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ABSTRACT 
 

Micropolis: A Virtual City for Water Distribution System  
Research Applications (April 2006) 

 
 

Jacob M. Torres 
Zachry Department of Civil Engineering 

Texas A&M University 
 

Research Advisor:  Dr. Kelly Brumbelow 
Zachry Department of Civil Engineering 

 
 
 

For security reasons, cities keep their water distribution system data confidential.  This 

data includes geographic layout of pipes, tanks, pumps, wells, buildings, and demands.  

While the secrecy of water system data is crucial, it poses a difficulty for research on 

water distribution systems as results can not be publicized.  Therefore, a library of 

virtual water distribution systems can be an important research tool for comparative 

development of many analytical methods.  A “virtual city” has been developed, 

including a comprehensive water distribution system, as a first entry into such a library.  

“Micropolis” is a virtual city of 5000 residents fully described in both geographic 

information systems (GIS) and EPANet hydraulic model frameworks.  To simulate 

realism of infrastructure, a developmental timeline spanning 130 years was described, 

and this timeline is manifested in items such as pipe material, diameter, and topology.  

Examples of using the virtual city for simulations of contaminant spread are presented, 

and future applications will include fire flow and water auditing.  The data digital files 

describing Micropolis are available from the authors for others’ use.  It is hoped that 

other virtual cities will follow for the use of the research community.   
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NOMENCLATURE 

 
WDS Water Distribution System 
  
GIS Geographic Information System 
  
HydroGEN Hydraulic Model Generator 
  
WTP Water Treatment Plant 
  
WWTP Waste Water Treatment Plant 
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CHAPTER I 

INTRODUCTION:  THE IMPORTANCE OF  

CONTAMINATION EVENT MODELING 

 
History has proven that city water distributions systems (WDS) are far from 

failsafe. Case studies have also revealed WDS vulnerabilities to contamination.  In an 

age where terrorist-proof systems are becoming key factors in engineering design, it is 

also important to look at how this factors into a city’s water distribution system.  For 

evident reasons, cities keep their water data confidential.  This data can include detailed 

information on a city’s water distribution system, such as geographic layouts of pipe, 

tanks, wells, and pump stations. Other confidential information can include building 

blueprints and their associated water demands.  This class of information is considered 

sensitive and is therefore made unavailable to the public.  For this reason, the 

development of a virtual city is necessary for an accurate representation of true city 

characteristics.  Micropolis is a virtual city that has been created to reflect the key 

features of a true city.  It represents a small town of approximately 5000 residents.  This 

virtual city’s WDS is capable of being modeled for a contamination event via a 

hydraulic modeling program.  During the simulation, the contaminant spread is closely 

monitored and the effects for those who depend on the water for daily usage is analyzed.  

It is hoped that contamination vulnerabilities of the Micropolis water distribution system 

will be extracted so that actions can be taken for developing effective contamination 

response procedures and steps for improving the overall system integrity.  

 

_____________ 
This thesis follows the style of Journal of Water Resources Planning and Management. 
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CHAPTER II 

RESEARCH OBJECTIVES 

 
This research can be summarized in three phases.  Phase 1 requires the 

application of a Geographic Information System (GIS) needed for creating Micropolis.  

The second phase involves the transfer of Micropolis into a hydraulic modeling program 

for contamination simulation.    Finally, the third phase involves the collection of results 

and the repeat of Phase 2 for different contamination scenarios.  These different 

contamination scenarios refer to the introduction of different contaminants, the same 

contaminant at a different location, or adjustment to initial setup conditions for the water 

distribution system.  A figure of this three phase process is provided in Figure 1.  Once 

an acceptable understanding on Micropolis’s vulnerability to contamination is 

determined, intervention procedures can then be proposed.  These procedures could 

include valve and pipe isolation emergency response plans so to minimize detrimental 

effects on city residents.  Further details concerning these phases are discussed in 

subsequent chapters.   

 
 
 
 
 
 
 
 
 
 
 
.    Fig. 1. Research Phases    .

 

Repeat 

Simulate Import EPANetGIS 

1 2 3 

Results 
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CHAPTER III 

PHASE 1 – BUILDING MICROPOLIS 

 
The first phase involves the application of a Geographic Information System 

(GIS) to create Micropolis from scratch.  ArcView 3.2 and ArcMap 9.0 are the GIS tools 

that were utilized to carry out this process.  Knowledge of city planning was needed in 

the building of Micropolis.  This virtual city was developed on a timeline basis to 

incorporate the attributes of a true city.  For example, it was assumed that Micropolis 

was first settled during the 1850s and continued to expand in time.  Another advantage 

of following a timeline development pattern was the consideration of varying pipe 

material throughout a city’s water distribution system.  During the early 1900s most 

pipes were of cast iron material.  Micropolis reflects this behavior in the oldest part of 

the city (downtown).  Pipes installed in Micropolis during the 1950s consisted mainly of 

asbestos cement pipes, whereas pipes installed during the 1980s were of ductile iron.  

Varying pipe material means varying pipe roughness factors.  This plays an important 

role when considering hydraulic behavior, as discussed in Phase 2.   

An important consideration in the development process was to understand certain 

imperfections of a true city’s water distribution system.  Incorporating these 

imperfections in Micropolis was necessary if the standard of modeling a true city was to 

be maintained.  Incorporating some of these imperfections involved intentional service 

connection misalignment with water mains and locating fire hydrants contrary to code 

specifications.  
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Among the first steps in creating Micropolis entailed the configuration of a 

distance grid.  This grid is indicated in Figure 2 (a) and (b) as equally spaced green dots.  

These imaginary dots represent distance intervals of 1000 feet.  Planning the terrain was 

the next step.  This was accomplished using a GIS.  The city’s main sources of water 

supply come from groundwater and a reservoir located just north of the city.  The next 

step involved placement of city roads and setting zone boundaries for identifying 

industrial, commercial, and residential areas.  A layout of this is presented in Figure 2 

(a).  The black lines represent the roads and the red vertical line represents the railroad 

track.  The green, purple, and the yellow areas represent the residential, commercial, and 

industrial zones, respectively.   

 
 
 

(a)            (b) 
 
Fig. 2. Micropolis Layout I:  (a) grid, roads, railroad, zones, and (b) property lots and 
buildings.                                                                                                                              . 
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Figure 2 (b) depicts numerous adjacent rectangles.  These rectangles represent 

designated property lots.  These lot sizes vary according to lot purpose.  Some lots are 

for apartment complexes, while others are for single family residents.  Lots for 

commercial and industrial zones are also included. Some facilities represented in 

Micropolis include restaurants, schools, post office, churches, and small businesses.                 

Water mains were obviously included.  Water mains are indicated as thick blue 

lines in Figure 3 (a).  It is noted in Figure 3 (a) that water mains are located parallel to 

main roads, as they are in reality.  In addition to water mains, service connections were 

created to provide water demands to property lots.  This is presented in Figure 3 (b).  

The service connections are indicated as thin blue lines branching off the water mains.  

Red and green point shapefiles represent fire hydrants and valves, respectively.   
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        (a)      (b) 
 

Fig. 3. Micropolis layout II:  (a) water mains and (b) valves, hydrants, and service 
connections.                                                                                                                          . 

 
 
     

Table 1. Pipe and Service Connection Characteristics 

Pipe Material 
Year 

Installed Roughness  (in) Diameter (in) (ε / D)a
friction 
factor 

Cast Iron 1910 0.009843 2 0.004921 0.0300
   4 0.002461 0.0240
    6 0.001640 0.0220
Asbestos Cement 1950 0.004800 4 0.001200 0.0200
(C = 140)b   6 0.000800 0.0185
   8 0.000600 0.0175
Ductile Iron 1980 0.004800 4 0.001200 0.0200
(C = 140)c   6 0.000800 0.0185
   8 0.000600 0.0175
    12 0.000400 0.0160
Copper 1910 0.000060 ¾ 0.000080 0.0115
new   1 0.000060 0.0110
    2 0.000030 0.0095
    4 0.000015 0.0085
Plastic 1980 0.000039 ¾ 0.000052 0.0105
    2 0.000020 0.0087
a(fully turbulent flow is assumed). 
b(Wurbs and James. 2002). 
c(www.DIPRA.org). 
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All pipes have characteristics that need to be included when running a water 

distribution system contamination simulation.  These characteristics include installation 

years, roughness coefficients, pipe size, and friction factors, as shown in Table 1.  For 

example, the Hazen-Williams coefficient for ductile iron is 140 (Ductile Iron Pipe 

Research Association 2006) and the Darcy-Weisbach friction factor for cast iron is 

0.009843 (Wurbs and James 2002).  ArcView 3.2 allows this data to be incorporated 

through attribute tables.  

The next task required the assignment of elevation data to all pipe nodes.  This 

was easily accomplished with the help of ArcView 3.2 by manually inserting elevation 

point shapefiles and assigning elevation values to these points.  Elevation point 

shapefiles were carefully chosen to reflect high and low elevations for the preexisting 

Micropolis terrain.  For example, low elevation points were assigned for stream and river 

areas. These elevation points could then be interpolated to obtain an elevation grid for all 

areas of Micropolis.  Figure 4 illustrates the Mircopolis’s elevation grid as it exists in a 

GIS.  The legend indicates an elevation range in units of feet.   
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.                                                     Fig. 4. Elevation Grid                                                    . 

 
 
 

The final step prior to Phase 2 was the assignment of water base demands to all 

terminal nodes.  An important aspect to consider when modeling a real city is base 

demand variation.  For example, water demand for a single family residence is different 

for demand of a textile factory.  In other words, different quantities of water are used at 

different peak hours of the day.  To account for this variation, diurnal curves (demand 

profiles) were needed to accurately assign base demands for all property lots.  These 

curves were derived in consultation with Haestad Methods Advanced Water Distribution 

Modeling and Management (2003).  In Micropolis, the curves considered were 

residential, industrial, schools, grocery stores, and restaurants.  These demand profiles 
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depict the average water demands that are typical of small towns.  These profiles are 

presented in Figure 5 for a 24-hr period.  The hydraulic modeling program, EPANet, is 

capable of taking these curves and assigning them to desired terminal nodes at which a 

demand can be taken. 
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                  (c)                                                                 (d)                                                        . 
 
Fig. 5. Demand profiles for (a) restaurants, (b) churches, schools, grocery stores, (c) industrial zones, 
and (d) residential zones.                                                                                                                        . 
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 After pipe characteristics, elevations, and base demands were obtained, 

preparation for transfer of Micropolis into an EPANet framework was initiated.   

HydroGEN, an ArcView 3.2 extension, was utilized to convert the Micropolis pipe 

network into a workable input file for the EPANet modeling program.  To successfully 

apply HydroGEN, a pipe network, water demand, and elevation shapefile were required 

in a GIS.  Water sources and pumps are not transferred by HydroGEN, and are therefore 

added manually in the EPANet program.  Once the EPANet input file is imported and 

opened, the result is the Micropolis water distribution system, as illustrated in Figure 6.  

 
 
 

 
    
     Fig. 6. Micropolis in EPANet            . 
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CHAPTER IV 

PHASE 2 –MODELING CONTAMINATION EVENTS 

 
Phase 2 involves EPANet applications for running the Micropolis hydraulic and 

water contamination simulations (Rossman 2000).  EPANet is a program provided by 

the Environmental Protection Agency for simulating hydraulic and water-quality 

behavior within pressurized pipe networks.  A network can consist of pipes, pipe 

junctions, pumps, valves and storage tanks or reservoirs.  Micropolis contains a total of 

1500 junction nodes that are capable of being tested for contamination simulation.  

Examples of three contamination scenarios are explained.  Consider a chemical 

contaminant to be inserted at the indicated intrusion point in Figure 7. 

The first step in running this simulation involves defining the contaminant.  

Figure 8 presents EPANet prompt boxes for defining a contaminant.  For the first 

contamination scenario, a hypothetical first order reaction decay contaminant will be 

pumped against pressure at the indicated insertion point.  This contaminant will enter the 

system at a continuous initial concentration and the simulation will run for an arbitrarily 

chosen period of five days.   
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WWTP 

Church 

WTP 

Church Elsie’s Cafe 

Church 

Post Office Elem. School City Hall Dairy Queen 

Intrusion Point 

.     Fig. 7.  Contamination Scenario 1            . 
 
 

 
 

.   Fig. 8.  Defining Contaminant and Event Duration                . 



 13 

 Snapshots of the simulation event are illustrated in chronological order in Figures 

9 through 12.  It is assumed that the toxicity of this hypothetical contaminant is fatal if 

ingested in water at a concentration greater that 0.8 mg/L, as indicated in red in the pipe 

legend of Figure 9.  Traces of lethal contamination concentrations become noticeable 

half way into day one, as shown in Figures 10 and 11.   Water contained in red pipes is 

considered lethal, water contained in yellow pipes is considered harmful, and water 

contained in blue pipes is considered safe for drinking. 

 
 
 

 
.   Fig. 9. Simulation at Day 1, 12:00 AM            . 
 
 
 



 14 

 
 
.   Fig. 10. Simulation at Day 1, 1:00 PM            . 
 
 

 
 
.   Fig. 11. Simulation at Day 3, 12:00 AM            . 
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.   Fig. 12. Simulation at Day 6, 12:00 AM            . 

 
 
 

Skipping to the final time segment, it is shown in Figure 12 that the concentration 

ceases to spread beyond a general area.  This is a result of first order reaction decay 

behavior.  In time, the concentration of the contaminant decays linearly to zero.   

The same contaminant and intrusion point are applied to Scenario 2, however the 

initial tank water level in Micropolis is reduced from 115 ft to 90 ft.  The tank is shown 

in Figure 13.  The concentration effect of this scenario is considered for the school as 

well.  Results of Scenario 2 are presented in Chapter V.  
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    Fig. 13.  Contamination Scenario 2            .
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inally, for Scenario 3, the contamination setup from Scenario 2 is maintained, 

however, the effect of a valve shutoff is considered.  Valve 149 is the desired shutoff 

valve, as shown in Figure 14.  The concentration effect of this adjustment is considered 

from the school’s perspective.  Results of Scenario 3 are presented in Chapter V.  

 
 
F
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.     Fig. 14.  Contamination Scenario 3            . 
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CHAPTER V 

PHASE 3 – OBTAINING RESULTS 

 
Phase 3 involves the analysis of results.  Once the contamination was simulated 

for three scenarios, an examination of these results was performed to see resulting 

effects and impacts on those depending on the water for daily living.  For purposes of 

this thesis, the effects of all three contamination scenarios were considered from the 

elementary school’s demand dependency.  Figure 15 presents a plot of the contaminant 

concentration behavior for the water being received at the school for Scenario1.  

 

 
 

 
.          Fig. 15. Concentration Plot for Elementary School           . 
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 It is shown that the contaminant concentration has no significant impact on the 

school until day three.   At this time, there is an initial spike in concentration, but quickly 

tapers asymptotically in a sinusoidal fashion.  The tapering behavior is an effect 

resulting from system equilibrium due to a continuous contamination source injecting 

the system at the same initial concentration over time.  The oscillation behavior is 

justified by the school water demand patterns and contaminant decay as stated 

previously in Chapter 2.  For a typical school, peak demands occur from 8:00 a.m.-5:00 

p.m.  This peak demand is reflected in the upward half of the oscillation wave in Figure 

15.  Higher demands result in higher concentration exposure.  During low demand hours 

(such as at night) the contaminant remains in the system longer, therefore allowing 

decay to play a bigger role.  This low demand is reflected in the downward half of the 

oscillation wave in Figure 15.  Recall that this contaminant is fatal if ingested in water at 

a concentration greater than 0.80 mg/L.  It is noted that the concentration never exceeds 

0.18 mg/L throughout the duration of the event; therefore the school’s drinking water is 

considered safe for Scenario 1.   
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.    Fig. 16. Concentration Plot for Elementary School for Contamination Scenario 2       . 

 
 
 
Results of contamination for Scenario 2 are shown in Figure 16.  Recall that 

Scenario 2 involves a reduction in initial tank levels from 115 ft to 90 ft.  Because less 

water is available in the tank during the initial stages of the simulation, the school 

receives more water from the water treatment plant (WTP).  Looking closer at the 

location of the intrusion point, it is noted that the contaminant is injected into a major 

water main leading directly from the WTP.  This reduction in tank water level results in 

the contaminant reaching the school at higher initial concentrations and approximately 

45 hours sooner than in Scenario 1!  The same justifications for the tapering and 

oscillation behaviors described for Scenario 1 also apply to Scenario 2.   Figure 16 

shows the concentration never exceeding 0.22 mg/L throughout the duration of the 

simulation; therefore the school’s drinking water for Scenario 2 remains safe. 
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.    Fig. 17. Concentration Plot for Elementary School for Contamination Scenario 3       . 

 
 
 

Results of contamination for Scenario 3 are shown in Figure 17.  Recall that 

Scenario 3 involves the same system setup in Scenario 2, with the exception of closing 

Valve 149.  Shutoff of this valve results in a partial isolation of contamination spread to 

northern Micropolis.  Less spread in northern areas results in higher spread to southern 

areas.  This results in a sooner contaminant arrival at the school.  The same justifications 

for the tapering and oscillation behaviors described for Scenario 1 and 2 also apply to 

Scenario 3.  Figure 17 illustrates the asymptotic concentration increase to a value of 0.74 

mg/L.  Note that this toxicity falls within the yellow pipe range.  This concentration is 

enough to cause life threatening illnesses!  It is concluded that Scenario 3 is considered 

dangerous and proper measures are to be taken to avoid this hazard.  



 22 

Three scenarios have been presented, but there are many additional scenarios to 

simulate.  It is hoped that an optimization will be developed for study of a worst case 

scenario.  A worst case scenario will aid the planning process for maximizing an 

efficient emergency response procedure for Micropolis.  This emergency response will 

involve isolating the contaminant for designated WDS areas, informing the public, 

ordering a “DO NOT CONSUME,” and/or evacuating the city residents.   
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CHAPTER VI 

CONCLUSIONS 

 
Though the probability of successfully contaminating an entire water distribution 

system is low, the possibility remains real.  Micropolis provides researchers with a 

detailed and realistic virtual city for water distribution system research applications.  

Eventually, the development of a larger city will be used for continuation of this study.  

Professionals can use or contribute to this library of virtual cities for comparison of 

results or additional contamination scenarios.  It is hoped that this research, and similar 

works, will provide scientists, engineers, and city decision makers with a better 

understanding on the issues pertaining to WDB contamination vulnerability and the 

necessary measures for making a city’s water distribution system less prone to accidental 

or intentional contamination events. 
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