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ABSTRACT 

 

Temporal Changed in the Abundance and Cellular Distribution of GAPDH (April 2006) 

 

Jessica Carter 
Department of Biology 
Texas A&M University 

 

Research Advisor:  Dr. Vincent M. Cassone 
Department of Biology 

 
 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a metabolic enzyme originally 

thought to be only involved in glycolysis. New studies have shown that this protein 

contains novel functions not previously anticipated.  Furthermore, separate circadian 

oscillations in glycolytic processes and “clock” genes exist. It is hypothesized that 

GAPDH is a potential link between the glycolytic and clock gene pathways.  The 

changes in the amount and location of GAPDH in chicken retinas, pineal glands, and 

brain tissues at four time points throughout the day while in constant darkness (DD) 

were examined.  GAPDH was localized using standard immunohistochemical 

techniques. In the retinal tissue, GAPDH was found in a high abundance in the ganglion 

cells, outer plexiform layer, outer nuclear layer, inner nuclear and plexiform layer, and 

the photoreceptor cell layer of the retina.  Additionally, a circadian rhythm in GAPDH 

abundance was observed in the outer plexiform layer, outer nuclear layer, inner nuclear 

and plexiform layer, and the photoreceptor cell layer, which all had a rhythmic 

expression and gradual decrease at CT12. The pineal gland and parasympathetic 
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terminals also displayed rhythmic expression. The parasympathetic terminal showed 

high abundance at CT0 and CT6, with a sharp drop at CT12. The pineal gland 

contained a similar temporal distribution, but with a gradual decrease to CT12. Data is 

still being collected on the brain sections. The results indicate that the relative abundance 

of the “glycolytic” protein, GAPDH, is under the control of an endogenous circadian 

clock. 



v 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE OF CONTENTS 

 Page 
ABSTRACT……………………………………………………………………… iii 

TABLE OF CONTENTS……………………………………................................ v 

LIST OF FIGURES……………………………………………………………… vi 

CHAPTER  

     I      INTRODUCTION………………………………………........................ 1 

     II     METHODS…...…………………………………………………………. 5 

     III     RESULTS………………………………………………………………. 7 

      IV     CONCLUSION………………………………………………………... 9 

REFERENCES……………..……………………………………………………... 12 

CONTACT INFORMATION…………………………………………………….. 13 



vi 

 

 
 

LIST OF FIGURES 
 

FIGURE 
 

Page 

     1     Mean density of GAPDH immunoreactivity in retinal layers  in              
            conditions of constant darkness………………………………………… 
 

 
7 
 
 

     2     Mean desity of GAPDH immunoreactivity in the parasympathetic  
            terminal and pineal gland in conditions of constant darkness…………... 

 
8 

 
 



1 

 

CHAPTER I 
 

  INTRODUCTION 
 
 Almost all organisms express circadian rhythms in a diversity of biological 

functions, such as sleep, hormone production, and brain activity that seem in 

approximately 24 hour cycles. Circadian rhythms can be entrained or reset daily by 

external cues, most commonly by light, and persist when organisms are maintained in 

constant conditions, reflecting the endogenous nature of these rhythms.  In such cases, 

the expressed period is slightly longer or shorter than 24 hours, and is typically called a 

free-running rhythm. Additionally, they are unaffected by temperature when prevailing 

temperatures fall within the physiological range. 

 Regulation of the avian circadian system is hypothesized to be under control of a 

neuroendocrine loop.   The suprachiasmic nuclei (SCN) located in the hypothalamus of 

the brain, along with the pineal gland, and retina are all known to be circadian oscillators 

that send activating and inhibitory signals to each other and work together as a whole 

system. In mammals, the SCN is thought to be the “master clock,” while in birds the 

pineal gland is considered to be the pacemaker.   The SCN is metabolically active at 

daytime and can be excited by light perceived through the retina and extraocular 

photoreceptors.  Electrical activity and neural outputs are then sent through a 

multisynaptic pathway to a structure called the sympathetic superior cervical ganglia or, 

SCG. Through postganglionic fibers, the SCG feeds the neurotransmitter, 

norepinephrine directly to the pineal gland via the parasympathetic terminal. The pineal 

                                                 
  This thesis follows the style of The Anatomical Record.    
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gland is involved in the production and secretion of the characteristic “nighttime” 

hormone melatonin.  The melatonin output from the pineal gland is directly inhibited by 

light and the norepinephrine signal from the SCG, however light but not norepinephrine 

can alter the phase of the pineal clock.  When these inhibitions are taken away, 

melatonin synthesis begins followed shortly after by its secretion into the blood and 

cerebral spinal fluid. This signal in turn suppresses SCN activity.  When melatonin 

levels fall and/or photoreceptors receive light input, SCN activity will increase (Cassone, 

1984).  

 The retina plays a crucial role in the entrainment of the avian circadian system to 

the external light/dark cycle.  Rhythmic neurotransmitter synthesis and release has been 

observed in the retina, but these substances are contained within the eye and not secreted 

into the blood (Green, 2004).  These substances include, most notably, dopamine 

production in the amacrine cells and melatonin production in the photoreceptors. 

Dopamine and melatonin each antagonizes the other’s production, and this antagonism 

helps create circadian rhythms within the retina and prepare the photoreceptor cells for 

the drastic changes in light intensity that occurs during a 24 hour period (Iuvone, 2000).  

Furthermore, they modulate the retina’s interaction with the SCN via the retino-

hypothalamic tract and aid in entraining the system to the environment (Cassone, 1984). 

 Circadian rhythms are also molecularly regulated through negative feedback 

loops of canonical clock genes.  Clock gene expression is localized mainly in the SCN 

(Lowrey, 2000) when the transcription factors, CLOCK and BMAL1 heterodimerize and 

activate transcription of Per and Cry genes.  After translation and phosporylation, these 



3 

 

proteins form a complex and directly inhibit CLOCK/BMAL1, thereby ceasing their 

own transcription.  This negative feedback loop results in the rhythmic expression of Per 

and Cry genes their and protein products (Iuvone, 2000).  SCN, pineal, and retina 

activities are all thought to be regulated by rhythmic expression of these genes.  In the 

retina and pineal gland, it is believed that these transcription factors function to regulate 

rhythmic expression of arylalkylamine N-acetyltransferase (AANAT) which is a key 

enzyme in melatonin production (Green, 2004).   

 Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) is a metabolic enzyme 

originally thought to be involved only in glycolysis.  It is an important and unique 

enzyme in the pathway because it is the first step that produces ATP through substrate-

level phosphorylation and is the only enzyme in the pathway to reduce NAD+ to NADH.  

New studies have shown that this protein contains novel functions not previously 

anticipated and that it can also translocate into the nucleus.  These new functions include 

the regulation of histone gene translation, telomere structure, nuclear membrane fusion 

and recognition of fraudulent DNA nucleotides (Sirover, 2005).  Multiple studies have 

shown GAPDH binding to single and double stranded DNA, containing helicase activity 

(Nagy, 2000), and being involved in transcription (Ronai, 1999).  In particular, the 

NAD+ binding site and redox state of the protein has shown specific import.  Through 

competition studies (Ronai, 1999) and using mutated GAPDH protein (Nagy, 2000) it 

has been suggested that the NAD+ site actually binds to DNA.  Consequently, it is 

thought that GAPDH’s ability to bind to DNA can be regulated by the ratios of 

NAD+/NADH and the redox status of the cell (Arutyunova, 2003).  Interestingly, the 
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ratio of NAD+/NADH has been shown to help regulate circadian rhythms (Rutter, 

2001). In relation to circadian rhythms, GAPDH mRNA has been found to be expressed 

rhythmically in chick retinas (Bailey, 2004).  It has been speculated that GAPDH can be 

used in the transcriptome regulating some clock and clock controlled genes, and could 

therefore serve as a link between metabolic pathways and molecular circadian rhythms.  

To explore this idea, the rhythmycity of GAPDH protein in the major circadian 

oscillators must be examined. In unpublished work previously done by the Cassone lab, 

GAPDH levels were examined in animals during a light-dark cycle, and were shown to 

be rhythmic in both pineal and retinal tissues.  The current experiment is a continuation 

of that, and was conducted to observe if rhythmic expression of GAPDH persist in 

chicken circadian oscillators when maintained in constant conditions, thereby 

determining if they are a component of endogenous circadian rhythmcity.  
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CHAPTER II 

METHODS 

   Chickens where entrained to a 12 hour light, 12 hour dark cycle for one week 

then moved to constant darkness, DD.  After 3 days, chicks were sacrificed at one of 

four time points in six hour intervals: circadian time (CT) 0, 6, 12 and 18.  CT 0 

corresponds to the beginning of the subjective day and CT 12 the beginning of 

subjective night.  Animals were euthanized with CO2 and transcardially perfused with 

heparinized phosphate buffered saline (PBS) followed by perfusion with 4% 

paraformaldehyde. The brains, eyes and pineals were removed and post-fixed in 4% 

paraformaldehyde for 3 more days.  Tissues were then infused with PBS and infiltrated 

with 30% sucrose solution.  Retinas, pineals, and brains were frozen sectioned using a 

cryostat after embedding in a cryomatrix.  Retinas and pineals were sectioned at 15µm 

and brains were at 25µm. Tissues were thaw mounted directly onto warmed gelatin 

coated slides.  

  Immunohistochemistry was used to visualize GAPDH in the retina and pineal 

samples. Sections were washed with PBS and then incubated in phosphate buffered 

saline/goat serum/triton X-100 (PBSGT) for 30 minutes. This step blocks any non-

specific binding sites and reduces background. The samples are then incubated with 

polyclonal rabbit primary antibodies (AbCam) diluted in PBSGT for one day at 4C.  

Sections are washed in PBS and then incubated in biotinylated goat anti-rabbit 

secondary antibody (Jackson Labs) diluted in PBSGT overnight. After washing in PBS 

the sections are incubated in avidin-biotin (ABC) complex (Vector Labs) for 2 hours at 
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room temperature, washed in PBS, and then preincubated in diaminobenzidine (DAB) 

for 5 minutes. Afterwards, 35 �l of 30% hydrogen peroxide was added with the DAB, 

mixed, and then incubated until the desired contrast is obtained. Staining was intensified 

with 1% cobalt chloride. Sections were then washed one final time with water, 

dehydrated in an ethanol series, cleaned with xylene, mounted and coversliped with 

Permount.  

 Retinal slides were viewed using a Zeiss Axiophot microscope, while the pineal 

slides were viewed using an Olympus microscope.  Digital images were then taken at 

10x magnification for the retina and 4x and 10x magnification of the pineal.  Relative 

staining density measurements of the images for both the pineal (4x magnification 

images were used) and retina were taken using Image J freeware (NIH) for objective 

measurements.  Density measurements for the retinal samples were taken from each of 

the different cell layers in that tissue.  Separate measurements were obtained for the 

photoreceptors, outer nulear layer, outer plexiform layer, inner nuclear and inner 

plexiform layer, and ganglion cell layer.  In the pineal tissue, separate density measures 

were taken for the actual pineal body and the parasympathetic terminal, which directly 

feeds from the SCG.  Time did not permit the performance of immunohistochemistry 

and analysis of the brain sections.   
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CHAPTER III 

RESULTS 

 Visual observation of the retinal tissue showed GAPDH in high abundance in all 

cell layers and at all time points.  Relative staining densities were normalized and 

graphed using Excel (Fig. 1).  The data appears to be rhythmic with a gradual decrease 

in abundance at CT12, and higher concentrations during the subjective day.  
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Fig. 1:  Mean density of GAPDH immunoreactivity of retinal layers in conditions of constant darkness.  
The vertical values represent relative staining density, where staining density corresponds with GAPDH 
abundance.  Data was taken at 6 hour intervals and shows a gradual decrease at CT12 for all cell layers. 
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 The parasympathetic terminals were stained considerably darker than the pineal 

at all time points.  Its highest relative density at CT0 and CT6 with a sharp decrease at 

CT 12 (Fig. 2).   The pineal gland proper showed lighter staining than the 

parasympathetic terminal, but still demonstrated a high abundance of immunoreactivity.  

It had high concentrations at CT0 and CT6, with a gradual drop at CT 12 (Fig. 2).   
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Fig. 2:  Mean density of GAPDH immunoreactivity of the parasympathetic terminal and pineal gland in 
conditions of constant darkness.  The vertical values represent relative staining density, where staining 
density corresponds with GAPDH abundance.  Data was taken at 6 hour intervals and shows a gradual  
decrease at CT12 for the parasympathetic terminal and the pineal gland.   
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CHAPTER IV 

 
CONCLUSION 

 
 Previous work examining GAPDH rhythmcity in LD was performed on chicken 

retinas and pineal glands. Retinal immunoreactivity showed low expression at all time 

points with the exception of ZT6, which had extremely high concentrations of GAPDH.  

This was not observed in the current study of chicken retina in DD. This could be due, in 

part, to the fact that the previous study measured levels taken from the retina as a whole, 

rather than of individual cell layers as in this study.  More likely, however, these 

differences are a reflection of the masking effects of light, where GAPDH abundance is 

influenced acutely by the lighting regime.  The fact that rhythmic expression of GAPDH 

is maintained in the absence of these external cues suggests that the rhythm is 

endogenously generated.  It is very interesting to observe that with no external cues, a 

drop in levels at CT 12, the beginning of subjective night, occurs in all cell layers.  This 

is the time point where retinal tissue would become less metabolically active in 

preparation for the night, the time when AANAT is highly expressed and melatonin is 

produced in the photoreceptor cells.  

 The parasympathetic terminals exhibited high concentrations of GAPDH during 

the subjective day and a sharp and dramatic drop at CT12, again with no external cues 

present.  The SCG is involved in secreting norepinephrine on the pineal via this structure 

and its metabolic activity is consistent with the phasing of this norepinephrine cue in the 

literature. The pineal gland, on the other hand, showed a gradual decrease at CT12; this 

might possibly be a reflection of the pineal’s reaction to the inhibitory effects of the 
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SCG. In the aforementioned LD study GAPDH expressed a bimodal distribution of 

abundance in the pineal, but they did not measure the staining density of the 

parasympathetic terminal separately.  Also differences in phase due to free running 

rhythms in DD could explain the discrepancies in the broadness of the peaks between the 

current and the LD experiment. The expression pattern observed in the pineal exposed to 

constant conditions raises and interesting question: if the pineal gland synthesizes and 

secretes melatonin at night why is this not reflected in GAPDH abundance.  It could be 

explained that the initial steps in the melatonin biosynthesis pathway occur during the 

day, and that these precursors could require more metabolic activity to complete than the 

conversion to melatonin does. 

 Evidence has previously demonstrated GAPDH’s ability to enter the nucleus, 

bind to DNA, and be involved in transcription. In addition, these activities have been 

shown to be influenced by the redox status of the cell and NAD+ levels. Our current data 

now shows that GAPDH protein abundance is expressed rhythmically in both LD and 

DD in the circadian oscillators of the chicken pineal and retinas.  This information serves 

support for the contention that GAPDH may be used in the transcriptome of some clock 

controlled genes, and potentially provides a link between metabolic pathways of the 

organism and its circadian rhythm. In particular, the ability of GAPDH to influence 

NAD+/NADH ratios may implicate several clock genes in this role. A continuation of 

immunocytochemistry and subsequent analysis is expected to be preformed on the brain 

sections already collected in this experiment.  If rhythmicity is observed, specifically in 

the hypothalamic region where the SCN is located, it would add even more evidence to 
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support this hypothesis given the SCN’s pivotal role in synchronizing and coordinating 

the avian circadian system. 
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