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ABSTRACT

Nonlinear Magneto-Optic Effects

in Optically Dense Rb Vapor. (May 2003)

Irina Borisovna Novikova, Diploma, Moscow State Engineering Physics Institute

Chair of Advisory Committee: Dr. George R. Welch

Nonlinear magneto-optical effects, originated from atomic coherence, are studied

both theoretically and experimentally in thermal Rb vapor. The analytical descrip-

tion of the fundamental properties of coherent media are based on the simplified

three- and four-level systems, and then verified using numerical simulations and ex-

perimental measurements. In particular, we analyze the modification of the long-lived

atomic coherence due to various physical effects, such as reabsorption of spontaneous

radiation, collisions with a buffer gas atoms, etc.

We also discuss the importance of the high-order nonlinearities in the description

of the polarization rotation for the elliptically polarized light. The effect of self-

rotation of the elliptical polarization is also analyzed.

Practical applications of nonlinear magneto-optical effects are considered in pre-

cision metrology and magnetometery, and for the generation of non-classical states of

electromagnetic field.
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CHAPTER I

INTRODUCTION

A. Goals and motivation

The interaction of light with matter remains one of the major areas of research from

the dawn of modern physics to the present. Recent advances in optical technology

made it possible to control the properties of an individual atom via laser light, and

therefore to create new media with unique optical properties. A glass cell with di-

lute atomic vapor (with pressure much below that of the atmosphere) may surpass

the best solid-state devices, traditionally used in optics. Under the action of several

light fields, resonant with various atomic transitions, most atoms can be prepared in

a coherent superposition of energy states, so the properties of the atomic vapor are

altered dramatically [1]. For examples, it becomes possible to reduce the speed of a

light pulse, propagating in such a medium, down to a few meters per second, or even

bring the light to a complete stop and store it for some time with no absorption of

the pulse energy by the atoms. Further, the efficiency of many nonlinear processes,

which results in the generation of additional light with a different frequency, may be

increased dramatically up to the single-photon level, which is impossible in standard

nonlinear crystals. This high nonlinearity also allows generating ultra-short light

pulses, in which the duration of the pulse is smaller than the period of one oscilla-

tion of the electromagnetic field. Coherent phenomena also play an important role in

astrophysics and solar physics, creation of a new type of matter (Bose-Einstein con-

densate), precision metrology (such as a frequency standard with the stability of one

second per hundred billion years), quantum computing and information processing,

This dissertation follows the style and fomat of Physical Review A.
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and many others.

The subject of my research is Nonlinear Magneto-Optical polarization Rotation

(NMOR) [2,3]. For this phenomenon the coherent properties of the atomic vapor are

determined by the polarization of a single resonant laser field. The modification of

the associated atomic coherence in an external magnetic field results in the rotation

of the light polarization direction, similar to the well-known Faraday effect in solids.

However, because of the coherent nature of the interaction, the polarization rotation

per atom is up to 1010 times stronger for the same value of the magnetic field than

for the best magneto-optical crystals. The analysis of NMOR data allows deeper

and clearer understanding of basic properties of coherent media, hardly achievable by

other methods.

At the same time this effect may be applied for high-precision measurements

of the magnetic field. It has been predicted, that a magnetometer based on highly

coherent media should surpass in sensitivity all presently available devices [4,5]. The

magnetometer based on the nonlinear Faraday effect is one of the promising realiza-

tions of such an apparatus.

The major objective of this research is to conduct a comprehensive analysis of the

nonlinear magneto-optic effects in optically dense Rubidium vapor, and to evaluate

the influence of various physical effects, such as collisions with buffer gas, trapping

of spontaneous radiation, atomic motion, laser intensity spatial distribution, etc., on

the light absorption and the polarization rotation. This information allows better

understanding of the fundamental properties of the coherent phenomena in general

and Zeeman coherence in particular. At the same time these factors have to be taken

into account in order to find the optimum conditions for the operation of a nonlinear

Faraday-based magnetometer.
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B. Review of coherence effects on the Zeeman sublevels

The idea of interference of different atomic states was first proposed by W. Hanle

[6] and later developed by many other physicists of that time [7–11] to explain the

experimental results of Wood and Ellett [12]. They observed a complete depolar-

ization of the spontaneous emission of mercury vapor excited by linearly polarized

light in the presence of a magnetic field, while the linear polarization was preserved

for zero magnetic field. Hanle proposed that atoms were excited into a coherent su-

perposition of excited state magnetic sublevels; if the degeneracy of these levels is

lifted (by a magnetic field), the time evolution of relative phase leads to the differ-

ent polarization of spontaneous photons. The Hanle effect and the related quantum

beat effect [13–15] became powerful tools in atomic and molecular spectroscopy as

well as in solar physics [16]. The interference of the non-degenerate states in the

presence of non-zero external field (level crossing) was also demonstrated and applied

for precision spectroscopy [11,17,18].

A similar coherence among ground-state sublevels can be created via optical

pumping [19–21]. One of the most interesting phenomena, based on ground-state

coherence, is coherent population trapping (CPT) [1,22,23]: under the combined ac-

tion of several laser fields atoms are optically pumped into a coherent superposition

of hyperfine or Zeeman sublevels which is decoupled from the light. Such a state is

often called a “dark state”, since it is associated with the suppression of the reso-

nant fluorescence. The cancellation of linear absorption under CPT conditions is a

manifestation of Electromagnetically Induced Transparency (EIT) [1, 24,25].

Since the coherence between the magnetic sublevels is easily created and con-

trolled by a properly polarized electro-magnetic field and an external magnetic field,

coherent population trapping was initially demonstrated for Zeeman coherence ex-
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cited by a multimode dye laser [26–28], and later extensively studied in a variety of

experimental arrangements: in atomic beams [29, 30], thermal vapor cells [31–35],

and cold clouds [36]. Similarly, the interference between Zeeman sublevels has to be

taken into account in the experiments where hyperfine coherence is created by two

laser fields [36–41]. The amplification without inversion due to Zeeman coherence

[42, 43] and effective four-wave mixing in a degenerate two-level scheme [44] have

been also demonstrated.

Steep dispersion associated with Zeeman coherence results in ultra-slow group

velocity for the polarization pulse propagating in atomic vapor [45,46]. It also lead to

various magneto-optical polarization effects, which are reviewed in the next section.

Coherent interaction allows efficient control over the properties of individual

atoms by means of light field(s). In atomic optics coherent population transfer be-

tween magnetic sublevels [47–49] is widely used to create atomic mirrors and beam

splitters [50–53], as well as an effective atomic interferometer for cold atoms [54].

furthermore, the properties of an electromagnetic field can be controlled by a

coherently prepared medium. For example, an arbitrary state of the light in a cavity

may be generated via strong coupling of atoms in a coherent superposition of the

Zeeman states [55]. The possibility to transfer complete information about a light

pulse to an atomic spin state and back [56, 57] allows storage, manipulation and

releasing of laser pulses in well-controlled manner [58, 59], as well as transportation

of the state of light between different spatial and temporal points, and multiplexing

and time reversal of the restored pulse [60].

Although the majority of coherent phenomena are associated with coherent pop-

ulation trapping and cancellation of light absorption, under certain conditions the

resonant coherent interaction may increase the absorption of the resonant light, giv-

ing rise to Electromagnetically Induced Absorption [61–64]. This effect occurs in the
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case of two resonant laser fields interacting with a degenerate two-level atomic system

under the condition that the angular momentum of the excited state is higher than

that of the lower state (F ′ > F ). A quite similar effect has been observed in case of

single laser excitation in the presence on magnetic field, and is called the enhanced

absorption Hanle effect [34, 35, 65, 66]. The initial explanation of both effects was

based on the redistribution of the atomic population among ground-state Zeeman

sublevels due to the difference in the transition probabilities [61,65]. These calcula-

tions, however, are valid only for closed (cycling) transitions, although experimentally

EIA has been observed on open transitions as well [64, 66]. It is also possible that

the enhancement of absorption occurs due to the spontaneous coherence transfer from

excited to ground states [67]. This assumption provides good agreement with exper-

imental results regardless of the “openness” of the transition [68]. Steep anomalous

dispersion associated with EIA and the corresponding negative pulse delays have been

demonstrated in [69, 70]. The effect of EIA has been proposed for highly selective

four-wave mixing [71], noninvasive mapping of cold atomic samples [72], etc.

C. Review of nonlinear magneto-optic effects

The rotation of the polarization direction of light resonant with an atomic transition

(linear resonant Faraday effect, Macaluso-Corbino effect) was discovered in 1898 by

Macaluso and Corbino [73,74], and studied extensively [75–79] afterwards. This rota-

tion, however, may be enhanced due to the interference of the ground-state magnetic

sublevels and evolution of the Zeeman coherence in an external magnetic field, giving

rise to a variety of nonlinear magneto-optical effects. Most of the experimental and

theoretical work considers two specific cases of the magnetic field orientation with

respect to the light propagation direction: longitudinal (Faraday configuration) and
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transverse (Voigt configuration) with analogy to the well-known Faraday [80] and

Voigt (Cotton-Mutton) [81,82] effects in magnetic crystals.

Many early experiments utilized the resonant forward scattering of the linearly

polarized light to study magneto-optical interference effects. In these experiments

the narrow resonances in the scattered light of the orthogonal polarization provide

information about the populations and coherences among excited state [83, 84] and

ground state [85–93] degenerate sublevels. Forward scattering spectroscopy is suc-

cessfully used for measurement of the oscillator strength of various atomic transitions

[78,94–96] and for trace element detection [97–100].

Experiments in selective reflection spectroscopy [101, 102] in Cs vapor demon-

strated that the Zeeman coherence induced by linearly polarized light leads to the

appearance of resonances of subnatural width in polarization rotation of reflected

light [103]. Anomalous deflection of a laser beam traversing the Cs cell due to Zee-

man coherence has also been demonstrated [104].

Interest in nonlinear magneto-optical effects was revived in late 1980th with

the almost simultaneous observation of strong nonlinear polarization rotation in Sm

[105–107] and Cs [108–110]. Existing theoretical approaches provided an accurate

description of the nonlinear Faraday [107,111–115] and Voight [116–119] effects only

for the simplest level configurations, and failed to adequately describe the atoms with

high angular momentum [120]. For example, the importance of the hexadecapole

moment (∆m = 4 coherence) in interpretation of resonant forward scattering features

raised a heated discussion [85,86,92,93].

Weis et al. developed a theoretical description of the nonlinear Faraday rotation

for atoms with arbitrary angular momentum in the approximation of weak magnetic

field and laser intensity [121, 122]. This theory includes a three-stage interaction

process: initial excitation of ground-state coherence by a laser field, its evolution in
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the external magnetic field, and finally the scattering of the probe field on the mod-

ified Zeeman coherence, which results in the polarization rotation. This theory was

later extended by Budker et al., who took into account the alignment-to-orientation

conversion process, which becomes dominant for a more powerful laser field [123]. An

alternative approach to the description of the nonlinear Faraday rotation of strong

laser field is based on the strong dependence of the refractive indices for two circularly

polarized components of the electromagnetic field on the magnetic field in a coherent

medium [124, 125]. Both theoretical approaches provide good agreement with ex-

perimental results in thermal Rb vapor [125–128]. The experimental and theoretical

results for the Faraday effect in Ca, nonlinear with respect to both very high laser

intensity and magnetic field, have been presented by Agarwal et al. [129].

Recent advance in laser trapping and cooling technology made possible the study

of the optical properties of cold atoms. The absence of interatomic collisions and

Doppler broadening of optical resonances lead to dramatic enhancement of linear

Faraday effect in laser cooled Li [130] and Rb [131] atoms. Comparable enhancement

of nonlinear magneto-optical effects is anticipated.

The observation of narrow Ramsey fringes in the nonlinear Faraday rotation

spectrum in Rb atomic beam has been reported in experiments with separated optical

fields [132]. Similar resonances were observed by Kanorsky et al. in Cs vapor cells

with anti-relaxation wall coating, and explained in terms of multiple wall-collision-

induced Ramsey resonances [133]. Nonlinear Faraday rotation with ultra-narrow

width (∼ 1 Hz) in a paraffin-coated Rb cell are reported by Budker et al. [134,135].

The narrow resonances, analogous to Ramsey fringes are also observed in atomic cells

filled with inert buffer gas [136,137]. Modification of the magneto-optical polarization

rotation due to collisions with buffer gas at high pressure is investigated in [138–141].

Rotation of the polarization direction of linearly polarized light is also an effec-
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tive tool to study the population redistribution and ground-state coherence induced

by a second laser field. The rotation of linear polarization of a weak probe field

caused by the combined action of a longitudinal magnetic field and strong circularly

polarized laser beam is analyzed in [142–145]; Patnaik and Agarwal [146, 147] have

demonstrated that the presence of strong counter-propagating field may coherently

control the polarization rotation of the probe field. It is also demonstrated both in

forward scattering [148] and polarization rotation experiments [149] that sponta-

neous coherence transfer also results in the modification of the Faraday rotation by

the ground-state coherence created by a second laser on different set of magnetic

sublevels. Transfer of coherence between two transitions which are not connected by

spontaneous emission is studied experimentally in [150].
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CHAPTER II

NONLINEAR MAGNETO-OPTIC ROTATION IN THREE-LEVEL Λ SYSTEM

In this chapter we theoretically consider the interaction of linearly polarized light with

atoms for the case of a simple Λ level scheme. We use semiclassical theory, assuming

classical light fields and quantized atomic states.

The chapter is organized as follows. First, we derive the time evolution equations

for the density matrix elements in a general Λ interaction scheme. Then, using these

equations for the case of the magnetic sublevels we analyze the open and closed

Λ system and prove their equivalence. Then we derive analytical expressions for

the absorption and the polarization rotation angle of the electromagnetic field for

homogeneously and non-homogeneously broadened optical transitions. Finally, we

demonstrate, that the F = 1 → F = 0 transition can be treated as a three-level Λ

scheme with simple renormalization of the decay rates and atomic density.

A. Optical Bloch equations for general Λ scheme

1. Maxwell’s equations for the electromagnetic field propagating in atomic vapor

The propagation of the electromagnetic field through a medium is described by

Maxwell’s equations [151,152]:

∇× ~E = −1

c

∂ ~B

∂t
; (2.1)

∇× ~H =
4π

c
~j +

1

c

∂ ~D

∂t
; (2.2)

∇ ~D = ρ (2.3)

∇ ~B = 0. (2.4)
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Here ~E is the electric field, and ~H is the magnetic field, ~D is the displacement,

~D = ~E+4π ~P , where ~P is the polarization of the medium, ~B is the magnetic induction,

and ~B = ~H + 4π ~M where ~M is the magnetization of the medium; ρ and ~j are the

electric charge and current densities in the medium.

We assume that no charges exist in an atomic vapor, ρ = 0 and ~j = 0. We also

consider only electric-dipole transitions, in which the propagating electromagnetic

field induces the electric dipole moments of the atoms. In this case ~B ≡ ~H, and the

equation for the electric component of the light field is:

−∇2 ~E +
1

c2

∂2 ~E

∂t2
= −4π

c2

∂2 ~P

∂t2
(2.5)

Here ~P is the induced macroscopic polarization of the atomic vapor, which can be

rewritten as a sum of induced dipole moments of individual atoms: ~P = N〈~d〉, where

N is the number of atoms in the interaction region, and 〈~d〉 = −e〈~r〉 is the dipole

moment of an individual atom averaged over the ensemble.

The average dipole moment can be easily found by using the density operator of

the atomic system [1,153,154]:

ρ̂ = |ψ〉〈ψ| = ∑

{α},{β}
ρα,β|α〉〈β|, (2.6)

where {|α〉} is a complete set of atomic states. In this case the average dipole moment

can be written in terms of the dipole moments of the individual transitions and the

density matrix elements of the atomic system:

〈~d〉 = Tr(~dρ̂) = − ∑

{α},{β}
e〈β|~r|α〉ρα,β (2.7)

The transition probability is determined by the dipole moment e〈β|~r|α〉 6= 0. The

selection rules then follow from the basic properties of the wave-functions of the initial
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and final states of the electron. For uncoupled electrons in alkali atoms the state of

the electron can be characterized by three quantum numbers [155–157]:

|α〉 = |n ` m〉; (2.8)

ψn`m(~r) = Rn`(r)Y`m(θ, ϕ).

Here n is the principle quantum number, ` and m are the angular momentum and

the z-component of the angular momentum. 1 The selection rules for the electric-

dipole transitions in atoms ∆n = 1, ∆` = ±1 and ∆m = 0,±1 follow from the

orthogonality of the radial distribution functions {Rn`} and spherical functions {Y`m}.
However, there are further restrictions due to the parity conservation, which results

in additional selection rules for the electromagnetic field with different polarizations

(Fig. 1). If the light propagates along the z axis, only circularly polarized light

quanta can be absorbed and emitted, with the following selection rules: ∆m = 1

for σ+ polarization and ∆m = −1 for σ− polarization. If the quantization axis is

perpendicular to the direction of the light propagation selection rules also depend

on the angle between the z axis and direction of the electric field component of the

electromagnetic wave: if they are parallel only ∆m = 0 transitions are allowed (π-

polarization). For any other geometry of the problem all types of transitions are

allowed. The rotary transformation suggested by H. Lee and coworkers [158] allows

a simple treatment of the general case.

In the following calculations we always consider a plane wave, circularly polarized

in the x − y plane propagating along the z direction. Then we can rewrite Eq.(2.5)

1Because of the spin-orbit interaction, the electron angular momentum in alkali
atoms is not an independent operator. If the fine structure of the atomic energy
levels is considered the total angular momentum j and its z-component mj should be
used instead. For the hyperfine structure due to the coupling with the nuclei spin the
total atomic angular momentum F and its projection mF define the spin state of an
electron.
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(a) (b)

Fig. 1. Allowed transitions for the F = 1 → F ′ = 0 in a) Faraday configuration

(magnetic field is along the light propagation direction); b) Voigt configuration

(the magnetic field is parallel to the light polarization).

in scalar form, using ~E(~r) = E±(z)(~ex ± i~ey)/
√

2:

−∂2E±
∂z2

+
1

c2

∂2E±
∂t2

=
4π

c2
N

∑

{α,β}
℘α,β

∂2

∂t2
ρ

(±)
α,β , (2.9)

where ℘
(±)
α,β = −e〈β|1

2
(x± iy)|α〉 is the matrix element of the electric dipole moment

of the transition. It is clear from the form of Eq.(2.9) that the amplitude of the elec-

tromagnetic field, propagating through the atomic vapor, is governed by the density

matrix elements of the atoms. At the same time the properties of the density matrix

elements are determined by the electromagnetic field in nonlinear processes, such as

coherent population trapping.

It is convenient to extract the fast-oscillating time dependence of the electro-

magnetic field amplitude and write it down in the following form:

E(z, t) = E(z, t)eikz−iνt + E∗(z, t)e−ikz+iνt (2.10)

For all processes considered below, the characteristic changes of the amplitude
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and phase of the electromagnetic wave take place at the scale much larger than one

cycle of the oscillations. In this case we can apply the slowly-varying amplitude

approximation:

∂E
∂z

¿ kE ;
∂E
∂t

¿ ωE (2.11)

Then we can rewrite Eq.(2.9) for the amplitude E , keeping only the first time and

spatial derivatives of the slowly-varying amplitude:

∂E
∂z

+
1

c

∂E
∂t

= 2πikN
∑

{α,β}
℘α,β ρ̃α,β, (2.12)

where ρα,β = ρ̃α,βeikz−iνt.

2. Interaction of light with a three-level Λ system

In this section we derive the time-evolution equations for the density matrix elements

for a general Λ scheme. The Hamiltonian describing the interaction of the electro-

magnetic field with the atom in the dipole approximation is [1, 151,159,160]:

ĤI = −e~r · ~E = −erE · E, (2.13)

where rE = ~r · ~E/|E| is the projection of the electron displacement ~r on the direction

of the electric field.

Let us consider three-level atoms interacting with two co-propagating electro-

magnetic waves, as shown in Fig. 2. We assume that levels |b1,2〉 are coupled with

|a〉 via the electromagnetic fields E1,2, forming a Λ system. We assume that only one

transition is allowed for each field, and the electric dipole transition between levels
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Fig. 2. Idealized three-level Λ system.

|b1〉 and |b2〉 is forbidden. The Hamiltonian for such a system can be written as:

Ĥ = h̄ωb1|b1〉〈b1|+ h̄ωb2|b2〉〈b2|+ h̄ωa|a〉〈a| (2.14)

+(℘ab1E1|a〉〈b1|+ ℘b1aE1|b1〉〈a|) + (℘ab2E2|a〉〈b2|+ ℘b2aE2|b2〉〈a|),

where ℘abi
= ℘bia is the dipole moment of the corresponding transition.

It is easy to show that there exists an atomic state |Ψ〉, such that ĤI |Ψ〉 = 0:

|Ψ〉 =
℘ab1E1|b2〉 − ℘ab2E2|b1〉√
|℘ab1E1|2 + |℘ab2E2|2

, (2.15)

if the difference between the two laser frequencies matches the splitting between

ground-state levels (ωb1 − ωb2 = ν1 − ν2). Note, that a match between the frequency

of the lasers and the one-photon atomic transition is not required. A remarkable

property of atoms in such state is that they do not interact with either electromagnetic

field, and all atomic population is trapped in the dark state. This is the simplest
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realization of coherent population trapping (CPT).

The time evolution of the density operator for the atomic system is described by

the Liouville - Von Neumann equation [1, 153,154]:

d

dt
ρ̂ = − i

h̄
[H, ρ̂] . (2.16)

Using the interaction Hamiltonian for our system (Eq.(2.14)) we derive the following

system of equations, which describe the evolution of the density matrix elements:

ρ̇b1,2b1,2 =
i

h̄
{℘ab1,2E1,2ρab1,2 − ℘ab1,2E1,2ρb1,2a}; (2.17)

ρ̇ab1,2 = −i(ωa − ωb1,2)ρab1,2 +
i

h̄
℘ab1,2E1,2(ρb1,2b1,2 − ρaa)

+
i

h̄
℘ab2,1E2,1ρb2,1b1,2 ; (2.18)

ρ̇b1b2 = −i(ωb1 − ωb2)ρb1b2 +
i

h̄
℘ab1E1ρab2 −

i

h̄
℘ab2E2ρb1a. (2.19)

Let us now separate the fast-oscillating time dependence in the atomic polariza-

tions by making the substitutions:

ρab1,2 = ρ̃ab1,2e
−iνit; (2.20)

ρb1b2 = ρ̃b1b2e
−i(ν1−ν2)t. (2.21)

Note that this is the same substitution that is necessary to derive the equation for the

electromagnetic wave in the slowly-varying amplitude approximation Eq.(2.12). In

the following we omit the use of the tilde and use the natation ρα,β for slowly varying

matrix elements. We also use the definition Eq.(2.10) for the electromagnetic field and

then make the rotating wave approximation by neglecting all the terms proportional

to ei(ωi+νj)t. Indeed, under the conditions (2.11) the effect of these fast-oscillating

terms is effectively time-averaged.

The time evolution of the slowly-varying density matrix elements for the three-
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level system can be written as:

ρ̇b1,2b1,2 = iΩ∗
1,2ρab1,2 − iΩ1,2ρb1,2a; (2.22)

ρ̇ab1,2 = −i∆1,2ρab1,2 + iΩ1,2(ρb1,2b1,2 − ρaa) + iΩ2,1ρb2,1b1,2 ; (2.23)

ρ̇b1b2 = −i(∆1 −∆2)ρb1b2 + iΩ∗
1ρab2 − iΩ2ρb2a. (2.24)

Here Ωi = ℘abi
Ei/h̄ is the Rabi frequency, and ∆i = (ωa − ωbi

)− νi is the one-photon

detuning of the electromagnetic field from the transition frequency.

These equations define the atomic populations and the polarization and polariza-

tions for the three-level Λ scheme. The propagation equation for the electromagnetic

fields Eq.(2.12) (in terms of Rabi frequencies) can be then written as:

∂Ωi

∂z
+

1

c

∂Ωi

∂t
= iκiρabi

. (2.25)

The coefficient κ here is defined as:

κi =
2πνi

h̄c
N℘2

abi
=

3

8π
Nλ2

i γabi
, (2.26)

where, λi is the wavelength of the corresponding transition, and γabi
= 4ν3

3h̄c3
℘2

abi
is the

radiative decay rate of level a [156].

3. The effect of relaxation processes

To provide an accurate description of the interaction of the light fields with real

atoms, we need to consider the coupling of the atoms with a thermal bath. A common

approach to this problem is to consider the reduced density operator [154]. Because

of the averaging over the thermal reservoir, an additional term appears in the time-

evolution equation for the density matrix elements:

ρ̇α,β = −Γα,βρα,β, (2.27)
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where

Γα,β =
1

2
(γα + γβ) + γα,βδα,β. (2.28)

Here γα,β are the inverse lifetimes of the states |α〉 and |β〉, and γα,β is the pure

dephasing rate, which is nonzero only for the off-diagonal matrix elements. Adopting

the terminology of NMR experiments, γi is the decay rate of the atomic population,

and Γα,α = 1/T1, where T1 is the longitudinal relaxation time. The pure dephasing

rate γα,β is due to the phase relaxation, and Γα,β = 1/T2 is the transverse relaxation

time.

In reality there are a many physical processes which results in the redistribution

of the atomic populations and decoherence [21,161]. Spontaneous emission (radiative

decay) [155, 157], destruction of the coherence due to collisions with the wall of an

atomic cell [19, 162], the effect of elastic collisions with the buffer gas atoms or

molecules (collisional broadening) [163–165], spin-exchange between electrons [166–

168], the motion of atoms in inhomogeneous electric and magnetic fields [169, 170],

etc., can be incorporated into the description of the interaction of the electromagnetic

field with the atoms based on the density matrix elements using the decay rates as

they are introduced in Eq.(2.27).

In a three-level Λ system the radiative decay of the excited level causes fast

relaxation of atoms to the ground states. At the same time, transitions between the

ground states are forbidden, so the coherence between them can be preserved for a

relatively long time [23]. Unless the walls of an atomic cell are coated with a special

material (e.g. paraffin), which preserve the atomic coherence [133, 134, 171–173],

collisions of atoms with the walls cause thermalization of the ground state sublevel

populations, and destruction of their mutual coherence. In this case the lifetime of

the ground-state coherence is determined by the time-of-flight of atoms through the
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laser beam. The case of a cell filled with a buffer gas is considered in a subsequent

chapter, since the addition of a buffer gas cannot be properly described solely by the

change of the decay rate values.

To describe this situation an open relaxation scheme (Fig. 3a ) is often used. The

relaxation of the excited level population is described by the natural decay rates γ1,2

from level |a〉 to level |b1,2〉. An additional decay channel γ̃r is introduced to model the

population pumping into states that do not interact with the fields (such as another

Zeeman or hyperfine levels). The population decay rate γ0 represents the atoms

leaving the interaction region. To model the atoms flying into the laser beam, we

introduce the incoherent pump ri . If ∆b1b2 ¿ kBT , where T is the reservoir average

temperature, and kB is the Boltzmann constant, the populations of the ground states

are completely equalized in the collision with the walls, so the value of the incoherent

pump is the same for all levels. Its value r = γ0/2 is determined so that the sum of

ground level populations is equal to unity in the case of a quasi-closed configuration

γ̃r = 0, i.e.

ρaa + ρb1b1 + ρb2b2 = 1− γ̃r

γ0

ρaa. (2.29)

When γ̃r > 0, the sum of the populations is less then unity because of optical pumping.

Using Eq.(2.27) we can write the Bloch equations for an open Λ system as follows:

ρ̇b1,2b1,2 = γ0/2− γ0ρb1,2b1,2 + γ1,2ρaa + iΩ∗
1,2ρab1,2 − iΩ1,2ρb1,2a; (2.30)

ρ̇ab1,2 = −Γab1,2ρab1,2 + iΩ1,2(ρb1,2b1,2 − ρaa) + iΩ2,1ρb2,1b1,2 ; (2.31)

ρ̇b1b2 = −iΓb1b2ρb1b2 + iΩ∗
1ρab2 − iΩ2ρb2a, (2.32)

The generalized decay rates are defined as:

Γab1,2 = γ + i∆1,2 (2.33)
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Fig. 3. a) Open Λ scheme ; b) closed Λ scheme.

Γb1b2 = γ0 + i(∆1 −∆2), (2.34)

where the polarization decay rate of the excited state is γ = γ0 + (γ1 + γ2 + γ̃r)/2.

In many publications the relaxation processes in atoms are described by means of

a closed relaxation scheme (Fig.3b). For this system we again assume that the decay

rates of the excited transitions are determined by the radiative decay. To describe the

evolution of the ground-state populations and coherence we introduce the population

exchange rate γ0r and the dephasing rate γ0. In this scheme all the atomic population

is confined within the three levels. Strictly speaking, in the transient regime the closed

system cannot be applied. However, the equivalence of the closed and open schemes

has been demonstrated under certain conditions [174]. Later we will prove that both

of these schemes provide similar results for the description of the nonlinear Faraday

effect.

The equations for the off-diagonal matrix elements have the same form as Eqs.(2.31)
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and (2.32) for the open system, although the decay rates are different:

Γab1,2 = γ + i∆1,2; γ = (γ1 + γ2 + γ0r)/2 + γdph (2.35)

Γb1b2 = γ0 + γ0r + i(∆1 −∆2), (2.36)

where γdph is the pure dephasing rate of the radiative transition. Thus, the popula-

tions of the ground levels in a closed three-level scheme are defined as:

ρ̇b1,2b1,2 = −γ0r(ρb1,2b1,2 − ρb2,1b2,1) + γ1,2ρaa + iΩ∗
1,2ρab1,2 − iΩ1,2ρb1,2a (2.37)

B. The nonlinear Faraday effect in a three-level Λ system

1. Alkali atoms in the external magnetic field

Let us briefly review the behavior of an atom in an external magnetic field following

[156]. We restrict ourselves to the case of a weak magnetic field so that the charac-

teristic energy of the atom in the magnetic field is small compared to the spin-orbit

interaction. In this case the total angular momentum ~J = ~L + ~S is a good quantum

number. The interaction of an atom with a dc magnetic field ~B is described by the

Hamiltonian:

Hmagn = −~µ ~B = −µBgJ
~J · ~B, (2.38)

where ~µ is the magnetic moment of the atom, µB = eh̄
2mc

is a Bohr magneton and

gJ is the gyromagnetic ratio (Landé g factor):

gJ = 1 +
J(J + 1)− L(L + 1) + S(S + 1)

2J(J + 1)
(2.39)

If we direct the quantization axis along the magnetic field, the Hamiltonian (2.38)

is diagonal. The magnetic field lifts the degeneracy of the sublevels with different
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magnetic quantum number m (corresponding to the quantized z-component of the

angular momentum), shifting each sublevel by an amount δm, proportional to its

magnetic quantum number:

h̄δm = gJµBm B. (2.40)

Thus, in the presence of a magnetic field, the atomic level with angular momen-

tum J is split into (2J + 1) equidistant components with m = ±J,±(J − 1), · · · , 0.

This effect is the well-known Zeeman effect [151,152,175].

If we consider hyperfine structure, electronic angular momentum ~J has to be

replaced by the total atomic angular momentum ~F . In this case the shifts of the

magnetic sublevels are determined by the z-components of the total angular momen-

tum mF = ±F,±(F − 1), · · · , 0:

h̄δm = gJF µBmF B, (2.41)

where the factor Landé is now determined as:

gJF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
(2.42)

2. Coherent population trapping in a Λ system

Let us now concentrate on the particular example of the three-level Λ system, the

Zeeman sublevels of the same hyperfine atomic level play the role of the ground states

in a Λ scheme. The simplest practical realization of such a scheme emerges from an

F = 1 → F ′ = 0 atomic transition. In this case the Λ configuration consists of two

circularly polarized components of a single linear or elliptically polarized laser field,

which establish a low-frequency coherence between ground-state magnetic sublevels

m = ±1. In the presence of the longitudinal magnetic field, no transitions are allowed
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between the excited state and the ground-state sublevel with m = 0 because of the

selection rules.

The interaction Hamiltonian for a Λ system with two circularly polarized electro-

magnetic fields E+ and E− can be written as:

HΛ = h̄∆|a〉〈a| − h̄δ|b+〉〈b+|+ h̄δ|b−〉〈b−|

+ h̄ (Ω−|a〉〈b+|+ Ω+|a〉〈b−|+ H.c. ) (2.43)

where Ω− = ℘ab+E−/h̄, Ω+ = ℘ab−E+/h̄, ℘± are the corresponding dipole moments

of the atomic transitions. Due to the symmetry of the problem ℘+ = ℘−. ∆ is the

one-photon detuning of the laser frequency from the exact atomic transition, and δ

is the Zeeman splitting of the ground-state sublevels |b±〉.
Let us first find the eigenvalues of this Hamiltonian H|λ〉 = h̄λ|λ〉. An equation

for the eigenvalues of the Λ system can be written as:

∣∣∣∣∣∣∣∣∣∣

δ − λ Ω∗
+ 0

Ω+ ∆− λ Ω−

0 Ω∗
− −λ− δ

∣∣∣∣∣∣∣∣∣∣
= 0 (2.44)

or, alternatively

−λ3 + λ2∆ + λ(δ2 + |Ω+|2 + |Ω−|2)− δ(δ∆ + |Ω−|2 − |Ω+|2) = 0 . (2.45)

Let us first consider the case of no splitting between the Zeeman sublevels (de-

generate Λ scheme). Then the eigenvalues and corresponding eigenstates can be easily

found:

λD = 0 (2.46)

|D〉 =
Ω+|b+〉 − Ω−|b−〉√
|Ω+|2 + |Ω−|2

(2.47)
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λB1,2 =
∆

2
±

√
∆2

4
+ |Ω+|2 + |Ω−|2 (2.48)

|B1,2〉 =

√√√√ |λB1,2|
λB1 − λB2

(
|a〉+

Ω∗
+

λB1,2

|b−〉+
Ω∗
−

λB1,2

|b+〉
)

. (2.49)

The state denoted as |D〉 is called the “dark state” because an atom in this state

does not interact with the light fields and therefore does not fluoresce. Atoms in

the other two states, called “bright states”, readily absorb light. Therefore, atoms

initially prepared in a bright state are optically pumped into the dark state after

some finite time comparable with the lifetime of the excited state |a〉. Thus, in

steady-state, the atomic ensemble does not interact with the electro-magnetic fields,

which is the essence of CPT. The dispersive properties of the atomic system in the

dark state are governed by the coherence between the ground states of the Λ system.

The corresponding density matrix element may be found from Eq.(2.46):

ρb+b− = − Ω∗
−Ω+

|Ω−|2 + |Ω+|2 . (2.50)

The true dark state exists only for δ = 0. As soon as the exact resonant conditions

are disturbed, the system starts interacting with light. However, for small detunings

(
√
|Ω+|2 + |Ω−|2 À |δ|,

√
|∆δ|) the disturbance of the dark state is small, and most

of the atomic population is concentrated in the modified dark state |D̃〉. In this case

the eigenvalue λ̃D corresponding to this state can be found by solving Eq. (2.45) and

keeping only the terms linear in δ:

λ̃D = δ
|Ω−|2 − |Ω+|2
|Ω+|2 + |Ω−|2 (2.51)

|D̃〉 ' N
{
|D〉+ 2δ

Ω+Ω−
(|Ω+|2 + |Ω−|2)3/2

|a〉
}

(2.52)

where N ' 1 + O(δ2) is a normalization constant. From Eq. (2.52) it is obvious that

the population of the excited level |a〉 is proportional to δ2.
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Fig. 4. a) Three-level open Λ system, based on the Zeeman sublevels.

3. The solution for the case of a homogeneously broadened transition

In the following calculations we consider the open atomic configuration shown in

Fig. 4. In this case, γr is the radiative linewidth of the transitions |a〉 → |b±〉, γ̃r

is the decay outside the system (for example, to the atomic level m = 0), γ0 is the

ground-state population decay rate due to the transient effect.

The time-evolution equations for the atomic populations can be obtained from

Eqs.(2.30)-(2.32) with the proper change of notation:

ρ̇b− b− =
γ0

2
− γ0ρb− b− + γrρa a + i(Ω∗

+ρa b− − c.c.), (2.53)

ρ̇b+ b+ =
γ0

2
− γ0ρb+ b+ + γrρa a + i(Ω∗

−ρa b+ − c.c.). (2.54)

Analogously, for the polarizations we have

ρ̇a b± = −Γa b±ρa b± + iΩ∓(ρb± b± − ρa a)

+iΩ±ρb∓ b±, (2.55)
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ρ̇b− b+ = −Γb− b+ρb− b+ + iΩ∗
+ρa b+ − iΩ−ρb− a, (2.56)

where

Γa b± = γ + i (∆± δ) , (2.57)

Γb− b+ = γ0 + i2δ. (2.58)

Here the transverse decay rate of the excited level is γ = γr + (γ0 + γ̃r)/2.

In steady state regime, we can solve equations Eqs.(2.55) and (2.56) in terms of

atomic populations:

ρb− b+ = −
Ω∗

+Ω−

(
nb− a

Γb− a

+
nb+ a

Γa b+

)

Γb− b+ +
|Ω+|2
Γa b+

+
|Ω−|2
Γb− a

(2.59)

ρa b± =
iΩ∓
Γa b±

nb± a

(
Γb∓ b± +

|Ω∓|2
Γb∓ a

)
− nb∓ a

|Ω±|2
Γb∓ a

Γb∓ b± +
|Ω±|2
Γa b±

+
|Ω∓|2
Γb∓ a

(2.60)

where nb± a ≡ ρb± b± − ρaa . Inserting these expressions into Eqs.(2.53) and (2.54) we

can in principle derive linear equations for the atomic populations. In the general

case, however, this solution is very cumbersome.

Let us consider the situation of a strong electro-magnetic field, such that |Ω|2/γ0γ À
1. We also assume that |δ|, γ0 ¿ γ, |Ω|, and ∆ = 0. In the zeroth approximation, the

atomic populations are determined by Eq.(2.51):

ρ
(0)
b± b± ' |Ω±|2

|Ω|2 , (2.61)

ρ(0)
a a ' 0, (2.62)

where |Ω|2 = |Ω+|2 + |Ω−|2.
Now we can solve for the polarizations ρa b±, keeping only the terms linear in δ
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and γ0:

ρa b± =
iΩ∓
Γa b±

γ(γ0 ± iδ) |Ω±|
2

|Ω|2 + {|Ω∓|2n(1)
b± a + |Ω±|2n(1)

b∓ a}
γγ0 + |Ω|2 (2.63)

where n
(1)
ab is the correction to the atomic population proportional to γ0.

Substituting this expression to the equation for the ground-state populations

Eqs.(2.54),(2.53), we find:

|Ω∓|2n(1)
b± a + |Ω±|2n(1)

b∓ a = −γ0γ

2

|Ω±|2 + |Ω∓|2
|Ω|2 . (2.64)

In this case the atomic polarization is:

ρa b± ' iΩ∓
|Ω|4 (

γ0

2
|Ω|2 ± iδ|Ω±|2). (2.65)

It is important to note that this expression for the polarization, obtained in an

open Λ system coincides with the analogous expression, calculated by Fleischhauer

et al. [124] for a closed system, if the ground-state coherence dephasing rate and

the population exchange rate between ground levels are the same and equal to γ0.

This demonstrates the equivalence of the open and closed models for the description

of Λ schemes, which has been previously demonstrated by Lee et al. [174] for the

particular case of a weak probe field.

The stationary propagation of two circularly polarized components of the laser

field through the atomic medium is described by Maxwell-Bloch equations Eq.(2.25):

∂Ω±
∂z

' −κ
Ω±
|Ω|4 (

γ0

2
|Ω|2 ∓ iδ|Ω∓|2). (2.66)

Separating the real and imaginary parts of this expression and using Ω± = |Ω±| eiφ± ,

one can find the propagation equations of the electromagnetic field intensity |Ω|2 and

the rotation of the polarization ellipse φ = φ+ − φ−:

∂|Ω|2
∂z

= −κγ0 (2.67)
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∂φ

∂z
= − κδ

|Ω|2 . (2.68)

After trivial integration, the final expressions for the light transmission |Ω(z)|2

Iout and the polarization rotation angle φ are:

|Ω(z)|2 = |Ω(0)|2
(

1− κγ0

|Ω(0)|2
)

; (2.69)

φ = − δ

γ0

ln
|Ω(z)|2
|Ω(0)|2 . (2.70)

As one can see, the absorption is drastically reduced compared to the incoherent

case, which is the usual consequence of CPT. At the same time the polarization

rotation increases dramatically.

To compare theoretical expressions with the experimental results it is convenient

to rewrite Eq.(2.69) in terms of the laser intensity:

Iout = Iin − 2πh̄ν

c
γ0NL (2.71)

C. Nonlinear Faraday effect in hot atomic vapor: the influence of Doppler broaden-

ing

A moving atom, interacting with an electromagnetic field of frequency ν0, “sees” it at

the shifted frequency ν = ν0 − ~k~v, where ~k is the electromagnetic field wave-vector,

and ~v is the velocity of the atom (Doppler effect). Because of this effect, resonant

features which appear due to the resonant interaction of light with atoms are the

subject of inhomogeneous Doppler broadening, if the atomic velocity distribution is

nonuniform [161].

In two-photon processes, the motion of the atoms plays an important role as well,

since coherent interaction in a general Λ scheme occurs only if the atom is in resonance

with both electromagnetic fields ω2ph = (ν1−~k1~v)−(ν2−~k2~v). For example, in the case
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of counter-propagating waves, only a group of atoms with specific velocity participates

in the coherent interaction (velocity-selective coherent population trappings) This

effect has been successfully used for sub-recoil cooling of atoms in a magneto-optic

trap [176]. On the other hand, electromagnetically induced transparency observed

in a co-propagating geometry is affected only by the residual Doppler effect, caused

by the mismatch between the wave-vectors of the two transitions |k1 − k2|, which

is often negligible since v/c ¿ 1. There are numerous studies of CPT and EIT

in Doppler-broadened atomic media in various interaction schemes [174, 177–185];

the modifications of EIT lineshape due to atomic thermal motion are addressed in

[186–189].

The problem of residual Doppler broadening is completely eliminated in the

nonlinear Faraday effect, since two circularly polarized fields are of the same frequency

and perfectly overlapped, being the components of a single laser field. In this case

the motion of an atom is equivalent to the detuning of the laser field from the exact

transition. It is easy to see that the coherent superposition of Zeeman sublevels,

associated with the dark state, Eq.(2.46), is independent of laser detuning; thus, all

velocity groups of atoms contribute to the nonlinear Faraday effect.

Although the calculations of nonlinear susceptibility of inhomogeneously broaden

coherent media is quite straightforward, it is generally very cumbersome, and an-

alytical expressions are obtained only in specific cases: of strongly asymmetric Λ

scheme [189], and the nonlinear Faraday effect under the approximation of infinite

Doppler width [127]. Here we derive general expressions for absorption and polariza-

tion rotation of arbitrary laser detuning, and then consider some special cases, which

allow the analytical integration over the Doppler velocity distribution.

Once again we assume that the electro-magnetic field is strong enough, such

that |Ω|2/γ0γ À 1, and that |δ|, γ0 ¿ γ, |Ω|; at the same time we do not put any
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constraints on the value of laser detuning ∆, so the terms proportional to γ0∆ and

δ∆ cannot be considered small. As in the resonant case, the atomic populations in

the zeroth approximation are determined by Eq.(2.51):

ρ
(0)
b± b± ' |Ω±|2

|Ω|2 , (2.72)

ρ(0)
a a ' 0, (2.73)

With this result, the expression for atomic polarization ρab± Eq.(2.60) can be

rewritten, keeping only terms linear in γ0 and δ :

ρab± = iΩ∓

{(γ0γ ± 2δ∆) + i(±2δγ − γ0∆)}|Ω±|2
|Ω|2 + X±

(γ|Ω|2 + γ0∆2) + i (±2δ∆2 −∆(|Ω±|2 − |Ω∓|2)) , (2.74)

where

X± ≡ |Ω∓|2∆n
(1)
b±a − |Ω±|2∆n

(1)
b∓a. (2.75)

The first-order corrections to the ground-state populations ∆n
(1)
b±a may be found by

substituting the expression for atomic polarizations Eq.(2.74) into the equations (2.53)

and (2.54), and solving for X±:

X± = −γ0
|Ω±|2 − |Ω∓|2

2|Ω|4 (γ|Ω|2 + γ0∆
2)− γ0∆

2

2

|Ω±|2 − |Ω∓|2
γ|Ω|2 + γ0∆2

± 2δ∆

|Ω|2
γ0∆

2(|Ω±|2 − |Ω∓|2)2 − 2γ|Ω|2|Ω±|2|Ω∓|2
γ|Ω|2 + γ0∆2

. (2.76)

Substituting this expression into Eq.(2.74), we obtain the density matrix element

ρab± for arbitrary laser detuning ∆. Because of the extreme bulkiness of the final

result, further integration of this expression would not lead to any meaningful results.

Instead we consider a few special cases.

Let us first find the absorption in the system when no magnetic field is present,

and the ground-state sublevels are degenerate. Using Eq.(2.66), we can then write
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down the propagation equations for the intensities of the circularly polarized compo-

nents |Ω±|2:

∂|Ω±|2
∂z

= −κ|Ω∓|2γ0γ(γ|Ω|2 + γ0∆
2) + γ0∆

2(|Ω±|2 − |Ω∓|2)
(γ|Ω|2 + γ0∆2)2 + ∆2(|Ω±|2 − |Ω∓|2)2

(2.77)

It is easy to see that the difference between the absorption coefficients for the two

circularly polarized waves are due to the second term in the numerator of Eq.(2.77).

This difference vanishes if the laser is tuned exactly to the resonant frequency, or

if linearly polarized light is used. In the latter case, this means that the linear

polarization is preserved during the propagation of the laser field through the resonant

medium regardless of frequency detuning. The propagation equation for the intensity

of the linearly polarized wave is given by:

∂|Ω|2
∂z

= −κγ0
γ|Ω|2

γ|Ω|2 + γ0∆2
(2.78)

Let us now find the expression of the propagation equation for the rotation angle

of the polarization direction for the linearly polarized laser field, detuned from exact

resonance by the detuning ∆. To do that we need to write the expression for the

density matrix element ρab±, assuming |Ω±|2 = |Ω∓|2 = 1
2
|Ω|2. At this point we are

interested only in the limit of small magnetic field, so only the terms linear in δ are

retained:

ρab± = iΩ∓

1

2
γ0γ(γ|Ω|2 + γ0∆

2)± δγ|Ω|2 − 1

2
γ0γ(γ|Ω|2 + γ0∆

2)

(γ|Ω|2 + γ0∆2)2
(2.79)

From this expression it is easy to see that no circular dichroism arises for any

value of ∆ to the first order in the magnetic field. Following the same procedure as

in the previous section, the propagation equation for the polarization rotation angle

φ = (φ+−φ−)/2 (where the phases of the circularly polarized components are defined
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as before Ω± = |Ω|/√2 eiφ±):

∂φ

∂z
= κδ

γ2|Ω|2
(γ|Ω|2 + γ0∆2)2

(2.80)

It is important to mention here that the propagation equations for laser inten-

sity |Ω(z)|2 and polarization rotation angle φ(z), obtained above are similar to the

analogous equations, obtained in Ref. [127] for the F = 1 → F ′ = 0 transition in the

limit of strong electromagnetic field.

If the electromagnetic field propagates through hot atomic vapor, the contri-

butions of atoms from different velocity group have to be taken into account. In a

Doppler-broadened medium, the laser frequency detuning ∆ should be replaced by

(∆ + kv), and Equation (2.25) is written as:

∂Ω±
∂z

= iκ〈ρab∓〉T , (2.81)

where 〈· · ·〉 ≡ ∫ · · · f (kv)d(kv). The velocity distribution of thermal atomic gas at

temperature T is described by one-dimensional Doppler function:

f (kv) =
1√

πkvT

exp

(
− (kv)2

(kvT )2

)
, (2.82)

where vT =
√

2kBT/M is the most probable speed of atoms (here kB is Boltzmann

constant, and M is the atomic mass). However, it is a well-established practice

to use a Lorentzian distribution for the sake of simplicity, since this provides much

simpler analytic expressions [174]. For all the calculations below we use the following

distribution function f (kv):

f (kv) =
1

π

WD

W 2
D + (kv)2

, (2.83)

where WD =
√

ln 2kvT is HWHM of the velocity distribution (Doppler width).

Following the prescription given by Eq.(2.81), to calculate the transmitted in-
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tensity and polarization rotation angle Eqs.(2.78),(2.80) should be averaged over the

Doppler velocity distribution:

∂|Ω|2
∂z

= −κγ0〈 γ|Ω|2
γ|Ω|2 + γ0∆2

〉T ; (2.84)

∂φ

∂z
= κδ〈 γ2|Ω|2

(γ|Ω|2 + γ0∆2)2
〉T (2.85)

After the simple integration we arrive at the following expressions:

∂|Ω|2
∂z

= −κγ0
|Ω|

|Ω|+
√

γ0

γ
WD

; (2.86)

∂φ

∂z
=

κδ

|Ω|
|Ω|+ 1

2

√
γ0

γ
WD

(|Ω|+
√

γ0

γ
WD)2

(2.87)

Following the same procedure, described in the previous section, the final expres-

sion for output Rabi frequency |Ω| and polarization rotation angle φ are obtained:

(
|Ω(z)|+

√
γ0

γ
WD

)2

=

(
|Ω(0)|+

√
γ0

γ
WD

)2

− κγ0z; (2.88)

φ = − δ

γ0

ln


 |Ω(z)|
|Ω(0)|

|Ω(z)|+
√

γ0

γ
WD

|Ω(0)|+
√

γ0

γ
WD


 (2.89)

It is easy to see that we regain the expression for the transmission and polar-

ization rotation in a homogeneously broadened medium Eqs.(2.69),(2.70), if the laser

intensity is high enough |Ω| À
√

γ0

γ
WD. In this case, when CPT conditions are obeyed

for all atomic velocity groups, the interaction is effectively independent of Doppler

broadening (sometimes this is called the Doppler-free regime).

In a regime when CPT exists only for a group of atoms
√

γ0γ ¿ |Ω| ¿
√

γ0

γ
WD,

the expressions for both transmission and polarization rotation angle are quite differ-

ent. Namely, the laser intensity attenuates as a quadratic polynomial of optical path
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L instead of the linear dependence in Doppler-free regime.

|Ω(z)| = |Ω(0)| −
√

γ0γ

2WD

κL (2.90)

Although the form of the equation for the polarization rotation does not vary from

the Doppler-free regime, an additional numerical factor appears in the denominator:

φ = − δ

2γ0

ln
|Ω(z)|2
|Ω(0)|2 (2.91)

D. Normalization conditions for the F = 1 → F = 0 transitions

The correspondence between the F = 1 → F = 0 transition interaction scheme

(Fig. 5a) and the idealized three-level Λ scheme considered above (Fig. 5b) can be

obtained if we exchange γr by γaa/3, where γaa is the decay rate of the excited state

to the ground state. The decay rate γ̃r should be written as γ̃r = γaa/3 + γ̃aa, where

γ̃aa stands for the decay of the excited state outside of the system in Fig. 5a.

We assume that the incoherent pumping rate into each Zeeman ground state is

equal to γ0/3, to keep the normalization condition similar to Eq.(2.29):

ρ̃aa + ρ+1,+1 + ρ−1,−1 + ρ0,0 = 1− γ̃aa

γ0

ρ̃aa, (2.92)

where ρ̃aa = ξρaa, ρ+1,+1 = ξρb+b+, and ρ−1,−1 = ξρb−b−. The normalization parame-

ter ξ can be found from Eqs.(2.29) and (2.92).

Taking in mind that the population of the state m = 0 is determined by the

decay rate of the excited state |a〉 and by the decay outside of the system we write

the rate equation

ρ̇0,0 =
γ0

3
− γ0ρ0,0 +

γaa

3
ρ̃aa, (2.93)
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Fig. 5. (a) Scheme of interaction of an electromagnetic wave with atomic transition

|b〉, F = 1 → |a〉, F ′ = 0. (b) Simplification of the scheme (a) to the three-level

Λ system

and solve it in the steady state

ρ0,0 =
1

3
+

γaa

3γ0

ρ̃aa. (2.94)

Substituting (2.94) into (2.92) and comparison of this expression with (2.29)

allows us to find

ξ =
2

3
. (2.95)

Therefore, we can derive elements of density matrix for the level scheme shown in

Fig. 5a by simple multiplication of the elements of the density matrix for the Λ scheme

by the scaling factor ξ (2.95).
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CHAPTER III

NONLINEAR FARADAY EFFECT IN DENSE Rb VAPOR

This chapter is devoted to the experimental study of the nonlinear Faraday rotation1

in Rb vapor cells. It also includes a detailed description of the experimental apparatus

and measurement procedure.

We present the experimental spectra for the laser absorption and the nonlinear

Faraday rotation for different transitions of Rb. The data obtained for optically thick

vapor exhibits significant enhancement of the polarization rotation simultaneously

with the suppression of the residual absorption. The shape of the nonlinear resonances

is also analyzed.

The experimental data, presented in this Chapter, are taken in a cell containing

only the saturated vapor of Rb; the modifications of NMOR in the cells with an

additional buffer gas are described in Chapter V.

A. Experimental setup

1. Diode lasers

Since their invention forty years ago [190, 191], diode lasers have become one of the

most common source of coherent radiation; they are widely used in both industry and

science. Comprehensive reviews of basic properties and spectroscopic applications of

diode lasers can be found, for example, in [192–194]; for that reason we instead

provide the specific information concerning the diode laser systems which have been

1We use the term “Nonlinear Faraday effect” to describe the rotation of the linear
polarization in external magnetic field, in analogy with classical Faraday effect. The
term “Nonlinear Magneto-Optical Effects” is more general and is used to described
the variety of modifications of the optical field polarization in magnetic field.
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used in the experiments.

For the laser field with wavelength λ = 795nm we use a single mode index guided

laser diode (LD) Sharp LT024. The diode is thermostabilized to ensure reliable oper-

ation and to eliminate the drift of the laser frequency due to temperature fluctuations.

Since the spectrum of a free-running diode laser is quite broad (∆λ ∼ 2nm), it can

be substantially narrowed by using, for example, frequency selective optical feedback

from a high-finesse external cavity [195–199]. In our experiments, we use an external

cavity in Littman configuration [200, 201], shown in Fig. 6. In this case the laser

operates on the resonator formed by the external mirror from one arm, and the one

of the LD facets from the other. The second facet of the diode has an anti-reflection

coating to increase the effect of the external feedback. A diffraction grating placed

inside the resonator ensures that the phase-matching conditions are obeyed only for

a small part of the LD gain spectra. Tuning of the generated frequency is realized by

rotation of the external mirror, which changes the length of the resonator. Although

we have not performed precision measurements of the laser linewidth for our system,

its average value for analogous systems is about 1 MHz, which is below the radiative

width of the Rb transitions (γr = 2π · 5MHz).

A diode laser with a distributed Bragg reflector [194] SDL-DBR3S, operating

on the wavelength λ = 780nm, is used in the experiments on the D2 line of Rb. In

this case, one of the mirrors of the LD is replaced by the refractive index grating,

which provides selective Bragg back-scattering of the laser radiation. Although the

laser spectral linewidth in this case is usually wider (1− 5MHz) than for the ECDL,

the distributed Bragg reflector provides high stability and wide tuning range.

The stability of the free-running lasers in both cases is enough for our experi-

ments, and no additional active stabilization of the laser frequency is requited.

The rest of the laser system is identical for both lasers (Fig. 7). It is a well-
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Fig. 6. The schematic and the photo of the external cavity diode laser used in the

experiments.

known fact that the spacial profile of the diode laser output is a Gaussian beam with

substantially different transverse cross-sections. The symmetry of the laser beam may

be adjusted by a pair of anamorphic prisms [202,203]. Any parasite optical feedback

results in a disturbance of the laser operation and, therefore, is highly undesirable.

To avoid retro-reflections from various surfaces a Faraday isolator [204,205] is placed

after the laser. To obtain an accurate reference of the laser frequency, we separate a

small part of the laser beam and perform the saturated-absorption spectroscopy [206]

using an independent cell filled with a natural mixture of Rb isotopes. The maximum

laser power, available from both laser systems is Pmax ' 5 mW, and the laser bean

diameter is d = 2 mm. If necessary, it can be increased using a beam expander.
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Fig. 7. The schematic and photo of the experimental setup used in the experiments.
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Table I. Parameters of the atomic cells used in the experiments. Neon is used as a

buffer gas for all cells except the one with 0.12Torr of Kr.

Isotope Buffer gas, Torr Length, mm Diameter, mm

87Rb no 50 25

85Rb no 25 35

87Rb 0.12 50 30

natural Rb 0.3 60 30

87Rb 1.0 10 10

natural Rb 3.0 40 30

87Rb 10.0 60 30

87Rb 30.0 25 25

2. Polarization rotation measurements

The laser beam passes trough a high quality polarizer P1 which provides initial linear

polarization. A half wave-plate, mounted in front of the polarizer P1, allows us

to attenuate the laser power. To control the diameter of the laser beam a beam

expander, consisting of positive and negative lenses, may be used. The absorption

cell is placed inside a double layer magnetic shield to suppress the influence of the

laboratory magnetic field. In our experiments we use several cylindrical glass cells,

filled with Rb vapor; their parameters are listed in Table I. The longitudinal magnetic

field is created by a solenoid mounted inside the inner magnetic shield. The atomic

density is controlled by a heating element placed between the two shielding layers.

To simultaneously measure the transmitted laser power and the polarization

rotation angle a polarization beam splitter (PBS) is placed after the atomic cell.
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Signals from the two PBS channels S1,2 are collected with PBS axis tilted at 45o

degrees with respect to the main axis of the polarizer P1. In this configuration the

transmitted light power is proportional to the sum of two signals S1 + S2 and the

polarization rotation angle φ is given by:

φ =
1

2
arcsin

S1 − S2

S1 + S2

(3.1)

In the experiments with the elliptically polarized light the ellipticity ε is controlled

by a quarter wave-plate placed after the polarizer P1. The rotation angle of the

polarization ellipse in this case can be measured using the same technique as for the

linear polarization. If the PBS axis is tilted by 45o with respect to the fast axis of

the waveplate, the polarization is rotated by the angle φ:

φ =
1

2
arcsin

S1 − S2

(S1 + S2) cos 2ε
(3.2)

It is also possible to detect a change in the ellipticity of the outgoing laser beam by

placing another quarter-wave plate after the cell and before the PBS. Providing that

the fast wave plate axis is aligned with the PBS axis and makes 45o with the main

axis of the initial polarization ellipse, the ellipticity εout of the outgoing beam can be

found similarly to the rotation angle:

εout =
1

2
arcsin

S̃1 − S̃2

S̃1 + S̃2

(3.3)

B. Absorption and polarization rotation on various Rb transitions

Using the laser systems described above we are able to study the resonant phenomena

on the D1 line: 5S1/2 → 5P1/2 (λ = 795nm), and the D2 line: 5S1/2 → 5P3/2

(λ = 780nm) of both isotopes of Rb. The various parameters of the allowed transitions

in Rb vapor may be found in Appendix A. Let us just briefly mention that the D1 line
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consists of 4 transitions between various hyperfine sublevels: F = 1, 2 → F ′ = 1, 2 for

87Rb, and F = 2, 3 → F ′ = 2, 3 for 85Rb. The D2 line has a more complex structure

and consists of 6 allowed transitions: F = 1 → F ′ = 0, 1, 2 and F = 2 → F ′ = 1, 2, 3

for 87Rb, and F = 2 → F ′ = 1, 2, 3 and F = 3 → F ′ = 2, 3, 4 for 85Rb.

Although the radiative width of all excited levels is rather small (' 5 MHz), the

thermal motion of the atoms results in the inhomogeneous Doppler broadening of

the transitions. The value of the Doppler width for the room temperature is about

∆Dopp ' 500 MHz. This broadening exceeds the hyperfine splitting of all excited

levels, so the transitions to these states from the same hyperfine ground state are

unresolved within the Doppler contour. The only exception is the state 5P1/2 of

87Rb, for which the hyperfine levels are split by ∆hf = 812 MHz, so the corresponding

transitions are partially resolved. Since the interaction with other hyperfine level(s) is

not taken into account in most theoretical models, we usually study the NMOR effects

on the transitions within the D1 line of 87Rb. The absorption and the polarization

rotation spectra as the laser frequency is swept across the D1 line of Rb are shown

in Fig. 8. To illustrate the reduction of the resonant absorption due to coherent

population trapping, two transmission spectra are shown: one is for zero magnetic

field, when there is no two-photon detuning between the circular components of the

laser field, and the conditions for the dark state formation are optimal, and the other

is for relatively large magnetic field, when the ground-state coherence is effectively

destroyed. The experimental data demonstrate that the EIT is observed for three out

of four possible transitions (except F = 1 → F ′ = 2), with the maximum contrast

for the F = 2 → F ′ = 1 transition. Note, that nonlinear magneto-optic rotation is

substantially higher on this transition as well.

The rotation and transmission spectra, taken for a particular value of the mag-

netic fields, sometimes may be deceiving, since resonances of different widths are to
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Fig. 8. (a) The polarization rotation angle φ at magnetic field B = 0.2 G as a function

of the laser frequency;(b) transmitted intensity under maximum CPT condition

(B = 0) (solid line) and for large magnetic field B = 2.8 G (dashed line).

Zero detuning corresponds to the F = 2 → F ′ = 1 transition. Laser power

P = 2 mW, laser beam diameter d = 2 mm, atomic density N = 5.6 ·1011cm−3.

The additional peaks are due to contamination of the cell by 85Rb.
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be analyzed. To get deeper insight we record the dependencies of the polarization

rotation angle and transmitted intensity as a function of applied magnetic field for

laser light resonant with all transitions. The experimental data are presented in

Fig. 9. These data confirm the earlier conclusion that the best EIT, accompanied

by the maximum polarization rotation, is observed for the F = 2 → F ′ = 1 tran-

sition. The reason is the following: in this case all transitions between the Zeeman

sublevels contribute to the creation of the ground-state coherence, forming three Λ

links. For the F = 2 → F ′ = 2 and the F = 1 → F ′ = 1 transitions both Λ and V

interaction schemes are equally probable; since CPT is created only in a Λ system,

the effectiveness of the optical pumping to a dark state for these transitions is lower.

Finally, enhanced absorption is observed for the F = 1 → F ′ = 2 transition. In fur-

ther discussion we consider only the nonlinear magneto-optic rotation due to CPT,

particularly on the F = 2 → F ′ = 1 transition. The nonlinear properties of the light

interacting with the F = 1 → F ′ = 2 transition should be considered separately.

The NMOR signal for the D2 line of 87Rb is shown in Fig. 10. The excited state

5P3/2 consists of 4 hyperfine sublevels (F ′ = 0, 1, 2, 3), which are significantly closer to

each other than for 5P1/2 state (D1 line). Thus, the hyperfine structure is completely

overlapped by Doppler broadening, which makes it virtually impossible to separate

the influence of different transitions. For that reason in our study of the nonlinear

Faraday effect the D1 line is used much more often.

One can also see that EIT for the D2 line appears to be weaker than for the D1

line. For example, the strong cycling transition F = 2 → F ′ = 3 is mostly responsible

for the absorption at the F = 2 → F ′ transition, and there is no dark state formed

there. On the contrary, the coherent interaction of the electromagnetic field with this

transition is associated with enhanced absorption resonances [35,66].
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Fig. 9. The polarization rotation angle φ (left column) and the transmitted laser in-

tensity (middle column) as a function of the applied magnetic field. The in-

teraction of the linearly polarized laser light with the magnetic sublevels on

different transitions are shown in right column. The transitions, drawn in solid

lines, contribute to CPT; those drawn in dashed lines do not contribute to a

dark state. To avoid the modification of the resonance shapes due to propaga-

tion effects, we considered optically thin Rb vapor (N = 8 · 1010cm−3). Laser

power P = 2 mW, laser beam diameter d = 2 mm.
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Fig. 10. (a) The polarization rotation angle φ at magnetic field B = 0.2 G as a func-

tion of the laser frequency;(b) transmitted intensity under maximum CPT

condition (B = 0) (solid line) and for large magnetic field B = 2.8 G (dashed

line). Zero detuning corresponds to the center of the absorption line of the

F = 2 → F ′ transition. Laser power P = 2 mW, laser beam diameter

d = 4 mm, atomic density N = 5.6 · 1010cm−3. The additional peak at 1 GHz

is due to contamination of the cell by 85Rb. Sub-Doppler structures observed

on both transmission and rotation resonances are due to the redistribution of

atomic population by retroreflected light.
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Fig. 11. The experimental dependence of the maximum rotation angle of polarization

on atomic density; the dashed line is to guide the eyes.

C. Enhancement of the nonlinear Faraday rotation with atomic density

One of the most important features of coherent phenomena is the strong enhancement

of the nonlinearities with the density of resonant atoms. The resonant enhancement

of NMOR is demonstrated in Figs. 11 and 12, where the maximum angle of rotation

φmax and the zero-field rotation slope dφ/dB are recorded as functions of atomic

density N . The maximum angle of rotation is found by adjusting the magnetic field

at each density, with B ∼ 0.6 G for the full data set. The zero-field rotation slope

dφ/dB (shown in Fig. 12) is measured by dithering the field minimally around B = 0.

Enhancement of the rotation is more than two order of magnitude with respect to its

value at room temperature.

The maximum rotation angle observed in the experiment was φmax = 10 rad. To

our knowledge, this is the first experiment where polarization rotation greater than π

radians is detected for a sub-Gauss magnetic field. Comparable angles of polarization
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Fig. 12. The experimental dependence of the rotation slope dφ/dB for B = 0 on atomic

density (dots); dashed line is to guide the eyes.

rotation were previously observed for much higher magnetic fields and laser intensities

[94,129].

It is interesting to mention here that such large rotation corresponds to a large

index of refraction of the medium. The index or refraction for each circular polariza-

tion component is about n = 1 ± φmaxλ/(4πL) ≈ 1± 10−5, where L = 5.0 cm is the

length of the atomic cell, and λ = 795 nm is the wavelength of the laser light. Pre-

vious enhanced index of refraction obtained in a Λ-type EIT scheme with incoherent

pumping [207] was only one order of magnitude more than in our case, whereas the

index of refraction of a non-resonant gas at this density is about 10−7.

An analysis of the experimental data shows substantial discrepancy with the

predictions of the theory developed in Chapter II for a simplified three-level scheme.

For example, the experimentally observed dependence of transmission Iout/Iin and

rotation slope dφ/dB with respect to the atomic density coincide with the calculated
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Fig. 13. The experimental dependence of the transmission through the cell on atomic

density (dots) for B = 0; the dashed line is to guide the eyes.

dependence for optically thin vapor, but disagree for higher density (see Figs. 12 and

13). The observed rotation is much less then predicted by both simplified analytical

expressions Eqs.(2.69)and(2.70) and exact numerical simulation, which takes into

account the complete Zeeman substructure of the D1 line of 87Rb and includes Doppler

averaging. To explain this behavior it is necessary to assume that the effective decay

of Zeeman coherence γ0 is not determined solely by the time-of-flight of the atom

through the laser beam, but also depends on the atomic density. We attribute the

origin of this discrepancy to the effect of radiation trapping [208,209] on ground-state

coherence.A detailed analysis of this phenomenon is presented in the next Chapter.

D. Experimental study of the NMOR resonance line-shape

The dependence of the polarization rotation angle and transmitted intensity on mag-

netic field can be found by solving the same equations for the density matrix elements
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Eqs.(2.53)-(2.56) keeping all terms proportional to δ. For the laser tuned exactly on

resonance ∆ = 0, we obtain the following expression for the polarization of the optical

transition for the linearly polarized electromagnetic field (|Ω+|2 = |Ω−|2 = 1
2
|Ω|2):

ρa b± =
iΩ∓

2(γ ± iδ)

(γ0 ± 2iδ)(γ ± iδ)

(γ0 ± 2iδ)(γ ± iδ) + |Ω|2 . (3.4)

Using Eq.(3.4), the expressions for the polarization rotation angle φ and absorption

coefficient α = − d
dz
|Ω|2 as functions of magnetic field (more precisely, of magnetic

field induced level shift δ) can be derived:

φ = −κ
δ|Ω|2L

|Ω|4 + 4γ2δ2
(3.5)

α = κ
γ0|Ω|2 + 2γδ2

|Ω|4 + 4γ2δ2
, (3.6)

where L is the length of the cell. It is important to mention here that the above

expressions are valid only for optically thin media such that the variation of the laser

intensity is negligible (Iout ' Iin).

In reality the line-shape of the observed resonances is quite far from the Lorentzian

functions, shown above. An example of the transmission and rotation resonances are

shown in Fig. 14. One can see that there is a relatively large discrepancy between

the experimental data and best Lorentzian fit. Note, that this effect has been also

observed in EIT resonances in case of hyperfine coherence [210].

Deviations of the resonance line-shape from the prediction of the simple theory

in cells without buffer gas is mainly due to inhomogeneous distribution of the laser

intensity within a laser beam. This problem is solved analytically for two limiting

cases: for low laser power regime [121,211,214], and for the limit of strong laser field

[215].

A theoretical description for NMOR in the limit of low laser intensity (|Ω| ¿ γ)
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Fig. 14. Polarization rotation and transmission resonances in the 87Rb cell without

buffer gas. The laser is tuned at the F = 2 → F ′ = 1 resonance of the D1

line.

has been developed by Weis et al. [121, 122]. In this case the nonlinear polariza-

tion rotation is treated as three-stage process: first, the interaction of an atom with

the laser light creates a ground-state longitudinal alignment; then this alignment

precesses with Larmor frequency in the external magnetic field, which produces the

time-averaged birefringence in the atomic medium. The polarization rotation is due

to the propagation of the light field through such a medium. The transverse inho-

mogeneity of the laser beam can be taken into account by averaging the alignment

over the spatial energy distribution. In the case of a Gaussian distribution function,

which is a good approximation for most diode lasers [192], the following expressions

for polarization rotation angle and absorption are obtained [211,212]:

φ ∝ |Ω|2
γ

[
e−x Ei(x)− ex Ei(x)

]
; (3.7)

α ∝ |Ω|2
γ

e−|x|, (3.8)

where Ei(x) is the integral exponential function [213], |Ω| is the Rabi frequency,
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corresponding to the maximum laser intensity, and x = δ/γ0 is the dimentionless

magnetic level shift (or Larmor frequency), γ0 = vT /d, where vT is the average ther-

mal velocity of Rb atoms, and d is the laser beam diameter. Later Pfleghaar et al.

conducted similar calculations, taking into account time-of-flight effects [214]. The

result of these calculations repeats the expressions Eqs.(3.7,3.8), except for a scaling

factor
√

3 in the expression for polarization rotation angle (x =
√

3δ/γ0), and
√

2 for

the laser absorption (x =
√

2δ/γ0).

The opposite limit of a strong laser field can be treated similarly. In this case

the average time-of-flight of atoms through the laser beam is assumed to be much

larger than the characteristic times of the other stimulated and relaxation processes,

so the motion of atoms in the transverse direction can be neglected. Then, solving

the density matrix equations and integrating the result over the Gaussian transverse

laser intensity distribution, the following expressions for polarization rotation and

absorption are obtained:

φ ∝ x log(1 +
1

x2
) (3.9)

α ∝ x arctan
1

x
, (3.10)

where x = δγ/|Ω|2. Note, that for the high-power limit the width of the resonances

is determined by the Rabi frequency (power broadening) of the laser field rather than

the ground-state coherence decay rate γ0.

Since the experimental NMOR spectra are obtained for conditions closer to the

high laser intensity limit, we apply the corresponding fitting functions (3.9,3.10),

denoted on the graphs as “YT-fit”. As one can see on Fig.(14), this fit works much

better for both polarization rotation and transmission than Lorentzian function. It

diverges a little in the vicinity of B = 0, where the fit forms a sharp peak whereas
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Fig. 15. Experimentally observed dark resonances (solid line) and their best fit (dotted

line) using Eq.(3.10). The laser intensity is (a) 2.0 mW; (b) 1.5 mW; (c)

1.0 mW; (d) 0.5 mW; (e) 0.25 mW; laser beam diameter d = 2 mm. The laser

is tuned to the F = 2 → F ′ = 1 resonance of the D1 line. Atomic density is

5.6 · 1011cm−3.

the experimental points lay lower. At the same time, if the laser power increases, the

fitting function and the experimental points become closer and closer, as it is shown

in Fig. 15. If the maximum relative deviation, calculated as (Iexp− Ifit)/Iexp× 100%,

is less than 1 % for laser power P = 2 mW, it is reaches 15% for P = 0.3 mW. Thus,

the reason of divergence between the experiment and theoretical formulae given by

Eq.(3.10) may be insufficient laser power.

It is also interesting to note here, that fitting of the experimental spectra with

expressions (3.7,3.8) also provides an unexpectedly good agreement. However, the

resulting width no longer represents the ground-state coherence decay rate. Although
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Fig. 16. Experimentally observed dark resonance and its best fit using theoretical line-

shape, calculated in high and low laser power limits (Eq.(3.10)and Eq.(3.8)

correspondingly). The laser power is 2.0 mW, laser beam diameter d = 2 mm.

The laser is tuned to the F = 2 → F ′ = 1 resonance of the D1 line. Atomic

density is 5.6 · 1011cm−3. Inset: the relative deviation of the experimental

data from the best fitting functions.

these expressions and Eqs.(3.9,3.10) are obtained for different interaction regimes, the

coincidence between the fitting results is practically complete (although both of them

can deviate from the experimental data), as shown in Fig. 16.
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CHAPTER IV

THE EFFECT OF RADIATION TRAPPING ON ZEEMAN COHERENCE

It is often assumed that atoms interact with an electro-magnetic field independently

of each other, and have no influence on each other. This assumption is quite satis-

factory for optically thin media. However, if the atomic density increases, collective

phenomena such as supperradiance [1, 216–219], local field interactions [220–224],

collisions [21, 225–230], etc., become important. Radiation trapping [209] is one of

these collective effects and is probably the most sensitive to the density of the atomic

medium. To have significant near field interactions or collisional broadening the den-

sity of atomic vapor should be more than 1014 cm−3 [21], while radiation trapping

appears for 1013 cm−3 or even lower densities [209].

Radiation trapping results from the reabsorption of spontaneously emitted pho-

tons in optically thick media. This process has been studied extensively in astro-

physics, plasma physics, and atomic spectroscopy [209]. Radiation trapping affects

high precision metrology experiments [21]. For example, radiation trapping has been

predicted and demonstrated to have a destructive effect on the atomic spin orienta-

tion produced by optical pumping [21, 231–234], which is important for creation of

high quality optical frequency standards.

In this chapter we discuss the influence of radiation trapping on coherent pop-

ulation trapping (CPT) and electromagnetically induced transparency (EIT). Since

a common condition for applications of EIT is high optical density of the resonant

medium (for example, in experiments demonstrating enhancement of index of refrac-

tion [207,235], in EIT-based magnetometers [4,5,158], in experiments with ultraslow

slow group velocity of light in hot gases [236]), radiation trapping should be taken into

account. The quality of EIT is determined by the residual absorption of electromag-
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netic field interacting with the atoms. Ideally, when pumped into the “dark” state,

the atomic medium does not absorb light. However, there is some residual absorption

because of the finite interaction time of atoms and light. Because the spontaneously

emitted photons are dephased and depolarized with respect to the coherent fields

interacting with the atoms, the effect of radiation trapping can be described as an

external incoherent pumping of the atomic transitions [233,234]. Any incoherent op-

tical pumping also leads to an absorption increase [1]. Under the conditions of EIT,

almost all atomic population is in the “dark” state and there are not many atoms

undergoing spontaneous emission. However, these spontaneous photons destroy the

atomic coherence in the same way incoherent pumping does.

This chapter is organized as follows: first we develop a phenomenological descrip-

tion of radiation trapping effect in two- and three-level systems. We demonstrate,

that radiation trapping is equivalent to an incoherent pumping source, and find an

expression for its value in terms of atomic density and laser intensity. Using this

model we then calculate the modifications of CPT and the nonlinear Faraday effect

due to radiation trapping and show that it leads to the deterioration of ground-state

coherence.

To verify the predictions of the theory, we conduct an experimental study of the

effective decay rate of Zeeman coherence. We create the coherence between ground

state magnetic sublevels of the D1 line of 87Rb vapor, and study the dependence of

various NMOR parameters on the vapor density. We observe that the relaxation time

of the coherent state is determined not only by the time-of-flight of the atom through

the laser beam, but also by the density of the atomic vapor. For atomic densities N ≈
5× 1012cm−3 the effective coherence decay rate increases by several times compared

with the decay rate for N ≈ 5 × 1010cm−3. We associate this phenomenon with the

growing influence of the reabsorbed spontaneous photons.
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To double check our conclusions we perform the experiment for two geometrically

identical atomic cells, one of which contains buffer gas and the other with atoms in

vacuum. Although the absolute value of the ground-state coherence decay rate is

different in the cells with and without buffer gas, their dependence on the atomic

density perfectly coincides for the both cells. We also compare the results for two

laser beams of different sizes and show that the coherence decay rates depends on the

geometry in the way predicted by the radiation trapping theory.

A. Radiation trapping in two-level and three-level systems

To understand the origin of radiation trapping we consider of a two-level atom coupled

to a radiation reservoir as shown in Fig. 17a and, more specifically, assume that the

atom is placed in a bath of thermal photons. The reduced density matrix operator

derived in Weisskopf-Wigner approximation [1] has the form

ρ̇(t) = −n̄thγr [σ̂−σ̂+ρ(t)− σ̂+ρ(t)σ̂−]− (4.1)

(n̄th + 1)γr [σ̂+σ̂−ρ(t)− σ̂−ρ(t)σ̂+] + H.c.,

where n̄th is the thermal average photon number in the reservoir, γr is the atomic

decay rate of the two level system, σ̂− = |b〉〈a| and σ̂+ = |a〉〈b|, where |a〉 and |b〉 are

the excited and ground states of the atom. The equations of motion for the excited

state population, obtained from Eq. (4.1), is

ρ̇aa = −2γr(n̄th + 1)ρaa + 2γrn̄thρbb. (4.2)

It is convenient to introduce R = 2γrn̄th, the incoherent pumping rate due to thermal

photons reabsorption. A spontaneously emitted photon can be absorbed by another

similar atom. If we now consider a medium consisting of two-level atoms, a part
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Fig. 17. (a) Two-level atom interacting with a coherent field E and incoherent pump

R; (b) Three-level atom interacting with coherent fields E+ and E− and in-

coherent pump R = 2γrn̄th; (c) is the same atom as in (b) shown in the

basis of “dark” |y〉 = (E−|+〉 − E+|−〉)/
√
|E+|2 + |E−|2 and “bright” states

|x〉 = (E+|+〉+ E−|−〉) /
√
|E+|2 + |E−|2, and E =

√
|E+|2 + |E−|2. Incoher-

ent pump leads to transferring of the population from the “dark” state to the

“bright” state and, therefore, to absorption of the fields.
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of which is initially excited, we see that in an optically thin atomic medium the

probability of the photon reabsorption is small and n̄th = 0. However, in optically

thick media this probability becomes large. Spontaneously emitted photons stay in

the medium and diffuse through it due to emission and reabsorption processes. This

creates n̄th 6= 0. The value of n̄th can be found using the rate equation

˙̄nth = −γRn̄th + rρaa, (4.3)

where γR is the photon escape rate and r is the pumping rate due to the atomic decay.

Both γR and r are functions of geometric parameters of the system and the atomic

density. We have to stress here, that this is an oversimplified approach which only

gives a qualitative picture of radiation trapping process. A more rigorous analysis

can be found in [209].

Solving Eq.(4.3) in steady state, we get n̄th = rρaa/γR. It is convenient to

introduce a function ξ(N) ≥ 0 (ξ(N = 0) = 0) which characterizes radiation trapping:

r/γR = ξ/(1 + ξ). The ratio r/γR characterizes number of spontaneous photons per

excited atom in the medium and can not exceed unity without the system becoming

unstable, which is unphysical under present equilibrium conditions. Then, in the case

when almost all atoms are in the ground state ξρaa ¿ 1, we get from (4.2)

ρ̇aa ≈ −2γr
ρaa

1 + ξ(N)
, (4.4)

and

R = 2γr
ξ(N)

ξ(N) + 1
ρaa. (4.5)

Eq. (4.4) shows how fast an excited atom decays in an optically thick atomic

vapor. It was found from rigorous analysis [209] that for an unsaturated Doppler

broadened gas with high opacity the trapping factor ξ À 1 can be approximated as
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ξ(N) ≈ α0L
√

α0L, where α0 describes the linear absorption of the medium (1/α0 is

Beer’s absorption length), and L is a characteristic size of the medium.

When radiation trapping is weak enough so that γr À R, the incoherent pump

R can be written in terms of light absorption in the medium. This is clear because

the number of spontaneously emitted photons directly depends on the number of

scattered photons from the coherent electromagnetic wave propagating through the

medium, i.e. the absorption of the wave. Let us focus on the problem of excitation

of the two-level atom by resonant cw light. In the approximation of unsaturated

propagation of the light and weak radiation trapping 1 À n̄th the light absorption

obeys the equation d|Ω|2/dz ' −3γ2
rNλ2ρaa/(4π), where Ω = ℘E/h̄ is the Rabi

frequency of the light, λ is the wavelength, ℘ is the dipole moment of the atomic

transition, N is the atomic density, and z is the space coordinate. In this case, the

population of the excited state is ρaa ' |Ω|2/γ2
r . It is useful to repeat here that we

consider unsaturated interaction so that ρaa ¿ 1. To describe atomic excitation by

the incoherent radiation in the reservoir, an incoherent pumping rate (4.5) can be

introduced. This rate can be rewritten as

R = − 8π

3Nλ2γr

ξ(N)

1 + ξ(N)

d

dz
|Ω|2 . (4.6)

This result is rather obvious. Radiation trapping can exist only if the coherent radi-

ation is absorbed by the system and is scattered due to spontaneous emission.

Keeping the incoherent pumping as in (4.6) we return to the problem of light

propagation in the three level medium (Fig. 17b). Two cw electromagnetic waves E+

and E− propagating in the medium create a coherent superposition of ground state

levels that does not interact with the field |Y 〉 = (E−|+〉 − E+|−〉)/
√
|E+|2 + |E−|2

(Fig. 17c). If there is no decay of the coherence between ground state levels |+〉 and

|−〉, there is no absorption in the medium. The incoherent pump destroys the “dark”
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Fig. 18. Idealized three-level system used for analytical theoretical calculations.

state. Therefore, radiation trapping should influence on EIT in an optically thick

medium. Below we discuss this phenomenon for the example of nonlinear magneto-

optic rotation in optically thick 87Rb atomic vapor.

B. Radiation trapping and nonlinear magneto-optic rotation: theory

As it has been shown in previous sections, the nonlinear Faraday effect in Rb atoms

may be successfully described using three-level Λ interaction scheme. Here we will

use this scheme again (Fig. 18). Later, to prove the validity of our analytical calcula-

tions we will compare their results with numerical simulations for the exact problem

including consideration of Zeeman substructure of 5S1/2, F = 2 → 5P1/2, F ′ = 1 of

87Rb atoms.

We consider the linearly polarized light as two circular components E+ and E−

which generate a coherent superposition of the Zeeman substates |b+〉 and |b−〉 with

m = ±1 (a “dark” state). The main difference of this scheme from the one we
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used previously in Chapter II is the additional incoherent field R which acts on both

transitions. As before, this field is equivalent to the reabsorption of spontaneous

photons in the medium.

Following the procedure, described in Chapter II, we can write the Bloch equa-

tions for the atomic populations and polarizations for the interaction scheme, shown

in Fig. 18:

ρ̇b− b− = −R(ρb− b− − ρa a) + γrρa a + i(Ω∗
−ρa b− − c.c.) (4.7)

ρ̇b+ b+ = −R(ρb+ b+ − ρa a) + γrρa a + i(Ω∗
+ρa b+ − c.c.) (4.8)

ρ̇a b± = −Γa b±ρa b± + iΩ±(ρb± b± − ρa a) + iΩ∓ρb∓ b±, (4.9)

ρ̇b− b+ = −Γb− b+ρb− b+ + iΩ∗
−ρa b+ − iΩ+ρb− a, (4.10)

where

Γa b± ≡ γ +
3

2
R + i (∆∓ δ) (4.11)

Γb− b+ ≡ γ0 + R− 2iδ . (4.12)

In this expression γr is the radiative linewidth of the transitions |a〉 → |b±〉, and

γ is the homogeneous transverse linewidth of the optical transitions |a〉 → |b±〉,
∆ = ∆0 + kv, where ∆0 is the one photon detuning, k is the wave vector of the

field, 2δ is the Zeeman splitting between the ground-state magnetic sublevels. The

incoherent pumping R, appearing due to radiation trapping, does not depend on time

because we solve the problem in the stationary limit.

We calculate the stationary solutions of the Bloch-equations by considering only

the lowest order in γ0, R and δ, assuming ∆0 = 0, |Ω−(z)|2 ≈ |Ω+(z)|2, and |Ω(z)|2 =

|Ω−(z)|2 + |Ω+(z)|2 À Wd(γ0 + R) À γ(γ0 + R), where Wd is the Doppler half-width
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of the thermal distribution. In this limit we find

ρab± ' i Ω±
2

[γ + i(kv)] [γ0 + R∓ 2iδ]

[γ0 + R∓ 2iδ] (kv)2 + γ|Ω|2 . (4.13)

Because the Doppler distribution depends on the atomic density (temperature),

to study the effect of radiation trapping it is convenient to consider the Doppler-free

case of EIT, that is, when the absorption and the dispersion do not depend on the

width of the Doppler distribution Wd . Doppler averaging of Eq. (4.13) shows that

this condition is fulfilled for comparably large light intensities (|Ω(z)| À Wd

√
γ0/γ

for any z). With this assumption we have

〈ρab±〉v =
i Ω±
2|Ω|2 [γ0 + R∓ 2iδ] . (4.14)

It is convenient to separately consider the spatial evolution of amplitudes and

phases of the complex Rabi-frequencies Ω±(z) = |Ω±(z)|eiφ±(z). Using Eq.(2.81) we

find the propagation equations for the circular components. The intensities of the

two fields are attenuated in the same way:

d

dz
|Ω±|2 = −κ(γ0 + R)

|Ω±|2
|Ω|2 , (4.15)

where κ = (3/8π)Nλ2γr . However, the phases of the two fields change with opposite

sign

d

dz
φ± = ∓δ

κ

|Ω|2 . (4.16)

From Eqs. (4.15) and (4.16) we derive expressions for the relative phase φ =

(φ− − φ+)/2 and the total intensity |Ω|2

d

dz
|Ω|2 = −κ(γ0 + R), (4.17)

d

dz
φ = δ

κ

|Ω|2 . (4.18)
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To solve these equations we must specify the functional form of the incoherent pump-

ing rate R that results from radiation trapping. From the general properties of ra-

diation trapping [209] and from the results from radiation trapping in a two-level

system we assume that in the case of Doppler-free EIT the incoherent pumping can

be modelled by (4.6), where ξ(N) is a function of the atomic density that depends

on the shape and size of the atomic cell and the diameter of the atomic beam. As we

shall see, this model works very well.

With this form for R, Eq. (4.17) can be easily solved and we arrive at

∣∣∣∣∣
Ω(z)

Ω(0)

∣∣∣∣∣
2

= 1− γ0κz

|Ω(0)|2 (1 + ξ(N)) (4.19)

so from Eq. (4.6) we have R = ξ(N)γ0. Integration of Eq. (4.18) for the phase yields

dφ(z)

dB

∣∣∣∣∣
B→0

=
µb

h̄ (γ0 + R)
ln

∣∣∣∣∣
Ω(0)

Ω(z)

∣∣∣∣∣
2

. (4.20)

Detection of |Ω(L)/Ω(0)|2 and dφ(L)/dB, where L is the length of atomic cell, allows

us to infer the value of the coherence decay rate as a function of the atomic density

and estimate radiation trapping effect. Thus we see that for optically thick media the

coherence decay rate increases with the density.

For smaller intensities Wd

√
γ0/γ À |Ω(z)| , Doppler-free EIT is not established,

so the approximation Eq. (4.6) is not valid and we do not discuss this regime here.

C. Radiation trapping and nonlinear magneto-optic rotation: experiment

The form of Eqs. (2.70) and (4.20) describing the polarization rotation and the

transmitted intensity suggests that the most convenient way to study the effect of

radiation trapping is to analyze the dependence of the polarization rotation rate on

the absorption in the system. Both these values are measured experimentally; it is
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Fig. 19. The dependence of rotation rate dφ/dB on transmission through the system

Iout/Iin for the beam with diameter d = 2 mm : experimental (dots), prior

theory with γ0 = 0.004γr (dashed line), and obtained by numerical simulation

including radiation trapping (solid line).

also important that there is no atomic density-dependent parameters other than the

ground-state coherence decay rate. The typical shape of this dependence is presented

in Fig. 19. The individual points on this plot correspond to different atomic densities.

The experimental data can be described by the Eq.( 2.70) only for the small region in

the vicinity of Iout/Iin ≈ 1 (See Fig. 19 inset); this region corresponds to an optically

thin sample, so there is no reabsorption of spontaneous photons. For higher atomic

densities, the experimental data cannot be fit either by the simple theory developed

in Chapter II or by the numerical simulation of actual Rb atoms, unless we suppose

that the coherence decay rate increases with atomic density.

To check the validity of our theoretical approach we use two similar atomic cells

(Fig. 20). One cell contains only Rb vapor and the other also contain 0.12 Torr of

Kr as a buffer gas. In a cell with buffer gas, atoms do not fly through the beam but

rather diffuse through it due to coherence preserving collisions with the buffer gas

atoms. The coherence decay rate depends on the interaction time of atoms with the

laser radiation and buffer gas effectively increases this time, therefore γ0 in a cell with
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buffer gas is less than in a vacuum cell. At the same time radiation trapping process

is determined by the geometry of the beam and the cell, and does not depend on

the presence of any buffer gas other than through γ0. Thus, according to our simple

theory, the ratio R/γ0 should be identical for both cells with or without buffer gas.

We also measure the transmission and the polarization rotation in the vacuum cell

using two laser beams of different diameters but approximately the same intensity.

In this case since the geometry of the problem changes, we would expect different

behavior for R/γ0 for different beams.

The value of the coherence decay rate γ0 may be determined for an optically

thin medium using Eqs.(2.69) and (2.70), since radiation trapping is negligible then

(R = 0). In our case we found γ0 ≈ 0.0033γr for the vacuum cell and the beam

diameter d = 2 mm, γ0 ≈ 0.0014γr for the cell with buffer gas and the beam diameter

d = 2 mm, and γ0 ≈ 0.001γr for the vacuum cell and the beam diameter d = 5 mm.

Using these values, the incoherent pumping rate due to radiation trapping R may

be obtained from the experimental data for the rotation rate and transmission, using

Eq. (4.20). The ratio R/γ0, obtained this way is shown in Fig. 21 and Fig. 22. As

one can see, it does not depend on the addition of the buffer gas, as expected basing

on our understanding of radiation trapping.

The peculiar dependence of the effective pumping rate on the atomic density may

be explained using the following reasoning. The probability of photon reabsorption

becomes significant when the medium becomes optically thick on the length scale of

the atomic cell size D [209] (under the Doppler-free EIT condition almost all atomic

population is in the ground state), or

3

8π
Nλ2D

γr

Wd

> 1 . (4.21)

For our experiment γr/Wd ≈ 0.01, so Eq. (4.21) is fulfilled for N > 5×1010 cm−3.
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laser beam diameter d = 2 mm and the cell without buffer gas (empty circles)

and with buffer gas (filled circles); for the laser beam diameter d = 5 mm

and the cell without buffer gas (empty triangles). Solid lines are to guide the

eyes. The laser is tuned on the F = 2 → F ′ = 1 transition of the 87Rb D1

line. As it follows from Eq. (4.20) the rotation rate plotted as a function of

the absorption characterizes the EIT dephasing rate γ0. The bigger dφ/dB

for a fixed absorption, the less γ0. The absorption serves as a measure of the

vapor pressure via optical density (see Eq. (4.19)).
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For densities less than this, radiation trapping is negligible and we have R ≈ 0. Above

this value there are two distinct regimes of behavior, with both seen in Fig. 22. At

low density we have that R increases linearly with density due to photon absorption

and emission within the cell. If the atomic beam is narrower than the radius of the

atomic cell, as we have in our experiment (d ∼ 0.1D), the next regime occurs for

densities when photon reabsorption becomes significant inside the laser beam. In our

case this is N > 5× 1011 cm−3 for the narrow beam and N > 2× 1011 cm−3 for wide

beam (see Fig. 22).

In general, the functional form of R is not an “absolute”, and it may change if the

cell geometry or laser beam size changes. The results shown in Fig. 22 demonstrate

that for high atomic densities, when radiation trapping takes place on the length

scales comparable with the laser beam diameter, the functional form of R does not

depend on the beam diameter. This appears because the distribution of the “trapped”

photons is nearly homogeneous for the atomic cell with dense atomic vapor and an

increase in the beam diameter does not change the distribution significantly. In turn,

for the lower atomic densities (less absorption) radiation trapping for the laser beam

with diameter d = 5 mm exceeds radiation trapping for the laser beam with diameter

d = 2 mm, as can be seen in Fig. 22. Because one would not expect such behavior

from other mechanisms than radiation trapping, we take this as a further confirmation

that radiation trapping is the correct explanation.

To confirm our simple analytical calculations we have also made detailed nu-

merical simulations of the experiment. We have considered light propagation in a

thirteen-level Doppler broadened system corresponding to the F = 2 → F ′ = 1, 2

transitions in 87Rb. The decay of atomic coherence is modelled by finite time of flight

through the laser beam (an open system). We have solved density matrix equations

in steady state using the coherence decay rate as a fit parameter. In other words, we
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choose the effective coherence decay rate γ0 + R in such a way that our theoretical

points for the dispersion dφ/dB and intensity Iout/Iin corresponds to the experimen-

tal results. The dependence for R/γ0 obtained this way for the laser beam diameters

d = 2 mm and d = 5 mm and the cell without buffer gas is shown in the solid line in

Fig 22.

We see that the simple analytical analysis of the data coincides with the simula-

tions for low atomic densities and diverges slightly for high densities. We explain this

difference by inadequate intensity of the laser light. The maximum intensity of our

laser (∼ 100mW/cm2) corresponds to a Rabi frequency |Ω0| ∼ 3.6γr which lies on

the edge of Doppler-free region which is determined by |Ω0| ≥ Wd

√
γ0/γ ≈ 6γr. The

absorption further decreases the intensity and, as a result, the Doppler broadening

becomes important, unlike in our simplified calculations.

Finally, we note that the observations reported here cannot be explained by

spin exchange collisions between the atoms. The collisional cross section for Rb

atoms is approximately 2 × 10−14 cm2 [21] which results in a coherence decay rate

γ0 ≈ 2× 10−5γr for the densities reported here. This is approximately two orders of

magnitude less than the time-of-flight limited coherence decay rate γ0 ≈ 4 × 10−3γr

that we measured for the vacuum cell.

In conclusion, we have studied the atomic density dependence of the decay rate

of the atomic coherence established by linearly polarized laser radiation between Zee-

man sublevels of the ground state of Rb atoms. We have demonstrated that the

experimentally observed enhancement of the decay rate may be explained by reab-

sorption of spontaneously emitted photons. We have developed a simplified theory

of non-linear magneto-optic rotation which takes into account the destructive effect

of radiation trapping. The predictions of this theory are in a good agreement with

exact numerical simulations performed for the actual sublevel system. That means
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that the effect of radiation trapping plays an important role and should be taken into

consideration in the CPT experiments in optically thick media.
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CHAPTER V

MODIFICATION OF THE NONLINEAR FARADAY ROTATION IN THE

PRESENCE OF BUFFER GAS

The thermal velocity distribution of atoms often results in Doppler broadening of the

resonant features observed in atomic cells. It has been known for a long time that

the restriction of the atomic motion leads to substantial narrowing of the resonant

linewidth [237]. In practice this restriction is often achieved by diluting the resonant

atoms in a gas of weakly interacting neutral atoms or molecules, usually called a

buffer gas [238, 239]. The inert gases (Ne, Ar, Kr) as well as some simple diatomic

(N2, H2) and organic (CH4, C2H6) gases are commonly used as buffer gases in alkali

vapor cells. Since the intrinsic spin of a buffer gas atom or molecule is zero, its

collisions with alkali atoms does not change their population distribution. At the same

time dephasing due to collisions produces small shifts of the atomic levels (pressure

shifts) and additional homogeneous broadening of the atomic resonances (collisional

broadening) proportional to the buffer gas pressure [21,161,163,240].

The influence of Doppler broadening may be substantially reduced in multi-

photon processes, such as coherent population trapping. Due to the two-photon

nature of this process, CPT is possible only for very small values of the two-photon

detuning, determined by the relaxation rate of the ground-state coherence. Thus, the

width of the EIT resonances is not limited by either the Doppler broadening or the

natural decay rate of the excited state.

The relaxation of the ground-state coherence is determined by many factors

[21, 161]. If the density of atoms is not very high, so that the depolarization of

the ground-state because of the spin-exchange collisions can be neglected, the main

ground state relaxation mechanism is due to the destruction of the coherence by
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collisions with the walls of the cell [162]. For this reason, in hot atomic gases the

ground-state coherence lifetime is normally determined by the interaction time of the

moving atoms with the electromagnetic fields; once an atom has left the interaction

region, it cannot return back without a collision with the wall. The time-of-flight is

inversely proportional to the thermal velocity of the atoms and directly proportional

to the laser beam diameter. For example, in the case of a 1 cm beam the width of an

EIT resonance in Rb vapor at room temperature is limited to a few tens of kHz.

There are several methods to reduce the resonance width. The expansion of the

laser beam is limited by the geometry of the experimental setup and/or the laser

intensity. The relaxation of the ground-state coherence on the walls can be avoided

by anti-relaxation coatings, such as paraffin [171, 172, 241, 242]. Extremely narrow

resonances are reported in experiments on optical pumping [172,243,244] and Zeeman

coherence [45,133,134]. At the same time manufacturing of the wall-coated cells is a

complicated and technically challenging process which vastly limits their availability.

Filling an atomic cell with additional buffer gas is a quite simple and effective

way to obtain the narrow EIT resonances. The interaction time can be reduced

by several orders of magnitude, since now atoms diffuse rather than fly through

the laser beam. There is a large number of publications devoted to the study of

the relaxation processes of the atomic populations and coherences in various buffer

gases in optical pumping experiments [20, 21, 161] and the CPT- and EIT-related

experiments [165, 245, 246]. In general, the ground-state coherence decay rate γ0 in

the buffered cells is determined by the diffusion time of the atom through the laser

beam and the dephasing due to the collisions with the buffer gas atoms. Under the

approximation of small laser beam diameter (d ¿ D, where d and D are the diameters
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of the laser beam and the atomic cell) γ0 can be written as [21,165]:

γ0 = 2.4052 D

a2

1

1 + 6.8λ/a
+ 2σdphvT nb, (5.1)

where a = d/2 is the laser beam radius, D is the diffusion coefficient, λ = 3D/vT is

the mean free path, σdph is the ground-state relaxation cross-section, vT =
√

2kBT/M

is the average thermal velocity of the Rb atoms (kB is the Boltzmann constant, T

is the temperature of the cell, and M is the mass of a Rb atom), nb is the density

of the buffer gas atoms. The first term describes the escape of the atom from the

interaction region, its dependence of the buffer gas pressure p is determined by the

diffusion coefficient D = D0(760/p[Torr]), where D0 is the diffusion coefficient for the

buffer gas pressure equal to 1 atmosphere. The second term is due to the collisional

dephasing, and it grows linearly with buffer gas pressure (p = 2/3nbkBT ). Thus,

there exists an optimal value of the buffer gas pressure corresponding to the minimum

relaxation rate which has been observed experimentally [245]. The minimum ground-

state coherence decay rate for hot Rb atoms (T = 400K), diluted in Ne buffer gas

(D0 = 0.5 cm2/s, σdph = 5.2 10−23 cm−2 [21]) is estimated to be γ0min ∼ 11/[a] Hz (a

is in centimeters), providing the optimal buffer gas pressure is p ∼ 400[a] Torr. Thus,

for a 2 mm laser beam the relaxation rate γ0 ∼ 100 Hz is expected for the buffer gas

pressure p = 40 Torr.

Velocity-changing collisions with the buffer gas atoms should be also taken into

account for an accurate description of the light-atom interaction. If a collision happens

much faster than the characteristic times of the atomic relaxation processes, the

velocity change is equivalent to an instantaneous detuning of the laser field without

change in the atomic state. There have been a number of theoretical [162, 165] and

experimental [246–248] studies of the effect of velocity changing collisions on coherent

population trapping which demonstrated that the ground-state coherence survives up
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to 1000 Torr buffer gas pressure. Moreover, Dicke narrowing is responsible for the

elimination of the residual Doppler broadening [246].

In this Chapter we experimentally study the effect of the buffer gas addition on

the coherence formed between Zeeman sublevels of the same hyperfine level using

nonlinear magneto-optic rotation in optically dense Rb vapor. Although the restric-

tion of the atomic motion due to the buffer gas results in the expected narrowing of

the resonance linewidth, we also observe a reduction of the polarization rotation and

EIT contrast as buffer gas pressure increases. We attribute this to the influence of

the hyperfine structure of the excited state. We also demonstrate that the narrow

features in both rotation and transmission appear due to the atoms which temporar-

ily leave the interaction region (or change their velocity so that they do not interact

with the light), allowing the coherence to evolve for a time significantly longer than

the transient time.

A. The effect of velocity-changing collisions on Zeeman coherence

The simple theory developed in Chapter II for the nonlinear Faraday effect in a three-

level system predicts that the polarization rotation angle for small magnetic field is

inversely proportional to the decay rate of the ground-state coherence (Eq.(2.70)). So

one would expect a dramatic enhancement of polarization rotation in case of buffered

cells due to the longer coherence lifetime. This prediction, however, is not supported

by the experimental data for polarization rotation in Rb atoms.

To study the effect of the addition of buffer gas, we observe the spectral depen-

dence of the rotation rate dφ/dB for several glass cells filled with 87Rb vapor and

various amount of a buffer gas. Since the lengths of the cells differ, the temperature

is adjusted in each case so that the total minimum transmission is Iout/Iin ≈ 0.8. The
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observed spectra are shown in Fig. 23. For the cell without buffer gas, the rotation

rate as a function of laser frequency consists of two partially resolved peaks corre-

sponding to transitions of the two hyperfine sublevels (F ′ = 1 and F ′ = 2) of the

excited state. The width of both peaks is determined by Doppler broadening, and

their shape is well fit by the sum of two Gaussian functions.

The situation is quite different for the atomic cells with buffer gas. First, we

do not observe the predicted enhancement of the polarization rotation. Although

for small amounts of buffer gas the value of the rotation rate increases significantly

(compare results for the cell without buffer gas and cells with 0.12 Torr or 1 Torr of

Ne in Fig. 23). Higher buffer gas pressure actually causes a reduction of the rotation

rate which cannot be explained by increasing of γ0 due to collisional dephasing of

ground state coherence [21]. At the same time, one can see that the rotation spectra

as a function of laser frequency are broadened far beyond the predicted collisional

broadening [163]. Simultaneously, the linear absorption line does not exhibit such

behavior.

Another unexpected feature is observed if the laser is tuned between the tran-

sitions. Even for small amounts of buffer gas, the rotation goes to zero and even

becomes negative. A similar effect is reported in experiments with alkali vapor cells

with anti-relaxation coatings [249]. At the same time the maximum rotation rate is

no longer observed at the frequency of atomic transitions, but shifted away.

We believe that the effects listed above occur because of the internal structure

of the alkali atoms and the diffusion in coordinate and velocity space associated with

collisions with buffer gas atoms or coated walls. To account for these factors, we must

solve a modified time-evolution equation for the density matrix operator ρ̂, which
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Fig. 23. Polarization rotation rate dφ/dB and transmission Iout/Iin of linearly po-

larized coherent laser radiation through an atomic cell as a function of laser

detuning from the 87Rb F = 2 → F ′ = 1 transition. Data are presented for

cells with (from top to bottom) 0 Torr, 0.12 Torr, 1 Torr, 10 Torr, and 30 Torr

of buffer gas. For each nonzero buffer gas pressure, some frequency may be

found such that zero polarization rotation is observed.
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includes a kinetic term to describe atomic interaction with the buffer gas [251,252]:

dρ̂

dt
= − i

h̄
[Ĥ, ρ̂]− 1

2
{Γ̂, ρ̂}+ L̂ρ̂ + R, (5.2)

where Ĥ is the interaction Hamiltonian for the light and atoms, Γ̂ is the relaxation

matrix, L̂ is the collisional operator, and R is the pumping term. The exact solu-

tion, however, is extremely complicated, and cannot be obtained even numerically.

Instead we experimentally study the modification of the nonlinear Faraday rotation

and transmission spectra in two limiting cases: when the mean free path of Rb atom

is much smaller than the laser beam diameter (high buffer gas pressure), and when

they are comparable (low buffer gas pressure).

1. Low buffer gas pressure

First, we study the nonlinear Faraday rotation in a glass cell filled with 87Rb vapor

and 0.12Torr of Kr as a buffer gas. The mean free pass of Rb atoms in this case is

λ ≈ 1.5 mm, which is very close to the laser beam diameter d = 2 mm.

To investigate the effect of buffer gas addition on the nonlinear Faraday effect

more closely, we scan the laser frequency across all four possible transitions of the Rb

D1 line and monitor three parameters. First one (Fig. 24a) is the contrast of the EIT

peak:

C =
IEIT − Ione−photon

IEIT + Ione−photon

, (5.3)

where IEIT = Iout(B = 0) is the transmission through the cell under EIT conditions,

and Ione−photon corresponds to one-photon transmission when the coherence is de-

stroyed by large magnetic field (B ≈ 1G). We also measure the polarization rotation

rate dφ/dB for zero magnetic field (Fig. 24b)and the polarization rotation angle φ for

the magnetic field close to the rotation resonance width B = 0.1G (Fig. 24c).
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Fig. 24. (a) The EIT contrast, (b) the rotation rate dφ
dB

∣∣∣
B=0

, and (c) the polarization

rotation angle φ for B = 100mG as functions of the laser frequency in the
87Rb cell with 0.12 Torr Kr buffer gas. Zero detuning corresponds to the

F = 2 → F ′ = 1 transition. The atomic density is N = 5.2 · 1011cm−3.
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Comparison between these data and the analogous set for the cell without buffer

gas (Fig. 8) immediately shows that the EIT contrast and the polarization rotation an-

gle spectra are quite similar: they are still very well fit by the sum of gaussian-shaped

peaks, corresponding to Doppler-broadened partially-resolved transitions. The main

difference appears in the rotation rate dφ/dB. Let us recall that this parameter is

very sensitive to the value of the coherence decay rate, and any processes which affect

the ground-state coherence should have a strong influence on the polarization rotation

in the vicinity of zero magnetic field.

For a more comprehensive analysis we now record the transmission and polar-

ization rotation angle as a function of magnetic field as the laser frequency is tuned

across the F = 2 → F ′ = 1, 2 transition. These transitions are more interesting for

the present study, since they both form dark states, and the NMOR may be explained

from the point of view of CPT on Zeeman sublevels. Fig. 25 clearly shows that the

polarization rotation and transmission spectra consist of two resonances of the dif-

ferent widths. The properties of the wide resonance are very similar to those of the

NMOR spectra in bufferless cell, and its width is defined by the time-of-flight of the

atoms through the laser beam. The narrow feature, however, is quite different: if the

laser is resonant or red-detuned from the F = 2 → F ′ = 1 transition, it leads to the

enhancement of polarization rotation, whereas for the laser tuned between two ex-

cited states (∆ ∼ 400 MHz) the sign of this rotation is reversed, which is responsible

for the negative polarization rotation rate here. 1

1We assume that when the magnetic field is much smaller than the width of the
narrowest resonance, the polarization rotation is a linear function of the magnetic
field. In this case the rotation rate may be experimentally measured by subtract-
ing two rotation spectra for B = ±1mG, and dividing them by the variation of the
magnetic field. The polarization rotation rate dφ/dB(B = 0) provides the informa-
tion primarily on the narrow feature in the vicinity of zero magnetic field, and the
polarization rotation for nonzero magnetic field reflects the properties of the wider
resonances.
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umn) as functions of the applied magnetic field for different laser detunings in
87Rb cell with 0.1 Torr Kr buffer gas. The transmitted intensity is normalized

to the transmission without EIT (for large magnetic field). Zero detuning

corresponds to the F = 2 → F ′ = 1 transition. Note the scale difference for

each graph. The atomic density N = 5.2 · 1011cm−3.
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the transition which take part in the dark states formation; dotted arrows are

used for the other transitions.

The existence of resonances of two different widths suggests that there are two

distinctive relaxation mechanisms for the Zeeman coherence. In the limit of low

buffer gas pressure the properties of NMOR, determined by the transient effect, (wide

resonance) should not depend much on the presence of buffer gas, since the probability

of collision between a Rb atom and a buffer gas atom is low. However, there is a

nonzero probability, that an atom, prepared in dark state during the interaction with

the laser beam, will return to the interaction region as a result of collisions with buffer

gas atoms before its coherence is destroyed [136,137]. Since the coherence lifetime for

these atoms is much longer than the time-of-flight, this process results in narrower

resonances in polarization rotation, observed in the vicinity of the magnetic field.

This phenomenon is very similar to ultra-narrow features observed in paraffin-coated

cells by Budker et al. (compare NMOR spectra shown in Fig. 25 with those reported

in Ref. [134]).

To explain sign change of the narrow polarization rotation resonance, we need
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to look closely at the values of the transition dipole moments within the allowed

transitions. Since the F = 2 → F ′ level structure is complicated, we use the simpler

F = 1 → F ′ = 0, 1 transitions instead. In this system, the dark state can be

formed among m = ±1 sublevels of the ground state either through excited state

F ′ = 0,m′ = 0 or F ′ = 1,m′ = 0, depending on the laser detuning. As shown in

Fig. 26, the dipole moments for all four transition have the same absolute value, but

one of them ℘F=1,m=1→F=0,m=0 is negative. Thus, the dark states |D10〉, formed on

the F = 1 → F ′ = 0, and |D11〉, formed on the F = 1 → F ′ = 1 transition, are

different and, in the case of linearly polarized light, orthogonal:

|D10〉 =
Ω+|b+〉+ Ω−|b−〉√
|Ω+|2 + |Ω−|2

; (5.4)

|D11〉 =
Ω+|b+〉 − Ω−|b−〉√
|Ω+|2 + |Ω−|2

. (5.5)

In the case of Rb atoms, the hyperfine splitting between excited levels is big

enough (∆hfs À γ), so if the electromagnetic field is resonant with one of the atomic

transitions, the influence of the other is negligible. The relative phase of the dark

state does not matter for a bufferless Rb cell, since the velocity of an atom does not

change during the interaction process, and each atom interacts with the light field on

only one transition.

The situation is very different, however, if a buffer gas is added, and velocity-

changing collisions become possible. Now a Rb atom, pumped into dark state on one

transition, may be suddenly “switched” to the other one as a result of a collision. In

this case the state of the atom with respect to this transition is a bright state, and the

ground-state coherence is rapidly destroyed. Thus, in an ideally symmetric scheme

one would expect the complete cancellation of EIT and the nonlinear Faraday rotation

for a laser tuned exactly halfway between the transitions to the excited hyperfine
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sublevels, when the probabilities of interaction of atoms with either transition are

equal. In reality, however, the complicated magnetic structure should be taken into

account, which results in a difference in the transition strengths (i.e. the polarization

rotation on the F = 2 → F ′ = 2 transition is noticeably weaker). This imbalance

leads to the reverse of the sign of the polarization rotation and enhancement of the

light absorption.

It is also clear that for small buffer gas pressure the change of sign of the rotation

angle occurs only for the narrow structure, which appears due to the contribution of

the atoms returning into the beam after some spatial diffusion. Indeed, the atoms

responsible for the wide resonance (determined by the diffusion time of the atom

through the laser beam) are not likely to change their velocity while passing the

interaction region. Therefore, the properties of the corresponding rotation and ab-

sorption resonances are not differ from the case of a cell without buffer gas. On the

contrary, the returning atoms have a Doppler velocity distribution after several colli-

sions with the buffer gas atoms, effectively mixing the dark states formed on different

transitions, as we see in our experiment.

For this reason the polarization rotation on the D2 line of Rb (on which the

splitting between excited hyperfine levels are almost an order of magnitude smaller)

deteriorates very rapidly with addition of a buffer gas, and almost completely disap-

pears for buffer gas pressure more than 1 Torr, as shown in Fig. 27.

2. High buffer gas pressure

As the buffer gas pressure grows, the changes in the rotation rate become more

profound: the central drop between transitions F = 2 → F ′ = 1, 2 becomes wider and

the rotation maxima move farther away from the resonance frequencies (Fig. 28b). At

the same time, since mean free pass is much smaller than the laser beam diameter (λ ≈
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Fig. 27. Polarization rotation rate dφ/dB (B = 0) for the D2 line of 87Rb in an atomic

cell with (a) no buffer gas (the additional rotation peak at a detuning about

1 GHz is due to residual 85Rb); (b) 0.12 Torr of Kr; and (c) 1 Torr of Ne.

Laser power is 2.5 mW, the temperature is adjusted for each cell so that the

total transmission on the F = 2 → F ′ transition is about 80%. Zero laser

detuning is chosen to coincide with the center of the absorption peak of the

F = 2 → F ′ transition.
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Fig. 28. Same as for Fig. 24 in 87Rb cell with 10 Torr Ne buffer gas. The atomic

density N = 2.1 · 1012cm−3.
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3 · 10−2 mm), similar modifications occur for the wide resonance as well. Enhanced

absorption is observed when the laser tuned between two atomic transitions. This is

accompanied by a negative polarization rotation (Fig. 28a and c, Fig. 29). It is also

important to note that efficient mixing of all velocity groups results in a reduction of

both EIT contrast (1.4 for 10 Torr vs. 4.2 for 0.12 Torr) and maximum polarization

rotation angle (0.8 rad vs. 0.25). However, for the same reason the range of laser

frequencies where the polarization rotation occurs is extended significantly for the

high buffer gas pressure cells: even if the laser detuned quite far from the atomic

transition, and only a tiny fraction of all atoms in the Doppler distribution “sees”

the laser field, each atom changes its velocity many times while travelling through

the laser beam and its probability to have a resonant velocity at least for some time

increases. One can see that for the Rb cell with 10 Torr of buffer gas the rotation

peaks, corresponding to the transition from the different ground hyperfine levels (split

by 6.8 Ghz) are not resolved.

B. The shape of NMOR resonances in the presence of buffer gas

Now let us study the dependence of the width and the maximum rotation angle for

both narrow and wide rotation resonances on laser power. For this purpose we use

the cell with 10 Torr of Ne and fix the laser frequency to be exactly between the

F = 2 → F ′ = 1, 2 transitions (i.e. detuned 400MHz from either of them). In

this case two resonant features are resolved, and the width of both narrow and wide

resonance may be measured accurately. At this frequency, both rotation curves are

inverted with respect to the direction of the polarization rotation without buffer gas

at the same magnetic field which corresponds to enhanced absorption resonances of

the same widths. The atomic density of Rb vapor is N = 6 · 1011cm−3, so that the
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transmission for laser power P = 2mW is about 90%.

The presence of buffer gas has little affect on the shape of the wide resonance. The

enhanced absorption resonance corresponding to the wide rotation also resembles the

triangular-shaped EIT resonance in a bufferless cell (compare with Fig. 16). In this

case the width of the rotation resonance is defined as the distance between opposite

rotation maxima. At the same time, the shape of the narrow rotation resonances is

well-described by a Lorenzian function (Fig. 30a inset):

φ(B) = φmax
wB

w2 + B2
, (5.6)

where φmax is the maximum rotation angle, and w is the width of the resonance.

The data for the width of both narrow and wide resonances as well as the maxi-

mum polarization rotation angle for different laser intensities are presented in Fig. 31.

Note that the behavior of either of them is quite different for narrow and wide res-

onances. For the wide resonance the maximum polarization rotation angle is prac-

tically constant, whereas the width of the resonance falls linearly with laser power.

This kind of behavior is expected from the power-broadened EIT-related resonance

in the Doppler-free interaction regime (|Ω| À WD

√
γ0/γ) [188]. On the other hand,

since the narrow rotation resonance is due to the atoms which spend most of the

coherence evolution time outside the laser beam, the narrow resonances are practi-

cally insensitive to power broadening (Fig. 31b), and the corresponding value of the

maximum rotation exhibits the square-root dependence on laser power.

C. Detection on non-resonant impurities using the nonlinear Faraday effect

Atomic cells containing alkali vapors are a basic element in atomic clocks, frequency

standards, optical magnetometers and many other high precision spectroscopic de-
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vices. Impurities in the cells, for example, due to atmosphere leakage or improper

cell fabrication may cause serious changes in the performance of these devices.

Although it is always possible in principle to detect any gas in an atomic cell

using broad-band spectroscopic techniques, this may not always be convenient. In

many situations, the only spectroscopic sources present may be narrow band lasers

tuned to the atomic transitions interesting for experiments to be performed on the

alkali atoms. If the impurity resonance frequencies lie outside the tunable range of

these lasers, the only way to detect the impurity must be based on measurements of

parameters of the atoms of interest. The question is: what property of alkali atomic

vapor is both sensitive to the presence of an impurity and convenient for precise

measurements?

Photon echoes can be used for buffer gas detection. It was recently shown that

coherence among ground state Zeeman sublevels of Rb atoms can be used for detection

of a perturber (Ar) in an atomic cell [253]. In this experiment, the cross-section for

Rb-Ar velocity changing collisions was inferred from properties of coherence grating

echoes [254]. However, photon echoes are essentially transient phenomena with a

complicated experimental implementation.

Our experiments demonstrate that the nonlinear Faraday rotation may be used

as a sensitive detector of a buffer gas in an atomic cell. The existence of the “hole”

between resonances is a clear indication of the presence of a buffer gas in the cell, and

it may be used for a leak control 2. The effect is even more dramatic for the D2 line of

Rb, since the excited sublevels are closer to each other. In this case the polarization

rotation almost completely vanishes for buffer gas pressure as low as 1Torr.

For precision measurements there are several parameters to consider: the posi-

2A discovery of a leaky cell in our lab gave rise to this study.
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tion and the value of the maximum rotation, the value of the rotation versus laser

detuning, etc. We suggest measurement of the value of the rotation rate dφ/dB at

the resonance frequency for given transmission as the best compromise between ex-

perimental complexity and sensitivity to the presence of buffer gas. Our experimental

results show that the maximum rotation rate is of the same order of magnitude for

a wide region of buffer gas pressures (0.1 ÷ 10 Torr). However, the rotation rate

at resonance decreases because of the shift of the rotation maximum. The value of

rotation may be easily measured, and the amount of buffer gas is found from these

data.

Certainly, there are existing experimental techniques with greater sensitivity to

various gas atoms, with perhaps the most notable being residual gas analysis mass

spectroscopy. However, the method described here has several advantages, most

notably that it is completely non-invasive, provides reliable information for any kind

of buffer gas, and uses only a single stabilized diode laser that may already be present

in spectroscopy experiments.

In conclusion, we demonstrated the profound effect of a buffer gas on the Zeeman

coherence. The diffusion of atoms in a buffer gas gives rise to an additional narrow

feature in nonlinear Faraday rotation. At the same time velocity-changing collisions

produce effective mixing of the dark states created on different hyperfine transitions,

resulting in enhanced absorption between transitions and an inversion of the sign of

the polarization rotation. A possible application of this effects is leak detection and

buffer gas measurements in atomic cells.
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CHAPTER VI

ELLIPTICITY-DEPENDENT MAGNETO-OPTICAL ROTATION VIA

MULTI-PHOTON COHERENCE

As we demonstrated in the previous chapters, an accurate description of NMOR

signals is obtained from an analysis of density matrix equations for the atomic po-

larizations and populations along with Maxwell equations describing propagation of

the electromagnetic fields in the atomic medium. Even for the simplest interaction

schemes (which consists of three or four energy levels), an analytical solution of these

equations is not always available in a relatively simple form. For more elaborated

systems the exact solution is very complicated, and in general may be obtained only

numerically. Thus, to recover any analytical results the problem should be somehow

simplified .

The traditional approach to a solution of the problem is based on the approxima-

tion of weak electromagnetic fields and low atomic vapor densities [86, 105, 109, 122],

conditions found in early experiments involving incoherent radiation from atomic dis-

charge lamps. In this case one can use perturbation theory, and the atomic suscepti-

bility may be decomposed in a series of the electromagnetic fields involved. Magnetic

field dependent terms of the susceptibility decomposition which are nonlinear in the

electromagnetic fields are responsible for NMOR. It can be demonstrated that only

two-photon processes are important in this approximation, and therefore complicated

multilevel systems may be reduced to systems with small level number (such as Λ,

V , or X–schemes) [92, 109, 255]. In this approximation, NMOR is a consequence of

low frequency ground-state coherence formed by two-photon processes between Zee-

man sublevels with difference in magnetic quantum numbers equal to ∆m = ±2. In

some cases it is convenient to describe the atom-light interaction from the point of
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view of light-induced multipole moments of the atomic electron distribution. Con-

ventionally this is done in terms of an irreducible tensor representation of the density

matrix [15, 256, 257]. In this case, the ground-state coherence is equivalent to the

quadrupole moment, or alignment. It has been suggested that NMOR is a conse-

quence of the alignment to orientation conversion [123], where the orientation is equiv-

alent to the population difference between nearest Zeeman sublevels with ∆m = ±2.

The simplified theoretical approaches used for weak electromagnetic fields gener-

ally fail for strong ones. The question that arises here is whether or not the interaction

with strong fields bring new physics, e.g. if the higher order atomic coherences in-

fluence NMOR. Alkali atoms have a level structure which allows for a formation of

the coherent superposition of the magnetic sublevels with ∆m = ±4 (hexadecapole

moment in the multipole decomposition of the interaction process) and even higher.

Such coherences should be excited by multiphoton processes that include four or more

photons. Gawlik et al. [85] observed strong narrow features in a forward scattering ex-

periment with free sodium atoms, which were attributed to a hexadecapole moment.

However, subsequent work of Giraud-Cotton et al. [86] and other groups [92,109,255]

demonstrated that these features may be explained using third-order perturbation

theory which includes only quadrupole moments.

There have been a number of publications where observation of hexadecapole

and higher order moments is reported for the case where the magnetic field is perpen-

dicular to the light propagation direction [30,258]. At the same time, the question of

their influence on forward scattering and NMOR signals in Faraday configuration is

still open (see, for example, [93] and references therein). Generally, the interpreta-

tion of the experimental results in the case of strong laser fields and large multipole

moments is very complicated. The high-order coherence causes only slight modifica-

tions of the rotation caused by the quadrupole moment, which hinders a convincing
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demonstration of these high-order effects.

We solve here both analytically and numerically the problem of the propagation

of strong elliptically polarized electro-magnetic fields through resonant atomic media

in the presence of a magnetic field. We particularly investigate the properties of the

light which interacts with the magnetic sublevels in an M -like level configuration

and, therefore, forms coherence with ∆m = 4. We demonstrate that this coherence

is responsible for a new type of polarization rotation which depends on both the

light ellipticity and the applied magnetic field. We observe this effect in hot vapor of

rubidium atoms. Since such rotation does not appear for an isolated Λ scheme, our

experiment may be treated as a clear demonstration of the hexadecapole moment of

atoms.

Another interesting and important feature of the system under consideration is

connected with a large Kerr nonlinearity associated with NMOR. We analyze Kerr

nonlinearity in the M level configuration and show that the ratio between the non-

linearity and the absorption may be large. Moreover, we show that by increasing the

number of Zeeman sublevels (e.g. by using another Rb isotope or different alkali atom

with higher ground-state angular momentum) it is possible to realize higher orders

of nonlinearities. Our method of creation of the highly nonlinear medium with small

absorption has prospects in fundamental as well as applied physics. It can be used for

construction of nonclassical states of light as well as coherent processing of quantum

information [259].

To bridge between this and previous studies we remind that NMOR may be

attributed to coherent population trapping, and both EIT and CPT are able to

suppress linear absorption of resonant multilevel media while preserving a high level

of nonlinear susceptibility [260–262]. Previous theoretical studies of coherent media

with large optical Kerr nonlinearities have described nonlinearities resulting from the
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effective self-action of an electromagnetic field at a single photon energy level, such as

a photon blockade [263–266], or an effective interaction between two electromagnetic

fields due to refractive [261,262,267,268] and absorptive [269] Kerr nonlinearities. The

absorptive χ(3) nonlinearities were studied experimentally for quasiclassical cases [270,

271]. It was shown quite recently, that a similar approach may lead to achievement

of even higher orders of nonlinearity [272].

A method of producing Kerr nonlinearity with vanishing absorption is based

on the coherent properties of a three-level Λ configuration (see Fig. 32a). In such a

scheme the effect of EIT can be observed. Two optical fields, α1 and Ω1, resonant with

the transitions of the Λ system, propagates through the medium without absorption.

However, because an ideal EIT medium does not interact with the light, it also can

not lead to any nonlinear effects at the point of exact transparency [1]. To get a

nonlinear interaction in the coherent medium one needs to “disturb” the EIT regime

by introducing, for example, additional off-resonant level(s) (level a2 in Fig. 32b). In

the following we refer to the resultant level configuration an N -type scheme. Such a

scheme has been used in previous works [261–266, 268]. If the disturbance of EIT is

small, i.e., the detuning ∆ is large, the absorption does not increase significantly. At

the same time, the nonlinearity can be as strong as the nonlinearity in a near-resonant

two level system. Unlike the early ideas of Kerr nonlinearity enhancement, we propose

to use not a single Λ scheme, but several coupled Λ schemes. In particular, we consider

the M -type configuration as shown in Fig. 32c. Coherent population trapping exists

in such a scheme, like in a Λ-type level system.

By introducing a small detuning, δ, we may disturb this CPT and produce

a strong nonlinear coupling among the electromagnetic fields interacting with the

atomic system, while having small absorption of the fields [273]. The dispersion of

the M level media and associated group velocity of light propagating in the media
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Fig. 32. Energy level schemes for (a) Λ-system; (b) N -system; (c) M -system.

are intensity dependent due to the nonlinearity, as was theoretically predicted by

A. Greentree et al. [274]. Finally, in the case discussed below, energy levels of the

M configuration correspond to Zeeman sublevels of alkali atoms. The multi-photon

detuning is introduced by a magnetic field, resulting in the intensity dependent po-

larization rotation.

A. Analysis of NMOR in M interaction scheme

Let us concentrate first a F = 2 → F ′ = 1 transition, which occurs in the 87Rb D1

line. The case of higher angular momenta is discussed in the next section. Interaction

of elliptically polarized light with the F = 2 → F ′ = 1 transition may be decomposed

into a Λ scheme with m = −1 ↔ m′ = 0 ↔ m = +1, and an M scheme m = −2 ↔
m′ = −1 ↔ m = 0 ↔ m′ = +1 ↔ m = +2, as shown in Fig. 33a. The distinguishing

difference between an M scheme and a Λ scheme is that the higher order coherence

(∆m = 4) becomes important. Since the Λ system had been studied in detail in

Chapter II, we primarily concentrate on the M scheme here.

The M scheme is described by a set of twelve density matrix equations. The

only straightforward way to solve this system is with numerical methods. However,
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Fig. 33. a) Energy level scheme for 87Rb atoms. This scheme may be decomposed into

a superposition of b) Λ-system and c) M -system. Transition probabilities are

shown for each individual transition.

if we study the atomic interactions with weak magnetic fields, the decay processes

and polarization rotation processes are independent, and the polarization rotation

may be found in analytical form under the condition of zero relaxation using the

Hamiltonian diagonalization procedure. The modified Schrödinger equation model is

suited for this as well. The optical losses may be found separately by considering

optical pumping into the dark state with zero magnetic field.

1. Coherent population trapping in an M level scheme

It has been shown that the dark state exists even for atoms with complicated Zeeman

substructure interacting with elliptically polarized light [276–281]. Here we recall the

analytical expressions for this dark state and the corresponding eigenvalues. Using an

effective interaction Hamiltonian, we derive propagation equations for the electromag-

netic fields. We restrict our consideration to the case relevant to the M configuration

consisting of Zeeman energy sublevels in the magnetic field. That is, we assume that
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the atomic transition frequencies are such that ωa−b0 = ωa+b0 = ω, ωa−b− = ω − 2δ,

and ωa+b+ = ω + 2δ, where the detuning δ is due to a Zeeman shift, and the laser

frequency ν is resonant with the atomic transition. The interaction Hamiltonians for

M systems is

HM = −2h̄δ|b+〉〈b+|+ 2h̄δ|b−〉〈b−|+ h̄(Ω1−|a+〉〈b+|+ Ω2−|a−〉〈b0|

+ Ω1+|a+〉〈b0|+ Ω2+|a−〉〈b−|+ H.c.), (6.1)

where Ω1− = E−℘a+b+/h̄, Ω1+ = E+℘a+b0/h̄, Ω2− = E−℘a−b0/h̄, Ω2+ = E+℘a−b−/h̄

(see Fig. 33c).

As in the Λ system, the eigenvalues of the interaction Hamiltonian can be deter-

mined from:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2δ − λ Ω∗
2+ 0 0 0

Ω2+ −λ Ω2− 0 0

0 Ω∗
2− −λ Ω∗

1+ 0

0 0 Ω1+ −λ Ω1−

0 0 0 Ω∗
1− −λ− 2δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (6.2)

Also, as in the Λ scheme, the eigenvalue λ = 0 and corresponding “dark state” exists

only for δ = 0:

|D〉 =
Ω1+Ω2+|b+〉 − Ω1−Ω2+|b0〉+ Ω1−Ω2−|b−〉√
|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2

(6.3)

It is worth noting that, similar to the Λ system, the non-vanishing low frequency

coherences ρb+b0 and ρb0b− are important here. The major difference in the dispersive

properties of the M and Λ schemes arises from the existence of the four-photon

coherence ρb+b−:

ρb+b− =
Ω∗

1−Ω∗
2−Ω1+Ω2+

|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2 . (6.4)
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For small δ we can again find the eigenvalue for the quasi-dark state, taking into

account only the linear terms in δ:

λ̃M = 2δ
|Ω2−|2|Ω1−|2 − |Ω2+|2|Ω1+|2

|Ω2+|2|Ω1+|2 + |Ω2−|2|Ω1−|2 + |Ω2+|2|Ω1−|2 . (6.5)

2. Equations of motion

It is possible to obtain the equation of motion for the electro-magnetic fields, using

the method reported in Ref. [272, 273]. If we assume a small disturbance of CPT,

almost all atomic population remains in a dark state during the interaction process,

and we can rewrite the interaction Hamiltonian as

H ' h̄λ̃DÎ . (6.6)

In this case we can exclude the atomic degrees of freedom from the interaction picture,

and write the quasi-classical analogue of the interaction Hamiltonian with respect to

the atomic degrees of freedom: H ' h̄λ̃D. This Hamiltonian may be further rewritten

in the Heisenberg picture, so that Ω ∝ â, where â is the annihilation operator for the

electromagnetic field [272]. The quantum mechanical equation for the electromagnetic

creation and annihilation operators may be presented in the following form:

dâ

dt
= − i

h̄

∂H

∂â†
. (6.7)

Strictly speaking, the right-hand side of this equation should involve functional deriva-

tive, rather than a partial one. However, in this case the two give the same result.

The propagation equation for the electromagnetic field amplitude E can be obtained

from Eq. (2.51) as a quasi-classical analogue of Eq. (6.7) [275]:

∂E

∂z
= 2πiN

ν

c

∂H

∂E∗ (6.8)
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where N is the density of the atoms in the cell, and ν is a carrier frequency of the

electromagnetic wave. Using Eq. (6.8) we derive equations of motion for the electro-

magnetic field amplitudes. For example,

∂Ω2−
∂z

= 2iκδΩ2−
℘2

a−b0

℘2

2|Ω1+|2|Ω1−|2|Ω2+|2 + |Ω2+|2|Ω1−|4
(|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2)2

(6.9)

where κ is the coupling constant with respect to the transition as a whole (i.e., γr

in Eq. (2.26) is now the total natural decay rate of the excited state F ′ = 1), and

℘2 = 4ν3γr/(3h̄c3) is the dipole moment of the transition.

The further calculations can be considerably simplified if the numerical val-

ues of the transition probabilities are used. Let us now consider the particular

case of the M part of the F = 2 → F = 1 transition. According to the tran-

sition probabilities, shown in Fig. 33c, we get |Ω2+|2/|Ω2−|2 = 6|E+|2/|E−|2 and

|Ω1+|2/|Ω1−|2 = |E+|2/6|E−|2. The interaction Hamiltonian (HM ' h̄λ̃M) for the

elliptically polarized laser field can therefore be rewritten as

HM ' 2h̄δ
|E−|4 − |E+|4

|E+|4 + |E−|4 + 6|E+|2|E−|2 (6.10)

and therefore

∂E±
∂z

= ∓8iπh̄δN
ν

c
E±|E∓|2 3(|E+|4 + |E−|4) + 2|E+|2|E−|2

(|E+|4 + |E−|4 + 6|E+|2|E−|2)2
. (6.11)

In what follows we derive the same equation using the more rigorous modified Schrödinger

formalism [282].

3. Solution based on the modified Schrödinger equations

The interaction described above of the four electromagnetic fields with the M energy

level configuration may be also studied using Schrödinger equations. This approach

enables us to find exact expressions for all the atomic observables when we can ignore
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spontaneous emission. The state vector of the atom can be written as:

|Ψ〉 = a+e−iνt|a+〉+ a−e−iνt|a−〉+ b0|b0〉+ b+|b+〉+ b−|b−〉 . (6.12)

Solving the Schrödinger equation

|Ψ̇〉 = − i

h̄
Ĥ|Ψ〉

for the interaction Hamiltonian Eq. (6.1), we obtain the following equations of motion

for the slowly-varying state amplitudes:

ȧ+ = iΩ1+b0 + iΩ1−b+ (6.13)

ȧ− = iΩ2+b− + iΩ2−b0 (6.14)

ḃ+ = 2iδb+ + iΩ∗
1−a+ (6.15)

ḃ− = −2iδb− + iΩ∗
2+a− (6.16)

ḃ0 = iΩ∗
1+a+ + iΩ∗

2−a− . (6.17)

In the steady state regime, this system has a nontrivial solution only for δ = 0.

The solutions for nonzero detunings correspond to zero amplitudes for all parameters.

Thus, to sustain steady state in the open system, external pumping is necessary. For

a small splitting between ground state levels h̄δ ¿ kT , where T is the temperature

of the vapor, we assume that in thermal equilibrium, i.e., in the absence of all fields,

all lower states |b±〉 and |b0〉 are equally populated. And, therefore, within the open-

system approach, we assume that the atoms are pumped into states |b+〉, |b−〉, or |b0〉
with equal probability from outside of the system. The corresponding rate can be

determined by the requirement that the total probability to find an atom in any of

the states is unity.

Unlike the density matrix approach, a straightforward introduction of incoherent
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pumping into the ground states of the system is impossible. It was shown by Fleis-

chhauer [282] in an elegant way that the effective density matrix equations for open

systems with injection rates into states and decays out of states can be written in

terms of stochastic complex state amplitudes.

Let us consider an effective density matrix equation for an atomic ensemble

undergoing a unitary interaction with some external fields or potentials. In addition,

decay out of atomic states |j〉 is taken into account with rates γj. Also injection

into certain states is considered with injection rates Rij. In our case the injection

occurs only into energy eigenstates of the atoms or incoherent mixtures of them,

so only diagonal elements of the matrix Rij are nonzero. If injection in a coherent

superposition states is considered, non-diagonal elements are also required to be taken

into account.

An effective density matrix equation has the following structure:

ρ̇ij(t) = Rij − γi + γj

2
ρjj − i

h̄

[
H, ρ

]
ij

(6.18)

where γi are decay rates out of the system, which can in general be different for

individual states. Generally, the pump rates Rij are time dependent, but for the sake

of simplicity we assume in the following that the rates Rij are constant.

Density matrix elements may be represented in terms of state amplitudes ρji =

c∗i cj . In order to put the pump term Rij in a similar form, we introduce a formal

Gaussian stochastic variable ri with the following properties:

〈ri〉 = 0 (6.19)

〈rirj〉 = 0 (6.20)

〈r∗i rj〉 = Rij . (6.21)
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This yields a set of amplitude equations with stochastic pump terms:

ċi = ri − γi

2
ci +

i

h̄
Hij cj . (6.22)

Since the amplitude equations are linear, their solution will be a linear functional of

the stochastic pump rates ri. Thus the averaging of bilinear quantities such as c∗i cj

required to obtain the density matrix elements can easily be performed. Generally,

solution cj of Eq. (6.22) no longer makes sense as the amplitude for the atomic wave

function. It only determines density matrix elements of the system.

To apply the above technique to our problem, we rewrite Eqs. (6.13)–(6.17) (with

time derivatives set equal to zero)

iΩ1+b0 + iΩ1−b+ = 0 (6.23)

iΩ2+b− + iΩ2−b0 = 0 (6.24)

2iδb+ + iΩ∗
1−a+ = ir+ (6.25)

−2iδb− + iΩ∗
2+a− = ir− (6.26)

iΩ∗
1+a+ + iΩ∗

2−a− = ir0 (6.27)

where the stochastic “pumping” is introduced

〈r±〉 = 〈r0〉 = 0 (6.28)

〈r±r∓〉 = 〈r±r0〉 = 0 (6.29)

〈r∗±r∓〉 = 〈r∗±r0〉 = 0 (6.30)

〈r∗±r±〉 = 〈r∗0r0〉 = r2 . (6.31)
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Solving Eqs. (6.23)–(6.27) with respect to a1, a2, b±, and b0 we get

b+ = −b0
Ω1+

Ω1−
, b− = −b0

Ω2−
Ω2+

(6.32)

b0 =
r+|Ω2+|2Ω1−Ω∗

1+ + r−|Ω1−|2Ω2+Ω∗
2− − r0|Ω1−|2|Ω2+|2

2δ (|Ω1+|2|Ω2+|2 − |Ω1−|2|Ω2−|2) (6.33)

a− =
r+Ω∗

1+Ω1−Ω2− + r−|Ω1+|2Ω2+ − r0|Ω1−|2Ω2−
|Ω1+|2|Ω2+|2 − |Ω1−|2|Ω2−|2 (6.34)

a+ = −r+|Ω2−|2Ω1− + r−Ω∗
2−Ω1+Ω2+ − r0|Ω2+|2Ω1+

|Ω1+|2|Ω2+|2 − |Ω1−|2|Ω2−|2 . (6.35)

Utilizing the normalization condition

〈a∗−a−〉+ 〈a∗+a+〉+ 〈b∗+b+〉+ 〈b∗−b−〉+ 〈b∗0b0〉 = 1 (6.36)

we get

r = 2δ
(
|Ω1+|2|Ω2+|2 − |Ω1−|2|Ω2−|2

)
/ (6.37)

{
(|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2)2+

4δ2
[
|Ω1+|2|Ω1−|2(|Ω1+|2 + |Ω2+|2)+

2(|Ω1+|4|Ω2+|2 + |Ω1−|4|Ω2−|2)
]}1/2

.

Using Eq. (6.37) we arrive at the complete solution of the problem which takes into

account all orders in δ. For δ = 0 the system is in a dark state and the density

matrix elements correspond to the elements generated by Eq. (6.3). For a nonzero

small two-photon detuning the populations and coherences for the ground state stay

approximately unchanged. The solution for the populations of the excited states are

ρa−a− = 4δ2 |Ω1+|2|Ω1−|2|Ω2−|2 + |Ω1+|4|Ω2+|2 + |Ω1−|4|Ω2−|2
(|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2)2

(6.38)

ρa+a+ = 4δ2 |Ω2+|2|Ω2−|2|Ω1+|2 + |Ω2+|4|Ω1+|2 + |Ω2−|4|Ω1−|2
(|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2)2

(6.39)
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and for the atomic polarizations are

ρa−b0 =
2δΩ2−(2|Ω1+|2|Ω1−|2|Ω2+|2 + |Ω2+|2|Ω1−|4)

(|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2)2
(6.40)

ρa+b0 = − 2δΩ1+(2|Ω1−|2|Ω2+|2|Ω2−|2 + |Ω1−|2|Ω2+|4)
(|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2)2

(6.41)

ρa−b− = − 2δΩ2+(2|Ω1+|2|Ω1−|2|Ω2−|2 + |Ω2−|2|Ω1−|4)
(|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2)2

(6.42)

ρa+b+ =
2δΩ1−(2|Ω1+|2|Ω2+|2|Ω2−|2 + |Ω1+|2|Ω2+|4)

(|Ω1−|2|Ω2+|2 + |Ω1+|2|Ω2+|2 + |Ω1−|2|Ω2−|2)2
. (6.43)

Here we kept only the lowest order terms in δ. In the expressions for the atomic

polarizations, the first term, containing the amplitude of all four optical fields (for

example, Ω1+|Ω1−|2|Ω2+|2|Ω2−|2 in the equation for ρa+b0), is due to the four-photon

coherence (hexadecapole moment), whereas the second term represents the effect of

optical pumping.

The propagation equation for the fields is

∂Ωij

∂z
= i

2πν

c
N

℘2
ij

h̄
ρij (6.44)

where the indexes ij show that the values are related to the same transition |i〉 → |j〉.
It is easy to see, for example, that the matrix element in Eq. (6.40) results in the

propagation equation in Eq. (6.9). The two approaches are therefore equivalent. The

equation of motion for the circularly polarized electromagnetic fields in E± are given

by the following expressions:

∂E+

∂z
= i

2πν

c
N (℘a−b−ρa−b− + ℘a+b0ρa+b0) (6.45)

∂E−
∂z

= i
2πν

c
N (℘a+b+ρa+b+ + ℘a−b0ρa−b0) . (6.46)

Substituting the expressions for atomic polarizations Eqs. (6.40)–(6.43) and using

the proper dipole moments for each transition (for the 87Rb they are equal 1/2 for
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|b±〉 → |a±〉, and 1/12 for |b0〉 → |a±〉 (Fig. 33c)), we obtain Eqs. (6.11).

So far we have made no assumption concerning the losses in the system. Gen-

erally, this requires solving the Bloch equations for the atomic populations and po-

larizations as is done for the Λ system. For the M scheme, however, this process is

rather involved even for the degenerate system (δ = 0). Since the dark state exists

for any value of Rabi frequency Ωij (Eq.(6.3)), it is always possible to transform the

basis of the atomic states so that there is one atomic level uncoupled from the laser

field. The M system can be represented as two independent open two-level systems,

connected only via relaxation processes [283]. The absorption in this systems has

properties similar to those of the Λ system: it is proportional to decay rate γ0 and

inversely proportional to the light intensity. The exact analytical expression for this

absorption is rather lengthy and is not given here.

B. Polarization rotation for the F = 2 → F ′ = 1 transition

To describe the polarization rotation on the F = 2 → F ′ = 1 transition we write

the interaction Hamiltonian as a balanced sum of the Hamiltonians for the M and Λ

systems, taking into account the branching ratio for the atomic transitions

H2→1 = ζ1HΛ + ζ2HM = ζ1h̄λ̃Λ + ζ2h̄λ̃M (6.47)

where ζ1 and ζ2 are weighting coefficients (ζ1 + ζ2 = 1) that describe the population

redistribution between the Λ and M schemes. Using the numerical simulation of this

system, we find them to be equal with very good accuracy. Using Eq. (6.8) we now
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derive the equation of motion for this system:

∂E±
∂z

= ∓4iπh̄δN
ν

c
E±

|E∓|2
(|E+|2 + |E−|2)2

[1+

2(|E+|2 + |E−|2)2 3(|E+|4 + |E−|4) + 2|E+|2|E−|2
(|E+|4 + |E−|4 + 6|E+|2|E−|2)2

]
. (6.48)

It is interesting to note that for linearly polarized light (|Ω+| = |Ω−|) the contributions

from Λ and M system are identical, and Eq. (6.48) coincides with Eq. (2.66) under

condition of zero coherence decay rate. This proves that a single Λ system may be

used for accurate description of the dispersive properties of more complicated level

configurations.

Let us introduce the electromagnetic field ellipticity parameter q such that the

amplitudes of the circularly polarized components are E± = |E|
√

(1± q) exp(iφ±)/
√

2.

Then Eq. (6.48) transforms to

∂E±
∂z

= ∓2iπh̄δN
ν

c

E±(1∓ q)

|E|2
[
1 + 2

2 + q2

(2− q)2

]
. (6.49)

Based of the results of our numerical simulation, we conclude that absorption of light

that interacts with the F = 2 → F ′ = 1 transition does not depend on the ellipticity

of the light. The light transmission through the cell can be described by an equation

similar to Eq.(2.71):

Iout = Iin

(
1− 2πh̄γ0NL

|E(0)|2
ν

c

)
. (6.50)

The rotation angle for the light polarization is then given by

φ =
δ

γ0

[
1 + 2

2 + q2

(2− q2)2

]
ln

Iin

Iout

(6.51)

where Iin and Iout are the intensities of the electromagnetic field at the entrance

and exit of the medium. The value of polarization rotation increases with the light
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ellipticity by the factor

φM+Λ

φΛ

=
1

2

(
1 + 2

2 + q2

(2− q2)2

)
(6.52)

compared to Λ system. Therefore NMOR on the F = 2 → F ′ = 1 transition may only

be properly described by a Λ configuration for linearly polarized light. The difference

between the M and Λ systems results from the hexadecapole moment induced in M

configuration.

C. NMOR in atoms with large values of angular momentum

Higher order coherence can be excited among Zeeman sublevels of alkali atoms with

F > 2. Here we find a perturbed dark state for the generalized M scheme consisting

of an arbitrary number of Λ-links, using the method described above. Then we apply

these results to evaluate the nonlinear Faraday rotation in the 85Rb F = 3 → F = 2

transition. We consider the scheme in Fig. 34. The interaction Hamiltonian for this

scheme is

Hn×Λ = −h̄δ
n∑

k=0

(n− 2k)|bk+1〉〈bk+1| (6.53)

+ h̄
n∑

k=1

(Ωk−|ak〉〈bk|+ Ωk+|ak〉〈bk+1|+ H.c.)

Here n is the number of Λ links, which connects n + 1 ground-state levels via n

excited states. There exists a dark state for this system for exact resonance (δ=0):

|D〉 =

n∑

k=0

(−1)k
k∏

j=1

Ωj−
n∏

l=k+1

Ωl+ |bk+1〉
√√√√

n∑

k=0

k∏

j=1

|Ωj−|2
n∏

l=k+1

|Ωl+|2
(6.54)

where we use a convention that
∏0

j=1 ≡
∏n

j=n+1 ≡ 1. We deduce the perturbed “dark
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Fig. 34. Generalized M interaction scheme. Here Ωi− = E−℘aibi
/h̄,

Ωi+ = E+℘aibi−1
/h̄.

state” eigenvalue for the Hamiltonian using the same procedure as we used before in

Eq. (6.54)

λ̃n×Λ ' δ

n∑

k=0

(2k − n)
k∏

i=1

|Ωi−|2
n∏

j=k+1

|Ωj+|2

n∑

k=0

k∏

i=1

|Ωi−|2
n∏

j=k+1

|Ωj+|2
. (6.55)

The equation of motion for the circularly polarized electromagnetic fields can be

found from Eq. (6.8). As an example, let us calculate the interaction Hamiltonian

for light interacting with the 5S1/2F = 3 → 5P1/2F
′ = 2 transition of 85Rb (Fig. 35).

The circularly polarized components of the resonant electromagnetic field form an M

scheme and a triple-Λ scheme. Using the proper values of the transition probabilities,

shown in the same Figure, we derive

H3→2 = 3h̄δ

[
2ζ1

|E−|4 − |E+|4
3|E+|4 + 3|E−|4 + 10|E+|2|E−|2 +

ζ2
|E−|6 + 5|E+|2|E−|4 − 5|E+|4|E−|2 − |E+|6
|E+|6 + 15|E−|2|E+|4 + 15|E−|4|E+|2 + |E−|6

]
(6.56)

(6.57)

Here again ζ1,2 are the coefficients reflecting the population distribution between the
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schemes. By differentiating the Hamiltonian it is easy to find the polarization rotation

in the system

∂φ

∂z
= −6iπN

ν

c

h̄δ

|E|2
[
2ζ1

4 + q2

(4− q2)2
+ ζ2

8− 6q2 + 3q4

(4− 3q2)2

]
. (6.58)

It is obvious that both interaction chains contribute to the elliptically dependent

NMOR. At the same time different orders of the nonlinear susceptibility are responsi-

ble for the polarization rotation: if in the case of the M scheme it is χ(3) nonlinearity,

for the triple-Λ scheme it is χ(5) nonlinearity, since there are 7 photons involved in

the creation of the ground-state coherence. This might be the reason why the triple-

Λ scheme shows more enhancement of the polarization rotation for nearly circular

polarization compared to the rotation of linear polarization than does the M scheme

(10 vs 20/9 times for the F = 3 → F ′ = 2 transition).

D. Experimental study of ellipticity-dependent MNOR in Rb vapor

There are two factors contributing to the rotation of the elliptical polarization of

light propagating through the Rb vapor: the nonlinear Faraday rotation, caused

by the shifts of the magnetic sublevels in an external magnetic field, and the self-

rotation caused by the ac-Stark shifts due to the off-resonant interaction of the electro-

magnetic field with far-detuned levels (see Chapter VII). Since the latter effect does

not depend on the magnetic field, we eliminate it from the experimental data either

by our measurement procedure or by direct subtraction. In all further discussions we

consider NMOR signals only.
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Fig. 35. Energy level scheme for 85Rb atoms. This scheme may be decomposed into a

superposition of a) M -system and b) triple-Λ system. Transition probabilities

are shown for each individual transition.
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1. The experiments with 87 Rb vapor

Let us first study the modification of the polarization rotation by measuring the

rotation rate dφ
dB

(B = 0) as a function of light ellipticity. We find the rotation rate

by modulating the magnetic field by a small amount and dividing the difference of

two rotation signals corresponding to the small variation of the magnetic field by the

magnitude of this variation. This way we detect only the rotation which depends on

the external magnetic field.

The rotation rate as a function light ellipticity is shown in Fig. 36. We observe a

polarization rotation enhancement as predicted theoretically. At the same time, the

experimental data cannot be fitted using Eq. (6.52) because of the Doppler broadening

of the transition and the ac-Stark of the magnetic sublevels. However, an exact

numerical simulation based on steady state solution of Maxwell-Bloch equations for

the F = 2 → F ′ = 1 transition, which takes into account these effects, is in excellent

agreement with the experimental data.

It is also possible to verify that there is no polarization rotation enhancement in

an isolated Λ system. To do that we tune the laser to the F = 1 → F ′ = 1 transition

of the 87Rb D1 line. In this case, the ground-state coherence is formed by only one

Λ link. The relative rotation rate for F = 1, 2 → F ′ = 1 transitions are presented

in Fig. 37. Although there is a slight dependence of the rotation angle on the light

ellipticity for the F = 1 → F ′ = 1 transition, this deterioration may be determined

by Doppler broadening, ac-Stark shifts, etc.

It is important to point out that even though the theoretical expression for

the relative rotation rate (Eq. (6.52)) does not fit the experimental data precisely,

it correctly predict some of the rotation properties. For example, our experiments

confirm that the relative rotation rate does not depend on the sign of the ellipticity
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Fig. 36. The normalized slope of the nonlinear magneto-optic rotation as a function

of the ellipticity of the incident light. Experimental data are shown for op-

posite values of ellipticity and two different values of laser power: P=2 mW

(hollow up triangles for positive ellipticity and hollow down triangles for neg-

ative ellipticity) and P=1 mW (solid up triangles for positive ellipticity and

solid down triangles for negative ellipticity). The results of the numerical

simulations for the case of 2 mW laser power are shown by a solid line. Abso-

lute values of the nonlinear Faraday rotation for the linear polarization were

dφ/dB(B = 0) = 4.5 rad/G and 6 rad/G for P=2 mW and P=1 mW respec-

tively.
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Fig. 37. The normalized slope of nonlinear magneto-optic rotation as a function of the

ellipticity of the incident light for the Λ scheme (transition F = 1 → F ′ = 1)

and M + Λ scheme (transition F = 2 → F ′ = 1). Dotted lines are to guide

the eyes. Input laser power is P=2 mW, the atomic densities are chosen to

provide 85% absorption on each transition. The absolute value of the nonlin-

ear Faraday rotation of linear polarization were dφ/dB(B = 0) = 1.8 rad/G

and 4.5 rad/G for the F = 1, 2 → F ′ = 1 transitions respectively.
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Fig. 38. The normalized slope of nonlinear magneto-optic rotation as a function of the

ellipticity of the incident light for two different beam diameters: d = 2 mm

(squares) and d = 10 mm (diamonds). In both cases the laser power is kept

at 2 mW. Absolute values of the nonlinear Faraday rotation for the linear

polarization were dφ/dB(B = 0) = 4.5 rad/G and 30 rad/G respectively.

(Fig. 36). If we vary the total laser power or the coherence decay rate γ0 (by varying

the laser beam diameter), the absolute value of the rotation changes according to

Eq. (6.51); its dependence on the light ellipticity is the same within the experimental

uncertainty (Figs. 36 and 38).

All previous data were obtained for optically thin Rb vapor (transmission is about

85%). The dependence of the relative rotation rate on the ellipticity for higher atomic

densities is shown in Fig. 39. It is easy to see that for nearly circular polarization

the rotation decreases as atomic density is increased. This may be caused by optical

pumping to the other ground state hyperfine levels, as well as by the destruction of
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atomic coherence by radiation trapping.

The precise value of the output ellipticity of the laser polarization is required

for accurate polarization rotation measurements (see Eq. (3.2)). The experimental

observations demonstrate that for optically thin media the ellipticity of the light does

not noticeably change due to propagation effects if the magnetic field is small. As the

atomic density increases, however, the ellipticity increases (Fig. 39b). Although this

change is relatively small (< 15%), the associated error in the calculated rotation is

very significant.

2. Polarization rotation of elliptically polarized light for large magnetic fields

Now let us consider the case of large magnetic fields. If the laser frequency is swept

across the atomic transition, the following effects contribute to the polarization rota-

tion: the nonlinear Faraday rotation due to the Λ-scheme (experimentally measured

for linear polarization), self-rotation of elliptical polarization due to ac-Stark shifts,

and the magneto-optic rotation of elliptical polarization due to M -scheme induced

coherence. All these components are shown in Fig. 40. It is important to point out

that this “new” rotation is comparable with the polarization rotation for the linear

polarization and the self-rotation, even though this effect is due to higher order non-

linearity. This proves the effectiveness of the M level scheme for the enhancement of

nonlinear susceptibility in atomic media.

The magnetic field dependence of the rotation due to the M -scheme ground-

state coherence reveals a very peculiar behavior. Although the polarization rotation

is independent of the sign of the ellipticity in the vicinity of zero magnetic field (as

it was demonstrated earlier), for larger magnetic fields the it becomes asymmetric

with respect to both magnetic field and ellipticity. To invert the sign of the rotation,

both the ellipticity and the magnetic field should change their signs (Fig. 41a). The
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Fig. 39. (a) The normalized slope of nonlinear magneto-optic rotation as a function

of the ellipticity of the incident light for various atomic densities. Laser power

is 2 mW, beam diameter d = 2 mm. Inset: Absolute value of the nonlinear

Faraday rotation of linear polarization as a function of atomic density. (b)

The output ellipticity ε as a function of the ellipticity of the incident light

for various atomic densities. Dotted line is for unchanged ellipticity. Inset:

Transmission Iout/Iin of linear polarization as a function of atomic density.
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nation of the cell with 85Rb isotope.
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ellipticity of the outgoing light also changes with the magnetic field; although it is

equal to the initial ellipticity for small magnetic fields (at least for optically thin

samples), it grows symmetrically when the magnetic field becomes larger (Fig. 41a).

These changes must to be taken into account when the polarization rotation angle is

measured.

3. NMOR for atoms with higher angular momentum

As discussed in Sec. II, higher orders of nonlinear susceptibility may be enhanced in

multi-Λ systems. In practice this means that atoms with larger ground state angular

momentum are required. The most convenient candidate for the study of the higher

orders of Zeeman coherence is the 85Rb isotope, since the same laser may be used as for

our previous study of 87Rb. In our experiments we use the 5S5/2F = 3 → 5P3/2F
′ = 2

of 85Rb. The interaction scheme of elliptically polarized light with this transition

consists of an M scheme and a triple-Λ scheme.

The relative rotation rate for this transition as a function of the light ellipticity

is shown in Fig. 42. The polarization rotation enhancement, observed in this case is

noticeably smaller than for 87Rb. The reason for this may be the smaller hyperfine

splitting of the excited state (362 MHz vs 812 MHz for 87Rb), which is completely

overlapped by the Doppler broadening (∆Doppler ≈ 500 MHz). This overlap results in

efficient “mixing” of the coherences induced through different excited states, which

may significantly change the properties of the system. That is why it would be very

interesting to measure the rotation due to high order coherence, discussed above, in a

cloud of cold atoms. In this case we expect to see a much stronger effect (Eq. (6.58)),

since all problems caused by the overlapping transitions due to the motion of the

atoms would be eliminated in cold gas.

The spectral dependence of the rotation of the elliptical polarization on laser



122

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.40

0.45

0.50

O
ut

pu
t e

lli
pt

ic
ity

, r
ad

Magnetic field, G

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.2

-0.1

0.0

0.1

0.2

 ε=+0.45 rad
 ε=-0.45 rad

R
o

ta
tio

n
 a

n
g

le
, 

ra
d

Magnetic field, G

(a)

(b)
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isotopes, from Eqs. (6.51) and (6.58).
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Fig. 43. The polarization rotation angle in 85Rb as a function of laser detuning for

ellipticity ε = 25o and magnetic field B = 0.35G. The components of the

rotation due to various processes are also shown. Zero detuning corresponds

to the cross-resonance F = 3 → F ′ = 2.3 transition. The distortions of the

resonances are due to reflected light beam.

frequency for the case of large magnetic field is shown in Fig. 43. Similarly to the

87Rb, the high-order Zeeman coherence significantly modifies the rotation spectra,

and the contribution of the nonlinear rotation is comparable with the rotation of the

linear polarization and self-rotation.

One can see additional sub-Doppler structure on top of the rotation resonances.

These peaks appears due to the retro-reflection of the laser beam inside the atomic

cell. This additional beam interacts with atoms and causes the redistribution of the

atomic population similar to Doppler-free saturation spectroscopy.

As a conclusion, we have studied the nonlinear magneto-optic rotation of ellipti-
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cally polarized light interacting with various transitions of rubidium atoms. We have

shown that this rotation can be described by means of Λ, M , and higher chain Λ

schemes. For the simple three-level Λ scheme, the rotation does not depend on the

light ellipticity. For more complicated systems, multi-photon processes are respon-

sible for the creation of high-order ground-state coherence resulting in a new type

of ellipticity-dependent nonlinear magneto-optical rotation. We have derived simple

analytical expressions for this rotation for the M interaction scheme (Eq. (6.51)) and

we showed that this effect results from the coherently induced hexadecapole moment.

To verify our theoretical calculations, we have studied the polarization rotation

of elliptically polarized laser light propagating through Rb vapor. The M interaction

scheme is realized on the F = 2 → F ′ = 1 transition of 87Rb, and the triple-Λ scheme

is observed on the F = 3 → F ′ = 2 transition of 87Rb. Although the experimental

points cannot be fit perfectly by the theoretical expressions (Eqs. (2.70) and (6.51)),

the basic properties of the new rotation are confirmed.
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CHAPTER VII

SELF-ROTATION OF THE ELLIPTICAL POLARIZATION AND ITS

APPLICATION FOR THE GENERATION OF SQUEEZED VACUUM

Self-rotation of elliptically polarized light is a well-known nonlinear optical phenomena

[21, 285–287]. This effect can be caused by Kerr nonlinearity in solids and liquids

[288, 289], optical pumping and ac-Stark shifts in atomic vapors [124, 290–294], and

other mechanisms.

Polarization self-rotation in coherent atomic media may be explained as follows.

Two circular components of an elliptically polarized electromagnetic wave optically

pump the atoms into a coherent superposition of ground-state magnetic sublevels.

Since this superposition state is associated with steep dispersion, even small shifts

of the magnetic sublevels result in a large shift in the refractive indices for the two

circular components. Another manifestation of this effect results in large rotation

of linear polarization in the presence of an external magnetic field, discussed earlier.

However, the degeneracy of the ground-state magnetic sublevels may be lifted even

in the absence of the external magnetic field because of the ac-Stark shifts. Since

the value of the shift is proportional to the intensity of the electromagnetic field, the

difference in the intensities of the circularly polarized components of the elliptically

polarized laser field result in the different light shifts of the different magnetic sub-

levels, proportional to the light ellipticity, and, therefor, in the different refractive

indices for these components. Thus, after traversing the atomic cell the polarization

ellipse is rotated at an angle, proportional to its ellipticity.

It should be emphasized that the self-rotation of the elliptical polarization is

completely different from the ellipticity-dependent NMOR, considered in Chapter

VI. This effect is determined solely by the ellipticity of the electromagnetic field, and
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exists without any external magnetic or electric fields.

In this Chapter we first develop the phenomenological description of the self-

rotation in two interaction pictures, corresponding to the Rb atoms for different

interaction regimes. If the laser intensity is relatively low, so that the Rabi frequency

is much smaller than the hyperfine splitting of the excited levels, the rotation of the

elliptical polarization is well described by double-Λ scheme, whereas the X scheme

corresponds to the case then the hyperfine structure is completely overlapped by

power broadening.

Then we present the results of the experimental study of the ac-Stark shifts and

self-rotation in hot Rb vapor. First, we measure the modification of the EIT resonance

observed in elliptically polarized light. These measurements allow us to include the

information about actual level structure of the Rb atoms to the simplified theory.

Then we study the self-rotation of elliptically polarized light in both Rb isotopes

for different experimental conditions, such as laser frequency and intensity, atomic

density, etc.

Finally, we demonstrate that the large self-rotation can be used for effective gen-

eration of nonclassical states of light, such as squeezed vacuum. The exact numerical

simulation, made for Rb atoms, supports this idea.

A. Theory of self-rotation of the elliptical polarization

1. Double-Λ level configuration

Let us study the propagation of an elliptically polarized electromagnetic wave in a

medium consisting of double-Λ atoms (see Fig. 44). We treat the wave as a superposi-

tion of two circularly polarized components. These left- and right-circularly polarized

components interact with transitions |b−〉 → |a1,2〉 and |b+〉 → |a1,2〉 respectively, and
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Fig. 44. Atoms in a double-Λ configuration interacting with two circularly polarized

fields E+ and E−. Field E± is resonant with transitions a1 → b∓ and

off-resonant with transitions a2 → b∓. The splitting between a1 and a2 is

∆. We assume that the angular matrix elements, and consequently the Rabi

frequencies, of the a2 → b+ and a2 → b− transitions have opposite sign, as for

the 87Rb D1 line.

has Rabi frequencies Ω1− = Ω2− = Ω+ and −Ω1+ = Ω2+ = Ω−1. We assume that the

electromagnetic wave is resonant with transitions |b±〉 ↔ |a1〉 and has large detuning

∆ from transitions |b±〉 ↔ |a2〉. Then the coherence between ground state levels

|b+〉 and |b−〉 is mainly determined by the resonant interaction. The off-resonant

interaction introduces a slight change in the coherence only. We also assume that

the ground state levels are nearly degenerate so that the circularly-polarized compo-

nents of the electromagnetic wave are nearly two-photon resonant with transitions

|b+〉 ↔ |a1,2〉 ↔ |b−〉.

1Here and in all following equations we use the notation ± referring to the levels
|b±〉, and 1, 2 referring to the levels |a1,2〉.
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To describe the interaction of the atoms and the electromagnetic wave we use

Bloch equations. Equations for the atomic polarizations are:

ρ̇1+ = −Γ1+ρ1+ + iΩ−(ρ++ − ρ11)− iΩ+ρ−+ + iΩ−ρ12, (7.1)

ρ̇2+ = −Γ2+ρ2+ − iΩ−(ρ++ − ρ22)− iΩ+ρ−+ − iΩ−ρ21, (7.2)

ρ̇1− = −Γ1−ρ1− − iΩ+(ρ−− − ρ11) + iΩ−ρ+− + iΩ+ρ12, (7.3)

ρ̇2− = −Γ2−ρ2− − iΩ+(ρ−− − ρ22)− iΩ−ρ+− + iΩ+ρ21, (7.4)

where

Γ1+ = Γ1− = γ, Γ2+ = Γ2− = γ + i∆, (7.5)

where γ is the natural decay rate, and γ0 is the decay rate of the ground-state coher-

ence. We assume here that there is no radiative decay of the ground state, but only

a decay without population exchange.

The populations of the ground-state levels and low-frequency atomic coherences

obey the equations:

ρ̇−− = γ(ρ11 + ρ22) + i [Ω+(ρ−1 + ρ−2)− c.c.] , (7.6)

ρ̇++ = γ(ρ11 + ρ22) + i [Ω−(ρ+2 − ρ+1)− c.c.] , (7.7)

ρ̇11 = −2γρ11 + i(Ω−ρ+1 − Ω+ρ−1 − c.c.), (7.8)

ρ̇22 = −2γρ22 − i(Ω−ρ+2 + Ω+ρ−2 − c.c.), (7.9)

ρ11 + ρ22 + ρ++ + ρ−− = 1; (7.10)

and

ρ̇−+ = −Γ−+ρ−+ − iΩ∗
+(ρ1+ + ρ2+)− iΩ−(ρ−1 − ρ−2), (7.11)

ρ̇12 = −Γ12ρ12 − i(Ω+ρ−2 − Ω−ρ+2 − Ω∗
−ρ1+ − Ω∗

+ρ1−), (7.12)
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respectively. Here

Γ+− = 2γ0 − iδ, Γ12 = 2γ − i∆. (7.13)

δ is the two-photon detuning caused by small shifts of the ground-state levels (for

example, due to an external magnetic field).

The equations for the atomic polarizations can be rewritten in the steady state,

assuming ρ11 = ρ22 = ρ12 = 0,

ρ1+ ≈ i
Ω−
Γ1+

ρ++ − i
Ω+

Γ1+

ρ−+, (7.14)

ρ2+ ≈ −i
Ω−
Γ2+

ρ++ − i
Ω+

Γ2+

ρ−+, (7.15)

ρ1− ≈ −i
Ω+

Γ1−
ρ−− + i

Ω−
Γ1−

ρ+−, (7.16)

ρ2− ≈ −i
Ω+

Γ2−
ρ−− − i

Ω−
Γ2−

ρ+−. (7.17)

Then for the low frequency ground state atomic coherence we derive

ρ−+ =
Ω∗

+Ω−
γ(2γ0 − iδ) + |Ω|2 − 2i

γ

∆

Ω∗
+Ω−
|Ω|2

|Ω+|2 − |Ω−|2
|Ω|2 (7.18)

where |Ω|2 = |Ω+|2 + |Ω−|2. We assume here that ρ±± ≈ ρ
(Λ)
±± = |Ω±|2/|Ω|2 (this

directly follows from the equations for the populations). Here the first r.h.s. term

describes the dark state coherence which appears due to the resonant fields, and the

second term appears due to AC-Stark shifts which serve to modify the coherence.

Using the expressions for ground state populations and the coherence, we can

calculate the polarizations

ρ1− ≈ Ω−|Ω+|2
|Ω|4

(
2iγ0 + δ + 2

|Ω+|2 − |Ω−|2
∆

)
, (7.19)

ρ1+ ≈ −Ω+|Ω−|2
|Ω|4

(
2iγ0 − δ + 2

|Ω+|2 − |Ω−|2
∆

)
, (7.20)
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ρ2− ≈ −2Ω−|Ω+|2
∆|Ω|2 , (7.21)

ρ2+ ≈ −2Ω+|Ω−|2
∆|Ω|2 , (7.22)

The stationary propagation of the right and left circularly polarized electric field

components through the atomic vapor is described by Eq.(2.12). Using the above

expressions for the atomic polarizations we derive equations describing the circularly

polarized electromagnetic fields propagation through the cell:

∂

∂z
Ω+ ≈ −2κΩ+

|Ω−|2
|Ω|4

(
γ0 + 2i

|Ω−|2
∆

)
(7.23)

∂

∂z
Ω− ≈ −2κΩ−

|Ω+|2
|Ω|4

(
γ0 + 2i

|Ω+|2
∆

)
. (7.24)

where |Ω|2 = |Ω+|2 + |Ω−|2, and κ is the coupling constant, given by Eq.(2.26).

In order to evaluate the absorption and self-rotation parameters, we need to sep-

arate the real and imaginary parts of the circular components. Using Ω± = |Ω±| eiφ± ,

we can rewrite Eqs. (7.23) and (7.24) for the total Rabi frequency |Ω|2 and the self-

rotation angle φsr = 1
2
(φ+ − φ−)

∂

∂z
|Ω|2 = −8κγ0

|Ω+|2|Ω−|2
|Ω|4 ≈ −2κγ0 (7.25)

∂

∂z
φsr =

κ

∆

|Ω+|4 − |Ω−|4
|Ω|4 ≈ 2κ

∆
ε (7.26)

where we used the definition for the ellipticity ε

ε =
1

2
arcsin

|E+|2 − |E−|2
|E+|2 + |E−|2 ≈

1

2

( |Ω+|2 − |Ω−|2
|Ω|2

)
. (7.27)

In this, we have assumed that the light is nearly linearly polarized (1 À ε), and that its

ellipticity does not change while propagating through the medium. Equations (7.25)
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and (7.26) have the simple solution:

|Ω(z)|2 ' |Ω(0)|2
(

1− 2κγ0

|Ω(0)|2 z

)
(7.28)

φsr ' 2κ

∆
εz (7.29)

where Ω(0) is the total Rabi frequency at the entrance of the medium. One can

easily see that the expression for the transmitted light coincide with the analogous

expression Eq.(2.69) for a single Λ scheme. This directly follows from the assumption

that the off-resonance interaction with level a2 does not disturb the dark state and

causes no additional absorption. At the same time it is easy to see that the self-

rotation appears only because of the additional level, and it is disappears for ∆ →∞.

For the further analysis it is convenient to introduce the self-rotation coef-

ficient g defined as φsr = gεL, and the absorption coefficient α such as Iout =

Iin (1− αL). These parameters for the double-Λ interaction scheme can be estimated

using Eqs. (7.28) and (7.29)

g = 2
κ

∆
(7.30)

α = 2
κγ0

|Ω(0)|2 . (7.31)

2. X level configuration

In the previous section we restricted ourselves to the case of a far-detuned sublevel

of the excited state. The analysis of Eq.( 7.31) shows that higher laser power leads

to smaller optical losses, which is obviously beneficial for any practical application of

self-rotation. At the same time, as the laser power grows, the interaction with both

hyperfine sublevels becomes equally important, and the previously developed model

cannot be applied anymore.

Now let us consider the case when the hyperfine structure of atoms can be ne-
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Fig. 45. Atoms in an X configuration interacting with two circularly polarized fields

E+ and E−.

glected. This situation may be realized, for example, in atomic cells with high buffer

gas pressure, where the collisional broadening surpasses the hyperfine splitting [290].

This regime can also be achieved for very high laser intensity, so that |Ω| À ∆hf .

Let us consider open system as shown in Fig. 45. This scheme consists of two

independent two-level systems coupled by the population decay. The Bloch equations

for non-zero density matrix elements for this system are:

ρ̇a±a± = −(γ + γ1)ρa±a± + i
(
Ω±ρb∓a± − Ω∗

±ρa±b∓
)

(7.32)

ρ̇b±b± = −γ0(ρb±b± − 1

2
) + γρa±a± + γ1ρa∓a∓ + i

(
Ω∗
∓ρa∓b± − Ω∓ρb±a∓

)
(7.33)

ρ̇a±b∓ = −
(

γ + γ1

2
+ γ0 + i∆

)
ρa±b∓ − iΩ±(ρa±a± − ρb∓b∓), (7.34)

where γ and γ1 are the decay rates of the excited states (correspondingly a± → b±

and a± → b∓), and γ0 is the ground-state population decay rate. It is easy to see
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that if
∑

ρii(t = 0) = 1 than
∑

ρii(t) = 1 for this open system. For simplicity let us

introduce the following notation:

Γab =
γ + γ1

2
+ γ0 (7.35)

Γa = γ + γ1 (7.36)

Solving Eqs.(7.32)-(7.34) for the steady state regime one can obtain expressions

for ρa±a±, ρa±b∓ and ρb±b±:

ρa±a± =
2Γab|Ω±|2

Γa(Γ2
ab + ∆2) + 2Γab|Ω±|2ρb∓b∓ (7.37)

ρa±b∓ = iΩ±
Γa(Γab − i∆)

Γa(Γ2
ab + ∆2) + 2Γab|Ω±|2ρb∓b∓ (7.38)

ρb±b± =
1

2

(γ0Γa∆
2 + 2Γ(2γ0 + γ)|Ω±|2)(Γa(Γ

2
ab + ∆2) + 2Γab|Ω∓|2)

Γa∆2(γ0Γa∆2 + 2Γ(2γ0 + γ)|Ω|2) + 4Γ2
ab(γ0 + γ)|Ω|4 (7.39)

where |Ω|2 = |Ω+|2 + |Ω−|2. These expressions can be significantly simplified under

some realistic assumptions. First, we assume that the decay rates of the excited

levels is the same for all channels, i.e. γ = γ1 = Γa/2. Second, we consider the

case of strong electro-magnetic field, so that |Ω| À Γa. We also consider the usual

experimental conditions γ0 ¿ Γa, so Γab ' Γa/2. In this case we can write the

propagation equations for circular components of the electromagnetic field in the

following form:

∂

∂z
Ω± = iκρa±b∓ = −1

2
κΩ±(

Γa

2
− i∆)

γ0∆
2 + 2Γa|Ω±|2

(∆2 + |Ω|2)(γ0∆2 + Γa|Ω|2) (7.40)

Using this equation we can find the absorption and self-rotation coefficients by pre-

senting the complex Rabi frequencies as Ω± = |Ω±|eiφ± . We also restrict ourselves to

the case of nearly linearly polarized light, i.e. |Ω±|2 = |Ω|2(1± 2ε)/2, ε ¿ 1. In this
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case the field intensity and the polarization rotation angle are

∂

∂z
|Ω|2 = −1

2
κ|Ω|2 Γa

∆2 + |Ω|2 (7.41)

∂

∂z
φsr = 2κq

Γa∆|Ω|2
(∆2 + |Ω|2)(γ0∆2 + Γa|Ω|2) (7.42)

where the rotation angle of elliptical polarization is φsr = (φ+ − φ−)/2. Using our

definitions for the absorption and self-rotation coefficients we find:

g = κ
Γa∆|Ω|2

(∆2 + |Ω|2)(γ0∆2 + Γa|Ω|2) . (7.43)

α = κ
Γa

∆2 + |Ω|2 (7.44)

B. The influence of ac-Stark shifts on EIT resonance

We already demonstrated in the previous Chapter that the more complicated mag-

netic structure of Rb atoms lead to the modification of the polarization rotation

compare to a simple Λ scheme. This raises the question of the applicability of any

simplified interaction pictures for the explanation of the polarization self-rotation.

For example, the 5S1/2F = 2 → 5P1/2F
′ = 1, 2 transition of 87Rb consists of 14

transitions between different Zeeman sublevels with different probabilities. The sit-

uation is even worse in 85Rb which has higher ground-state angular momentum and

richer magnetic structure. The exact solution of the problem of the propagation of

elliptically polarized light through such an atomic medium is practically impossible.

However, there is a simple way to study how the Zeeman structure can be taken

into account for the ac-Stark effect. Early studies of the interaction of the circularly or

elliptically polarized electro-magnetic field with far-detuned transitions [21, 286, 287]

demonstrated, that above all the light shifts lift the degeneracy of the Zeeman sub-

levels the same way as a magnetic field does. This means that the maximum trans-
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mission, which corresponds to the zero two-photon detuning between the circularly

polarized components, is observed for the value of magnetic field which cancels the

level splitting caused by the ac-Stark shifts.

Assuming that the absorption in the system and the polarization ellipticity are

small, the two-photon detuning due to the ac-Stark shifts in the case of a four-level

scheme, as shown in Fig. 44, is [124,292]:

δEIT =
|Ω+(0)|2 − |Ω−(0)|2

∆
. (7.45)

For more complicated atomic systems we need to replace the actual hyperfine splitting

between upper levels by some effective detuning ∆0, which depends on the dipole

momenta of the driven and perturbing transitions as well as on the structure of the

atomic levels. It is important to stress, that in any case the value of two-photon

detuning, induced by the light shifts, depends only on the initial intensities of two

circular components, which makes it ideal for the experimental measurement of ∆0.

As shown below, the validity of Eq.(7.45) directly follows from numerical simu-

lations as well as from the experiment. To measure δEIT the absorption of elliptically

polarized light in the atomic cell is detected, and the value of magnetic field corre-

sponding to the maximum of transmitted intensity is recorded. In these experiments

we use the cell containing isotopically pure 87Rb and 30 torr of Ne. We use the cell

with maximum available buffer gas pressure in order to obtain the narrowest EIT

resonances, since the value of the level shift is much smaller than the width of the

EIT peak. We also perform a detailed numerical simulation of the modification of

the EIT signal. The stationary propagation of the right and left circular polarized

electric field components through the atomic vapor is described by Maxwell-Bloch

equations in the slowly-varying amplitude and phase approximation. We then solve

these equations for the thirteen-level scheme corresponding to the Zeeman structure of



137

0.00 0.05 0.10 0.15 0.20

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

(4)

(3)

(2)

(1)

δ E
IT

 ,
 m

G

(|Ω+|2-|Ω-|
2)/|Ω|2

Fig. 46. Position of the EIT resonance (in terms of longitudinal magnetic field B) as a

function of the degree of the incoming light ellipticity. Experimental data are

shown as dots and theoretical results are shown as lines. Curves (1) and (4)

correspond to the transitions F = 2 → F ′ = 1′ and F = 2 → F ′ = 2′, with

intensity 1.1 mW/cm2; curves (2) and (3) correspond to the same transitions

and intensity 0.54 mW/cm2. The measured values of the intensities are 1.2

and 0.6 mW/cm2.

the 5S1/2F = 2 → 5P1/2F
′ = 1, 2 Rb transition, taking into account the propagation

effects and Doppler averaging. We find that the results of the numerical simulation

are well modelled by Eq.(7.45).

The results of the measurement and numerical simulation are shown in Fig. 46.

The dependence of the position of the dark resonance is almost linear for small values

of ellipticity. The slopes of the curves are proportional to the light intensity and the

sign of their slope depends on the tuning of the laser. This allows us to conclude

that Eq.(7.45) gives a correct description of the effect for the real atomic system in

the case when laser is tuned near resonance with one of the hyperfine transitions.
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Fig. 47. Position of the EIT resonance (in terms of longitudinal magnetic field B) for

the transition F = 2 → F ′ = 1′ for various densities N of Rb vapor. Laser

intensity is 1.1 mW/cm2.

The numerical model is in good agreement with the experiment. Possible systematic

errors can appear due to imperfections in the quality of the laser beam which prevents

an exact knowledge of the Rabi frequencies.

We also verify Eq.(7.45) by detecting δEIT for different atomic densities. The

theory predicts that there should be no dependence of the resonance position. The

experimental data, presented in Fig. 47 support this fact. The shift is quite constant

for comparable low densities and starts to decrease for higher densities. A “thresh-

old” density, when the deviation from the theory becomes clear, corresponds to the

low transmission for which the validity of our approximations is doubtful. For the

particular cell this threshold is about 1.7× 1012 cm−3.

Since the ac-Stark effect is not a coherent phenomena, the induced two-photon

detuning should not depend on the coherent properties of the medium. To check this,
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Fig. 48. Position of the EIT resonance (in terms of longitudinal magnetic field B) for

the transition F = 2 → F ′ = 1′ for the Rb cell with 30 Torr of Ne buffer gas

and the one without buffer gas. Laser intensity is 1.1 mW/cm2.

we make an additional measurements of the EIT resonance position in a cell without

buffer gas. Although the coherence decay rates for these two cells are several order

of magnitude different, the dependence of the δEIT on the light ellipticity parameter

(|Ω+|2 − |Ω−|2)/|Ω|2 are essentially the same (see Fig. 48).

It is important to mention that the effective detuning ∆0 calculated using the

experimental data is about 5 GHz, which is almost seven times larger than the actual

hyperfine splitting of the 52P1/2 state (∆hf = 812MHz). The numerical simulation

shows that this difference results from the complex structure of the Zeeman sublevels

of the system.
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Fig. 49. Large self-rotation of elliptical polarization of the light propagating through

vapor of 87Rb vs laser detuning. Zero detuning corresponds to the

F = 2 → F ′ = 1 transition. Two small peaks on the right are due to

the contamination of the cell with small amount of 85Rb.

C. Experimental results

1. Large self-rotation

As in the case of the nonlinear Faraday rotation, the self-rotation of elliptical po-

larization should be enhanced with the density of atomic vapor. We are able to

measure maximum polarization self-rotation of almost two radians in 87Rb (see in

Fig. 49). For this measurement, the laser power is 2 mW and the laser was tuned

to the 5S1/2, F = 2 → 5P1/2, F
′ = 1, 2 atomic transition (D1 line). The ellipticity

of the incident light was about ε = 0.5 rad. It is interesting to note that this value

of SR is comparable with the large nonlinear Faraday rotation detected in similar

experimental conditions (Fig. 11, [126]). One would expect to observe even higher
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value of the self-rotation for the D2 line; unfortunately, an appropriate laser was not

available on the time of these measurements.

2. Self-rotation on the Rb D1 line

We first study the self-rotation on the D1 line of 87Rb. Although this line consists

of two pairs of partially resolved resonant transitions, we focus our attention on the

F = 2 → F ′ = 1, 2 transition, since there is no ground-state coherence formed for

the F = 1 → F ′ = 2 transition [34, 35]. For the F = 2 → F ′ = 1, 2 transition,

the magnetic sublevels of the ground state are connected with Λ-like links formed by

the two circularly polarized components of the elliptically polarized laser field. If the

laser frequency is resonant with one transition, for example F = 2 → F ′ = 1, the

self-rotation of the polarization ellipse is determined by the interaction of the laser

with the other transition formed by the same ground state hyperfine level F = 2 and

the other hyperfine level of the excited state F ′ = 2. Furthermore, the polarization is

rotated in opposite directions for light tuned to the F = 2→F ′ = 1 and F = 2→F ′ =

2 transitions (Fig. 50). Since the oscillator strengths of both these transitions are

almost equal, the amplitudes of the self-rotation are nearly the same.

From Figs. 49 and 50 it is obvious that the self-rotation angle increases signifi-

cantly in optically thick media. The value of the self-rotation coefficient g is nearly

proportional to the density of atomic vapor, (shown in Fig. 51) which is consistent

with the theory Eq.(7.30). At the same time the absorption is a linear function of

atomic density, as is expected for the regime of electromagnetically induced trans-

parency considered here (Eq.(7.28)). There is, however, a deviation from the linear

behavior. For very high atomic density, we see a “saturation” of the self-rotation.

This is because the intensity of the laser beam changes along the cell. As the absorp-

tion increases, the intensity of the light near the end of the cell may diminish to the
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Fig. 50. The self-rotation angle for the F = 2→F ′ transition of the 87Rb D1 line of

as a function of laser frequency for different atomic densities. Zero detuning

corresponds to the F = 2 → F ′ = 1 transition. Laser power is P = 5 mW.

Ellipticity of the beam is ε = 0.035 rad.
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Fig. 51. Self-rotation parameter gL and transmission Iout/Iin measured as functions

of atomic density for the 87Rb D1 line. Laser power is 5 mW. Ellipticity of

the beam is ε = 0.035 rad.

point where it is no longer enough to provide optical pumping into the dark state,

meaning we no longer reach the regime of electromagnetically induced transparency.

To decrease losses in optically dense media, we must use enough laser power to

provide efficient optical pumping into a dark state. Fig. 52 shows how the self-rotation

and absorption depend on laser power. This behavior of the self-rotation is not

described by Eq.(7.30). In fact, the double-Λ configuration predicts the self-rotation

to be independent of the laser intensity. In our experiment, though, higher power

leads to smaller absorption and higher self-rotation. At the same time, the power

dependence of g is not linear, and it is plausible that it becomes flat for higher laser
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Fig. 52. Self-rotation parameter gL and absorption coefficient αL = 1− Iout/Iin mea-

sured as functions of laser intensity for the 87Rb D1 line. Atomic density is

N = 8.2×1011cm−3. Ellipticity of the beam is ε = 0.035 rad.

power, where the conditions for EIT are obeyed for all Doppler-broadened spectra.

We now consider self-rotation in 85Rb. A simple picture of self-rotation leads one

to the conclusion that the effect should be stronger in 85Rb than in 87Rb. Indeed,

the ac-Stark shift of Zeeman sublevels that results in polarization self-rotation is

inversely proportional to the detuning from the corresponding off-resonant atomic

transitions (Eq.(7.30)). The hyperfine splitting of the excited level for 85Rb is, in

turn, almost twice as small as the splitting for 87Rb. Therefore, it seems that 85Rb

should demonstrate stronger self-rotation than 87Rb.

Our experiment shows that this simple picture is incomplete. By comparing the

self-rotation parameters for both 85Rb and 87Rb D1 lines, (see Figs. 51 and 53), we
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Fig. 53. Self-rotation parameter gL and transmission Iout/Iin for the 85Rb D1 line as

functions of atomic density. The laser power is 5 mW.
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see higher self-rotation in 87Rb. The absorption, however, is almost the same for

both isotopes. We can understand this result by noting that the transitions between

different magnetic sublevels have different strengths that have to be taken into ac-

count, as discussed in the previous Section. Our experiments suggest that the more

complicated sublevel structure an atom has, the more important is the dependence

of the self-rotation effect on the structure, and this effect is usually destructive.

3. Self-rotation on the Rb D2 line

Previous studies have shown [293,294] that the self-rotation of light tuned to the Rb

D2 line is stronger than when tuned to the D1 line.

We first discuss the experimental results for 87Rb. Results for measurement of

the angle of self-rotation on the transition F = 1 → F ′ are shown in Fig. 54. As

one can see, the shape of the rotation curve is different from the D1 line, since the

excited state 5P3/2 consists of four hyperfine sublevels. In this case the laser interacts

with three allowed transitions F = 1 → F ′ = 0, 1, 2 of different strengths, which

results in the highly asymmetric dependence of the self-rotation angle on the laser

detuning. Maximum self-rotation is observed for laser tuning about half way between

the F = 1 → F ′ = 0 and F = 1 → F ′ = 2 transitions. The important feature of the

effect is that the optimum frequency does not change with laser power or/and atomic

density. With this in mind, the laser is tuned to this frequency for further studies of

the self-rotation on this line. 2

The dependence of the self-rotation parameter g on atomic density is shown in

2The sub-Doppler structure observed for the self-rotation angle (Figs. 54 and 57) is
apparently caused by reflections of the laser beam from the inner walls of the atomic
cell. This reflected light redistributes the population of the sublevels, resulting in
Doppler-free resonances and thus changes the self-rotation. This effect must be taken
into account for all cells, since it is very difficult to avoid the retro-reflection.
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Fig. 54. The angle of self-rotation measured on the F = 1 → F ′ transition of the 87Rb

D2 line as a function of laser detuning. Zero detuning is chosen to coincide

with the center of absorption line. Laser power is P = 5 mW, ellipticity of

the beam is ε = 0.035 rad.
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Fig. 55. The experimental points are very well fit by a straight line except at very

high optical density. At the same time, our experimental results demonstrate that

the nonlinearity increases with laser intensity for fixed value of absorption (Fig. 56).

This gives us hope that the optical losses may be reduced with significantly higher

laser intensity while keeping nonlinearity will at a high level. However, unlike the case

for the D1 line, increasing laser intensity results in a reduction of the self-rotation.

There are several reasons for this: first, atoms are optically pumped to the other

hyperfine component of the ground state, which corresponds to an effective decrease

in the number of atoms interacting with the light. This problem can be solved ex-

perimentally by adding an incoherent re-pumping laser from the ground level F = 2.

Another reason may be the influence of the F = 1 → F ′ = 2 transition, for which no

ground-state coherence is created.

In previous studies [294] we have measured the angle of self-rotation for the

F = 2 → F ′ transition of the 87Rb D2 line. The average angle of self-rotation for

the F = 2 → F ′ transition is about 3 times less than for transition the F = 1 → F ′

transition for the same amount of optical losses. A reason for this may be “trapping”

of atoms in the strong non-rotating cycling transition F = 2 → F ′ = 3.

The polarization self-rotation effect for the D2 line of 85Rb does not exceed that

of 87Rb. Moreover, the complicated level structure (arising from the higher nuclear

spin) makes the behavior of the self-rotation to be quite unpredictable for the D2 line,

similar to the results for the D1 line of 85Rb.

Nonetheless, we observe that the self-rotation on the D2 line of 85Rb depends

strongly on the intensity of the laser beam (Fig. 57). Note, that the approximations

of our model are not valid here anymore: because of the small hyperfine splitting

between excited states the electromagnetic field interacts with all transitions equally,

and none of the transitions can be treated as “off-resonant” or independent. Thus, the
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Fig. 55. The nonlinearity parameter gL measured as a function of 87Rb density. Laser

power is P = 5.0 mW.
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Fig. 56. The self-rotation parameter gL measured as a function of light transmission

through the cell. Solid circles are for laser power P = 5.0 mW and open

circles correspond to power P = 1.3 mW. Each point of the graph represents

a different value of atomic density.
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Fig. 57. The angle of self-rotation measured for the F = 2 → F ′ transition of the 85Rb

D2 line as a function of laser detuning. Data are shown for different values

of the laser power. Zero detuning is chosen to coincide with the center of

absorption line. The atomic density is N = 2 × 1011 cm−3. Ellipticity of the

beam is ε = 0.035 rad.

population of any Zeeman sublevel strongly depends on the laser intensity, causing

the change of the self-rotation spectra.

The dependence of the self-rotation on laser intensity is directly reflected on its

dependence on atomic density. Because optical losses grow with atomic density, at

high density the intensity of the laser field is quite different at the entrance and the

exit of the cell. This means that different atoms interact with a laser field of different

strength, producing different rotations as shown in Fig. 57. This also explains the

change of the shape of the self-rotation angle with increasing of density (Fig. 58). Such

behavior makes it hard to predict if the combination of higher laser power and higher

atomic density will further increase the nonlinearity and decrease the absorption.
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Fig. 58. The angle of self-rotation measured for the F = 2 → F ′ transition of the
85Rb D2 line a function of laser detuning. Data are shown for different atomic

densities. Zero detuning is chosen to coincide with the center of absorption

line. The laser power is P = 5 mW. Ellipticity of the beam is ε = 0.035 rad.

4. Self-rotation in cells with buffer gas

The longer coherence lifetime in the presence of buffer gas results in smaller absorption

of the light compared to the cell without buffer gas under the same experimental

conditions. The theory for the double-Λ configuration predicts no dependence of the

polarization self-rotation on the coherence decay rate; however, the use of buffer gas

may be still beneficial to reduce the optical losses in the system.

To study the benefits of the presence of a buffer gas on self-rotation effects we

use a cell filled with isotopically enhanced 87Rb and 1 Torr of Ne as a buffer gas.

Fig. 59 shows the self-rotation parameter measured for cells with and without

buffer gas. The dependencies versus transmission rather than atomic density are used

to correctly compare atomic cells with different lengths. For small absorption, g is

much higher for the cell with buffer gas, which agrees nicely with the prediction of
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Fig. 59. The self-rotation parameter measured as a function of light transmission

through the cell. Solid circles correspond to the cell without buffer gas
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P = 5.0 mW. Each point of the graph represents a different value of atomic

density.
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the theory (Eqs.(7.31),(7.30)). However, for higher optical density the self-rotation

becomes smaller than that in the vacuum cell for the same level of absorption. Al-

though there are several possible explanations for such behavior, the most obvious

reason is the modification of the atomic coherence due to the velocity-changing colli-

sions, described in Chapter V.

D. Application of self-rotation to generation of squeezed vacuum

Quantum fluctuations will soon be the basic source of quality restrictions in precise

measurements and optical communications very soon. This calls for new methods

which allow us to lift or ease these quantum limits. One of the well known solutions

of the problem is based on usage of nonclassical states of light [1, 295]: for example,

squeezed light and squeezed electromagnetic vacuum. The technology for producing

squeezed vacuum via nonlinear optics is rather well developed [296] and has even been

used to enhance the performance of interferometers [297,298].

However, the efforts to widely exploit the potentialities of nonlinear optical phe-

nomena to change the statistics of quantum fluctuations are hindered, either by the

small value of nonlinearity or by absorption losses and the associated noises. When

one is working with squeezed light, it is well known that any source of optical loss

destroys the squeezed state. This appears because wherever the squeezed light leaves

an optical system, the vacuum field necessarily enters the system; and the entering

vacuum field is generally unsqueezed [299].

Although a large number of the attempts to generate squeezed light has been

made, the level of -10 dB for generated and detected squeezing is still unbeaten. Up to

our knowledge, the best result of squeezing generation was achieved in [300]. The de-

tected degree of squeezing there was only -4.3 dB, but the inferred degree of squeezing
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was much larger. After making an absolute accounting for passive linear losses, these

authors inferred a degree of squeezing corresponding to approximately -12 dB, which

shows how well the basic nonlinear optical process of parametric down conversion con-

forms to simple theoretical models [299]. More recently, quantum noise reductions of

-6 dB have been recorded directly in the observed homodyne current [301]. In this

case the degree of squeezing was limited not by passive linear losses, but instead by

nonlinear light induced absorption in potassium niobate crystals used for parametric

down conversion. Quite recently, -6.5 dB of vacuum squeezing from a below-threshold

optical parametric oscillator have been reported [302], with comparable levels reported

in [303].

It has been recently demonstrated that efficient squeezing of vacuum fluctuations

can be achieved in nonlinear self-rotating media [304]. When linearly polarized light

traverses a medium that causes self-rotation of elliptical polarization, the vacuum

field in the orthogonal polarization may be squeezed under optimum conditions. This

squeezing was previously demonstrated in optical fibers [305, 306]. In that work, it

was shown that if an incoming light pulse, linearly polarized along the X axis, is

coupled into a single mode fiber, then the nonlinearity of the fiber transforms the

state of the Y polarized mode from its initial coherent vacuum state into a state of

squeezed vacuum at the output of the fiber.

The large self-rotation, observed in atomic vapor, may also be used for vacuum

squeezing [304]. Although the experimental data, reported in previous Section, as

well as many other studies of self-rotation in various experimental arrangements,

published earlier [290, 293, 294] do not provide the level of self-rotation required to

observe any significant vacuum squeezing, the situation is still optimistic. Here we

propose to take advantages of the high laser power and high atomic density regime,

which produces large nonlinearity accompanied by the suppression of light absorption.
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1. Squeezing of vacuum fluctuations in general self-rotating medium

Let us first describe the propagation of a classical elliptically polarized electromagnetic

field through the self-rotating medium. This field can be described by two complex

X- and Y -polarized components (Ex and Ey). In this case the ellipticity ε of the light

field can be written as:

ε = arcsin
i(E∗

xEy − E∗
yEx)

E∗
xEx + E∗

yEy

. (7.46)

Note that for the particular case of nearly linearly polarized light (Ey À Ex, Ey ≈ E∗
y)

the expression for the ellipticity may be simplified:

ε ≈ −i
Ex − E∗

x

Ey

, (7.47)

When this field propagates through a medium, self-rotation causes the principal axis

of the ellipse to rotate by an angle ϕ = gεL:




Ex(L)

Ey(L)


 =




cos ϕ sin ϕ

− sin ϕ cos ϕ







Ex(0)

Ey(0)


 . (7.48)

Using Eq.(7.47), we arrive to the following simple equation for the output fields

Ex(L) and Ex(L):

Ex(L) = −igL(Ex(0)− E∗
x(0)) + Ex(0), (7.49)

Ey(L) = Ey(0). (7.50)

To describe the fluctuations of the electromagnetic fields, the quantum properties of

light have to be taken into account. To find quantum fluctuations after the medium

we present the parameters of the system as a sum of expectation and fluctuation

parts. We denote expectation values by 〈. . .〉. Hence, we have Ê± = 〈E±〉 + δÊ±,

where 〈E±〉 À δÊ± and 〈δÊ±〉 = 0.
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We describe quantum fluctuations of the fields using creation â†± and annihilation

â± operators introduced by

δÊ± =
∫ ∞

−∞

√
h̄ω0

Ac
â±e−iωt dω, (7.51)

where A is the beam cross-section area, ω0 is the carrier frequency,
[
â±(z), â†±(z)

]
=

δ(ω − ω′) and
[
â±(z = 0), â†∓(z = 0)

]
= 0, z changes from 0 to L.

Using the analogy with classical theory we can formally change the classical value

of ellipticity ε by the quantum operator of the ellipticity ε̂

ε̂ = arcsin
Ê†

+Ê+ − Ê†
−Ê−

Ê†
+Ê+ + Ê†

−Ê−
, (7.52)

where Êx and Êy are the quantized fields.

If initially light is linearly polarized, it does not change the polarization in terms

of the expectation values, i.e. if 〈Ex(0)〉 = 0, then 〈Ex(z)〉 = 0 and 〈Ey(z)〉 =

〈Ey(0)〉. However, the calculation analogous to one for the propagation of classical

fields demonstrates that the statistics of the light changes according to:

âx(z) = âx(0)− igz(âx(0)− â†x(0)), (7.53)

ây(z) = ây(0). (7.54)

It is easy to see that commutation relations between the operators are fulfilled

[
âx(z), â†x(z)

]
=

[
ây(z), â†y(z)

]
=

[
ây(0), â†y(0)

]
= (7.55)

[
âx(0), â†x(0)

]
= δ(ω − ω′).

To adequately describe the quantum properties of the X polarized light compo-
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nent, the quadrature operator is introduced [1]:

B(z) = âx(z) exp(iθ) + â†x(z) exp(−iθ) = (7.56)

[
ax(0) + a†x(0)

]
cos θ + i

[
ax(0)− a†x(0)

]
(sin θ − 2gz cos θ).

The amount of vacuum squeezing is characterized by the quadratic deviation

of the quadrature component 〈B2(z)〉. For the initial vacuum field this value is

〈B2(0)〉 = 1; it is possible to say that the squeezed vacuum is observed if the vacuum

fluctuations are below this limit. According to Eq.(7.56) the quadratic deviation

〈B2(z)〉 changes as the light travels through the medium:

〈B2(z)〉 = cos2 θ + (sin θ − 2gg cos θ)2 (7.57)

This expression can be minimized under the condition gz À 1, which corresponds to

strong self-rotation for ctan 2θ = −gz:

〈B2(z)min〉 ≈ (2gz)−2 → 0, (7.58)

that means that the vacuum field is squeezed. However, the dispersion of photo-counts

in the dark port, proportional to â†x(z)âx(z), increases compared with the coherent

state:

(∆n̂)2 = (gz)2 . (7.59)

So far no consideration has been given to the optical losses in the system. We

can model a thin medium with a small absorption coefficient in the following way: we

assume that we have an ideal, transparent medium that produces self-rotation. After

passing through this medium, a beam-splitter reflects a small fraction of the light

away. At the same time, vacuum fluctuations enter through the dark port. Thus the

squeezed vacuum is attenuated by an amount e−αz ≈ 1− αz while 1− e−αz ≈ αz of
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noise is added to the field: â± → â±
√

1− αz + b̂±
√

αz, where b̂± are the quantum

fluctuations leaking into the system due to the absorption. In this case the squeezing

is determined by

〈B2(z)min〉 → (2gz)−2 + αz. (7.60)

For the optimum number of absorption lengths

αzopt =

(
α

g

)2/3

, (7.61)

the minimum achievable quadratic deviation of the quadrature amplitude is

〈B2
opt〉 = 3

(
α

g

)2/3

. (7.62)

2. The perspectives of squeezed vacuum generation in Rb vapor

Using the general expression Eq.(7.62), it is easy now to calculate the squeezing in

case of the simplified interaction schemes considered earlier. Using the expression for

self-rotation and absorption coefficients, derived earlier Eqs.( 7.30, 7.31) the maximum

squeezing, obtained in a double-Λ scheme is:

〈B2
opt〉Λ = 3

(
γ0∆

|Ω(0)|2
)2/3

. (7.63)

This means that under the condition of slightly perturbed CPT the squeezing

is improving rapidly with growing laser intensity. The coherence is also playing an

important role: the squeezing may be almost unlimited under the condition of small

γ0. However, the application of this model for the high laser power regime is limited

by the assumption that the hyperfine splitting of the excited state is large. As the

laser intensity becomes bigger, the electromagnetic field, resonant with one transition,

starts to interact with all allowed transitions equally. To describe this situation, the

X interaction scheme is more appropriate. In this case the squeezing of vacuum



160

fluctuations is described by the following expression:

〈B2〉X = 3

(
2∆|Ω(0)|2

γ0∆2 + γ|Ω(0)|2
)2/3

. (7.64)

It is easy to see that for a strong laser field |Ω(0)|2 À ∆ the value of squeezing

is independent of laser intensity, and defined by the ratio of one-photon detuning to

the radiative decay rate of the excited state . We must note here that this result

is rather unsurprising, since ∆/γ describes the ratio of dispersion and absorption

for an unsaturated two-level system. This result may be somewhat improved by the

optimization of laser detuning for each laser intensity. In this case under conditions

of ∆opt = (γ/γ0)
1/2|Ω(0)| the maximum achievable squeezing is:

〈B2
opt〉X = 3

( |Ω(0)|2
γ0γ

)1/3

. (7.65)

To verify the above statements for the real atoms, we perform exact numerical

simulations of the vacuum squeezing generated on the F = 2 → F ′ = 1, 2 transition

of the D1 line of 87Rb. The value of the squeezing 〈B2〉, given by Eq.(7.62) is shown

as a function of laser power in Fig. 60. For each laser power, the density and laser

frequency that optimizes the squeezing is shown.

We note that significant squeezing (about −7 dB) is predicted for a laser intensity

∼10 W/cm2. The form of this dependence may be nicely described by the theoretical

results for two different interaction schemes. One can see that initially the value of

squeezing grows rapidly with the laser intensity, as described by Eq.(7.63). For higher

intensities it saturates, approaching a constant value, as predicted by Eq.(7.64).

The low laser power available in the experiments (≤ 5mW ) cannot produce

vacuum squeezing greater than −1dB, which makes any direct observation virtually

impossible. However, we can extrapolate the experimental data for the self-rotation

and absorption to the high intensity regime. As it has been shown earlier, the self-



161

0
4

8

12

16 0

2

4
0

1

2

3

4

5

6

7

� ��
���
� �� �
	

�

� 
 ��� �
� ���

����� �
� ��� 
 �����

� �
�! #"%$

&%' "!$
( ) *

Fig. 60. The squeezing of vacuum fluctuations, as defined in Eq.(7.62), as a function

of laser intensity. For each value of laser intensity, the squeezing is calculated

for the optimum value of laser detuning and atomic density.
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rotation for the D1 line can be greatly improved by using higher laser power, and at

the same time the absorption becomes smaller (Fig. 52). This is very promising for

generation of squeezing.

It has been also demonstrated that the self-rotation, measured for the D2 line, is

higher. The maximum observed value of the self-rotation coefficient is gL = 5, which

corresponds to the squeezing of ≈ −10dB in a lossless medium as per Eq.(7.58).

At the same time, increasing laser power is less effective, since both absorption and

self-rotation become smaller (Fig. 56).

In conclusion, we have experimentally and theoretically studied the effect of self-

rotation of the polarization ellipse of the electromagnetic field propagating through

the atomic medium. Two interaction schemes are proposed to describe self-rotation

and absorption of elliptically polarized light in Rb vapor. The experimental data,

collected for various transition of both Rb isotopes satisfactorily agree with predic-

tions of the theory. We also demonstrate that the effect of self-rotation can be used

for efficient squeezing of vacuum fluctuations. Both theory and numerical simulations

predict squeezing up to −10 dB under realistic experimental conditions.
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CHAPTER VIII

APPLICATION OF THE NONLINEAR FARADAY EFFECT FOR

HIGH-PRECISION MAGNETOMETRY

In this chapter we discuss the prospects of using the nonlinear Faraday effect for the

precision measurements of a magnetic field. We first give a brief overview of the

existing optical magnetometers. Then we present results for measurements of this

rotation for resonant light in optically dense Rb vapor under various conditions, with

and without buffer gas. And finally, we propose a method of in-principle improve-

ment of the Faraday magnetometer by cancelling the ac-Stark shifts, which limit the

sensitivity for the high power regime.

A. Optical methods of magnetic field measurements

The problem of sensitive measurement of small magnetic fields is very important, and

optical techniques have proven very successful and competitive in this field. Magnetic

sensors based on the Faraday effect (rotation of the linear polarization of the light

propagating through a magnetic crystal placed in a longitudinal magnetic field) and

the magneto-optical Kerr effect (change of polarization and intensity of light reflected

from a magnetic sample) have found many applications due to their contactlessness,

high stability with respect to electromagnetic interference, and wide frequency and

dynamic ranges [307]. However, the sensitivity of these devices is limited by the rela-

tively weak response of the system to changes in the magnetic field. For example, the

value of the Verdet constant (the proportionality coefficient between the polarization

rotation angle and applied magnetic field per unit length) for a diamagnetic sensor

glass SF − 57 is as low as 4× 10−6rad/(G cm) [308]. The situation may be improved

by using transparent ferromagnetics (such as ytterbium iron garnets), which provide
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much higher Faraday rotation (V = 10−2rad/(G cm)) [307, 309, 310]. At the same

time, the polarization rotation in these crystals is not always a linear function of the

applied magnetic field.

Much better sensitivity is achieved in optical magnetometers based of resonant

phenomena. For example, optically pumped magnetometers (OPM) are based on the

change of light absorption in a glass cell with He4 or alkali vapor in the presence of

a dc magnetic field (which resolve the electronic Zeeman structure) and a tunable rf

magnetic field [244,311–313]. If the frequency of the rf field is resonant with the Zee-

man splitting, a narrow dip in the absorption is observed which is used for accurate dc

field measurements. OPMs already provide a realistic alternative to SQUID (super-

conducting quantum interference device) magnetometers [307,314]. The sensitivity of

commercial OPMs is typically 10−9 G/
√

Hz [244, 307], and can reach 10−11 G/
√

Hz

under laboratory conditions [315].

Another absorption-based method of magnetic field detection is based on CPT in

Cs vapor [316–318]. In this method two phased-locked lasers (or two modes of a single

laser) are used to create coherent superpositions between the ground-state hyperfine

levels of Cs atoms in a Λ configuration. If the Zeeman structure is resolved, the

EIT is observed every time the laser fields are in resonance with particular magnetic

sublevels. So, if a laser is swept across the atomic transition, the comb of transmission

peaks is observed, and the value of the magnetic field may be calculated by measuring

their relative shifts.

The usual arrangement for the absorption-based measurements is to use low laser

power to avoid power broadening and light shifts, and low atomic density to keep the

sample optically thin. It was pointed out by Scully and Fleischhauer that in coherent

media the power broadening can be completely compensated by increasing the atomic

density, if phase -sensitive measurements are performed [4,5,158]. The estimates show
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that in this case substantial improvement over an OPM is possible. Unfortunately, in

traditional EIT experiments the light shifts of the hyperfine-levels give rise to a bias

phase shift, which becomes the major source of systematic error. This problem can

be eliminated, however, in magnetometers, based on Zeeman ground-state coherence

[124]. In this case only one laser field of linear (or elliptical) polarization may be

used, and the change of the refractive indexes caused by CPT leads to the relative

phase shift between the two circularly polarized components.

One possible application of this effect, proposed by Bretenaker et al. [319], is a

so-called mean-field magnetometer. If the atomic medium is placed inside a resonator,

then the phase difference of the two circular polarizations results in a difference in

their frequencies of generation. In this case the beat-note frequency provides the

information about the applied magnetic field.

The information about magnetic field may also be obtained from direct measure-

ment of the polarization rotation (a magnetometer based on the nonlinear Faraday

effect). Recently, several studies have shown the possibility of using NMOR for mag-

netometry under different conditions: in optically thin Rb vapor in the cells with

anti-relaxation coating [249, 320], in optically thick vapor in uncoated cells with or

without buffer gas [124,127,321], and in cold Rb atoms [322]. Although no practical

realizations of such magnetometers has been reported so far, the estimations of the

possible sensitivity of this method predict almost an order of magnitude better value

than for the best optical pumping magnetometers.
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B. Magnetometer based on the nonlinear Faraday effect in optically dense Rb vapor

1. Factors limiting the sensitivity of the magnetic field detection

A detailed theoretical study of a magnetometer based on NMOR is presented by

Fleischhauer et al. [124]. They demonstrate that the sensitivity of magnetic field

measurements is limited by two fundamental restrictions: vacuum fluctuations of

the laser field (shot noise of a photodetector) and coupling of the laser field to non-

resonant levels (ac-Stark shifts). The shot noise is crucial for low laser power, whereas

the ac-Stark effect is dominant for higher laser fields. It was shown in that the

minimum detectable level shift is given by:

δ0 = γ0

√√√√√1 + |Ω|4
γ2
0∆2

0
η(1− η) ln(η−1)

〈n〉out ln(η−1)
(8.1)

where η = Iout/Iin is the transmission through the medium, 〈n〉out is the average

number of photons on the photodetector, and ∆0 is the detuning of non-resonant

sublevels. The value of ∆0 taking into account the real sublevel system in 87Rb was

found in Chapter VII to be ∆0 ≈ 5 GHz. The first term in the numerator comes

from the shot-noise of the photodector while the second one is due to non-resonant

coupling with upper levels. Because of the opposite dependence of these terms on

laser intensity, the sensitivity may be optimized. Reference [124] showed that the

sensitivity reaches its optimum value if the laser intensity is:

|Ω|2 =

√√√√ γ2
0∆

2
0

η(1− η) ln(η−1)
≈ γ0∆0 (8.2)

For this optimal laser intensity the transmission should be η ≈ 6%, and the minimum

detectable frequency shift of the levels is given by:

δSQL
0 = f

(
γr

∆0

3

2π

λ2

πd2

γ0

tm

)1/2

, (8.3)
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where f = ((1− η)/(η ln3(η−1)))1/4 is a numerical factor which varies between 1 and

2 for light transmission ratios from 0.01 to 0.8, d is the laser beam diameter, and tm

is the measurement time.

2. Estimation of the sensitivity for Rb vapor

Let us first consider the case of the cell without buffer gas. In our experiments we

use a cylindrical uncoated glass cell 5 cm in length and 2.5 cm in diameter filled with

isotopically enhanced 87Rb.

One of the possible advantages of a Faraday magnetometer over the other devices

is the possibility to separate a small region where the magnetic field is measured from

the rest of the setup by delivering input and output laser radiation to the atomic cell

via polarization-preserving optical fiber. Thus, if the atomic cell with geometrical sizes

in sub-millimeter region is fabricated, the detector head may be made extremely small.

In this case the following question rises: since the minimization of the interaction

region leads to shorter interaction time, is it possible to maintain the sensitivity of

the magnetic field measurements at a competitive level if the coherence decay rate

increases significantly?

To investigate this problem experimentally, we study the effect of the laser beam

diameter on the polarization rotation angle and the transmission in the system. If

the intensity of the beam is constant, but the diameter is decreased by placing an iris

diaphragm before the cell, rapid deterioration of sensitivity is observed as shown in

Fig. 61. This effect supports the fact that the ground state coherence decay rate γ0

in a vacuum cell is determined by time-of-flight of the atoms through the laser beam:

it is inversely proportional to the beam diameter. Increasing γ0 leads to a decrease

of both rotation and transmission, according to Eqs. (2.69) and (2.70), which results

in the observed behavior of the sensitivity.
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Fig. 61. Estimated sensitivity of magnetic field measurements ∆Bmin as a function

of laser beam diameter. Laser intensity Iin ≈ 2 mW/cm2, atomic density

N ≈ 1012 cm−3.



169

If the size of the laser beam is controlled with a beam expander, so the total

laser power does not change, the result is not so obvious. In this case, decreasing the

beam diameter leads to a simultaneous increase of the laser intensity. We show here

the result for two different beam diameters d1 = 2 mm and d2 = 12 mm. The laser

power for both cases is P = 2.5 mW, giving peak laser intensities I1 ≈ 80 mW/cm2

and I2 ≈ 2 mW/cm2 respectively. Since the optimum atomic density depends on

intensity, we study the sensitivity versus density for each of these intensities. The

rotation rate dφ/dB and absorption Iout/Iin as functions of atomic density are shown

in Figs. 62a and b. Higher intensity can potentially lead to a higher rotation rate,

but for these parameters it is not adequate to compensate the increased effect of

power broadening and increased coherence decay rate (transit-time effect), so the

rotation slope for the smaller beam is significantly lower than for the larger beam

(Fig. 62a). Hence, for the larger beam, we observe about a ten-fold increase of the

estimated sensitivity of magnetic field measurements ∆Bmin (Fig. 62c). However, it

worth mentioning here that even though the sensitivity for the small beam is lower,

it can be partially compensated by using higher laser power.

To understand the dependence of the minimum detectable magnetic field ∆Bmin

on atomic density we have found that reabsorption of spontaneously emitted photons,

called radiation trapping, considered in Chapter IV, may be an important factor. For

low atomic density (N ≤ 1011 cm−3) the behavior of the system can be described by

the theoretical approach of Fleischhauer et al. [124], which predicts that the sensi-

tivity increases rapidly with atomic density . However, as the atomic vapor becomes

optically thick, the destructive effect of radiation trapping leads to the deterioration

of the ground-state coherence decay rate γ0, as demonstrated in Chapter IV. This

increase in γ0 leads to a linear increase of the optimal power (Eq. (8.2)) and a square

root decrease of the sensitivity (Eq. (8.3)).
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Fig. 62. (a) Rotation rate dφ/dB as a function of atomic density in the cell with-

out buffer gas; (b) Transmission through the cell; (c) estimated minimum

detectable magnetic field ∆Bmin. Solid dots are for laser beam diameter

d = 2 mm, open dots are for d = 12 mm.
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It is important to remember that the width of the NMOR signals in the high laser

power regime is determined by power broadening. Although this becomes a serious

problem for some detection schemes (like OPM, or dark-state magnetometer), in the

magnetometer based on the nonlinear Faraday effect this broadening is compensated

by the enhancement of the polarization rotation. Moreover, it may be useful to over-

come the main problem of such devices: the limited region of the measurable magnetic

fields to the vicinity of zero field. Since large linewidth means that even a relatively

strong magnetic field does not destroy the sensitivity, power-broadened NMOR can

be very useful for measurements of small changes in a background magnetic field (for

example, the Earth’s magnetic field). As demonstrated in Fig. 11, the width of the

resonances in the cell without buffer gas may be quite large, but the rotation angle is

very large too. In our experiments the characteristic width of rotation is already com-

parable with the Earth’s magnetic field (B ∼ 0.5 G), and the sensitivity of magnetic

field measurements is still quite high: ∆Bmin = 7× 10−10 G/
√

Hz.

The rotation slope and the sensitivity as a function of laser frequency is shown

in Fig. 63. For these data, the laser power is P = 2.5 mW, the beam diameter

is d = 12 mm, and the atomic density N ≈ 1012 cm−3 is chosen to have optimal

sensitivity according to Fig. 62c. The rotation slope is calculated by measuring the

difference in the rotation angle for two magnetic fields B = ±0.1 mG to exclude any

possible background rotation. In the case of no buffer gas, (dashed lines) the rotation

rate dφ/dB appears as the sum of two peaks centered at the F = 2 → F ′ = 1 and

the F = 2 → F ′ = 2 transitions. The sensitivity is also best at these points and is

not very different for frequencies between the two transitions (since both the rotation

and absorption are smaller there.)
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Fig. 63. (a) Rotation rate dφ/dB as a function of laser frequency in the cell with-

out buffer gas (dashed line) and with 0.12 torr Kr (solid line); (b) Trans-

mission through the cell; (c) estimated minimum detectable magnetic field

∆Bmin. Laser power Pin = 2.5 mW, beam diameter d = 12 mm. Atomic

density is N = 2× 1012 cm−3 for vacuum cell and N = 1012 for the cell with

buffer gas. The frequency of the transition F = 2 → F ′ = 1 is chosen as

zero detuning. The vertical dotted lines show the positions of the transitions

F = 2 → F ′ = 1, 2.
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3. Experiments with buffered cells

In Chapter V we have demonstrated that the reduction of the coherence decay rate

associated with the buffer gas addition leads to the narrowing of the NMOR and

increasing of the rotation rate dφ/dB, similar to that caused by the beam expansion.

At the same time, the modification of the rotation spectra due to velocity changing

collisions, described in the same Chapter, causes the important differences between

the sensitivity curves as functions of laser frequency for the cells with and without

buffer gas. Fig. 63 shows the rotation rate dφ/dB, transmission and the estimated

sensitivity for the cell with 0.12 torr Kr (the dimensions of the cell are the same as for

the vacuum one, described above). As one can see, the “dip” between transitions F =

2 → F ′ = 1, 2 observed in the rotation rate and caused by the destructive interference

of the coherences created on each transition, results in very poor sensitivity for the

laser frequencies between the two transitions. Even if the laser is tuned directly in

resonance with one of the transitions, the influence of the other is quite remarkable, so

the maximum of the rotation rate dφ/dB is displaced “outside” the exact transition

frequency (see Fig. 63a). The result is that the best sensitivity is reached when the

laser frequency is detuned from exact transition,and the value of the optimal detuning

depends on atomic density and the amount of buffer gas. It is also important to note

that the dependence of the sensitivity shown in Fig. 63c and that found for cells with

anti-reflection coatings [249] is remarkably similar.

Estimates of the sensitivity for different cells (vacuum cell, cell with 0.12 torr

Kr, and 0.3 torr Ne) are shown in Fig. 64. To compare these with theoretical pre-

dictions, we use Eq. (8.1). The values of γ0 may be found from the asymptotics for

rotation slope dφ/dB and transmission Iout/Iin using Eqs. (2.69) and (2.70) for low

atomic densities, where radiation trapping does not play any significant role. The
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Table II. Comparison between theoretical prediction and experimental estimation for

minimum detectable magnetic fields for different cells and laser beam diam-

eters.

Cell γ0 (kHz) Iopt (mW) ∆Bmin (G/
√

Hz) ∆Bmin (G/
√

Hz)

theory experiment

No buffer gas, d = 2 mm 20 63 3× 10−10 7× 10−10

No buffer gas, d = 12 mm 8.3 26 4× 10−11 2× 10−10

0.12 torr Kr, d = 2 mm 7.8 25 2× 10−10 5× 10−10

0.12 torr Kr, d = 12 mm 2.2 7 2× 10−11 5× 10−11

0.3 torr Ne, d = 2 mm 2.5 8 10−10 3× 10−10

values of optimized intensity Iopt from Eq. (8.2), Zeeman coherence decay rate γ0 es-

timated from our experimental results, the sensitivity ∆Bmin predicted theoretically

by Eq. (8.3), and the sensitivity ∆Bmin using Eq. (8.1) for different cells and laser

beam diameters are shown in Table II.

C. Compensation of ac-Stark shifts

As shown above, the coupling between the circularly polarized electromagnetic fields

due to the ac-Stark effect is the main limitation for the sensitivity of the magnetic

field measurements for high laser power. Ac-Stark shifts become a serious problem in

other precision measurements, like atomic clocks and frequency standards [323–325].

There are a number of methods to scale down the negative effect of the light shifts:

laser detuning [326], electronic self-tuning [327], coherent light modulation [325,328],

etc.

The studies of the ac-Stark shifts for the D1 line of 87Rb, presented in Chapter
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with 0.12 torr Kr (squares) and with 0.3 torr Ne (diamonds). Laser power

Pin ≈ 2.5 mW, laser beam diameter d = 2 mm. The dimensions of all cells

are the same (length ≈ 5 cm, diameter ≈ 2.5 cm).
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VII showed experimentally that the ac-Stark shift depends inversely on the detuning

from non-resonant atomic hyperfine sub-levels. Further, we show that there is some

laser frequency between the resonant transitions where the light shifts cancel. At

this point the non-correlated intensity fluctuations of each circular component have

no effect on their relative phase, and the direction of the output polarization is not

affected by the medium. Therefore, at this frequency the sensitivity of an NMOE

magnetometer is limited only by photon shot-noise, allowing the use of higher laser

power to achieve better signal to noise ratio.

To find the laser frequency corresponding to the ac-Stark shift compensation,

we study the spectra of self-rotation of the light polarization ellipse for the different

degree of ellipticity. Obviously, at the point of interest there should be no self-rotation

for any ellipticity value. At the same time we have to remember that the absence

noise associated with light shifts does not guarantee the best sensitivity, since the

sensitivity is also proportional to the slope of the polarization rotation with magnetic

field, dφ/dB. To maintain high sensitivity, this parameter should be large enough at

the point of ac-Stark suppression.

Experimental spectra for both the angle of self-rotation φAC and magnetic ro-

tation slope dφ/dB are shown for the D1 line in Fig. 65a and b and the D2 line in

Fig. 66. For each case the rotation angle at zero magnetic field (self-rotation) has

been recorded for three different degrees of ellipticity of the laser beam (Figs. 65a and

66a).

In both cases there exists a value of the detuning where the ellipticity of the laser

beam does not lead to any rotation. This compensation point is also independent of

the laser intensity. For the D1 line this is a point midway between the transitions

to the two upper state hyperfine levels. The rotation peaks are partially resolved,

and in the middle point the value of rotation slope (dφ/dB) is about 40% of its
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(b)

(c)

(d)

Fig. 65. (a) Measured rotation angle φAC for elliptical polarizations of 2◦, 4◦ and 6◦

degrees. (b) Measured Faraday rotation slope, dφ
dB

with linearly polarized

light. Both (a) and (b) are for the 87Rb D1 line, with no buffer gas and

atomic density N = 1.5×1012cm−3. (c) Calculated rotation angle φAC for D1

line. (d) Calculated Faraday rotation slope, dφ
dB

.
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(a)

(b)

Fig. 66. Same as Fig. 65a and b for the D2 line and atomic density

N = 8 × 1010cm−3. Zero detuning corresponds to the resonance with tran-

sition 5s1/2F = 2 → 5p1/2F
′ = 1 for the D1 line and to the center of the

absorption on the transition 5s1/2F = 2 → 5p3/2 for the D2 line.

maximum value. For the D2 lines, the point of compensation is near the center of

the upper hyperfine manifold. It is important to note the compensation in the D2

case, which occurs for an upper manifold consisting of three levels instead of two. In

both of these pictures, there is another point on the high-frequency side where an

extra compensation point appears. This is due to contamination of the cell by 85Rb

and demonstrates the interesting possibility to eliminate ac-Stark shifts by tuning the

laser between the transition for two different isotopes.

To understand these results, we first analyze the simple case of motionless atoms

by performing numerical simulations for the density matrix propagation for the thir-

teen levels of the D1 line. The calculated rotation angle is shown in Fig. 67a. We

see that if the atoms are motionless there are two points where ac-Stark shifts from

different levels cancel each other very close to each resonance. Figure 67b shows the
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(a)

(b)

Fig. 67. (a) Calculated rotation angle φAC and (b) calculated Faraday rotation slope

dφ/dB for motionless atoms.

calculated rotation slope which predicts two sharp resonant peaks. This means that

for motionless atoms a very small detuning can eliminate the effect of ac-Stark shift

completely without loss of sensitivity. However, the use of cold atoms is a complicated

process that may not be well suited to practical magnetometry.

For atoms in a vapor, Doppler averaging causes the cancellation points near the

resonances to disappear. Thus, the shifts are compensated only at the point exactly

between the two transitions where the rotation slope is somewhat smaller than its

maximum value. However, Fig. 63c shows that the sensitivity at this frequency is only

a factor of two worse than the optimal one. Taking into account that the rotation

rate increases significantly with atomic density and laser power, this frequency may

be quite promising to avoid the limitation imposed by ac-Stark broadening if high
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laser power is used.

Unfortunately, this method cannot by successfully applied for the cells with the

buffer gas. The cancellation of the nonlinear Faraday rotation for the laser field tuned

between hyperfine transitions, makes it impossible to achieve the required sensitivity

in the point of ac-Stark shift compensation. To study this effect, we have used a cell

with 0.12 torr of Kr buffer gas. The results are shown for the D1 line in Fig. 68a and

b. We see that the ac-Stark effect is eliminated by detuning between the resonances

as before. However, in this case the rotation slope is also strongly suppressed in the

same frequency region, being almost exactly zero at the point of compensation. In

the case of the D2 line Fig. 68c and d the rotation slope, while not zero, is much

smaller at the point of compensation.

In conclusion, we have studied the application of NMOR to magnetometry for

the regime of high laser power and high atomic density for different parameters of the

system: laser intensity, laser frequency, laser beam diameter, atomic density, presence

of buffer gas, etc. We have shown that the zero-field sensitivity of such measurements

is not as as high as expected for anti-relaxation coated cells [249], but is comparable

with the sensitivity of optical pumping magnetometers [244]. Furthermore we have

shown that strong power broadening of the line makes it feasible to use this effect for

earth-field measurements.

We also expect in-principle improvement of the sensitivity of the magnetic field

detection in high laser power regime by compensation of ac-Stark shifts. We have

studied the dependence of the ac-Stark shift versus frequency of the probing laser for

the D1 and D2 lines of 87Rb, and have shown that there exists a frequency where the

shifts from different hyperfine components of the upper level cancel each other.
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(d)

(a)

(b)

(c)

Fig. 68. (a) and (c) Measured rotation angle φAC for elliptical polarizations of 2◦, 4◦

and 6◦ degrees. (b) and (d) Measured Faraday rotation slope, dφ
dB

with linearly

polarized light. Both (a) and (b) are for the 87Rb D1 line, (c) and (d) are for

the 87Rb D2 line, in the cell with 0.12 torr of Kr buffer gas and atomic density

N = 1.5× 1012cm−3.
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CHAPTER IX

SUMMARY AND CONCLUSIONS

The main results of this work are the following:

1. Quantum interference of the ground-state Zeeman sublevels leads to a wide va-

riety of nonlinear magneto-optical effects, such as the nonlinear Faraday effect.

At the same time, the analysis of both polarization rotation and laser absorp-

tion provide an excellent tool to study the fundamental properties of coherent

media.

2. We observed several orders of magnitude enhancement of the nonlinear Faraday

rotation in optically thick Rb vapor. Polarization rotation angle higher than

10 rad has been demonstrated for the first time for sub-Gauss magnetic field.

3. A theoretical and experimental study of the effect of reabsorption of spontaneous

radiation on the atomic coherence was developed. We have demonstrated that

the radiation trapping leads to deterioration of atomic coherence, and has to be

taken into account for high atomic densities.

4. The presence of a buffer gas has a profound effect on the nonlinear Faraday

effect. We have observed an additional narrow feature in both absorption and

polarization rotation spectra, which can be explained by the spatial diffusion of

Rb atoms in a buffer gas. At the same time, velocity-changing collisions produce

effective “mixing” of the dark states created on different hyperfine transitions,

resulting in the inversion of the polarization rotation signal and an enhanced

absorption resonance between transitions.

5. An analysis of the ellipticity-dependent magneto-optical rotation allows to sep-
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arate the influence of the multi-photon coherence. An analytical treatment of

this problem was developed.

6. High nonlinearity, associated with coherent media, leads to large self-rotation

of the elliptically polarized light, which is caused by the off-resonant interac-

tion of the laser field with far-detuned atomic levels. We demonstrated the

enhancement of self-rotation for elliptically polarized light in optically thick Rb

vapor. Our theoretical models predict that this effect can be used for effective

squeezing of vacuum fluctuations. Squeezing up to -7dB is estimated for 87Rb

vapor under realistic conditions.

7. The nonlinear Faraday effect is a promising tool for precision metrology. We

have estimated the sensitivity of a magnetometer based on nonlinear polar-

ization rotation, and demonstrated that higher atomic density leads to better

sensitivity, and that optimal operation conditions are reached for optically thick

Rb vapor. At the same time the dynamic range of the measured magnetic fields

may be controlled by power broadening of the resonance.
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APPENDIX A

SOME PROPERTIES OF Rb ATOMS

The chemical element we used in all our experiments is Rubidium (Rb). It

belongs to the group of alkali metals (with Li, Na, K, Cs and Fr). The Rb atom has

one unbound electron in the electronic configuration [Kr]5s1. Its atomic number is 37,

and the atomic weight is 85.4678(3). Twenty four isotopes of Rubidium are known.

Naturally occurring Rb is made of two isotopes, 85Rb and 87Rb. The first isotope is

stable, and 87Rb is present to the extent of 27.85% in natural rubidium and is a beta

emitter with a half-life of 4.9 · 1010 years [329–331].

Rubidium was discovered spectroscopically in 1861 by R. Bunsen and R. Kirchoff

in the mineral lepidolite, from which it is now recovered commercially. The name of

the element originated from Latin rubidus - deepest red, for its bright spectroscopic

lines in near infra-red region.

At room temperature Rb exists in liquid form. The typical atomic cell, which

is used in the experiments, is shown in Fig. 69. Glass cylinder contains the drop of

liquid Rb and the saturated Rb vapor. The dependence of the pressure of the Rb

vapor inside the cell on temperature T [K] is given by empirical formula [332,333]:

log10 P [Torr] = A− B

T
+ CT + D log10 T, (A.1)

where coefficients are A = −94.04826, B = 1961.258, C = −0.03771687, D = 42.57526

for solid Rb (T < 312K), and A = 15.88253, B = 4529.635, C = 0.00058663, D =

−2.99138 for liquid Rb.

Rubidium atoms have a hidrogen-like electronic configuration, with the first ex-

cited state 5P . This level is split into two states with total angular momentum
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Fig. 69. Glass atomic cell with drops of liquid Rb.

J = 1/2 and J = 3/2 due to spin-orbit coupling. The optical transition 5S1/2 → 5P1/2

(often referred as a D1 line) has a wavelength of λ = 794.760nm with the lifetime of

the excited state of τ = 29.4ns. The wavelength of the other transition 5S1/2 → 5P1/2

(D2) line is λ = 780.027nm, with the lifetime of the excited state τ = 27.0ns [161].

Because of the hyper-fine coupling between the electron and nuclear spins, the

atomic levels are further split into two (5P1/2 and 5P1/2) or four (5P3/2) sublevels.

The actual structure of the hyperfine levels depends on the isotope. For 87Rb the

nuclear spin is I = 3/2, and for 85Rb it is I = 5/2. The level scheme and the values

of the hyperfine splitting are shown in Fig. 70 for the D1 and in Fig. 71 for the D2

lines.
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Fig. 70. Level scheme for the D1 line of 87Rb and 85Rb. The splitting between the

levels is given in MHz.
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Fig. 71. Same as Fig. 70 for the Rb D2 line.
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The electric dipole moments of the various transitions between the Zeeman sub-

levels are determined by the following expression:

℘J,I,F,mF→J ′,I,F ′,mF ′ =
∣∣∣〈J ′, I, F ′,mF ′ |~d|J, I, F, mF 〉

∣∣∣

=

∣∣∣〈J ′|~d|J〉
∣∣∣√

2J ′ + 1
aF,mF→F ′,mF ′ (A.2)

Here and further the apostrophe, for example “F’ ”, denotes the values belonging to

the excited state.

Coefficients aF,mF→F ′,mF ′ determine the relative probability of each individual

transition within the hyperfine Zeeman substructure of the ground and excited states

J and J ′. They can be expressed in terms of 3j and 6j symbols [161]:

aF,mF→F ′,mF ′ = (−1)1+I+J ′+F ′+F−mF ′
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)

×




F ′ 1 F

−mF ′ q mF








F ′ 1 F

J I J ′





, (A.3)

where q is the ellipticity coefficient of the laser light (q = ±1 for right/left-circularly

polarized light, and q = 0 for the linearly polarized light.

The numerical values of the coefficients aF,mF→F ′,mF ′ for the D1 and D2 lines of

87Rb are given in Tables III and IV.
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Table III. Transition probability coefficients for the 87Rb D1 line.

F’ 2 2 2 2 2 1 1 1

F mF 2 1 0 -1 -2 -1 0 1

2 2 2
√

2 0 0 0 -
√

6 0 0

2 1 -
√

2 1
√

3 0 0
√

3 -
√

3 0

2 0 1
2
√

3
× 0 -

√
3 0

√
3 0 -1 2 -1

2 -1 0 0 -
√

3 -1
√

2 0 -
√

3
√

3

2 -2 0 0 0 -
√

2 -2 0 0 -
√

6

1 1
√

6
√

3 1 0 0 -1 -1 0

1 0 1
2
√

3
× 0

√
3 2

√
3 0 1 0 -1

1 -1 0 0 1
√

3
√

6 0 1 1
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Table IV. Transition probability coefficients for the 87Rb D2 line.

F’ 3 3 3 3 3 3 3

F mF 3 2 1 0 -1 -2 -3

2 2
√

15
√

5 1 0 0 0 0

2 1 0
√

10 2
√

2
√

3 0 0 0

2 0 1√
15
× 0 0

√
6 3

√
6 0 0

2 -1 0 0 0
√

3 2
√

2
√

10 0

2 -2 0 0 0 0 1
√

5
√

15

F’ 2 2 2 2 2 1 1 1 0

F mF 2 1 0 -1 -2 -1 0 1 0

2 2 -2 -
√

2 0 0 0
√

6 0 0 0

2 1
√

2 -1 -
√

3 0 0 -
√

3
√

3 0 0

2 0 1
2
√

3
× 0

√
3 0 -

√
3 0 1

2
√

15
× 1 -2 1 0

2 -1 0 0
√

3 1 -
√

2 0
√

3 -
√

3 0

2 -2 0 0 0
√

2 2 0 0
√

6 0

1 1
√

6
√

3 1 0 0 -1 -1 0 1

1 0 1
2
√

3
× 0

√
3 2

√
3 0

√
5

2
√

3
× 1 0 -1 1√

3
× -1

1 -1 0 0 1
√

3
√

6 0 1 1 1
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