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ABSTRACT

Non-Data Aided Digital Feedforward

Timing Estimators for Linear and Nonlinear Modulations. (August 2003)

Pradeep Kiran Sarvepalli, B.Tech, Indian Institute of Technology, Madras

Chair of Advisory Committee: Dr. Erchin Serpedin

We propose to develop new non-data aided (NDA) digital feedforward symbol

timing estimators for linear and nonlinear modulations, with a view to reducing the

sampling rate of the estimators. The proposed estimators rely on the fact that suf-

ficient statistics exist for a signal sampled at the Nyquist rate. We propose an ad

hoc extension to the timing estimator based on the log nonlinearity which performs

better than existing estimators at this rate when the operating signal-to-noise ratio

(SNR) and the excess bandwidth are low. We propose another alternative estimator

for operating at the Nyquist rate that has reduced self-noise at high SNR for large

rolloff factors. This can be viewed as an extension of the timing estimator based

on the square law nonlinearity. For continuous phase modulations (CPM), we pro-

pose two novel estimators that can operate at the symbol rate for MSK type signals.

Among the class of NDA feedforward timing estimators we are not aware of any other

estimator that can function at symbol rate for this type of signals. We also propose

several new estimators for the MSK modulation scheme which operate with reduced

sampling rate and are robust to carrier frequency offset and phase offset.
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CHAPTER I

INTRODUCTION

A. Symbol Timing Recovery

Symbol timing recovery is an important task in all digital communication receivers,

and it is necessary for the optimal performance of the receiver. The received signal is

corrupted by noise and is subject to a delay due to transmission across the channel.

From the point of view of detection of the transmitted data it is necessary to know

this delay. Imperfect knowledge of this delay affects the bit error rate (BER) of the

receiver. In digital communications, a symbol is transmitted once every T seconds.

This is called the symbol rate. At the receiving end the optimum receiver consists of

a matched filter at the front end. In digital receivers, we will sample the signal and

digitize it. The signal-to-noise ratio (SNR) at the output of the matched filter is time

varying. Therefore it is critical to sample at the instant of maximum SNR. The SNR

is maximum when the sampling instants coincide with that of the transmitter’s clock.

The intersymbol interference (ISI) is also minimum at these instants. Since in most

communication systems the clock is not transmitted separately this will mean that we

will have to extract the symbol transitions from the received data. Mathematically,

we can represent this as follows

r(t) = s(t− τ) + n(t),

where s(t) is the transmitted signal, r(t) is the received signal and n(t) is the noise

due to the channel and τ is the delay. The delay is normalized to be within the range

The journal model is IEEE Transactions on Automatic Control.
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(−T/2, T/2]. (Our model is rather simple and we have not included effects due to

phase offset and multiplicative noise and other such effects). Symbol timing recovery

(STR) involves estimating this delay so that we can sample at the optimal sampling

instants. It can therefore be considered as a problem of parameter estimation.

There are many schemes for performing STR. They can be classified as being

feedback or feedforward. One general feature of feedback schemes is that they take

longer time to acquire the information about the timing delay. In situations where the

delay information needs to be available with little latency this is highly undesirable.

Feedforward schemes are preferred in such situations. Most feedforward schemes

usually operate on a block of data and provide an estimate of the delay [1, 2, 3].

(Schemes which operate on a single block of data are called one shot estimators [4,

p. 334-335]). Feedback schemes on the other hand estimate by using a tracking loop.

This leads to a problem when the initial delay is near ±T/2. Since these values are

equivalent, feedback schemes oscillate around these two stable values being unable to

converge. This phenomenon is often called hangup and is typical in feedback based

estimators. The delay in the channel is usually not constant and keeps changing. Any

estimator that needs to track this change whether feedback or feedforward will face a

problem called cycle slip. This happens when the delay changes across the boundaries

(±T/2). This leads to a temporary loss of synchronization and the estimator needs to

re-synchronize. Such problems are more severe in feedback estimators which by their

construction are tracking the delay. In feedforward estimators the problem can be

decoupled and handled separately as in [1]. Solutions exist for the feedback estimators

also.

Another classification of the estimators is also possible depending on whether

the estimator makes use of the data transmitted i.e., the information symbols. If the

estimation technique makes use of the transmitted data then it is called data aided
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and non-data aided otherwise. (Actually there is another class called decision directed

but we can consider that as a special case of data aided and we will treat them as

being data aided). Data aided schemes are more frequently used in conjunction with

feedback estimators than with feedforward ones. In such schemes there is the freedom

to use preambles or else use the tentative decisions of the demodulator. The latter

approach is preferred when we do not want to send any preambles. In feedforward case

we prefer to use a preamble if it is to be data aided. In burst type of communications

this is going to affect the throughput adversely. So non-data aided estimators are

preferred in such cases. When we compare data aided and non-data aided schemes

usually the data aided estimators perform better than the non-data aided estimators

[4, 5]. Often the complexity of non-data aided schemes is lesser than that of data

aided ones. Also there is more robustness to the non-data aided schemes. Quite often

it is possible to achieve as good a performance as the data aided ones. In this thesis

we will focus on the subclass of estimators that are non-data aided and feedforward.

In the next section, we will explain the perspective of our approach to this problem

and henceforth we will confine ourselves to this class of estimators.

B. Motivation and Problem Definition

We will assume the following signal model. Later in the thesis we will modify it to

make it more detailed. Once again let s(t), r(t), n(t) refer to the transmitted signal,

received signal and noise, respectively. Then we can write

r(t) = s(t− εT ) + n(t), (1.1)

where T is the symbol period and ε is the normalized timing delay. Our goal is to form

an estimate ε̂. Clearly ε is within the range (−0.5, 0.5]. The received signal, usually
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after matched filtering is sampled at a rate P/T , where P is the oversampling ratio.

Typically most of the estimators assume an oversampling ratio P ≥ 4. This ensures

that the signal does not alias and also certain nonlinear operations performed on the

signal by the timing recovery circuit will not cause aliasing. (Often this translates to

increased computational complexity).

But strictly speaking according to Shannon’s sampling theorem, sampling at

P = 2 contains sufficient statistics for all subsequent signal processing. Here we are

assuming that the signal is band-limited. So the existence of sufficient statistics is in

itself strong motivation for us to look at estimators that work at lower sampling rates.

It may be that lower sampling rates might make the algorithms more complex and we

might end up with greater complexity. Or their performance may not be as good as the

ones at higher rates. The primary motivation for this work is the fact that sufficient

statistics exist for a minimally sampled signal and we can form estimators at that rate.

From a practical perspective our estimators must also be simple in order to retain

the advantage of lower oversampling rates or at most they should not compromise

too much on performance with respect to the estimators that assume higher sampling

rates. There is one more reason why we should be interested in designing estimators

of lower sampling rates. It is interesting to note that among the class of feedback

timing estimators there exist estimators that require only one sample per symbol

[6, 7]. However such schemes for the feedforward case are comparatively unknown1.

1There have been two exceptions to this. Reference [8] claims that timing recovery
can be done at the symbol rate. However, the input is still sampled at the Nyquist
rate. Also, the details of the estimator are not fully clear with respect to its perfor-
mance. It has not been compared to any existing estimator or the known theoretical
limits. It has been claimed in [9] that timing recovery at sub-symbol rates is possi-
ble. But this approach is suboptimal and requires large packet length and also the
performance is reasonable only when the packet length is around 1000 symbols. We
are more interested in packets of very short length (around 100 symbols). Moreover
the algorithm presented in [9] presents significant self-noise even at very large packet
lengths.
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This is rather strange because given a packet of data sampled at rate P/T , the same

information is available to both the feedback and feedforward estimators. We would

expect that complete equivalence would exist between the feedforward and feedback

scenarios with respect to extracting this information. So from a purely theoretical

perspective, it would be interesting to lower the sampling rate of the feedforward

estimators.

Finally, from a system point of view it is useful to investigate estimators at lower

rates. Typically we have an analog to digital converter (ADC) at the front end of

the receiver that needs to work at the same speed as the oversampling rate. Any

reduction in this rate will relax the design constraints on the ADC. But it might

make the design of the anti-aliasing filter a little more constrained.

C. Outline of the Thesis

In the next chapter we will review the background of this work. We will look at

the signal models for linear and nonlinear modulations and also briefly review some

relevant estimators. Following that we will look at some extensions to existing es-

timators for linear modulations. We propose an ad hoc estimator that operates at

an oversampling ratio of 2 for the logarithmic nonlinearity. The proposed estimator

performs better than the existing estimators at this rate in the low SNR and low

excess bandwidth regime. We also propose one more new estimator that can be con-

sidered as an extension of the scheme in [1] for operating at Nyquist rate. Among the

Nyquist rate estimators it has lower self-noise when the excess bandwidth is high. In

Chapter IV we consider estimators for the nonlinear modulations. In particular, we

concentrate on the MSK type modulations. We propose two new estimators that can

operate at the symbol rate. We consider two alternate estimators which are robust
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to frequency offset. Their performance is comparable to existing estimators. To con-

clude our primary goal in this thesis will be aimed at coming up with new estimators

for timing recovery that are non-data aided and feedforward in nature and well suited

for burst communications. Our main emphasis will be to make them operate with

minimal oversampling.
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CHAPTER II

BACKGROUND

In this chapter we present the signal models used for derivation of the estimators and

review some of estimators which we intend to extend and improve. We shall also

establish the notation to be used for the rest of the thesis. But first we shall consider

some performance measures for estimators.

A. Performance Measures for Estimators

Since we are concerned with the problem of estimation it is useful to review some

performance measures for the estimators that we plan to design. These will help us

to compare different estimators and make an evaluation of estimators with respect to

standard benchmarks.

1. Bias: The first most important property of any estimator is that it should be

unbiased. Bias is defined as difference between the true value and the mean

value of the estimate

bias = ε− E[ε̂], (2.1)

where ε is the true value of the parameter to be estimated (in our case the

timing delay) and ε̂ is the estimate. Bias increases the error of the estimate in

certain ranges, consequently it alters the overall error performance defined in

terms of the mean squared error (MSE).

2. Mean Squared Error: The second figure of merit that we are interested in is

the error in the estimator. There are many measures of the error but the one

commonly used is the mean squared error. One main reason for this is that it
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is directly related to the SNR. This is defined as

MSE(ε̂) = E
[

(ε̂− ε)2
]

. (2.2)

Another related measure is the variance of the estimator defined as

var(ε̂) = E
[

(ε̂− E[ε̂])2
]

. (2.3)

MSE is related to the variance of the estimator as follows

MSE(ε̂) = var(ε̂) + (ε− E[ε̂])2. (2.4)

Clearly this indicates that bias increases the MSE of the estimator. Also we

see that we should be careful in our use of variance as a performance measure

if the estimators are unbiased only asymptotically. This is because when the

estimates are made with small number of samples there will be more error due

to the bias which is not completely removed. With unbiased estimators, MSE

reduces to the variance of the estimator.

3. Lower Bounds on Performance: We frequently need to know if the estimators

we designed can be improved further or if their performance is the best that we

can achieve. In order to do this we need to establish bounds for the estimators

telling us what can be achieved and what cannot be. Therefore, it is common to

compare the estimator performance with respect to the variance or MSE with

some bounds that are derived in estimation and detection theory. The most

often used is the Cramer Rao Lower Bound (CRLB). This is defined as follows

[10]

var(ε̂) =
1

E
[

{∂ ln p(r|ε)
∂ε

}2
] , (2.5)
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where p(r|ε) is the probability distribution of the received signal given ε. Fre-

quently this bound is not easy to calculate analytically, therefore a modified

bound is often used to evaluate the performance of the estimator. This is the

Modified Cramer Rao Bound (MCRB) developed in [11]. Apart from its ease of

calculation with respect to the CRLB, it turns out to be the same as the CRLB

in many cases. One problem with MCRB is that it gives a pessimistic picture

of the estimator performance when the CRLB and the MCRB differ greatly. In

this thesis, we will refer to the MCRB for performance evaluation. For a linear

modulation with pulse shape g(t), this bound is defined as follows [11, 12, p. 65]

MCRB(ε) =
1

8π2ψL(Es/No)
, (2.6)

ψ = T 2

∫∞
−∞ F 2|G(F )|2dF
∫∞
−∞ |G(F )|2dF

, (2.7)

where G(F ) is the Fourier transform of the pulse g(t), L is the number of

symbols used for estimation, Es is the energy per symbol and No is the noise

spectral density. For the spectral root raised cosine pulse (RCOS) [12, p. 12]

with an excess bandwidth factor of β, this is given by

MCRB(ε) =
1

8π2L(Es/No)
.

1

1/12 + β2(1/4 − 2/π2)
. (2.8)

The MCRB for the CPM signals is as follows

MCRB(ε) =
1

8π2ψL(Es/No)
, (2.9)

ψ = E[I2
k ]h2T

∫ ∞

−∞
g2(t)dt, (2.10)

where Ik are the data symbols and h is the modulation index. These will be

the bounds used for performance analysis throughout this thesis. For the CPM

signals we will focus on the MSK type modulations (h = 1/2).
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B. Signal Model for Linear Modulations

We will assume the following complex base band signal model for our subsequent

discussion on the linear modulations. Again let s(t), r(t) and n(t) represent the

transmitted signal, received signal and noise, respectively. Then we can write

s(t) =
∑

k

Ikg(t− kT ), (2.11)

r(t) = ej2πfet/T s(t− εT ) + n(t), (2.12)

where fe is the normalized carrier frequency error. (This is zero in case of baseband

signals). We will now make the following assumptions:

1. The data symbols Ik are i.i.d. and that their variance E[IkI
∗
k ] = 1.

2. The pulse g(t) is assumed to be band-limited to ±(1+β)/2T . In our discussion

we will assume that the pulse is RCOS with excess bandwidth factor β.

3. We assume that n(t) is circular Gaussian with spectral density No.

C. Review of Some Existing Non-Data Aided Feedforward Schemes

The basic structure of these schemes is usually as shown in Fig. 1.

ε-arg(.)/ 2πΣMatched
Filter kT/P+ τ

Nonlinearity

e

s(t)

n(t)

(Optional)
Prefilter

π-j2   n/P

Fig. 1. Block Diagram of a Typical Feedforward Symbol Timing Recovery Estimator

The signal is usually filtered by a matched filter and then passed through a

nonlinearity. The output of the nonlinearity contains a spectral line at the symbol
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rate or a harmonic of it. The phase of this spectral line contains information about

the delay. Taking into account the matched filtering we obtain the following

xc(t) = r(t) ∗ g(t) + n(t) ∗ g(t) (2.13)

=
∑

k

Ikhc(t− kT − εT ) + v(t), (2.14)

where v(t) is the filtered noise and hc(t) is the convolution of the transmit and receive

filters (including any optional prefilter). Discretization gives us the following model

x(n) := xc(nT/P ), (2.15)

h(n) := hc(nT/P − εT ), (2.16)

where the notation := stands for is defined as. Now we can write a general form for

the schemes that employ the nonlinearity as follows [15]

ε̂ = −
1

2π
arg

{

PL−1
∑

n=0

F (x(n))e−j2πn/P

}

, (2.17)

where F (.) is some nonlinearity and L is the number of transmitted symbols used

for estimation. The most commonly employed nonlinearities are square law (SLN),

absolute value (AVN), logarithmic function (LOGN) and fourth power (FLN). Each

of the estimators have their advantages at different operating conditions or system

requirements. The square law is preferred for its low complexity and ease of imple-

mentation. The absolute and log nonlinearity are preferred when the operating SNR

and the excess bandwidths are low. The fourth law seems preferable when the oper-

ating range is medium SNR. However, these are not optimal in terms of performance

with respect to the MSE.

One thing which we must note is that these estimators involve increasing of

the signal bandwidth at the output of the nonlinearity. So in order to recover the



12

timing information it is necessary that we do not alias after the nonlinear operation.

An analysis of the timing recovery operation with a general nonlinearity in [13, 14]

showed that the nonlinearity can be represented as a sum of even powers of the

input signal. All of them contain an even power (≥ 2) of the input signal and

consequently the bandwidth at the output of the nonlinearity at least doubles. So

the sampling needs to take care of this. In all the above estimators the spectral line we

are interested in is the frequency component at 1/T . So we can allow aliasing beyond

1/T . If we consider the square law estimator, then assuming an excess bandwidth

factor β, the sampling rate needs to be at least (2 + β)/T to prevent aliasing of

the component at 1/T at the squarer output. Typically the oversampling ratio is

chosen to be 4 since it is not so easy to realize any arbitrary multiple of symbol

rate. However, the existence of the symbol rate feedback timing estimators implies

that estimators that use an oversampling of 4 are redundant in the sense of sufficient

statistics. Before we design estimators at symbol rate, we will start with estimators

at Nyquist rate. The estimators proposed in [15, 16] showed one way how this can be

achieved. All the previous estimators exploited the existence of the term x2 in their

Taylor series expansion. In a sense these estimators were exploiting the periodicity

of the autocorrelation function but only that at lag zero. The new estimators exploit

the lags other than zero to achieve this.

1. Errors in Estimators

We will illustrate in detail the performance measures we mentioned earlier by con-

sidering the performance of the square law estimator. The simulations are done with

a QPSK modulation and with L = 100 symbols. Each data point is obtained by

running 1,000 Monte Carlo runs. The excess bandwidth factor is 0.5 and P = 4.

The simulation results are shown in Fig. 2. As pointed out in [1] there are three
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Fig. 2. MSE vs SNR of SLN for P = 4

sources of errors in the estimates we form. These errors dominate in different regions.

In the low SNR regime the errors are dominated by the noise. Observe the error

floor in the high SNR regions. This remains even with increasing SNR. This error

floor is due to the randomness of data. This is responsible for the variation in the

estimates of the autocorrelation. This is called self-noise and cannot be made zero

no matter how high the SNR is made. There are two things we can do to reduce

this self-noise, one is to preprocess the data, the other is to increase the estimation

length because asymptotically the self-noise is zero for this estimator without any

preprocessing other than the matched filter [1]. We will look at the former approach

while dealing with some of the estimators we propose. The third component is due to

the cross correlation between the signal and the noise. And as expected it dominates

the errors in the mid SNR range where both contribute. The qualitative terms low,

mid and high SNR are somewhat estimator dependent and will be clear when we look

at their MSE performance.
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2. Extension of the Square Law Timing Recovery Using Prefilters

As pointed out in the previous section the square law timing recovery suffers from self-

noise. It was recognized that this self-noise arising from the data sequence modulating

the transmit pulse can be made to vanish in the case of analog synchronizers by

appropriately filtering the received signal after the matched filter [17]. The condition

that ensures zero self-noise was related to the overall filter response of the signal as

follows

Hc(1/2T + F ) = H∗
c (1/2T − F ), (2.18)

where Hc(F ) is the Fourier transform of hc(t). The filter that is used effectively shapes

the overall pulse to have conjugate symmetry around 1/2T . This was later extended

to the digital synchronizers with rigor in [18]. We will illustrate this graphically to

make it clear. Assuming that the raised cosine pulse is used for signaling, we have

the overall response at the output of the matched filter as shown in Fig. 3. The

frequency is normalized so that 1/2T corresponds to 0.5. Observe that the response

is not symmetric at 1/2T . The prefilter Hpref(F ) that needs to be used for achieving

this self-noise free condition is very simple to design and can be derived from the

overall response as follows

Hpre(F ) =
1

2
[Hc(F − 1/T ) +Hc(F + 1/T )] . (2.19)

If we consider filtering the received signal by the following filter Hpre(F ), (this is noth-

ing but the overall response shifted to ±1/T ), then we observe that the new response

has a symmetry around 1/2T . We will make use of these concepts of prefiltering to a

great extent later in our work. Within a scaling factor the symmetric pulse that we

obtain after prefiltering in case of the RCOS is shown in Fig. 4.
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3. Maximum Likelihood Estimator for Timing Recovery

In [12, p. 398-402] an estimator that was derived according to maximum likelihood

principles was presented. We will consider this briefly since this estimator can operate

at P = 2 and we intend to make use of this in our work indirectly. The estimator is

given by the following

ε̂ = −
1

2π
arg

{

PL−1
∑

n=0

y(n)z(n)

}

, (2.20)

y(n) = r(n)e−jπn/P , (2.21)

z(n) =
PL−1
∑

k=0

r∗(k)q(n− k)e−jπk/P , (2.22)

Q(F ) = G(F − 1/2T )G∗(F + 1/2T ), (2.23)

where G(F) is the Fourier transform of the transmit pulse. A block diagrammatic

representation of this is shown in Fig. 5. Note that there is no need for matched

filtering in this scheme (indicated by the use of r(n) instead of x(n)). We shall refer

to this estimator as ML estimator.

kT/P+ τ

( . )*

ε-arg(.)/ 2πΣ

πe -j n/P

n(t)

s(t) n/Pe π -j

Q(F)

Fig. 5. Implementation of ML Estimator
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D. Cyclostationary Framework for Feedforward Estimators [19, 20]

In many of the estimators that we deal with, a feature that we consistently exploit

is the cyclostationarity of the received signal. For this reason we shall outline briefly

the cyclostationary work originally proposed in [19] and later extended in [20].

A signal is said to be cyclostationary if it exhibits periodicity in its mean and

correlation and all other higher order moments . However, we shall be more interested

in a relaxed definition of cyclostationarity called wide sense cyclostationarity (WSC).

A signal x(n) is said to be wide sense cyclostationary if its mean (mx(n)) and the

autocorrelation function (rx(n; τ)) are periodic

mx(n) := E[x(n)] = E[x(n +K)], (2.24)

rx(n; τ) := E[x∗(n)x(n + τ)] = E[x∗(n+K)x(n +K + τ)], (2.25)

where K is the period of the mean and the autocorrelation functions. (The signals

we deal with have this period same and equal to the oversampling ratio P). Being

periodic rx(n; τ) can be expanded into a Fourier series. The coefficients of the Fourier

series are given by

Rx(k; τ) :=
1

P

P−1
∑

n=0

rx(n; τ)e−j2πkn/P (2.26)

=
1

P

∑

n

h∗(n)h(n + τ)e−j2πkn/P ,

where the last step comes from the substitution of the definitions of rx(n; τ) and

the signal model we have assumed. Rx(k; τ) is termed the cyclic correlation at cycle

k and lag τ . (The cycles k have a one to one correspondence with the harmonics

of the signal at the output of the nonlinearity). Estimates of the cyclic correlation
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coefficients are given by [20]

R̂x(k; τ) =
1

PL

PL−τ−1
∑

n=0

x∗(n)x(n + τ)e−j2πkn/P , τ ≥ 0. (2.27)

We will consider the square law estimator in detail to understand a few aspects

of the estimators. Using the cyclostationary framework we can write the square law

estimator (SLN) as [19]

ε̂ = −
1

2π
arg

{

R̂x(1; 0)
}

. (2.28)

It was also shown in [20] that this can be related to the Fourier transform of hc(t) as

follows

Rx(1; 0) =
1

P

∫ 1/2

−1/2
H(f)H(f + 1/P )df (2.29)

=
e−j2πε

T

∫ P/2T

−P/2T
Hc(F )Hc(F + 1/T )dF, (2.30)

where H(f) is the discrete time Fourier transform of h(n) and Hc(F ) is the continuous

time Fourier transform of hc(t). Taking the transmitted pulse as the RCOS pulse

then the above equation can be graphically represented as shown in Fig. 6, where we

have assumed β = 0.5 and P = 4. Let us note a few things about this. First the

magnitude of the spectral line at cycle k = 1 (or equivalently 1/T ) depends on the

nonzero overlap of H(f) and H(f + 1/P ) which in turn is proportional to the excess

bandwidth of the pulse. So timing recovery becomes difficult for lower rolloff factors.

Secondly this is valid only if P ≥ 2+β. For P = 2 there is aliasing and the estimator

needs to be modified. The modified estimator for P = 2 is as follows

ε̂ =
1

2π
arg

(

bR̂x(1; 0) + jR̂x(1; 1)
)

(2.31)

=
1

2π
arg

(

b
2L−1
∑

n=0

|x(n)|2e−jπn + j
2L−2
∑

n=0

Re{x∗(n)x(n + 1)}e−jπn

)

, (2.32)
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where R̂x(k; l) are the estimates of the cyclic correlations of the signal x(n) at the

cycle k and lag l, L is the number of symbols and b is a bias correction factor that

depends on the transmit pulse shape. The bias correction factor is related to the

pulse shape as follows [16]

b = G(1)/G(0), (2.33)

G(τ) =
2

T

∫ 1/2T

−1/2T
Hc(F + 1/2T )Hc(F − 1/2T )ejπτFTdF. (2.34)

Once again we see that the timing recovery operation depends on the excess band-

width. We shall refer to this estimator as Wang’s estimator.

E. Signal Model for Nonlinear Modulations

We also propose to look at estimators for continuous phase modulation (CPM) in this

thesis. We shall use the following model for CPM signals. Once again s(t), r(t) are
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transmitted and received signals, respectively. Assume that n(t) is circular Gaussian

noise and Ik is a zero mean, i.i.d. sequence with E[IkI
∗
k ] = 1. Then we have

s(t) =
∑

k

ejφ(t;I), (2.35)

φ(t) =
∑

k

Ikq(t− kT ), (2.36)

r(t) = s(t− εT ) + n(t), (2.37)

where q(t) is the phase pulse [4, p. 187] of the CPM signal. It is a little more difficult

to classify the schemes in case of CPM signals so it must be kept in mind that the

following is only a rough outline. The first category involves transforming the CPM

signal such that we can access the phase and then design estimators that operate

on the phase. The second class involves approximating the CPM signal by a sum

of linearly modulated signals. We shall look briefly at some of the schemes in both

these areas and later propose some alternate implementations, not necessarily an

improvement over the existing schemes.

F. Review of Some Existing Schemes for CPM Signals

The feedforward schemes mentioned for the linear modulations will not work straight-

away for the CPM signals because the information bearing signal is also present in the

phase. We must use some additional techniques before we can extend the methods

studied before. Specifically we will focus on the MSK type modulations.

1. Square Law Timing Recovery for GMSK

First we shall consider the extension of the square law nonlinearity based method to

GMSK signals [21, 22]. It was shown in [23] that the CPM signal can be represented

as a superposition of linear modulations. For a CPM signal with a partial response
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of L periods, this representation is as follows

r(t) =
∑

k

2L−1
∑

i=0

ai,kCi(t− kT − εT ). (2.38)

This in turn can be approximated by the dominant terms in the expansion. It was

shown in [22] that nearly all the energy is present in the primary term associated

with C0(t) for some important MSK type modulations. Then we can write

r(t) ≈
∑

k

a0,kC0(t− kT − εT ), (2.39)

where a0,k = exp(jπh
∑k

l=−∞ Il). For MSK type signals we can write a recursive

relation for the a0,k as

a0,k = ja0,k−1Ik. (2.40)

Using the above relation s(t) can be written as a sum of two linearly modulated

components which are in quadrature with each other.

r(t) =
∑

k

b2k+1C0(t− 2kT − T − εT ) + j
∑

k

b2kC0(t− 2kT − εT ),

where b2k+1 = −b2k−1I2kI2k+1 and b2k = −b2k−2I2k−1I2k. It has been pointed out in

[21] that this can be regarded as an OQPSK modulation and that we can extract the

timing information from each of the channels separately. Note that the inphase and

quadrature components are at a rate 1/2T and since the digital estimators give the

normalized delay with respect to the rate, these estimates cannot be used straight-

away. We need to combine the estimates from both the channels appropriately. The

complete scheme is as follows. First we treat this as a linear modulation and perform

matched filtering using C0(t) as the matched filter. The signal after the matched filter

can be written as

x(t) =
∑

k

b2k+1hc(t− 2kT − T − εT ) + j
∑

k

b2khc(t− 2kT − εT ),
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where hc(t) = C0(t)∗C0(t). We will define xI(t) and xQ(t) as the inphase and quadra-

ture components of x(t) and xI(n), xQ(n) as their discrete time versions, respectively.

xI(n) := xI(nT/P ), (2.41)

xQ(n) := xQ(nT/P ). (2.42)

Then we can extract the timing delay in each channel as follows

ε̂I = −
1

2π
arg

{

PL−1
∑

n=0

|xI(n)|2 e−j2π/2P

}

, (2.43)

ε̂Q = −
1

2π
arg

{

PL−1
∑

n=0

|xQ(n)|2 e−j2π/2P

}

, (2.44)

ε̂ =































2ε̂Q if |ε̂Q| ≤ 0.25

2ε̂I if |ε̂I | ≤ 0.25

2ε̂I or 2ε̂Q else .

(2.45)

A few things need to be pointed out here because they can cause some confusion.

First note that the range of εI and εQ is (−0.5, 0.5]. So 2|εI | can be greater than 0.5

whereas ε ∈ (−0.5, 0.5], therefore we consider only the estimate that is less than 0.25

in magnitude. A detailed relation between the two channel phases is found in [21]. A

block diagram representation of this scheme is shown in Fig. 7.
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Fig. 7. Implementation of [21]
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2. Lambrette and Meyr Scheme [3]

This scheme is based on transforming the CPM signal so that we can operate on the

phase of the CPM signal. It was derived for MSK type of signals. In this scheme

there is no need for matched filtering and we can directly operate on the received

signal after anti-alias filtering. An analytic representation of the estimate is shown

below

ε̂ = −
1

2π
arg

{

P−1
∑

k=0

yk(n)e−j2πk/P

}

, (2.46)

yk(n) =
L−1
∑

n=0

|arg [r(nT + T + kT/P )r∗(nT + kT/P )]| . (2.47)

Instead of the absolute value nonlinearity the square law nonlinearity can also be

used in the above estimator. It was shown in [3] that the AVN performs better than

the SLN. Both forms of the estimator require P ≥ 4. We shall refer to this scheme

as LM estimator.

3. Morelli and Vitetta Scheme

Another scheme that is based on approximating the CPM signal as a linear signal is

the scheme proposed in [24]. In this reference the log likelihood function is derived

for the approximated CPM signal and the timing estimator is derived as the value of

ε that maximizes the log likelihood function. This estimate is given by

ε̂ = −
1

2π
arg

P−1
∑

k=0

L−1
∑

n=0

(−1)nx2(nT + kT/P )e−j2πk/P (2.48)

This estimator also requires an oversampling of 4. This scheme is highly sensitive

to carrier frequency error fe, but in its absence, the performance is very close to the

MCRB.
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G. Summary

To conclude, in this chapter we have briefly reviewed the following concepts. First

we considered the performance measures for the symbol timing estimators. Then

we reviewed the signal models for linear and CPM signals and some known timing

recovery schemes. The notation for further work has also been established. Here we

will summarize it.

H. Notation

P oversampling ratio

s(t) Transmitted signal

ε Unknown timing delay which has to be estimated

T Symbol rate

Ts Sampling period

r(n) Received signal that is sampled at rate T/P

x(n) Output of the matched filter that is sampled at T/P

rx(n; τ) Autocorrelation function of x(n) at n and lag τ

Rx(k; τ) Cyclic correlation coefficient at cycle k and lag τ

R̂x(k; τ) Estimates of the cyclic correlation coefficient at cycle k and lag τ

L Number of symbols transmitted (or number of symbols used for estimation)

hc(t) Convolution of the transmit and receive filters

h(n) Sampled version of hc(t)

Hc(F ) Continuous time Fourier transform of hc(t)

H(f) Discrete time Fourier transform of h(n)
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CHAPTER III

SYMBOL TIMING ESTIMATORS FOR LINEAR MODULATIONS

In this chapter we look at some extensions to existing estimators for the timing

recovery of linear modulations. As mentioned earlier one of our goals is to reduce the

sampling rate of the estimators. We propose an extension to the LOGN [2] estimator.

Proceeding along similar lines we propose another estimator that operates at P = 2

and which can be considered as an extension of the square law estimator.

A. Proposed Estimator for Logarithmic Nonlinearity (P=2)

We will continue to make use of the signal model proposed in the previous chapter. To

recapitulate x(n) is the output of the matched filter sampled at T/P . The logarithmic

estimator [2] is given as

ε̂ = −
1

2π
arg

{

PL−1
∑

n=0

log(1 + (
Es

No

)2|x(n)|2)e−j2πn/P

}

, (3.1)

This estimator was derived according to the maximum likelihood principles with some

approximations. The approximations were valid for the low SNR regime. We expect

it therefore to be the optimal estimator in this range. Our goal is to extend this to

a lower sampling rate and retain the attractive property of good performance when

the SNR and excess bandwidth are low. Our extension of this estimator is rather ad

hoc and at first sight we do not have rigorous reasons to hope that this approach will

work. It turns out that the proposed estimator achieves a performance better than

the timing estimators [16, 12, p.398-402] in the lower SNR regime, in the presence of

small data lengths, and pulses with reduced rolloff factors.
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1. Derivation of Estimator

The logarithmic nonlinearity is known to be very intractable for analysis, therefore

our approach will be heuristic and supported only by computer simulations. As

mentioned earlier most of the nonlinearities used for timing recovery contain only

even powers of the signal in their Taylor series expansion. Therefore, the bandwidth

of the signal at the output of the nonlinearity increases, potentially causing aliasing.

For P = 2 this is always true. However, the aliasing effects can be properly taken

into account by exploiting lags of the signal correlation other than zero. An estimator

based on this idea was first proposed in [15] which was later extended in [20] to make

it unbiased. The unbiased estimator has the following form [20]

ε̂ =
1

2π
arg

{

b
2L−1
∑

n=0

|x(n)|2 e−jπn + j
2L−2
∑

n=0

Re{x∗(n)x(n+ 1)}e−jπn

}

, (3.2)

G(τ) =
2

T

∫ 1/2T

−1/2T
Hc(F − 1/2T )Hc(F + 1/2T )ejπτTFdF (3.3)

where b = G(1)/G(0) is a bias correction factor that depends on the pulse shape,

and Hc(F ) is the continuous time Fourier transform of hc(t). Guided by the form

of the estimator for P = 2 we conjecture that we may be able to extend the LOGN

estimator for P = 2 as follows:

ε̂ =
1

2π
arg

{

b
2L−1
∑

n=0

log(1 + k|x(n)|2)e−jπn

+ j
2L−2
∑

n=0

log(1 + kRe{x∗(n)x(n + 1)})e−jπn

}

, (3.4)

where b is still given by the same equation as in (3.3). The question however is how

to decide on the scaling factor k. First let us consider the Taylor series expansion of

log(1 + x).

log(1 + x) = x− x2/2 + x3/3 − · · · + (−x)n/n + · · · . (3.5)
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For |x| << 1 we expect that the right hand side of (3.5) will reduce to x and therefore

the proposed estimator (3.4) will reduce to the estimator [20]. However, that would

not be of any use, so we expect that k would not be very small. We arrived at the

initial value of k by trial and error and testing with simulations. The expansion (3.5)

is quite accurate when |x| ≤ 0.1. So we would expect k to scale the maximum values

of x2(n) and x∗(n)x(n + 1) to ≈ 0.1. It turns out that to achieve this, k ≈ 0.1.

Admittedly this is not rigorous but we can provide an understanding for it. From

the Taylor series expansion we see that the estimator makes use of the second order

moment (autocorrelation) as well as the higher order moments. If properly weighted

these moments can improve the estimate. The small value indicates that contribution

from higher moments is weighed lesser than the second order moment since aliasing

of spectral components will certainly occur at P = 2. So when we consider the

expansion of the proposed estimator we see that the contribution from the fourth

moment is weighed by k justifying our intuition that higher order moments should be

given less weight. We can actually suggest one more improvement for this estimator

by recognizing that aliasing is dependent on the excess bandwidth. So to a first order

we might be able to improve the estimate by modifying the constant k linearly with

β as k = (2 − β)/10. The justification for this being that as we alias lesser at lower

β we can increase the contribution from the fourth order moment.

Finally, we can think of an alternative approach to getting this constant. In-

stead of the logarithmic nonlinearity if we consider forming an estimate based on an

optimally weighted linear combination of the second and the fourth order moments,

we should end up with the same performance as the proposed estimator. However,

this optimization is also very complex and difficult to carry out. But we did verify

that with the constants used the performance of the weighted estimator is almost the

same as the proposed estimator. A similar approach of using weighted moments for



28

estimation has been tried before for P ≥ 4 in [25].

2. Simulations

The performance of timing recovery schemes [16, 12, p. 398-402] and the proposed

estimator have been evaluated via computer simulations assuming a QPSK modu-

lation with Es := E|Ik|
2 = 1 and L=100 symbols. The mean squared error (MSE)

of the proposed estimator and that of [20, 12] is plotted versus SNR. The MSE is

averaged over ε varying from (−0.4, 0.4), and over a number of 1,000 Monte-Carlo

runs. We can observe that the proposed estimator is better than [20] at lower SNR

and lower rolloff factors. At higher rolloff factors, the square law performs better

than the proposed estimator since increased aliasing occurs in the new estimator due

to the presence of the higher order correlations. The proposed estimator does not

perform as well as the LOGN estimator at P ≥ 4 though. The simulation results are

shown in Fig. 8 and 9.
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Fig. 9. MSE vs SNR for the Proposed Estimator and [16, 12, p. 398-402] with β = 0.9

B. A New Two Sample Feedforward Estimator

1. Derivation of Estimator

In this section we propose an alternative method to extend the square law nonlinearity

based estimator. Unlike [15, 20] it does not need to make use of the nonzero lags of

the cyclic correlation to achieve this. The key idea behind the proposed estimator

can be easily understood when we look at the frequency domain interpretation of the

cyclic correlation coefficients when there is no aliasing and when there is aliasing.

The aliasing refers to the aliasing occurring in Rx(1; τ). For the square law estimator

when there is no aliasing we have [20]

ε̂ = −
1

2π
arg

{

R̂x(1; 0)
}

, (3.6)

Rx(k; τ) =
1

P

∫ 1/2

−1/2
H(f)H(f + k/P )ej2π(f+k/P )τdf (3.7)

=
e−j2πkε

T

∫ P/2T

−P/2T
Hc(F )Hc(F + k/T )ej2πτTF/PdF.
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Consider the graphical representation of the above equation as shown in Fig. 10.

When there is no aliasing the frequency responses of H(f) and H(f + 1/P ) for

|f | < 1/2 are given by

H(f) =
1

Ts
Hc(f/Ts)e

−i2πfεP , (3.8)

H(f + 1/P ) =
1

Ts

Hc(
f + 1/P

Ts

)e−i2πfεP . (3.9)

Since we are assuming that the pulse hc(t) is band-limited to ±(1+β)/2T , Rx(1; 0) is
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Fig. 10. H(f) and H(f + 1/P ) for P=4

defined by the nonzero overlap between H(f) and H(f +1/P ) which is the frequency

range given by [−(1+β)/2P,−(1−β)/2P ] (or equivalently [−(1+β)/2T,−(1−β)/2T ]

if we consider Hc(F )). With real symmetric pulses hc(t), H(f) is real and even and

it can be shown that the integral in the equation (3.7) is real. So this does not

contribute to the phase of Rx(1; 0). The overall product H(f)H(f + 1/P ) is shown

in Fig. 11. Also note that this overlap region has a bandwidth of β/P . When the
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Fig. 11. H(f)H(f + 1/P ) for P=4

signal aliases i.e., when P = 2

H(f + 1/2) =
P

T

(

Hc(F + 1/T )e−j2πε +Hc(F − 1/T )ej2πε
)

e−j4πfε. (3.10)

So there is an extra contribution to Rx(1; 0) when P=2. Pictorially, this can be

seen in Fig. 12. There is one more region where the product H(f) and H(f + 1/2)

is nonzero. This time it consists of the regions [−(1 + β)/2P,−(1 − β)/2P ] and

[(1− β)/2P, (1+ β)/2P ]. This can be seen in Fig. 13. But the information necessary

for timing recovery is already contained in the first term of (3.10). So all we need to

do is prevent the other term from coming into the integral. In other words we just

need to do some anti-alias filtering. Once again from the Fig. 13 we see that this term

occurs due to the portion from (1−β)/2P < f < (1+β)/2P . So we can have a filter

removing this term having a passband of [−(1 + β)/2P,−(1 − β)/2P ]. Then we are

dealing with the same term as in the conventional square law estimator when there is

no aliasing and we can use the argument of the cyclic correlation of the filtered signal
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Fig. 12. H(f) and H(f + 1/P ) for P=2

−0.5 −0.25 0 0.25 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f−−>

H(f)H(f+1/P)

Fig. 13. H(f)H(f + 1/P ) for P=2
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to get the timing delay. To be more precise with the digital anti-alias filter (DAF)

the correlation of the filtered signal Rx,f(1; 0) is given as

Rx,f(1; 0) =
1

2
e−j2πε

∫ 1/2T

−1/2T
Hc(F )Hc(F + 1/T )dF, (3.11)

which is the same as the integral in the non-aliased case. This means the new esti-

mator is given by

ε̂ = −
1

2π
arg{R̂x,f(1; 0)}, (3.12)

where Rx,f is the correlation of the signal after anti-alias filtering. (Strictly speaking

this is not the autocorrelation anymore). A block diagrammatic representation of this

estimator is shown in Fig. 14. Note that the anti-aliasing filter must be present before

kT/P+ τ

( . )*

Σ

-j2e πn/P

-arg(.)/ 2π
n(t)

s(t)

Matched 
Filter ε

DAF

DAF

Fig. 14. Implementation of the Proposed Estimator at P = 2

the multiplication and this makes two such filters necessary since the signal needs to

be conjugated in one branch. The conjugation operation cannot be interchanged

with the DAF which is complex. Also note that the DAF is complex because it is not

symmetric around the origin in the frequency domain.

2. Simulation Results

The proposed estimator was simulated and its performance is comparable to the

P = 2 estimator of [16]. It has however a little lower self-noise. The probable reason
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for this is that in [16] we first alias and then attempt to recover the timing delay

whereas in the proposed estimator we prevent the aliasing from happening. However,

we notice that self-noise is still a problem with this estimator. The simulation results

are shown in Fig. 15.
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Fig. 15. MSE of the Proposed Estimator β = 0.25

3. Use of Prefilters to Improve the Performance

The previous scheme can be made very effective by using the idea of prefilters. It

was shown in [18] that if we shape the overall pulse response to have symmetry

around 1/2T (or equivalently 1/2P ) then the estimator based on square law will

be self-noise free. We now realize that the same result holds true for the case of

P = 2 in the proposed estimator. This is because once we prevent aliasing, the cyclic

correlation coefficient is same as in the no aliasing case (for which the self-noise result

was derived). The only change in implementation is that we now have a prefilter after

the matched filter before we do the anti-alias filtering. The location of the prefilter
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does not matter so much in this case because it is real and the conjugation operation

will not affect it.

This estimator is somewhat similar in form to the estimator proposed in [12,

p. 398-402]. However there is significant difference between the proposed estimator

and ML estimator proposed in [12] both in concept and in performance. The ML

estimator was derived using maximum likelihood principles and some approximations.

Whereas here we have used a cyclostationary framework to derive the estimator. Also

in that case the overall pulse does not have the required symmetry around 1/2T and

consequently there is self-noise.

4. Simulation Results with Prefilter

Here we present the simulation results for a QPSK signal with the following param-

eters. The length of the transmitted sequence is 100, the timing delay ε is averaged

over (−0.4, 0.4) and 500 Monte Carlo runs are performed for each SNR data point.

The results with β = 0.1 are shown in Fig. 16. In this case there is no difference

between [20] (also prefiltered) and the proposed estimator. However when we have

β = 0.9 we observe the proposed estimator has lower self-noise and is much more

closer to the MCRB. This is shown in Fig. 17.

5. Drawbacks

It will be clear from the previous section that the proposed estimator is more complex

than [16, 12, p398-402]. However as we pointed earlier we were not so much interested

in lowering the complexity as much as attempting to explore the alternatives of timing

recovery at lower sampling rate.
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Fig. 16. MSE of the Proposed Estimator β = 0.1
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Fig. 17. MSE of the Proposed Estimator β = 0.9
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C. Summary

To summarize in this chapter we have proposed two new timing estimators for linear

modulations. Both of them can operate at the Nyquist rate. They can be considered

as extensions to the SLN and LOGN estimators. The proposed logarithmic estimator

is the best estimator at low SNR and low excess bandwidths among all Nyquist rate

estimators. The proposed extension to SLN offers reduced self-noise performance for

large excess bandwidths when compared to other estimators at this rate.
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CHAPTER IV

SYMBOL TIMING ESTIMATORS FOR NONLINEAR MODULATIONS

In this chapter we propose two new non data-aided estimators for symbol timing

recovery of GMSK signals. Typically most of the feedforward estimators require to

sample the input signal at a rate at least twice as large as the symbol rate. The

estimators we propose can operate at the symbol rate and serve to illustrate the idea

that sufficient statistics exist for a signal sampled at symbol rate. They are effective

in the case of narrow band signals. We also propose two new estimators for MSK

modulation. They offer alternative methods for timing recovery with comparable

performance to the existing estimators. Most of the estimators are derived using the

cyclostationary framework. The performance of the estimators is evaluated through

simulations.

A. Symbol Rate Estimator for GMSK Signals

Before we proceed with the derivation of the estimator, we will give some heuristic

arguments to give the idea behind the scheme. It will be remembered that in Chapter

II we mentioned that the GMSK signal can be approximated as an OQPSK modula-

tion. The key thing to be noticed in that approximation was that each of the channels

in the OQPSK is at a lower rate. Let us consider this approximation once again to

clarify this claim

r(t) =
∑

k

b2k+1C0(t− 2kT − T − εT ) + j
∑

k

b2kC0(t− 2kT − εT ). (4.1)

If we observe closely we see that if we sample at a rate P/T , since the modulating

symbols bk change once in 2T , we oversample at twice the rate (2P/T ) effectively.

This means that cyclostationarity is induced even in a signal sampled at symbol rate.
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Further it implies that we can recover the timing delay using the estimators that

operate at P = 2 on a linear modulation. We must be careful though because the

P = 2 estimators presented so far are under the assumption of i.i.d. data and also

band-limited signals. Here it is not true because the bk are not i.i.d. We will continue

to make the approximation that the signal is band-limited.

1. Derivation of Estimator

Here we will derive the estimator for the case when the signal is oversampled by

P = 1. The development makes use of the cyclostationary framework of [16]. Let

s(t) be the complex envelope of the base band signal. Using Laurent’s expansion [23]

we can write this as

r(t) =
∑

k

2L−1
∑

i=0

ai,kCi(t− kT − εT ), (4.2)

≈
∑

k

a0,kC0(t− kT − εT ). (4.3)

For MSK type signals we can write the following recursive relation for a0,k

a0,k = ja0,k−1Ik. (4.4)

We can further simplify this by recognizing that a0,k alternately are real and imaginary

valued. This leads to the following

s(t) =
∑

k

b2k+1C0(t− 2kT − T − εT ) + j
∑

k

b2kC0(t− 2kT − εT ), (4.5)

where b2k+1 = −b2k−1I2kI2k+1 and b2k = −b2k−2I2k−1I2k. Note that all the Ci(t) are

real and symmetric. (A question might arise here as to an inherent ambiguity of phase.

Whether the inphase channel has the delay of T + εT or the quadrature channel. For

now we will assume that the inphase has the excess delay and proceed. The ambiguity
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will get resolved when we derive the expression for ε). Let us represent the real and

imaginary parts of the received signal as x(t) and y(t), respectively. Using these

relations we can write the output of the matched filter as r(t) ∗ C0(t) = x(t) + jy(t)

and the discrete time model becomes x(n) := x(nT ), y(n) := y(nT ), h(n) := hc(nT −

T − εT ), hc(t) = C0(t) ∗ C0(t). Then we can define the autocorrelation sequences of

the signals x(n) and y(n) as follows

rx(n; τ) = E[x∗(n)x(n + τ)]

= E

[(

∑

l

b2l+1h
∗(n− 2l)

)(

∑

m

b2l+2m+1h(n + τ − 2l − 2m)

)]

= E

[

∑

l

∑

m

b2l+1b2l+2m+1h
∗(n− 2l)h(n+ τ − 2l)

]

=
∑

l

∑

m

E [b2l+1b2l+2m+1]h
∗(n− 2l)h(n+ τ − 2l − 2m) (4.6)

ry(n; τ) = E[y∗(n)y(n+ τ)]

=
∑

l

∑

m

E [b2lb2l+2m] h∗(n+ 1 − 2l)h(n+ 1 + τ − 2l − 2m). (4.7)

Here we need to find the autocorrelation of the sequence bk. Under the assumption

that Ik ∈ {±1} it is seen that bk ∈ {±1} and that E[bkb
∗
k] = 1. As to E[b∗2l+1b2l+2m+1]

without loss of generality we can consider m > 0. We can write

b2l+1b2l+2m+1 = |b2l+1|
2

2l+2m+1
∏

k=2l+2

(−1)mIk (4.8)

=
2l+2m+1
∏

k=2l+2

(−1)mIk

⇒ E[b2l+1b2l+2m+1] = E





2l+2m+1
∏

k=2l+2

(−1)mIk





=
2l+2m+1
∏

k=2l+2

(−1)mE[Ik]

= 0 because Ik are i.i.d (4.9)
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So we can write rx(n; τ) as follows

rx(n; τ) =
∑

l

h∗(n− 2l)h(n + τ − 2l). (4.10)

We can see that rx(n; τ) is periodic with period 2. Consider

rx(n+ 2; τ) =
∑

l

h∗(n+ 2 − 2l)h(n+ 2 + τ − 2l)

=
∑

l

h∗(n− 2(l − 1))h(n + τ − 2(l − 1))

=
∑

l

h∗(n− 2l)h(n+ τ − 2l)

= rx(n; τ)

where the last equation is obtained by a change of index. Since rx(n; τ) is periodic

we can expand and write a Fourier series for it

rx(n; τ) =
1
∑

n=0

Rx(k; τ)e
j2πkn/2, (4.11)

Rx(k; τ) =
1

2

1
∑

n=0

rx(n; τ)e−j2πkn/2

=
1

2

1
∑

n=0

∑

l

h∗(n− 2l)h(n+ τ − 2l)e−j2πkn/2

=
1

2

∑

n

h∗(n)h(n + τ)e−j2πkn/2, (4.12)

the last step is obtained by replacing n − 2l by n and combining the two summa-

tions into one. Now we can use Parseval’s relation to transform this summation into

frequency domain as follows

Rx(k; τ) =
1

2

∫ 1/2

−1/2
H∗(f)H(f + k/2)ej2π(f+k/2)τdf, (4.13)

where H(f) is the Fourier transform of the discrete time sequence h(n). Let Hc(F )

be the continuous time Fourier transform of hc(t). Under the approximation that
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Hc(F ) is band-limited to 1/2T , H(f) is related to Hc(F ) as follows

H(f) =
1

T
Hc(f/T )e−j2π(f/T )(T+εT )

=
1

T
Hc(f/T )e−j2πf(1+ε),

H(f + 1/2) =
1

T

[

Hc(
f − 1/2

T
)e−j2π(f−1/2)(1+ε) +Hc(

f + 1/2

T
)e−j2π(f+1/2)(1+ε)

]

,

Rx(1; τ) =
1

T 2

∫ 1/2

−1/2
H∗

c (
f

T
)

[

Hc(
f − 1/2

T
)ejπ(1+ε) +Hc(

f + 1/2

T
)e−jπ(1+ε)

]

ej2π(f+1/2)τdf

=
1

T

∫ 1/2T

−1/2T
H∗

c (F )
[

Hc(F − 1/2T )ejπ(1+ε) +Hc(F + 1/2T )e−jπ(1+ε)
]

ej2π(FT+1/2)τdF.

Next we use the fact that hc(t) = C0(t) ∗ C0(t) is a real and even function therefore

its Fourier transform is real and even. With this and the assumption that Hc(F ) is

band-limited to 1/2T we can further manipulate the above equations as follows

Rx(1; τ) =
1

T

∫ 1/2T

−1/2T
Hc(F + 1/4T )Hc(F − 1/4T )ejπ(1+ε)ej2π(FT+1/2)τ ej2π(1/4)τdF

+
∫ 1/2T

−1/2T
Hc(F − 1/4T )Hc(F + 1/4T )e−jπ(1+ε)ej2π(FT+1/2)τ e−j2π(1/4)τdF.

Next we make use of the fact that Hc(F ) is real and even. This means that Hc(F −

1/4T )Hc(F + 1/4T ) is even (and real). From this it follows that

Rx(1; τ) = (−1)τ 2

T
cos

(

2π(
1 + ε

2
+
τ

4
)
) ∫ 1/2T

−1/2T
Hc(F + 1/4T )Hc(F − 1/4T )ej2πFTτdF.

We can now write an expression for ε as follows

Rx(1; 0) =
2

T
cos

(

2π(
1 + ε

2
)
) ∫ 1/2T

−1/2T
Hc(F + 1/4T )Hc(F − 1/4T )dF,

Rx(1; 1) =
2

T
sin

(

2π(
1 + ε

2
)
) ∫ 1/2T

−1/2T
Hc(F + 1/4T )Hc(F − 1/4T )ej2πFTdF,

tan
(

2π(
1 + ε

2
)
)

=
Rx(1; 1)G(0)

Rx(1; 0)G(1)
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G(τ) =
2

T

∫ 1/2T

−1/2T
Hc(F + 1/4T )Hc(F − 1/4T )ej2πτFTdF, (4.14)

tan(πε) =
Rx(1; 1)G(0)

Rx(1; 0)G(1)
. (4.15)

Going through the same derivation for Ry(1; τ) we get the following equations

Ry(1; 0) =
2

T
cos

(

2π(
ε

2
)
) ∫ 1/2T

−1/2T
Hc(F + 1/4T )Hc(F − 1/4T )dF,

Ry(1; 1) =
2

T
sin

(

2π(
ε

2
)
) ∫ 1/2T

−1/2T
Hc(F + 1/4T )Hc(F − 1/4T )ej2πFTdF,

tan
(

2π(
ε

2
)
)

=
Rx(1; 1)G(0)

Rx(1; 0)G(1)
,

tan(πε) =
Ry(1; 1)G(0)

Ry(1; 0)G(1)
, (4.16)

where G(0),G(1) are defined as in (4.14). Note that even though there was an excess

delay in one of the channels in the final expression for ε it has the same form whether

evaluated from the inphase or the quadrature. However that does not mean they are

the same. It will be seen that the signs of the cyclic correlation are different in each

case. We form an estimate for ε by combining the estimates from both the channels.

So finally we end up with the following estimator

ε̂ =
1

2π
atan(

R̂x(1; 1)G(0)

R̂x(1; 0)G(1)
) +

1

2π
atan(

R̂y(1; 1)G(0)

R̂y(1; 0)G(1)
), (4.17)

R̂x(1; 0) =
1

L

L−1
∑

n=0

|x(n)|2(−1)n, (4.18)

R̂x(1; 1) =
1

L

L−2
∑

n=0

Re{x∗(n)x(n + 1)}(−1)n, (4.19)

R̂y(1; 0) =
1

L

L−1
∑

n=0

|y(n)|2(−1)n, (4.20)

R̂y(1; 1) =
1

L

L−2
∑

n=0

Re{y∗(n)y(n+ 1)}(−1)n. (4.21)

This concludes our derivation of the estimator for P = 1. Simulation results are

shown in Fig. 19. It will be observed that the proposed estimator has self-noise. So
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we made some further modifications to the estimator which are discussed in the next

section.

2. Use of Prefilters to Improve the Performance

We mentioned earlier that prefilter based schemes can be used to improve the per-

formance of the estimator for P = 2 [18]. However, these results cannot be applied

directly. Note that the prefilter is shifted to 1/T in case of the linear modulations.

When we sample at the symbol rate this is the same as the overall response and

obviously it is not what we are looking for (because it does not give rise to any sym-

metry). The symmetry condition gets modified for P = 1. The modified condition for

reduction in self-noise is that the overall pulse should have symmetry around 1/4T .

The prefilter (up to a scale factor) needed to make the pulse symmetric around 1/4T

is given as follows

Hpre(F ) = Hc(F − 1/2T ) +Hc(F + 1/2T ), (4.22)

Hc(F ) = |C0(F )|2, (4.23)

where C0(F ) is the frequency response of C0(t). The prefilter is shown in Fig. 18.

Also note that the resulting response is now symmetric at 1/4T . G(0), G(1) need to

be recalculated with the prefilter. Actually, these results are applicable to other MSK

type signals where we can approximate the signal as an OQPSK signal. For instance,

for MSK modulations, timing recovery is possible at the symbol rate. However, it may

not be practical in the sense that for MSK signal the bandwidth is slightly greater

than 1/2T which means that signal recovery may not be possible if we sample at the

symbol rate and we may be forced to sample at a higher rate in which case we can

afford to use an estimator with higher sampling rate. However, in theory there is no

problem in applying this scheme to other MSK type modulations. We also note that
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the prefilter is not always required to improve the performance. In case of MSK the

improvement is marginal as can be seen in Fig. 20. This is because the spectrum of

MSK is not band-limited to 1/2T .

3. Simulation Results

Here we present the simulation results for a GMSK signal with the following parame-

ters. We assume BT = 0.3, the length of the transmitted data to be L = 100 symbols.

In each case the mean squared error (MSE) is averaged over ε ∈ (−0.4, 0.4). The per-

formance of the new estimator with and without prefilter is shown in Fig. 19. We

also show the simulations for MSK in Fig. 20 to corroborate the previous statements.
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B. Alternate Estimator at Symbol Rate

As pointed out in the last section the inphase and the quadrature components of

the GMSK signal are oversampled twice with respect to the received signal. So

we can use other estimators at P = 2 derived for the linear modulations as the

basis for deriving new estimators. The estimator just proposed can be considered

as an extension of [15, 16] to nonlinear modulations. We can also consider the ML

estimator [12] at P = 2 or the estimator we proposed in Chapter III. We will be

rather brief on this since the main idea is common to the previous scheme. We are

just using an alternate scheme that can recover timing at P = 2. It will be recalled

that the ML timing estimator proposed in [12] can operate at P = 2. This was

reviewed in Chapter II. The modifications to this scheme will be similar to the previous

scheme. The prefilter we use in one of the branches in the ML estimator is of the form

G(F − 1/2T )G∗(F + 1/2T ). Here this will translate to C0(F − 1/4T )C∗
0(F + 1/4T ).

The basic idea is illustrated in the Fig. 21. The block “P=2 STE” refers to a

Filter Co(t)
Matched

Re(.)

Im(.)

Combine

kT+τ
ε

Estimates
I,Qr(t)

n(t)

P=2 STE

P=2 STE

Fig. 21. Implementation of P=1 Estimators

symbol timing estimator at P = 2. This can be any of the P = 2 estimator discussed

so far for linear modulations.



48

C. Further Extensions to the Square Law Based Estimator for GMSK Signals

1. Use of Prefilters in the Original Scheme for P ≥ 2

Since it was established that prefilters improve the performance of the estimators

with square law recovery in the linear modulations we can also improve [21] simply

by prefiltering. We tested this idea and found it to be true in case of the GMSK

modulations. In fact as BT becomes smaller in the GMSK modulations the prefilter

becomes more effective in improving the scheme of [21].

2. Use of the ML Estimator

We can also improve the performance of [21] by the ML scheme explained in Chapter

II and in the previous section. For P = 2 this makes the performance very close to

the MCRB as shown in Fig. 22.
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Fig. 22. MSE of the ML Estimator for GMSK at P=2
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3. Drawbacks of the Proposed Estimators

The proposed estimator however has two problems which may be severe under some

conditions. Firstly it is not tolerant of carrier frequency offset. Secondly it is sensitive

to phase offset. However, unlike the error in frequency it can withstand some amount

of phase offset.

D. Two New Symbol Timing Estimators for MSK Modulations

In [3] an interesting method of symbol timing recovery for MSK type signals was

proposed. This method can be considered as an extension of the timing recovery

schemes for linear modulation schemes to CPM signals. Here we look at the same

scheme in a slightly broader perspective which is more useful in that it allows us to

take advantage of the timing recovery schemes in linear modulations. Again consider

the complex envelope of a CPM signal this time with phase offset φo and carrier

frequency error fe:

r(t) = ej(φ(t−εT ;I)+φo+2πfet), (4.24)

φ(t) = 2πh
∑

k

Ikq(t− kT ), (4.25)

x(t) := r(t)r∗(t−mT ) (4.26)

= ej(φ(t−εT ;I)−φ(t−mT−εT ;I)+2πfemT ),

y(t) :=
1

2πh
arg {x(t)} (4.27)

=
1

2πh
{φ(t− εT ; I) − φ(t−mT − εT ; I) + 2πfemT}

=
∑

k

Ikq(t− kT − εT ) −
∑

k

Ikq(t− kT −mT − εT ) +
femT

h
. (4.28)

Let us now define another pulse pm(t) as follows

pm(t) := q(t) − q(t−mT ). (4.29)



50

Then y(t) =
∑

k

Ikpm(t− kT − εT ) +
femT

h
(4.30)

We can see y(t) is a linear modulation with the pulse shape given by pm(t). Now

we can extend almost all the schemes that we know for linear modulations for per-

forming symbol timing recovery. We are not however guaranteed any performance

gains because we do not have as much control over the pulse shape as we did in the

case of linear modulations. This will become clear when we examine some specific

cases. We will consider MSK signals and perform feedforward timing recovery for

oversampling ratios P = 2 and P = 4. Defining as usual the discrete time model

y(n) := y(nT/P ), pm(n) := pm(nT/P − εT ), we have

y(n) =
∑

j

Ijpm(n− jP ) +
femT

h
. (4.31)

Consider the autocorrelation of the signal y(n) given by ry(n; τ) = E[y∗(n)y(n+m)],

assuming that Ik are zero mean, i.i.d. and E[I∗kIk] = 1, we obtain

ry(n; τ) =
∑

j

p∗m(n− jP )pm(n+ τ − jP ) +
f 2

em
2T 2

h2
. (4.32)

As can be seen this signal is periodic in n with period P and we can expand it into

a Fourier series or equivalently we can write the cyclic correlation coefficients

Ry(k; τ)=
1

P

P−1
∑

n=0





∑

j

p∗m(n− jP )pm(n+ τ − jP ) +
f 2

em
2T 2

h2



 e−j2πkn/P

=
1

P

∑

n

p∗m(n)pm(n+ τ)e−j2πkn/P +
f 2

em
2T 2

h2
δ(k). (4.33)

Clearly we can see that the error due to the frequency comes in as a dc term and if

we look at any other harmonic we will be able to relate the phase of the harmonic to

the timing delay εT . Therefore we will have an estimator that is robust to frequency

offset. Here we have two possible approaches to calculating the cyclic correlation
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coefficients. In the previous schemes we had worked in the frequency domain. This

is particularly efficient when the signal is band-limited. Sometimes when the pulse is

time limited and the time domain waveform is given in closed form expression, it is

more convenient to work in the time domain itself. We will now illustrate the latter

approach using MSK signals. For MSK the pulse q(t) is defined as

q(t) =































0 t ≤ −T/2

t+T/2
2T

|t| ≤ T/2

1
2

t > T/2.

(4.34)

Taking m = 1 we have p1(t) purely real and defined as

p1(t) =































0 t ≤ −T

1
2
(1 − |t|/T ) |t| ≤ T

0 t > T .

(4.35)

1. Proposed Estimator at P=2

For P = 2 and m = 1 we can have at most 5 samples and therefore evaluation of the

summation in (4.33) for calculating the cyclic coefficients becomes rather simple. We

do not have to deal with complex integrals here

Ry(k; τ) =
1

P

∑

n

p1(n)p1(n+ τ)e−j2πkn/P (4.36)

=
1

2

∑

n

(−1)knp1(n)p1(n+ τ),

Ry(1; τ) =
1

2

∑

n

(−1)np1(n)p1(n+ τ). (4.37)

p(t) is simply the triangular waveform and if the pulse is delayed and sampled we get

p1(n). p(t) and its delayed version are shown in the Fig. 23. Now the samples of the

discrete time pulse p1(n) are given in Table I. Using these values we can calculate
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n n0 2 3-1-2-3 1 0 2 3-1-2-3 1

Fig. 23. p(t) without Delay and Its Delayed Version

Table I. p1(n) for P = 2

n -2 -1 0 1 2

p1(nT/2) |ε|
4
− ε

4
1
4
− ε

2
1
2
(1 − |ε|) 1

4
+ ε

2
|ε|
4

+ ε
4

the cyclic correlation coefficients for k = 1 and τ = 0, 1 as follows

Ry(1; 0) =
1

16
(1 − 4|ε|), (4.38)

Ry(1; 1) =
3ε

16
(1 − 2|ε|). (4.39)

Using these two relations we can form an estimate for ε in different ways. The

following estimators are suggested

ε̂ = sign(R̂y(1; 1))

(

1 − 16R̂y(1; 0)

4

)

, (4.40)

ε̂ =
32

3

R̂y(1; 1)

1 + 16R̂y(1; 0)
. (4.41)

2. Simulation Results

The following simulations were done for MSK modulation with L = 100 and MSE is

averaged over ε ∈ (−0.4, 0.4). Each data point was obtained by running 500 Monte

Carlo runs. Both the original scheme of [3] and the proposed estimator (4.40) at
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P = 2 are shown. It will be seen that the LM scheme is better at higher SNRs. The

other estimator (4.40) performance is a little worse. The results are shown in Fig. 24.

3. Proposed Estimator at P=4

We can also derive another estimate for the timing delay ε based on the cyclic corre-

lations which is an alternative to the estimator of [3] at P = 4. We essentially follow

the same method as for P = 2, i.e., work in the time domain for calculating the cyclic

coefficients. As before the pulse p1(t) is a triangular pulse and has a period of 2T .

With an oversampling of P = 4 we have 9 samples. The values of these samples when

p1(t) is delayed by εT are given in Table II.

The cyclic correlation at the cycle k = 1 and a lag of τ = 0 is given by

Ry(k; τ) =
1

P

5
∑

n=−5

p1(n)2e−j2πkn/P , (4.42)

Ry(1; 0) =
1

4

5
∑

n=−5

(−j)np1(n)2 (4.43)

=































1
32
{(1 − 4|ε|) + j2(2ε− 1)} 0.25 ≤ ε

1
32
{(1 − 4|ε|) − j4ε} |ε| ≤ 0.25

1
32
{(1 − 4|ε|) + j2(2ε+ 1)} ε ≤ −0.25.

(4.44)

It might seem that this is not in an easy form to form an estimate. But actually

we can observe that the imaginary part of the Ry(1; 0) always has an opposite sign

to that of the true value of ε. Therefore, once we know the sign from the imaginary

part of R̂y(1; 0), we can evaluate the magnitude of ε from the real part of R̂y(1; 0).

So the proposed estimator takes the form

ε̂ = −sign{Im(R̂y(1; 0))}
{1− 32Re(R̂y(1; 0))}

4
, (4.45)

R̂y(1; 0) =
1

L

4L−1
∑

n=0

|y(n)|2(−j)n. (4.46)
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Fig. 24. MSE vs SNR for (4.40) and LM

Table II. p1(n) for P = 4

n p1(nT/4)

-5 |ε+0.25|
4

− ε+0.25
4

-4 |ε|
4
− ε

4

-3 |ε−0.25|
4

− ε−0.25
4

-2 1
4
− ε

2

-1 1−|ε+0.25|
2

0 1
2
(1 − |ε|)

1 1−|ε−0.25|
2

2 1
4

+ ε
2

3 |ε+0.25|
4

+ ε+0.25
4

4 |ε|
4

+ ε
4

5 |ε−0.25|
4

+ ε−0.25
4
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4. Simulation Results

The proposed estimator was simulated to evaluate its performance for MSK modula-

tion with L = 100 symbols and 500 Monte Carlo runs. As always the MSE is averaged

over ε. The results are shown in Fig. 25. It will be seen that the proposed estimator

does not perform as well as the original scheme proposed in [3]. However, the per-

formance degradation is not too much and it demonstrates an alternative means to

form estimates.
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Fig. 25. MSE vs SNR for (4.45) and LM

E. Summary

In this chapter we have looked at various new timing estimators for MSK type mod-

ulations. We proposed two new estimators which are the only ones to function at

symbol rate among the class of non-data aided feedforward timing estimators for

CPM signals. We also suggested a few more extensions to the scheme proposed in

[21]. We proposed two new estimators for the MSK modulation scheme based on
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the cyclostationary statistics of the phase of the signal. They are robust to carrier

frequency error and phase offset. Their performance is comparable to the existing

estimators.
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CHAPTER V

CONCLUSIONS

A. Summary of the Thesis

To summarize much of the work in this thesis was based on exploring the idea of min-

imal rate feedforward non-data aided timing estimators. The idea that a signal sam-

pled at Nyquist rate contains sufficient statistics was pushed to its logical conclusion

in terms of the rate required for an estimator. And we derived some new estimators

some which were ad hoc and others based on cyclostationary framework. For lin-

ear modulation schemes, we developed two new estimators with somewhat increased

complexity but with improved performance among the class of existing Nyquist rate

estimators. For nonlinear modulations we were able to derive novel estimators at the

symbol rate which are among the only ones known for feedforward timing recovery

of CPM signals. Also we proposed two new estimators for MSK modulations both of

which are robust to frequency and phase offsets.

B. Suggestions for Further Work

One of the drawbacks of the estimators was their increased complexity. While we

successfully demonstrated various alternatives to estimation of the timing delay, from

a practical perspective we would also be interested in reducing the complexity of the

estimators. It would be interesting to see if there are lower complexity estimators

at lower rates. While we were able to come up with symbol rate estimators for the

nonlinear modulations we were unable to do so for the linear case. However, we

conjecture that there exist symbol rate feedforward timing estimators for the linear

modulations too. It would be an interesting problem to explore. Another area which
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can be worked on is the analysis of MSE of the estimators. We have relied on the

computer simulations to a great deal to evaluate the performance of the estimators we

proposed. It would be interesting to corroborate these results by theory. Also we note

that the asymptotic analysis of estimators that make use of the sign function should

prove to be an interesting problem since most of the estimators that we encounter

are not. We have started working on it but there are still issues to be figured out.
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