dent stress behavior may exist for wide dents. One possible

direction to take would be to seek to add an extra dimension of dent geometry that

accounts for width to the C-P map approach introduced here.

Once the behavior of the full range of dent modes has been established, the

problem of estimating actual values for dent stress associated with a given set of dent

geometry measurements might be more easily approached. Mode specific models pre-

dicting dent stress could be developed. These models could be empirically derived

from parametric studies. On the other hand, the two-dimensional semi-analytical

model developed here might be adapted to predict Mode C long dent stress concen-

tration behavior.

The fatigue behavior of dents is not only a function of stress concentration fea-

tures but also of residual stress. A great deal remains to be learned about the residual

stress features associated with dents. The relative importance of various dent and

pipe parameters on residual stress needs to be established. It would be useful, given

complications of accurately modelling residual stress, to develop empirical models

that estimate dent residual stress in terms of dent geometry values.

Only when dent stress behavior is better understood can dent fatigue behavior
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be thoroughly understood and predicted. It was shown here that an improved under-

standing of of the mechanics of bounds on dent stress modes can lead directly to a

practical dent fatigue assessment tool. It is believed that continued advancement in

the area of dent stress mechanics can contribute in meaningful ways to better tech-

niques for evaluating damaged pipelines. In fact, such knowledge could likely have

much wider application in other areas of damaged shell structures.
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APPENDIX A

FORTRAN 77 CODE FOR GIVING TWO-DIMENSIONAL DENT SOLUTION
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** PROGRAM 2DSIMPLENORMAL

INTEGER NUMMODES,NUMPOINTS
REAL PI,ANGLE
PARAMETER(NUMMODES=75,NUMPOINTS=1440)
PARAMETER(PI=3.14159265)

INTEGER I,J,M,MODE,POINT
REAL XI,A,T
REAL XIBYA,ABYT,PHINOT
REAL ANGLE,MTERM
REAL INOT, IM(NUMMODES)
REAL OUTERSCF(NUMPOINTS),INNERSCF(NUMPOINTS)

XI = 0.18
A = 9.
T = 0.25
PHINOT = PI/18.
XIBYA=XI/A
ABYT=A/T
k=12*(A/T)**2

OPEN(UNIT=1,FILE='2datapiby18',STATUS='UNKNOWN')

***FIND INOT AND IM TERMS
DO 100,MODE=0,NUMMODES-1

IM(MODE+1)=0.
DO 50, POINT=1,NUMPOINTS
ANGLE=((POINT-1)*2.0*PI)/(NUMPOINTS) -PI
IM(MODE+1)=IM(MODE+1)

     $  +(1-(ANGLE/PHINOT)**2)*EXP(-0.5*(ANGLE/PHINOT)**2)
     $  *COS(MODE*ANGLE)*(2.*PI/(NUMPOINTS))
50 CONTINUE

IM(MODE+1)=IM(MODE+1)*(1/PI)
WRITE(1,*)MODE,IM(MODE+1)

100 CONTINUE

**FIND SCFS

WRITE(*,*)XIBYA,ABYT,PHINOT

DO 200, POINT=1,NUMPOINTS
ANGLE=((POINT-1)*2.0*PI)/(NUMPOINTS) -PI
OUTERSCF(POINT) = 1+(XIBYA/PHINOT**2)

     $ *(1-6*ABYT)*((1+2*k)/(1+k))*IM(1)
INNERSCF(POINT) = 1+(XIBYA/PHINOT**2)

     $ *(1+6*ABYT)*((1+2*k)/(1+k))*IM(1)

DO 150, M=1,NUMMODES-1
MTERM=(1-(M**2))/((M**4)+2.0*(M**2)+1.)

OUTERSCF(POINT)=OUTERSCF(POINT)
     $ +(XIBYA/(PHINOT**2))*(1-6*ABYT)*IM(M+1)

Fig. 85. Page 1 of Fortran 77 code used to implement Eqs. 4.26 and 4.27.
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     $ *MTERM*COS(M*ANGLE)

INNERSCF(POINT)=INNERSCF(POINT)+
     $ (XIBYA/(PHINOT**2))*(1+6*ABYT)*IM(M+1)
     $ *MTERM*COS(M*ANGLE)

150 CONTINUE
200 CONTINUE

WRITE(1,*)
WRITE(1,*)'ANGLE,  OUTERSCF,  INNERSCF'
DO 300, POINT=(NUMPOINTS/2)+1,NUMPOINTS

ANGLE=((POINT-1)*2.0*PI)/(NUMPOINTS) -PI
WRITE(1,*)ANGLE,OUTERSCF(POINT),INNERSCF(POINT)

300 CONTINUE

CLOSE(UNIT=1,STATUS='KEEP')

END
*****************************************************

SUBROUTINE ZEROMATRIX1(MATRIX,DIM)

INTEGER DIM,I
REAL MATRIX(DIM)

DO 5100, I=1,DIM
MATRIX(I)=0.

5100 CONTINUE

END
********************************************************

Fig. 86. Page 2 of Fortran 77 code used to implement Eqs. 4.26 and 4.27.
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