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44.3 Spherical coordinates 1 2 3( , , )x x x  are defined by the coordinate transformation 

 

 

1 1 2 3

2 1 2 3

3 1 2

sin cos
sin sin
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z x x x
z x x x
z x x

=

=

=

 

 

relative to a rectangular Cartesian coordinate system ẑ .  How must the quantity 1 2 3( , , )x x x  
be restricted so as to make 1ˆẑ x−D  one-to-one?  Discuss the coordinate curves and the 
coordinate surfaces.  Show that 
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44.4 Paraboloidal coordinates 1 2 3( , , )x x x  are defined by 
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Relative to a rectangular Cartesian coordinate system ẑ .  How must the quantity 1 2 3( , , )x x x  
be restricted so as to make 1ˆẑ x−D  one-to-one.  Discuss the coordinate curves and the 
coordinate surfaces.  Show that 
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44.5 A bispherical coordinate system 1 2 3( , , )x x x  is defined relative to a rectangular Cartesian 
coordinate system by 
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and 
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3
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where 0a > .  How must 1 2 3( , , )x x x  be restricted so as to make 1ˆẑ x−D  one-to-one?  
Discuss the coordinate curves and the coordinate surfaces.  Also show that  
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44.6 Prolate spheroidal coordinates 1 2 3( , , )x x x  are defined by 
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sinh sin cos
sinh sin sin
cosh cos

z a x x x
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relative to a rectangular Cartesian coordinate system ẑ , where 0a > .  How must 1 2 3( , , )x x x  
be restricted so as to make 1ˆẑ x−D  one-to-one?  Also discuss the coordinate curves and the 
coordinate surfaces and show that 
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( )
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44.7 Elliptical cylindrical coordinates 1 2 3( , , )x x x  are defined relative to a rectangular Cartesian 
coordinate system by 
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where 0a > .  How must 1 2 3( , , )x x x  be restricted so as to make 1ˆẑ x−D  one-to-one?  
Discuss the coordinate curves and coordinate surfaces.  Also, show that 
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44.8 For the cylindrical coordinate system show that 

 

 

2 2
1 1 2

1 2 1 2
2 1 2

3 3

(cos ) (sin )

(sin ) (cos )

x x

x x x x

= +

= − +
=

g i i

g i i
g i

 

 

44.9 At a point x  in E , the components of the position vector ( ) = −r x x 0E  with respect to the 
basis { }1,..., Ni i  associated with a rectangular Cartesian coordinate system are 1,..., Nz z .  
This observation follows, of course, from (44.16).  Compute the components of ( )r x  with 
respect to the basis { }1 2 3( ), ( ), ( )g x g x g x  for (a) cylindrical coordinates, (b) spherical 
coordinates, and (c) parabolic coordinates.  You should find that 
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44.10 Toroidal coordinates 1 2 3( , , )x x x  are defined relative to a rectangular Cartesian coordinate 
system by 
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where 0a > .  How must 1 2 3( , , )x x x  be restricted so as to make 1ˆẑ x−D  one to one?  Discuss 
the coordinate surfaces.  Show that 
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Section 45. Transformation Rules for Vectors and Tensor Fields 
 

In this section, we shall formalize certain ideas regarding fields on E  and then investigate 
the transformation rules for vectors and tensor fields.  Let U  be an open subset of E ;  we shall 
denote by ( )F ∞ U  the set of C∞  functions :f →U R .  First we shall study the algebraic structure 
of ( )F ∞ U .  If 1f  and 2f  are in ( )F ∞ U , then their sum 1 2f f+  is an element of ( )F ∞ U  defined by 

 

 1 2 1 2( )( ) ( ) ( )f f f f+ = +x x x  (45.1) 

 

and their produce 1 2f f  is also an element of ( )F ∞ U  defined by 

 

 1 2 1 2( )( ) ( ) ( )f f f f=x x x  (45.2) 

 

for all ∈x U .  For any real number λ ∈R  the constant function is defined by 

 

 ( )λ λ=x  (45.3) 

 

for all ∈x U .  For simplicity, the function and the value in (45.3) are indicated by the same 
symbol.  Thus, the zero function in ( )F ∞ U  is denoted simply by 0  and for every ( )f F ∞∈ U  

 

 0f f+ =  (45.4) 

 

It is also apparent that 

 

 1 f f=  (45.5) 

 

In addition, we define 

 

 ( 1)f f− = −  (45.6) 
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It is easily shown that the operations of addition and multiplication obey commutative, associative, 
and distributive laws.  These facts show that ( )F ∞ U  is a commutative ring (see Section 7). 

 

An important collection of scalar fields can be constructed as follows:  Given two charts 
( )1 ˆ, xU  and ( )2 ˆ, yU , where 1 2∩ ≠∅U U , we define the 2N  partial derivatives ( ) ( )1,...,i j Ny x x x∂ ∂  

at every ( ) ( )1
1 2ˆ,..., Nx x x∈ ∩U U .  Using a suggestive notation, we can define 2N  C∞  functions 

1 2:i jy x∂ ∂ ∩ →U U R  by 

 

 ˆ( ) ( )
i i

j j

y y x
x x
∂ ∂

=
∂ ∂

x xD  (45.7) 

 

for all 1 2∈ ∩x U U . 

 

As mentioned earlier, a C∞  vector field on an open set U  of E  is a C∞  map : →v U V , 
where V  is the translation space of E .  The fields defined by (44.31) and (44.32) are special cases 
of vector fields.  We can express v  in component forms on 1 2∩U U , 

 

 i j
i jυ υ= =v g g  (45.8) 

 

 i
j jigυ υ=  (45.9) 

 

As usual, we can computer 1:iυ ∩ →U U R  by 

 

 1 2( ) ( ) ( ),i iυ = ⋅ ∈ ∩x v x g x x U U  (45.10) 

 

and iυ  by (45.9).  In particular, if ( )2 ˆ, yU  is another chart such that 1 2∩ ≠∅U U , then the 
component form of jh  relative to x̂  is 

 

 
i

j ij

x
y
∂

=
∂

h g  (45.11) 
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With respect to the chart ( )2 ˆ, yU , we have also 

 

 k
kυ=v h  (45.12) 

 

where 2:kυ ∩ →U U R .  From (45.12), (45.11), and (45.8), the transformation rule for the 
components of v  relative to the two charts ( )1 ˆ, xU  and ( )2 ˆ, yU  is 

 

 
i

i j
j

x
y

υ υ∂
=
∂

 (45.13) 

 

for all 1 2∈ ∩ ∩x U U U . 

 

 As in (44.18), we can define an inner product operation between vector fields.  If 
1 1: →v U V  and 2 2: →v U V  are vector fields, then 1 2⋅v v  is a scalar field defined on 1 2∩U U  by 

 

 1 2 1 2 1 2( ) ( ) ( ),⋅ = ⋅ ∈ ∩v v x v x v x x U U  (45.14) 

 

Then (45.10) can be written 

 

 i iυ = ⋅v g  (45.15) 

 

 Now let us consider tensor fields in general.  Let ( )qT ∞ U  denote the set of all tensor fields of 

order q  defined on an open set U  in E .  As with the set ( )F∞ U , the set ( )qT ∞ U  can be assigned 

an algebraic structure.  The sum of : ( )q→U T VA  and : ( )q→U T VB  is a C∞  tensor field 
: ( )q+ →U T VA B  defined by 

 

 ( )( ) ( ) ( )+ = +x x xA B A B  (45.16) 

 

for all ∈x U .  If ( )f F∞∈ U  and ( )qT ∞∈ UA , then we can define ( )qf T ∞∈ UA  by 
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 ( ) ( ) ( )f f=x x xA A  (45.17) 

 

Clearly this multiplication operation satisfies the usual associative and distributive laws with 
respect to the sum for all ∈x U .  As with ( )F∞ U , constant tensor fields in ( )qT ∞ U  are given the 
same symbol as their value.  For example, the zero tensor field is : ( )q→U T V0  and is defined by 

 

 ( ) =x 00  (45.18) 

 

for all ∈x U .  If 1 is the constant function in ( )F∞ U , then 

 

 ( 1)− = −A A  (45.19) 

 

The algebraic structure on the set ( )qT ∞ V  just defined is called a module over the ring ( )F∞ U . 

 

 The components of a tensor field : ( )q→U T VA  with respect to a chart ( )1 ˆ, xU  are the qN  
scalar fields 

1... 1:
qi iA ∩ →U U R  defined by 

 

 
1 1... ( ) ( )( ( ),..., ( ))

q qi i i iA =x x g x g xA  (45.20) 

 

for all 1∈ ∩x U U .  Clearly we can regard tensor fields as multilinear mappings on vector fields 
with values as scalar fields.  For example, 

1
( ,..., )

qi ig gA  is a scalar field defined by 

 

 
1 1

( ,..., )( ) ( )( ( ),..., ( ))
q qi i i i=g g x x g x g xA A  

 

for all 1∈ ∩x U U .  In fact we can, and shall, carry over to tensor fields the many algebraic 
operations previously applied to tensors.  In particular a tensor field : ( )q→U T VA  has the 
representation 

 

 1

1...
q

q

ii
i iA= ⊗⋅⋅⋅⊗g gA  (45.21) 
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for all 1∈ ∩x U U , where 1U  is the coordinate neighborhood for a chart ( )1 ˆ, xU .  The scalar fields 

1... qi iA  are the covariant components of A  and under a change of coordinates obey the 
transformation rule 

 

 
1

1 11... ...

q

q qq

ii

k k i ikk

x xA A
y y
∂ ∂

= ⋅⋅⋅
∂ ∂

 (45.22) 

 

Equation (45.22) is a relationship among the component fields and holds at all points 
1 2∈ ∩ ∩x U U U  where the charts involved are ( )1 ˆ, xU  and ( )2 ˆ, yU .  We encountered an example of 

(45.22) earlier with (44.48).  Equation (44.48) shows that the ijg  are the covariant components of a 
tensor field I  whose value is the identity or metric tensor, namely 

 

 i j j j ij
ij j j i jg g= ⊗ = ⊗ = ⊗ = ⊗I g g g g g g g g  (45.23) 

 

for points 1∈x U , where the chart in question is ( )1 ˆ, xU .  Equations (45.23) show that the 
components of a constant tensor field are not necessarily constant scalar fields.  It is only in 
Cartesian coordinates that constant tensor fields have constant components. 

 

 Another important tensor field is the one constructed from the positive unit volume tensor 
E .  With respect to an orthonormal basis { }ji , which has positive orientation, E  is given by (41.6), 
i.e., 

 

 
1 11 N NN i i i iε ⋅⋅⋅= ∧ ⋅ ⋅ ⋅ ∧ = ⊗⋅⋅ ⋅⊗i i i iE  (45.24) 

 

Given this tensor, we define as usual a constant tensor field ˆ: ( )N→E E T V  by 

 

 ( ) =xE E  (45.25) 

 

for all ∈x E .  With respect to a chart ( )1 ˆ, xU , it follows from the general formula (42.27) that  

 

 11

1 1

N N

N N

i i ii
i i i iE E ⋅⋅⋅
⋅⋅⋅= ⊗ ⋅⋅ ⋅⊗ = ⊗⋅⋅ ⋅⊗g g g gE  (45.26) 
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where 
1 Ni iE ⋅⋅⋅  and 1 Ni iE ⋅⋅⋅  are scalar fields on 1U  defined by 

 

 
1 1N Ni i i iE e gε⋅⋅⋅ ⋅⋅⋅=  (45.27) 

 

and 

 

 1 1N Ni i i ieE
g
ε⋅⋅⋅ ⋅⋅⋅=  (45.28) 

 

where, as in Section 42, e  is 1+  if { }( )ig x  is positively oriented and 1−  if { }( )ig x  is negatively 

oriented, and where g  is the determinant of ijg⎡ ⎤⎣ ⎦  as defined by (44.45).  By application of (42.28), 
it follows that  

 

 1 1 1

1

N N N

N

i i i ji j
j jE g g E⋅⋅⋅
⋅⋅⋅= ⋅ ⋅ ⋅  (45.29) 

 

 An interesting application of the formulas derived thus far is the derivation of an expression 
for the differential element of volume in curvilinear coordinates.  Given the position vector r  
defined by (44.14) and a chart ( )1 ˆ, xU , the differential of r  can be written 

 

 ( ) i
id d dx= =r x g x  (45.30) 

 

where (44.33) has been used.  Given N  differentials of r , 1 2, , , Nd d d⋅ ⋅ ⋅r r r , the differential volume 
element dυ  generated by them is defined by 

 

 ( )1, , Nd d dυ = ⋅ ⋅ ⋅r rE  (45.31) 

 

or, equivalently, 

 

 1 Nd d dυ = ∧ ⋅ ⋅ ⋅ ∧r r  (45.32) 
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If we select 1 2
1 1 2 2( ) , ( ) , , ( ) N

N Nd dx d dx d dx= = ⋅⋅ ⋅ =r g x r g x r g x , we can write (45.31)) as 

 

 ( ) 1 2
1( ), , ( ) N

Nd dx dx dxυ = ⋅⋅ ⋅ ⋅ ⋅ ⋅g x g xE  (45.33) 

 

By use of (45.26) and (45.27), we then get 

 

 ( )1 12( ), , ( )N NE e g⋅⋅⋅⋅ ⋅ ⋅ = =g x g xE  (45.34) 

 

Therefore, 

 

 1 2 Nd gdx dx dxυ = ⋅ ⋅ ⋅  (45.35) 

 

For example, in the parabolic coordinates mentioned in Exercise 44.4, 

 

 ( ) ( )( )2 21 2 1 2 1 2 3d x x x x dx dx dxυ = +  (45.36) 

 

Exercises 
 

45.1 Let v  be a C∞  vector field and f  be a C∞  function both defined on U  an open set in E .  
We define :f →v D U R  by 

 

 ( ) ( ) grad ( ),f f= ⋅ ∈v x v x x xD U  (45.37) 

 

Show that 

 

 ( ) ( ) ( )f g f gλ μ λ μ+ = +v v vD D D  

 

and 
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 ( ) ( ) ( )fg f g f g= +v v vD D D  

 

For all constant functions λ , μ  and all C∞  functions f  and g .  In differential geometry, 
an operator on ( )F∞ U  with the above properties is called a derivation.  Show that, 
conversely, every derivation on ( )F∞ U  corresponds to a unique vector field on U  by 
(45.37). 

45.2 By use of the definition (45.37), the Lie bracket of two vector fields : →v U V  and 
: →u U V , written [ ],u v , is a vector field defined by 

 

 [ ] ( ) ( ), f f f= −u v u v v uD D D D D  (45.38) 

 

For all scalar fields ( )f F∞∈ U .  Show that [ ],u v  is well defined by verifying that (45.38) 

defines a derivation on [ ],u v .  Also, show that 

 

 [ ] ( ) ( ), grad grad= −u v v u u v  

 

 and then establish the following results: 

 (a) [ ] [ ], ,= −u v v u  

 (b) [ ] [ ] [ ], , , , , ,⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦v u w u w v w v u 0  

 for all vector fields ,u v  and w . 

(c) Let ( )1 ˆ, xU  be a chart with natural basis field { }ig .  Show that ,i j⎡ ⎤ =⎣ ⎦g g 0 . 

The results (a) and (b) are known as Jacobi’s identities. 

45.3 In a three-dimensional Euclidean space the differential element of area normal to the plan 
formed from 1dr  and 2dr  is defined by 

 

 1 2d d d= ×σ r r  

 

Show that 

 

 1 2 ( )j k i
ijkd E dx dx=σ g x  
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Section 46. Anholonomic and Physical Components of Tensors 
 

 In many applications, the components of interest are not always the components with 
respect to the natural basis fields { }ig  and { }jg .  For definiteness let us call the components of a 

tensor field ( )qT ∞∈ UA  is defined by (45.20) the holonomic components of A .  In this section, we 
shall consider briefly the concept of the anholonomic components of A ;  i.e., the components of 
A  taken with respect to an anholonomic basis of vector fields.  The concept of the physical 
components of a tensor field is a special case and will also be discussed. 

 

 Let 1U  be an open set in E  and let { }ae  denote a set of N  vectors fields on 1U , which are 

linearly independent, i.e., at each 1∈x U , { }ae  is a basis of V .  If A  is a tensor field in ( )qT ∞ U  
where 1 ∩ ≠∅U U , then by the same type of argument as used in Section 45, we can write 

 

 1

1 2 ...
q

q

aa
a a aA= ⊗⋅⋅⋅⊗e eA  (46.1) 

 

or, for example, 

 

 1

1

... q

q

b b
b bA= ⊗⋅⋅⋅⊗e eA  (46.2) 

 

where { }ae  is the reciprocal basis field to { }ae  defined by 

 

 ( ) ( )a a
b bδ⋅ =e x e x  (46.3) 

 

for all 1∈x U .  Equations (46.1) and (46.2) hold on 1∩U U , and the component fields as defined by 

 

 
1 2 1... ( ,..., )

q qa a a a aA = e eA  (46.4) 

 

and 

 

 1 1... ( ,..., )q qb b bbA = e eA  (46.5) 
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are scalar fields on 1∩U U .  These fields are the anholonomic components of A  when the bases 

{ }ae  and { }ae  are not the natural bases of any coordinate system. 

 

 Given a set of N  vector fields { }ae  as above, one can show that a necessary and sufficient 

condition for { }ae  to be the natural basis field of some chart is 

 

 [ ],a b =e e 0  

 

for all , 1,...,a b N= , where the bracket product is defined in Exercise 45.2.  We shall prove this 
important result in Section 49.  Formulas which generalize (45.22) to anholonomic components can 
easily be derived.  If { }ˆ ae  is an anholonomic basis field defined on an open set 2U  such that 

1 2∩ ≠∅U U , then we can express each vector field ˆbe  in anholonomic component form relative to 
the basis { }ae , namely 

 

 ˆ a
b b aT=e e  (46.6) 

 

where the a
bT  are scalar fields on 1 2∩U U  defined by 

 

 ˆa a
b bT = ⋅e e  

 

The inverse of (46.6) can be written 

 

 ˆ ˆb
a a baT=e e  (46.7) 

 

where 

 

 ˆ ( ) ( )b a b
a c cT T δ=x x  (46.8) 

 

and 

 



334 Chap. 9 • EUCLIDEAN MANIFOLDS 

 ˆ( ) ( )a c a
c b bT T δ=x x  (46.9) 

 

for all 1 2∈ ∩x U U .  It follows from (46.4) and (46.7) that 

 

 1

1 1 1... ...
ˆˆ ˆ q

q q q

bb
a a a a b bA T T A= ⋅⋅ ⋅  (46.10) 

 

where 

 

 
1 1...

ˆ ˆ ˆ( ,..., )
q qb b b bA = e eA  (46.11) 

 

Equation (46.10) is the transformation rule for the anholonomic components of A .  Of course, 
(46.10) is a field equation which holds at every point of 1 2∩ ∩U U U .  Similar transformation rules 
for the other components of A  can easily be derived by the same type of argument used above. 

 

 We define the physical components of A , denoted by 
1 ,..., qa a

A , to be the anholonomic 

components of A  relative to the field of orthonomal basis { }ig  whose basis vectors ig  are unit 

vectors in the direction of the natural basis vectors ig  of an orthogonal coordinate system.  Let 

( )1 ˆ, xU  by such a coordinate system with 0,  ijg i j= ≠ .  Then we define 

 

 ( ) ( ) ( ) (no sum)i ii =g x g x g x  (46.12) 

 

at every 1∈x U .  By (44.39), an equivalent version of (46.12) is 

 

 1 2( ) ( ) ( ( )) (no sum)i iii g=g x g x x  (46.13) 

 

Since { }ig  is orthogonal, it follows from (46.13) and (44.39) that { }ig  is orthonormal: 

 

 aba b δ⋅ =g g  (46.14) 
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as it should, and it follows from (44.41) that 

 

 

11

22

1 ( ) 0 0
0 1 ( ) 0

( )

0 0 1 ( )

ij

NN

g
g

g

g

⋅ ⋅ ⋅⎡ ⎤
⎢ ⎥
⎢ ⎥

⋅ ⋅ ⋅⎢ ⎥
⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⋅ ⋅ ⋅⎢ ⎥

⎢ ⎥⋅ ⋅ ⋅
⎢ ⎥⋅ ⋅ ⋅⎣ ⎦

x
x

x

x

 (46.15) 

 

This result shows that ig  can also be written 

 

 1 2
1 2

( )( ) ( ( )) ( ) (no sum)
( ( ))

i
i

iii ii g
g

= =
g xg x x g x

x
 (46.16) 

 

 Equation (46.13) can be viewed as a special case of (46.7), where 

 

 

11

22

1 0 0

0 1 0

ˆ

0 0 1

b
a

NN

g

g

T

g

⎡ ⎤⋅ ⋅ ⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅⎢ ⎥⎡ ⎤ =⎣ ⎦ ⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅⎣ ⎦

 (46.17) 

By the transformation rule (46.10), the physical components of A  are related to the covariant 
components of A  by 

 

 ( )1 1 11 21 2

1 2

......
( , ,..., ) (no sum)

q q qq q a a a a a aa aa a a a
A g g A

−
≡ = ⋅ ⋅ ⋅g g gA  (46.18) 

 

Equation (46.18) is a field equation which holds for all ∈x U .  Since the coordinate system is 
orthogonal, we can replace (46.18)1 with several equivalent formulas as follows: 

 



336 Chap. 9 • EUCLIDEAN MANIFOLDS 

 

( )
( ) ( )

( ) ( )

1

1 11 2

2

1 1 2 2 1

1 1 1 1 1 1

1 2 ...
...

1 21 2 ...

1 2 1 2

...

q

q qq

q

q q

q

q q q q q

a a
a a a aa a a

a a
a a a a a a a

a
a a a a a a a a

A g g A

g g g A

g g g A
− − −

−

−

= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

⋅
⋅
⋅

= ⋅ ⋅ ⋅

 (46.19) 

 

 In mathematical physics, tensor fields often arise naturally in component forms relative to 
product bases associated with several bases.  For example, if { }ae  and { }ˆbe  are fields of bases, 
possibly anholonomic, then it might be convenient to express a second-order tensor field A  as a 
field of linear transformations such that 

 

 ˆ ˆ , 1,...,b
a a bA a N= =e eA  (46.20) 

 

In this case A  has naturally the component form 

 

 ˆ ˆb a
a bA= ⊗e eA  (46.21) 

 

Relative to the product basis { }ˆ a
b ⊗e e  formed by { }ˆbe  and { }ae , the latter being the reciprocal 

basis of { }ae  as usual.  For definiteness, we call { }ˆ a
b ⊗e e  a composite product basis associated 

with the bases { }ˆbe  and { }ae .  Then the scalar fields b̂
aA  defined by (46.20) or (46.21), may be 

called the composite components of A , and they are given by 

 

 ˆ ˆ( )b b
a aA = ⊗e eA  (46.22) 

 

 Similarly we may define other types of composite components, e.g., 

 

 ˆ
ˆ ˆ ˆ( , ), ( , )ba b a

b aba
A A= =e e e eA A  (46.23) 

 

etc., and these components are related to one another by 
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 ˆ ˆ
ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆc c cd
a ca daba cb b bc

A A g A g A g g= = =  (46.24) 

 

etc.  Further, the composite components are related to the regular tensor components associated 
with a single basis field by 

 

 ˆ
ˆ ˆ ˆ ˆ

ˆ , etc.c c
ca aba b bc

A A T A T= =  (46.25) 

 

where ˆ
a

b
T  and ˆˆ a

bT  are given by (46.6) and (46.7) as before,  In the special case where { }ae  and 

{ }ˆbe  are orthogonal but not orthonormal, we define the normalized basis vectors ae  and ˆ ae  as 

before.  Then the composite physical components ˆ,b a
A  of A  are given by 

 

 ˆ ˆ,
ˆ( , )ab a b

A = e eA  (46.26) 

 

and these are related to the composite components by 

 

 ( ) ( )1 2 1 2ˆ
ˆ ˆˆ,

ˆ (no sum)b aa
abbb a

A g A g=  (46.27) 

 

 Clearly the concepts of composite components and composite physical components can be 
defined for higher order tensors also. 

 

 

Exercises 
 

46.1 In a three-dimensional Euclidean space the covariant components of a tensor field A  
relative to the cylindrical coordinate system are ijA .  Determine the physical components of 
A . 

46.2 Relative to the cylindrical coordinate system the helical basis { }ae  has the component form 
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 ( ) ( )
( ) ( )

1 1

2 2 3

3 2 3

cos sin

sin cos

α α

α α

=

= +

= − +

e g

e g g

e g g

 (46.28) 

 

where α  is a constant called the pitch, and where { }αg  is the orthonormal basis associated 

with the natural basis of the cylindrical system.  Show that { }ae  is anholonomic.  Determine 
the anholonomic components of the tensor field A  in the preceding exercise relative to the 
helical basis. 

46.3 Determine the composite physical components of A  relative to the composite product basis 

{ }a b⊗e g  
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Section 47. Christoffel Symbols and Covariant Differentiation 
 

 In this section we shall investigate the problem of representing the gradient of various 
tensor fields in components relative to the natural basis of arbitrary coordinate systems.  We 
consider first the simple case of representing the tangent of a smooth curve in E .  Let 

( ): ,a b →λ E  be a smooth curve passing through a point x , say ( )c=x λ .  Then the tangent vector 
of λ  at x  is defined by 

 

 ( )

t c

d t
dt =

=
x

λλ�  (47.1) 

 

Given the chart ( )ˆ, xU  covering x , we can project the vector equation (47.1) into the natural basis 

{ }ig  of x̂ .  First, the coordinates of the curve λ  are given by 

 

 ( ) ( ) ( ) ( )1 1ˆ ( ) ( ),..., ( ) , ( ),..., ( )N Nx t t t t t tλ λ λ λ= =λ λ x�  (47.2) 

 

for all t  such that ( )t ∈λ U .  Differentiating (47.2)2 with respect to t , we get 

 

 
j

j
t c

d
x dt

λ

=

∂
=
∂x

xλ
��  (47.3) 

 

By (47.3) this equation can be rewritten as 

 

 ( )
j

j
t c

d
dt
λ

=

=
x

λ g x�  (47.4) 

 

Thus, the components of λ�  relative to { }jg  are simply the derivatives of the coordinate 
representations of λ  in x̂ .  In fact (44.33) can be regarded as a special case of (47.3) when λ  
coincides with the ith coordinate curve of x̂ . 

 

 An important consequence of (47.3) is that 



340 Chap. 9 • EUCLIDEAN MANIFOLDS 

 

 ( ) ( )1 1ˆ ( ) ( ) ( ),..., ( ) ( )N Nx t t t t o t t t o tλ υ λ υ+ Δ = + Δ + Δ + Δ + Δλ  (47.5) 

 

where iυ  denotes a component of λ� , i.e., 

 

 i id dtυ λ=  (47.6) 

 

In particular, if λ  is a straight line segment, say 

 

 ( )t t= +λ x v  (47.7) 

 

so that 

 

 ( )t =λ v�  (47.8) 

 

for all t , then (47.5) becomes 

 

 ( ) ( )1 1ˆ ( ) ,..., ( )N Nx t x t x t o tυ υ= + + +λ  (47.9) 

 

for sufficiently small t . 

 

 Next we consider the gradient of a smooth function f  defined on an open set ⊂U E .  
From (43.17) the gradient of f  is defined by 

 

 
0

grad ( ) ( )df f
d τ

τ
τ =

⋅ = +x v x v  (47.10) 

 

for all ∈v V .  As before, we choose a chart near x ;  then f  can be represented by the function 

 

 1 1( ,..., ) ( ,..., )N Nf x x f x x≡ x�D  (47.11) 
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For definiteness, we call the function f x�D  the coordinate representation of f .  From (47.9), we 
see that 

 

 1 1( ) ( ( ),..., ( ))N Nf f x o x oτ υ τ τ υ τ τ+ = + + + +x v  (47.12) 

 

As a result, the right-hand side of (47.10) is given by 

 

 
0

( )( ) j
j

d ff
d xτ

τ υ
τ =

∂
+ =

∂
xx v  (47.13) 

 

Now since v  is arbitrary, (47.13) can be combined with (47.10) to obtain 

 

 grad j
j

ff
x
∂

=
∂

g  (47.14) 

 

where jg  is a natural basis vector associated with the coordinate chart as defined by (44.31).  In 
fact, that equation can now be regarded as a special case of (47.14) where f  reduces to the 
coordinate function ˆ ix . 

 

Having considered the tangent of a curve and the gradient of a function, we now turn to the 
problem of representing the gradient of a tensor field in general.  Let ( )qT ∞∈ UA  be such a field 
and suppose that x  is an arbitrary point in its domain U .  We choose an arbitrary chart x̂  covering 
x .  Then the formula generalizing (47.4) and (47.14) is 

 

 ( )grad ( ) ( )j
jx

∂
= ⊗

∂
xx g xAA  (47.15) 

 

where the quantity ( ) jx∂ ∂xA  on the right-hand side is the partial derivative of the coordinate 
representation of A , i.e., 

 

 1( ) ( ,..., )N
j j x x

x x
∂ ∂

=
∂ ∂

x xA A �D  (47.16) 

 

From (47.15) we see that grad A  is a tensor field of order 1q +  on U , ( )1grad qT ∞
+∈ UA . 
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 To prove (47.15) we shall first regard grad ( )xA  as in ( ; ( ))qL V T V .  Then by (43.15), 
when A  is smooth, we get 

 

 ( ) 0
grad ( ) ( )d

d τ
τ

τ =
= +x v x vA A  (47.17) 

 

for all ∈v V .  By using exactly the same argument from (47.10) to (47.13), we now have 

 

 ( ) ( )grad ( ) j
jx
υ∂

=
∂

xx v AA  (47.18) 

 

Since this equation must hold for all ∈v V , we may take ( )k=v g x  and find 

 

 ( ) ( )grad ( ) k kx
∂

=
∂

xx g AA  (47.19) 

 

which is equivalent to (47.15) by virtue of the canonical isomorphism between ( ; ( ))qL V T V  and 

1( )q+T V . 

 

 Since 1grad ( ) ( )q+∈x T VA , it can be represented by its component form relative to the 
natural basis, say 

 

 ( ) 1

1

...grad ( ) grad ( ) ( ) ( ) ( )q

q

i i j
i ij

= ⋅⋅⋅ ⊗x x g x g x g xA A  (47.20) 

 

Comparing this equation with (47.15), we se that 

 

 ( ) 1

1

... ( )grad ( ) ( ) ( )q

q

i i
i i jj x

∂
⋅⋅⋅ =

∂
xx g x g x AA  (47.21) 
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for all 1,...,j N= .  In applications it is convenient to express the components of grad ( )xA  in terms 
of the components of ( )xA  relative to the same coordinate chart.  If we write the component form 
of ( )xA  as usual by 

 

 1

1

...( ) ( ) ( ) ( )q

q

i i
i iA= ⊗⋅⋅⋅⊗x x g x g xA  (47.22) 

 

then the right-hand side of (47.21) is given by 

 

 

1

1

1 1

1

...

...

( ) ( ) ( ) ( )

( )( )
( ) ( ) ( )

q

q

qq

q

i i

i ij j

ii i i
i ij j

A
x x

A
x x

∂ ∂
= ⊗⋅⋅⋅⊗

∂ ∂
∂⎡ ⎤∂

+ ⊗⋅⋅⋅⊗ + ⊗⋅⋅⋅⊗⎢ ⎥∂ ∂⎣ ⎦

x x g x g x

g xg x
x g x g x

A

 (47.23) 

 

From this representation we see that it is important to express the gradient of the basis vector ig  in 
component form first, since from (47.21) for the case i= gA , we have 

 

 ( )( ) grad ( ) ( )ki
i kj jx

∂
=

∂
g x g x g x  (47.24) 

 

or, equivalently, 

 

 ( ) ( )i
kj

k
ijx
⎧ ⎫∂

= ⎨ ⎬∂ ⎩ ⎭

g x g x  (47.25) 

 

We call 
k
ij
⎧ ⎫
⎨ ⎬
⎩ ⎭

 the Christoffel symbol associated with the chart x̂ .  Notice that, in general, 
k
ij
⎧ ⎫
⎨ ⎬
⎩ ⎭

 is a 

function of x , but we have suppressed the argument x  in the notation.  More accurately, (47.25) 
should be replaced by the field equation 

 

 i
kj

k
ijx
⎧ ⎫∂

= ⎨ ⎬∂ ⎩ ⎭

g g  (47.26) 
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which is valid at each point x  in the domain of the chart x̂ , for all , 1,...,i j N= .  We shall consider 
some preliminary results about the Christoffel symbols first. 

 

 From (47.26) and (44.35) we have 

 

 ki
j

k
ij x
⎧ ⎫ ∂

= ⋅⎨ ⎬ ∂⎩ ⎭

g g  (47.27) 

 

By virtue of (44.33), this equation can be rewritten as 

 

 
2

k
i j

k
ij x x
⎧ ⎫ ∂

= ⋅⎨ ⎬ ∂ ∂⎩ ⎭

x g
�

 (47.28) 

 

It follows from (47.28) that the Christoffel symbols are symmetric in the pair ( )ij , namely 

 

 
k k
ij ji
⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 (47.29) 

 

for all , , 1,...,i j k N= .  Now by definition 

 

 ij i jg = ⋅g g  (47.30) 

 

Taking the partial derivative of (47.30) with respect to kx  and using the component form  (47.26), 
we get 

 

 ij ji
j ik k k

g
x x x
∂ ∂∂

= ⋅ + ⋅
∂ ∂ ∂

gg g g  (47.31) 

 

When the symmetry property (47.29) is used, equation (47.31) can be solved for the Christoffel 
symbols: 
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 1
2

jl ijkl il
j i l

k g ggg
ij x x x

∂ ∂⎧ ⎫ ⎛ ⎞∂
= + −⎨ ⎬ ⎜ ⎟∂ ∂ ∂⎩ ⎭ ⎝ ⎠

 (47.32) 

 

where klg  denotes the contravariant components of the metric tensor, namely 

 

 kl k lg = ⋅g g  (47.33) 

 

The formula (47.32) is most convenient for the calculation of the Christoffel symbols in any given 
chart. 

 

 As an example, we now compute the Christoffel symbols for the cylindrical coordinate 
system in a three-dimensional space.  In Section 44 we have shown that the components of the 
metric tensor are given by (44.50) and (44.51) relative to this coordinate system.  Substituting those 
components into (47.32), we obtain 

 

 1
1

 1  2  2 1,
22 12 12

x
x

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= − = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭
 (47.34) 

 

and all other Christoffel symbols are equal to zero. 

 

 Given two charts x̂  and ŷ  with natural bases { }ig  and { }ih , respectively, the 
transformation rule for the Christoffel symbols can be derived in the following way: 

 

 

2

2

2  

k s
k li

sj l j i

k s s l
l s

sl j i i l j

k l k s l
l s

l j i l i j l

k l k s l

l j i l i j

k x y
ij x y x x

x y y y
y x x x y x

x y x y y
y x x y x x y

lx y x y y
sty x x y x x

⎧ ⎫ ⎛ ⎞∂ ∂ ∂ ∂
= ⋅ = ⋅⎨ ⎬ ⎜ ⎟∂ ∂ ∂ ∂⎩ ⎭ ⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂
= ⋅ +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂ ∂ ∂

= + ⋅
∂ ∂ ∂ ∂ ∂ ∂ ∂

⎧ ⎫∂ ∂ ∂ ∂ ∂
= + ⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂ ⎩ ⎭

gg h h

hh h

hh
 (47.35) 
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where 
k
ij
⎧ ⎫
⎨ ⎬
⎩ ⎭

 and 
 l
st
⎧ ⎫
⎨ ⎬
⎩ ⎭

 denote the Christoffel symbols associated with x̂  and ŷ , respectively.  Since 

(47.35) is different from the tensor transformation rule (45.22), it follows that the Christoffel 
symbols are not the components of a particular tensor field.  In fact, if ŷ  is a Cartesian chart, then 

 l
st
⎧ ⎫
⎨ ⎬
⎩ ⎭

 vanishes since the natural basis vectors sh , are constant.  In that case (47.35) reduces to 

 

 
2k l

l j i

k x y
ij y x x
⎧ ⎫ ∂ ∂

=⎨ ⎬ ∂ ∂ ∂⎩ ⎭
 (47.36) 

 

and 
k
ij
⎧ ⎫
⎨ ⎬
⎩ ⎭

 need not vanish unless x̂  is also a Cartesian chart.  The formula (47.36) can also be used 

to calculate the Christoffel symbols when the coordination transformation from x̂  to a Cartesian 
system ŷ  is given. 

 

Having presented some basis properties of the Christoffel symbols, we now return to the 
general formula (47.23) for the components of the gradient of a tensor field.  Substituting (47.26) 
into (47.23) yields 

 

 
1

2 1 1

1

...
... ...1   ( ) ( ) ( ) ( )

q
q q

q

i i
qki i i i k

i ij j

iiA A A
kjx x kj

−
⎡ ⎤⎧ ⎫⎧ ⎫∂ ∂

= + + ⋅⋅ ⋅ + ⊗⋅⋅ ⋅⊗⎢ ⎨ ⎬ ⎨ ⎬⎥∂ ∂⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

x x g x g xA  (47.37) 

 

Comparing this result with (47.21), we finally obtain 

 

 ( )
1

11 2 1 1

...
...... ... ...1   

, grad
q

qq q q

i i
i i qi i ki i i i k

j jj

iiAA A A
kjx kj

−
⎧ ⎫⎧ ⎫∂

≡ = + + ⋅⋅ ⋅ +⎨ ⎬ ⎨ ⎬∂ ⎩ ⎭ ⎩ ⎭
A  (47.38) 

 

This particular formula gives the components 1... ,qi i
jA  of the gradient of A  in terms of the 

contravariant components 1... qi iA  of A .  If the mixed components of A  are used, the formula 
becomes 
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( )

1
1 11 2 1 1

1 1 11

1 1

2 1 1

...
... ... 1... ... ...

... ... ...... ,

... ...
... ...

1

 
, grad

  

r
r sr r r

s s ss

r r

s s

i i
i i j j ri i li i i i l

j j k j j j jkj j k

i i i i
lj j j j l

s

A i i
A A A

lk lkx

ll
A A

j kj k

−

−

∂ ⎧ ⎫ ⎧ ⎫
≡ = + + ⋅⋅ ⋅ +⎨ ⎬ ⎨ ⎬∂ ⎩ ⎭ ⎩ ⎭

⎧ ⎫⎧ ⎫
− − ⋅⋅ ⋅ −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

A
 (47.39) 

 

We leave the proof of this general formula as an exercise.  From (47.39), if ( )qT ∞∈A U , where 

q r s= + , then 1grad ( )qT ∞
+∈A U .  Further, if the coordinate system is Cartesian, then 1

1

...
... ,r

s

i i
j j kA  

reduces to the ordinary partial derivative of 1

1

...
...

r

s

i i
j jA  wih respect to kx . 

 

 Some special cases of (47.39) should be noted here.  First, since the metric tensor is a 
constant second-order tensor field, we have 

 

 , , , 0ij i
ij k k j kg g δ= = =  (47.40) 

 

for all , , 1,...,i l k N= . In fact, (47.40) is equivalent to (47.31), which we have used to obtain the 
formula (47.32) for the Christoffel symbols.  An important consequence of (47.40) is that the 
operations of raising and lowering of indices commute with the operation of gradient or covariant 
differentiation. 

 

 Another constant tensor field on E  is the tensor field E  defined by (45.26).  While the sign 
of E  depends on the orientation, we always have 

 

 1

1

...
... , , 0N

N

i i
i i k kE E= =  (47.41) 

 

If we substitute (45.27) and (45.28) into (47.41), we can rewrite the result in the form 

 

 1
i

kg
lkxg
⎧ ⎫∂

= ⎨ ⎬∂ ⎩ ⎭
 (47.42) 

 

where g  is the determinant of ijg⎡ ⎤⎣ ⎦  as defined by (44.45). 
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 Finally, the operation of skew-symmetrization rK  introduced in Section 37 is also a 
constant tensor.  So we have 

 

 1

1

...

... , 0r

r

i i
j j kδ =  (47.43) 

 

in any coordinate system.  Thus, the operations of skew-symmetrization and covariant 
differentiation commute, provided that the indices of the covariant differentiations are not affected 
by the skew-symmetrization. 

 

 Some classical differential operators can be derived from the gradient.  First, if A  is a 
tensor field of order 1q ≥ , then the divergence of A  is defined by 

 

 ( ), 1div gradq q+=A C A  

 

where C  denotes the contraction operation.  In component form we have 

 

 1 1

1 1

...div ,q

q

i i k
k i iA −

−
= ⊗ ⋅⋅ ⋅⊗g gA  (47.44) 

 

so that div A  is a tensor field of order 1q − .  In particular, for a vector field v , (47.44) reduces to 

 

 div , ,i ij
i i jgυ υ= =v  (47.45) 

 

By use of (47.42) and (47.40), we an rewrite this formula as 

 

 
( )1div

i

i

g

xg

υ∂
=

∂
v  (47.46) 

 

This result is useful since it does not depend on the Christoffel symbols explicitly. 

 

 The Laplacian of a tensor field of order 1q +  is a tensor field of the same order q  defined 
by 
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 ( )div gradΔ =A A  (47.47) 

 

In component form we have 

 

 1

1

... ,q

q

i ikl
kl i ig AΔ = ⊗⋅⋅ ⋅⊗g gA  (47.48) 

 

For a scalar field f  the Laplacian is given by 

 

 1,kl kl
kl l k

ff g f g g
x xg
∂ ∂⎛ ⎞Δ = = ⎜ ⎟∂ ∂⎝ ⎠

 (47.49) 

 

where (47.42), (47.14) and (47.39) have been used.  Like (47.46), the formula (47.49) does not 
depend explicitly on the Christoffel symbols.  In (47.48), 1... ,qi i

klA  denotes the components of the 

second gradient ( )grad grad A  of A .  The reader will verify easily that 1... ,qi i
klA , like the ordinary 

second partial derivative, is symmetric in the pair ( , )k l .  Indeed, if the coordinate system is 
Cartesian, then 1... ,qi i

klA  reduces to 1...2 qi i k lA x x∂ ∂ ∂ . 

 

 Finally, the classical curl operator can be defined in the following way.  If v  is a vector 
field, then curl v  is a skew-symmetric second-order tensor field defined by 

 

 ( )2curl grad≡v vK  (47.50) 

 

where 2K  is the skew-symmetrization operator.  In component form (47.50) becomes 

 

 ( )1curl , ,
2

i j
i j j iυ υ= − ⊗v g g  (47.51) 

 

By virtue of (47.29) and (47.39) this formula can be rewritten as 

 

 1curl
2

j i ji
j ix x

υυ ∂⎛ ⎞∂
= − ⊗⎜ ⎟∂ ∂⎝ ⎠

v g g  (47.52) 
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which no longer depends on the Christoffel symbols.  We shall generalize the curl operator to 
arbitrary skew-symmetric tensor fields in the next chapter. 

 

 

Exercises 
 

47.1 Show that in spherical coordinates on a three-dimensional Euclidean manifold the nonzero 
Christoffel symbols are 

 

 

1

1

1 2 2

2

2 2

 2  2  3  3 1
21 12 31 13

 1
22

 1
(sin )

33

 3  3
cot

32 23

 2
sin cos

33

x

x

x x

x

x x

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭
⎧ ⎫

= −⎨ ⎬
⎩ ⎭
⎧ ⎫

= −⎨ ⎬
⎩ ⎭
⎧ ⎫ ⎧ ⎫

= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭
⎧ ⎫

= −⎨ ⎬
⎩ ⎭

 

 

47.2 On an oriented three-dimensional Euclidean manifold the curl of a vector field can be 
regarded as a vector field by 

 

 ,curl
k

jijk ijk
j i ikE E

x
υ

υ
∂

≡ − = −
∂

v g g  (47.53) 

 

where ijkE  denotes the components of the positive volume tensor E .  Show that 
( ) ( ) ( )curl curl grad div div grad= −v v v .  Also show that 

 

 ( )curl grad 0f =  (47.54) 

 

For any scalar field f  and that 
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 ( )div curl 0=v  (47.55) 

 

for any vector field v . 

47.3 Verify that 

 

 
k

ij

k
ij x
⎧ ⎫ ∂

= − ⋅⎨ ⎬ ∂⎩ ⎭

g g  (47.56) 

 

Therefore, 

 

 
k

i
j

k
ijx
⎧ ⎫∂

= − ⎨ ⎬∂ ⎩ ⎭

g g  (47.57) 

 

47.4 Prove the formula (47.37). 

47.5 Prove the formula (47.42) and show that 

 

 1div j j

g
xg

∂
=

∂
g  (47.58) 

 

47.6 Show that for an orthogonal coordinate system 

 

 

0, , ,

1 if
2

  1 if
2

 1
2

ii
j

jj

ii
j

ii

ii
i

ii

k
i j i k j k

ij

j g i j
ii g x

i i g i j
ij ji g x

i g
ii g x

⎧ ⎫
= ≠ ≠ ≠⎨ ⎬

⎩ ⎭
⎧ ⎫ ∂

= − ≠⎨ ⎬ ∂⎩ ⎭

⎧ ⎫ ⎧ ⎫ ∂
= = − ≠⎨ ⎬ ⎨ ⎬ ∂⎩ ⎭ ⎩ ⎭

⎧ ⎫ ∂
=⎨ ⎬ ∂⎩ ⎭

 

 

Where the indices i  and j  are not summed. 



352 Chap. 9 • EUCLIDEAN MANIFOLDS 

47.7 Show that 

 

 0j l

k k t k t k
il ij il tj ij tlx x
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫⎧ ⎫∂ ∂

− + − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎨ ⎬ ⎨ ⎬⎨ ⎬∂ ∂⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎩ ⎭
 

 

The quantity on the left-hand side of this equation is the component of a fourth-order tensor 
R , called the curvature tensor, which is zero for any Euclidean manifold2.

                                                 
2 The Maple computer program contains a package tensor that will produce Christoffel symbols and other important 
tensor quantities associated with various coordinate systems. 
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Section 48. Covariant Derivatives along Curves 
 

 In the preceding section we have considered covariant differentiation of tensor fields which 
are defined on open submanifolds in E .  In applications, however, we often encounter vector or 
tensor fields defined only on some smooth curve in E .  For example, if : ( , )a b →λ E  is a smooth 
curve, then the tangent vector λ�  is a vector field on E .  In this section we shall consider the 
problem of representing the gradients of arbitrary tensor fields defined on smooth curves in a 
Euclidean space. 

 

 Given any smooth curve : ( , )a b →λ E  and a field : ( , ) ( )qa b →A T V  we can regard the 
value ( )tA  as a tensor of order q  at ( )tλ .  Then the gradient or covariant derivative of A  along λ  
is defined by 

 

 
0

( ) ( ) ( )lim
t

d t t t t
dt tΔ →

+ Δ −
≡

Δ
A A A  (48.1) 

 

for all ( , )t a b∈ .  If the limit on the right-hand side of (48.1) exists, then ( )d t dtA  is itself also a 
tensor field of order q  on λ .  Hence, we can define the second gradient 2 2( )d t dtA  by replacing 
A  by ( )d t dtA  in (48.1).  Higher gradients of A  are defined similarly.  If all gradients of A  
exist, then A  is C∞ -smooth on λ .  We are interested in representing the gradients of A  in 
component form. 

 

 Let x̂  be a coordinate system covering some point of λ .  Then as before we can 
characterize λ  by its coordinate representation ( )( ), 1,...,i t i Nλ = .  Similarly, we can express A  in 
component form 

 

 1

1

...( ) ( ) ( ( )) ( ( ))q

q

i i
i it A t t t= ⊗⋅⋅ ⋅⊗g λ g λA  (48.2) 

 

where the product basis is that of x̂  at ( )tλ , the point where ( )tA  is defined.  Differentiating 
(48.2) with respect to t , we obtain 
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1

1

1 1

1

...

...

( ) ( ) ( ( )) ( ( ))

( ( ))( ( ))
( ) ( ( )) ( ( ))

q

q

qq

q

i i

i i

ii i i
i i

d t dA t t t
dt dt

d td t
A t t t

dt dt

= ⊗⋅⋅ ⋅⊗

⎡ ⎤
+ ⊗⋅⋅ ⋅⊗ + ⋅⋅ ⋅ + ⊗ ⋅⋅ ⋅⊗⎢ ⎥

⎣ ⎦

g λ g λ

g λg λ
g λ g λ

A

 (48.3) 

 

By application of the chain rule, we obtain 

 

 ( ( )) ( ( )) ( )j
i i

j

d t t d t
dt x dt

λ∂
=

∂
g λ g λ  (48.4) 

 

where (47.5) and (47.6) have been used.  In the preceding section we have represented the partial 
derivative of ig  by the component form (47.26).  Hence we can rewrite (48.4) as 

 

 ( ( )) ( ) ( ( ))
j

i
k

kd t d t t
ijdt dt

λ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

g λ g λ  (48.5) 

 

Substitution of (48.5) into (48.3) yields the desired component representation 

 

 

1
2 1 1

1

...
... ...1   ( ) ( ) ( )( ) ( )

( ( )) ( ( ))

q
q q

q

i i j
qki i i i k

i i

iid t dA t d tA t A t
kjdt dt dtkj

t t

λ−
⎧ ⎫⎡ ⎤⎧ ⎫⎧ ⎫⎪ ⎪= + + ⋅⋅ ⋅ +⎨ ⎢ ⎨ ⎬ ⎨ ⎬⎥ ⎬

⎢ ⎥⎩ ⎭ ⎩ ⎭⎪ ⎪⎣ ⎦⎩ ⎭
× ⊗⋅⋅ ⋅⊗g λ g λ

A
 (48.6) 

 

where the Christoffel symbols are evaluated at the position ( )tλ .  The representation (48.6) gives 

the contravariant components ( ) 1...( ) qi id t dtA of ( )d t dtA  in terms of the contravariant components 
1... ( )qi iA t  of ( )tA  relative to the same coordinate chart x̂ .  If the mixed components are used, the 

representation becomes 

 

 

1

1 2 1 1

1 1

1 1

2 1 1

1

...
... 1... ...

... ...

... ...
... ...

1

( )  ( ) ( ) ( )

  ( )( ) ( )

( ( ))

r

s r r

s s

r r

s s

i i
j j rki i i i k

j j j j

l
i i i i

kj j j j k
s

i

dA t i id t A t A t
kl kldt dt

kk d tA t A t
j lj l dt

t

λ

−

−

⎧ ⎡ ⎧ ⎫ ⎧ ⎫⎪= + + ⋅⋅⋅+⎨ ⎨ ⎬ ⎨ ⎬⎢
⎩ ⎭ ⎩ ⎭⎪ ⎣⎩

⎤ ⎫⎧ ⎫⎧ ⎫
− − ⋅⋅⋅−⎨ ⎬ ⎨ ⎬ ⎬⎥

⎩ ⎭ ⎩ ⎭ ⎭⎦
× ⊗⋅⋅g λ

A

1( ( )) ( ( )) ( ( ))s

r

jj
i t t t⋅⊗ ⊗ ⊗⋅⋅⋅⊗g λ g λ g λ

 (48.7) 
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We leave the proof of this general formula as an exercise.  In view of the representations (48.6) and 
(48.7), we see that it is important to distinguish the notation 

 

 
1

1

...

...

r

s

i i

j j

d
dt

⎛ ⎞
⎜ ⎟
⎝ ⎠

A  

 

which denotes a component of the covariant derivative d dtA , from the notation 

 

 
1

1

...
...

r

s

i i
j jdA

dt
 

 

which denotes the derivative of a component of A .  For this reason we shall denote the former by 
the new notation 

 

 
1

1

...
...

r

s

i i
j jDA

Dt
 

 

 As an example we compute the components of the gradient of a vector field v  along λ .  By 
(48.6) 

 

 
 ( ) ( ) ( )( ) ( ( ))

i j
k

i

id t d t d tt t
kjdt dt dt

υ λυ
⎧ ⎫⎧ ⎫

= +⎨ ⎨ ⎬ ⎬
⎩ ⎭⎩ ⎭

v g λ  (48.8) 

or, equivalently, 

 

 
 ( ) ( ) ( )( )

i i j
k iD t d t d tt

kjDt dt dt
υ υ λυ

⎧ ⎫
= + ⎨ ⎬

⎩ ⎭
 (48.9) 

 

In particular, when v  is the ith basis vector ig  and then λ  is the jth coordinate curve, then (48.8) 
reduces to 
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 i
kj

k
ijx
⎧ ⎫∂

= ⎨ ⎬∂ ⎩ ⎭

g g  

 

which is the previous equation (47.26). 

 

 Next if v  is the tangent vector λ�  of λ , then (48.8) reduces to 

 

 
2 2

2 2

 ( ) ( ) ( ) ( ) ( ( ))
i k j

i

id t d t d t d t t
kjdt dt dt dt

λ λ λ⎧ ⎫⎧ ⎫
= +⎨ ⎨ ⎬ ⎬

⎩ ⎭⎩ ⎭

λ g λ  (48.10) 

 

where (47.4) has been used.  In particular, if λ  is a straight line with homogeneous parameter, i.e., 
if const= =λ v� , then 

 

 
2

2

 ( ) ( ) ( ) 0, 1,...,
i k j id t d t d t i N

kjdt dt dt
λ λ λ ⎧ ⎫

+ = =⎨ ⎬
⎩ ⎭

 (48.11) 

 

This equation shows that, for the straight line ( )t t= +λ x v  given by (47.7), we can sharpen the 
result (47.9) to 

 

 ( ) 1 1 2 2 2 1  1 1ˆ ( ) ,..., ( )
2 2

k j N N k j N
x t x t t x t t o t

kj kj
υ υ υ υ υ υ

⎛ ⎞⎧ ⎫ ⎧ ⎫
= + − + − +⎨ ⎬ ⎨ ⎬⎜ ⎟

⎩ ⎭ ⎩ ⎭⎝ ⎠
λ  (48.12) 

 

for sufficiently small t , where the Christoffel symbols are evaluated at the point (0)=x λ . 

 

 Now suppose that A  is a tensor field on U , say qT ∞∈A , and let : ( , )a b →λ U  be a curve 
in U .  Then the restriction of A  on λ  is a tensor field 

 

 ˆ ( ) ( ( )), ( , )t t t a b≡ ∈λA A  (48.13) 

 

In this case we can compute the gradient of A  along λ  either by (48.6) or directly by the chain rule 
of (48.13).  In both cases the result is 
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1
2 1 1

1

...
... ...1   ( ( )) ( ( )) ( )( ) ( )

( ( )) ( ( ))

q
q q

q

i i j
qki i i i k

j

i i

iid t A t d tA t A t
kjdt x dtkj

t t

λ−
⎡ ⎤⎧ ⎫⎧ ⎫∂

= + + ⋅⋅⋅+⎢ ⎥⎨ ⎬ ⎨ ⎬∂⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦
× ⊗⋅⋅⋅⊗

λ λ

g λ g λ

A
 (48.14) 

 

or, equivalently, 

 

 ( )( ( )) grad ( ( )) ( )d t t t
dt

=
λ λ λA A �  (48.15) 

 

where grad ( ( ))tλA  is regarded as an element of ( ; ( ))qL V T V  as before.  Since grad A  is given 
by (47.15), the result (48.15) also can be written as 

 

 ( ( )) ( ( )) ( )i

j

d t t d t
dt x dt

λ∂
=

∂
λ λA A  (48.16) 

 

A special case of (48.16), when A  reduces to ig , is (48.4). 

 

 By (48.16) it follows that the gradient of the metric tensor, the volume tensor, and the skew-
symmetrization operator all vanish along any curve. 

 

 

Exercises 
 

48.1 Prove the formula (48.7). 

48.2 If the parameter t  of a curve λ  is regarded as time, then the tangent vector 

 

 d
dt

=
λv  

 

is the velocity and the gradient of v  
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 d
dt

=
va  

 

is the acceleration.  For a curve λ  in a three-dimensional Euclidean manifold, express the 
acceleration in component form relative to the spherical coordinates. 
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Chapter 10 
 
 
VECTOR FIELDS AND DIFFERENTIAL FORMS 
 
 
Section 49.  Lie Derivatives 
 
Let E  be a Euclidean manifold and let andu v be vector fields defined on some open set inU E.   
In Exercise 45.2 we have defined the Lie bracket [ ],u v  by  
 
 [ ] ( ) ( ), grad grad= −u v v u u v  (49.1) 

 
In this section first we shall explain the geometric meaning of the formula (49.1), and then we 
generalize the operation to the Lie derivative of arbitrary tensor fields. 
 

To interpret the operation on the right-hand side of (49.1), we start from the concept of 
the flow generated by a vector field.  We say that a curve ( ): ,a b →λ U is an integral curve of a 
vector field v  if  
 

 ( ) ( )( )d t
t

dt
=

λ
v λ  (49.2) 

 
for all ( ), .t a b∈   By (47.1), the condition (49.2) means that λ is an integral curve of v  if and 

only if its tangent vector coincides with the value of v  at every point ( ).tλ   An integral curve 
may be visualized as the orbit of a point flowing with velocity .v   Then the flow generated by v  
is defined to be the mapping that sends a point ( )0tλ  to a point ( )tλ  along any integral curve of 

.v  
 

To make this concept more precise, let us introduce a local coordinate system x̂ .  Then 
the condition (49.2) can be represented by 
 
 ( ) ( )( )/i id t dt tλ υ= λ  (49.3) 

 
where (47.4) has been used.  This formula shows that the coordinates ( )( ), 1, ,i t i Nλ = …  of an 
integral curve are governed by a system of first-order differential equations.  Now it is proved in 
the theory of differential equations that if the fields iυ  on the right-hand side of (49.3) are 
smooth, then corresponding to any initial condition, say 
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 ( ) 00 =λ x  (49.4) 

 
or equivalently 
 
 ( ) 00 , 1, ,i ix i Nλ = = …  (49.5) 

 
a unique solution of (49.3) exists on a certain interval ( ),δ δ− , where δ  may depend on the 
initial point 0x  but it may be chosen to be a fixed, positive number for all initial points in a 
sufficiently small neighborhood of 0.x   For definiteness, we denote the solution of (49.2) 
corresponding to the initial point ( )by , ;tx λ x then it is known that the mapping from x  to 

( ),tλ x ; then it is known that the mapping from x  to ( ),tλ x  is smooth for each t belonging to 
the interval of existence of the solution.  We denote this mapping by ,tρ namely 
 
 ( ) ( ),t t=ρ x λ x  (49.6) 

 
and we call it the flow generated by v .  In particular,  
 
 ( )0 ,= ∈ρ x x x U  (49.7) 

 
reflecting the fact that x is the initial point of the integral curve ( ), .tλ x  
 

Since the fields iυ are independent of t, they system (49.3) is said to be autonomous.  A 
characteristic property of such a system is that the flow generated by v  forms a local one-
parameter group.  That is, locally, 
 
 

1 2 1 2t t t t+ =ρ ρ ρD  (49.8) 

 
or equivalently  
 
 ( ) ( )( )1 2 2 1, , ,t t t t+ =λ x λ λ x  (49.9) 

 
for all 1 2, ,t t x such that the mappings in (49.9) are defined.  Combining (49.7) with (49.9), we see 
that the flow tρ  is a local diffeomorphism and, locally, 
 
 1

t t
−

−=ρ ρ  (49.10) 
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Consequently the gradient, grad ,tρ is a linear isomorphism which carries a vector at any point 
x to a vector at the point ( ).tρ x   We call this linear isomorphism the parallelism generated by 
the flow and, for brevity, denote it by tP .  The parallelism tP  is a typical two-point tensor whose 
component representation has the form 
 
 ( ) ( ) ( )( ) ( )i j

t t i tj
P= ⊗P x x g ρ x g x  (49.11) 

 
or, equivalently, 
 
 ( ) ( )( ) ( ) ( )( )i

t j t i tj
P=⎡ ⎤⎣ ⎦P x g x x g ρ x  (49.12) 

 
where ( ){ } ( )( ){ }andi j tg x g ρ x  are the natural bases of x̂ at the points x  and ( )tρ x , 
respectively. 
 

Now the parallelism generated by the flow of v  gives rise to a difference quotient of the 
vector field u  in the following way:  At any point ∈x U , ( )tP x  carries the vector ( )atu x x  to 

the vector ( )( ) ( )( )tP x u x at ( ) ,tρ x  which can then be compared with the vector ( )( )tu ρ x also at 

( ).tρ x   Thus we define the difference quotient 
 

 ( )( ) ( )( ) ( )( )1
t tt

⎡ ⎤−⎣ ⎦u ρ x P x u x  (49.13) 

 
The limit of this difference quotient as t approaches zero is called the Lie derivative of u with 
respect to v  and is denoted by 
 

 ( ) ( )( ) ( )( ) ( )( )
0

1lim t tt t→
⎡ ⎤≡ −⎣ ⎦v

u x u ρ x P x u xL  (49.14) 

 
We now derive a representation for the Lie derivative in terms of a local coordinate 

system ˆ.x   In view of (49.14) we see that we need an approximate representation for tP  to within 
first-order terms in t.  Let 0x  be a particular reference point.  From (49.3) we have 
 
 ( ) ( ) ( )0 0 0,i i it x t o tλ υ= + +x x  (49.15) 

 
Suppose that x  is an arbitrary neighboring point of 0x , say 0

i i ix x x= + Δ .  Then by the same 
argument as (49.15) we have also 
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( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0
0 0

,i i i

i
i i i j k

j

t x t o t

x x t x t o x o t
x

λ υ

υ
υ

= + +

∂
= +Δ + + Δ + Δ +

∂

x x

x
x

 (49.16) 

 
Subtracting (49.15) from (49.16), we obtain 
 

 ( ) ( ) ( ) ( ) ( ) ( )0
0, ,

i
i i i j k

jt t x x t o x o t
x

υ
λ λ

∂
− =Δ + Δ + Δ +

∂
x

x x  (49.17) 

 
It follows from (49.17) that 
 

 ( ) ( )( ) ( ) ( )0
0 grad 0

i
ii i

t t o j jj j
P t t

x
υ

δ
∂

≡ = + +
∂

x
x ρ x  (49.18) 

 
Now assuming that u is also smooth, we can represent ( )( )0tu ρ x  approximately by 

 

 ( )( ) ( ) ( ) ( ) ( )0
0 0 0

i
i i j

t j

u
u u t o t

x
υ

∂
= + +

∂
x

ρ x x x  (49.19) 

 
where (49.15) has been used.  Substituting (49.18) and (49.19) into (49.14) and taking the limit, 
we finally obtain  
 

 ( ) ( ) ( ) ( ) ( )0 0
0 0 0

i i
j j

ij j

u
u

x x
υ

υ
⎡ ⎤∂ ∂

= −⎢ ⎥∂ ∂⎣ ⎦v

x x
u x x g xL  (49.20) 

 
where 0x  is arbitrary.  Thus the field equation for (49.20) is 
 

 
i i

j j
ij j

u u
x x

υυ
⎡ ⎤∂ ∂

= −⎢ ⎥∂ ∂⎣ ⎦v
u gL  (49.21) 

 
By (47.39) or by using a Cartesian system, we can rewrite (49.21) as 

 
 ( ), ,i j i j

j j iu uυ υ= −
v

u gL  (49.22) 

 
Consequently the Lie derivative has the following coordinate-free representation: 
 
 ( ) ( )grad grad= −

v
u u v v uL  (49.23) 
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Comparing (49.23) with (49.1), we obtain 
 
 [ ],=

v
u v uL  (49.24) 

 
Since the Lie derivative is defined by the limit of the difference quotient (49.13), 

v
uL vanishes if and only if u  commutes with the flow of v  in the following sense: 

 
 t i=u ρ PuD  (49.25) 

 
When u  satisfies this condition, it may be called invariant with respect to v .  Clearly, this 
condition is symmetric for the pair ( ), ,u v  since the Lie bracket is skew-symmetric, namely 
 
 [ ] [ ], ,=−u v v u  (49.26) 

 
In particular, (49.25) is equivalent to 
 
 t t=v Q vDϕ  (49.27) 

 
where tϕ  and tQ  denote the flow and the parallelism generated by u . 
 

Another condition equivalent to (49.25) and (49.27) is 
 
 s t t s=ρ ρD Dϕ ϕ  (49.28) 

 
which means that 
 

( )an integralcurve of an integralcurve oft =ρ u u  

 ( )an integralcurveof an integralcurve ofs =v vϕ  (49.29) 

 
To show that (49.29) is necessary and sufficient for 
 
 [ ], =u v 0  (49.30) 

 
we choose any particular integral curve ( ): ,δ δ− →λ U  for v ,  At each point ( )tλ  we define an 

integral curve ( ),s tμ  for u  such that 
 
 ( ) ( )0, t t=μ λ  (49.31) 
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The integral curves ( ), t⋅μ  with ( ),t δ δ∈ −  then sweep out a surface parameterized by ( ), .s t   

We shall now show that (49.30) requires that the curves ( ),s ⋅μ  be integral curves of v  for all s. 
 

As before, let x̂  be a local coordinate system.  Then by definition 
 
 ( ) ( )( ), / ,i is t s u s tμ∂ ∂ = μ  (49.32) 

and 
 
 ( ) ( )( )0, / 0,i it s tμ υ∂ ∂ = μ  (49.33) 

 
and we need to prove that  
 
 ( ) ( )( ), / ,i is t s s tμ υ∂ ∂ = μ  (49.34) 

 
for 0.s≠   We put 
 

 ( ) ( ) ( )( ),
, ,

i
i is t

s t s t
t

μ
ζ υ

∂
≡ −

∂
μ  (49.35) 

 
By (49.33) 
 
 ( )0, 0i tζ =  (49.36) 

 
We now show that ( ),i s tζ  vanishes identically.  Indeed, if we differentiate (49.35) with respect 
to s and use (49.32), we obtain  
 

 

i i i j

j

i j i
j

j j

i i i
j i j

j j j

s t s x s

u u
x t x
u u u
x x x

ζ μ υ μ

μ υ

υζ υ

⎛ ⎞∂ ∂ ∂ ∂ ∂
= −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂

= −
∂ ∂ ∂

⎛ ⎞∂ ∂ ∂
= + −⎜ ⎟∂ ∂ ∂⎝ ⎠

 (49.37) 

 
As a result, when (49.30) holds, iζ are governed by the system of differential equations 
 

 
i i

j
j

u
s x
ζ ζ∂ ∂

=
∂ ∂

 (49.38) 
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and subject to the initial condition (49.36) for each fixed t.  Consequently, 0iζ =  is the only 
solution.  Conversely, when iζ  vanishes identically on the surface, (49.37) implies immediately 
that the Lie bracket of andu v  vanishes.  Thus the condition (49.28) is shown to be equivalent to 
the condition (49.30). 
 

The result just established can be used to prove the theorem mentioned in Section 46 that 
a field of basis is holonomic if and only if  
 
 , 0i j⎡ ⎤ =⎣ ⎦h h  (49.39) 

 
for all , 1, , .i j N− …   Necessity is obvious, since when { }ih  is holonomic, the components of 

each ih  relative to the coordinate system corresponding to { }ih  are the constants .i
jδ   Hence 

from (49.21) we must have (49.39).  Conversely, suppose (49.39) holds.  Then by (49.28) there 
exists a surface swept out by integral curves of the vector fields 1 2and .h h   We denote the 
surface parameters by 1 2and .x x   Now if we define an integral curve for 3h  at each surface point 

( )1 2, ,x x  then by the conditions 
 
 [ ] [ ]1 3 2 3, , 0= =h h h h  

 
we see that the integral curves of 1 2 3, ,h h h  form a three-dimensional net which can be regarded 
as a “surface coordinate system” ( )1 2 3, ,x x x  on a three-dimensional hypersurface in the N-
dimensional Euclidean manifold E .  By repeating the same process based on the condition 
(49.39), we finally arrive at an N-dimensional net formed by integral curves of 1, , .Nh h…   The 
corresponding N-dimensional coordinate system 1, , Nx x…  now forms a chart in E  and its 
natural basis is the given basis { }ih .  Thus the theorem is proved.  In the next section we shall 
make use of this theorem to prove the classical Frobenius theorem. 
 

So far we have considered the Lie derivative 
v

uL  of a vector field u  relative to v  only.  

Since the parallelism tP  generated by v  is a linear isomorphism, it can be extended to tensor 
fields.  As usual for simple tensors we define  
 
 ( ) ( ) ( )t t t⊗ ⊗ = ⊗ ⊗P a b Pa Pb" "  (49.40) 

 
Then we extend tP  to arbitrary tensors by linearity.  Using this extended parallelism, we define 
the Lie derivative of a tensor field A  with respect to v  by 
 

 ( ) ( )( ) ( )( ) ( )( )
0

1lim t tt t→
⎡ ⎤≡ −⎣ ⎦v

A x A ρ x P x A xL  (49.41) 
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which is clearly a generalization of (49.14).  In terms of a coordinate system it can be shown that 
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1

1
1

1

1
2 1 1

1 1

1 1

1 11
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r

s

s
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r r

s s

r r

s s s

i ii i
j j k

k
j j
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ki i i i k

j j j jk k

k k
i i i i

k j j j k jj

x

x x

x x

υ

υ υ

υ υ

−

−

∂
=

∂
∂ ∂

− − −
∂ ∂

∂ ∂
+

∂ ∂

v
AL

……
…

…

… …
… …

… …
… …

"

"

 (49.42) 

 
which generalizes the formula (49.21).  We leave the proof of (49.42) as an exercise.  By the 
same argument as (49.22), the partial derivatives in (49.42) can be replaced by covariant 
derivatives. 
 

It should be noted that the operations of raising and lowering of indices by the Euclidean 
metric do not commute with the Lie derivative, since the parallelism tP  generated by the flow 
generally does not preserve the metric.  Consequently, to compute the Lie derivative of a tensor 
field ,A we must assign a particular contravariant order and covariant order to .A   The formula 
(49.42) is valid when A is regarded as a tensor field of contravariant order r and covariant order 
s. 
 

By the same token, the Lie derivative of a constant tensor such as the volume tensor or 
the skew-symmetric operator generally need not vanish. 

 
Exercises 
 
49.1 Prove the general representation formula (49.42) for the Lie derivative. 
49.2 Show that the right-hand side of (49.42) obeys the transformation rule of the components 

of a tensor field. 
49.3 In the two-dimensional Euclidean plane E , consider the vector field v  whose 

components relative to a rectangular Cartesian coordinate system ( )1 2,x x are 
 
 1 1 2 2,x xυ α υ α= =  

 
where α is a positive constant.  Determine the flow generated by .v   In particular, find 
the integral curve passing through the initial point 

 
 ( ) ( )1 2

0 0, 1,1x x =  

 
49.4 In the same two-dimensional plane E  consider the vector field such that 
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 1 2 2 1,x xυ υ= =  

 
Show that the flow generated by this vector field is the group of rotations of .E   In 
particular, show that the Euclidean metric is invariant with respect to this vector field. 

 
49.5 Show that the flow of the autonomous system (49.3) possesses the local one-parameter 

group property (49.8). 
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Section 50.  The Frobenius Theorem 
 

The concept of the integral curve of a vector field has been considered in some detail in 
the preceding section.  In this section we introduce a somewhat more general concept.  If v  is a 
non-vanishing vector field in ,E then at each point x in the domain of v  we can define a one-
dimensional Euclidean space ( )xD  spanned by the vector ( ) .v x   In this sense an integral curve 

of v  corresponds to a one-dimensional hypersurface in E  which is tangent to ( )xD  at each 
point of the hypersurface.  Clearly this situation can be generalized if we allow the field of 
Euclidean spaces D to be multidimensional.  For definiteness, we call such a field D  a 
distribution in ,E  say of dimension D.  Then a D-dimensional hypersurface L  in E  is called an 
integral surface of D  if L  is tangent to D at every point of the hypersurface. 

 
Unlike a one-dimensional distribution, which corresponds to some non-vanishing vector 

field and hence always possesses many integral curves, a D-dimensional distribution D  in 
general need not have any integral hypersurface at all.  The problem of characterizing those 
distributions that do possess integral hypersurfaces is answered precisely by the Frobenius 
theorem.  Before entering into the details of this important theorem, we introduce some 
preliminary concepts first. 

 
Let D be a D-dimensional distribution and let v  be a vector field.  Then v  is said to be 

contained in D  if ( ) ( )∈v x xD  at each x  in the domain of v .  Since D  is D-dimensional, there 

exist D vector fields { }, 1, , Dα α =v … contained in D such that ( )xD  is spanned by 

( ){ }, 1, , Dα α =v x … at each point x  in the domain of the vector fields.  We call 

{ }, 1, , Dα α =v … a local basis for D .  We say that D  is smooth at some point 0x  if there exists a 
local basis defined on a neighborhood of 0x  formed by smooth vector fields αv  contained in D .  
Naturally, D  is said to be smooth if it is smooth at each point of its domain.  We shall be 
interested in smooth distributions only. 

 
We say that D  is integrable at a point 0x  if there exists a local coordinate system x̂  

defined on a neighborhood of 0x  such that the vector fields { }, 1, , Dα α =g …  form a local basis 
for D .  Equivalently, this condition means that the hypersurfaces characterized by the conditions 
 
 1 const, , constD Nx x+ = =…  (50.1) 

 
are integral hypersurfaces of D .  Since the natural basis vectors ig  of any coordinate system are 
smooth, by the very definition D must be smooth at 0x if it is integrable there.  Naturally, D  is 
said to be integrable if it is integrable at each point of its domain.  Consequently, every 
integrable distribution must be smooth. 
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Now we are ready to state and prove the Frobenius theorem, which characterizes 
integrable distributions. 
 
Theorem 50.1.  A smooth distribution D  is integrable if and only if it is closed with respect to 
the Lie bracket, i.e., 
 
 [ ], ,∈ ⇒ ∈u v u vD D  (50.2) 

 
Proof.  Necessity can be verified by direct calculation.  If , ∈u v D and supposing that x̂  is a local 
coordinate system such that { }, 1, , Dα α =g …  forms a local basis for D , then andu v  have the 
component forms 
 
 ,uα α

α αυ= =u g v g  (50.3) 

 
where the Greek index α is summed from 1 to D.  Substituting (50.3) into (49.21), we see that 
 

 [ ], uu
x x

α α
β β

αβ β

υ υ
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠
u v g  (50.4) 

 
Thus (50.2) holds. 
 

Conversely, suppose that (50.2) holds.  Then for any local basis { }, 1, , Dα α =v …  for D  
we have 
 
 , Cγ

α β αβ γ⎡ ⎤ =⎣ ⎦v v v  (50.5) 

 
where Cγ

αβ  are some smooth functions.  We show first that there exists a local basis 

{ }, 1, , Dα α =u …  which satisfies the somewhat stronger condition  
 
 , 0, , 1, , Dα β α β⎡ ⎤ = =⎣ ⎦u u …  (50.6) 

 
To construct such a basis, we choose a local coordinate system ŷ  and represent the basis { }αv  
by the component form 
 

 
1 1

1 1
D D N

D D Nα α α α α

β
α β α

υ υ υ υ

υ υ

+
+

Δ
Δ

= + + + + +

≡ +

v k k k k

k k

" "
 (50.7) 
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where { }ik  denotes the natural basis of ŷ , and whre the repeated Greek indices β  and Δ  are 

summed from 1  to D  and 1D +  to N , respectively.  Since the local basis { }αv  is linearly 

independent, without loss of generality we can assume that the D D×  matrix β
αυ⎡ ⎤⎣ ⎦  is 

nonsingular, namely  
 
 det 0β

αυ⎡ ⎤ ≠⎣ ⎦  (50.8) 

 
Now we define the basis { }αu  by 
 
 1 , 1, , Dβ

α α βυ α−≡ =u v …  (50.9) 

 
where 1β

αυ −⎡ ⎤⎣ ⎦  denotes the inverse matrix of ,β
αυ⎡ ⎤⎣ ⎦  as usual.  Substituting (50.7) into (50.9), we 

see that the component representation of αu  is 
 
 u uβ

α α β α α αδ Δ Δ
Δ Δ= + = +u k k k k  (50.10) 

 
We now show that the basis { }αu  has the property (50.6).  From (50.10), by direct 

calculation based on (49.21), we can verify easily that the first D components of ,α β⎡ ⎤⎣ ⎦u u  are 

zero, i.e., ,α β⎡ ⎤⎣ ⎦u u  has the representation  
 
 , Kα β αβ

Δ
Δ⎡ ⎤ =⎣ ⎦u u k  (50.11) 

 
but, by assumption, D  is closed with respect to the Lie bracket; it follows that  
 
 , K γ

α β αβ γ⎡ ⎤ =⎣ ⎦u u u  (50.12) 

 
Substituting (50.10) into (50.12), we then obtain 
 
 , K Kγ

α β αβ γ αβ
Δ

Δ⎡ ⎤ = +⎣ ⎦u u k k  (50.13) 

 
Comparing this representation with (50.11), we see that K γ

αβ  must vanish and hence, by (50.12), 
(50.6) holds. 
 

Now we claim that the local basis { }αu  for D  can be extended to a field of basis { }iu  for 
V  and that  
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 , , , 1, ,i j i j N⎡ ⎤ = =⎣ ⎦u u 0 …  (50.14) 

 
This fact is more or less obvious.  From (50.6), by the argument presented in the preceding 
section, the integral curves of { }αu form a “coordinate net” on a D-dimensional hypersurface 
defined in the neighborhood of any reference point 0.x  To define 1,D+u we simply choose an 
arbitrary smooth curve ( )0,tλ x  passing through 0,x having a nonzero tangent, and not belonging 

to the hyper surface generated by { }1, , .Du u…   We regard the points of the curve ( )0,tλ x  to 
have constant coordinates in the coordinate net on the D-dimensional hypersurfaces, say 
( )1,…, .D

o ox x   Then we define the curves ( ),tλ x for all neighboring points x on the hypersurface 

of ox , by exactly the same condition with constant coordinates ( )1, , .Dx x…   Thus, by definition, 

the flow generated by the curves ( ),tλ x preserves the integral curves of any .αu  Hence if we 

define 1D+u to be the tangent vector field of the curves ( ),tλ x , then 
 
 [ ]1, , 1, ,D Dα α+ = =u u 0 …  (50.15) 

 
where we have used the necessary and sufficient condition (49.29) for the condition (49.30). 
 

Having defined the vector fields { }1 1, , D+u u… which satisfy the conditions (50.6) and 
(50.15), we repeat that same procedure and construct the fields 2 3, , ,D D+ +u u …  until we arrive at a 
field of basis { }1, , .Nu u…   Now from a theorem proved in the preceding section [cf. (49.39)] the 

condition (50.14) is necessary and sufficient that { }iu  be the natural basis of a coordinate system 
ˆ.x  Consequently, D is integrable and the proof is complete. 

 
From the proof of the preceding theorem it is clear that an integrable distribution D  can 

be characterized by the opening remark:  In the neighborhood of any point 0x  in the domain of 
D there exists a D-dimensional hypersurface S such that ( )xD is the D-dimensional tangent 
hyperplane of S  at each point x  in S . 
 

We shall state and prove a dual version of the Frobenius theorem in Section 52. 
 

Exercises 
 
50.1 Let D be an integrable distribution defined on .U   Then we define the following 

equivalence relation on 0 1: ⇔x xU ∼  there exists a smooth curve λ  in U  joining 0 1tox x  

and tangent to D at each point, i.e., ( ) ( )( ) ,t t∈λ λD�  for all t.  Suppose that S is an 
equivalence set relative to the preceding equivalence relation.  Show that S  is an 
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integral surface of D .  (Such an integral surface is called a maximal integral surface or a 
leaf of D .) 
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Section 51.  Differential Forms and Exterior Derivative 
 

In this section we define a differential operator on skew-symmetric covariant tensor fields.  
This operator generalizes the classical curl operator defined in Section 47. 
 

Let U  be an open set in E  and let A  be a skew-symmetric covariant tensor field of order 
r on , i.e.,U  

 
 ( )ˆ: r→U T VA  (51.1) 

 
Then for any point ∈x U , ( )xA  is a skew-symmetric tensor of order r (cf. Chapter 8).  
Choosing a coordinate chart ˆ onx U as before, we can express A in the component form 
 
 1

1

r

r

i i
i iA= ⊗ ⊗g g… "A  (51.2) 

 
where { }ig denotes the natural basis of ˆ .x   Since A  is skew-symmetric, its components obey the 
identify 
 
 

1 1r ri j k i i k j iA A= −… … … … … …  (51.3) 

 
for any pair of indices ( ),j k  in ( )1,..., ri i .  As explained in Section 39, we can then represent A  
by 
 

 1 1

1 1

1

... ...
1
!

r r

r r

r

i i i i
i i i i

i i

A A
r< <

= ∧ ∧ = ∧ ∧∑ g g g g
"

" "A  (51.4) 

 
where ∧ denotes the exterior product. 
 

Now if A  is smooth, then it is called a differential form of order r, or simply an r-form.  
In the theory of differentiable manifolds, differential forms are important geometric entities, 
since they correspond to linear combinations of volume tensors on various hypersurfaces (cf. the 
book by Flanders1).  For our purpose, however, we shall consider only some elementary results 
about differential forms. 
 

                                                 
1 H. Flanders, Differential Forms with Applications to the Physical Sciences, Academic Press, New York-London, 
1963. 
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We define first the notion of the exterior derivative of a differential form.  Let A be the r-
form represented by (51.2) or (51.4).  Then the exterior derivative dA is an ( )1r + –form given 
by any one of the following three equivalent formulas: 
 

 

( )

1 1

1

1 1

11 1 1

1 1

1

1
!

1
! 1 !

r r

r

r r

rr r

r
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i i i ik

k
i i k

i i i ik
k

i iki i j j
j j k

A
d

x
A

r x
A

r r x
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+

< < =

∂
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∂

∂
= ∧ ∧ ∧

∂
∂

= ∧ ∧
+ ∂

∑ ∑ g g g

g g g

g g

A …

"

…

……
…

"

"

"

 (51.5) 

 
Of course, we have to show that dA as defined by (51.5), is independent of the choice of the 
chart ˆ.x  If this result is granted, then (51.5) can be written in the coordinate-free form 
 
 ( ) ( ) ( )11 1 ! gradr

rd r += − +A AK  (51.6) 

 
where 1r+K  is the skew-symmetric operator introduced in Section 37. 
 

We shall now show that dA is well-defined by (51.5), i.e., if ( )ix  is another coordinate 
system, then 

 1 11 1r rr ri i i ii i i ik k
k k

A A
x x

∂ ∂
∧ ∧ ∧ = ∧ ∧

∂ ∂
g g g g g g… …" "  (51.7) 

 
or, equivalently, 
 

 
1 1

1 11 1

1 1 1 1 1 1

r
r rr r

r r r

l l
i i i iki i ki i

j j l l j jk k

A A x x
x x x x

δ δ
+

+ + +

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
" "" "

… … "  (51.8) 

 
for all 1 1, , ,rj j +… where 

1 ri iA …  and { }ig denote the components of A  and the natural basis 

corresponding to ( ).ix  To prove (51.8), we recall first the transformation rule 
 

 
1

1 1 1

r

r r r

j j

i i j j i i
x xA A
x x
∂ ∂

=
∂ ∂" " "  (51.9) 

 
for any covariant tensor components.  Now differentiating (51.9) with respect to ,kx  we obtain 
 



Sec. 51 • Differential Forms, Exterior Derivative 375 

 

1
1 1

1

1 2

1 1 2

1 1

1 1 1
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r r

r r r
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…

…
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"
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 (51.10) 

 
Since the second derivative 2 j k ix x x∂ ∂ ∂  is symmetric with respect to the pair ( ),k i , when we 
form the contraction of (51.10) with the skew-symmetric operator 1r+K  the result is (51.8).  Here 
we have used the fact that 1r+K  is a tensor of order ( )2 1 ,r +  so that we have the identities 
 

 

1 1 1
1 1

1 1 1 1 1 1 1

1 1 1
1

1 1 1 1 1

1
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 (51.11) 

 

From (38.2) and (51.5), if A is a 1-form, say ,= uA  then 
 

 j j ii
j i

uud
x x

∂⎛ ⎞∂
= − ⊗⎜ ⎟∂ ∂⎝ ⎠

u g g  (51.12) 

 
Comparing this representation with (47.52), we see that the exterior derivative and the curl 
operator are related by 
 
 2 curl d=−u u  (51.13) 

 
for any 1-form .u  Equation (51.13) also follows from (51.6) and (47.50).  In the sense of (51.13)
, the exterior derivative is a generalization of the curl operator from 1-forms to r-forms in 
general.  We shall now consider some basic properties of the exterior derivative. 
 

I. If f is a smooth function (i.e., a  0-form), then the exterior derivative of f coincides 
with the gradient of f, 

 
 graddf f=  (51.14) 

 
This result follows readily from (51.5) and (47.14). 

II. If w  is a smooth covariant vector field (i.e., a 1-form), and if u  and v  are smooth 
vector fields, then 
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 ( ) ( ) [ ] ( ), ,d d d⋅ ⋅ − ⋅ ⋅ = ⋅ +u v w v u w u v w w u v  (51.15) 

 
We can prove this formula by direct calculation.  Let the component representations of 

, ,u v w in a chart x̂ be 
 
 , ,i i i

i i iu wυ= = =u g v g w g  (51.16) 

 
Then 
 
 ,i i

i iu w wυ⋅ = ⋅ =u w v w  (51.17) 

From I it follows that 
 

 ( ) ( )i i
i k i ki

ik k k

u w w ud u w
x x x

∂ ⎛ ⎞∂ ∂
⋅ = = +⎜ ⎟∂ ∂ ∂⎝ ⎠

u w g g  (51.18) 

 
and similarly 
 

 ( ) ( )i i
i k i ki

ik k k

w wd w
x x x
υ υυ

∂ ⎛ ⎞∂ ∂
⋅ = = +⎜ ⎟∂ ∂ ∂⎝ ⎠

v w g g  (51.19) 

 
Consequently, 
 

 ( ) ( ) ( )
i i

k k k i i k i
ik k k

u wd d u w u u
x x x
υ υ υ υ

⎛ ⎞∂ ∂ ∂
⋅ ⋅ − ⋅ ⋅ = − + −⎜ ⎟∂ ∂ ∂⎝ ⎠

u v w v u w  (51.20) 

 
Now from (49.21) the first term on the right-hand side of (51.20) is simply [ ], .⋅u v w   Since the 
coefficient of the second tensor on the right-hand side of (51.20) is skew-symmetric, that term 
can be rewritten as 
 

 k i i k
k i

w wu
x x

υ ∂ ∂⎛ ⎞−⎜ ⎟∂ ∂⎝ ⎠
 

 
or, equivalently, 
 
 ( ),dw u v  

 
when the representation (51.12) is used.  Thus the identity (51.15) is proved. 
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III  If A is an r-form and B  is an s-form, then 
 

 ( ) ( )1 rd d d∧ = ∧ + − ∧A B A B A B  (51.21) 

 
This formula can be proved by direct calculation also, so we leave it as an exercise. 

IV. If A and B  are any r-forms, then 
 
 ( )d d d+ = +A B A B  (51.22) 

 
The proof of this result is obvious from the representation (51.5). Combining (51.21) and (51.22)
, we have 
 
 ( )d d dα β α β+ = +A B A B  (51.23) 

 
for any r-forms A  and B and scalars α and β. 

V. For any r-form A  
 
 ( )2d d d≡ = 0A A  (51.24) 

 
This result is a consequence of the symmetry of the second derivative. 
 
Indeed, from (51.5) for the ( )1 formr d+ − A we have  
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A

 (51.25) 

 
where we have used the identity (20.14). 

VI. Let f be a smooth mapping from an open set inU E into an open set in ,U E and 
suppose that A is an r-form on .U  Then  

 
 ( )( ) ( )d d∗ ∗=f fA A  (51.26) 

 
where ∗f denotes the induced linear map (defined below) corresponding to ,f so that ( )∗f A  is an 

r-form on U , and where d denotes the exterior derivative on .U   To establish (51.26), let 
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dim N=E  and dim M=E .   We choose coordinate systems ( ), 1, ,ix i N= …  and 

( ), 1, , on and ,x Mα α = U U… respectively.  Then the mapping f can be characterized by  
 
 ( )1, , , 1, ,i i Mx f x x i N= =… …  (51.27) 

 
Suppose that A has the representation (51.4)2 in ( ).ix   Then by definition ( )∗f A  has the 
representation 
 

 ( )
1

1

1 1

1
!

r
r

r r

i i

i i
x xA

r x x
α α

α α
∗ ∂ ∂
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∂ ∂

f A g g… " "  (51.28) 

 
where { }αg denotes the natural basis of ( ).xα  Now by direct calculation of the exterior 

derivatives of A and ( )∗f A , and by using the symmetry of the second derivative, we obtain the 
representation 
 

 
( )( ) ( )

1
1 1

1

1
!

r
r r

r

i ik
i i

k

d d

A x x x
r x x x x

α αβ
α αβ

∗ ∗=

∂ ∂ ∂ ∂
= ∧ ∧ ∧

∂ ∂ ∂ ∂

f f

g g g… " "

A A
 (51.29) 

 
Thus (51.26) is proved. 
 

Applying the result (51.26) to the special case when f is the flow tρ generated by a vector 
field v as defined in Section 49, we obtain the following property. 

VII. The exterior derivative and the Lie derivative commute, i.e., for any differential form 
A and any smooth vector field v  

 

 ( ) ( )d d=
v v

L LA A  (51.30) 

 
We leave the proof of (51.30), by direct calculation based on the representations (51.5) and 
(49.42), as an exercise. 
 

The results I-VII summarized above are the basic properties of the exterior derivative.  In 
fact, results I and III-V characterize the exterior derivative completely.  This converse assertion 
can be stated formally in the following way. 
 

Coordinate-free definition of the exterior derivative.  The exterior derivative d is an operator 
from an r-form to an ( )1 formr + − and satisfies the conditions, I, III-V above. 
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To see that this definition is equivalent to the representations (51.5), we consider any r-
form A given by the representation (51.4)2.  Applying the operator d to both sides of that 
representation and making use of conditions I and III-V, we get 
 

 

( )
( )

1

1

1 1 2

1 1

31 2

1

1 1

1 1

! r

r

r r

r r

r

r

r r

r r

i i
i i

i i i i i
i i i i

ii i i
i i

i i i ik
k

i i i ik
k

r d d A

d A A d

A d

A
x

A
x

= ∧ ∧

= ∧ ∧ ∧ + ∧ ∧ ∧

− ∧ ∧ ∧ ∧ +

∂⎛ ⎞
= ∧ ∧ ∧ + − +⎜ ⎟∂⎝ ⎠
∂

= ∧ ∧ ∧
∂

A g g

g g g g g

g g g g

g g g 0 0

g g g

…

… …

…

…

…

"

" "

" "

" "

"

 (51.31) 

 
where we have used the fact that the natural basis vector ig is the gradient of the coordinate 
function ,ix so that, by I,  
 
 gradi i ix dx= =g  (51.32) 

 
and thus, by V, 
 
 2i id d x= =g 0  (51.33) 

 
Consequently (51.5) is equivalent to the coordinate-free definition just stated. 
 
Exercises 
 
51.1 Prove the product rule (51.21) for the exterior derivative. 
51.2 Given (47.53), the classical definition of the curl of a vector field, prove that 
 
 ( )2curl d=v vD  (51.34) 

 
 where D  is the duality operator introduced in Section 41. 
51.3 Let f be a 0-form.  Prove that 
 
 ( )3 1f d dfΔ =D D  (51.35) 

 
 in the case where dim =3E .  
51.4 Let f be the smooth mapping from an open set U  in E  onto an open set U  in E  

discussed in VI.  First, show that  



380 Chap. 10 • VECTOR FIELDS 

 

 grad
i

i
x
x

α
α

∂
= ⊗
∂

f g g  

 
 Next show that ,∗f  which maps r-forms on U  into r-forms on ,U can be defined by 
 
 ( ) ( ) ( ) ( )( )1 1, , grad , , gradr r∗ =f u u f u f u… …A A  

 
for all 1, , ru u…  in the translation space of .E   Note that for 1r = , ∗f  is the transpose of 
grad .f  

 
51.5 Check the commutation relation (51.30) by component representations. 
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Section 52.  The Dual Form of the Frobenius Theorem; the Poincaré Lemma 
 

The Frobenius theorem as stated and proved in Section 50 characterizes the integrability 
of a distribution by a condition on the Lie bracket of the generators of the distribution.  In this 
section we shall characterize the same by a condition on the exterior derivative of the generators 
of the orthogonal complement of the distribution. This condition constitutes the dual form of the 
Frobenius theorem. 
 

As in Section 50, let D  be a distribution of dimension D defined on a domain in .U E  
Then at each point ∈x U , ( )xD  is a D -dimensional subspace of V .  We put ( )⊥ xD  to be the 

orthogonal complement of ( )xD .  Then ( )dim N D⊥ = −xD  and the field ⊥D  on U  defined in 
this way is itself a distribution of dimension .N D−   In particular, locally, there exist 1-forms 
{ }, 1, , N DΓ Γ = −z …  which generate .⊥D   The dual form of the Frobenius theorem is the 
following theorem. 

 
Theorem 52.1.  The distribution D  is integrable if and only if  
 
 1 ,   1, ,N Dd N DΓ −∧ ∧ ∧ = Γ = −z z z 0" …  (52.1) 

Proof.  As in Section 50, let { }, 1, , Dα α =v …  be a local basis for .D   Then 
 
 0, 1, , , 1, ,D N Dα αΓ⋅ = = Γ = −v z … …  (52.2) 

 
By the Frobenius theorem D  is integrable if and only if (50.5) holds.  Substituting (50.5) and 
(52.2) into (51.15) with , , ,andα β

Γ= = =u v v v w z  we see that (50.5) is equivalent to 
 
 ( ), 0, , 1, , , 1, ,d D N Dα β α βΓ = = Γ = −z v v … …  (52.3) 

 
We now show that this condition is equivalent to (52.1). 
 

To prove the said equivalence, we extend { }αv  into a basis { }iv  in such a way that its 

dual basis { }iv  satisfies for all 1, , .D N D+Γ Γ= Γ = −v z …   This extension is possibly by virtue of 

(52.2).  Relative to the basis { }iv , the condition (52.3) means that in the representation of d Γz  
by 
 
 2 2i j i j

ij ijd ζ ζΓ Γ Γ= ∧ = ⊗z v v v v  (52.4) 

 
the components ijζ Γ  with 1 ,i j D≤ ≤  must vanish.  Thus 
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 2 i

i Dd ζΓ Γ Δ
Δ+= ∧z v z  (52.5) 

 
which is clearly equivalent to (52.1). 
 

As an example of the integrability condition (52.1), we can derive a necessary and 
sufficient condition for a vector field z  to be orthogonal to a family of surfaces.  That is, there 
exist smooth functions h and f such that  
 
 gradh f=z  (52.6) 

 
Such a vector field is called complex-lamellar in the classical theory.  Using the terminology 
here, we see that a complex-lamellar vector field z  is a vector field such that ⊥z  is integrable. 
Hence by (52.1), z  is complex-lamellar if and only if .d ∧ =z z 0   In a three-dimensional space 
this condition can be written as 
 
 ( )curl 0⋅ =z z  (52.7) 

 
which was first noted by Kelvin (1851).  In component form, if z  is represented by 
 
 i i

i iz z dx= =z g  (52.8) 

 
then dz  is represented by  
 

 1
2

k ii
k

zd dx dx
x
∂

= ∧
∂

z  (52.9) 

 
and thus d ∧ =z z 0  means 

 0k i ji
j k

zz dx dx dx
x
∂

∧ ∧ =
∂

 (52.10) 

 
or, equivalently, 
 

 0, , , 1, ,kij i
pqr j k

zz p q r N
x

δ ∂
= =

∂
…  (52.11) 

 
Since it suffices to consider the special cases with p q r< <  in (52.11), when N=3 we have 
 

 1230 kij kiji i
j jk k

z zz z
x x

δ ε∂ ∂
= =

∂ ∂
 (52.12) 
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which is equivalent to the component version of (52.7).  In view of this special case we see that 
the dual form of the Frobenius theorem is a generalization of Kelvin’s condition from 1-forms to 
r-forms in general. 
 

In the classical theory a vector field (1-form) z  is called lamellar if locally z  is the gradient 
of a smooth function (0-form) f, namely 
 
 grad f df= =z  (52.13) 

 
Then it can be shown that z  is lamellar if and only if dz  vanishes, i.e., 
 
 curl =z 0  (52.14) 

 
The generalization of lamellar fields from 1-forms to r-forms in general is obvious: We say that 
an r-form A  is closed if its exterior derivative vanishes 
 
 d = 0A  (52.15) 

 
and we say that A  is exact if it is the exterior derivatives of an (r-1)-form, say 
 
 d=A B  (52.16) 

 
From (51.24) any exact form is necessarily closed.  The theorem that generalizes the classical 
result is the Poincaré lemma, which implies that (52.16) and (52.15) are locally equivalent. 
 

Before stating the Poincaré lemma, we defined first the notion of a star-shaped (or 
retractable) open set U  in E : U  is star-shaped if there exists a smooth mapping 
 
 : × →ρ U R U  (52.17) 

 
such that  
 

 ( )
0

when 0
,

when 1
t

t
t
≤⎧

= ⎨ ≥⎩

x
ρ x

x
 (52.18) 

 
where 0x  is a particular point in .U   In a star-shaped open set U  all closed hypersurfaces of 
dimensions 1 to 1N −  are retractable in the usual sense.  For example, an open ball is star-
shaped but the open set between two concentric spheres is not, since a closed sphere in the latter 
is not retractable. 
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The equivalence of (52.13) and (52.14) requires only that the domain U  of z  be simply 
connected, i.e., every closed curve in U  be retractable.  When we generalize the result to the 
equivalence of (52.15) and (52.16), the domain U  of A  must be retractable relative to all r-
dimensional closed hypersurfaces.  For simplicity, we shall assume that U  is star-shaped. 

 
Theorem 52.2.  If A  is a closed r-form defined on a star-shaped domain, then A is exact, i.e., 
there exists an (r-1)-form B  on U  such that (52.16) holds. 
 
Proof.  We choose a coordinate system ( )on .ix U   Then a coordinate system 

( ), 1, , 1y Nα α = +…  on ×U R  is given by 
 
 ( ) ( )1 1 1, , , , ,N Ny y x x t+ =… …  (52.19) 

 
From (52.18) the mapping ρ  has the property 
 
 ( ), when 0t id t⋅ = ≤ρ U  (52.20) 

and 
 ( ), when 0ot x t⋅ = ≥ρ  (52.21) 

 
Hence if the coordinate representation of ρ  is 
 
 ( ) , 1, ,i ix y i Nαρ= = …  (52.22) 

 
Then 
 

 1, 0 when 0
i i

i
j N

j

t
y y
ρ ρδ +

∂ ∂
= = ≤

∂ ∂
 (52.23) 

 
and 
 

 10 0 when 1
i i

j N t
y y
ρ ρ

+

∂ ∂
= = ≥

∂ ∂
 (52.24) 

 
As usual we can express A  in component form relative to ( )ix  
 

 1

1

1
!

r

r

i i
i iA

r
= ∧ ∧g g… "A  (52.25) 
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Then ( )∗ρ A  is an r-form on ×U R  defined by 
 

 ( )
1

1

1 1

1
!

r
r

r r

i i

i iA
r y y

α α
α α

ρ ρ∗ ∂ ∂
= ∧ ∧

∂ ∂
ρ h h… " "A  (52.26) 

 
where { }, 1, , 1Nα α = +h …  denotes the natural basis of ( ) ,yα  i.e., 
 
 dyα α=h  (52.27) 

 
where d  denotes the exterior derivative on .×U R  
 

Now from (52.19) we can rewrite (52.26) as 
 
 ( ) 1 1 1

1 1 1

1! Yr r

r r

i i i i N
i i i ir X r −

−

∗ += ∧ ∧ + ∧ ∧ ∧ρ h h h h h… …" "A  (52.28) 

 
where 
 

 
1

1 1 1

r

r r r

j j

i i j j i iX A
y y
ρ ρ∂ ∂

=
∂ ∂… … "  (52.29) 

 
and 
 

 
1 1

1 1 1 1 1 1

r r

r r r

j j j

i i j j i i NY A
y y y
ρ ρ ρ−

− − +

∂ ∂ ∂
=

∂ ∂ ∂… … "  (52.30) 

 
We put 
 

 1

1

1
!

r

r

i i
i iX

r
= ∧ ∧h h… "X  (52.31) 

 
and 
 

 
( )

1 1

1 1

1
1 !

r

r

j j
j jY

r
−

−
= ∧ ∧

−
h h… "Y  (52.32) 

 
Then X  is an r-form and Y  is an ( 1) form on .r − − ×U R   Further, from (52.28) we have 
 
 ( ) 1N dt∗ += + ∧ = + ∧ρ hA X Y X Y  (52.33) 
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From (52.23), (52.24), (52.29), and (52.30), X  and Y  satisfy the end conditions 
 
 ( ) ( ) ( )

1 1 1 1
, t , , t 0 when 0

r r ri i i i i iX A Y t
−

= = ≤x x x… … …  (52.34) 

and 
 
 ( ) ( )

1 1 1
, t 0, , t 0 when 1

r ri i i iX Y t
−

= = ≥x x… …  (52.35) 

 
for all .∈x U  We define 
 

 ( )
( ) ( )( ) 1 1

1 1

1

0

1
,

1 !
r

r

i i
i iY t dt

r
−

−

−
≡ ⋅ ∧ ∧

− ∫ g g… "B  (52.36) 

 
and we claim that this ( )1r − -form B satisfies the condition (52.16). 
 

To prove this, we take the exterior derivative of (52.33).  By (52.26) and the fact that A is 
closed, the result is 
 
 d d dt+ ∧ = 0X Y  (52.37) 

 
where we have used also (51.21) and (51.24) on the term dt∧Y .  From (52.31) and (52.32) the 
exterior derivatives of andX Y have the representations 
 

 1 11 1! r rr ri i i ii i i ij
j

X X
r d dt

x t
∂ ∂

= ∧ ∧ ∧ + ∧ ∧ ∧
∂ ∂

h h h h h" "" "X  (52.38) 

 
and 
 

 ( ) 1 1 1 11 1 11 ! r rr ri i i ii i i ij
j

Y Y
r d dt

x t
− −−

∂ ∂
− = ∧ ∧ ∧ + ∧ ∧ ∧

∂ ∂
h h h h h" "" "Y  (52.39) 

 
Substituting these into (52.37), we then get 
 

 1 1r ri i i ij
j

X
x

∂
∧ ∧ ∧ =

∂
h h h 0" "  (52.40) 

 
and 
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 ( ) 1 2 1

1
1 r r r

r i i i i i i
i

X Y
r dt

t x
∂ ∂⎛ ⎞

− + ∧ ∧ ∧ =⎜ ⎟∂ ∂⎝ ⎠
h h 0" " "  (52.41) 

 
Consequently 

 
( ) ( )2 11

1 1

1 1
1 !

r rr

r

ri i j ji i
j j i

Y X
r x t

δ
∂ ∂

− = −
− ∂ ∂

"" "
…  (52.42) 

 
Now from (52.36) if we take the exterior derivative of the ( )1r − -form B  on U , the 

result is 
 

 

( )
( )
( )
( )

2 1

1

21 1

1 1

1

0

1

0

1
1 !

1 1
1 ! !

r r

rr r

r

r
i i i i

i

r
i ii i j j

j j i

Y
d dt

r x

Y
dt

r r x
δ

∂− ⎛ ⎞
= ∧ ∧⎜ ⎟− ∂⎝ ⎠

∂− ⎛ ⎞
= ∧ ∧⎜ ⎟− ∂⎝ ⎠

∫

∫

g g

g g

"

""
…

"

"

B
 (52.43) 

 
Substituting (52.42) into this equation yields 
 

 ( ) ( )( )

1 1

1

1 1

1

1

1

0

1
!

1 ,0 ,1
!

1
!

r r

r

r r

r

r

j j j j

j j
j j j j

j j
j j

X
d dt

r t

X X
r

A
r

∂⎛ ⎞
= − ∧ ∧⎜ ⎟∂⎝ ⎠

= ⋅ − ⋅ ∧ ∧

= ∧ ∧ =

∫ g g

g g

g g

"

" "

"

"

"

"

B

A

 (52.44) 

 
where we have used the end conditions (52.34) and (52.35) on .X  
 

The ( )1r − -form B , whose existence has just been proved by (52.44), is not unique of 
course.  Since 
 
 ( )ˆ ˆd d d= ⇔ − = 0B B B B  (52.45) 

 
B  is unique to within an arbitrary closed ( )1r − -form on U . 
 
Exercises 
 
52.1 In calculus a “differential”  
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 ( ) ( ) ( ), , , , , ,P x y z dx Q x y z dy R x y z dz+ +  (52.46) 

 
is called exact if there exists a function ( ), ,U x y z  such that 

 

 
U U UdU dx dy dz
x y z

P dx Q dy R dz

∂ ∂ ∂
= + +
∂ ∂ ∂

= + +
 (52.47) 

 
Use the Poincaré lemma and show that (52.46) is exact if and only if  

 

 , ,P Q P R Q R
y x z x z y

∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂
 (52.48) 

 
52.2 The “differential” (52.46) is called integrable if there exists a nonvanishing function 

( ), , ,x y zμ  called an integration factor, such that the differential 
 
 ( )P dx Q dy R dzμ + +  (52.49) 

 
is exact.  Show that (52.46) is integrable if and only if the two-dimensional distribution 
orthogonal to the 1-form (52.46) is integrable in the sense defined in this section.  Then 
use the dual form of the Frobenius theorem and show that (52.46) is integrable if and 
only if  
 

 0R Q P R Q PP Q R
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞− + − + − =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
 (52.50) 
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Section 53. Vector Fields in a Three-Dimensional Euclidean Manifold, I.  

Invariants and Intrinsic Equations 
 

The preceding four sections of this chapter concern vector fields, distributions, and 
differential forms, defined on domains in an N-dimensional Euclidean manifold E in general.  In 
applications, of course, the most important case is when E  is three-dimensional.  Indeed, 
classical vector analysis was developed just for this special case.  In this section we shall review 
some of the most important results in the classical theory from the more modern point of view, as 
we have developed so far in this text. 
 

We recall first that when E is three-dimensional the exterior product may be replaced by 
the cross product [cf.(41.19)].  Specially, relative to a positive orthonormal basis 
{ }1 2 3, , for ,e e e V  the component representation of ×u v  for any , ,∈u v V  is 
 

 
( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 1

1 2 3

i j k
ijku v

u u u u u u

ε

υ υ υ υ υ υ

× =

= − + − + −

u v e

e e e
 (53.1) 

 
Where 
 
 ,i

i j
ju υ= =u e v e  (53.2) 

 
are the usual component representations of andu v and where the reciprocal basis { }ie coincides 

with { }ie .  It is important to note that the representation (53.1) is valid relative to a positive 

orthonormal basis only; if the orthonormal basis { }ie  is negative, the signs on the right-hand side 
of (53.1) must be reversed.  For this reason, ×u v  is called an axial vector in the classical theory. 
 

We recall also that when E  is three-dimensional, then the curl of a vector field can be 
represented by a vector field [cf. (47.53) or (51.34)].  Again, if a positive rectangular Cartesian 
coordinate system ( )1 2 3, ,x x x  induced by { }ie  is used, then curl v  has the components 
 

 
3 2 1 3 2 1

1 2 32 3 3 1 1 2

curl j
ijk kix

x x x x x x

υ
ε

υ υ υ υ υ υ

∂
=

∂
∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v e

e e e
 (53.3) 

 
where v  is now a smooth vector field having the representation 
 
 i i

i iυ υ= =v e e  (53.4) 
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Since ( )ix  is rectangular Cartesian, the natural basis vectors and the component fields satisfy the 
usual conditions 
 
 , , 1,2,3i i

i i iυ υ= = =e e  (53.5) 

 
By the same remark as before, curl v  is an axial vector field, so the signs on the right-hand side 
must be reversed when ( )ix  is negative. 
 

Now consider a nonvanishing smooth vector field .v   We put 
 
 /=s v v  (53.6) 

 
Then s  is a unit vector field in the same direction as .v   In Section 49 we have introduced the 
notions of internal curves and flows corresponding to any smooth vector field.  We now apply 
these to the vector field .s   Since s  is a unit vector, its integral curves are parameterized by the 
arc length1 s.  A typical integral curve of s  is 
 
 ( )s=λ λ  (53.7) 

 
where 
 
 ( )( )/d ds s=λ s λ  (53.8) 

 
at each point ( )sλ  of the curve.  From (53.6) and (53.8) we have 
 

 ( )( ) parallel tod s
ds
λ v λ  (53.9) 

 
but generally /d dsλ  is not equal to ( )( ) ,sv λ  so λ  is not an integral curve of v  as defined in 
Section 49.  In the classical theory the locus of λ  without any particular parameterization is 
called a vector line of  .v  
 

Now assuming that λ  is not a straight line, i.e., s  is not invariant on λ , we can take the 
covariant derivative of s  on λ (cf. Section 48 and write the result in the form 
 

                                                 
1 Arc length shall be defined in a general in Section 68.  Here s can be regarded as a parameter such that 

/ 1.d ds =λ  
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 /d ds κ=s n  (53.10) 

 
where andκ n are called the curvature and the principal normal of λ , and they are characterized 
by the condition 
 

 0d
ds

κ = >
s  (53.11) 

 
It should be noted that (53.10) defines both κ  and n : κ  is the norm of /d dss and n is the unit 
vector in the direction of the nonvanishing vector field /d dss .  The reciprocal of ,κ  
 
 1/r κ=  (53.12) 

 
is called the radius of curvature of λ . 
 

Since s  is a vector, we have 
 

 ( )0 2 2
d d

ds ds
κ

⋅
= = ⋅ = ⋅

s s ss s n  (53.13) 

 
or, equivalently, 
 
 0⋅ =s n  (53.14) 

 
Thus n  is normal to s , as it should be.  In view of (53.14) the cross product of withs n  is a unit 
vector 
 
 ≡ ×b s n  (53.15) 

 
which is called the binormal of λ .  The triad { }, ,s n b  now forms a field of positive orthonormal 

basis in the domain of .v   In general { }, ,s n b  is anholonomic, of course. 
 

Now we compute the covariant derivative of andn b along the curve λ .  Since b  is a 
unit vector, by the same argument as (53.13) we have 
 

 0d
ds

⋅ =
b b  (53.16) 

 
Similarly, since 0,⋅ =b s  on differentiating with respect to s along ,λ  we obtain 
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 0d d
ds ds

κ⋅ = − ⋅ = − ⋅ =
b ss b b n  (53.17) 

 
where we have used (53.10). Combining (53.16) and (53.17), we see that /d dsb  is parallel to ,n  
say 
 

 d
ds

τ= −
b n  (53.18) 

 
where τ  is called the torsion of the curve λ .  From (53.10) and (53.18) the gradient of n  along 
λ  can be computed easily by the representation 
 
 = ×n b s  (53.19) 

 
so that 

 d d d
ds ds ds

κ τ κ τ= × + × = × − × = − +
n s bb s b n n s s b  (53.20) 

 
The results (53.10), (53.18), and (53.20) are the Serret-Frenet formulas for the curve λ . 
 

So far we have introduced a field of basis { }, ,s n b  associated with the nonzero and 
nonrectilinear vector field .v  Moreover, the Serret-Frenet formulas give the covariant derivative 
of the basis along the vector lines of v .  In order to make full use of the basis, however, we need 
a complete representation of the covariant derivative of that basis along all curves.  Then we can 
express the gradient of the vector fields , ,s n b  in component forms relative to the anholonomic 
basis { }, ,s n b .  These components play the same role as the Christoffel symbols for a holonomic 
basis.  The component forms of grad s , grad n  and grad b have been derived by Bjørgum.2  We 
shall summarize his results without proofs here. 
 

Bjørgum shows first that the components of the vector fields curl s , curl n , and curl b  
relative to the basis { }, ,s n b  are given by 
 

 ( )
( )

curl
curl div

curl div

κ
θ

κ η

= Ω +

= − +Ω +

= + + +Ω

s

n

b

s s b
n b s n b

b n s n b

 (53.21) 

 
where , ,Ω Ω Ωs n b  are given by 

                                                 
2 O. Bjørgum, “On Beltrami Vector Fields and Flows, Part I.  A Comparative Study of Some Basic Types of Vector 
Fields,” Universitetet I Bergen, Arbok 1951, Naturvitenskapelig rekke Nr. 1. 
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 curl , curl , curl⋅ = Ω ⋅ = Ω ⋅ = Ωs n bs s n n b b  (53.22) 

 
and are called the abnormality of , ,s n b , respectively.  From Kelvin’s theorem (cf. Section 52) 
we know that the abnormality measures, in some sense, the departure of a vector field from a 
complex-lamellar field.  Since b  is given by (53.15), the abnormalities , ,Ω Ω Ωs n b are not 
independent.  Bjørgum shows that 
 
 2τΩ +Ω = Ω −n b s  (53.23) 

 
where τ  is the torsion of λ  as defined by (53.18).  The quantities θ and η in (53.21) are defined 
by 
 
 curl , curlθ η⋅ = ⋅ =b n n b  (53.24) 

and Bjørgum shows that  
 
 divθ η− = s  (53.25) 

 
Notice that (53.21) implies that 
 
 curl 0⋅ =n s  (53.26) 

 
but the remaining eight components in (53.21) are generally nonzero. 
 

Next Bjørgum shows that the components of the second-order tensor fields grad s , 
grad n , and grad b  relative to the basis { }, ,s n b  are given by 
 

 

( )
( )

( )
( ) ( )

( )
( ) ( )

grad

grad

div div

grad

div div

κ θ τ

τ η

κ θ τ

τ κ

τ η τ

κ

= ⊗ + − Ω + ⊗

+ Ω + ⊗ − ⊗

= − ⊗ − ⊗ + Ω + ⊗

+ ⊗ − ⊗ + + ⊗

= − Ω + ⊗ + ⊗ − ⊗

+ ⊗ − + ⊗

n

b

n

b

s n s n n b

b n b b

n s s s n s b

b s b b n n b b

b s n s b n s

b n n n n b

 (53.27) 

 
These representations are clearly consistent with the representations (53.21) through the general 
formula (47.53).  Further, from (48.15) the covariant derivatives of , , ands n b  along the integral 
curve ofλ s  are 
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( )

( )

( )

grad

grad

grad

d
ds
d
ds
d
ds

κ

κ τ

τ

= =

= = − +

= = −

s s s n

n n s s b

b b s n

 (53.28) 

 
which are consistent with the Serret-Frenet formulas (53.10), (53.20), and (53.18). 
 

The representations (53.27) tell us also the gradients of { }, ,s n b  along any integral curves 

( ) ( )of and of .n b= =μ μ n ν ν b Indeed, we have 
 

 
( ) ( )
( ) ( )
( ) ( ) ( )

/ grad

/ grad div

/ grad div

d dn

d dn

d dn

θ τ

θ

τ

= = + Ω +

= = − −

= = − Ω + +

b

b

s s n n b

n n n s b b

b b n s b n

 (53.29) 

 
and 
 

 
( ) ( )
( ) ( ) ( )
( ) ( )

/ grad

/ grad div

/ grad div

d db

d db

d db

τ η

τ κ

η κ

= = − Ω + −

= = Ω + + +

= = − +

n

n

s s b n b

n n b s n b

b b b s n n

 (53.30) 

 
Since the basis { }, ,s n b  is anholonomic in general, the parameters ( ), ,s n b  are not local 
coordinates.  In particular, the differential operators / , / , /d ds d dn d db  do not commute.  We 
derive first the commutation formulas3 for a scalar function f. 
 

From (47.14) and (46.10) we verify easily that the anholonomic representation of grad f is 
 

 grad df df dff
ds dn db

= + +s n b  (53.31) 

 
for any smooth function f defined on the domain of the basis { }, ,s n b .  Taking the gradient of 
(53.31) and using (53.27), we obtain 
 

                                                 
3 See A.W. Marris and C.-C. Wang, “Solenoidal Screw Fields of Constant Magnitude,” Arch. Rational Mech. Anal. 
39, 227-244 (1970). 
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( ) ( )

( ) ( )

( )

( )

grad grad grad grad grad

grad grad grad

b

df df dff s
ds ds dn

df df df
dn db db
d df df
ds ds dn

d df df df
dn ds dn db

d df df df
db ds dn db

df d df df
ds ds dn db

κ

θ τ

τ η

κ τ

⎛ ⎞ ⎛ ⎞= ⊗ + + ⊗⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞+ + ⊗ +⎜ ⎟
⎝ ⎠

⎡ ⎤= − ⊗⎢ ⎥⎣ ⎦
⎡ ⎤+ − − Ω + ⊗⎢ ⎥⎣ ⎦

⎡ ⎤+ + Ω + + ⊗⎢ ⎥⎣ ⎦
⎡+ + −⎢⎣

n

s n

n b b

s s

s n

s b

( )

( ) ( )

( ) ( )

( )

div

div

div

div

df d df df
dn dn dn db

df d df df
ds db dn db

df d df
dn ds db

df df d df
ds dn dn db

df df d df
ds dn db db

θ

τ κ

τ

τ

η κ

⎤ ⊗⎥⎦
⎡ ⎤+ + + ⊗⎢ ⎥⎣ ⎦

⎡ ⎤+ − Ω + + − + ⊗⎢ ⎥⎣ ⎦
⎡ ⎤+ + ⊗⎢ ⎥⎣ ⎦

⎡ ⎤+ Ω + − + ⊗⎢ ⎥⎣ ⎦
⎡ ⎤+ − + + + ⊗⎢ ⎥⎣ ⎦

n

b

n s

b n n

n n b

b s

b b n

n b b

 (53.32) 

 
Now since ( )grad grad f  is symmetric, (53.32) yields 
 

 

( ) ( )div div

n

s

d df d df df df df
ds ds ds dn ds dn db
d df d df df df
ds db db ds dn db
d df d df df df df
db dn dn db ds dn db

κ θ

η

κ

− = + +Ω

− = Ω +

− = Ω − + +

b

b n

 (53.33) 

 
where we have used (53.23). The Formulas (53.33)1-3 are the desired commutation rules. 
 

Exactly the same technique can be applied to the identities 
 
 ( ) ( ) ( )curl grad curl grad curl grad= = =s n b 0  (53.34) 
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and the results are the following nine intrinsic equations4 for the basis { }, ,s n b : 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

2 2

div div 0

div div 0

0

div div 2 div 0

div 0

2 3 4 0

n

s

d d
dn db
d d
dn db

d d
db ds
d d
db ds

d
ds

d d
dn ds
d
dn

θτ κ θ η κ

η τ θ η κ

κ τ η θ

τ κ η κ

η η κ κ τ

κ θ κ θ τ τ

τ

− Ω + − + + Ω −Ω − + +Ω =

− − Ω + − Ω −Ω − + + =

+ Ω + − Ω −Ω +Ω =

− + −Ω + + =

− + − + − −Ω Ω −Ω =

− − − + Ω − +Ω Ω −Ω − =

+

n b n s

b b n

s b n

n

n s n

n s n

n b

b n

n b n

n

( ) ( )

( ) ( ) ( )

( ) ( )

( )

2 2

div div div 0

div div div div

0

div 0

d
ds

d d
dn db

d d
ds db

κ θ κ

κ θ κ

τ τ τ
κ θ η κ

− Ω −Ω + −Ω + =

+ + − + + +

+Ω + Ω + Ω + =

Ω
+ +Ω − + =

s n b

n

s n b

s
s

b b n

n b b n

b
 (53.35) 

 
Having obtained the representations (53.21) and (53.27), the commutation rules (53.33), 

and the intrinsic equations (53.35) for the basis { }, ,s n b , we can now return to the original 
relations (53.6) and derive various representations for the invariants of .v  For brevity, we shall 
now denote the norm of by .υv  Then (53.6) can be rewritten as 
 
 υ=v s  (53.36) 

 
Taking the gradient of this equation yields 
 

 
( )

( )

grad grad + grad
d d d
ds dn db

υ υ
υ υ υ

υκ υθ υ τ

υ τ υη

= ⊗

= ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ − Ω + ⊗

+ Ω + ⊗ − ⊗
n

b

v s s

s s s n s b

n s n n n b

b n b b

 (53.37) 

                                                 
4 A. W. Marris and C.-C. Wang, see footnote 3. 
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where we have used (53.27)1.  Notice that the component of grad v  in ⊗b s  vanishes 
identically, i.e., 
 
 ( )( ) [ ]( )grad grad , 0⋅ = =b v s v b s  (53.38) 

 
or, equivalently, 
 

 0d
ds
⋅ =

vb  (53.39) 

 
so that the covariant derivative of v  along its vector lines stays on the plane spanned by and .s n   
In differential geometry this plane is called the osculating plane of the said vector line. 
 

Next we can read off from (53.37) the representations5 
 

 
( )

div

div

curl 2

d
ds
d
ds

d d
db dn

d d
db dn

υ υθ υη

υ υ

υ υυ τ υκ

υ υυ υκ

= + −

= +

⎛ ⎞= Ω +Ω + + + −⎜ ⎟
⎝ ⎠

⎛ ⎞= Ω + + −⎜ ⎟
⎝ ⎠

b n

s

v

s

v s n b

s n b

 (53.40) 

 
where we have used (53.23) and (53.25).  From (53.40)4 the scalar field curlΩ = ⋅v v is given by 
 
 2curlυ υΩ = ⋅ = Ωss v  (53.41) 

 
The representation (53.37) and its consequences (53.40) and (53.41) have many 

important applications in hydrodynamics and continuum mechanics.  It should be noted that 
(53.21)1 and (53.27)1 now can be regarded as special cases of (53.40)4 and (53.37)2, respectively, 
with 1.υ =  
 
Exercises 
 
53.1 Prove the intrinsic equations (53.35). 
53.2 Show that the Serret-Frenet formulas can be written 
 
                                                 
5 O. Bjørgum, see footnote 2. See also J.L. Ericksen, “Tensor Fields,” Handbuch der Physik, Vol. III/1, Appendix, 
Edited by Flügge, Springer-Verlag (1960). 
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 / , / , /d ds d ds d ds= × = × = ×s ω s n ω n b ω b  (53.42) 

 
where τ κ= +ω s b . 
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Section 54.  Vector Fields in a Three-Dimensional Euclidean Manifold, II. 

Representations for Special Classes of Vector Fields 
 

In Section 52 we have proved the Poincaré lemma, which asserts that, locally, a 
differential form is exact if and only if it is closed.  This result means that we have the local 
representation 
 
 d=f g  (54.1) 

 
for any f  such that 
 0d =f  (54.2) 

 
In a three-dimensional Euclidean manifold the local representation (54.1) has the following two 
special cases. 

(i) Lamellar Fields 
 
 grad f=v  (54.3) 

 
is a local representation for any vector field v  such that 
 
 curl 0=v  (54.4) 

 
Such a vector field v  is called a lamellar field in the classical theory, and the scalar function f is 
called the potential of v .  Clearly, the potential is locally unique to within an arbitrary additive 
constant. 

(ii) Solenoidal Fields 
 
 curl=v u  (54.5) 

 
is a local representation for any vector field v  such that 
 
 div 0=v  (54.6) 

 
Such a vector field v  is called a solenoidal field in the classical theory, and the vector field u  is 
called the vector potential of v .  The vector potential is locally unique to within an arbitrary 
additive lamellar field. 
 

In the representation (54.3), f is regarded as a 0-form and v  is regarded as a 1-form, 
while in the representation (54.5), u  is regarded as a 1-form and v  is regarded as the dual of a 2-
form; duality being defined by the canonical positive unit volume tensor of the 3-dimensional 
Euclidean manifold .E  
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In Section 52 we remarked also that the dual form of the Frobenius theorem implies the 

following representation. 
 (iii) Complex-Lamellar Fields 

 

 gradh f=v  (54.7) 

 
is a local representation for any vector field v  such that  
 
 curl 0⋅ =v v  (54.8) 

 
Such a vector field v  is called complex-lamellar in the classical theory.  In the representation 
(54.7) the surfaces defined by 
 
 ( ) constf =x  (54.9) 

 
are orthogonal to the vector field v . 
 

We shall now derive some other well-known representations in the classical theory. 
 

A. Euler’s Representation for Solenoidal Fields 
 

Every solenoidal vector field v  may be represented locally by 
 

 ( ) ( )grad gradh f= ×v  (54.10) 

 
Proof.  We claim that v  has a particular vector potential û  which is complex-lamellar.  From the 
remark on (54.5), we may choose û  by 
 
 ˆ grad k= +u u  (54.11) 

 
where u  is any vector potential of v .  In order for û  to be complex-lamellar, it must satisfy the 
condition (54.8), i.e., 
 

 
( ) ( )
( ) ( )

0 grad curl grad

grad curl grad

k k

k k

= + ⋅ +

= + ⋅ = ⋅ +

u u

u u v u
 (54.12) 

 
Clearly, this equation possesses infinitely many solutions for the scalar function k, since it is a 
first-order partial differential equation with smooth coefficients.  Hence by the representation 
(54.7) we may write 
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 ˆ gradh f=u  (54.13) 

 
Taking the curl of this equation, we obtain the Euler representation (54.10): 
 
 ( ) ( ) ( )ˆcurl curl grad grad gradh f h f= = = ×v u  (54.14) 

 
It should be noted that in the Euler representation (54.10) the vector v  is orthogonal to 

grad h as well as to grad f , namely  
 
 grad grad 0h f⋅ = ⋅ =v v  (54.15) 

 
Consequently, v  is tangent to the surfaces 
 
 ( ) consth =x  (54.16) 

or 
 ( ) constf =x  (54.17) 

 
For this reason, these surfaces are then called vector sheets of v .  If ,≠v 0  then from (54.10), 
grad h and grad f are not parallel, so that h and f are functionally independent.  In this case the 
intersections of the surfaces (54.16) and (54.17) are the vector lines of .v  
 

Euler’s representation for solenoidal fields implies the following results. 
 

B. Monge’s Representation for Arbitrary Smooth Vector Fields 
 

Every smooth vector field v  may be represented locally by 
 

 grad gradh k f= +v  (54.18) 

 
where the scalar functions, h, k, f are called the Monge potentials (not unique) of v . 
 
Proof.  Since (54.10) is a representation for any solenoidal vector field, from (54.5) we can write 
curl v  as  
 
 ( ) ( )curl grad gradk f= ×v  (54.19) 

 
It follows that (54.19) that 
 
 ( )curl grad 0k f− =v  (54.20) 
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Thus gradk f−v  is a lamellar vector field.  From (54.3) we then we have the local 
representation 
 
 grad gradk f h− =v  (54.21) 

 
which is equivalent to (54.18). 
 

Next we prove another well-known representation for arbitrary smooth vector fields in 
the classical theory. 

 
C. Stokes’ Representation for Arbitrary Smooth Vector Fields  
 

Every smooth vector field v  may be represented locally by 
 
 grad curlh= +v u  (54.22) 

 
where andh u  are called the Stokes potential (not unique) of v . 
 
Proof.  We show that there exists a scalar function h such that grad h−v  is solenoidal.  
Equivalently, this condition means 
 
 ( )div grad 0h− =v  (54.23) 

 
Expanding (54.23), we get 
 
 divhΔ = v  (54.24) 

 
where Δ denotes the Laplacian [cf. (47.49)]. Thus h satisfies the Poisson equation (54.24).  It is 
well known that, locally, there exist infinitely many solutions (54.24).  Hence the representation 
(54.22) is valid. 
 

Notice that, from (54.19), Stokes’ representation (54.22) also can be put in the form 
 

 ( ) ( )grad grad gradh k f= + ×v  (54.25) 

 
Next we consider the intrinsic conditions for the various special classes of vector fields.  

First, from (53.40)2 a vector field v  is solenoidal if and only if 
 
 / divd dsυ υ= − s  (54.26) 
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where , , and sυs  are defined in the preceding section.  Integrating (54.26) along any vector line 
( )s=λ λ  defined before, we obtain 

 

 ( ) ( )
0

s

0 s
exp - divs dsυ υ= ∫ s  (54.27) 

 
where 0υ  is the value of υ  at any reference point ( )0 .sλ   Thus1 in a solenoidal vector field v  

the vector magnitude is determined to within a constant factor along any vector line ( )s=λ λ  by 
the vector line pattern of v . 
 

From (53.40)4, a vector field v  is complex-lamellar if and only if  
 
 0sυΩ =  (54.28) 

or, equivalently, 
 
 0sΩ =  (54.29) 

 
since in the intrinsic representation v  is assumed to be nonvanishing.  The result (54.29) is 
entirely obvious, because it defines the unit vector field ,s  parallel to ,v  to be complex-lamellar. 
 

From (53.40)4 again, a vector field v  is lamellar if and only if, in addition to (54.28) or 
(54.29), we have also  
 
 / 0, /d db d dnυ υ υκ= =  (54.30) 

 
It should be noted that, when v  is lamellar, it can be represented by (54.3), and thus the potential 
surfaces defined by 
 
 ( ) constf =x  (54.31) 

 
are formed by the integral curves of and .n b   From (54.30)1 along any line−b  
 
 ( ) ( )0 constb bυ υ= =  (54.32) 

 
while from (54.30)2 along any line−n  
 

 ( ) ( ) ( )
0

0 exp
n

n
n n dnυ υ κ= ∫  (54.33) 

                                                 
1 O. Bj∅rgum, see footnote 2 in Section 53. 
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Finally, in the classical theory a vector field v  is called a screw field or a Beltrami field if 

v  is parallel to its curl, namely 
 
 curl× =v v 0  (54.34) 

 
or, equivalently, 
 
 curl s= Ωv v  (54.35) 

 
where sΩ  is the abnormality of ,s  defined by (53.22)1.  In some sense a screw field is just the 
opposite of a complex-lamellar field, which is defined by the condition that the vector field is 
orthogonal to its curl [cf. (54.8)].  Unfortunately, there is no known simple direct representation 
for screw fields.  We must refer the reader to the three long articles by Bjørgum and Godal (see 
footnote 1 above and footnotes 4 and 5 below), which are devoted entirely to the study of these 
fields. 
 

We can, of course, use some general representations for arbitrary smooth vector fields, 
such as Monge’s representation or Stokes’ representation, to express a screw field first.  Then we 
impose some additional restrictions on the scalar fields involved in the said representations.  For 
example, if we use Monge’s representation (54.18) for v , then curl v  is given by (54.19).  In 
this case v  is a screw field if and only if the constant potential surfaces of andk f  are vector 
sheets of v , i.e., 
 
 grad grad 0k f⋅ = ⋅ =v v  (54.36) 

 
From (53.40)4 the intrinsic conditions for a screw field are easily fround to be simply the 

conditions (54.30).  So the integrals (54.32) and (54.33) remain valid in this case, along the 
lines−b and the lines.−n   When the abnormality sΩ  is nonvanishing, the integral of υ  along 

any line−s can be found in the following way:  From (53.40) we have 
 
 / div divd dsυ υ= −v s  (54.37) 

 
Now from the basic conditions (54.35) for a screw field we obtain  
 

 ( ) s
s s0 div div d

ds
υ Ω

= Ω = Ω +v v  (54.38) 

 
So div v  can be represented by  
 

 s

s

div d
ds

υ Ω
= −

Ω
v  (54.39) 
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Substituting (54.39) into (54.37) yields 
 

 s1div
s

d d
ds ds
υ υ

⎛ ⎞Ω
= − +⎜ ⎟Ω⎝ ⎠

s  (54.40) 

 
or, equivalently, 
 

 ( ) divs
s

d
ds
υ

υ
Ω

= − Ω s  (54.41) 

 
The last equation can be integrated at once, and the result is  
 

 ( ) ( ) ( )
( ) ( )( )

0

0 0

0

exp div
ss

s
s

s s
s ds

s
υ

υ
Ω

= −
Ω ∫ s  (54.42) 

 
which may be rewritten as 
 

 ( )
( )

( )
( ) ( )( )

0

0

0

exp div
ss

s
s

s s
ds

s s
υ
υ

Ω
= −
Ω ∫ s  (54.43) 

 
since υ  is nonvanishing.  From (54.43), (54.33), and (54.32) we see that the magnitude of a 
screw field, except for a constant factor, is determined along any line, line, or line− − −s n b  by 
the vector line pattern of the field.2   
 

A screw field whose curl is also a screw field is called a Trkalian field.  According to a 
theorem of Mémenyi and Prim (1949), a screw field is a Trkalian field if and only if its 
abnormality is a constant.  Further, all Trkalian fields are solenoidal and successive curls of the 
field are screw fields, all having the same abnormality.3 
 

The proof of this theorem may be found also in Bjørgum’s article.  Trkalian fields are 
considered in detail in the subsequent articles of Bjørgum and Godal4 and Godal5

                                                 
2 O. Bjørgum, see footnote 2, Section 53. 
3  P. Nemenyi and R. Prim, “Some Properties of Rotational Flow of a Perfect Gas,” Proc. Nat. Acad. Sci. 34, 119-
124; Erratum 35, 116 (1949). 
4 O. Bjørgum and T. Godal, “On Beltrami Vector Fields and Flows, Part II. The Case when Ω is Constant in Space,” 
Universitetet i Bergen, Arbok 1952, Naturvitenskapelig rekke Nr. 13. 
5 T. Godal, “On Beltrami Vector Fields and Flows, Part III. Some Considerations on the General Case,” Universitete 
i Bergen, Arbok 1957, Naturvitenskapelig rekke Nr.12. 
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________________________________________________________________ 

Chapter 11 
 
 

HYPERSURFACES ON A EUCLIDEAN MANIFOLD 
 
 
In this chapter we consider the theory of (N-1)-dimensional hypersurfaces embedded in an N-
dimensional Euclidean manifold E .  We shall not treat hypersurfaces of dimension less than N-
1, although many results of this chapter can be generalized to results valid for those 
hypersurfaces also. 
 
Section 55. Normal Vector, Tangent Plane, and Surface metric 
 

A hypersurface of dimension N-1 in E  a set S  of points in E  which can be 
characterized locally by an equation 
 
 ( ) 0f∈ ⊂ ⇔ =x xN S  (55.1) 

 
where f is a smooth function having nonvanishing gradient.  The unit vector field on N  
 

 grad
grad

f
f

=n  (55.2) 

 
is called a unit normal of S , since from (55.1) and (48.15) for any smooth curve ( )t=λ λ in S  
we have 
 

 10 (grad )
grad

df f
dt f

= = ⋅ = ⋅
λ λ n λD � �  (55.3) 

 
The local representation (55.1) of S  is not unique, or course.  Indeed, if f satisfies (55.1), 

so does –f, the induced unit normal of –f  being –n.  If the hypersurface S  can be represented 
globally by (55.1), i.e., there exists a smooth function whose domain contains the entire 
hypersurface such that 
 
 ( ) 0f∈ ⇔ =x xS  (55.4) 

 
then S  is called orientable.  In this case S  can be equipped with a smooth global unit normal 
field n.  (Of course, -n is also a smooth global unit normal field.)  We say that S  is oriented if a 
particular smooth global unit normal field n has been selected and designated as the positive unit 
normal of S .   We shall consider oriented hypersurfaces only in this chapter. 



408 Chap. 11 • HYPERSURFACES 

 
Since grad f is nonvanishing, S  can be characterized locally also by 

 
 1 1( , , )Ny y −=x x …  (55.5) 

 
in such a way that 1 1( , , , )Ny y f−… forms a local coordinate system in S .  If n is the positive unit 
normal and f satisfies (55.2), then the parameters 1 1( , , )Ny y −… are said to form a positive local 
coordinate system in S  when 1 1( , , , )Ny y f−…  is a positive local coordinate system in E .   Since 
the coordinate curves of , 1, , 1,y NΓ Γ = −…  are contained in S  the natural basis vectors 
 
 / , 1, , 1y NΓ

Γ = ∂ ∂ Γ = −h x …  (55.6) 

 
are tangent to S .   Moreover, the basis { },Γh n is positive in E .  We call the ( )1N − -

dimensional hyperplane xS spanned by { }( )Γh x the tangent plane of S  at the point ∈x S.  
 

Since 
 
 0, 1, , 1NΓ ⋅ = Γ = −h n …  (55.7) 

 
The reciprocal basis of { },Γh n has the form { },Γh n where Γh are also tangent to S , namely 
 
 0, 1, , 1NΓ ⋅ = Γ = −h n …  (55.8) 

 
and 
 

 , , 1, , 1NδΓ Γ
Δ Δ⋅ = Γ Δ = −h h …  (55.9) 

 
In view of (55.9) we call { }Γh and { }Γh  reciprocal natural bases of ( )yΓ  on S . 
 

Let v be a vector field on S , i. e., a function ; .→v S V   Then, for each ∈x S , v  can 
be represented in terms of the bases { },Γh n  and { },Γh n  by 
 
 N

Nυ υ υ υΓ Γ
Γ Γ= + = +v h n h n  (55.10) 

 
where, from (55.7)-(55.9), 
 
 , , N

Nυ υ υ υΓ Γ
Γ Γ= ⋅ = ⋅ = = ⋅v h v h v n  (55.11) 
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We call the vector field 
 
 ( )υ υΓ Γ

Γ Γ≡ = = − ⋅v h h v v n nS  (55.12) 

 
the tangential projection of v , and we call the vector field 
 
 N

n Nυ υ≡ = = −v n n v vS  (55.13) 

 
the normal projection of v .  Notice that in (55.10)-(55.12) the repeated Greek index is summed 
from 1 to N-1.  We say that v  is a tangential vector field on S  if n =v 0  and a normal vector 
field if =v 0S . 
 

If we introduce a local coordinate system ( )ix in E , then the representation (55.5) may 
be written 
 
 1 1( , , ), 1, ,i i Nx x y y i N−= =… …  (55.14) 

 
From (55.14) the surface basis { }Γh is related to the natural basis { }ig of ( )ix  by 
 

 , 1, , 1
i

i
i i

xh N
yΓ Γ Γ

∂
= = Γ = −

∂
h g g …  (55.15) 

 
while from (55.2) the unit normal n  has the component form  
 

 1/ 2

/
( ( / )( / ))

i
i

ab a b

f x
g f x f x

∂ ∂
=

∂ ∂ ∂ ∂
n g  (55.16) 

 
where, as usual{ }ig , is the reciprocal basis of { }ig and { }abg is the component of the Euclidean 
metric, namely 
 
 ab a bg = ⋅g g  (55.17) 

 
The component representation for the surface reciprocal basis { }Γh  is somewhat harder 

to find.  We find first the components of the surface metric. 
 

 
i i

ij
x xa g
y yΓΔ Γ Δ Γ Δ

∂ ∂
≡ ⋅ =

∂ ∂
h h  (55.18) 
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where ijg  is a component of the Euclidean metric 
 
 ij i jg = ⋅g g  (55.19) 

 
Now let aΓΔ⎡ ⎤⎣ ⎦ be the inverse of [ ]aΓΔ ,i.e., 
 
 , , 1, , 1a a NδΓΔ Γ

ΔΣ Σ= Γ Σ = −…  (55.20) 

 
The inverse matrix exists because from (55.18), [ ]aΓΔ  is positive-definite and symmetric.  In 
fact, from (55.18) and (55.9) 
 
 aΓΔ Γ Δ= ⋅h h  (55.21) 

 
so that aΓΔ is also a component of the surface metric.  From (55.21) and (55.15) we then have 
 

 , 1, , 1
i

i
xa N
y

Γ ΓΔ
Δ

∂
= Γ = −

∂
h g …  (55.22) 

 
which is the desired representation for Γh . 
 

At each point ∈x S  the components ( )aΓΔ x  and ( )aΓΔ x  defined by (55.18) and (55.21) 
are those of an inner product on xS  relative to the surface coordinate system ( )y Γ , the inner 
product being the one with induced by that of V   since xS  is a subspace of V .  In other words 
if u  and v  are tangent to S  at x , say 
 
 ( ) ( )u υΓ Δ

Γ Δ= =u h x v h x  (55.23) 

 
then 
 ( )a u υΓ Δ

ΓΔ⋅ =u v x  (55.24) 

 
This inner product gives rise to the usual operations of rising and lowering of indices for tangent 
vectors of S .  Thus (55.23) 1  is equivalent to 
 
 ( ) ( ) ( )a u uΓ Δ Δ

ΓΔ Δ= =u x h x h x  (55.25) 
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Obviously we can also extend the operations to tensor fields on S  having nonzero components 
in the product basis of the surface bases { }Γh  and { }Γh  only.  Such a tensor field A may be 
called a tangential tensor field of S   and has the representation 
 

 
1

1 2

2 1

1 2

...

... ,    etc.

r

r

r

A

A

Γ Γ
Γ Γ

Γ Γ Γ
Γ Γ Γ

= ⊗ ⊗

= ⊗ ⊗ ⊗

h h

h h h

A "

"
 (55.26) 

Then 
 
 2 2

1 1

... ... , etc.r rA a AΓ Γ ΔΓ Γ
Γ Γ Δ=  (55.27) 

 
There is a fundamental difference between the surface metric a  on S  and the Euclidean 

metric g  on E  however.  In the Euclidean space E  there exist coordinate systems in which the 
components of g  are constant.  Indeed, if the coordinate system is a rectangular Cartesian one, 
then ijg is ijδ at all points of the domain of the coordinate system.  On the hypersurface S , 

generally, there need not be any coordinate system in which the components aΓΔ or aΓΔ  are 
constant unless S  happens to be a hyperplane.  As we shall see in a later section, the departure 
of a  from g  in this regard can be characterized by the curvature of S . 
 

Another important difference between S and E is the fact that in S the tangent planes at 
different points generally are different (N-1)-dimensional subspaces of V .  Hence a vector in V  
may be tangent to S  at one point but not at another point.  For this reason there is no canonical 
parallelism which connects the tangent planes of S at distinct points.  As a result, the notions of 
gradient or covariant derivative of a tangential vector or tensor field on S  must be carefully 
defined, as we shall do in the next section. 
 

The notions of Lie derivative and exterior derivative introduced in Sections 49 and 51, 
however, can be readily defined for tangential fields of S .  We consider first the Lie derivative. 
 

Let v  be a smooth tangent field defined on a domain in S .  Then as before we say that a 
smooth curve ( )t=λ λ  in the domain of v  is an integral curve if 
 
 ( ) / ( ( ))d t dt t=λ v λ  (55.28) 

 
at all points of the curve.  If we represent λ and v  in component forms 
 
 1 1ˆ( ( )) ( ( ), , ( )) andNy t t tλ λ υ Γ

Γ

−= =λ v h…  (55.29) 

 
relative to a surface coordinate system ( )y Γ , then (55.28) can be expressed by 
 
 ( ) / ( ( ))d t dt tλ υΓ Γ= λ  (55.30) 
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Hence integral curves exist for any smooth tangential vector field v  and they generate flow, and 
hence a parallelism, along any integral curve.  By the same argument as in Section 49, we define 
the Lie derivative of a smooth tangential vector field u  relative to v  by the limit (49.14), except 
that now tρ and tP are the flow and the parallelism in S .  Following exactly the same derivation 
as before, we then obtain 
 

 u u
y y

υυ
Γ Γ

Δ Δ
ΓΔ Δ

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠v

u hL  (55.31) 

 
which generalizes (49.21).  Similarly if A  is a smooth tangential tensor field on S , then 

v
L A  is 

defined by (49.41) with tρ and tP as just explained, and the component representation for 
v

L A  is 

 

 

1 1
1 2.1

1 1

1 1 1

1 2 1

1

1 1

...
... ......

... ...

... ...

...

( )
r

s rr

s s

r
r r

s s

r

s s

A
A

y y

A A
y y

A
y

υυ

υ υ

υ

−

−

Γ Γ Γ
Δ Δ ΣΓ ΓΓ Γ Σ

Δ Δ Δ ΔΣ Σ

Γ Σ
Γ Γ Σ Γ Γ

Δ Δ ΣΔ Δ ΔΣ

Σ
Γ Γ

Δ Δ Σ Δ

∂ ∂
= −

∂ ∂

∂ ∂
− − +

∂ ∂

∂
+ +

∂

v
S A

… …

…

"

"

 (55.32) 

 
which generalizes (49.42). 
 

Next we consider the exterior derivative.  Let A  be a tangential differential form on S , 
i.e., A  is skew-symmetric and has the representations 
 

 

1

1

1

1
1

1

1

...

...

...
1
!

r

r

r

r
r

r

r

A

A

A
r

Γ Γ
Γ Γ

Γ Γ
Γ ΓΓ <⋅⋅⋅<Γ

Γ Γ
Γ Γ

= ⊗ ⊗

= Σ ∧ ∧

= ∧ ∧

h h

h h

h h

A "

"

"

 (55.33) 

 
Then we define the surface exterior derivative as dA   
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1 1

1

1

11 1 1

1 1

1
...

1

1
!

1
!( 1)!

r r

r

r r

rr r

r

N A
d

y
A

r y
A

r r y
δ +

+

−
Γ Γ Γ ΓΔ

ΔΓ <⋅⋅⋅<Γ Δ=

Γ Γ ΓΔ
Δ

Γ ΓΔΓ Γ Σ Σ
Σ Σ Δ

= Σ Σ ∧ ∧ ∧
∂

∂
= ∧ ∧

∂
∂

= ∧ ∧
+ ∂

h h h

h h

h h

A

…

……
…

"

"

"

 (55.34) 

 
which generalizes (51.5). However, since the surface covariant derivative ∇A  has not yet been 
defined, we cannot write down the equation that generalizes (51.6) to the surface exterior 
derivative.  But we shall achieve this generalization in the next section.  Other than this 
exception, all results of Sections 49-52 can now be generalized and restated in an obvious way 
for tangential fields on the hypersurface.  In fact, those results are valid for differentiable 
manifolds in general, so that they can be applied to Euclidean manifolds as well as to 
hypersurfaces therein. 
 
Excercises 
 
55.1 For each ∈x S define a linear transformation : →xL V V by  
 
 =xL v vS  

 
 for all ∈v V .  Show that xL is an orthogonal projection whose image space is xS and 
 whose kernel is the one-dimensional subspace generated by n  at x . 
 
55.2 Show that 
 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
i j

i j

a
x xa
y y

Γ Γ Δ
Γ ΓΔ

ΓΔ
Δ Γ

= ⊗ = ⊗

∂ ∂
= ⊗

∂ ∂

xL h x h x x h x h x

x g x g x
 

 
 
 Thus xL is the linear transformation naturally isomorphic to the surface matric tensor at 
 x . 
 
55.3 Show that 
 
 = + ⊗xI L n n  

 
and 
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 ( ) ( ) ( ) ( )
i j

ij i jx xg a n n
y y

ΓΔ
Δ Γ

∂ ∂
= +

∂ ∂
x x x x  

 
55.4 Show that 
 

 ( ) ( ) ( )
l

j jl
xg
y

Σ
Σ

∂
=

∂xL g x x h x  

 
 and 
 

 ( ) ( )j
jx

y
Σ

Σ

∂
=
∂xL g x h x  

 
55.5 Compute the components aΓΔ for (a) the spherical surface defined by 
 

 

1 1 2

2 1 2

3 1

sin cos
sin sin
cos

x c y y
x c y y
x c y

=

=

=

 

 
and (b) the cylindrical surface 

 
 1 1 2 1 3 2 =  cos ,   =  sin ,  =  x c y x c y x y  

 
 where c is a constant. 
 
55.6 For N=3 show that 
 
 11 12 22

22 12 11/ , / ,      /a a a a a a a a a= = − =  

 
 where [ ]2

11 22 12 deta a a a aΔΓ= − = . 
 
55.7 Given an ellipsoid of revolution whose surface is determined by 
 

 

1 1 2

2 1 2

3 1

cos sin
sin sin
cos

x b y y
x b y y
x c y

=

=

=

 

 
 where b  and c  are constants and 2 2b c>  show that 
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 2 2 2

11 12sin , 0a b y a= =  

 
 and 
 
 2 2 2 2 2 2

22 cos sina b y c y= +  
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Section 56.  Surface Covariant Derivatives 
 

As mentioned in the preceding section, the tangent planes at different points of a 
hypersurface generally do not coincide as subspaces of the translation space V of E. Consequently, 
it is no longer possible to define the gradient or covariant derivative of a tangential tensor field 
by a condition that formally generalizes (47.17). However, we shall see that it is possible to 
define a type of differentiation which makes (47.17) formally unchanged. For a tangential tensor 
field A  represented by (55.26) we define the surface gradient ∇A by 
 
 1

1
,r

r
AΓ Γ Δ

Δ Γ Γ∇ = ⊗ ⊗ ⊗h h hA … "  (56.1) 

 
where 
 

 
1

1 2 1 11,
r

r r r rAA A A
y

−

Γ Γ
Γ Γ ΣΓ Γ Γ Γ Σ

Δ Δ

Γ Γ⎧ ⎫ ⎧ ⎫∂
= + + +⎨ ⎬ ⎨ ⎬ΣΔ ΣΔ∂ ⎩ ⎭ ⎩ ⎭

…
… … …"  (56.2) 

 
and 
 

 1
2

a a aa
y y y

ΩΣ ΓΣ ΔΣ ΓΔ
Δ Γ Σ

Ω⎧ ⎫ ⎛ ⎞∂ ∂ ∂
= + −⎨ ⎬ ⎜ ⎟ΓΔ ∂ ∂ ∂⎩ ⎭ ⎝ ⎠

 (56.3) 

 

The quantities 
Ω⎧ ⎫

⎨ ⎬ΓΔ⎩ ⎭
are the surface Christoffel symbols.  They obey the symmetric condition 

 

 
Ω Ω⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬ΓΔ ΔΓ⎩ ⎭ ⎩ ⎭
 (56.4) 

 
We would like to have available a formula like (47.26) which would characterize the surface 
Christoffel symbols as components of yΓ

Δ∂ ∂h .  However, we have no assurance that 
yΓ

Δ∂ ∂h is a tangential vector field.  In fact, as we shall see in Section 58, yΓ
Δ∂ ∂h is not 

generally a tangential vector field.  However, given the surface Christoffel symbols, we can 
formally write 
 

 D
Dy

Δ
ΩΓ

Ω⎧ ⎫
= ⎨ ⎬ΓΔ⎩ ⎭

h h  (56.5) 

 
With this definition, we can combine (56.2) with (56.1) and obtain  
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1

1

11

1

r

r

rr

r

A
y
D D

A
Dy Dy

Γ Γ
Δ

Γ ΓΔ

Γ ΓΓ Γ Δ
Γ ΓΔ Δ

∂
∇ = ⊗ ⊗ ⊗

∂

⎧ ⎫
+ ⊗ ⊗ + + ⊗ ⊗ ⊗⎨ ⎬

⎩ ⎭

h h h

h h
h h h

A
…

…

"

" " "
 (56.6) 

 
If we adopt the notional convention 
 

 
1 1r rDA A

Dy y

Γ Γ Γ Γ

Δ Δ

∂
=

∂

… …

 (56.7) 

 
then (56.6) takes the suggestive form 
 

 D
Dy

Δ
Δ∇ = ⊗ hAA  (56.8) 

 
The components 1 ,rAΓ Γ

Δ
… of ∇A  represents the surface covariant derivative.  If the mixed 

components of A  are used, say with 
 
 1 1

1 1

sr

s r
A ΔΓ Γ Δ

Δ Δ Γ Γ= ⊗ ⊗ ⊗ ⊗ ⊗h h h hA …
… " "  (56.9) 

 
then the components of ∇A  are given by 
 

 

1

11

1

2 1 1

1 1

1 1

2 1 1

1

1

,
r

sr

s

r r

s s

r r

s s

r

s

A
A

y

A A

A A

−

−

Γ Γ
Δ ΔΓ Γ

Δ Δ Σ Σ

ΩΓ Γ Γ Γ Ω
Δ Δ Δ Δ

Γ Γ Γ Γ
ΩΔ Δ Δ Δ Ω

∂
=

∂

Γ Γ⎧ ⎫ ⎧ ⎫
+ + +⎨ ⎬ ⎨ ⎬ΩΣ ΩΔ⎩ ⎭ ⎩ ⎭

ΩΩ ⎧ ⎫⎧ ⎫
− − −⎨ ⎬ ⎨ ⎬Δ ΣΔ Σ⎩ ⎭ ⎩ ⎭

"

…
……

…

… …
…

… …
… …

"

"

 (56.10) 

 
which generalizes (47.39).  Equation (56.10) can be formally derived from (56.8) if we adopt the 
definition 
 

 D
Dy

Γ
Δ

Σ

Γ⎧ ⎫
= − ⎨ ⎬ΣΔ⎩ ⎭

h h  (56.11) 

 
When we apply (56.10) to the surface metric, we obtain 
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 , ,, 0a a δΓΔ Γ
ΓΔ Σ Σ Δ Σ= = =  (56.12) 

 
which generalizes (47.40). 
 

The formulas (56.2) and (56.10) give the covariant derivative of a tangential tensor field 
in component form.  To show that 1 ,rAΓ Γ

Δ
…  and 1

1
,r

s
AΓ Γ

Δ Δ Σ
…

… are the components of some 
tangential tensor fields, we must show that they obey the tensor transformation rule, e.g., if 
( )y Γ is another surface coordinate system, then 
 

 
1

1 1

1
, ,

r
r r

r

y y yA A
y y y

Γ Γ Ω
Γ Γ Σ Σ

Δ ΩΣ Σ Δ

∂ ∂ ∂
=
∂ ∂ ∂

… …"  (56.13) 

 
where 1 ,rAΓ Γ

Δ
… are obtained from (56.2) when all the fields on the right-hand side are referred to 

( )y Γ .  To prove (56.13), we observe first that from (56.3) and the fact that aΓΔ and aΓΔ are 
components of the surface metric, so that 
 

 ,y y y ya a a a
y y y y

Γ Δ Σ Ω
ΓΔ ΣΘ

ΓΔ ΣΩΣ Θ Γ Δ

∂ ∂ ∂ ∂
= =
∂ ∂ ∂ ∂

 (56.14) 

 
we have the transformation rule 
 

 
2y y y y y

y y y y y y

Σ Ω Σ Θ Φ

Ω Γ Δ Ω Γ Δ

Σ Ω⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂
= +⎨ ⎬ ⎨ ⎬ΓΔ ΘΦ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

 (56.15) 

 
which generalizes (47.35).  Now using (56.15), (56.3), and the transformation rule 
 

 
1

1 1

1

r
r r

r

y yA A
y y

Γ Γ
Γ Γ Δ Δ

Δ Δ

∂ ∂
=
∂ ∂

… …"  (56.16) 

 
we can verify that (56.13) is valid.  Thus ∇A , as defined by (56.1), is indeed a tangential tensor 
field. 
 

The surface covariant derivative ∇A  just defined is not the same as the covariant 
derivative defined in Section 47.  First, the domain of A  here is contained in the hypersurface 

S , which is not an open set in E .   Second, the surface Christoffel symbols 
Σ⎧ ⎫

⎨ ⎬ΓΔ⎩ ⎭
 are generally 

nonvanishing relative to any surface coordinate system ( )yΓ unless S   happens to be a 

hyperplane on which the metric components aΓΔ  and aΓΔ are constant relative to certain 
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“Cartesian” coordinate systems.  Other than these two points the formulas for the surface 
covariant derivative are formally the same as those for the covariant derivative on E . 
 
 In view of (56.3) and (56.10), we see that the surface covariant derivative and the surface 
exterior derivative are still related by a formula formally the same as (51.6), namely 
 
 1( 1) ( 1)! ( )r

rd r += − + ∇A K A  (56.17) 

 
for any surface r-form.  Here 1r+K denotes the surface skew-symmetric operator.  That is, in 

terms of any surface coordinate system ( )yΓ  
 

 1 1

1 1

1
!

p p

p pp p
δ Γ Γ ΔΔ
Δ Δ Γ Γ= ⊗ ⊗ ⊗ ⊗ ⊗h h h hK "
" " "  (56.18) 

 
for any integer p from 1 to N-1.  Notice that from (56.18) and (56.10) the operator pK , like the 
surface metric a , is a constant tangential tensor field relative to the surface covariant derivative, 
i.e., 
 
 1

1
, 0p

p
δ Γ Γ
Δ Δ Σ =
…
…  (56.19) 

 
As a result, the skew-symmetric operator as well as the operators of raising and lowering of 
indices for tangential fields both commute with the surface covariant derivative. 
 

In Section 48 we have defined the covariant derivative along a smooth curve λ in E .  
That concept can be generalized to the surface covariant derivative along a smooth curve λ  in 
S .  Specifically, let λ be represented by ( )( )tλΓ relative to a surface coordinate system ( )yΓ  in 
S , and suppose that A  is a tangential tensor field on λ  represented by 
 
 ( ) ( )( ) ( )( )1

1
( )r

r
t A t t tΓ Γ

Γ Γ= ⊗ ⊗h λ h λA … "  (56.20) 

 
Then we define the surface covariant derivative by the formula 
 

 
1

2 1

1

1 1
r

r r

r

D dA dA A
Dt dt dt

λΓ Γ Σ
ΔΓ Γ Γ Γ

Γ Γ

⎡ ⎤Γ Γ⎛ ⎞⎧ ⎫ ⎧ ⎫
= + + + ⊗ ⊗⎢ ⎥⎨ ⎬ ⎨ ⎬⎜ ⎟ΔΣ ΔΣ⎢ ⎥⎩ ⎭ ⎩ ⎭⎝ ⎠⎣ ⎦

h hA …
… …" "  (56.21) 

 
which formally generalizes (48.6).  By use of (56.15) and (56.16) we can show that the surface 
covariant derivative /D DtA along λ  is a tangential tensor field on λ independent of the choice 
of the surface coordinate system ( )yΓ employed in the representation (56.21).  Like the surface 
covariant derivative of a field in S , the surface covariant derivative along a curve commutes 
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with the operations of raising and lowering of indices.  Consequently, when the mixed 
component representation is used, say with A  given by 
 
 ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )1 1

1 1 1

sr

s
t A t t t t tΔΓ Γ Δ

Δ Δ Γ Γ= ⊗ ⊗ ⊗ ⊗ ⊗h λ h λ h λ h λA …
… " "  (56.22) 

 
the formula for /D DtA becomes 
 

 

1

1 2 1 1

1 1

1 1 1

2 1 1 1 1

1

1

(

)

r

s r r

s s

sr r

s s

r

s

dAD A A
Dt dt

dA A
dt
λ

−

−

Γ Γ
Δ Δ ΣΓ Γ Γ Γ Σ

Δ Δ Δ Δ

Ω
ΔΓ Γ Γ Γ Δ

ΣΔ Δ Δ Δ Σ Γ Γ

⎛ Γ Γ⎧ ⎫ ⎧ ⎫
= + + +⎜ ⎨ ⎬ ⎨ ⎬⎜ ΣΩ ΣΩ⎩ ⎭ ⎩ ⎭⎝

ΣΣ ⎞⎧ ⎫⎧ ⎫
− − − ⊗ ⊗ ⊗ ⊗ ⊗⎨ ⎬ ⎨ ⎬ ⎟Δ ΩΔ Ω⎩ ⎭ ⎩ ⎭ ⎠

h h h h

A …
… … …

… …

… …
… …

"

" " "

(56.23) 

 
which formally generalizes (48.7). 
 

As before, if A  is a tangential tensor field and λ is a curve in the domain of A , then the 
restriction of A  on λ is a tensor of the form (56.20) or (56.22).  In this case the covariant 
derivative of A  along λ is given by  
 
 ( )( ) ( )( ) ( )D t Dt t t⎡ ⎤= ∇⎣ ⎦λ λ λA A �  (56.24) 

 
which generalizes (48.15).  The component form of (56.24) is formally the same as (48.14).  A 
special case of (56.24) is equation (56.5), which is equivalent to 
 
 [ ]D DyΔ

Γ Γ Δ= ∇h h h  (56.25) 

 
since from (56.10) 
 

 Ω
Γ Σ

Σ⎧ ⎫
∇ = ⊗⎨ ⎬ΓΩ⎩ ⎭

h h h  (56.26) 

 
If v  is a tangential vector field defined on λ  such that 

 
 D Dt =v 0  (56.27) 

 
then v  may be called a constant field or a parallel field on λ .  From (56.21), v  is a parallel field 
if and only if its components satisfy the equations of parallel transport: 
 

 0, 1, , 1d N
dt
υ υ

Γ
Δ ΣΓ⎧ ⎫

+ = Γ = −⎨ ⎬ΔΣ⎩ ⎭
λ� …  (56.28) 
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Since ( )tλΣ�  and ( )( )t
Γ⎧ ⎫

⎨ ⎬ΔΣ⎩ ⎭
λ  are smooth functions of t, it follows from a theorem in ordinary 

differential equations that (56.28) possesses a unique solution 
 
 ( ) , 1, , 1t Nυ υΔ Δ= Δ = −…  (56.29) 

 
provided that a suitable initial condition 
 
 ( ) 00 , 1, , 1Nυ υΔ Δ= Δ = −…  (56.30) 

 
is specified. Since (56.28) is linear in v , the solution ( )tv of (56.27) depends linearly on ( )0v . 
Thus there exists a linear isomorphism 
 
 ( ) ( )0, 0:t t→λ λρ S S  (56.31) 

defined by 
 
 ( )( ) ( )0, 0t t=ρ v v  (56.32) 

 
for all parallel fields v  on λ .  Naturally, we call 0,tρ the parallel transport along λ induced by 
the surface covariant derivative. 
 

The parallel transport 0,tρ  preserves the surface metric in the sense that  
 
 ( )( ) ( )( ) ( ) ( )0, 0,0 0 0 0t t⋅ = ⋅ρ v ρ u v u  (56.33) 

 
for all ( )0u , ( )0v  in ( )0λS but generally 0,tρ does not coincide with the Euclidean parallel 

transport on E  through the translation space V .  In fact since ( )0λS and ( )tλS need not be the 

same subspace in V , it is not always possible to compare 0,tρ with the Euclidean parallelism.  As 

we shall prove later, the parallel transport 0,tρ  depends not only on the end points ( )0λ  and 

( )tλ  but also on the particular curve joining the two points.  When the same two end points 

( )0λ and ( )tλ are joined by another curve μ in S ,  generally the parallel transport along μ  from 

( )0λ to ( )tλ  need not coincide with that along λ . 
 

If the parallel transport ,t tρ along λ  from ( )tλ to ( )tλ is used, the covariant derivative 
D Dtv of a vector field on λ can be defined also by the limit of a difference quotient, namely 
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( ) ( )( ),

0
lim t t t

t

t t tD
Dt t

+Δ

Δ →

+ Δ −
=

Δ

v ρ vv  (56.34) 

 
To prove this we observe first that 
 

 ( ) ( ) ( ) ( )( ) ( )d t
t t t t t t o t

dt
υ

υ
Γ

Γ
Γ

⎛ ⎞
+ Δ = + Δ + Δ + Δ⎜ ⎟

⎝ ⎠
v h λ  (56.35) 

 
From (56.28) we have also 
 

 
( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

,t t t t

t t t t t t t o tυ υ λ

+Δ

Γ Δ Σ
Γ

Γ⎛ ⎞⎧ ⎫
= − Δ + Δ + Δ⎨ ⎬⎜ ⎟ΔΣ⎩ ⎭⎝ ⎠

ρ v

λ h λ�  (56.36) 

 
Substituting these approximations into (56.34), we see that 
 

 
( )( ),

0

( )
lim t t t

t

t t t d
t dt

υ υ λ
Γ

+Δ Δ Σ
ΓΔ →

+ Δ − Γ⎛ ⎞⎧ ⎫
= + ⎨ ⎬⎜ ⎟ΔΣΔ ⎩ ⎭⎝ ⎠

v ρ v
h�  (56.37) 

 
which is consistant with the previous formula (56.21) for the surface covariant derivative 
D Dtv of v along λ . 
 

Since the parallel transport ,t tρ is a linear isomorphism from ( )tλS to ( )tλS , it gives rise to 
various induced parallel transport for tangential tensors.  We define a tangential tensor field A  
on λ  a constant field or a parallel field if 
 
 0D Dt =A  (56.38) 

 
Then the equations of parallel transport along λ for tensor fields of the forms (56.20) are 
 

 
1

2 1 11 0
r

r r rdA dA A
dt dt

λ
−

Γ Γ Σ
ΔΓ Γ Γ Γ ΔΓ Γ⎛ ⎞⎧ ⎫ ⎧ ⎫

+ + + =⎨ ⎬ ⎨ ⎬⎜ ⎟ΔΣ ΔΣ⎩ ⎭ ⎩ ⎭⎝ ⎠

…
… …"  (56.39) 

 
If we donate the induced parallel transport by 0,tP , or more generally by ,t tP , then as before we 
have 
 

 
( ) ( )( ),

0
lim t t t

t

t t tD
Dt t

+Δ

Δ →

+ Δ −
=

Δ

PA AA  (56.40) 
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The coordinate-free definitions (56.34) and (56.40) demonstrate clearly the main 

difference between the surface covariant derivative on S  and the ordinary covariant derivative 
on the Euclidean manifold E .  Specifically, in the former case the parallelism used to compute 
the difference quotient is the path-dependent surface parallelism, while in the latter case the 
parallelism is simply the Euclidean parallelism, which is path-independent between any pair of 
points in E . 
 

In classical differential geometry the surface parallelismρ , or more generally P, defined 
by the equation (56.28) or (56.39) is known as the Levi-Civita parallelism or the Riemannian 
parallelism.  This parallelism is generally path-dependent and is determined completely by the 
surface Christoffel symbols. 
 
 
Exercises 
 
56.1 Use (55.18), (56.5), and (56.4) and formally derive the formula (56.3). 
 
56.2 Use (55.9) and (56.5) and the assumption that /D DyΓ Σh is a surface vector field and 

formally derive the formula (56.11). 
 
56.3 Show that 
 

 D
y Dy

Ω ΩΔ Δ
Γ Γ

Ω⎧ ⎫∂
⋅ = ⋅ = ⎨ ⎬ΓΔ∂ ⎩ ⎭

h hh h  

 
and 

 

 D
y Dy

Γ Γ

Δ ΔΣ Σ

Γ⎧ ⎫∂
⋅ = ⋅ = − ⎨ ⎬ΣΔ∂ ⎩ ⎭

h hh h  

 
These formulas show that the tangential parts of yΓ

Δ∂ ∂h and yΓ Σ∂ ∂h coincide with 
D DyΓ

Δh and D DyΓ Σh , respectively. 
 

56.4 Show that the results of Exercise 56.3 can be written 
 

 andD D
y Dy y Dy

Γ Γ
Δ Δ
Γ Γ Σ Σ

⎛ ⎞⎛ ⎞∂ ∂
= =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

h h h hL L  

 
where L  is the field whose value at each ∈x S is the projection xL defined in Exercise 
55.1. 
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56.5 Use the results of Exercise 56.3 and show that 
 

 
y

∗ Δ
Δ

⎛ ⎞∂
∇ = ⊗⎜ ⎟∂⎝ ⎠

hAA L  

 
 where ∗L is the linear mapping induced by L . 
 
56.6 Adopt the result of Exercise 56.5 and derive (56.10).  This result shows that the above 

formula for ∇A can be adopted as the definition of the surface gradient.  One advantage 
of this approach is that one does not need to introduce the formal operation D DyΔA . If 
needed, it can simply be defined to be ( )y∗ Δ∂ ∂L A . 

 
56.7 Another advantage of adopting the result of Exercise 56.5 as a definition is that it can be 

used to compute the surface gradient of field on S which are not tangential.  For 
example, each kg can be restricted to a field on S  but it does not have a component 
representation of the form (56.9).  As an illustration of this concept, show that 

 

 
q l

k jq

j x xg
kl y y

Σ Δ
Σ Δ

⎧ ⎫ ∂ ∂
∇ = ⊗⎨ ⎬ ∂ ∂⎩ ⎭

g h h  

 
 and 
 

  
2 k k l j s

ks

kx x x x xg
jly y y y y y

Φ Δ Γ
Γ Δ Σ Δ Γ Φ

Σ⎛ ⎞⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂
∇ = − + ⊗ ⊗ =⎨ ⎬ ⎨ ⎬⎜ ⎟ΔΓ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭⎝ ⎠

h h h 0L   

 
 Note that ∇ = 0L is no more than the result (56.12). 
 
56.8 Compute the surface Christoffel symbols for the surfaces defined in Excercises 55.5 and 

55.7. 
 
56.9 If A is a tensor field on E, then we can, of course, calculate its spatial gradient, grad A. 

Also, we can restrict its domain S and compute the surface gradient∇A . Show that 
 
     ( )grad∗∇ =A L A  
 
56.10 Show that 
 

   
[ ]( ) [ ]( )

1 2
1 2det

det
a

a
y

ΔΓ
ΔΓΣ

∂ Φ⎧ ⎫
= ⎨ ⎬ΦΣ∂ ⎩ ⎭
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Section 57.  Surface Geodesics and the Exponential Map 
 

In Section 48 we pointed out that a straight line λ in E  with homogeneous parameter can 
be characterized by equation (48.11), which means that the tangent vector λ� of λ is constant 
along λ , namely 
 
 d dt =λ 0�  (57.1) 

 
The same condition for a curve in S  defines a surface geodesic.  In terms of any surface 
coordinate system ( )yΓ the equations of geodesics are 
 

 
2

2 0, 1, , 1d d d N
dt dt dt
λ λ λΓ Σ Δ Γ⎧ ⎫

+ = Γ = −⎨ ⎬ΣΔ⎩ ⎭
…  (57.2) 

 
Since (57.2) is a system of second-order differential equations with smooth coefficients, at each 
point 
 
 ( )0 0= ∈x λ S  (57.3) 

and in each tangential direction 
 
 ( )0 00= ∈ xv λ S�  (57.4) 

 
there exists a unique geodesic ( )t=λ λ satisfying the initial conditions (57.3) and (57.4). 
 

In classical calculus of variations it is known that the geodesic equations (57.2) represent 
the Euler-Lagrange equations for the arc length integral 
 

 
( ) ( ) ( )( )

( )( )

1

0

1

0

1 2

1 2

t

t

t

t

s t t dt

d da t dt
dt dt
λ λΓ Δ

ΓΔ

= ⋅

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∫

∫

λ λ λ

λ

� �

 (57.5) 

 
between any two fixed points 
 
 ( ) ( )0 1,t t= =x λ y λ  (57.6) 
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on S .  If we consider all smooth curves λ in S  joining the fixed end points x  and y , then the 
ones satisfying the geodesic equations are curves whose arc length integral is an extremum in the 
class of variations of curves. 
 

To prove this, we observe first that the arc length integral is invariant under any change 
of parameter along the curve.  This condition is only natural, since the arc length is a geometric 
property of the point set that constitutes the curve, independent of how that point set is 
parameterized.  From (57.1) it is obvious that the tangent vector of a geodesic must have constant 
norm, since 

 
( )

2 0 0
D D

Dt Dt
⋅

= ⋅ = ⋅ =
λ λ λ λ λ
� � � � �  (57.7) 

 
Consequently, we seek only those extremal curves for (57.5) on which the integrand on the right-
hand of (57.5) is constant. 
 

Now if we denote that integrand by 
 

 ( ) ( )( )1 2
,L aλ λ λ λ λΓ Γ Ω Γ Δ

ΓΔ≡� � �  (57.8) 

 
then it is known that the Euler-Lagrange equations for (57.5) are 
 

 0, 1, , 1d L L N
dt λλ ΔΔ

∂ ∂⎛ ⎞ − = Δ = −⎜ ⎟ ∂∂⎝ ⎠
…�  (57.9) 

 
From (57.8) we have 
 

 ( )1 1
2

L a a a
L L

λ λ λ
λ

Γ Γ Γ
ΓΔ ΔΓ ΓΔΔ

∂
= + =

∂
� � �

�  (57.10) 

 
Hence on the extermal curves we have 
 

 1d L a a
dt L y

λ λ λ
λ

Ω Γ ΓΓΔ
ΓΔΩΔ

⎧ ⎫∂ ∂⎛ ⎞ = +⎨ ⎬⎜ ⎟ ∂∂⎝ ⎠ ⎩ ⎭
� � ��

�  (57.11) 

 
where we have used the condition that L is constant on those curves.  From (57.8) we have also 
 

 1
2

L a
L y

λ λ
λ

Γ ΩΓΩ
Δ

Δ

∂ ∂
=

∂ ∂
� �  (57.12) 

 
Combining (57.11) and (57.12), we see that the Euler-Lagrange equations have the explicit form 
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 1 1 0
2

a a aa
L y y y

λ λ λΓ ΩΓΔ ΩΔ ΓΩ
ΓΔ Ω Γ Δ

⎡ ⎤⎛ ⎞∂ ∂ ∂
+ + − =⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
�� � �  (57.13) 

 
where we have used the symmetry of the product λ λΓ Ω� � with respect to Γ and Ω .  Since 

0L ≠ (otherwise the extremal curve is just one point), (57.13) is equivalent to 
 

 1 0
2

a a aa
y y y

λ λ λΘ ΘΔ Γ ΩΓΔ ΩΔ ΓΩ
Ω Γ Δ

⎛ ⎞∂ ∂ ∂
+ + − =⎜ ⎟∂ ∂ ∂⎝ ⎠

�� � �  (57.14) 

 
which is identical to (57.2) upon using the formula (56.3) for the surface Christoffel symbols. 
 

The preceding result in the calculus of variations shows only that a geodesic is a curve 
whose arc length is an extremum in a class of variations of curves.  In terms of a fixed surface 
coordinate system ( )yΓ we can characterize a typical variation of the curve λ by 1N − smooth 

functions ( )tηΓ such that 
 
 ( ) ( )0 1 0, 1, , 1t t Nη ηΓ Γ= = Γ = −…  (57.15) 

 
A one-parameter family of variations of λ is then given by the curses αλ with representations. 
 
 ( ) ( ) ( ) , 1, , 1t t t Nαλ λ αηΓ Γ Γ= + Γ = −…  (57.16) 

 
From (57.15) the curves αλ  satisfy the same end conditions (57.6) as the curve λ , and 

αλ reduces to λwhen 0.α =  The Euler-Lagrange equations express simply the condition that 
 

 ( )
0

0ads
d

α
α

=

=
λ

 (57.17) 

 
for all choice of ηΓ satisfying (57.15).  We note that (57.17) allows 0α = to be a local minimum, 
a local maximum, or a local minimax point in the class of variations.  In order for the arc length 
integral to be a local minimum, additional conditions must be imposed on the geodesic. 
 

It can be shown, however, that in a sufficient small surface neighborhood 
0xN  of any 

point 0x  in S  every geodesic is, in fact, a curve of minimum arc length.  We shall omit the 
proof of this result since it is not simple.  A consequence of this result is that between any pair of 
points x  and y  in the surface neighborhood 

0xN there exists one and only one geodesic λ (aside 
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from a change of parameter) which lies entirely in 
0xN .  That geodesic has the minimum arc 

kength among all curves in S  not just curves in 
0xN , joining x  to y . 

 
Now, as we have remarked earlier in this section, at any point 0 ∈x S , and in each 

tangential direction 
00 ∈ xv S there exists a unique geodesic λ satisfying the conditions (57.3) and 

(57.4).  For definiteness, we donate this particular geodesic by 
0vλ .  Since 

0vλ is smooth and, 

when the norm of 0v is sufficiently small, the geodesic ( )
0

tvλ , [ ]0,1t∈ , is contained entirely in 
the surface neighborhood 

0xN  of 0x .  Hence there exists a one-to-one mapping 
 
 

o o o
exp : →x x xB N  (57.18) 

defined by 
 ( ) ( )

0
exp 1≡x vv λ  (57.19) 

 
for all v belonging to a certain small neighborhood 

0xB of 0 in 
0xS . We call this injection the 

exponential map at 0x . 
 

Since vλ is the solution of (57.2), the surface coordinates ( )yΓ of the point 
 
 ( ) ( )

0
exp 1≡ =x vy v λ  (57.20) 

depends smoothly on the components υΓ of v  relative to ( )yΓ ,i.e., there exists smooth functions 
 
 ( )

0

1 1exp , , , 1, , 1Ny Nυ υΓ Γ −= Γ = −x … …  (57.21) 

 
where ( )υ Γ can be regarded as a Cartesian coordinate system on 

0xB induced by the basis 

( ){ }0Γh x , namely, 
 
 ( )0υΓ

Γ=v h x  (57.22) 

 
In the sense of (57.21) we say that the exponential map 0expx is smooth. 
 

Smoothness of the exponential map can be visualized also from a slightly different point 
of view. Since 

0xN is contained in S , which is contained in E , 
0

expx can be regarded also as a 
mapping from a domain 

0xB in an Euclidean space 
0xS to the Euclidean space E , namely 

  
 

0 0
exp : →x xB E  (57.23) 



Sec. 57   • Surface Geodesics, Exponential Map 429 

Now the smoothness of 
0

expx  has the usual meaning as defined in Section 43.  Since the surface 

coordinates ( )yΓ can be extended to a local coordinate system ( ),y fΓ as explained in Section 
55, smoothness in the sense of (57.21) is consistant with that of (57.23). 
 

As explained in Section 43, the smooth mapping 
0

expx has a gradient at any point v in the 

domain 
0xB .  In particular, at ,=v 0  ( )( )0

grad expx 0 exists and corresponds to a linear map 
  
 ( )

0 0
grad exp : →x x0 S V  (57.24) 

 
We claim that the image of this linear map is precisely the tangent plane 

0xS , considered as a 

subspace of V ;  moreover, ( )( )0
grad expx 0  is simply the identity map on 

0xS .  This fact is more 

or less obvious, since by definition the linear map ( )( )0
grad expx 0  is characterized by the 

condition that 
 

 ( )( ) ( )( ) ( )( )
0 0

0

grad exp 0 exp
t

d t
dt =

⎡ ⎤ =⎣ ⎦x x0 v v�  (57.25) 

 
for any curve ( )t=v v  such that ( )0 =v 0 .  In particular, for the straight lines 
 
 ( )t t=v v  (57.26) 

 
with 

0
∈ xv B , we have ( )0 =v v�  and 

 
 ( ) ( ) ( )

0
exp 1tt t= =x v vv λ λ  (57.27) 

 
so that 

 ( )
0

expd t
dt

=x v v  (57.28) 

Hence 
 
 ( )( ) ( )

0 0
grad exp ,⎡ ⎤ = ∈⎣ ⎦x x0 v v v B  (57.29) 

 
But since ( )( )0

grad expx 0  is a linear map, (57.29) implies that the same holds for all 
0

∈ xv S , 
and thus 
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 ( )( )0 0
grad exp id=

xx 0 S  (57.30) 

 
It should be noted, however, that the condition (57.30) is valid only at the origin 0 of 

0xS ; the 
same condition generally is not true at any other point 

0
∈ xv B . 

 
Now suppose that { }, 1, , 1NΓ Γ = −e … is any basis of 

0xS .  Then as usual it gives rise to a 

Cartesian coordinate system ( )wΓ on 
0xS by the component representation 

 
 wΓ

Γ=w e  (57.31) 

 
for any 

0
∈ xw S .  Since 

0
expx is a smooth one-to-one map, it carries the Cartesian system 

( )wΓ on 
0xB to a surface coordinate system ( )zΓ on the surface neighborhood 

0xN of 0x  in S . 

For definiteness, this coordinate system ( )zΓ is called a canonical surface coordinate system at 

0x .  Thus a point 
0

∈ xz N has the coordinates ( )zΓ if and only if 
 
 ( )

0
exp zΓ

Γ= xz e  (57.32) 

 
Relative to a canonical surface coordinate system a curve λ passing through 0x  at 0t =  is a 

surface geodesic if and only if its representation ( )tλΓ in terms of ( )zΓ has the form 
 
 ( ) , 1, , 1t t Nλ υΓ Γ= Γ = −…  (57.33) 

 
for some constant υΓ .  From (57.32) the geodesic λ  is simply the one denoted earlier by vλ , 
where 
 υΓ

Γ=v e  (57.34) 

 
An important property of a canonical surface coordinate system at 0x  is that the 

corresponding surface Christoffel symbols are all equal to zero at 0x .  Indeed, since any curve λ  
given by (57.33) is a surface geodesic, the geodesic equations imply 
 

 0υ υΓ ΔΣ⎧ ⎫
=⎨ ⎬ΓΔ⎩ ⎭

 (57.35) 

 
where the Christoffel symbols are evaluated at any point of the curve λ .  In particular, at 0t =  
we get 
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 ( )0 0υ υΓ ΔΣ⎧ ⎫
=⎨ ⎬ΓΔ⎩ ⎭

x  (57.36) 

 
Now since υΓ is arbitrary, by use of the symmetry condition (56.4) we conclude that 
 

 ( )0 0
Σ⎧ ⎫

=⎨ ⎬ΓΔ⎩ ⎭
x  (57.37) 

 
In general, a surface coordinate system ( )yΓ is called a geodesic coordinate system at a 

point 0x  if the Christoffel symbols corresponding to ( )yΓ vanish at 0x .  From (57.37), we see 

that a canonical surface coordinate system at 0x is a geodesic coordinate system at the same 
point.  The converse, of course, is not true.  In fact, from the transformation rule (56.15) a 
surface coordinate system ( )yΔ  is geodesic at 0x  if and only if its coordinate transformation 

relative to a canonical surface coordinate system ( )zΓ satisfies the condition 
 

 
0

2

0y
z z

Δ

Γ Ω

∂
=

∂ ∂ x

 (57.38) 

 
which is somewhat weaker that the transformation rule 
 
 y e zΔ Δ Γ

Γ=  (57.39) 

 
for some nonsingular matrix eΔ

Γ⎡ ⎤⎣ ⎦ when ( )yΔ is also a canonical surface coordinate system at 0x , 

the eΔ
Γ⎡ ⎤⎣ ⎦ being simply the transformation matrix connecting the basis { }Γe for ( )zΓ and thebasis 

{ }Γe for ( )yΓ . 
 

A geodesic coordinate system at 0x  plays a role similar to that of a Cartesian coordinate 
system in .E   In view of the condition (57.37), we see that the representation of the surface 
covariant derivative at 0x  reduces simply to the partial derivative at 0x , namely 
 

 ( ) ( )1

1 1

0
0

rA
z

Γ Γ
Δ

Γ ΓΔ

∂
∇ = ⊗ ⊗ ⊗

∂
x

x e e eA
…

"  (57.40) 
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It should be noted, however, that (57.40) is valid at the point 0x  only, since a geodesic 
coordinate system at 0x generally does not remain a geodesic coordinate system at any 

neighboring point of 0x .  Notice also that the basis { }Γe in 
0xS is the natural basis of ( )zΔ at 0x , 

this fact being a direct consequence of the condition (57.30). 
 

In closing, we remark that we can choose the basis { }Γe in 
0xS to be an orthonormal basis. 

In this case the corresponding canonical surface coordinate system ( )zΓ satisfies the additional 
condition 

 
 ( )0a δΓΔ ΓΔ=x  (57.41) 

 
Then we do not even have to distinguish the contravariant and the covariant component of a 
tangential tensor at 0x . In classical differential geometry such a canonical surface coordinate 
system is called a normal coordinate system or a Riemannian coordinate system at the surface 
point under consideration. 
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Section 58.  Surface Curvature, I. The Formulas of Weingarten and Gauss 
 

In the preceding sections we have considered the surface covariant derivative at 
tangential vector and tensor fields on S .  We have pointed out that this covariant derivative is 
defined relative to a particular path-dependent parallelism onS , namely the parallelism of Levi-
Civita as defined by (56.28) and (56.39).  We have remarked repeatedly that this parallelism is 
not the same as the Euclidean parallelism on the underlying space E  in which S  is embedded.  
Now a tangential tensor on S , or course, is also a tensor over E  being merely a tensor having 
nonzero components only in the product basis of { }Γh , which can be regarded as a subset of the 

basis { },Γh n for V .  Consequently, the spatial covariant derivative of a tangential tensor field 
along a curve in S  is defined.  Similarly, the special covariant derivative of the unit normal n of 
S  along a curve in S  is also defined.  We shall study these spatial covariant derivatives in this 
section. 
 

In classical differential geometry the spatial covariant derivative of a tangential field is a 
special case of the total covariant derivative, which we shall consider in detail later.  Since the 
spatial covariant derivative and the surface covariant derivative along a surface curve often 
appear in the same equation, we use the notion d dt for the former and D Dt for the latter.  
However, when the curve is the coordinate curve of yΓ , we shall write the covariant derivative as 

yΓ∂ ∂ and D DyΓ , respectively.  It should be noted also that d dt is defined for all tensor fields 
on λ , whether or not the field is tangential, while D Dt is defined only for tangential fields. 
 

We consider first the covariant derivative d dtn of the unit normal field of S  on any 
curve ∈λ S .  Since n is a unit vector field and since d dt  preserves the spatial metric on S , we 
have 
 
 0d dt ⋅ =n n  (58.1) 

 
Thus d dtn is a tangential vector field.  We claim that there exists a symmetric second-order 
tangential tensor field B on S  such that 
 
 d dt = −n Bλ�  (58.2) 

 
for all surface curves λ .  The proof of (58.2) is more or less obvious.  From (55.2), the unit 
normal n on S  is parallel to the gradient of a certain smooth function f , and locally S  can be 
characterized by (55.1).  By normalizing the function f  to a function 
 

 ( ) ( )
( )grad

f
w

f
=

x
x

x
 (58.3) 
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we find 
 
 ( ) ( )grad ,w x= ∈n x x S  (58.4) 

 
Now for the smooth vector field grad w  we can apply the usual formula (48.15) to compute the 
spatial covariant derivative ( ) ( )gradd dt w  along any smooth curve in E .  In particular, along 
the surface curve λ  under consideration we have the formula (58.2), where 
 
 ( )grad grad  w= −B S  (58.5) 

 
As a result, B  is symmetric.  The fact that B  is a tangential tensor has been remarked after 
(58.1). 
 

From (58.2) the surface tensor B  characterizes the spatial change of the unit normal n of S .  
Hence in some sense B  is a measurement of the curvature of S  in E .  In classical differential 
geometry, B  is called the second fundamental form of S ,   the surface metric a  defined by 
(55.18) being the first fundamental form.  In component form relative to a surface coordinate 
system ( )yΓ , B  can be represented as usual  
 
 b b bΓ Δ ΓΔ Γ Δ

ΓΔ Γ Δ Δ Γ= ⊗ = ⊗ = ⊗B h h h h h h  (58.6) 

 
From (58.2) the components of B  are those of yΓ∂ ∂n taken along the yΓ -curve in S , namely 
 
 y b bΓ Δ Δ

Γ Δ ΓΔ∂ ∂ = − = −n h h  (58.7) 

 
This equation is called Weingarten’s formula in classical differential geometry. 
 

Next we consider the covariant derivatives d dtΓh and d dtΓh of the surface natural basis 
vectors Γh and Γh along any curve λ in S .  From (56.21) and (56.23) we have 
 

 D
Dt

λΣΓ
Δ

Δ⎧ ⎫
= ⎨ ⎬ΓΣ⎩ ⎭

h h�  (58.8) 

and 

 D
Dt

λ
Γ

Σ ΔΓ⎧ ⎫
= − ⎨ ⎬ΔΣ⎩ ⎭

h h�  (58.9) 

 
By a similar argument as (58.2), we have first 
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 d
dt

Γ
Γ= −

h C λ�  (58.10) 

 
where ΓC is a symmetric spatial tensor field on S .  In particular, when λ is the coordinate curve 
of yΔ , (58.10) reduces to 
 

 
y

Γ
Γ

ΔΔ

∂
= −

∂
h C h  (58.11) 

 
Since ΓC is symmetric, this equation implies 
 

 ( ),
y y

Γ Γ
Γ

Σ Δ Δ ΣΔ Σ

∂ ∂
− ⋅ = − ⋅ =

∂ ∂
h hh h C h h  (58.12) 

 
We claim that the quantity given by this equation is simply the surface Christoffel symbol, 
Γ⎧ ⎫

⎨ ⎬ΔΣ⎩ ⎭
 

 
y

Γ

Σ Δ

Γ⎧ ⎫∂
− ⋅ = ⎨ ⎬ΔΣ∂ ⎩ ⎭

hh  (58.13) 

 
Indeed, since both d dt and D Dt preserve the surface metric, we have  
 

 
( )

0
y y y y
δ ΓΓ Γ

Σ ΓΣ Σ
ΣΔ Δ Δ Δ

∂ ⋅∂ ∂ ∂
= = = ⋅ + ⋅
∂ ∂ ∂ ∂

h h h hh h  (58.14) 

 
Thus (58.13) is equivalent to  
 

 
y

Γ Σ
Δ

Γ⎧ ⎫∂
⋅ = ⎨ ⎬ΣΔ∂ ⎩ ⎭

hh  (58.15) 

 
But as in (58.14) we have also 
 

 

( )a
y y y y

a a
y y

Γ ΔΓΔ Δ Γ
Γ ΔΣ Σ Σ Σ

Ω ΩΔ Γ
ΓΩ ΔΩΣ Σ

∂ ⋅∂ ∂ ∂
= = ⋅ + ⋅

∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞∂ ∂
= ⋅ + ⋅⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

h h h hh h

h hh h
 (58.16) 
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Further, from (58.14) and (58.12) we have 
 

 
y y

Ω ΩΔ Σ
Σ Δ

∂ ∂
⋅ = ⋅
∂ ∂
h hh h  (58.17) 

 
Comparing (58.17) and (58.16) with (56.4) and (56.12), respectively, we see that (58.15) holds. 
 

On differentiating (55.8), we get 
 

 
( )

0
y y y

Γ Γ
Γ

Δ Δ Δ

∂ ⋅ ∂ ∂
= = ⋅ + ⋅

∂ ∂ ∂

n h h nn h  (58.18) 

 
Substituting Weingarten’s formula (58.7) into (58.18), we then obtain   
 

 b
y

Γ
Γ
ΔΔ

∂
⋅ =
∂
hn  (58.19) 

 
The formulas (58.19) and (58.13) determine completely the spatial covariant derivative of 

Γh along any yΔ -curve: 
 

 Db b
y Dy

Γ Γ
Γ Σ Γ
Δ ΔΔ Δ

Γ⎧ ⎫∂
= − = +⎨ ⎬ΔΣ∂ ⎩ ⎭

h hn h n  (58.20) 

 
where we have used (58.9) for (58.20) 2 .  By exactly the same argument we have also 
 

 Db b
y Dy
Γ Γ

ΓΔ Σ ΓΔΔ Δ

Σ⎧ ⎫∂
= + = +⎨ ⎬ΓΔ∂ ⎩ ⎭

h hn h n  (58.21) 

 
As we shall see, (58.20) and (58.21) are equivalent to the formula of Gauss in classical 
differential geometry. 
 

The formulas (58.20), (58.21), and (58.7) determine completely the spatial covariant 
derivatives of the bases { },Γh n  and { },Γh n along any curve λ in S .  Indeed, if the coordinates 

of λ in ( )yΓ are ( )λΓ , then we have 
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d b b
dt

d Db b
dt Dt

d Db b
dt Dt

λ λ

λ λ λ

λ λ λ

Δ Γ Γ Δ
ΓΔ Δ Γ

Γ Γ
Γ Δ Δ Σ Γ Δ
Δ Δ

Δ Δ ΔΓ Γ
ΓΔ Σ ΓΔ

= − = −

Γ⎧ ⎫
= − = +⎨ ⎬ΔΣ⎩ ⎭

Σ⎧ ⎫
= + = +⎨ ⎬ΓΔ⎩ ⎭

n h h

h hn h n

h hn h n

� �

� � �

� � �

 (58.22) 

 
From these representations we can compute the spatial covariant derivative of any vector or 
tensor fields along λwhen their components relative to { },Γh n or { },Γh n are given.  For 
example, if v is a vector field having the component form 
 
 ( ) ( ) ( )( ) ( ) ( )( )nt t t t tυ υΓ

Γ= +v n λ h λ  (58.23) 

 
along λ , then 
 

 ( )n n
d b b
dt

υ υ λ υ υ λ υ λΓ Δ Γ Γ Δ Σ Δ
ΓΔ Δ Γ

Γ⎛ ⎞⎧ ⎫
= + + − + ⎨ ⎬⎜ ⎟ΣΔ⎩ ⎭⎝ ⎠

v n h� � �� �  (58.24) 

 
In particular, if v is a tangential field, then (58.24) reduces to 
 

 

d b
dt

Db
Dt

υ λ υ υ λ

υ λ

Γ Δ Γ Σ Δ
ΓΔ Γ

Γ Δ
ΓΔ

Γ⎛ ⎞⎧ ⎫
= + + ⎨ ⎬⎜ ⎟ΣΔ⎩ ⎭⎝ ⎠

= +

v n h

vn

� �

�
 (58.25) 

 
where we have used (56.21).  Equation (58.25) shows clearly the difference between d dt and 
D Dt for any tangential field. 
 

Applying (58.25) to the tangent vector λ� of λ , we get 
 

 ( ),d D
dt Dt

= +
λ λB λ λ n
� �� �  (58.26) 

 
In particular, when λ is a surface geodesic, then (58.26) reduces to  
 
 ( ),d dt =λ B λ λ n� � �  (58.27) 
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Comparing this result with the classical notions of curvature and principal normal of a curve (cf. 
Section 53), we see that the surface normal is the principal normal of a surface curve λ  if and 
only if λ is a surface geodesic; further, in this case the curvature of λ is the quadratic form 
( ),B s s  of B  in the direction of the unit tangent s  of λ . 

 
In general, if λ is not a surface geodesic but it is parameterized by the arc length, then 

(58.26) reads 
 

 ( ),d D
ds Ds

= +
s sB s s n  (58.28) 

 
where s  denotes the unit tangent of λ , as usual.  We call the norms of the three vectors in 
(58.28) the spatial curvature, the normal curvature, and the geodesic curvature of λ and denote 
them by , ,nκ κ and gκ , respectively, namely 
 

 ( ), , ,n g
d D
ds Ds

κ κ κ= = =
s sB s s  (58.29) 

 
Then (58.28) implies 
 
 2 2 2

n gκ κ κ= +  (58.30) 

 
Further, if 0n and gn are unit vectors in the directions of d dss and D Dss , then  
 
 0 n g gκ κ κ= +n n n  (58.31) 

 
Or equivalently, 
 
 ( ) ( )0 n g gκ κ κ κ= +n n n  (58.32) 

 
which is called Meunier’s equation. 
 

At this point we can define another kind of covariant derivative for tensor fields on S .  
As we have remarked before, the tangent plane xS  of S  is a subspace of V .  Hence a tangential 
vector v can be regarded either as a surface vector in xS or as a special vector in V .  In the 
former sense it is natural to use the surface covariant derivative D Dtv , while in the latter sense 
we may consider the spatial covariant derivative d dtv along any smooth curve λ in S .  For a 
tangential tensor field A , such as the one represented (56.20) or (56.22), we may choose to 
recognize certain indices as spatial indices and the remaining ones as surface indices.  In this 
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case it becomes possible to define a covariant derivative tha is a mixture of d dt and D Dt .  In 
classical differential geometry this new kind of covariant derivative is called the total covariant 
derivative. 
 

More specifically, we first consider a concrete example to explain this concept.  By 
definition, the surface metric tensor a  is a constant tangential tensor relative to the surface 
covariant derivative.  In terms of any surface coordinate system ( )yΓ , a  can be represented by 
 
 a aΓ Δ Δ ΓΔ

ΓΔ Δ Γ Δ= ⊗ = ⊗ = ⊗a h h h h h h  (58.33) 

and we have 
 

 
( )DD D D

Dt Dt Dt Dt

Δ Δ
Δ ΔΔ

Δ

⊗
= = = ⊗ + ⊗

h ha h h0 h h  (58.34) 

 
The tensor a , however, can be regarded also as the inclusion map A  of xS in V , namely 
 
 : →xA S V  (58.35) 

 
in the sense that for any surface vector ∈ xv S , ∈Av V  is given by 
 
 ( ) ( ) ( ) υΔ Δ Δ

Δ Δ Δ= ⊗ = ⋅ =Av h h v h h v h  (58.36) 

 
In (58.36) it is more natural to regard the first basis vector Δh in the product basis Δ

Δ ⊗h h as a 
spatial vector and the second basis vector Δh as a surface vector.  In fact, in classical differential 
geometry the tensor A  given by (58.35) is often denoted by 
 

 
i

i
i i

xh
y

Δ Δ
Δ Δ

∂
= ⊗ = ⊗

∂
A g h g h  (58.37) 

 
where ( )ix is a spatial coordinate system whose natural basis is { }ig .  When the indices are 
recognized in this way, it is natural to define a total covariant derivative of A , denoted by 

tδ δA , by 
 

 i

i

d D
t dt Dt

d x D
dt y Dt

δ
δ

Δ
ΔΔ

Δ

Δ
Δ

ΔΔ

= ⊗ + ⊗

⎛ ⎞∂
= ⊗ + ⊗⎜ ⎟∂⎝ ⎠

A h hh h

hg h h
 (58.38) 
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Since a mixture of d dt and D Dt is used in defining tδ δ , it is important to recognize the 
“spatial” or “surface” designation of the indices of the components of a tensor before the total 
covariant derivative is computed.  
 

In classical differential geometry the indices are distinguished directly in the notation of 
the components. Thus a tensor A  represented by 
 
 ( ) ( )ik j

j i kt A tΓ Δ
Δ Γ= ⊗ ⊗ ⊗ ⊗ ⊗g g g h hA … …

… … " "  (58.39) 

 
has an obvious interpretation: the Latin indices i, j, k…are designated as “spatial” and the Greek 
indices , ,Γ Δ…are “surface.”  So tδ δA is defined by 
 

 

( )

( )

( )

( )

ik j
j i k

ik j
j i k

ik j
j i k

ik j
j i k

j
i k

d A
t dt

DA
Dt

d A
dt

dA
dt

D
Dt

δ
δ

Γ Δ
Δ Γ

Γ Δ
Δ Γ

Γ Δ
Δ Γ

Γ Δ
Δ Γ

Δ
Γ

= ⊗ ⊗ ⊗ ⊗ ⊗

+ ⊗ ⊗ ⊗ ⊗ ⊗

⎛ ⎞= ⊗ ⊗ ⊗ ⊗ ⊗⎜ ⎟
⎝ ⎠

⎡+ ⊗ ⊗ ⊗ ⊗ ⊗⎢⎣
⎤+ ⊗ ⊗ ⊗ ⊗ ⊗ ⎥⎦

g g g h h

g g g h h

g g g h h

g g g h h

g g g h h

A … …
… …

… …
… …

… …
… …

… …
… …

" "

" "

" "

" "

" "

 (58.40) 

 
The derivative ik

jdA dtΓ
Δ
… …
… … is the same as ik

jDA DtΓ
Δ
… …
… … , of course, since for scalars there is but 

one kind of parallelism along any curve.  In particular, we can compute explicitly the 
representation for tδ δA as defined by (58.38): 
 

 
2

i i
i

i i

i j k i

i

d x x d D
t dt y y dt Dt

ix x x x
jky y y y y

δ
δ

λ

Δ
Δ Δ

Δ Δ

Γ Δ
Δ Γ Δ Γ Σ

⎛ ⎞ ⎛ ⎞∂ ∂
= ⊗ + ⊗ + ⊗⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Σ⎛ ⎞⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂
= + − ⊗⎨ ⎬ ⎨ ⎬⎜ ⎟ΓΔ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭⎝ ⎠

A g hg h h g

g h�

 (58.41) 

 
As a result, when λ is the coordinate curve of ( )yΓ , (58.41) reduces to 
 

 
2 i j k i

i

ix x x x
jky y y y y y

δ
δ

Δ
Γ Δ Γ Δ Γ Σ

Σ⎛ ⎞⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂
= + − ⊗⎨ ⎬ ⎨ ⎬⎜ ⎟ΓΔ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭⎝ ⎠

A g h  (58.42) 
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Actually, the quantity on the right-hand side of (58.42) has a very simple representation. 
Since yδ δ ΓA can be expressed also by (58.38) 1 , namely 
 

 D
y y Dy

δ
δ

Δ
ΔΔ

ΔΓ Γ Γ

∂
= ⊗ + ⊗
∂

A h hh h  (58.43) 

 
from (58.21) we have 
 

 ( )

D Db
y Dy Dy

Db
Dy

b

δ
δ

Δ
Δ ΔΔ

ΔΓ ΔΓ Γ Γ

Δ Δ
ΔΓ ΔΓ

Δ
ΔΓ

= ⊗ + ⊗ + ⊗

= ⊗ + ⊗

= ⊗

A h hn h h h

n h h h

n h

 (58.44) 

 
where we have used (58.34). The formula (58.44) 3  is known as Gauss’ formula in classical 
differential geometry.  It is often written in component form 
 
 ;

i ix b nΓΔ ΓΔ=  (58.45) 

 
where the semicolon in the subscript on the left-hand side denotes the total covariant derivative. 
 
 
Exercises 
 
58.1  Show that 
   

(a) 1
2

b
y y y yΓΔ Δ Γ Γ Γ

⎛ ⎞∂ ∂ ∂ ∂
= − ⋅ + ⋅⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

n x x n  

 
(b) ;i j

ijb g x nΔΓ ΔΓ=  
 

(c) 
2

b
y yΔΓ Δ Γ

∂
= ⋅

∂ ∂
xn  

 
58.2  Compute the quantities bΔΓ for the surfaces defined in Exercises 55.5 and 55.7. 
 
58.3 Let A  be a tensor field of the form 
 
 1 1

1 1

sr

s r

j j
j jA ΓΓ

Γ Γ= ⊗ ⊗ ⊗ ⊗ ⊗g g h hA "

"
" "  
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show that 
 

 1 1

1 1;
sr

s r

j j
j jA

y
δ
δ

ΓΓ
Γ Γ ΔΔ = ⊗ ⊗ ⊗ ⊗ ⊗

A g g h h"

"
" "  

 
where 
 

 

1

11

1

1 1 1

1

1

1 1 1

;

1

1

r

sr

s

r

s

r

s

j j
j j

kr
j j lj j

s
j j

A
A

y
j xA

ylk

A

β β

β β

β

β

ββ

− +

− +

Γ Γ
Γ Γ Δ Δ

Γ Γ Δ
=

Γ Γ ΛΓ Γ
=

∂
=

∂

⎧ ⎫ ∂
+ ⎨ ⎬ ∂⎩ ⎭

Λ⎧ ⎫
− ⎨ ⎬Γ Δ⎩ ⎭

∑

∑

"

"

" "

"

" "

…
…

…  

 
Similar formulas can be derived for other types of mixed tensor fields defined on S . 
 
58.4 Show that (58.7) can be written  
 

 ;

i
i xn b

y
Δ

Γ Γ Δ

∂
= −

∂
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Section 59.  Surface Curvature, II. The Riemann-Christoffel Tensor and the Ricci 
Identities 
 

In the preceding section we have considered the curvature of S  by examining the change 
of the unit normal n of S  in E .  This approach is natural for a hypersurface, since the metric on 
S  is induced by that of E .  The results of this approach, however, are not entirely intrinsic to 
S , since they depend not only on the surface metric but also on the particular imbedding of S  
into E .  In this section, we shall consider curvature from a more intrinsic point of view.  We 
seek results which depend only on the surface metric.  Our basic idea is that curvature on S  
corresponds to the departure of the Levi-Civita parallelism on S  from a Euclidean parallelism. 
 

We recall that relative to a Cartesian coordinate system x̂ on E   the covariant derivative 
of a vector field v has the simplest representation 
 

 grad  ,
i

i j j
j i ijv

x
υυ ∂

= ⊗ = ⊗
∂

g g g g  (59.1) 

 
Hence if we take the second covariant derivatives, then in the same coordinate system we have 
 

 ( )
2

grad grad ,
i

i j k j k
jk i ij kx x

υυ ∂
= ⊗ ⊗ = ⊗ ⊗

∂ ∂
v g g g g g g  (59.2) 

 
In particular, the second covariant derivatives satisfy the same symmetry condition as that of the 
ordinary partial derivatives: 
 
 , ,i i

jk kjυ υ=  (59.3) 

 
Note that the proof of (59.3) depends crucially on the existence of a Cartesian coordinate 

system relative to which the Christoffel symbols of the Euclidean parallelism vanish identically.  
For the hypersurface S  in general, the geodesic coordinate system at a reference point is the 
closest counterpart of a Cartesian system.  However, in a geodesic coordinate system the surface 
Christoffel symbols vanish at the reference point only.  As a result the surface covariant 
derivative at the reference point 0x  still has a simple representation like (59.1) 
 

 
( ) ( ) ( ) ( )

( ) ( )
0

0 0 0 0

0 0

grad ,

z

υ

υ

Γ Δ
Δ Γ

Γ
Δ

ΓΔ

= ⊗

∂
= ⊗
∂ x

v x x e x e x

e x e x
 (59.4) 

 
[cf. (57.40)].  But generally, in the same coordinate system, the representation (59.4)(59.4) does 
not hold any neighboring point of 0x .  This situation has been explained in detail in Section 57. 
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In particular, there is no counterpart for the representation (59.2) 2 on S .  Indeed the surface 
second covariant derivatives generally fail to satisfy the symmetry condition (59.3) valid for the 
spatial covariant derivatives. 
 

To see this fact we choose an arbitrary surface coordinate system ( )yΓ with natural basis 

{ }Γh and { }Γh on S  as before.  From (56.10) the surface covariant derivative of a tangential 
vector field 
 
 υΓ

Γ=v h  (59.5) 

 
is given by 
 

 ,
y
υυ υ

Γ
Γ Σ

Δ Δ

Γ⎧ ⎫∂
= + ⎨ ⎬ΣΔ∂ ⎩ ⎭

 (59.6) 

 
Applying the same formula again, we obtain 
 

 
2

, v
y y y

y

y y y y y

υ υυ υ

υ υ

υ υ υ υ

υ

Γ Φ
Γ Σ Σ

ΔΩ Ω Δ Δ

Γ
Σ

Ψ

Γ Σ Φ Γ

Δ Ω Ω Δ Ψ

Σ

Γ Φ Γ⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎧ ⎫ ⎧ ⎫∂ ∂ ∂
= + + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ΣΔ ΣΔ ΦΩ∂ ∂ ∂⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎝ ⎠ ⎝ ⎠

Γ Ψ⎛ ⎞⎧ ⎫ ⎧ ⎫∂
− + ⎨ ⎬ ⎨ ⎬⎜ ⎟ΣΨ ΔΩ∂ ⎩ ⎭ ⎩ ⎭⎝ ⎠

Γ Γ Ψ⎧ ⎫ ⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂
= + + −⎨ ⎬ ⎨ ⎬ ⎨ ⎬ΣΔ ΦΩ ΔΩ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭ ⎩ ⎭

Φ Γ Γ Ψ⎧ ⎫⎧ ⎫ ⎧ ⎫⎧ ⎫
+ −⎨ ⎬⎨ ⎬ ⎨ ⎬⎨ ⎬ΣΔ ΦΩ ΣΨ ΔΩ⎩ ⎭⎩ ⎭ ⎩ ⎭⎩ yΩ

Γ⎛ ⎞⎧ ⎫∂
+ ⎨ ⎬⎜ ⎟ΣΔ∂⎭ ⎩ ⎭⎝ ⎠

 (59.7) 

 
In particular, even if the surface coordinate system reduces to a geodesic coordinate system 
( )yΓ at a reference point 0x , (59.7) can only be simplified to 
 

 ( ) ( )
0 0

2

0 0,
z z z
υυ υ

Γ
Γ Σ

ΔΩ Δ Ω Ω

Γ⎧ ⎫∂ ∂
= + ⎨ ⎬ΣΔ∂ ∂ ∂ ⎩ ⎭X X

x x  (59.8) 

 
which contains a term in addition to the spatial case (59.2))2.  Since that additional term 
generally need not be symmetric in the pair ( ),Δ Ω , we have shown that the surface second 
covariant derivatives do not necessarily obey the symmetry condition (59.3). 
 



Sec. 59   • Surface Curvature, II  445 

From (59.7) if we subtract , ,fromυ υΓ Γ
ΩΔ ΔΩ then the result is the following commutation 

rule: 
 

 , , Rυ υ υΓ Γ Σ Γ
ΔΩ ΩΔ ΣΔΩ− = −  (59.9) 

 
where 
 

 R
y y

Γ
ΣΔΩ Δ Ω

Γ Γ Φ Γ Φ Γ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫∂ ∂
≡ − + −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎨ ⎬ ⎨ ⎬ ⎨ ⎬ΣΩ ΣΔ ΣΩ ΦΔ ΣΔ ΦΩ∂ ∂⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (59.10) 

 
Since the commutation rule is valid for all tangential vector fields ,v  (59.9) implies that under a 
change of surface coordinate system the fields RΓ

ΣΔΩ  satisfy the transformation rule for the 
components of a fourth-order tangential tensor.  Thus we define 
 
 RΓ Σ Δ Ω

ΣΔΩ Γ≡ ⊗ ⊗ ⊗h h h hR  (59.11) 

 
and we call the tensor R  the Riemann-Christoffel tensor of .L  Notice that R  depends only on 
the surface metrica a , since its components are determined completely by the surface Christoffel 
symbols.  In particular, in a geodesic coordinates system ( ) 0atzΓ x (59.10) simplifies to 
 

 ( )
0 0

0R
z z

Γ
ΣΔΩ Δ Ω

Γ Γ⎧ ⎫ ⎧ ⎫∂ ∂
= −⎨ ⎬ ⎨ ⎬ΣΩ ΣΔ∂ ∂⎩ ⎭ ⎩ ⎭X X

x  (59.12) 

 
In a certain sense the Riemann-Christoffel tensor R  characterizes locally the departure of 

the Levi-Civita parallelism from a Euclidean one.  We have the following result. 
 

Theorem 59.1.  The Riemann-Christoffel tensor R  vanishes identically on a neighborhood of a  
point 0 ∈x S  if and only if there exists a surface coordinate system ( )zΓ covering 0x  relativwe 

to which the surface Christoffel symbols 
Γ⎧ ⎫

⎨ ⎬ΔΣ⎩ ⎭
 vanishing identically on a neighborhood of 0x . 

In view of the representation (59.10), the sufficiency part of the preceding theorem is 
obvious.  To prove the necessity part, we observe first the following lemma. 

 
Lemma.  The Riemann-Christoffel tensor R  vanishes identically near 0x  if and only if the 
system of first-order partial differential equations 
 

 0 , , 1, 1N
y
υυ υ

Γ
Γ Ω

Δ Δ

Γ⎧ ⎫∂
= = + Γ = −⎨ ⎬ΩΔ∂ ⎩ ⎭

…  (59.13) 
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can be integrated near 0x  for each prescribed initial value 
 
 ( )0 0 , 1, 1Nυ υΓ Γ= Γ = −x …  (59.14) 

 
Proof.  Necessity.  Let { }, 1, , 1NΣ Σ = −v …  be linearly independent and satisfy (59.13). Then we 
can obtain the surface Christoffel symbols from 
 

 0
y
υ υ

Γ
ΩΣ
ΣΔ

Γ⎧ ⎫∂
= + ⎨ ⎬ΩΔ∂ ⎩ ⎭

 (59.15) 

and 

 u
y
υΓ

Σ Σ
Ω Δ

Γ⎧ ⎫ ∂
= −⎨ ⎬ΩΔ ∂⎩ ⎭

 (59.16) 

 
where uΣ

Ω⎡ ⎤⎣ ⎦  denotes the inverse matrix of .υΩ
Σ⎡ ⎤⎣ ⎦   Substituting (59.16) into (59.10), we obtain 

directly 
 
 0RΓ

ΣΔΩ =  (59.17) 

 
Sufficiency.  It follows from the Frobenius theorem that the conditions of integrability for 

the system of first-order partial differential equations 
 

 
y
υ υ

Γ
Ω

Δ

Γ⎧ ⎫∂
= − ⎨ ⎬ΩΔ∂ ⎩ ⎭

 (59.18) 

 
are 
 

 0, 1, 1N
y y

υ υΩ Ω
Σ Δ

Γ Γ⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎧ ⎫∂ ∂
− = Γ = −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ΩΔ ΩΣ∂ ∂⎩ ⎭ ⎩ ⎭⎝ ⎠ ⎝ ⎠

…  (59.19) 

 
If we expand the partial derivatives in (59.19) and use (59.18), then (59.17) follows as a result of 
(59.10).  Thus the lemma is proved. 
 

Now we return to the proof of the necessity part of the theorem.  From (59.16) and the 
condition (56.4) we see that the basis { }Σv  obeys the rule 

 

 0
y y
υ υυ υ

Γ Γ
Δ ΔΣ Ω
Ω ΣΔ Δ

∂ ∂
− =

∂ ∂
 (59.20) 
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These equations are the coordinate forms of  
 
 [ ], , , 1, , 1NΣ Ω = Σ Ω = −v v 0 …  (59.21) 

 
As a result there exists a coordinate system ( )zΓ whose natural basis coincides with { }Σv .  In 

particular, relative to ( )zΓ  (59.16) reduces to 
 

 0
z
δδ

Γ
Ω Σ
Σ Δ

Γ⎧ ⎫ ∂
= − =⎨ ⎬ΩΔ ∂⎩ ⎭

 (59.22) 

 
Thus the theorem is proved. 
 

It should be noted that tangential vector fields satisfying (59.13) are parallel fields 
relative to the Levi-Civita parallelism, since from (56.24) we have the representation  
 
 ( )( ) / ,D t Dt υ λΓ Δ

Δ Γ=v λ h�  (59.23) 

 
along any curve .λ   Consequently, the Levi-Civita parallelism becomes locally path-
independent.  For definiteness, we call this a locally Euclidean parallelism or a flat parallelism.  
Then the preceding theorem asserts that the Levi-Civita parallelism on S  is locally Euclidean if 
and only if the Riemann-Christoffel tensor R  based on the surface metric vanishes. 
 

The commutation rule (59.9) is valid for tangential vector fields only.  However, we can 
easily generalize that rule to the following Ricci identities: 
 

 

1 1

1 1

2 1

1

1 1 1

1 2 1

1

1 1

... ...
... ...

...
...

... ...
... ...

...
...

, ,r r

s s

r

s

r r r

s s

r

s s

A A

A R

A R A R

A R

−

−

Γ Γ Γ Γ
Δ Δ ΣΩ Δ Δ ΩΣ

ΦΓ Γ Γ
Δ Δ ΦΣΩ

Γ Γ Φ Γ Γ Γ Ψ
Δ Δ ΦΣΩ ΨΔ Δ Δ ΣΩ

Γ Γ Ψ
Δ Δ Ψ Δ ΣΩ

−

= −

− − +

+ +

"

"

 (59.24) 

 
As a result, (59.17) is also the integrability condition of the system 
 
 1

1

...
... , 0r

s
AΓ Γ

Δ Δ Σ =  (59.25) 

 
for each prescribed initial value at any reference point 0x ; further, a solution of (59.25) 
corresponds to a parallel tangential tensor field on the developable hyper surface S . 
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In classical differential geometry a surface S  is called developable if its Riemann-
Christoffel curvature tensore vanishes identically. 
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Section 60.  Surface Curvature, III. The Equations of Gauss and Codazzi 
 

In the preceding two sections we have considered the curvature of S  from both the 
extrinsic point of view and the intrinsic point of view.  In this section we shall unite the results of 
these two approaches. 
 

Our starting point is the general representation (58.25) applied to the yΔ -coordinate 
curve: 
 

 Db
y Dy

υΓ
ΓΔΔ Δ

∂
= +

∂
v vn  (60.1) 

 
for an arbitrary tangential vector field .v   This representation gives the natural decomposition of 
the spatial vector field / yΔ∂ ∂v  on S  into a normal projection b υΓ

ΓΔ n  and a tangential 
projection / .D DyΔv   Applying the spatial covariant derivative / yΣ∂ ∂  along the y −Σ  coordinate 
curve to (60.1)(60.1), we obtain 
 

 
( )

( ) ,

Db
y y y y Dy

D Db b
y Dy Dy

υ

υ υ

Γ
ΓΔΣ Δ Σ Σ Δ

Γ Γ
ΓΔ ΓΣ ΔΣ Σ Δ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂
= + + ⎜ ⎟∂ ⎝ ⎠

v vn

vn n
 (60.2) 

 
where we have applied (60.1) in (60.2)2 to the tangential vector field / .D DyΔv   Now, since the 
spatial parallelism is Euclidean, the lefthand side of (60.2) is symmetric in the pair ( ), ,Σ Δ  
namely 

 
y y y yΣ Δ Δ Σ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
=⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

v v  (60.3) 

 
Hence from (60.2) we have 
 

 
( ) ( )

( ), ,

D D D D b b
Dy Dy Dy Dy y

b b

υ υ

υ υ

Γ Γ
ΓΔ ΓΣΔ Σ Σ Δ Σ

Γ Γ
ΓΣ Δ ΓΔ Σ

⎛ ⎞ ⎛ ⎞ ∂
− = −⎜ ⎟ ⎜ ⎟ ∂⎝ ⎠ ⎝ ⎠

+ −

v v n n

n
 (60.4) 

 
This is the basic formula from which we can extract the relation between the Riemann-
Christoffel tensor R  and the second fundamental form .B  
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Specifically, the left-hand side of (60.4) is a tangaential vector having the component 
form 
 

 
( ), ,

D D D D
Dy Dy Dy Dy

R

υ υ

υ

Γ Γ
ΔΣ ΣΔ ΓΔ Σ Σ Δ

Ω Γ
ΩΣΔ Γ

⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= −

v v h

h
 (60.5) 

 
as required by (59.9), while the right-hand side is a vector having the normal projection 
 

 
( ) ( )

, ,

b b
b b

y y
υ υ

υ υ
Γ Γ

ΓΔ ΓΣ Γ Γ
ΓΣ Δ ΓΔ ΣΣ Δ

⎛ ⎞∂ ∂
− + −⎜ ⎟

⎜ ⎟∂ ∂⎝ ⎠
n  (60.6) 

 
and the tangential projection 
 
 ( )b b b bυ υΓ Φ Γ Φ

ΓΔ Σ ΓΣ Δ Φ− + h  (60.7) 

 
where we have used Weingarten’s formula (58.7) to compute the covariant derivatives 

/ and / .y yΣ Δ∂ ∂ ∂ ∂n n   Consequently, (60.5) implies that 
 

 
( ) ( )

, , 0
b b

b b
y y
υ υ

υ υ
Γ Γ

ΓΔ ΓΣ Γ Γ
ΓΣ Δ ΓΔ ΣΣ Δ

∂ ∂
− + − =

∂ ∂
 (60.8) 

 
and that 
 
 R b b b bυ υ υΓ Φ Γ Φ Γ Φ

ΓΣΔ ΓΔ Σ ΓΣ Δ= −  (60.9) 

 
for all tangential vector fields .v  
 

If we choose ,Γ=v h  then (60.9) becomes 
 

 R b b b bΦ Φ Φ
ΓΣΔ ΓΔ Σ ΓΣ Δ= −  (60.10) 

 
or, equivalently, 
 
 R b b b bΦΓΣΔ ΓΔ ΦΣ ΓΣ ΦΔ= −  (60.11) 
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Thus the Riemann-Christoffel tensor R  is completely determined by the second 
fundamental form.  The important result (60.11) is called the equations of Gauss in classical 
differential geometry.  A similar choice for .v  in (60.8) yields 
 

 0b bb b
y y
ΓΔ ΓΣ

ΦΔ ΦΣΣ Δ

Φ Φ⎧ ⎫ ⎧ ⎫∂ ∂
− − + =⎨ ⎬ ⎨ ⎬ΓΣ ΓΔ∂ ∂⎩ ⎭ ⎩ ⎭

 (60.12) 

 
By use of the symmetry condition (56.4) we can rewrite (60.12) in the more elegant form 
 
 , , 0b bΓΔ Σ ΓΣ Δ− =  (60.13) 

 
which are the equations of Codazzi. 
 

The importance of the equations of Gauss and Codazzi lies not only in their uniting the 
second fundamental form with the Riemann Christoffel tensor for any hypersurfaces S  in E , 
but also in their being the conditions of integrability as asserted by the following theorem. 
 
Theorem 60.1.  Suppose that aΓΔ  and bΓΔ  are any presceibed smooth functions of ( )yΩ  such 

that [ ]aΓΔ  is positive-definite and symmetric, [ ]bΓΔ  is symmetric, and together [ ]aΓΔ  and [ ]bΓΔ  
satisfy the equations of Gauss and Codazzi.  Then locally there exists a hyper surface S  with 
representation 
 
 ( )i ix x yΩ=  (60.14) 

 
on which the prescribed anda bΓΔ ΓΔ  are the first and second fundamental forms. 
 
Proof.  For simplicity we choose a rectangular Cartesian coordinate system in .ix E   Then in 
component form (58.21) and (58.7) are represented by 
 

 / , /i i i i ih y b n h n y b hΔ Γ Δ
Γ ΓΔ Σ Γ Δ

Σ⎧ ⎫
∂ ∂ = + ∂ ∂ = −⎨ ⎬ΓΔ⎩ ⎭

 (60.15) 

 
We claim that this system can be integrated and the solution preserves the algebraic conditions 
 
 , 0, 1i j i j i j

ij ij ijh h a h n n nδ δ δΓ Δ ΓΔ Γ= = =  (60.16) 

 
In particular, if (60.16) are imposed at any one reference point, then they hold identically on a 
neighborhood of the reference point. 
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The fact that the solution of (60.15) preserves the conditions (60.16) is more or less 
obvious.  We put 
 
 , , 1i j i j i j

ij ij ijf h h a f h n f n nδ δ δΓΔ Γ Δ ΓΔ Γ Γ≡ − ≡ ≡ −  (60.17) 

 
Then initially at some point ( )1 2

0 0,y y  we have 
 
 ( ) ( ) ( )1 2 1 2 1 2

0 0 0 0 0 0, , , 0f y y f y y f y yΓΔ Γ= = =  (60.18) 

 
Now from (60.15) and (60.17) we can verify easily that 
 

 , , 2f f fb f b f b f f b f b f
y y y

Δ ΔΓΔ Γ
ΓΣ Δ ΔΣ Γ Σ ΓΔ Δ ΓΣ Σ ΔΣ Σ Σ

Δ⎧ ⎫∂ ∂ ∂
= + =− + + = −⎨ ⎬ΓΣ∂ ∂ ∂⎩ ⎭

 (60.19) 

 
along the coordinate curve of any .yΣ   From (60.18) and (60.19) we see that , , andf f fΓΔ Γ  
must vanish identically. 
 

Now the system (60.15) is integrable, since by use of the equations of Gauss and Codazzi we 
have 
 

 
( )

( ), , 0

i i
i

i

h h R b b b b h
y y y y

b b n

Ω Ω ΩΓ Γ
ΓΣΔ ΓΣ Δ ΓΔ Σ ΩΣ Δ Δ Σ

ΓΣ Δ ΓΔ Σ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− = − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

+ − =

 (60.20) 

and 
 

 ( ), , 0
i i

in n b b h
y y y y

Ω Ω
Σ Γ Γ Σ ΩΣ Γ Γ Σ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− = − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (60.21) 

 
Hence locally there exist functions ( ) ( )andi ih y n yΩ Ω

Γ  which verify (60.15) and (60.16). 
 

Next we set up the system of first-order partial differential equations 
 
 ( )/i ix y h yΔ Ω

Δ∂ ∂ =  (60.22) 

 
where the right-hand side is the solution of (60.15) and (60.16).  Then (60.22) is also integrable, 
since we have 
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i i i

i ix h xb n h
y y y y y

Δ
ΔΣ ΩΣ Δ Σ Δ Σ

Ω⎛ ⎞ ⎧ ⎫ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= = + =⎨ ⎬⎜ ⎟ ⎜ ⎟ΔΣ∂ ∂ ∂ ∂ ∂⎩ ⎭⎝ ⎠ ⎝ ⎠

 (60.23) 

 
Consequently the solution (60.14) exists; further, from (60.22), (60.16), and (60.15) the first and 
the second fundamental forms on the hypersurface defined by (60.14) are precisely the 
prescribed fields and ,a bΓΔ ΓΔ  respectively.  Thus the theorem is proved. 
 

It should be noted that, since the algebraic conditions (60.16) are preserved by the 
solution of (60.15), any two solutions ( ) ( ), and ,i j i jh n h nΓ Γ  of (60.15) can differ by at most a 
transformation of the form 
 
 ,i i j i i j

j jh Q h n Q nΓ Γ= =  (60.24) 

where i
jQ⎡ ⎤⎣ ⎦  is a constant orthogonal matrix.  This transformation corresponds to a change of 

rectangular Cartesian coordinate system on E  used in the representation (60.14).  In this sense 
the fundamental forms anda bΓΔ ΓΔ , together with the equations of Gauss andCodazzi, determine 
the hyper surface S  locally to within a rigid displacement in E . 
 

While the equations of Gauss show that the Riemann Christoffel tensor R  of S  is 
completely determined by the second fundamental form ,B  the converse is generally not true.  
Thus mathematically the extrinsic characterization of curvature is much stronger than the 
intrinsic one, as it should be.  In particular, if B  vanishes, then S  reduces to a hyperplane which 
is trivially developable so that R  vanishes.  On the other hand, if R  vanishes, then S  can be 
developed into a hyperplane, but generally B  does not vanish, so S  need not itself be a 
hyperplane.  For example, in a three-dimensional Euclidean space a cylinder is developable, but 
it is not a plane. 

 
Exercise 
 
60.1 In the case where 3N =  show that the only independent equations of Codazzi are 
 
 , , 0b bΔΔ Γ ΔΓ Δ− =  

 
for Δ ≠ Γ  and where the summation convention has been abandoned.  Also show that the 
only independent equation of Gauss is the single equation 

 
 2

1212 11 22 12 detR b b b= − = B  
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Section 61.  Surface Area, Minimal Surface 
 

Since we assume that S is oriented, the tangent plane xS  of each point ∈x S  is 

equipped with a volume tensor S .  Relative to any positive surface coordinate system ( )yΓ  with 

natural basis { }Γh , S  can be represented by 
 
 1 1Na −= ∧ ∧h hS "  (61.1) 

 
where 
 
 [ ]deta aΓΔ=  (61.2) 

 
If U  is a domain in S  covered by ( ) ,yΓ  then the surface area ( )σ U  is defined by 
 

 ( ) 1 1Nady dyσ −= ⋅ ⋅ ⋅∫ ∫U
U

"  (61.3) 

 
where the ( )1N − -fold integral is taken over the coordinates ( )yΓ on the domain .U   Since a  
obeys the transformation rule 
 

 det ya a
y

Γ

Δ

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

 (61.4) 

 
relative to any positive coordinate systems ( ) ( )andy yΓ Γ , the value of ( )σ U  is independent of 

the choice of coordinates.  Thus σ can be extended into a positive measure on S  in the sense of 
measure theory. 
 

We shall consider the theory of integration relative to σ in detail in Chapter 13.  Here we 
shall note only a particular result wich connects a property of the surface area to the mean 
curvature of S .  Namely, we seek a geometric condition for S  to be a minimal surface, which 
is defined by the condition that the surface area ( )σ U  be an extremum in the class of variations 
of hypersurfaces having the same boundary as .U   The concept of minimal surface is similar to 
that of a geodesic whichwe have explored in Section 57, except that here we are interested in the 
variation of the integral σ  given by (61.3) instead of the integral s  given by (57.5). 
 

As before, the geometric condition for a minimal surface follows from the Euler-
Lagrange equation for (61.3), namely, 
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 0i i

a a
y h xΓ

Γ

⎛ ⎞∂ ∂ ∂
− =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (61.5) 

 
where a  is regarded as a function of andi ix hΓ  through the representation 
 

 
i j

i i
ij ij

x xa h h
y y

δ δΓΔ Γ Δ Γ Δ

∂ ∂
= =

∂ ∂
 (61.6) 

 
For simplicity we have chosen the spatial coordinates to be rectangular Cartesian, so that 
aΓΔ does not depend explicitly on .ix   From (61.6) the partial derivative of a   with respect to 

ihΓ  is given by 
 

 i j
ij iji

a a a h a h
h

δ δΓΔ Γ
Δ

Γ

∂
= =

∂
 (61.7) 

 
Substituting this formula into (61.5), we see that the condition for S  to be a minimal surface is  
 

 0, 1, ,
j

j
ij

ha h i N
y

δ
Γ

Γ
Γ

Ω⎛ ⎞⎧ ⎫ ∂
+ = =⎨ ⎬⎜ ⎟ΩΓ ∂⎩ ⎭⎝ ⎠

…  (61.8) 

 
or, equivalently, in vector notation  
 

 a
y

Γ
Γ

Γ

Ω⎛ ⎞⎧ ⎫ ∂
+ =⎨ ⎬⎜ ⎟ΩΓ ∂⎩ ⎭⎝ ⎠

hh 0  (61.9) 

 
In deriving (61.8) and (61.9), we have used the identity 
 
 

 a a
yΓ

Ω⎧ ⎫∂
= ⎨ ⎬ΩΓ∂ ⎩ ⎭

 (61.10) 

 
which we have noted in Exercise 56.10.  Now from (58.20) we can rewrite (61.9) in the simple 
form  
 
 0a bΓ

Γ =n  (61.11) 
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As a result, the geometric condition for a minimal surface is 
 
 I tr 0bΓ

Γ= = =B B  (61.12) 

 
In general, the first invariant IB  of the second fundamental form B  is called the mean 

curvature of the hyper surface.  Equation (61.12) then asserts that S  is a minimal surface if and 
only if its mean curvature vanishes. 
 

Since in general B  is symmetric, it has the usual spectral decomposition 
 

 
1

1

N

β
−

Γ Γ Γ
Γ=

= ⊗∑B c c  (61.13) 

 
where the principal basis { }Γc  is orthonormal on the surface.  In differential geometry the 

direction of ( )Γc x  at each point ∈x S  is called a principal direction and the corresponding 

proper number ( )βΓ x  is called a principal (normal) curvature at .x   As usual, the principal 
(normal) curvatures are the extrema of the normal curvature 
 
 ( ),nκ = B s s  (61.14) 

 
in all unit tangents s  at any point x  [cf. (58.29)2].  The mean curvature IB , of course, is equal to 
the sum of the principal curvatures, i.e., 
 

 
1

1

I
N

β
−

Γ
Γ=

= ∑B  (61.15) 
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Section 62.  Surfaces in a Three-Dimensional Euclidean Manifold 
 

In this section we shall apply the general theory of hypersurfaces to the special case of a 
two-dimensional surface imbedded in a three-dimensional Euclidean manifold.  This special case 
is the commonest case in application, and it also provides a good example to illustrate the 
general results. 
 

As usual we can represent S  by 
 
 ( )i ix x yΓ=  (62.1) 

 
where i  ranges from 1 to 3 and Γ ranges from 1 to 2.  We choose ( ) ( )andix yΓ  to be positive 
spatial and surface coordinate systems, respectively. Then the tangent plane of S  is spanned by 
the basis 
 

 , 1,2
i

i
x
yΓ Γ

∂
≡ Γ =
∂

h g  (62.2) 

 
and the unit normal n  is given by 

 1 2

1 2

×
=

×
h hn
h h

 (62.3) 

 
The first and the second fundamental forms aΓΔ  and bΓΔ  relative to ( )yΓ  are defined 

by 
 

 .a b
y y
Γ

ΓΔ Γ Δ ΓΔ ΓΔ Δ

∂ ∂
= ⋅ = ⋅ = − ⋅

∂ ∂
h nh h n h  (62.4) 

 
These forms satisfy the equations of Gauss and Codazzi: 
 
 , ,, 0R b b b b b bΦΓΣΔ ΓΔ ΦΣ ΓΣ ΦΔ ΓΔ Σ ΓΣ Δ= − − =  (62.5) 

 
Since bΓΔ is symmetric, at each point ∈x S  there exists a positive orthonormal basis 

( ){ }Γc x  relative to which ( )B x  can be represented by the spectral form 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2β β= ⊗ + ⊗B x x c x c x x c x c x  (62.6) 
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The proper numbers ( ) ( )1 2andβ βx x  are the principal (normal) curvatures of S  at .x   In 

general ( ){ }Γc x  is not the natural basis of a surface coordinate system unless 
 
 [ ]1 2, 0=c c  (62.7) 

 
However, locally we can always choose a coordinate system ( )zΓ  in such a way that the natural 

basis { }Γh  is parallel to ( ){ }Γc x .  Naturally, such a coordinate system is called a principal 
coordinate system and its coordinate curves are called the lines of curvature.  Relative to a 
principal coordinate system the components aΓΔ and bΓΔ satisfy 
 
 12 12 1 11 1 2 22 20 and ,b a a a= = = =h c h c  (62.8) 

 
The principal invariants of B  are 

 

 1 2

1 2

I tr

II det det

a b

b

β β

β β

ΓΔ
ΓΔ

Γ
Δ

= = + =

⎡ ⎤= = = ⎣ ⎦

B

B

B

B
 (62.9) 

 
In the preceding section we have defined IB  to be the mean curvature. Now IIB  is called the 
Gaussian curvature.  Since 
 
 b a bΓ ΓΩ

Δ ΔΩ=  (62.10) 

we have also 
 

 [ ]
[ ]

[ ]det det
det

b b
a a
ΔΩ ΔΩ

ΔΩ

= =BII  (62.11) 

 
where the numerator on the right-hand side is given by the equation of Gauss: 
 
 [ ] 2

11 22 12 1212det b b b b RΔΩ = − =  (62.12) 

 
Notice that for the two-dimensional case the tensor R  is completely determined by 1212,R  since 
from (62.5)1, or indirectly from (59.10), RΦΓΣΔ  vanishes when or when .Φ = Γ Σ = Δ  
 

We call a point ∈x S  elliptic, hyperbolic, or parabolic if the Gaussian curvature threre 
is positive, negative, or zero, respectively.  These terms are suggested by the following geometric 
considerations: We choose a fixed reference point 0 ∈x S  and define a surface coordinate 
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system ( )yΓ  such that the coordinates of 0x  are ( )0,0 ) and the basis ( ){ }Γh x  is orthonormal, 
i.e.,  
 
 ( )0,0a δΓΔ ΓΔ=  (62.13) 

 
In this coordinate system a point ∈x S  having coordinate ( )1 2,y y  near ( )0,0  is located at a 

normal distance ( )1 2,d y y  from the tangenet plane 
oxS  with ( )1 2,d y y  given approximately by 

 

 

( ) ( ) ( )

( ) ( )

( )

0

1 2
0 0

0 0

0

,

1
2

1
2

d y y

Dy y y
Dy

b y y

Γ Γ ΔΓ
Γ Δ

Γ Δ
ΓΔ

= ⋅ −

⎛ ⎞
≅ ⋅ +⎜ ⎟

⎜ ⎟
⎝ ⎠

≅

x

n x x x

hn x h x

x

 (62.14) 

 
where (62.14)2,3 are valid to within an error of third or higher order in .yΓ   From this estimate 
we see that the intersection of S  with a plane parallel to 

oxS  is represented approximately by 
the curve 
 
 ( )0 constb y yΓ Δ

ΓΔ =x  (62.15) 

 
which is an ellipse, a hyperbola, or parallel lines when 0x  is an elliptic, hyperbolic, or parabolic 
point, respectively.  Further, in each case the principal basis { } ( )0ofΓc B x  coincides with the 
principal axes of the curves in the sense of conic sections in analytical geometry.  The estimate 
(62.14) means also that in the rectangular Cartesian coordinate system ( )ix  induced by the 

orthonormal basis ( ) ( ){ }1 0 2 0, , ,h x h x n  the surface S  can be represented locally by the 
equations  
 

 ( )1 1 2 2 3
0

1, ,
2

x y x y x b y yΓ Δ
ΓΔ= = ≅ x  (62.16) 

 
As usual we can define the notion of conjugate directions relative to the symmetric 

bilinear form of ( )0 .B x   We say that the tangential vectors 
0

, ∈ xu v S  are conjugate at 0x  if 
 
 ( ) ( ) ( ), 0= ⋅ = ⋅ =B u v u Bv v Bu  (62.17) 
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For example, the principal basis vectors ( ) ( )1 0 2 0andc x c x  are conjugate since the components 

of B  form a diagonal matrix relative to { }Γc .  Geometrically, conjugate directions may be 

explained in the following way:  We choose any curve ( )t ∈λ S  such that  
 
 ( )

o
0 = ∈ xλ u� S  (62.18) 

 
Then the conjugate direction  ofv u  corresponds to the limit of the intersection of ( ) 0t with xλS S  
as t tends to zero.  We leave the proof of this geometric interpretation for conjugate directions as 
an exercise. 
 

A direction represented by a self-conjugate vector v  is called an asymptotic direction.  In 
this case v  satisfies the equation 
 
 ( ) ( ), 0= ⋅ =B v v v Bv  (62.19) 

 
Clearly, asymptotic directions exit at a point ox  if and only if ox  is hyperbolic or parabolic.  In 
the former case the asympototic directions are the same as those for the hyperbola given by 
(62.15), while in the latter case the asymptotic direction is unique and coincides with the 
direction of the parallel lines given by (62.15). 
 

If every point of S  is hyperbolic, then the asymptotic lines form a coordinate net, and 
we can define an asymptotic coordinate system.  Relative to such a coordinate system the 
components bΓΔ  satisfy the condition 
 
 11 22 0b b= =  (62.20) 

 
and the Gaussian curvature is given by 
 
 2

12II /b a= −B  (62.21) 

 
A minimal surface which does not reduce to a plane is necessarily hyperbolic at every point, 
since when 1 2 0β β+ =  we must have 1 2 1 20 unless 0.β β β β< = =  
 

From (62.12), S  is parabolic at every point if and only if it is developable.  In this case 
the asymptotic lines are straight lines.  In fact, it can be shown that there are only three kinds of 
developable surfaces, namely cylinders, cones, and tangent developables.  Their asymptotic lines 
are simply their generators. Of course, these generators are also lines of curvature, since they are 
in the principal direction corresponding to the zero principal curvature. 
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Exercises 
 
62.1 Show that 
 
 ( )1 2a = ⋅ ×n h h  

 
62.2 Show that 
 

 
2

1 2

1b
y y y yaΓΔ Δ Γ

⎛ ⎞∂ ∂ ∂
= ⋅ ×⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

x x x  

 
62.3 Compute the principal curvatures for the surfaces defined in Exercises 55.5 and 55.7. 
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________________________________________________________________ 
Chapter 12 
 

ELEMENTS OF CLASSICAL CONTINUOUS GROUPS 
 
 
In this chapter we consider the structure of various classical continuous groups which are formed 
by linear transformations of an inner product space V .  Since the space of all linear transformation 
of V is itself an inner product space, the structure of the continuous groups contained in it can be 
exploited by using ideas similar to those developed in the preceding chapter. In addition, the group 
structure also gives rise to a special parallelism on the groups. 
 
Section 63.  The General Linear Group and Its Subgroups 
 
 In section 17 we pointed out that the vector space ( );L V V has the structure of an algebra, 
the product operation being the composition of linear transformations.  Since V  is an inner product 
space, the transpose operation 
 

 ( ) ( ): ; ;T →L V V L V V  (63.1) 

 

is defined by (18.1); i.e.,  
 
 , ,T⋅ = ⋅ ∈u A v Au v u v V  (63.2) 

 
for any ( );∈A L V V .  The inner product of any ( ), ;∈A B L V V is then defined by  
(cf. Exercise 19.4)) 
 
 ( )Ttr⋅ =A B AB  (63.3) 

 

 From Theorem 22.2, a linear transformation ( );∈A L V V  is an isomorphism of V if and 
only if 
 

 det 0≠A  (63.4) 

 
Clearly, if A and B are isomorphisms, then AB and BA are also isomorphisms, and from Exercise 
22.1 we have 
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 ( ) ( ) ( ) ( )det det det det= =AB BA A B  (63.5) 

 
As a result, the set of all linear isomorphisms of V forms a group ( )GL V , called the general 

linear group ofV .  This group was mentioned in Section 17.  We claim that ( )GL V  is the disjoint 

union of two connected open sets in ( );L V V .  This fact is more of less obvious since ( )GL V  is 

the reimage of the disjoint union ( ) ( ),0 0,−∞ ∪ ∞  under the continuous map 
 
 ( )det : ; →L V V R  

 
If we denote the primeages of ( ),0−∞  and ( )0,∞ under the mapping det  by ( )−GL V  and 

( )+
GL V , respectively, then they are disjoint connected open sets in ( );L V V , and  
 
 ( ) ( ) ( )− += ∪GL V GL V GL V  (63.6) 

 
Notice that from (63.5) ( )+GL V  is, but ( )−GL V  is not, closed with respect to the group 

operation.  So ( )+GL V is, but ( )−GL V is not, a subgroup of ( )GL V .  We call the elements of 

( )+GL V  and ( )−GL V  proper and improper transformations ofV , respectively. They are 
separated by the hypersurface S defined by 

 
 ( ); and det 0∈ ⇔ ∈ =A A AS L V V  

 
Now since ( )GL V  is an open set in ( );L V V , any coordinate system in ( );L V V  

corresponds to a coordinate system in ( )GL V  when its coordinate neighborhood is restricted to a 

subset of ( )GL V .  For example, if { }ie and { }ie  are reciprocal bases forV , then { }ii ⊗e e is a basis 

for ( );L V V  which gives rise to the Cartesian coordinate system{ }jiX .  The restriction of { }jiX  

to ( )GL V  is then a coordinate system on ( )GL V .  A Euclidean geometry can then be defined on 

( )GL V  as we have done in general on an arbitrary open set in a Euclidean space.  The Euclidean 

geometry on ( )GL V  is not of much interest, however, since it is independent of the group 

structure on ( )GL V . 
 

The group structure on ( )GL V  is characterized by the following operations. 

1. Left-multiplication by any ( )∈A GL V ,  
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 ( ) ( ): →A GL V GL VL  

 
is defined by 
 
 ( ) ( ),≡ ∈A X AX X GL VL  (63.7) 

 
2. Right-multiplication by any ( )∈A GL V  

 
 ( ) ( ): →A GL V GL VR  

 
is defined by 
 
 ( ) ( ),≡ ∈A X XA X GL VR  (63.8) 

 
3. Inversion 

 
 ( ) ( ): →GL V GL VJ  

 
is defined by  
 
 ( ) ( )1,−= ∈X X X GL VJ  (63.9) 

 
Clearly these operations are smooth mappings, so they give rise to various gradients which 

are fields of linear transformations of the underlying inner product space ( );L V V .  For example, 
the gradient of AL  is a constant field given by  
 
 ( ) ( ), ;∇ = ∈A Y AY Y L V VL  (63.10) 

 
since for any ( );∈L V VY we have 
 

 ( ) ( )
0 0t t

d dt t
dt dt= =

+ = + =A X Y X Y AYL A A  

 

 
By the same argument ∇ AR  is also a constant field and is given by 
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 ( ) ( ), ;∇ = ∈A Y YA Y L V VR  (63.11) 

 
On the other hand, ∇J  is not a constant field; its value at any point ( )∈X GL V  is given by 
 
 ( ) ( ) ( )1 , ;−∇ = − ∈⎡ ⎤⎣ ⎦X Y X YX Y L V VJ  (63.12) 

 
In particular, at =X I  the value of ( )∇ IJ  is simply the negation operation, 
 
 ( ) ( ) ( ), ;∇ =− ∈⎡ ⎤⎣ ⎦I Y Y Y L V VJ  (63.13) 

 
We leave the proof of (63.13) as an exercise. 
 

The gradients ∇ AL , ( )∈A GL V , can be regarded as a parallelism on ( )GL V  in the 

following way:  For any two points X  and Y in ( )GL V  there exists a unique ( )∈A GL V  such 
that = AY XL .  The corresponding gradient ∇ AL  at the point X  is a linear isomorphism 
 
 ( ) ( ) ( ):∇ →⎡ ⎤⎣ ⎦A X Y

X GL V GL VL  (63.14) 

 
where ( )X

GL V  denotes the tangent space of ( )GL V  at X , a notation consistent with that 

introduced in the preceding chapter.  Here, of course, ( )X
GL V  coincides with ( );

X
L V V , which 

is a copy of ( );L V V .  We inserted the argument X  in ( )∇ A XL  to emphasize the fact that 

( )∇ A XL  is a linear map from the tangent space of ( )GL V  at X to the tangent space of ( )GL V at 

the image point Y.  This mapping is given by (63.10) via the isomorphism of ( )X
GL V  and 

( )Y
GL V  with ( );L V V . 
 
 From (63.10) we see that the parallelism defined by (63.14) is not the same as the Euclidean 
parallelism.  Also, ∇ AL  is not the same kind of parallelism as the Levi-Civita parallelism on a 
hypersurface because it is independent of any path joining X and Y.  In fact, if X and Y do not 
belong to the same connected set of ( )GL V , then there exists no smooth curve joining them at all, 

but the parallelism ( )∇ A XL  is still defined.  We call the parallelism ( )∇ A XL  with ( )∈A GL V the 

Cartan parallelism on ( )GL V , and we shall study it in detail in the next section. 
 
 The choice of left multiplication rather than the right multiplication is merely a convention. 
The gradient AR also defined a parallelism on the group.  Further, the two parallelisms ∇ AL and 
∇ AR are related by 
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 1−∇ =∇ ∇ ∇A A

L J R J  (63.15) 

 
Since AL and AR are related by  
 
 1−=A A

L J R J  (63.16) 

 
for all ( )∈A GL V . 
 
 Before closing the section, we mention here that besides the proper general linear group 

( )+GL V , several other subgroups of ( )GL V are important in the applications. First, the special 

linear group ( )SL V is defined by the condition 
 
 ( ) det 1∈ ⇔ =A ASL V  (63.17) 

 
Clearly ( )SL V is a hypersurface of dimension 2 1N −  in the inner product space ( );L V V . 

Unlike  ( )GL V , ( )SL V is a connected continuous group.  The unimodular group ( )UM V is 
defined similiarly by 
 
 ( ) det 1∈ ⇔ =A AUM V  (63.18) 

 
Thus ( )SL V  is the proper subgroup of ( )UM V , namely  
 
 ( ) ( )+ =UM V SL V  (63.19) 

 
 Next the orthogonal group ( )O V is defined by the condition 
 
 ( ) 1 T−∈ ⇔ =A A AO V  (63.20) 

 
From (18.18) or (63.2) we see that A belongs to ( )O V  if and only if it preserves the inner product 
of V , i.e., 
 
 , ,⋅ = ⋅ ∈Au Av u v u v V  (63.21) 

 
Further, from (63.20) if ( ) ,∈A O V then det A has absolute value 1.  Consequently, ( )O V is a 

subgroup of ( )UM V .  As usual, ( )O V has a proper component and an improper component, the 
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former being a subgroup of ( )O V , denoted by ( )SO V , called the special orthogonal group or the 

rotational group of V .  As we shall see in Section 65, ( )O V is a hypersurface of dimension 

( )1 1
2

N N − .  From (63.20), ( )O V is contained in the sphere of radius N in ( );L V V since if 

( )∈A O V , then 
 
 1Ttr tr tr N−⋅ = = = =A A AA AA I  (63.22) 

 
As a result, ( )O V  is bounded in ( );L V V . 
 
 Since ( )UM V , ( )SL V , ( )O V , and ( )SO V are subgroups of ( )GL V , the restrictions of 

the group operations of ( )GL V can be identified as the group operations of the subgroups.  In 

particular, if ( ), ∈X Y SL V and ( )= AY XL , then the restriction of the mapping ( )∇ A XL  defined 
by (63.14) is a mapping 
 

 ( ) ( ) ( ):A∇ →⎡ ⎤⎣ ⎦ X Y
X SL V SL VL  (63.23) 

 
Thus there exists a Cartan parallelism on the subgroups as well as on ( )GL V .  The tangent spaces 

of the subgroups are subspaces of ( );L V V  of course;  further , as explained in the preceding 

chapter, they vary from point to point.  We shall characterize the tangent spaces of ( )SL V and 

( )SO V  at the identity element I  in Section 66.  The tangent space at any other point can then be 
obtained by the Cartan parallelism, e.g.,  
 
    ( ) ( ) ( )( )= ∇⎡ ⎤⎣ ⎦XX I

ISL V SL VL  
 
for any ( )∈X SL V . 
 
Exercise 
 
63.1 Verify (63.12) and (63.13). 
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Section 64.  The Parallelism of Cartan 
 
 The concept of Cartan parallelism on ( )GL V and on its various subgroups was introduced 
in the preceding section.  In this section, we develop the concept in more detail.  As explained 
before, the Cartan parallelism is path-independent.  To emphasize this fact, we now replace the 
notation ( )∇ A XL  by the notation ( ),X YC , where =Y AX . 
Then we put 
 

 ( ) ( ) ( ),≡ ≡∇ XX I X IC C L  (64.1) 

 
for any ( )∈X GL V .  It can be verified easily that 

 
 ( ) ( ) ( ) 1, −=X Y Y XC C C  (64.2) 

 
for all X and Y.  We use the same notation ( ),X YC for the Cartan parallelism from X to Y for 

pairs X, Y in ( )GL V or in any continuous subgroup of ( )GL V , such as ( )SL V .  Thus 

( ),X YC denotes either the linear isomorphism 
 
 ( ) ( ) ( ), : →

X Y
X Y GL V GL VC  (64.3) 

 
or its various restrictions such as  
 
 ( ) ( ) ( ), : →

X Y
X Y SL V SL VC  (64.4) 

 
when X, Y belong to ( )SL V . 
 
 Let V be a vector field on ( )GL V , that is  
 
 ( ) ( ): ;→V GL V L V V  (64.5) 

 
Then we say that V  is a left-invarient field if its values are parallel vectors relative to the Cartan 
parallelism, i.e., 
 
 ( ) ( )( ) ( ), =⎡ ⎤⎣ ⎦X Y V X V YC  (64.6) 

 



470 Chap. 12 • CLASSICAL CONTINUOUS GROUP 

for any X, Y in ( )GL V .  Since the Cartan parallelism is not the same as the Euclidean parallelism 

induced by the inner product space ( );L V V , a left-invarient field is not a constant field.  From 
(64.2) we have the following representations for a left-invarient field.  
 
Theorem 64.1.  A vector field V  is left-invariant if and only if it has the representation 
 
 ( ) ( ) ( )( )= ⎡ ⎤⎣ ⎦V X X V IC  (64.7) 

for all ( )∈X GL V .  
 
 As a result, each tangent vector ( )V I  at the identity element I  has a unique extension into 

a left-variant field.  Consequently, the set of all left-invariant fields, denoted by ( )Vg l , is a copy 

of the tangent space ( )I
GL V  which is canonically isomorphic to ( );L V V .  We call the 

restriction map 
 
 ( ) ( ) ( ): ;→ ≅I I

V GL V L V Vgl  (64.8) 

 
the standard representation of ( )gl V .  Since the elements of ( )Vg l  satisfy the representation 
(64.7), they characterize the Caratan parallelism completely by the condition (64.6) for 
all ( )∈V Vg l .  In the next section we shall show that ( )Vg l  has the structure of a Lie algebra, 

so we call it the Lie Algebra of ( )GL V . 
 
 Now using the Cartan parallelism ( ),X YC , we can define an opereation of covariant 
derivative by the limit of difference similar to (56.34), which defines the covariant derivative 
relative to the Levi-Civita parallelism.  Specifically, let ( )tX be a smooth curve in ( )GL V  and let 

( )tU be a vector field on ( )tX .  Then we defince the covariant derivative of ( )tU along 

( )tX relative to the Cartan parallelism by  
 

 ( ) ( ) ( ) ( )( ) ( )( ),t t t t t tD t
Dt t

⎡ ⎤+Δ − +Δ⎣ ⎦=
Δ

U X X UU C
 (64.9) 

 
Since the Cartan parallelism is defined not just on ( )GL V but also on the various continuous 

subgroups of ( )GL V , we may use the same formula (64.9) to define the covariant derivative of 
tangent vector fields along a smooth curve in the subgroups also.  For this reason we shall now 
derive a general representation for the covariant derivative relative to the Cartan parallelism 
without restricting the underlying continuous group to be the general linear group ( )GL V .  Then 
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we can apply the representation to vector fields on ( )GL V  as well as to vector fields on the 

various continuous subgroups of ( )GL V , such as the special linear group ( )SL V . 
 
 The simplest way to represent the covariant derivative defined by (64.9) is to first express 
the vector field ( )tU  in component form relative to a basis of the Lie algebra of the underlying 

continuous group.  From (64.7) we know that the values ( ){ }, 1,..., MΓ Γ=E X  of a left-invariant 

field of basis ( ){ }, 1,..., MΓ Γ=E X  form a basis of the tangent space at X for all X belonging to 
the underlying group.  Here M denotes the dimension of the group; it is purposely left arbitrary so 
as to achieve generality in the representation.  Now since ( )tU is a tangent vector at ( )tX , it can be 

represented as usual by the component form relative to the basis ( )( ){ }tΓE X , say 
 
 ( ) ( ) ( )( )ˆt U t tΓ

Γ=U E X  (64.10) 

where Γ is summed from 1 to M .  Substituting (64.10) into (64.9) and using the fact that the basis 
{ }ΓE is formed by parallel fields relative to the Cartan parallelism, we obtain directly 
 

 ( ) ( ) ( )( )
ˆD t d U t

t
Dt dt

Γ

Γ=
U

E X  (64.11) 

 
This formula is comparable to the representation of the covariant derivative relative to the 
Euclidean parallelism when the vector field is expressed in component form in the terms of a 
Cartesian basis. 
 
 As we shall see in the next section, the left-variant basis { }ΓE  used in the representation 
(64.11) is not the natural basis of any coordinate system.  Indeed, this point is the major difference 
between the Cartan parallelism and the Euclidean parallelism, since relative to the latter a parallel 
basis is a constant basis which is the natural basis of a Cartesian coordinate system.  If we 
introduce a local coordinate system with natural basis{ }, 1,..., MΓ Γ =H , then as usual we can 

represent ( )tX  by its coordinate functions ( )( )X tΓ , and ΓE  and ( )tU  by their components 
 
   ( ) ( ) ( )( )andE t U t tΔ Γ

Γ Γ Δ Γ= =E H U H X  (64.12) 

 
By using the usual transformation rule, we then have 

 
 ( ) ( ) ( )( )Û t U t F tΓ Δ Γ

Δ= X  (64.13) 

 
where F Γ

Δ⎡ ⎤⎣ ⎦  is the inverse of EΓ
Δ⎡ ⎤⎣ ⎦ .  Substituting (64.13) into (64.11), we get 
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 D d U F d XU E
D t d t X d t

Δ Γ Σ
Ω ΔΩ

Γ ΔΣ

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

U H  (64.14) 

 
We can rewrite this formula as  
 

 D d U d XU L
D t d t d t

Δ Σ
Ω Δ

ΩΣ Δ

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

U H  (64.15) 

 
where  
 

 F EL E F
X X

Γ Δ
Δ Δ ΓΩ Γ
ΩΣ Γ ΩΣ Σ

∂ ∂
= =−

∂ ∂
 (64.16) 

 
Now the formula (64.15) is comparable to (56.37) with LΔ

ΩΣ  playing the role of the Christoffel 
symbols, except that LΔ

ΩΣ is not symmetric with respect to the indices Ω and Σ .  For definiteness, 
we call LΔ

ΩΣ the Cartan symbols.  From (64.16) we can verify easily that they do not depend on the 
choice of the basis { }ΓE . 
 
 It follows from (64.12)1 and (64.16) that the Cartan symbols obey the same transformation 
rule as the Christoffel symbols.  Specifically, if ( )X Γ is another coordinate system in which the 

Cartan symbols are LΔ
ΩΣ , then  

 

 
2X X X X XL L

X X X X X X

Δ Ψ Θ Δ Φ
Δ Φ
ΩΣ ΨΘ Φ Ω Σ Φ Ω Σ

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂ ∂
 (64.17) 

 
This formula is comparable to (56.15).  In view of (64.15) and (64.17) we can define the covariant 
derivative of a vector field relative to the Cartan parallelism by 
 

 U U L
X

Δ
Ω Δ Σ

ΩΣ ΔΣ

⎛ ⎞∂
∇ = + ⊗⎜ ⎟∂⎝ ⎠

U H H  (64.18) 

 
where { }ΣH denotes the dual basis of{ }ΔH .  The covariant derivative defined in this way clearly 
possesses the following property.  
 
Theorem 64.2.  A vector field U is left-invariant if and only if its covariant derivative relative to 
the Cartan parallelism vanishes.  
 



Sec. 64 • The Parallelism of Cartan 473 

The proof of this proposition if more or less obvious, since the condition 
 

 0U U L
X

Δ
Ω Δ

ΩΣΣ

∂
+ =

∂
 (64.19) 

 
is equivalent to the condition  
 

 
ˆ

0U
X

Δ

Σ

∂
=

∂
 (64.20) 

 
where Û Δ denotes the components of U relative to the parallel basis{ }ΓE .  The condition (64.20) 

means simply that Û Δ are constant, or, equivalent, U is left-invariant. 
 

Comparing (64.16) with (59.16), we see that the Cartan parallelism also possesses the 
following property. 
 
Theorem 64.3.  The curvature tensor whose components are defined by 
 

 R L L L L L L
X X

Γ Γ Γ Φ Γ Φ Γ
ΣΔΩ ΣΩ ΣΔ ΣΩ ΦΔ ΣΔ ΦΩΔ Ω

∂ ∂
≡ − + −
∂ ∂

 (64.21) 

 
vanishes identically. 
 
 Notice that (64.21) is comparable with (59.10) where the Christoffel symbols are replaced 
by the Cartan symbols.  The vanishing of the curvature tensor 
 
 0RΓ

ΣΔΩ =  (64.22) 

 
is simply the condition of integrability of equation (64.19) whose solutions are left-invariant fields. 
 
 From the transformation rule (64.17) and the fact that the second derivative therein is 
symmetric with respect to the indices Ω  and Σ , we obtain 
 

 ( ) X X XL L L L
X X X

Δ Ψ Θ
Δ Δ Φ Φ
ΩΣ ΣΩ ΨΘ ΘΨ Φ Ω Σ

∂ ∂ ∂
− = −

∂ ∂ ∂
 (64.23) 

 
which shows that the quanties defined by  
 
 T L LΔ Δ Δ

ΩΣ ΩΣ ΣΩ≡ −  (64.24) 
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are the components of a third-order tensor field. We call the T  the torsion tensor of the Cartan 
parallelism.  To see the geometric meaning of this tensor, we substitute the formula (64.16) into 
(64.24) and rewrite the result in the following equivalent form: 
 

 E ET E E E E
X X

Δ Δ
Δ Ω Σ Ω ΩΨ Φ
ΩΣ Φ Ψ Φ ΨΩ Ω

∂ ∂
= −

∂ ∂
 (64.25) 

 
which is the component representation of  
 
 ( ), ,Φ Ψ Φ Ψ⎡ ⎤= ⎣ ⎦T E E E E  (64.26) 

 
where the right-hand side is the Lie bracket of ΦE and ΨE , i.e., 
 

 , E EE E
X XΦ

Δ Δ
Ω ΩΨ Φ

Φ Ψ Ψ Φ Ψ ΔΩ Ω

⎛ ⎞∂ ∂⎡ ⎤ ≡ = −⎜ ⎟⎣ ⎦ ∂ ∂⎝ ⎠E
E E E HL  (64.27) 

 
Equation (64.27) is comparable to (49.21) and (55.31). 
 
 As we shall see in the next section, the Lie bracket of any pair of left-invariant fields is 
itself also a left-invariant field.  Indeed, this is the very reason that the set of all left-invariant fields 
is so endowed with the structure of a Lie algebra.  As a result, the components of ,Φ Ψ⎡ ⎤⎣ ⎦E E  

relative to the left-invariant basis { }ΓE are constant scalar fields, namely 
 
 , CΓ

Φ Ψ ΦΨ Γ⎡ ⎤ =⎣ ⎦E E E  (64.28) 

 
We call CΓ

ΦΨ the structure constants of the left-invariant basis{ }ΓE .  From (64.26), CΓ
ΦΨ are nothing 

but the components of the torsion tensor T relative to the basis{ }ΓE , namely 
 
 CΓ Φ Ψ

ΦΨ Γ= ⊗ ⊗E E ET  (64.29) 

 
 Now the covariant derivative defined by (64.9) for vector fields can be generalized as in the 
preceding chapter to covariant derivatives of arbitrary tangential tensor fields. Specifically, the 
general formula is  
 

 
2... 1... 111...

1... 1...1...

11 1

2... 1 1... 1

... ...

r r rr
s ss s

r r

s s s

A L A Ld AD d X
Dt d t d tA L A L

−

−

ΣΓ Γ Γ Γ ΣΓ ΓΓ Γ Ω
Δ Δ ΣΩ Δ Δ ΣΩΔ Δ Δ

ΓΓ Γ Γ ΓΣ Σ
ΣΔ Δ Δ Ω Δ Δ Σ Δ Ω

⎧ ⎫⎛ ⎞+⋅⋅⋅+⎪ ⎪⎜ ⎟= + ⊗⋅⋅⋅⊗⎨ ⎬⎜ ⎟− −⋅⋅⋅−⎪ ⎪⎝ ⎠⎩ ⎭
H HA  (64.30) 
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which is comparable to (48.7) and (56.23).  The formula (64.30) represents the covariant derivative 
in terms of a coordinate system ( )X Γ .  If we express A in component form relative to a left-variant 

basis{ }ΓE , say 
 
 ( ) ( ) ( )( ) ( )( )1...

1... 1
ˆ sr

s
t A t tΓΓ Δ

Δ Δ Γ= ⊗⋅⋅⋅⊗E X t E XA  (64.31) 

 
then the representation of the covariant derivative is simply  
 

 
( ) ( ) ( )( ) ( )( )

1...

1...

1

ˆ r

s s
d A tD t

t t
D t d t

Γ Γ
Δ Δ Δ

Γ= ⊗⋅⋅⋅⊗E X E X
A

 (64.32) 

 
The formulas (64.30) and (64.32) represent the covariant derivative of a tangential tensor field A  
along a smooth curve ( )tX .  Now if A  is a tangential tensor field defined on the continuous 
group, then we define the covariant derivative of A  relative to the Cartan parallelism by a formula 
similar to (56.10) except that we replace the Christoffel symbols there by the Cartan symbols. 
 
 Naturally we say that a tensor field A  is left-invariant if ∇A vanishes. The torsion tensor 
field T  given by (64.29) is an example of a left-invariant third-order tensor field.  Since a tensor 
field is left invariant if and only if its components relative to the product basis of a left-invariant 
basis are constants, a representation formally generalizing (64.7) can be stated for left-invariant 
tensor fields in general. In particular, if { }ΓE is a left-invariant field of bases, then  
 
 M= ∧⋅⋅⋅∧1E E E  (64.33) 

 
is a left-invariant field of density tensors on the group. 
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Section 65.  One-Parameter Groups and the Exponential Map 

 
 In section 57 of the preceding chapter we have introduced the concepts of geodesics and 
exponential map relative to the Levi-Civita parallelism on a hypersurface.  In this section we 
consider similar concepts relative to the Cartan parallelism.  As before, we define a geodesic to be a 
smooth curve ( )tX  such that  
 

 D
Dt

=
X 0  (65.1) 

 
where X denotes the tangent vector X  and where the covariant derivative is taken relative to the 
Cartan parallelism. 
 
 Since (65.1) is formally the same as (57.1), relative to a coordinate system ( )X Γ we have 
the following equations of geodesics 
 

 
2

2 0, 1,...,d X dX dX L M
dt dt dt

Γ ∑ Δ
Γ
∑Δ+ = Γ =  (65.2) 

 
which are comparable to (57.2).  However, the equations of geodesics here are no longer the Euler-
Lagrange equations of the arc length integral, since the Cartan parallelism is not induced by a 
metric and the arc length integral is not defined.  To interpret the geometric meaning of a geodesic 
relative to the Cartan parallelism, we must refer to the definition (64.9) of the covariant derivative. 
 
 We notice first that if we express the tangent vector ( )tX  of any smooth curve ( )tX in 

component form relative to a left-invariant basis { }ΓE ,  
 
 ( ) ( ) ( )( )t G t tΓ

Γ=X E X  (65.3) 

 
then from (64.11) a necessary and sufficient condition for ( )tX  to be a geodesic is that the 

components ( )G tΓ be constant independent of t .  Equivalently, this condition means that  
 
 ( ) ( )( )t t=X G X  (65.4) 

 
where G is a left-invariant field having the component form 
 
 GΓ

Γ=G E  (65.5) 
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where GΓ are constant.  In other words, a curve ( )tX  is a geodesic relative to the Cartan 
parallelism if and only if it is an integral curve of a left-invariant vector field. 
 
 This characteristic property of a geodesic implies immediately the following result. 
 
Theorem 65.1.  If ( )tX is a geodesic tangent to the left-invariant field G, then ( )( )tA XL  is also a 
geodesic tangent to the same left-invariant field G for all A in the underlying continuous group. 
 
 A corollary of this theorem is that every geodesic can be extended indefinitely from t =−∞  
to t =+ ∞ .  Indeed, if ( )tX is a geodesic defined for an interval, say [ ]0,1t∈ , then we can extend 

( )tX to the interval [ ]1,2t∈  by  
 
 ( ) ( ) ( ) ( )( ) [ ]11 , 0,1t t t−+ ≡ ∈

X I X 0
X XL  (65.6) 

 
and so forth.  An important consequence of this extension is the following result.  
 
Theorem 65.2.  A smooth curve ( )tX passing through the identity element I  at 0t =  is a geodesic 
if and only if it forms a one-parameter group, i.e., 
 
 ( ) ( ) ( )1 2 1 2 1 2, ,t t t t t t+ = ∈X X X R  (65.7) 

 
 The necessity of (65.7) is a direct consequence of (65.6), which may be generalized to  
 
 ( ) ( ) ( )( )

11 2 2tt t t+ = XX XL  (65.8) 

 
for all 1t  and 2t .  Here we have used the condition that 
 
 ( )0 =X I  (65.9) 

 
Conversely, if (65.7) holds, then by differentiating with respect to 2t and evaluating the result at 

2 0t = , we obtain  
 
 ( ) ( )( ) ( )( )1 1 0t t⎡ ⎤= ⎣ ⎦X X XC  (65.10) 

 
which shows that ( )tX is the value of a particular left-invariant field at all ( )tX , and thus ( )tX is a 
geodesic relative to the Cartan parallelism.  
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 Now combining the preceding propositions, we see that the class of all geodesics can be 
characterized in the following way.  First, for each left-invariant field G  there exists a unique one-
parameter group ( )tX  such that 
 
 ( ) ( )0 =X G I  (65.11) 

 
where ( )G I is the standard representation of G .  Next, the set of all geodesics tangent to G  can be 

represented by ( )( )tA XL  for all A belonging to the underlying group. 
 
 As in Section 57, the one-to-one correspondence between ( )G I and ( )tX gives rise to the 
notion of the exponential map at the indentity element I .  For brevity, let A be the standard 
representation of G , i.e.,  
 
 ( )≡A G I  (65.12) 

 
Then we define 
 
 ( ) ( )1 exp exp= ≡IX A A  (65.13) 

 
which is comparable to (57.19).  As explained in Section 57,  (65.13) implies that  
 
 ( ) ( )expt t=X A  (65.14) 

 
for all t∈R .  Here we have used the extension property of the geodesic.  Equation (65.14) formally 
represents the one-parameter group whose initial tangent vector at the identity element I is A . 
 
 We claim that the exponential map defined by (65.13) can be represented explicitly by the 
exponential series 
 

 ( ) 2 31 1 1exp
2! 3! !

n

n
= + + + +⋅⋅⋅+ +⋅⋅⋅A I A A A A  (65.15) 

 
Clearly, this series converges for each ( );∈A L V V .  Indeed, since we have 
 
 nn ≤A A  (65.16) 

 
for all positive integers n , the partial sums of (65.15) form a Cauchy sequence in the inner product 
space ( );L V V .  That is, 



Sec. 65 • One-Parameter Groups, Exponential Map 479 

 

 1 1 1 1
! ! ! !

n mn m

n m n m
+⋅⋅⋅+ ≤ +⋅⋅⋅+A A A A  (65.17) 

 
and the right-hand side of (65.17) converges to zero as n and m approach infinity. 
 
 Now to prove that (65.15) is the correct representation for the exponential map, we have to 
show that the series  
 

 ( ) 2 21 1exp
2! !

n nt t t t
n

= + + +⋅⋅⋅+ + ⋅⋅⋅A I A A A  (65.18) 

 
defines a one-parameter group.  This fact is more or less obvious since the exponential series 
satisfies the usual power law 
 
 ( ) ( ) ( )( )2 1 2exp exp expt t t t= +A A A  (65.19) 

 
which can be verified by direct multiplication of the power series for ( )1exp tA  and ( )2exp tA .  

Finally, it is easily seen that the initial tangent of the curve ( )exp tA  is A since  
 

 2 2

0

1
2 t

d t t
dt =

⎛ ⎞+ + +⋅⋅⋅ =⎜ ⎟
⎝ ⎠

I A A A  (65.20) 

 
This completes the proof of the representation (65.18). 
 
 We summarize our results as follows.  
 
Theorem 65.3. Let G  be a left-invariant field with standard representation A .  Then the geodesics 
( )tX tangent to G  can be expressed by  

 

 ( ) ( ) ( ) ( ) 2 210 exp 0
2!

t t t t⎛ ⎞= = + + ⋅⋅⋅⎜ ⎟
⎝ ⎠

X X A X I A A  (65.21) 

 
where the initial point ( )0X is arbitrary. 
 
 In the view of this representation, we see that the flow generated by the left-invariant field 
G  is simply the right multiplication by exp( )tA , namely 
 
 ( )expt tR= Aρ  (65.22) 
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for all t .  As a result, if K is another left-invariant field, then the Lie bracket of G  with K is given 
by 
 

 [ ]( ) ( )( ) ( ) ( )
0

exp exp
, lim

t

t t
t→

−
=

K X A K X A
G K X  (65.23) 

 
This formula implies immediately that [ ],G K  is also a left-invariant field. Indeed, if the standard 
representation of K  is B , then from the representation (64.7) we have  
 
 ( ) =K X XB  (65.24) 

 
and therefore 
 
 ( )( ) ( )exp expt t=K X A X A B  (65.25) 

 
Substituting (65.24) and (65.25) into (65.23) and using the power series representation (65.18), we 
obtain 
 
 [ ]( ) ( ), = −G K X X AB BA  (65.26) 

 
which shows that [ ],G K  is left-invariant with the standard representation −AB BA .  Hence in 
terms of the standard representation the Lie bracket on the Lie algebra is given by  
 
 [ ], = −A B AB BA  (65.27) 

 
So far we have shown that the set of left-invariant fields is closed with respect to the operation of 
the Lie bracket.  In general a vector space equipped with a bilinear bracket product which obeys the 
Jacobi identities  
 
 [ ] [ ], ,=−A B B A  (65.28) 

and  
 
 [ ] [ ] [ ], , , , , ,+ + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦A B C B C A C A B 0  (65.29) 

 
is called a Lie Algebra.  From (65.27) the Lie bracket of left-invariant fields clearly satisfies the 
identities (65.28) and (65.29).  As a result, the set of all left-invariant fields has the structure of a 
Lie algebra with respect to the Lie bracket.  This is why that set is called the Lie algebra of the 
underlying group, as we have remarked in the preceding section. 
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 Before closing the section, we remark that the Lie algebra of a continuous group depends 
only on the identity component of the group.  If two groups share the same identity component, 
then their Lie algebras are essentially the same.  For example, the Lie algebra of ( )GL V and 

( )+GL V are both representable by ( );L V V  with the Lie bracket given by (65.27).  The fact that 

( )GL V  has two components, namely ( )+GL V and ( )−GL V cannot be reflected in any way by the 

Lie algebra ( )Vg l .  We shall consider the relation between the Lie algebra and the identity 
component of the underlying group in more detail in the next section.  
 
Exercises  
 
65.1. Establish the following properties of the function exp on ( );L V V : 

(a) ( ) ( ) ( )exp exp exp if + = =A B A B AB BA . 

(b) ( ) ( ) 1exp exp −− =A A . 
(c) exp =0 I  
(d) ( ) 1 1exp exp− −=B A B BAB for regular B . 

(e) Τ=A A if and only if ( )exp exp Τ=A A . 

(f) Τ=−A A if and only if exp A is orthogonal. 
(g) ( )det exp tre= AA . 

65.2 If P is a projection, show that  
 
   ( )exp 1eλλ = + −P I P  
 
 for λ∈R . 
 



482 Chap. 12 • CLASSICAL CONTINUOUS GROUP 

 
Section 66.  Subgroups and Subalgebras  
 
 In the preceding section we have shown that the set of left invariant fields is closed with 
respect to the Lie bracket.  This is an important property of a continuous group.  In this section we 
shall elaborate further on this property by proving that there exists a one-to-one correspondence 
between a connected continuous subgroup of ( )GL V  and a subalgebra of ( )Vg l .  Naturally we 

call a subspace h  of ( )Vgl   a subalgebra if h  is closed with respect to the Lie bracket, i.e., 

[ ]∈G, H h  whenever both andG H  belong to h .  We claim that for each subalgebra h  of 

( )Vgl  there corresponds uniquely a connected continuous subgroup H of ( )GL V  whose Lie 

algebra coincides with the restriction of h  on H . 
 
 First, suppose that H  is a continuous subgroup of ( )GL V , i.e., H  is algebraically a 

subgroup of ( )GL V  and geometrically a smooth hyper surface in ( )GL V .  For example, H may 
be the orthogonal group or the special linear group.  Then the set of all left-invariant tangent vector 
fields on H forms a Lie algebra h .  We claim that every element V in h  can be extended uniquely 
into a left-invariant vector field V on ( )GL V .  Indeed, this extension is provided by the 
representation (64.7).  That is, we simply define 
 
 ( ) ( ) ( )( )= ⎡ ⎤⎣ ⎦V X X V IC  (66.1) 

 
for all ( )∈X GL V .  Here we have used the fact that the Cartan parallelism on H  is the restriction 

of that on ( )GL V  to H .  Therefore, when ∈X H , the representation (66.1) reduces to  
 
 ( ) ( ) ( )( )= ⎡ ⎤⎣ ⎦V X X V IC  

 
since V  is left-invariant on H . 
 
 From (66.1), V  and V share the same standard representation: 
 
 ( )≡A V I  

 
As a result, from (65.27) the Lie bracket on H is related to that on ( )GL V by  
 
 [ ], ,= ⎡ ⎤⎣ ⎦V U V U  (66.2) 
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for all U and V in h .  This condition shows that the extension h of h  consisting of all left-
invariant fields V with V in h  is a Lie subalgebra of ( )Vgl .  In view of (66.1) and (66.2), we 

simplify the notation by suppressing the overbar.  If this convention is adopted, then h  becomes a 
Lie subalgebra of ( )Vgl . 
 
 Since the inclusion ( )⊂ Vh gl is based on the extension (66.1), if 1H and 2H  are 

continuous subgroups of ( )GL V  having the same identity components, then their Lie algebras 

1h and 2h coincide as Lie subalgebras of ( )Vgl .  In this sense we say that the Lie algebra 
characterizes only the identity component of the underlying group, as we have remarked at the end 
of the preceding section. In particular, the Lie algebra of ( )UM V coincides with that of ( )SL V . 
 
 It turns out that every Lie subalgebra of ( )Vgl  can be identified as the Lie algebra of a 

unique connected continuous subgroup of ( )Vgl .  To prove this, let h  be an arbitrary Lie 

subalgebra of ( )Vgl .  Then the values of the left-invariant field belonging to h  form a linear 

subspace of ( );L V V  at each point of ( )GL V .  This field of subspaces is a distribution on 

( )GL V  as defined in Section 50.  According to the Frobenius theorem, the distribution is 
integrable if and only if it is closed with respect to the Lie bracket.  This condition is clearly 
satisfied since h  is a Lie subalgebra.  As a result, there exists an integral hypersurface of the 
distribution at each point in ( )GL V . 
 
 We denote the maximal connected integral hypersurface of the distribution at the identity 
by H .  Here maximality means that H  is not a proper subset of any other connected integral 
hypersurface of the distribution.  This condition implies immediately that H is also the maximal 
connected integral hypersurface at any point X  which belongs to H .  By virtue of this fact we 
claim that  
 
 ( ) =X H HL  (66.3) 

 
for all ∈X H .  Indeed, since the distribution is generated by left-invariant fields, its collection of 
maximal connected integral hypersurfaces is invariant under any left multiplication.  In particular, 

( )X HL  is the maximal connected integral hypersurface at the point X, since H contains the 
identity I .  As a result, (66.3) holds.  
 
 Now from (66.3) we see that ∈X H  implies 1− ∈X H  since 1−X is the only possible element 
such that ( )1− =X X IL .  Similiarly, if X and Y are contained in H , then XY  must also be contained 

in H  since XY  is the only possible element such that ( )1− − =1Y X
XY IL L . For the last condition we 

have used the fact that  
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 ( ) ( )1− − −= =1 1Y X Y

H H HL L L  

 
which follows from (66.3) and the fact that 1−X and −1Y  are both in H .  Thus we have shown that 
H is a connected continuous subgroup of ( )GL V having h  as its Lie algebra. 
 
 Summarizing the results obtained so far, we can state the following theorem. 
 
Theorem 66.1.  There exists a one-to-one correspondence between the set of Lie subalgebras of 

( )Vgl and the set of connected continuous subgroups of ( )GL V  in such a way that each Lie 

subalgebra h  of ( )Vgl  is the Lie algebra of a unique connected continuous subgroup H of 

( )GL V . 
 
 To illustrate this theorem, we now determine explicitly the Lie algebras ( )Vs l  and 

( )Vs o of the subgroups ( )SL V and ( )SO V .  We claim first  
 
 ( ) 0tr∈ ⇔ =A AVs l  (66.4) 

 
where tr A denotes the trace of A .  To prove this, we consider the one-parameter group ( )exp tA  

for any ( );∈A L V V .  In order that ( )∈A sl V , we must have  
 
 ( )( )det exp 1,t t= ∈A R  (66.5) 

 
Differentiating this condition with respect to t and evaluating the result at 0t = , we obtain [cf. 
Exercise 65.1(g)] 
 

 ( )( )
0

0 det exp
t

d t tr
dt =
⎡ ⎤= =⎣ ⎦A A  (66.6) 

 
Conversely, if tr A vanishes, then (66.5) holds because the one-parameter group property of 

( )exp tA implies 
 

 ( )( ) ( )( )det exp det exp 0,d t t tr t
dt
⎡ ⎤ = = ∈⎣ ⎦A A A R  

 
while the initial condition at 0t = , 
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 ( )det exp det 1= =0 I  

 
is obvious.  Thus we have completed the proof of (66.4). 
 
 From the representation (65.27) the reader will verify easily that the subspace of 

( );L V V characterized by the right-hand side of (66.4) is indeed a Lie subalgebra, as it should be. 
 
 Next we claim that  
 
 ( ) T∈ ⇔ =−A A AVso  (66.7) 

 
where TA denotes the transpose of A .  Again we consider the one-parameter group ( )exp tA for 

any ( );∈A L V V .  In order that ( )∈A Vso , we must have  
 
 ( ) ( ) ( )exp exp exp

T Tt t t− = =⎡ ⎤⎣ ⎦A A A  (66.8) 

 
Here we have used the identities 
 
 ( ) ( ) ( ) ( )1

exp exp , exp exp
T T−

= − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦A A A A  (66.9) 

 
which can be verified directly from (65.15).  The condition (66.7) clearly follows from the 
condition (66.8).  From (65.27) the reader also will verify the fact that the subpace of 

( );L V V characterized by the right-hand side is a Lie subalgebra.  
 
 The conditions (66.4) and (66.7) characterize completely the tangent spaces of ( )SL V and 

( )SO V at the identity element I .  These conditions verify the claims on the dimensions of 

( )SL V and ( )SO V  made in Section 63.  
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Section 67.  Maximal Abelian Subgroups and Subalgebras 
 
 In this section we consider the problem of determining the Abelian subgroups of ( )GL V .  
Since we shall use the Lie algebras to characterize the subgroups, our results are necessarily 
restricted to connected continuous Abelian subgroups only.  We define first the tentative notion of 
a maximal Abelian subset H of ( )GL V .  The subset H is required to satisfy the following two 
conditions: 
 

(i) Any pair of elements X  and Y  belonging to H commute. 
(ii) H is not a proper subset of any subset of ( )GL V  satisfying condition (i). 

 
Theorem 67.1. A maximal Abelian subset is necessarily a subgroup. 
 
 The proof is more or less obvious.  Clearly, the identity element I  is a member of every 
maximal Abelian subset.  Next, if X  belongs to a certain maximal Abelian subset H , then 1−X also 
belongs to H .  Indeed, ∈X H  means that 
 
 ,= ∈XY YX Y H  (67.1) 

 
Multiplying this equation on the left and on the right by 1−X , we get 
 
 1 1 ,− −= ∈YX X Y Y H  (67.2) 

 
As a result, 1− ∈X H  since H is maximal.  By the same argument we can prove also that 

∈XY H whenever ∈X H and ∈Y H .  Thus, H is a subgroup of ( )GL V . 
 
 In view of this theorem and the opening remarks we shall now consider the maximal, 
connected, continuous, Abelian subgroups of ( )GL V .  Our first result is the following. 
 
Theorem 67.2.  The one-parameter groups ( )exp tA and ( )exp tB commute if and only if their 
initial tangents A and B commute.  
 
 Sufficiency is obvious, since when =AB BA  the series representations for ( )exp tA and 

( )exp tB imply directly that ( )exp tA ( )exp tB ( ) ( )exp expt t= B A .  In fact, we have  
 
 ( ) ( ) ( )( ) ( ) ( )exp exp exp exp expt t t t t= + =A B A B B A  
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in this case.  Conversely, if ( )exp tA and ( )exp tB commute, then their initial tangents A  and B  

must also commute, since we can compare the power series expansions for ( ) ( )exp expt tA B and 

( ) ( )exp expt tB A  for sufficiently small t .  Thus the proposition is proved. 
 
 We note here a word of caution: While the assertion  
 
 ( ) ( ) ( ) ( )exp exp exp exp= ⇒ =AB BA A B B A  (67.3) 

 
is true, its converse is not true in general.  This is due to the fact that the exponential map is local 
diffeomorphism, but globally it may or may not be one-to-one.  Thus there exists a nonzero 
solution A for the equation 
 
 ( )exp =A I  (67.4) 

 
For example, in the simplest case when V is a two-dimensional spce, we can check directly from 
(65.15) that  
 

 
0 cos sin

exp
0 0 sin cos

θ θ θ
θ θ

− −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (67.5) 

 
In particular, a possible solution for (67.4) is the matrix 
 

 
0 2
2 0

π
π
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A  (67.6) 

 
For this solution ( )exp A  clearly commutes with ( )exp B  for all B, even though A may or may not 
commute with B.  Thus the converse of (67.3) does not hold in general. 
 
 The main result of this section is the following theorem. 
 
Theorem 67.3.  H is a maximal connected, continuous Abelian subgroup of ( )GL V  if and only if 

it is the subgroup corresponding to a maximal Abelian subalgebra h of ( )Vgl . 
 
 Naturally, a maximal Abelian subalgebra h  of ( )Vgl is defined by the following two 
conditions: 
 

(i) Any pair of elements A  and B  belonging to h  commute, i.e.,[ ], =A B 0 . 
(ii) h  is not a proper subset of any subalgebra of ( )Vgl  satisfying condition (i). 
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To prove the preceding theorem, we need the following lemma. 

 
Lemma.  Let H  be an arbitrary connected continuous subgroup of ( )GL V  and let N be a 
neighborhood of I in H .  Then H is generated by N , i.e., every element X  of H can be expressed 
as a product (not unique) 
 
 1 2 k= ⋅⋅⋅X Y Y Y  (67.7) 

 
where iY or 1

i
−Y belongs to N .  [The number of factors k in the representation (67.7) is arbitrary.] 

 
 Note. Since H is a hypersurface in the inner product space ( );L V  V , we can define a 
neighborhood system on H simply by the intersection of the Euclidean neighborhood system on 

( );L V  V with H .  The topology defined in this way on H is called the induced topology. 
 
 To prove the lemma, let 0H  be the subgroup generated by N .  Then 0H is an open set in 
H since from (67.7) every point 0∈X H  has a neighborhood ( )X NL in H . On the other hand, 

0H is also a closed set in H  because the complement of 0H in H  is the union of ( )0Y HL , 

0
∈Y H

H  which are all open sets in H .  As a result 0H must coincide with H since by hypothesis 

H has only one component. 
 
 By virtue of the lemma H  is Abelian if and only if N is an Abelian set.  Combining this 
remark with Theorem 67.2, and using the fact that the exponential map is a local diffeomorphism at 
the identity element, we can conclude immediately that H is a maximal connected continuous 
Abelian subgroup of ( )GL V  if and only if h is a maximal Abelian Lie subalgebra of ( )Vgl . 
This completes the proof. 
 
 It should be noticed that on a connected Abelian continuous subgroup of ( )GL V  the 
Cartan parallelism reduced to a Euclidean parallelism.  Indeed, since the Lie bracket vanishes 
identically on h , any invariant basis { }ΓE is also the natural basis of a coordinate system 

{ }X Γ on H .  Further, the coordinate map defined by  
 
 ( )exp X Γ

Γ≡X E  (67.8) 

 
is a homomorphism of the additive group MR with the Abelian group H .  This coordinate system 
plays the role of a local Cartesian coordinate system on a neighborhood of the identity element 
of H . The mapping defined by (67.8) may or may not be one-to-one.  In the former case H is 
isomorphic to MR , in the latter case H is isomorphic to a cylinder or a torus of dimension M .  
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 We say that the Cartan parallelism on the Abelian group H is a Euclidean parallelism 
because there exists a local Cartesian coordinate system relative to which the Cartan symbols 
vanish identically.  This Euclidean parallelsin on H  should not be confused with the Eucliedean 
parallelism on the underlying inner product space ( );L V V  in which H is a hypersurface.  In 
genereal, even if H is Abelian, the tangent spaces at different points of H  are still different 
subspaces of ( );L V V .  Thus the Euclidean parallelism on H is not the restriction of the 

Euclidean parallelism of ( );L V V to H . 
 
 An example of a maximal connected Abelian continuous subgroup of ( )GL V  is a 

dilatation group defined as follows:  Let { }, 1,...,i i N=e  be the basis ofV . Then a linear 

transformation X  of V is a dilatation with axes { }ie  if each ie  is an eigenvector of X and the 

corresponding eigenvalue is positive.  In other words, the component matrix of X  relative to { }ie is 
a diagonal matrix with positive diagonal components, say 
 

 

1

, 0 1,...,i
j i

N

i N

λ

λ

λ

⎡ ⎤
⎢ ⎥⋅⎢ ⎥

⎡ ⎤ = ⋅ > =⎢ ⎥⎣ ⎦ ⎢ ⎥⋅⎢ ⎥
⎢ ⎥⎣ ⎦

X  (67.9) 

 
where iλ may or may not be distinct.  The dilatation group with axes { }ie is the group of all 
dilatations X .  We leave the proof of the fact that a dilatation group is a maximal connected 
Abelian continuous subgroup of ( )GL V as an exercise. 
 
 Dilatation groups are not the only class of maximal Abelian subgroup of ( )GL V , of course. 

For example, when V is three-dimensional we choose a basis { }1 2 3, ,e e e forV ;  then the subgroup 

consisting of all linear transformations having component matrix relative to { }ie of the form 
 

 
0

0 0
a b

a
b c a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
with positive a and arbitrary b and c is also a maximal connected Abelian continuous subgroup of 

( )GL V .  Again, we leave the proof of this fact as an exercise.  
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 For inner product spaces of lower dimensions a complete classification of the Lie 
subalgebars of the Lie algebra ( )Vgl is known. In such cases a corresponding classification of 

connected continuous subgroups of ( )GL V can be obtained by using the main result of the 
preceding section.  Then the set of maximal connected Abelian continuous subgroups can be 
determined completely. These results are beyond the scope of this chapter, however.  
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________________________________________________________________ 

Chapter 13 
 

INTEGRATION OF FIELDS ON EUCLIDEAN MANIFORDS, 

HYPERSURFACES, AND CONTINUOUS GROUPS  
 
 
In this chapter we consider the theory of integration of vector and tensor fields defined on 
various geometric entities introduced in the preceding chapters.  We assume that the reader is 
familiar with the basic notion of the Riemann integral for functions of several real variables.  
Since we shall restrict our attention to the integration of continuous fields only, we do not need 
the more general notion of the Lebesgue integral. 
 
Section 68.  Arc Length, Surface Area, and Volume 
 
 Let E be a Euclidean maniforld and let λ  be a smooth curve in .E   Then the tangent of λ  
is a vector in the translation space ofV E  defined by 
 

 ( ) ( ) ( )
0

lim
t

t t t
t

tΔ →

+ Δ −
=

Δ
λ λ

λ�  (68.1) 

 
As usual we denote the norm of λ� by ,λ�  
 
 ( ) ( ) ( )

1/ 2
t t t⎡ ⎤= ⋅⎣ ⎦λ λ λ� � �  (68.2) 

 
which is a continuous function of ,t  the parameter of λ .  Now suppose that λ  is defined for t  
from to .a b   Then we define the arc length of λ  between ( ) ( )anda bλ λ by  
 

 ( )
b

a
l t dt= ∫ λ�  (68.3) 

 
We claim that the arc length possesses the following properties which justify the definition 
(68.3). 
 

(i) The arc length depends only on the path of λ  joining ( )aλ  and ( ) ,bλ  
independent of the choice of parameterization on the path. 

 



492 Chap. 13 • INTEGRATION OF FIELDS 

 Indeed, if the path is parameterized by t  so that 
 
 ( ) ( )t t=λ λ  (68.4) 

with 
 ( )t t t=  (68.5) 

then the tangent vectors andλ λ��  are related by 
 

 ( ) ( ) dtt t
dt

=λ λ��  (68.6) 

 
As a result, we have  
 

 ( ) ( )
b b

a a
t dt t dt=∫ ∫λ λ� �  (68.7) 

 
which proves property (i). 
 
 (ii)  When the path joining ( ) ( )anda bλ λ is a straight line segment, the arc length is 
given by 
 
 ( ) ( )l b a= −λ λ  (68.8) 

 
 This property can be verified by using the parameterization 
 
 ( ) ( ) ( )( ) ( )t b a t a= − +λ λ λ λ  (68.9) 

where t ranges from 0 to 1 since ( ) ( ) ( ) ( )0 and 1 .a b= =λ λ λ λ   In view of (68.7), l  is given by 
 

 ( ) ( ) ( ) ( )
1

0
l b a dt b a= − = −∫ λ λ λ λ  (68.10) 

 
(iii) The arc length integral is additive, i.e., the sum of the arc lengths from 

( ) ( )toa bλ λ and from ( ) ( )tob cλ λ is equal to the arc length from ( ) ( )to .a cλ λ  
 
 Now using property (i), we can parameterize the path of λ by the arc length relative to a 
certain reference point on the path.  As usual, we assume that the path is oriented.  Then we 
assign a positive parameter s  to a point on the positive side and a negative parameter s  to a 
point on the negative side of the reference point, the absolute value s  being the arc length 
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between the point and the reference point.  Hence when the parameter t  is positively oriented, 
the arc length parameter s  is related to t  by 
 

 ( ) ( )
1

0
s s t t dt= = ∫ λ�  (68.11) 

 
where ( )0λ  is chosen as the reference point. From (68.11) we get 
 
 ( )/ds dt t= λ�  (68.12) 

 
Substituting this formula into the general transformation rule (68.6), we see that the tangent 
vector relative to s  is a unit vector pointing in the positive direction of the path, as it should be. 
 
 Having defined the concept of arc length, we consider next the concept of surface area.  
For simplicity we begin with the area of a two-dimensional smooth surface S  in E .  As usual, 
we can characterize S  in terms of a pair of parameters ( ), 1,2uΓ Γ =  which form a local 
coordinate system on S   
 
 ( )1 2,u u∈ ⇔ =x x ζS  (68.13) 

 
where ζ  is a smooth mapping.  We denote the tangent vector of the coordinate curves by 
 
 / , 1,2uΓ

Γ ≡ ∂ ∂ Γ =h ζ  (68.14) 

 
Then { }Γh is a basis of the tangent plane xS  of S  at any x  given by (68.13).  We assume that 

S  is oriented and that ( )uΓ  is a positive coordinate system.  Thus { }Γh is also positive for xS . 
 
 Now let U  be a domain in S  with piecewise smooth boundary.  We consider first the 
simple case when U  can be covered entirely by the coordinate system ( )uΓ .  Then we define the 
surface area of U  by  
 

 ( )
( )1

1 2 1 2,e u u du duσ
−

= ∫∫
ζ U

 (68.15) 

 
where ( )1 2,e u u  is defined by 
 
 [ ]( ) [ ]( )1/ 2 1/ 2

det dete a aΓΔ Γ Δ≡ = = ⋅h h  (68.16) 
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The double integral in (68.15) is taken over ( )1 ,−ζ U  which denotes the set of coordinates ( )uΓ  
for points belonging to U . 
 
 By essentially the same argument as before, we can prove that the surface area has the 
following properties which justify the definition (68.15). 
 
 (iv)  The surface area depends only on the domain U , independent of the choice of 
parameterization on U . 
 
 To prove this, we note that under a change of surface coordinates the integrand e  of 
(68.15) obeys the transformation rule [cf. (61.4)] 
 

 det  ue e
u

Γ

Δ

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

 (68.17) 

 
As a result, we have  
 

 ( )
( )

( )
( )1 1

1 2 1 2 1 2 1 2, ,e u u du du e u u du du
− −

=∫∫ ∫∫
ζ ζU U

 (68.18) 

 
which proves property (iv). 
 
 (v)  When S  is a plane and U  is a square spanned by the vectors 1 2andh h at the point 

0 ∈x S , the surface area of U  is 
 
 1 2σ = h h  (68.19) 

 
 The proof is essentially the same as before.  We use the parameterization 
 
 ( )1 2

0,u u uΓ
Γ= +ζ x h  (68.20) 

 
From (68.16), e  is a constant 
 1 2e = h h  (68.21) 

 
and from (68.20), ( )1−ζ U  is the square [ ] [ ]0,1 0,1× .  Hence by (68.15) we have 
 

 
1 1 1 2

1 2 1 20 0
du duσ = =∫ ∫ h h h h  (68.22) 
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 (vi)  The surface area integral is additive in the same sence as (iii).   
 
 Like the arc length parameter s  on a path, a local coordinate system ( )u Γ on S  is called 

an isochoric coordinate system if the surface area density ( )1 2,e u u  is identical to 1 for all 

( )u Γ .  We can define an isochoric coordinate system ( )u Γ  in terms of an arbitrary surface 

coordinate system ( )uΓ  in the following way.  We put 
 
 ( )1 1 1 2 1,u u u u u= ≡  (68.23) 

and 

 ( ) ( )
2

2 2 1 2 1

0
, ,

u
u u u u e u t dt= ≡ ∫  (68.24) 

 
where we have assumed that the origin ( )0,0  is a point in the domain of the coordinate system 

( )uΓ .  From (68.23) and (68.24) we see that  
 

 ( )
1 1 2

1 2
1 2 21, 0, ,u u u e u u

u u u
∂ ∂ ∂

= = =
∂ ∂ ∂

 (68.25) 

 
As a result, the Jacobian of the coordinate transformation is 
 

 ( )1 2det ,u e u u
u

Γ

Δ

⎡ ⎤∂
=⎢ ⎥∂⎣ ⎦

 (68.26) 

 
which implies immediately the desired result: 
 
 ( )1 2, 1e u u =  (68.27) 

 
by virtue of (68.17).  From (68.26) the coordinate system ( )uΓ and ( )u Γ are of the same 

orientation.  Hence if ( )uΓ  is positively oriented, then ( )u Γ  is a positive isochoric coordinate 
system on S . 
 
 An isochoric coordinate system ( )u Γ=x ζ in corresponds to an isochoric mapping ζ  

from a domain in 2R  onto the coordinate neighborhood of ζ  in S .  In general, ζ  is not 
isometric, so that the surface metric aΓΔ  relative to ( )u Γ  need not be a Euclidean metric.  In fact, 
the surface metric is Euclidean if and only if S  is developable.  Hence an isometric coordinate 
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system (i.e., a rectangular Cartesian coordinate system) generally does not exist on an arbitrary 
surface S .  But the preceding proof shows that isochoric coordinate systems exist on all S . 
 
 So far, we have defined the surface area for any domain U  which can be covered by a 
single surface coordinate system.  Now suppose that U  is not homeomorphic to a domain in 2R .  
Then we decompose U  into a collection of subdomains, say 
 
 1 2 K= ∪ ∪ ∪U U U U"  (68.28) 

 
whee the interiors of 1, , KU U…  are mutually disjoint.  We assume that each aU  can be covered by 
a surface coordinate system so that the surface area ( )aσ U is defined.  Then we define ( )σ U  
naturally by 
 
 ( ) ( ) ( )1 Kσ σ σ= + +U U U"  (68.29) 

 
While the decomposition (68.28) is not unique, of course, by the additive property (vi) of the 
integral we can verify easily that ( )σ U  is independent of the decomposition.  Thus the surface 
area is well defined. 
 
 Having considered the concepts of arc length and surface area in detail, we can now 
extend theidea to hypersurfaces in general.  Specifically, let S  be a hupersurface of dimension 
M.  Then locally S  can be represented by 
 
 ( )1, Mu u∈ ⇔ =x x ζ …S  (68.30) 

 
where ζ  is a smooth mapping.  We define 
 
 / , 1, ,u MΓ

Γ ≡ ∂ ∂ Γ =h ζ …  (68.31) 

and 
 aΓΔ Γ Δ≡ ⋅h h  (68.32) 

 
Then the { }Γh  span the tangent space xS  and the aΓΔ  define the induced metric on xS .  We 
define the surface area density e  by the same formula (68.16) except that e  is now a smooth 
function of the M variables ( )1, Mu u… , and the matrix [ ]aΓΔ  is also .M M×  
 
 Now let U  be a domain with piecewise smooth boundary in S , and assume that U  can 
be covered by a single surface coordinate system.  Then we define the surface area of U  by 
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 ( )
( )1

1 1, , M Me u u du du
ζ

σ
−

= ⋅ ⋅ ⋅∫ ∫
U

… "  (68.33) 

 
By the same argument as before, σ  has the following two properties. 
 (vii)  The surface area is additive and independent of the choice of surface coordinate 
system. 
 (viii)  The surface area of an M-dimensional cube with sides 1, , Mh h…  is 
 
 1 Mσ = h h"  (68.34) 

 
More generally, when U  cannot be covered by a single coordinate system, we decompose U  by 
(68.28) and define ( )σ U  by (68.29). 
 
 We can extend the notion of an isochoric coordinate system to a hypersurface in general.  
To construct an isochoric coordinate system ( ) ,u Γ  we begin with an arbitrary coordinate system 

( ).uΓ   Then we put  

 ( )1, , , 1, , 1Mu u u u u MΓ Γ Γ= = Γ = −… …  (68.35) 

 ( ) ( )1 1 1

0
, , , , ,

MuM M M Mu u u u e u u t dt−= ≡ ∫… …  (68.36) 

 
From (68.35) and (68.36) we get 
 

 ( )1det , Mu e u u
u

Γ

Δ

⎡ ⎤∂
=⎢ ⎥∂⎣ ⎦

…  (68.37) 

 
As a result, the coordinate system ( )u Γ  is isochoric since 
 

 ( ) ( )1 1 1, , , , 1
det /

M Me u u e u u
u uΓ Δ

= =
⎡ ⎤∂ ∂⎣ ⎦

… …  (68.38) 

 
 Finally, when M N= , S  is nothing but a domain in .E   In this case ( )1, , Nu u…  

becomes an arbitrary local coordinate system in ,E  and ( )1, , Ne u u…  is just the Euclidean 

volume relative to ( ).iu   The integral 
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 ( )
( )1

1 1, , M Me u u du du
ζ

υ
−

≡ ⋅ ⋅ ⋅∫ ∫
U

… "  (68.39) 

 
now defines the Euclidean volume of the domain .U  
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Section 69.  Integration of Vector Fields and Tensor Fields 
 
 In the preceding section we have defined the concept of surface area for an arbitrary M-
dimensional hyper surface imbedded in an N-dimensional Euclidean manifold .E   When 1M = , 
the surface reduces to a path and the surface area becomes the arc length, while in the case M=N  
the surface corresponds to a domain in ,E and the surface area becomes the volume.  In this 
section we shall define the integrals of various fields relative to the surface area of an arbitrary 
hyper surface S .  We begin with the integral of a continuous function f defined on S . 
 
 As before, we assume that S  is oriented and U  is a domain in S  with piecewise 
smoothboundary.  We consider first the simple case when U  can be covered by a single surface 
coordinate system ( )1, Mu u=x ζ … .  We choose ( )uΓ to be positively oriented, of course.  Under 
these assumptions, we define the integral of  f on U  by 
 

 
( )1

1d Mf fe du du
ζ

σ
−

≡∫ ∫ ∫U U
" "  (69.1) 

 
where the function f  on the right-hand side denotes the representation of f  in terms of the 
surface coordinates ( )uΓ : 
 
 ( ) ( )1, , Mf f u u=x …  (69.2) 

 
where 
 
 ( )1, , Mu u=x ζ …  (69.3) 

 
It is understood that the multiple integral in (69.1) is taken over the positive orientation on 

( )1−ζ U  in MR . 
 
 By the same argument as in the preceding section, we see that the integral possesses the 
following properties. 
 
 (i)  When f  is identical to 1 the integral of f  is just the surface area of ,U  namely 
 
 ( ) dσ σ= ∫UU  (69.4) 

 
 (ii)  The integral of f  is independent on the choice of the coordinate system ( )uΓ  and is 
additive with respect to its domain. 
 (iii)  The integral is a linear function of the integrand in the sense that 
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 ( )1 1 2 2 1 1 2 2f f d f d f dα α σ α σ α σ+ = +∫ ∫ ∫U U U

 (69.5) 

 
for all constants 1 2and .α α   Also, the integral is bounded by 
 
 ( ) ( )min maxf f d fσ σ σ≤ ≤∫UU U

U U  (69.6) 

 
where the extrema of f  are taken over the domain .U  
 
 Property (iii) is a standard result of multiple integrals in calculus, so by virtue of the 
definition (69.1) the same is valid for the integral of f . 
 
 As before, if U  cannot be covered by a single coordinate system, then we decompose U  
by (68.28) and define the integral of f  over U  by 
 
 

1 K
f d f d f dσ σ σ= + +∫ ∫ ∫U U U

"  (69.7) 

 
By property (ii) we can verify easily that the integral is independent of the decomposition. 
 
 Having defined the integral of a scalar field, we define next the integral of a vector field.  
Let v  be a continuous vector field on S , i.e., 
 
 : →v S V  (69.8) 

 
where V  is the translation space of the underlying Euclidean manifold .E   Generally the values 
of v  may or may not be tangent to S .  We choose an arbitrary Cartesian coordinate system with 
natural basis { }.ie   Then v  can be represented by 
 
 ( ) ( )i

iυ=v x x e  (69.9) 

 
where ( )1 , 1, , ,i Nυ =x …  are continuous scalar fields on S .  We define the integral of v  by 
 
 ( )i

id dσ υ σ≡∫ ∫v e
U U

 (69.10) 

 
Clearly the integral is independent of the choice of the basis { }.ie  
 
 More generally if A  is a tensor field on S  having the representation 
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 ( ) ( )1 1

1 1

sr

s r

ji i j
j j i iA= ⊗ ⊗ ⊗ ⊗ ⊗x x e e e eA …
… " "  (69.11) 

 
where { }ie  denotes the reciprocal basis of { },ie  then we define  
 
 ( )1

1 1

sr

s

ji i
j j id A dσ σ≡ ⊗ ⊗∫ ∫ e e

U U
A …

… "  (69.12) 

 
Again the integral is independent of the choice of the basis { }.ie  
 
 The integrals defined by (69.10) and (69.12) possess the same tensorial order as the 
integrand.  The fact that a Cartesian coordinate system is used in (69.10) and (69.12) reflects 
clearly the crucial dependence of the integral on the Euclidean parallelism of .E   Without the 
Euclidean parallelism it is generally impossible to add vectors or tensors at different points of the 
domain.  Then an integral is also meaningless.  For example, if we suppress the Euclidean 
parallelism on the underlying Euclidean manifold ,E  then the tangential vectors or tensors at 
different points of a hyper surface S  generally do not belong to the same tangent space or tensor 
space.  As a result, it is generally impossible to “sum” the values of a tangential field to obtain an 
integral without the use of some kind of path-independent parallelism.  The Euclidean 
parallelism is just one example of such parallelisms.  Another example is the Cartan parallelism 
on a continuous group defined in the preceding chapter.  We shall consider integrals relative to 
the Cartan parallelism in Section 72. 
 
 In view of (69.10) and (69.12) we see that the integral of a vector field or a tensor field 
possesses the following properties. 
 
 (iv)  The integral is linear with respect to the integrand. 
 (v)   The integral is bounded by  
 
 d dσ σ≤∫ ∫v v

U U
 (69.13) 

 
and similarly 
 
 d dσ σ≤∫ ∫A A

U U
 (69.14) 

 
where the norm of a vector or a tensor is defined as usual by the inner product of .V   Then it 
follows from (69.6) that 
 
 ( )maxdσ σ≤∫ v v

U U
U  (69.15) 

and 
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 ( )maxdσ σ≤∫ A A
U U

U  (69.16) 

 
However, it does not follow from (69.6), and in fact it is not true, that ( )minσ vUU  is a lower 
bound for thenorm of the integral of .v    
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Section 70.  Integration of Differential Forms 
 
 Integration with respect to the surface area density of a hyper surface is a special case of 
a more general integration of differential forms.  As remarked in Section 68, the transformation 
rule (68.17) of the surface area density is the basic condition which implies the important 
property that the surface area integral is independent of the choice of the surface coordinate 
system.  Since the transformation rule (68.17) is essentially the same as that of the strict 
components of certain differential forms, we can extend the operation of integration to those 
forms also.  This extension is the main result of this section. 
 
 We begin with the simple notion of a differential N-form Z  on E .   By definition, Z  is a 
completely skew-symmetric covariant tensor field of order N.  Thus relative to any coordinate 
system ( ) ,iu  Z  has the representation 
 

 
1

1

1
1

1

N

N

ii N
i i N

N

Z Z

z

= ⊗ ⊗ = ∧ ∧

= ∧ ∧

Z h h h h

h h
… …" "

"
 (70.1) 

 
where z  is called the relative scalar or the density of Z .  As we have shown in Section 39, the 
transformation rule for z  is  
 

 det
i

j
uz z
u

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

 (70.2) 

 
This formula is comparable to (68.17).  In fact if we require that ( )iu and ( )iu  both be positively 
oriented, then (70.2) can be regarded as a special case of (68.17) with .M N=   As a result, we 
can define the integral of Z  over a domain inU E  by 
 

 
( )

( )1

1 1, , N Nz u u du du
ζ −

≡∫ ∫ ∫Z
U U

" … "  (70.3) 

 
and the integral is independent of the choice of the (positive) coordinate system ( ).iu=x ζ  
 
 Notice that in this definition the Euclidean metric and the Euclidean volume density e  
are not used at all.  In fact, (68.39) can be regarded as a special case of (70.3) when Z  reduces to 
the Euclidean volume tensor 
 
 1 Ne= ∧ ∧h hE "  (70.4) 
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Here we have assumed that the coordinate system is positively oriented; otherwise, a negative 
sign should be inserted on the right hand side since the volume density e  as defined by (68.16) is 
always positive.  Hence, unlike the volume integral, the integral of a differential N-form Z  is 
defined only if the underlying space E  is oriented.  Other than this aspect, the integral of Z  and 
the volume integral have essentially the same properties since they both are defined by an 
invariant N-tuple integral over the coordinates. 
 

Now more generally let S  be an oriented hypersurface in E  of dimension M , and 
suppose Z  is a tangential differential M-form on S .  As before, we choose a positive surface 
coordinate system ( )uΓ  on S  and represent Z  by 
 
 1 Mz= ∧ ∧Z h h"  (70.5) 

 
where z  is a function of ( )1, , Mu u…  where { }Γh  is the natural basis reciprocal to { }Γh .  Then 
the transformation rule for z  is 
 

 det uz z
u

Γ

Δ

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

 (70.6) 

 
As a result, we can define the integral of Z  over a domain U  in S  by 
 

 
( )

( )1

1 1, , M Mz u u du du
ζ −

≡∫ ∫ ∫U U
Z " … "  (70.7) 

 
and the integral is independentof the choice of the positive surface coordinate system ( ).uΓ   By 
the same remark as before, we can regard (70.7) as a generalization of (68.33). 
 
 The definition (70.7) is valid for any tangential M-form Z  on S .  In this definition the 
surface metric and thesurface area density are not used.  The fact that Z  is a tangential field on 
S  is not essential in the definition.  Indeed, if Z  is an arbitrary skew-symmetric spatial 
covariant tensorof order M on S , then we define the density of Z  on S  relative to ( )uΓ  simply 
by  
 ( )1, , Mz = h hZ …  (70.8) 

 
Using this density, we define the integral of Z  again by (70.7).  Of course, the formula (70.8) is 
valid for a tangential M-form Z  also, since it merely represents the strict component of the 
tangential projection of Z . 
 
 This remark can be further generalized in the following situation:  Suppose that S  is a 
hyper surface contained in another hypersurface 0S  in E , and let Z  be a tangential M-form on 
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0S .  Then Z  gives rise to a density on S  by the same formula (70.8), and the integral of Z  over 
any domain U  in S  is defined by (70.7).  Algebraically, this remark is a consequence of the 
simple fact that a skew-symmetric tensor over the tangent space of 0S  gives rise to a unique 
skew-symmetric tensor over the tangent space of S , since the latter tangent space is a subspace 
of the former one. 
 
 It should be noted, however, that the integral of Z  is defined over S  only if the order of 
Z  coincides with the dimension of S .  Further, the value of theintegral is always a scalar, not a 
vector or a tensor as in the preceding section.  We can regard the intetgral of a vector field or a 
tensor field as a special case of the integral of a differential form only when the fields are 
represented interms of their Cartesian components as shown in (69.9) and (69.11). 
 
 An important special case of the integral of a differential form is the line integral in 
classical vector analysis.  In this case S  reduces to an oriented path λ , and Z  is a 1-form .w   
When the Euclidean metric on E  is used, w corresponds simply to a (spatial or tangential) vector 
field on .λ   Now using any positive parameter on ,t λ  we obtain from (70.7) 
 

 ( ) ( )
b

a
t t dt= ⋅∫ ∫λ

w w λ�  (70.9) 

 
Here we have used the fact that for an inner product space the isomorphism of a vector and a 
covector is given by  
 
 , = ⋅w λ w λ� �  (70.10) 

 
The tangent vector λ�  playes the role of the natural basis vector 1h  associated with the parameter 
t, and (70.10) is just the special case of (70.8) when 1.M =  
 
 The reader should verify directly that the right-hand side of (70.9) is independent of the 
choice of the (positive) parameterization on .t λ   By virtue of this remark, (70.9) is also written 
as 
 
 d= ⋅∫ ∫λ λ

w w λ  (70.11) 

 
in the classical theory. 
 
 Similarly when 3N =  and 2M = , a 2-form Z  is also representable by a vector field ,w  
namely 
 
 ( ) ( )1 2 1 2, = ⋅ ×h h w h hZ  (70.12) 
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Then the integral of Z  over a domain U in a two-dimensional oriented surface S  is given by 
 
 ( )

( )1

1 2
1 2 du du d

ζ

σ
−

= ⋅ × ≡ ⋅∫ ∫∫ ∫w h h wZ
U U

U

 (70.13) 

 
where dσ  is the positive area element of S  defined by 
 
 ( ) 1 2

1 2d du du≡ ×σ h h  (70.14) 

 
The reader will verify easily that the right-hand side of (70.14) can be rewritten as 
 
 1 2d e du du=σ n  (70.15) 

 
where e is the surface area density on S  defined by (68.16), and where n  is the positive unit 
normal of S  defined by 
 

 1 2
1 2

1 2

1
e

×
= = ×

×
h hn h h
h h

 (70.16) 

 
Substituting (70.15) into (70.13), we see that the integral of Z  can be represented by 
 
 ( )

( )1

1 2edu du
ζ −

= ⋅∫ ∫∫ w nZ
U

U

 (70.17) 

 
which shows clearly that the integral is independent of the choice of the (positive) surface 
coordinate system ( ).uΓ  
 
 Since the multipleof an M-form Z by a scalar field f remains an M-form, we can define 
the integral of f  with respect to Z  simply as the integral of f Z .  Using a Cartesian coordinate 
representation, we can extend this operation to integrals of a vector field or a tensor field relative 
to a differential form.  The integrals defined in the preceding section are special cases of this 
general operation when the differential forms are the Euclidean surface area densities induced 
bythe Euclidean metric on the underlying space .E  
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Section 71.  Generalized Stokes’ Theorem 
 
 In Section 51 we have defined the operation of exterior derivative on differential forms 
on .E   Since this operation does not depend on the Euclidean metric and the Euclidean 
parallelism, it can be defined also for tangential differential forms on a hyper surface, as we have 
remarked in Section 55.  Specifically, if Z is a K-form on an M-dimensional hypersurface S , we 
choose a surface coordinate system ( )uΓ  and represent Z  by 
 
 1

1

1

K

K

K

Z Γ Γ
Γ Γ

Γ < <Γ

= ∧ ∧∑ h hZ "
"

"  (71.1) 

 
then the exterior derivative dZ of Z  is a ( )1 formK + − given by 
 
 1

1

1

K

K

K

d dZ Γ Γ
Γ Γ

Γ < <Γ

= ∧ ∧ ∧∑ h hZ "
"

"  (71.2) 

 
where 

1 K
dZΓ Γ"  is defined by 

 

 1 K

1 K

Z
dZ

u
Γ Γ Δ

Γ Γ Δ

∂
≡

∂
h"

"  (71.3) 

 
In this section we shall establish a general result which connects the integral of dZ over a 
( )1 dimensionalK + −  domain U  in S  with the integral of Z over the K-dimensional boundary 
surface ∂U  of U .  We begin with a preliminary lemma about a basic property of the exterior 
derivative. 
 
Lemma.  Let 0S  be a P-dimensional hypersurface in E with local coordinate system ( )yα=x η  

and suppose that S is an M-dimensional hypersurface contained in 0S  and characterized by the 
representation 
 
 ( ) ( )1 , 1, ,y y y u Pα α α α− Γ= ∈ ⇔ = =η x S …  (71.4) 

 
Let W be a K-form on 0S  with the component form 
 
 1

1

1

K

K

K

W α α
α α

α α< <

= ∧ ∧∑ g gW "
"

"  (71.5) 
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where { }, 1, , Pα α =g …  denotes the natural basis of ( )yα  on 0S , and suppose that Z is the 
tangential projection of W  on S , i.e., 
 

 
1

1

1 1
1

K
K

K K
K

y yW
u u

α α

α α
α α

Γ Γ
Γ Γ

< <

∂ ∂
= ∧ ∧

∂ ∂∑ h hZ "
"

" "  (71.6) 

 
where  { }, 1, , MΓ Γ =h … denotes thenatural basis of ( )uΓ  on S .  Then the exterior derivatives 
of Z coincides with the tangential projection of the exterior derivative of W .  In other words, 
theoperation of exterior derivative commutes with the operation of tangentialprojection. 
 
 We can prove this lemma by direct calculation of dW  and dZ .  From (71.5) and (71.2) 
dW  is given by 
 

 1 1

1

K K

K

W
d

y
α α α αβ
β

α α< <

∂
= ∧ ∧ ∧

∂∑ g g gW "

"
"  (71.7) 

 
Hence its tangential projection on S  is  
 

 
1

1 1

1
1

K
K K

K
K

W y y y
y u u u

α αβ
α α
β

α α

Γ ΓΔ
Γ ΓΔ

< <

∂ ∂ ∂ ∂
∧ ∧ ∧

∂ ∂ ∂ ∂∑ h h h"

"
" "  (71.8) 

 
Similarly, from (71.6) and (71.7), dZ is given by 
 

 

1
1

1 1
1

1
1 1

1
1

K
K

K K
K

K
K K

K
K

y yd
u u u

y y y
y u u u

α α

α α
α α

α αβ
α α
β

α α

Γ ΓΔ
< < Γ ΓΔ

< <

Γ ΓΔ
Γ ΓΔ

< <

⎛ ⎞∂ ∂ ∂
= ∧ ∧ ∧⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂ ∂ ∂
= ∧ ∧ ∧

∂ ∂ ∂ ∂

∑

∑

W h h h

W
h h h

Z "
"

…

"

" "

" "
 (71.9) 

 
where we have used the skew symmetry of the exterior product and the symmetry of the second 
derivative 2 /y u uα Γ Δ∂ ∂ ∂  with respect to and .Γ Δ   Comparing (71.9) with (71.8), we have 
completed the proof of the lemma. 
 
 Now we are ready to present the main result of this section. 
 
Generalized Stokes’ Theorem.  Let S  and 0S  be hypersurfaces as defined in the preceding 
lemma and suppose that U is an oriented domain in S  with piecewise smooth boundary .∂U   
(We orient the boundary ∂U  as usual by requiring the outward normal of ∂U be the positive 
normal.)  Then for any tangential ( )1M − -form Z  on 0S  we have 
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 d
∂

=∫ ∫U U
Z Z  (71.10) 

 
 Before proving this theorem, we remark first that other than the condition 
 
 0⊂S S  (71.11) 

 
The hypersurface 0S  is entirely arbitrary.  In application we often take 0 =S E  but this choice is 
not necessary.  Second, by virtue of the preceding lemma it suffices to prove (71.10) for 
tangential ( )1M − − forms Z  on S  only.  In other words, we can choose 0S  to be the same as 
S  without loss of generality.  Indeed, as explained in the preceding section, the integrals in 
(71.10) are equal to those of tangential projection of the forms Z  and dZ  on S .  Then by virtue 
of the lemma the formula (71.10) amounts to nothing but a formula for tangential forms on S . 
 
 Before proving the formula (71.10) in general, we consider first the simplest special case 
when Z  is a 1-form and S  is a two-dimensional surface.  This case corresponds to the Stokes 
formula in classical vector analysis.  As usual, we denote a 1-form by w since it is merely a 
covariant vector field on S .  Let the component form of w  in ( )uΓ  be 
 
 w Γ

Γ=w h  (71.12) 

 
where Γ  is summed from 1 to 2.  From (71.2) the exterior derivative of w  is a 2-form 
 

 1 22 1
1 2

w w wd
u u u

Δ ΓΓ
Δ

∂ ∂ ∂⎛ ⎞= ∧ = − ∧⎜ ⎟∂ ∂ ∂⎝ ⎠
w h h h h  (71.13) 

 
Thus (71.10) reduces to 
 

 
( )

( )
1

1

1 22 1
1 2

w ww dt du du
u uζ

λ
−

−

Γ
Γ∂

∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠∫ ∫∫
ζ

U
U

�  (71.14) 

 
where ( ) ( )( )1 2,t tλ λ  denotes the coordinates of the oriented boundary curve ∂U  in the 

coordinate system ( )1 2, ,u u  the parameterization t on ∂U  being positively oriented but otherwise 
entirely arbitrary. 
 
 Now since the integrals in (71.14) are independent of the choice of positive coordinate 
system, for simplicity we consider first thecase when ( )1−ζ U  is the square [ ] [ ]0,1 0,1×  in 2R .  

Naturally, we use the parameters 1 2 1 2, , 1 , and 1u u u u− −  on the boundary segments 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0,0 1,0 , 1,0 1,1 , 1,1 0,1 , and 0,1 0,0 ,→ → → → respectively.  Relative to this 
parameterization on ∂U  the left-hand side of (71.14) reduces to  
 

 
( ) ( )

( ) ( )

1 11 1 2 2
1 20 0

1 11 1 2 2
1 20 0

,0 1,

,1 0,

w u du w u du

w u du w u du

+

− −

∫ ∫
∫ ∫

 (71.15) 

 
Similarly, relative to the surface coordinate system ( )1 2,u u  the right-hand side of (71.14) 
reduces to  
 

 
1 1 1 22 1

1 20 0

w w du du
u u

∂ ∂⎛ ⎞−⎜ ⎟∂ ∂⎝ ⎠∫ ∫  (71.16) 

 
which may be integrated by parts once with respect to one of the two variables ( )1 2,u u  and the 
result is precisely the sameas (71.15).  Thus (71.14) is proved in this simple case. 
 
 In general U  may not be homeomorphic to the square [ ] [ ]0,1 0,1 ,×  of course.  Then we 
decompose U  as before by (68.28) and we assume that each , 1, , ,a a K=U …  can be represented 
by the range 
 
 [ ] [ ]( )0,1 0,1a a= ×ζU  (71.17) 

 
By the result for the simple case we then have 
 
 , 1, ,

a a

d a K
∂ ∂

= =∫ ∫w w
U U

…  (71.18) 

 
Now adding (71.18) with respect to a  and observing the fact that all common boundaries of 
pairs of 1, , KU U…  are oriented oppositely as shown in Figure 10, we obtain 
 
 d

∂
=∫ ∫w w

U U
 (71.19) 

 
which is the special case of (71.10) when 2.M =  
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 The proof of (71.10) for the general case with an arbitrary M is essentially the same as the 
proof of the preceding special case.  To illustrate the similarity of the proofs we consider next the 
case 3.M =   In this case Z  is a 2-form on a 3-dimensional hypersurface S .  Let 
( ), 1, 2, 3uΓ Γ =  be a positive surface coordinate system on S  as usual.  Then Z  can be 
represented by 
 

 
1 2 1 3 2 3

12 13 23

Z

Z Z Z

Γ Δ
ΓΔ

Γ<Δ

= ∧

= ∧ + ∧ + ∧

∑Z h h

h h h h h h
 (71.20) 

 
From (71.2) the exterior derivative of Z  is given by 
 

 1 2 312 13 23
3 2 1

Z Z Zd
u u u

∂ ∂ ∂⎛ ⎞= − + ∧ ∧⎜ ⎟∂ ∂ ∂⎝ ⎠
h h hZ  (71.21) 

 
As before, we now assume that U  can be represented by the range of a cube relative to a certain 
( )uΓ , namely  
 
 [ ] [ ] [ ]( )0,1 0,1 0,1= × ×ζU  (71.22) 

 
Then the right-hand side of (71.10) reduces to the triple integral 
 

1U  

2U  

3U  

4U  
6U  

5U  
7U  

8U  

Figure 10 
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1 1 1 1 2 312 13 23

3 2 10 0 0

Z Z Z du du du
u u u

∂ ∂ ∂⎛ ⎞− +⎜ ⎟∂ ∂ ∂⎝ ⎠∫ ∫ ∫  (71.23) 

 
which may be integrated by parts once with respect to one of the three variables ( )1 2 3, , .u u u   The 
result consists of six terms: 
 

 

( ) ( )
( ) ( )
( ) ( )

1 1 1 11 2 1 2 1 2 1 2
12 120 0 0 0

1 1 1 11 3 1 3 1 3 1 3
13 130 0 0 0

1 1 1 12 3 2 3 2 3 2 3
23 230 0 0 0

, ,1 , ,0

,1, , 0,

1, , 0, ,

Z u u du du Z u u du du

Z u u du du Z u u du du

Z u u du du Z u u du du

−

− +

+ −

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 (71.24) 

 
which are precisely the representations of the left-hand side of (71.10) on the six faces of the 
cube with an appropriate orientation on each face.  Thus (71.10) is proved when (71.22) holds. 
 
 In general, if U cannot be represented by (71.22), then we decompose U as before by 
(68.28), and we assume that each aU  may be represented by 
 
 [ ] [ ] [ ]( )0,1 0,1 0,1a a= × ×ζU  (71.25) 

 
for an appropriate aζ .  By the preceding result we then have 
 
 , 1, ,

a a

d a K
∂

= =∫ ∫Z Z
U U

…  (71.26) 

 
Thus (71.10) follows by summing (71.26) with respect to .a    
 
 Following exactly the same pattern, the formula (71.10) can be proved by an arbitrary 

4,5,6, .M = …   Thus the theorem is proved. 
 
 The formula (71.10) reduces to two important special cases in classical vector analysis 
when the underlying Euclidean manifold E is three-dimensional.  First, when 2M =  and U is 
two-dimensional, the formula takes the form 
 
 d

∂
=∫ ∫w w

U U
 (71.27) 

 
which can be rewritten as 
 
 curld d

∂
⋅ = ⋅∫ ∫w λ w σ

U U
 (71.28) 
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where dσ  is given by (70.14) and where curl w is the axial vector corresponding to dw , i.e., 
 
 ( ) ( ), curld = ⋅ ×w u v w u v  (71.29) 

 
for any ,u v  in V .  Second, when 3M =  and U  is three-dimensional the formula takes the 
form 
 
 divd dυ

∂

⋅ =∫∫ ∫∫∫w σ w
U U

 (71.30) 

 
where dυ  is the Euclidean volume element defined by [see (68.39)] 
 
 1 2 3d edu du duυ ≡  (71.31) 

 
relative to any positive coordinate system ( ) ,iu  or simply 
 
 1 2 3d dx dx dxυ =  (71.32) 

 
relative to a right-handed rectangular Cartesian coordinate system ( ).ix   In (71.30), w is the 

axial vector field corresponding to the 2-form Z , i.e., relative to ( )ix  
 
 1 2 1 3 2 3

3 2 1w w w= ∧ − ∧ + ∧e e e e e eZ  (71.33) 

 
which is equivalent to 
 
 ( ) ( ), , ,= ⋅ × ∈u v w u v u vZ V  (71.34) 

 
From (71.33), dZ is given by 
 

 ( )1 2 31 2 3
1 2 3 divw w wd

x x x
∂ ∂ ∂⎛ ⎞= + + ∧ ∧ =⎜ ⎟∂ ∂ ∂⎝ ⎠

e e e w EZ  (71.35) 

 
As a result, we have 
 
 d

∂ ∂
= ⋅∫ ∫Z w σ

U U
 (71.36) 

and 
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 divd dυ=∫ ∫∫∫ w
U

U

Z  (71.37) 

 
 The formulas (71.28) and (71.30) are called Stokes’ theorem and Gauss’ divergence 
theorem, respectively, in classical vector analysis. 
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Section 72. Invariant Integrals on Continuous Groups 
 
 In the preceding chapter we have considered various groups which are also hypersurfaces 
contained in the Euclidean space ( );L V V .  Since the integrations defined so far in this chapter 
can be applied to any hypersurface in a Euclidean manifold, in particular they can be applied to 
the continuous groups.  However, these integrations are generally unrelated to the group 
structure and thus their applications are limited. This situation is similar to that about parallelism. 
While the induced metric and its Levi-Civita parallelism certainly exist on the underlying 
hypersurface of the group, they are not significant mathematically because they do not reflect the 
group structure. This remark has led us to consider the Cartan parallelism which is defined by the 
left-invariant fields on the group.  

 Now as far as integrationis concerned, the natural choice for a continuous group is the 
integration based on a left-invarianct volume density.  Specifically, if { }Γe is a basis for the Lie 
algebra of the group, then a volume tensor field Z is a left-invariant if and only if it can be 
represented by  
 
 1 Mc= ∧⋅⋅⋅∧e eZ  (72.1) 

 
where c is a constant.  The integral of Z over any domain U obeys the condition 

 

 
( )L

=∫ ∫
X

Z Z
U U

 (72.2) 

 
for all elements X belonging to the group. 

 

 A left-invariant volume tensor field Z is also right-invariant if and only if it is invariant 
under the inversion operation J when the dimension M of the group is even or it is mapped into 
−Z by J J when M is odd.  This fact is more or less obvious since in general J maps any left-
invariant field into a right-invariant field.  Also, the gradient of J at the identity element 
coincides with the negation operation.  Consequently, when M is even, ( )IZ  is invaritant 

under J , while if M is odd, ( )IZ is mapped into ( )− IZ  by J .  Naturally we call Z an invariant 
volume tensor field if it is both left-invariant and right-invariant.  Relative to an invariant Z the 
integral obeys the condition (72.2) as well as the conditions 

 

 
( ) ( )

,
R J

= =∫ ∫ ∫ ∫
X

Z Z Z Z
U U U U

 (72.3) 

 
Here we have used the fact that J preserves the orientatin of the group when M is even, while 
J  reverses the orientation of the group when M is odd. 
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 By virtue of the representation (72.1) all left-invariant volume tensor fields differ from 
one another by a constant multiple only and thus they are either all right-invariant or all not 
right-invariant.  As we shall see, the left-invariant volume tensor fields on ( )GL V , ( )SL V , 

( )O V , and all continuous subgroups of ( )O V are right-invariant.  Hence invariant integrals 

exist on these groups.  We consider first the general linear group ( )GL V . 

 

 To prove that the left-invariant volume tensor fields on the ( )GL V  are also right-
invariant, we recall first from exterior algebra the transformation rule for a volume tensor under a 
linear map of the underlying vector space.  Let W be an arbitrary vector space of dimension M , 
and suppose that A is a linear transformation of W  

 

 : →A W W  (72.4) 

 
Then A maps any volume tensor E  on W to ( )det A E ,  

 

 ( ) ( )det∗ =A AE E  (72.5) 

 
since by the skew symmetry of E we have  
 
 ( ) ( ) ( )1 1,..., det ,...,M M=Ae Ae A e eE E  (72.6) 

 
for any { }1 ,..., Me e in W .  From the representation of a left-invariant field on ( )GL V  the value 
of the field at any point X is obtained from the value at the identity I  by the linear map 
 
 ( ) ( ): ; ;L∇ →X L V V L V V  (72.7) 

 
which is defined by  
 
 ( ) ( ), ;L∇ = ∈X K XK K L V V  (72.8) 

 
Similiarly, a right-invariant field is obtained by the linear map R∇ X defined by 
 
 ( ) ( ), ;R∇ = ∈X K KX K L V V  (72.9) 

 
Then by virtue of (72.5) a left-invariant field volume tensor field is also right-invariant if and 
only if  
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 det detR L∇ = ∇X X  (72.10) 

 
 Since the dimension of ( );L V V is 2N , the matrices of R∇ X and L∇ X are 2 2N N× .  For 

simplicity we use the product basis { }ji ⊗e e  for the space ( );L V V ; then (72.8) and (72.9) can 
be represented by 
 

 ( )i ik l i l i k l
jl k l k l j kj

C K X K X Kδ= = =XK  (72.11) 

and  
 
 ( )i ik l l k i k l

jl k k j l j kj
D K K X X Kδ= = =KX  (72.12) 

 
To prove (72.10), we have to show that the 2 2N N×  matrices ik

jlC⎡ ⎤⎣ ⎦ and ik
jlD⎡ ⎤⎣ ⎦ have the same 

determinant.  But this fact is obvious since from (72.11) and (72.12), ik
jlC⎡ ⎤⎣ ⎦ is simply the 

transpose of ik
jlD⎡ ⎤⎣ ⎦ , i.e., 

 
 ik ki

jl ljD C=  (72.13) 

 
Thus invariant integrals exist on ( )GL V . 
 
 The situation with the subgroup ( )SL V or ( )UM V is somewhat more complicated, 
however, because the tangent planes at distinct points of the underlying group generally are not 
the same subspace of ( );L V V .  We recall first that the tangent plane of ( )SL V at the 

identity I is the hyperplane consisting of all tensors ( );∈K L V V such that 
 
 ( ) 0tr =K  (72.14) 

 
This result means that the orthogonal complement of ( )I

SL V  relative to the inner product on 

( );L V V is the one-dimensional subspace  
 
 { },l α α= ∈I R  (72.15) 

 
Now from (72.8) and (72.9) the linear maps R∇ X and L∇ X coincide on l , namely  
 
 ( ) ( )R Lα α α∇ = =∇X XI X I  (72.16) 
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By virtue of (72.16) and (72.10) we see that the restrictions of R∇ X and L∇ X on ( )I

SL V  give 
rise to the same volume tensor at X from any volume tensor at I .  As a result every left-
invariant volume tensor field on ( )SL V or ( )UM V is also a right-invariant, and thus invariant 

integrals exist on ( )SL V and ( )UM V .  
 
 Finally, we show that invariant integrals exists on ( )O V  and on all continuous subgroups 

of ( )O V .  This result is entirely obvious because both L∇ X and R∇ X  preserve the inner product 

on ( );L V V for any ( )∈X O V .  Indeed, if K and H are any elements of ( );L V V , then  
 

 
( ) ( )
( )

1T T T

T

tr tr

tr

−⋅ = =

= = ⋅

XK XH XKH X XKH X

KH K H
 (72.17) 

 
and similiarly 
 
 ⋅ = ⋅KX HX K H  (72.18) 

 
for any ( )∈X O V .  As a result, the Euclidean volume tensor field E is invariant on ( )O V and on 

all continuous subgroups of ( )O V .  
 
 It should be noted that ( )O V  is a bounded closed hypersurface in ( );L V V .  Hence the 
integral of E  over the whole group is finite 
 
 

( )
0 < < ∞∫O V

E  (72.19) 

 
Such is not the case for ( )GL V  or ( )SL V , since they are both unbounded in ( );L V V .  By 

virtue of (72.19) any continuous function f on ( )O V  can be integrated with respect to E  over 

the entire group ( )O V .  From (72.2) and (72.3) the integral possesses the following properties: 
 

 
( ) ( )

( )
( ) ( )

( )

( ) ( )
( )

( ) ( )
( )

0

0

f f

f f

=

=

∫ ∫

∫ ∫

Q Q Q Q Q

Q Q QQ Q

O V O V

O V O V

E E

E E
 (72.20) 

 
for any ( )0∈Q O V and  
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 ( ) ( )
( )

( ) ( )
( )

1f f −=∫ ∫Q Q Q Q
O V O V

E E  (72.21) 

 
in addition to the standard properties of the integral relative to a differential form obtained in the 
preceding section.  For the unbounded groups ( )GL V , ( )SL V , and ( )UM V , some 
continuous functions, such as functions which vanish identically outside some bounded domain, 
can be integrated over the whole group.  If the integral of f  with respect to an invariant volume 
tensor field exists, it also possesses properties similar to (72.20) and (72.21). 
 
 Now, by using the invariant integral on ( )O V , we can find a representation for 
continuous isotropic functions 
 
 ( ) ( ): ; ;f ×⋅ ⋅ ⋅× →L V V L V V R  (72.22) 

 
which verify the condition of isotropy : 
 
 ( ) ( )1 ,..., ,...,T T

P Pf f= 1QK Q QK Q K K  (72.23) 

 
for all ( )∈Q O V , the number of variables P  being arbitrary.  The representation is  
 

 ( ) ( )
( ) ( )

( )
( )

1

1

,...,
,...,

T T
P

P

g
f =

∫
∫

QK Q QK Q Q
K K

Q
O V

O V

E

E
 (72.24) 

 
where g is an arbitrary continuous function 
 
 ( ) ( ): ; ;g ×⋅⋅ ⋅× →L V V L V V R  (72.25) 

 
and where E  is an arbitrary invariant volume tensor field on ( )O V .  By a similar argument we 
can also find representations for continuous functions f  satisfying the condition 
 
 ( ) ( )1 1,..., ,...,P Pf f=QK QK K K  (72.26) 

 
for all ( )∈Q O V .  The representation is  
 

 ( ) ( )
( ) ( )

( )
( )

1

1

,...,
,...,

P

P

g
f =

∫
∫

QK QK Q
K K

Q
O V

O V

E

E
 (72.27) 
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Similiarly, a representation for functions f satisfying the condition  
 
 ( ) ( )1 1,..., ,...,P Pf f=K Q K Q K K  (72.28) 

 
for all ( )∈Q O V  is  
 

 ( ) ( ) ( ) ( )

( ) ( )
1

1

,...,
,..., P

P

g
f = ∫

∫
K Q K Q Q

K K
Q

O V

O V

E
E

 (72.29) 

 
We leave the proof of these representations as exercises. 
 
 If the condition (72.23), (72.26), or (72.28) is required to hold for all Q  belonging to a 
continuous subgroup G of ( )O V , the representation (72.24), (72.27), or (72.29), respectively, 
remains valid except that the integrals in the representations are taken over the group G . 
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