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ABSTRACT

A New Approach for Fast Potential Evaluation in N-Body Problems. (December 2003)

Sreekanth Juttu, M.S., Indian Institute of Technology Kanpur

Chair of Advisory Committee: Dr. Vivek Sarin

Fast algorithms for potential evaluation in N-body problems often tend to be ex-

tremely abstract and complex. This thesis presents a simple, hierarchical approach to

solving the potential evaluation problem in O
�
n � time. The approach is developed in the

field of electrostatics and can be extended to N-body problems in general. Herein, the

potential vector is expressed as a product of the potential matrix and the charge vector.

The potential matrix itself is a product of component matrices. The potential function

satisfies the Laplace equation and is hence expressed as a linear combination of spherical

harmonics, which form the general solutions of the Laplace equation. The orthogonal-

ity of the spherical harmonics is exploited to reduce execution time. The duality of the

various lists in the algorithm is used to reduce storage and computational complexity.

A smart tree-construction strategy leads to efficient parallelism at computation intensive

stages of the algorithm. The computational complexity of the algorithm is better than

that of the Fast Multipole Algorithm, which is one of the fastest contemporary algorithms

to solve the potential evaluation problem. Experimental results show that accuracy of

the algorithm is comparable to that of the Fast Multipole Algorithm. However, this ap-

proach uses some implementation principles from the Fast Multipole Algorithm. Parallel

efficiency and scalability of the algorithms are studied by the experiments on IBM p690

multiprocessors.
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CHAPTER I

INTRODUCTION

N-body problems are a class of problems that deal with the mutual interactions among a

set of bodies in space. When the name was first coined, the application area of N-body

problems was astrophysics. However, N-body problems gradually encompassed a variety

of fields such as electrostatics and molecular biology.

Typical problems that are addressed in N-body problems are potential evaluation,

force evaluation, and prediction of future movement of bodies. In this thesis, we concen-

trate on the potential evaluation problem in electrostatics. Potential evaluation of a set of

charged particles at the their charge locations is a challenging problem. A straight-forward

algorithm 1.2, based solely on particle-particle interactions has O
�
n2 � time complexity.

This complexity is enormous for large collections of particles that are common in

typical problems. There are a number of approximation algorithms, e.g., Appel’s Algo-

rithm [1], Barnes-Hut Algorithm [2] and Fast Multipole Method (FMM) [4, 5], that reduce

the computational cost of the problem. These algorithms make use of cluster-particle and

cluster-cluster interactions to reduce the time complexity to O
�
n logn � or O

�
n � . As op-

posed to the naive O
�
n2 � algorithm that evaluates the potential exactly, approximation

algorithms estimate the potential to desired accuracy that can be controlled by certain pa-

rameters. There is a trade off between the accuracy and the computational cost, with a

higher accuracy demanding a higher computational cost.

Though FMM has O
�
n � time complexity, it is extremely complex and hence difficult

to implement. In this thesis, a simpler approach is developed to solve the potential evalu-

ation problem. Herein, a new matrix-based hierarchical approach is developed to evaluate

the potential in O
�
n � time. The potential vector (i.e., a vector of potentials of all particles)

The journal model is SIAM Journal on Scientific Computing.



2

is expressed as a product of the potential matrix and the charge vector. The potential at

a point is computed as a sum of potentials due to clusters of particles. An O
�
n � algo-

rithm is obtained by organizing the clusters in a hierarchical manner. Potential satisfies

the Laplace equation and is expressed as a weighted sum of Spherical Harmonics, which

form the class of general solutions of the Laplace equation. This approach utilizes, and

improves upon, some implementation ideas from the Fast Multipole Method, which was

developed by Rokhlin and Greengard (see, e.g., [4] for the FMM algorithm and [5] for

an improved version). The approach developed in this thesis can be extended to N-body

problems in a straight-forward manner.

A. A Simple Algorithm

Suppose
�
q1 � x1 � � � q2 � x2 � � ����� � � qn � xn � are n charges distributed in space. The potential at

the location xl due to the charge
�
q j � x j � is given by

φ
�
xl �	� q j


xl � x j

 � (1.1)

where


xl � x j



is the Euclidean distance between xl and x j.

A straight forward method to evaluate the total potential at a charge location xl , due to the

rest of the charges is given by

φ
�
xl �	� n

∑
j � 1  j �� l

q j

xl � x j


 � (1.2)

B. Related Work

In order to solve the potential evaluation problem, algorithms based solely on particle-

particle interactions would invariably take O
�
n2 � time. Cluster-particle and cluster-cluster

interactions need to be employed in order to improve the time complexity.

Most algorithms, like Barnes-Hut and FMM form a tree in order to evaluate the
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potential at each particle. A large enough box or node (which is the root) is chosen to

enclose all particles. This root node is then recursively sub-divided into eight equal child

nodes, until each leaf node has utmost a constant number of particles. The constant is

chosen so as to minimize the overall running time of the algorithm.

Barnes and Hut proposed an algorithm to compute gravitational potential due to a

set of bodies that makes use of cluster-particle interactions to achieve O
�
n logn � time

complexity. In order to compute the potential at a location, the set of bodies around it is

partitioned into clusters. Starting from the root, each node is ascertained to be far enough

or not far enough from the charge location. If a node is far enough, it is considered to be

a cluster. If a node is not far enough, and has children, each of its children is ascertained

to be far enough or not far enough. If a node is a leaf, its potential is found directly from

particle-particle interactions. The potential due to each cluster is evaluated by replacing

the cluster with a single body with mass equal to the sum of masses of all bodies, located

at the center of mass of the cluster.

Greengard and Rokhlin made a breakthrough by developing the first O
�
n � algorithm

called the Fast Multipole Method, to compute electrostatic potential. To estimate the po-

tential at a location, the set of charges is grouped into clusters, and the effect of each

cluster is approximated separately. Some aspects of the algorithm were improved in [5].

The potential function in FMM is approximated, to arbitrary accuracy, by a series expan-

sion with terms consisting of spherical harmonics. However the overall theoretical set up

of the algorithm is very complex and it is not intuitive to comprehend potential in terms

of series expansions.
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CHAPTER II

BACKGROUND

The fastest algorithm to solve the potential evaluation problem is the FMM. It is the

first algorithm to achieve O
�
n � complexity. The hallmark of this algorithm is the use of

the cluster-cluster interactions, which had never been done before. Prior to FMM, the fast

algorithms used cluster-particle interactions to reduce complexity to O
�
n logn � . The main

reason for not having a lower complexity was not using the cluster-cluster interactions. In

fact it can be said heuristically that any O
�
n � algorithm to solve the potential computation

problem must exploit both cluster-particle and cluster-cluster interactions. In FMM, just

as any other hierarchical algorithm, an oct-tree is constructed. A root node enclosing

all particles is recursively sub-divided into eight child nodes until each leaf node has

atmost a constant number of particles. For uniform distributions of particles, the oct-tree

is balanced, whereas non-uniform distributions result in an unbalanced oct-tree.

In the FMM, the potential is expressed as a series expansion of Spherical Harmonics,

which are general solutions of the Laplace equation. The Laplace equation in cartesian

and spherical polar coordinates is� Cartesian Coordinates � 2Φ � ∂2Φ
∂x2 � ∂2Φ

∂y2 � ∂2Φ
∂z2 � 0 � (2.1)� Spherical Polar Coordinates� 2Φ � �

1
r2 � ∂

∂r

�
r2∂Φ

∂r ��� �
1

r2 sinθ � ∂
∂θ

�
sinθ

∂Φ
∂θ ��� �

1
r2 sin2 θ � �

∂2Φ
∂φ2 � � 0 �

(2.2)

Solutions of the Laplace equation (2.1, 2.2) are called Harmonic Functions. The potential

function satisfies the Laplace equation and hence is a harmonic function. Any harmonic
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function can be expressed as

Φ
�
r� θ � φ ��� ∞

∑
n � 0

n

∑
m �	� n

�
Lm

n rn � Mm
n

rn � 1 � Y m
n

�
θ � φ � � (2.3)

where

Y m
n

�
θ � φ ��� �

n ��� m � � !�
n � � m � � ! P �m �n

�
cosθ � exp

�
imφ � � (2.4)

where P �m �n
�
cosθ � are the associated Legendre functions of degree n and order � m � , and

i ��� � 1.

The terms Y m
n

�
θ � φ � rn, 0 � n � p, n � m � � n are called spherical harmonics of de-

gree n and the terms 1
rn � 1 � Y m

n
�
θ � φ � , 0 � n � p, n � m � � n are called spherical harmonics

of degree ( � n � 1). The coefficients Lm
n and Mm

n are the moments of the expansion, and

more specifically, Local and Multipole expansion coefficients, respectively.

A. Mathematical Preliminaries

The following theorem expresses the potential due to charges strictly enclosed within a

spherical region at any point outside the region, as shown in Fig. 1. The origin is located

at the center of the sphere.

Theorem II.1 (Multipole Expansion) Suppose there are k charges, q j
�
ρ j � α j � β j � � j �

1 � � ��� � k � with � ρ j �"! a. The potential at any point P
�
r� θ � φ � , r # a, is given by

Φ
�
P �	� ∞

∑
n � 0

n

∑
m ��� n

Mm
n

rn � 1 Y m
n

�
θ � φ � � (2.5)

where

Mm
n � k

∑
j � 1

q j ρn
j Y � m

n
�
α j � β j �$� (2.6)
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q
1

2
q

q
j

q
k

O
a

P

Fig. 1. Multipole expansion of the potential due to a set of charges enclosed in a sphere at
any point P outside the sphere.

However, the potential is expressed as an approximation given by

Φ̂
�
P ��� p

∑
n � 0

n

∑
m �	� n

Mm
n

rn � 1 Y m
n

�
θ � φ � � (2.7)

where p is called the degree of the multipole expansion. The error in approximating the

potential, for a degree p % 1 of multipole expansion, is given by&& Φ �
P � � Φ̂

�
P � && � ∑k

j � 1 � q j �
r � a ' a

r ( p � 1 � (2.8)

Thus, the potential due to charges enclosed in a spherical region, irrespective of the num-

ber of charges in the region, is expressed as a finite series expansion consisting of
�
p � 1 � 2

terms.

The next theorem expresses the potential due to charges strictly outside a spherical

region at any point inside the region. (See Fig. 2).

Theorem II.2 (Local Expansion) Suppose there are k charges q j
�
ρ j � α j � β j � � j � 1 � ����� � k �

with � ρ j � # a. The potential at any point P
�
r� θ � φ � , r ! a, is given by

Φ
�
P ��� ∞

∑
n � 0

n

∑
m �	� n

Lm
n rn Y m

n
�
θ � φ � � (2.9)
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2
q

q
1

q
j

q
k

O
a

P

Fig. 2. Local expansion of the potential due to a set of charges outside a sphere at any
point P inside the sphere.

where

Lm
n � k

∑
j � 1

q j Y � m
n

�
α j � β j �

ρn
j

� (2.10)

The potential can be approximated as

Φ̂
�
P ��� p

∑
n � 0

n

∑
m �	� n

Lm
n rn Y m

n
�
θ � φ � � (2.11)

where p is called the degree of the local expansion. The error in approximating the po-

tential, for a degree p % 1 of local expansion, is given by&& Φ �
P � � Φ̂

�
P � && � ∑k

j � 1 � q j �
a � r ' r

a ( p � 1 � (2.12)

Thus, the potential due to charges outside a spherical region, irrespective of the number

of charges, is expressed as a finite series expansion consisting of
�
p � 1 � 2 terms.

The next theorem expresses the potential due to a set of charges enclosed in a spher-

ical region, at any point outside a larger sphere that encloses the spherical region contain-

ing the charges. The origin is located at the center of the larger sphere, and lies outside

the smaller sphere containing the charges. (see Fig. 3).
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q
1

q
k

2
q

P

a

a+ρ

O

QD1

D2

Fig. 3. Translation of multipole expansion of the potential due to a set of charges in a
sphere D1 to the sphere D2.

Theorem II.3 (Translation of Multipole Expansion) Suppose there are k charges given

by q j
�
ρ j � α j � β j � , j � 1, ����� , k in a sphere D1 of radius a, with center at Q

�
ρ � α � β � , and

for points P
�
r� θ � φ � outside D1, potential due to these charges is given by the multipole

expansion

Φ
�
P �	� ∞

∑
n � 0

n

∑
m ��� n

Om
n

r ) n � 1 Y m
n

�
θ ) � φ ) � � (2.13)

where *PQ � �
r ) � θ ) � φ ) � , and Om

n is the multipole expansion w.r.t. the origin Q. For any

point P
�
r ) � θ ) � φ ) � outside the sphere D2 of radius

�
a � ρ � the potential is given by

Φ
�
P �	� ∞

∑
j � 0

j

∑
m �	� j

Mk
j

r j � 1 Y k
j
�
θ � φ � � (2.14)

where

Mk
j � j

∑
n � 0

n

∑
m �	� n

Ok � m
j � n i � k � � �m � � � k � m � Am

n Ak � m
j � n ρn Y � m

n
�
α � β �

Ak
j

� (2.15)

Am
n � � � 1 � n+ �

n � m � ! � n � m � ! � (2.16)
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The potential can be approximated by

Φ̂
�
P ��� p

∑
j � 0

j

∑
k �	� j

Mk
j

r j � 1 Y k
j
�
θ � φ � � (2.17)

where p is called the degree of the multipole expansion. The error in approximating the

potential, for a degree p % 0 of the expansion, is given by&& Φ �
P � � Φ̂

�
P � && � ∑k

j � 1 � q j �
r � �

a � ρ � �
a � ρ

r � p � 1 � (2.18)

Thus, the potential of a set of charges in a spherical region, irrespective of the number of

charges, is expressed as a truncated series expansion of
�
p � 1 � 2 terms.

The following theorem expresses the potential due to a set of charges enclosed in a

spherical region, at any point inside another spherical region which is disjoint from the

first region, (see Fig. 4).

2
q

q
1

q
k

q
j

O

a

Q

a

D1 D2

P

Fig. 4. Translation of multipole expansion of the potential due to a set of charges in a
sphere D1 to the local expansion inside a disjoint sphere D2.

Theorem II.4 (Conversion of Multipole Expansion into a Local Expansion) Suppose

there are k charges q j
�
ρ j � α j � β j � � j � 1 � ����� � k � inside a sphere D1 of radius a, and center

at Q
�
ρ � α � β � , and ρ j # �

c � 1 � a, where c # 1. The corresponding multipole expansion

converges inside the sphere D2 of radius a centered at the origin. Inside D2, the potential
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due to the charges q1 � q2 � ����� � qk is given by a local expansion

Φ
�
P ��� ∞

∑
j � 0

j

∑
k ��� j

Lk
j Y k

j
�
θ � φ � r j � (2.19)

where

Lk
j � ∞

∑
n � 0

n

∑
m �	� n

Om
n i � k � m � � � k � � �m � Am

n Ak
j Y m � k

j � n
�
α � β �� � 1 � nAm � k

j � n ρ j � n � 1 � (2.20)

in which Om
n , 0 � n � p, � n � m � n is the multipole expansion coefficients of the charges

w.r.t. Q, and Am
n is as defined in (2.16).

The potential is approximated as

Φ̂
�
P ��� p

∑
j � 0

j

∑
k ��� j

Lk
j Y k

j
�
θ � φ � r j � (2.21)

where p is the degree of local expansion. The error in approximating the potential for a

degree p % 1 of local expansion is given by&&&&& Φ �
P � � p

∑
j � 0

j

∑
k �	� j

Lk
j Y k

j
�
θ � φ � r j � 1

&&&&& � ∑k
j � 1 � q j �

ca � a

�
1
c � p � 1 � (2.22)

Thus, the potential due to a set of n charges in a sphere, at a set of m points in another

sphere can be computed in O
�
m � n � operations as against O

�
mn � operations taken by the

naive method (1.2).

The next theorem presents the local expansion of the potential inside D1 when the

local expansion is known inside the sphere D2. (see Fig. 5).

Theorem II.5 (Translation of Local Expansion) If Q
�
ρ � α � β � is the origin of the local

expansion

Φ
�
P �	� p

∑
n � 0

n

∑
m �	� n

Om
n Y m

n
�
θ ) � φ ) � r ) n � (2.23)

where P =
�
r� θ � φ � , r ! a and *PQ � �

r ) � θ ) � φ ) � , r ) ! a � ρ, then

Φ
�
P ��� p

∑
j � 0

j

∑
k ��� j

Lk
j Y k

j
�
θ � φ � r j � (2.24)
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2
q

q
1

q
k

a+ρ

a

D2

P
1D

Q

O

Fig. 5. Translation of local expansion of the potential from sphere D2 to D1. The charges
are located outside D2.

where

Lk
j � p

∑
n � j

n

∑
m �	� n

Om
n i �m � � �m � k � � � k � Am � k

n � j Ak
j Y m � k

n � j
�
α � β � ρn � j� � 1 � n � j Am

n
� (2.25)

where Am
n is as defined in (2.16).

Thus, given the local expansion of a region due to a set of charges outside the region, we

can evaluate the corresponding local expansion in an enclosed region.

B. The Fast Multipole Method

An oct-tree is constructed by enclosing the charges in a root node and recursively sub-

dividing the node till each leaf node has atmost a constant number of charges. By a leaf

node, we mean a non-empty leaf node and by an internal node, a node having children.

A node a is far enough from a node b if they are separated by a distance of at least the

length of node b.

The non-adaptive version of FMM, where the oct-tree is balanced is suitable only

for uniform point distribution. An adaptive version of FMM is more versatile as it can be

used for non-uniform distributions as well.

The basic strategy here is to cluster nodes at various levels and compute interactions
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with other far-away clusters by using multipole and local expansions. Potential due to

nearby charges are evaluated directly.

1. Computation of Multipole Expansions

The multipole expansions for each leaf are computed directly from its charges by Theo-

rem II.1. The multipole expansions of the parents of the leaves are computed by translat-

ing the multipole expansions of each of its children to itself and summing them up (The-

orem II.3). Likewise, the multipole expansions of all nodes are evaluated, in a bottom-up

manner.

2. Computation of Local Expansions

The local expansions of the nodes are computed after the computation of the multipole

expansions of all nodes. The tree is traversed top-down starting from the root and the

local expansions of the nodes are computed during the traversal. The local expansions

due to charges far enough from a node, but not far enough from the node’s parent are

computed. Then, the local expansion due to charges far enough from the node’s parent is

computed from its parent’s local expansion.

At each non-empty node, we maintain five lists called l1, l2, l3, l4, and, l5. Lists l1

and l3 of internal nodes are empty. For a node b,� List l1 is the set of all leaf nodes adjacent to b.� List l2 consists of all far enough nodes that are children of b’s parent’s immediate

neighbors of the same size. Nodes in list l2 of b are of the same size as b and are

far enough from b.� List l3 is the set of all descendents of b’s immediate neighbors of the same size that

are not adjacent to b but their parents are.
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� List l4 is the set of all nodes x such that b is in the list l3 of x. List l4 of node b are

leaf nodes of size larger than b.� List l5 is the set of all nodes far enough from b’s parent. Nodes in list l5 contribute

to the local expansion in phase 2.

The local expansion due to nodes in list l2 is evaluated by translating their multipole

expansions to the local expansions w.r.t. b’s center using Theorem II.3, and adding them

up. Local expansion due to list l4 is computed by adding up local expansions of the

charges in the nodes in list l4. Local expansion due to list l5 is computed by translating

the local expansion of each parent to each of its children in a top-down manner using

Theorem II.5. The total local expansion at the boxes is evaluated by summing up the

partial local expansions due to lists l2, l4, and l5.

3. Potential Evaluation

Potential at any charge point is the sum of the three types of partial potentials φ1, φ2, φ3,

defined as� φ1 is the potential due to all charges in list l1 and is computed by direct interactions,� φ2 is the potential due to all charges outside b’s immediate neighbors of the same

size and is evaluated by applying the local expansion of b at the charge location in

b, and� φ3 is the potential due to all charges in list l3 and is found by summing up the partial

potentials obtained by applying the multipole expansions of each of the nodes in list

l3 at the charge location in b.

4. The Fast Multipole Algorithm

The algorithm consists of the following steps:
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Step 1 Construct the oct-tree by recursively sub-dividing the root till each leaf has atmost

k0 charges.

Step 2a Evaluate the multipole expansion coefficients of all leaf nodes using Theorem

II.1.

Step 2b Compute the multipole expansion coefficients of all internal nodes in a bottom

up manner. Multipole expansion coefficients of each parent node is evaluated from

the multipole expansion coefficients of its children using Theorem II.3.

Step 3a Form the adjacency lists of the root’s children, each of which has rest of its

siblings in its list l1.

Step 3b Form the adjacency lists of each node by traversing the adjacency list of its

parent.

Step 4 Make the lists l1, l2, l3, and l4 for each node by traversing its adjacency list.

Step 5a At each node, form its local expansion coefficients due to nodes in its list l2

using Theorem II.4 and list l4 using Theorem II.2.

Step 5b Compute the local expansion coefficients of each node due to charges far enough

from its parent by translating the local expansion (evaluated in Step 5a) of its parent

to itself using Theorem II.5.

Step 5c Add the local expansion coefficients computed in Steps 5a and 5b to evaluate the

complete local expansion coefficients of each node.

Step 5d At every charge location in each leaf node, compute the partial potential, φ2 due

to nodes in the leaf’s list l2, list l4, and list l5 from its local expansion coefficients

by using Theorem II.2.
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Step 6a At every charge location in each leaf node, compute the partial potential, φ3 due

to nodes in the leaf’s list l3 by using Theorem II.1.

Step 6b Compute at each charge location the partial potential, φ1 due to direct interac-

tions using 1.2.

Step 7 Compute the potential at each charge location as a sum of partial potentials φ1, φ2

and φ3.

5. Analysis of FMM

The following analysis of FMM is for a uniform particle distribution. Consider the fol-

lowing parameters for the potential evaluation problem

(i) a set of N charges,

(ii) a degree p for the multipole and local expansions, and

(iii) the maximum number k0 of charges per leaf.

In the following analysis

(a) flops stand for floating point operations,

(b) mult-coeff unit is a unit of multipole coefficient evaluation,

(c) mult-mult unit is a unit of translation of multipole coefficients,

(d) mult-loc unit is a unit of translation of multipole to local coefficients,

(e) loc-loc is a unit of local translation.

The complexity of various steps of the algorithm is given by� Step 1:
�
N , k0 � log

�
N , k0 � flops� Step 2a: N

�
p � 1 � 2 mult-coeff units� Step 2b: 8N

7k0

�
p � 1 � 4 mult-mult conv units� Steps 3a, 3b, 4: 430 8N

7k0
flops
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� Step 5a: 189 8N
7k0

�
p � 1 � 4 mult-loc conv units� Step 5b: 8N

7k0

�
p � 1 � 4 loc-loc conv units� Step 5c: 27

2 Nk0 flops� Step 5d: N
�
p � 1 � 2 loc-coeff flops� Step 6a, 6b: 2N integer operations

A mult-coeff unit equals 18 flops, mult-mult conv unit equals 44 flops, mult-loc conv unit

equals 44 flops, loc-loc conv unit equals 44 flops, and loc-coeff unit equals 18 flops. Thus,

the computational complexity can be approximated by 44 - 189
�
p � 1 � 4 N.

The storage requirements for FMM are discussed next. A node unit is a memory sufficient

to hold a node of the tree, which is about 128 bytes, and a complex unit is a memory large

enough to hold two double precision members, which is 16 bytes.� Step 1: 8N
k0

node units = 128
� 8N

k0
� bytes,� Steps 2a, 2b: 8N

7k0

�
p � 1 � 2 complex units = 16

� 8N
7k0

�
p � 1 � 2 � bytes,� Steps 3a, 3b, 4: 430 8N

7k0
single precision units = 4

�
430 8N

7k0
� bytes,� Steps 5a, 5b, 5c, 5d: 8N

7K0

�
p � 1 � 2 complex units = 16

� 8N
7K0

�
p � 1 � 2 � bytes,� Steps 6a, 6b: 8N

7K0
double precision units = 8

� 8N
7K0

� bytes.

Overall, the algorithm requires approximately
�
32

�
p � 1 � 2 � 1720 � N bytes.
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CHAPTER III

THE NEW APPROACH TO POTENTIAL EVALUATION

In this chapter, we develop a new framework for evaluating potential due to a set of

charges. The framework is described using Radial Basis Functions (RBFs) [3], which are

radially symmetric functions. RBFs have excellent approximation properties due to which

they are used to approximate multivariate functions such as potential due to a point charge.

To approximate the potential function, a class of RBFs known as Spherical Harmonics

are used. The spherical harmonics are the general solution of the Laplace Equation (2.2).

Since the potential function due to a charge satisfies the Laplace equation, it is logical

to express the potential as a weighted sum of spherical harmonics centered at the charge

point.

Another reason for using the spherical harmonics is that they are orthogonal func-

tions. Orthogonal functions are linearly independent and hence the set of spherical har-

monics forms a basis for the potential functions. Orthogonality of the spherical harmonics

is most useful, when, given the potential w.r.t. a basis of spherical harmonics centered at

x1, it is required to express the potential w.r.t. a basis of spherical harmonics centered

at x2. We can evaluate the weights of the spherical harmonics centered at x2 by using

orthogonal projection of the first basis onto the second.

As in Barnes-Hut and FMM, an oct-tree is formed by starting from a root box (or

node) enclosing all particles, which is recursively sub-divided into eight child nodes until

each leaf node has atmost a constant number of particles. This constant, k0, is found

experimentally and fixed such that the overall running time of the algorithm is minimized.

We use a value of 35 for k0 that was experimentally determined to be the optimal value.

Empty leaf boxes are addressed as empty nodes. For uniform distributions of particles, the

oct-tree will be balanced, and, non-uniform distributions would result in an unbalanced

oct-tree.
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A. Multipole Coefficients of Charge Clusters

For a given basis of spherical harmonics, the Multipole Coefficients represent the potential

due to the charges inside a region at an evaluation point that is sufficiently far from the re-

gion. The highest degree of the functions in the basis, denoted by p, dictates the accuracy

of the potential. The number of terms in the multipole coefficient vector is
�
p � 1 � 2.

Consider a set of charges q j
�
ρ j � α j � β j � � j � 1 � ����� � k with � ρ j �.! a, i.e., in space

strictly enclosed by a sphere of radius a. The multipole coefficients due to the charges at

any point P
�
r� θ � φ � with r # a is given by

Mm
n � k

∑
j � 1

q j ρn
j Y � m

n
�
α j � β j � � (3.1)

where 0 � n � p � � n � m � n, and

Y � m
n

�
α � β ��� �

n ��� m � � !�
n � � m � � ! P �m �n

�
cosα � exp

� � imβ � � (3.2)

where P �m �n
�
cosα � is the Legendre function of degree n and order � m � .

The vector Mm
n � 0 � n � p � � n � m � n is called the multipole coefficient vector or

simply the multipole vector.

The potential due to the charges in the sphere is expressed as the weighted sum of a

class of spherical harmonic functions called multipole spherical harmonic functions w.r.t.

the center of the sphere. The potential at a point P
�
r� θ � φ � , r # a, is given as

Φ
�
P �	� ∞

∑
n � 0

n

∑
m ��� n

Mm
n

Y m
n

�
θ � φ �

rn � 1 � (3.3)

and can be approximated using the multipole vector as

Φ̂
�
P �	� p

∑
n � 0

n

∑
m ��� n

Mm
n

Y m
n

�
θ � φ �

rn � 1 � (3.4)

where Mm
n is a term in the multipole coefficient vector and p is the multipole degree.
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The vector 1
rn � 1Y m

n
�
θ � φ � , 0 � n � p, � n � m � n is called the multipole spherical har-

monic function vector. The potential Φ
�
P � is an inner-product of the multipole coefficient

vector and the vector of multipole spherical harmonic functions evaluated at P.

The multipole coefficient vectors of the leaf nodes are computed directly by (3.1).

The multipole coefficients of the internal nodes of the tree are computed in a bottom-up

manner. Multipole coefficients of a node are computed by adding the projections of the

multipole coefficients of its child nodes. Consider a parent node with a set of charges

strictly enclosed in it. The potential due to the charges in the node can be expressed as the

weighted sum of its multipole spherical harmonics (3.3)-(3.4). The potential can also be

computed as the sum of partial potentials of the charges in each of its child nodes, given

by the weighted sum of their respective multipole spherical harmonics. Thus

f T
p cp � 8

∑
j � 1

f T
j c j � (3.5)

where fp is the vector of multipole spherical harmonics of the parent, cp is the vector of

multipole coefficients of the parent, f j is the vector of multipole spherical harmonics (3.4)

of the jth child, and c j is the vector of multipole coefficients of the jth child. The only

unknown cp, can be isolated by taking the orthogonal complement of fp on either side of

(3.5). After appropriate scaling, we have

cp � 8

∑
j � 1

M j c j � (3.6)

where M j is the lower triangular projection matrix for the jth child and is given as

M j
�
n � m � n1 � m1 �	� Jm1

m � m1
C

�
n � m � n1 � m1 � ρn � n1 Y �0/ m � m1 1

n � n1

�
α � β � � (3.7)

where 0 � n � p � � n � m � n, 0 � n1 � p � � n1 � m1 � n1. The row is denoted by
�
n � m �

and the column is denoted by
�
n1 � m1 � . The coordinates of the jth child’s center w.r.t. to

the parent’s center are assumed to be
�
ρ � α � β � , and



20

Jm1
m � m1

� i �m � � �m � m1 � � �m1 � � (3.8)

C
�
n � m � n1 � m1 �	� �

n � m � ! �
n � m � !�

n1 � m1 � ! � n � n1 � m � m1 � ! �
n1 � m1 � ! ��� n � n1 � � �

m � m1 ��� ! �
(3.9)

Further, M j can be factored as follows

M j � Dρ M̃ j D � 1
ρ � (3.10)

where M̃ j is the conversion matrix between a parent and its jth child, independent of the

level. Dρ is a diagonal matrix such that

Dρ
�
n � m � n1 � m1 �	� 234 35 ρn � n � n1, m � m1

0 � otherwise
(3.11)

Combining equations (3.6) and (3.10), we get

cp � 8

∑
j � 1

Dρ M̃ j D � 1
ρ c j � (3.12)

B. Local Coefficients

Local Coefficients of a region represent the potential due to charges sufficiently far from

the region at an evaluation point inside the region. The local coefficients have a degree

which dictates the accuracy of the potential. For a degree p, the number of terms in the

local coefficient vector is
�
p � 1 � 2. Consider a set of charges q j

�
ρ j � α j � β j � � j � 1 � ��� � � k

with � ρ j � # a. The local coefficients due to the charges at any point P
�
r� θ � φ � , r ! a, is

given by

Lm
n � k

∑
j � 1

q j
Y � m

n
�
α j � β j �

ρn � 1
j

� (3.13)
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where 0 � n � p � � n � m � n. The vector Lm
n � 0 � n � p � � n � m � n is called the local

coefficient vector, or simply the local vector.

The potential due to the charges in the sphere is expressed as the weighted sum of

the local spherical harmonic functions w.r.t. the center of the sphere. The potential at a

point P
�
r� θ � φ � , r ! a, is given as

Φ
�
P ��� ∞

∑
n � 0

n

∑
m �	� n

Lm
n Y m

n
�
θ � φ � rn � (3.14)

and can be approximated using the local coefficient vector as

Φ̂
�
P ��� p

∑
n � 0

n

∑
m �	� n

Lm
n Y m

n
�
θ � φ � rn � (3.15)

where Lm
n is a term in the local coefficient vector, p is the multipole degree. The vector

Y m
n

�
θ � φ � rn, 0 � n � p, � n � m � n is called the local spherical harmonic function vector.

The potential Φ
�
P � is an inner-product of the local coefficient vector and the vector of

local spherical harmonic functions evaluated at P.

A node a is said to be far enough from a node b if they are separated by at least the

length of node b. The local coefficients of the nodes are computed in two phases. The

local expansions due to charges far enough from the node, but not far enough from the

node’s parent are computed using Theorem II.4. Then, the local expansion due to charges

far enough from the node’s parent is accumulated (i.e., passed on) at the node from its

parent using Theorem II.5.

1. Phase 1

As in FMM, lists l1, l2, l3, and l4 are maintained at each non-empty node. However,

the characterization of the lists is slightly different from that in FMM. Lists l1 and l3 of

internal nodes are empty. For a node b,� List l1 consists of leaf nodes either adjacent to b or that are descendents of b’s
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colleagues whose parents are adjacent to b but are themselves not adjacent to b. A

colleague is an adjacent node of the same size.� List l2 consists of all far enough internal nodes which are children of b’s parent’s

colleagues. Nodes in list l2 of b are of the same size as b and are far enough from

b.� List l3 is the set of all internal nodes that are descendents of b’s colleagues, and

whose parents are adjacent to b, but the nodes are themselves not adjacent to b.� List l4 is the set of all nodes x such that b is in the list l3 of x. List l4 of node b are

all leaf nodes of size larger than or equal to b.

Phase 1 consists of computing local coefficients due to the charges in lists l2 and l4.

Local coefficients due to list l4 are computed by adding the local coefficients due to each

charge in the nodes in list l4 using equation (3.13). Local coefficients due to list l2 are

computed by taking the sum of the projections of the multipole series of the nodes in list

l2 onto the local spherical harmonic functions of the current node, b.

The potential due to the charges in a node y at any point in node x can be expressed

as a weighted sum of local spherical harmonics of x as shown in (3.14). The potential

can also be computed as a weighted sum of the multipole spherical harmonics of y given

in (3.3). Thus

gT
x dx � f T

y cy � (3.16)

where gx is the vector of local spherical harmonics of node x, dx is the vector of local

coefficients or the weights of node x, fy is the vector of multipole spherical harmonics of

node y, and cy is the vector of multipole coefficients or the weights of node y. The only

unknown dx can be isolated by multiplying on either sides of the equation 3.16 with the

orthogonal complement of gx. After appropriate scaling, we have
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dx � Txy cy � (3.17)

where Txy is the conversion matrix for node y, and is given by

Txy
�
n � m � n1 � m1 �	� Jm1

m
Am

n Am1
n1

Am � m1
n � n1

Y �6/ m � m1 1
n � n1

�
α � β �

ρn � n1 � 1 � (3.18)

where, 0 � n � p � � n � m � n, 0 � n1 � p � � n1 � m1 � n1. The row is denoted by
�
n � m �

and the column is denoted by
�
n1 � m1 � . The coordinates of node y’s center w.r.t. to the x’s

center are assumed to be
�
ρ � α � β � , and

Jm1
m � i �m � m1 � � �m � � �m1 �� � 1 � n1 � (3.19)

Am
n � � � 1 � n+ �

n � m � ! � n � m � ! � (3.20)

The local coefficient vector of x can be obtained from matrix-multiplication with

multipole coefficient vector of y. However, this is an implementation detail. Theoretically,

the local coefficient vector of x is obtained by taking the projections of spherical harmonic

function of y onto the local spherical harmonic functions of x.

2. Phase 2

The local coefficients at each node are computed by adding the local coefficients obtained

from lists l2 and l4 and the projections of the local coefficients of the node’s parent onto

the node’s local spherical harmonic functions. This process is called as accumulation of

local coefficients from parent to child. The potential at a point inside a node due to a set

of charges outside the node’s parent can be expressed as the weighted sum of the node’s

local spherical harmonics and also as the weighted sum of its parent’s local spherical

harmonics. Thus
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gT
c dc � gT

p dp � (3.21)

where gc is the vector of local spherical harmonics of the child, and dc is the vector of

local coefficients of the child, gp is the vector of local spherical harmonics of the parent,

dp is the vector of local coefficients of the parent. The unknown vector dc can be isolated

by multiplying on either side of the equation (3.21) with the orthogonal complement of

gc. Appropriate scaling leads to

dc � Lp dp � (3.22)

where Lp is the upper triangular projection matrix

Lp
�
n � m � n1 � m1 �	� Jm � m1  n � n1

m
Am � m1

n � n1
Am1

n1

Am
n

ρn � n1 Y m � m1
n � n1

�
α � β � � (3.23)

where 0 � n � p � � n � m � n, 0 � n1 � p � � n1 � m1 � n1. The row is denoted by
�
n � m �

and the column is denoted by
�
n1 � m1 � . The coordinates of the parent’s center w.r.t. to the

child’s center are assumed to be
�
ρ � α � β � , and

Jm � m1  n � n1
m � i �m � � �m � m1 � � �m1 �� � 1 � n � n1

� (3.24)

Further, Lp can be factored as follows

Lp � D � 1
ρ L̃ρ Dρ � (3.25)

where L̃ρ is the conversion matrix between a node and its parent, independent of the level.

Combining equations (3.22) and (3.25), we get

dc � D � 1
ρ L̃ρ Dρ dp � (3.26)
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Thus, the local coefficients of each parent are accumulated at each of its children. The

local coefficients of a node are computed as the sum of the local coefficients due to list l2

and list l4 evaluated in phase 1, and the local coefficients obtained by accumulation from

its parent in phase 2.

C. Potential Evaluation

To evaluate the potential at an observation point inside a leaf node, the domain can be

partitioned into near, far, and very far regions. For the leaf node, the near region consists

of nodes in list l1, the far region consists of lists l2, l3, and l4, and the very far region is

accounted for by the accumulation of local coefficients from each parent node to each of

its children. The charges in these regions are grouped into clusters, and the effect of each

cluster is computed separately. The potential is computed as the sum of the potentials due

to such clusters, resulting in an O
�
n � algorithm.

For a point located in a leaf node nl, the potential is computed as a sum of the

near-potential and the far-potential. The near-potential is computed directly, i.e., from

particle-particle interactions. The far-potential is expressed as the weighted sum of the

local spherical harmonic functions of the node, with the local coefficients as the corre-

sponding weights.

D. Matrix Structure

The hallmark of this approach is its simplicity in terms of structure. The evaluation of

potential due to a set of charges is represented as a matrix-vector product

v � P q � (3.27)

where q is the vector of n charges and v is the vector of potentials at the n charge locations.

The n - n potential matrix, P is constructed as a product of five matrices as follows
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P � B L � 1 T M � 1 A � (3.28)

where A is an
�
m

�
p � 1 � 2 � n �7- n matrix that is constructed from the multipole vectors

of unit charges in the leaf nodes of the oct-tree. Here, m is the number of nodes in

the oct-tree. The
�
m

�
p � 1 � 2 � n �7- �

m
�
p � 1 � 2 � n � matrix M � 1 is used to evaluate the

multipole coefficients for the internal nodes of the oct-tree from the multipole coefficients

of the leaves. The conversion of multipole coefficients into partial local coefficients of

nearby nodes is represented by the
�
m

�
p � 1 � 2 � n �8- �

m
�
p � 1 � 2 � n � matrix T , and the�

m
�
p � 1 � 2 � n �7- �

m
�
p � 1 � 2 � n � matrix L � 1 is used to evaluate the local coefficients

at the leaves. Finally, the n - �
m

�
p � 1 � 2 � n � matrix B is used to compute the potential

using the local coefficients.

Composition of A: A is an
�
m

�
p � 1 � 2 � n �8- n matrix that converts the charge vector

into a vector of multipole vectors of the charges in the tree. A consists of an n - n identity

matrix at the bottom, on top of which is a n
�
p � 1 � 2 - n block diagonal matrix, and each

block in it is the first column of the identity matrix of order
�
p � 1 � 2, and the rest of A

consists of zeros. The vector

v1 � A q � (3.29)

has the vector of charges at the bottom, the multipole vectors of the leaves on top of it,

and zeros on top of the vector. v1 is in a form that can readily be multiplied by M � 1, to

get v2, the vector of multipole vectors of all nodes.

Composition of M � 1
0 : The matrix M � 1 encompasses the information for computation

of the multipole coefficients of all the nodes in the tree in a bottom-up manner, using the

multipole coefficients of the charges present in v1. M is block upper-triangular, and can

be written as
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M �:9;< M1

In

=?>@ � (3.30)

where M1 is an upper triangular block matrix of size m
�
p � 1 � 2 with each block row

corresponding to a node in the tree. The block rows in the lowest level of M correspond

to the leaf nodes and the higher block rows correspond to the higher levels of the oct-tree

in a bottom-up manner. A block row for an internal node represents the computation of

its multipole coefficients from the multipole coefficients of the its children, as given in

(3.6)

I cp � 8

∑
j � 1

M j c j � 0 � (3.31)

The block row corresponding to a leaf has only the identity matrix on its diagonal.

The block row of an internal node has an identity as its diagonal block and eight off-

diagonal blocks of � M j � 1 � j � 8, corresponding to each of its children. The column

number where an M j occurs is the same as the row number where the multipole coeffi-

cients of M j are evaluated. The vector

v2 � M � 1 v1 � (3.32)

consists of the charge vector q at the bottom, and multipole vectors of all nodes at the top.

Composition of T : T converts the vector of multipole vectors of all nodes into the

vector of partial local vectors (i.e., local coefficients due to lists l2, l3, and l4), as follows

v3 � T v1 � (3.33)

T is a block matrix and can be written as
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T �A9;< T11 T12

T21 T22

=?>@ � (3.34)

where T22, is a matrix of size n which represents the partial potential due to direct inter-

actions. T11 is a matrix of size m
�
p � 1 � 2 which captures the effect of nodes in list l2

converts the multipole coefficients in v2 to the corresponding local coefficients in v3. T12

captures the effect of nodes in list l4, and T21 captures the effect of nodes in list l3.

T12 can be considered as a set of block rows, with the lowest rows corresponding

to the leaves and the higher rows corresponding to the higher level internal nodes. The

columns of a block row corresponding to a node are the local coefficient vectors of the

corresponding leaf nodes, which are in the list l4 of the node. T21 can be considered as a

set of block columns, with the rightmost rows corresponding to the leaves and the rows to

the left corresponding to the higher level internal nodes. A block column corresponding

to a node has the multipole spherical harmonic functions evaluated at the charge locations

of those leaf nodes that have this node in their list l3.

Each block row in T corresponds to a node in the tree, with the lowest rows cor-

responding to the leaves and the higher rows corresponding to the higher level internal

nodes of the tree. A nonzero block
�
x � y � in T represents the equation (3.17) where the

local coefficients due a node y in list l2 of the current node x are computed. The diagonal

block in each block row is zero. The matrix T has a symmetric non-zero block structure.

The vector

v3 � T v2 � (3.35)

has the sum of partial potential due to charges in list l1 and direct interactions at the

bottom, on top of which are the local coefficient vectors due to lists l2, l3, and l4, corre-

sponding to each node.
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Composition of L: L � 1 contains the information for computation of the local coeffi-

cients of all the nodes, as a sum of the partial local coefficients due to lists l2, l3, l4 and

due to accumulation from parent. L is block lower-triangular, and can be written as

L �A9;< L1

In

=?>@ � (3.36)

where L1 is a block lower-triangular matrix of size m
�
p � 1 � 2 with each block row cor-

responding to a node in the tree. The block rows in the lowest level of L1 correspond to

the leaf nodes and the higher block rows correspond to the nodes at higher levels of the

oct-tree. Each block row represents the computation of the local coefficients of the corre-

sponding node from the local coefficients due to lists l2, l3, l4 and the local coefficients

due to accumulation from its parent, as given in (3.22)

I dc � Lp dp � 0 � (3.37)

The block row corresponding to a leaf has only the identity matrix on its diagonal. The

block row of an internal node has an identity as its diagonal block and an off-diagonal

block of � Lp, corresponding to its parent. The column number where an Lp occurs is the

same as the row number where the multipole coefficients of the parent are evaluated. The

vector

v4 � L � 1 v3 � (3.38)

consists of the sum of partial potential due to list l1 and direct interactions at the bottom,

on top of which are the complete local vectors of all nodes.

Composition of B: B is an n - �
m

�
p � 1 � 2 � n � matrix which converts v4 into the

potential vector, v. B consists of an n - n identity matrix at the right end, to the left of

which is an n - n
�
p � 1 � 2 block diagonal matrix, and each block is simply the vector of

local spherical harmonics evaluated at the corresponding charge location , and the rest
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of B consists of zeros. B is so constructed that the potential vector v, is obtained by the

matrix-vector product of B and v4, as follows

v � B v4 � (3.39)

1. Benefits of Matrix Structure

The matrix structure makes it easy to comprehend the process of converting the charge

vector into the potential vector. It also provides a convenient top level view of the al-

gorithm. Our approach leads to a number of algorithmic optimizations over existing

techniques. Appropriate transformations of the multipole and local coefficients leads to

conversion matrices that are independent of the tree hierarchy. Precomputation of these

matrices results in significant reduction in computation.

2. The Algorithm

Step 1 Construct the oct-tree by recursively sub-dividing the root node till each leaf has

a maximum of k0 charges.

Step 2a Evaluate the multipole coefficients of all leaf nodes using (3.1).

Step 2b Construct recursively the multipole coefficients of all nodes in the tree in a bot-

tom up manner. Multipole coefficients of each parent node is evaluated as a sum of

matrix vector products of the multipole conversion matrix and the multipole coeffi-

cients of its children (3.12).

Step 3a Form the adjacency lists of the root’s children, each of which has rest of its

siblings in its list.

Step 3b Form the adjacency lists of each node by traversing the adjacency list of its

parent. Note that the adjacency lists here are of half the length of their counterparts
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in FMM.

Step 4 Make the lists l1, l2, l4 for each node by traversing its adjacency list. Note that

here, the list l3 is not constructed at all, and the lengths of the lists l1, l2, and l4,

are half the lengths of their counterparts in FMM.

Step 5a At each node, form its local coefficients due to nodes in its list l2 and list l4

using (3.17) and (3.13), respectively.

Step 5b Compute the local coefficients of each node due to the charges far enough from

its parent as the product of the local conversion matrix and the local coefficient

vector of the node’s parent (evaluated in (3.26)).

Step 5c Add the local coefficients computed in Steps 5a and 5b to evaluate the com-

plete local coefficients of each node. The local coefficients of a leaf represents the

potential due to all charges far enough from the leaf.

Step 5d At every charge location in each leaf node, compute the partial potential φ2 due

to all charges far enough from the leaf from its local coefficient vector by using

(3.15).

Step 6a At every charge location, compute the partial potential φ3 due to nodes in the

leaf’s list l3 by using (3.1).

Step 6b At every charge location, compute the partial potential φ1 due to nodes in the

leaf’s list l1 using (1.2).

Step 7 Compute the potential at each charge location as the sum of partial potentials φ1,

φ2 and φ3.
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3. Analysis of the New Approach

The complexity of this algorithm, in terms of order and the constant multiplying the order,

is similar to that of FMM. However, new approach is faster due to smaller constants. For

the purpose of the following analysis, the charge distribution is assumed to be uniform.

The analysis uses the terms defined for the analysis of FMM in Chapter 2.� Step 1:
�
N , k0 � log

�
N , k0 � flops� Step 2a: N

�
p � 1 � 2 mult-coeff units� Step 2b: 8N

7k0

�
p � 1 � 4 mult-mult conv units� Steps 3a, 3b, 4: 430 8N

7k0
flops� Step 5a: 189 8N

7K0

�
p � 1 � 4 mult-loc conv units� Step 5b: 8N

7K0

�
p � 1 � 4 loc-loc conv units� Step 5c: 27

2 Nk0 flops� Step 5d: N
�
p � 1 � 2 loc-coeff flops� Step 6a, 6b: 2N integer operations

In this approach, a mult-coeff unit equals 18 flops, mult-mult conv unit equals 10 flops,

mult-loc conv unit equals 15 flops, loc-loc conv unit equals 10 flops, and loc-coeff unit

equals 18 flops. Thus, the computational complexity can be approximated by 15 -
189

�
p � 1 � 4 N flops, whereas the corresponding term in FMM is 44 - 189

�
p � 1 � 4 N

flops as shown earlier.

Thus, the complexity of the novel approach is similar in terms of order, but the

constant in the order term is about three times lesser in this approach as compared to

FMM. However, it should be noted that this improvement in the constant is only in the
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computation intensive steps and the rest of the steps take the same amount of time as

FMM.

The storage requirement of the proposed approach are discussed here. A node unit

is memory sufficient to hold a node of the tree, which is about 128 bytes, and a complex

unit is a memory large enough to hold two double precision units, which is 16 bytes.� Step 1: 8N
k0

node units = 128
� 8N

k0
� bytes,� Steps 2a, 2b: 8N

7k0

�
p � 1 � 2 complex units = 16

� 8N
7k0

�
p � 1 � 2 � bytes,� Steps 3a, 3b, 4: 215 8N

7k0
single precision units = 4

�
215 8N

7k0
� bytes,� Steps 5a, 5b, 5c, 5d: 8N

7K0

�
p � 1 � 2 complex units = 16

� 8N
7K0

�
p � 1 � 2 � bytes,� Steps 6a, 6b: 8N

7K0
double precision units = 8

� 8N
7K0

� bytes.

Thus, the algorithm approximately requires a storage of
�
32

�
p � 1 � 2 � 860 � N bytes,

which is 860N bytes lesser than that of FMM. For small values of p, this is about a 50%

reduction in storage.

E. Error Analysis

The potential function is expressed as a weighted sum of multipole or local spherical

harmonic basis functions, with the corresponding weights being multipole or local coeffi-

cients, respectively. The potential function belongs to the space of multivariate functions,

which is an infinite dimensional space. Thus, in order to express the potential exactly,

we need infinite spherical harmonic basis functions. However, the potential function can

be expressed up to arbitrary accuracy by a finite set of spherical harmonic basis func-

tions. The accuracy is governed by the degree, p, of the corresponding multipole or local

spherical harmonic functions. The number of spherical harmonic functions of degree p

used to express the potential is
�
p � 1 � 2. Thus, the corresponding number of weights or

coefficients is also
�
p � 1 � 2.
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An error is incurred in expressing the potential by a finite set of spherical harmonic

basis functions. This error is basically the weighted sum of those spherical harmonic basis

functions, which were not considered in the finite set used to express the potential.

The potential at any charge location consists of partial potentials due to� direct interactions� local spherical harmonic basis functions� multipole spherical harmonic basis functions

The partial potential due to direct interactions is evaluated exactly by direct particle-

particle interactions. The only errors incurred are in the partial potentials due to the

local and multipole spherical harmonics corresponding to the charge location. The error

incurred by the partial potential due to a set of multipole spherical harmonics is similar to

the corresponding error incurred by the multipole expansions in the Fast Multipole Algo-

rithm, given by (2.8). Similarly, the error incurred by the partial potential due to a set of

local spherical harmonics is also similar to the corresponding error incurred by the local

expansions in the Fast Multipole Algorithm, given by (2.12).

Here is a description of the error in potential due to multipole coefficients. Let

P
�
r� θ � φ � be the evaluation point, and q j

�
ρ j � α j � β j � , j � 1 � ��� N be a set of charges, en-

closed in a sphere of radius r0 ! r. p is the degree of spherical harmonics and N, the

number of charges creating the potential. The results presented here mostly follow from

the error results in FMM [4, 5].

The exact potential is expressed as

Φ
�
P ��� N

∑
j � 1

∞

∑
n � 0

n

∑
m ��� n

q j B Y � m
n

�
α j � β j � ρn

j C �
Y m

n
�
θ � φ �

rn � 1 � � (3.40)
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For a degree p of spherical harmonics, the potential is approximated as

Φ
�
P̂ �	� N

∑
j � 1

p

∑
n � 0

n

∑
m ��� n

q j B Y � m
n

�
α j � β j � ρn

j C �
Y m

n
�
θ � φ �

rn � 1 � � (3.41)

Thus, the error in approximating the potential is given by

E
�
P �	� Φ

�
P � � Φ

�
P̂ �	� N

∑
j � 1

∞

∑
n � p � 1

n

∑
m �	� n

q j B Y � m
n

�
α j � β j � ρn

j C �
Y m

n
�
θ � φ �

rn � 1 � � (3.42)

Simplification leads to,

E
�
P �	� N

∑
j � 1

q j

∞

∑
n � p � 1

ρn
j

rn � 1 D n

∑
m �	� n

Y � m
n

�
α j � β j � Y m

n
�
θ � φ �FEG� (3.43)

It is known that

Pn
�
cos γ j �	� n

∑
m �	� n

Y � m
n

�
α j � β j � Y m

n
�
θ � φ � � (3.44)

where γ j is the angle subtended between P
�
r� θ � φ � and q j

�
ρ j � α j � β j � . (See e.g. equation

3.35 in [4]) Substituting (3.44) in (3.43), we have

E
�
P �	� N

∑
j � 1

q j

∞

∑
n � p � 1

ρn
j

rn � 1 Pn
�
cos γ j �$� (3.45)

Thus, the absolute value of the error is given by� E �
P � � � N

∑
j � 1

� q j � ∞

∑
n � p � 1

&&&& ρn
j

rn � 1 Pn
�
cos γ j � &&&& � (3.46)

As the Legendre function, Pn
�
x � is always bounded by 1, we get� E �

P � � � N

∑
j � 1

� q j � ∞

∑
n � p � 1

� ρn
j

rn � 1 � � (3.47)

Incorporating ρ j ! r0, we have� E �
P � � � N

∑
j � 1

� q j � ∞

∑
n � p � 1

�
rn

0
rn � 1 � � (3.48)

Further simplifying, we can express the above equation (3.48) as� E �
P � � � ∑N

j � 1 � q j �
r � r0 ' r0

r ( p � 1 � (3.49)
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Thus, the order of error for using multipole coefficients is given by� E �
P � � � O ' r0

r ( n � 1 � (3.50)

In our implementation, we have B r0
r C ! 1

3 , thus� E �
P � � � O ' 3 �0/ n � 1 1 ( � (3.51)

The rest of the error analysis for potential evaluation, i.e., the error in for potential due to

local coefficients, error in computing multipole coefficients of a parent node from that of

its children, error in multipole to local coefficient conversion, and, error in accumulation

of local coefficient from parent node to each of its child nodes, have a similar bound.

Detailed derivations can be found in [4, 5]. The error here is similar since the implemen-

tation details are similar to those in FMM. Hence, the overall error for potential in our

implementation is given by � E �
P � � � O ' 3 �0/ n � 1 1 ( � (3.52)

In general if we have r0
r ! θ0 ! 1, for a constant parameter θ0, the overall error in potential

is given by � E �
P � � � O B θn � 1

0 C � (3.53)

Thus the error is a function of and converges exponentially w.r.t. the degree p of the

corresponding spherical harmonics.
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CHAPTER IV

EXPERIMENTS

The serial algorithm based on the proposed approach for potential evaluation was run on

Linux workstations with 1 � 5GHz Pentium 4 dual processors with 1GB main memory. The

parallel implementation of the algorithms was run on the 11-node 32 processor (7 nodes

with 64MB, 4 nodes with 256MB) IBM p690 supercomputing machines in the National

Center for Supercomputing Applications (NCSA) at University of Illinois.

A. Implementation Details

The object-oriented design methodology was adopted for the implementation of this al-

gorithm. Object-oriented design makes it natural to model the objects like nodes of a

tree. The object-oriented code can be used to write concise, clear, code with encapsu-

lation (hiding the implementation details from its functionality), low-coupling (minimal

interdependencies across different classes of functions) and high-cohesion (each class or

function does something logically specific, and does it well).

The programming language C++ is used owing to its speed, flexibility, portability,

and widespread usage and understanding. The following abstract data types are created

in the program:� Treenode: Each node of the tree is an object of class Treenode.� Charge: Each charge is an object of class Charge.� Location: Each location in cartesian coordinate is an object of class Location.� Location sph: Each location in spherical polar coordinate is an object of class Lo-

cation sph.� List: The adjacency list and the lists l1, l2, and l4 are objects of class List.
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All data associated with an object and all functions that act on it are encapsulated into a

single class.

Firstly as many objects of class Charge are created as the number of charges. The

root of the oct-tree is created as an object of class Treenode and a message is passed to this

object to construct the oct-tree recursively. This message invokes a member function in

class Treenode, which creates the oct-tree as instructed. The lists l1, l2, and l4 of the each

node are created, by passing a message to the root, which creates these lists recursively in

a top-down tree traversal. The conversion matrices for multipole coefficient computation

and local coefficient computation are precomputed in the main program.

Multipole coefficients are computed by sending a message to the root, which com-

putes the multipole coefficients of all nodes recursively in a bottom-up manner. Local

coefficients due to lists l2 and l4 are evaluated by sending a message to the root, and the

local coefficients of all nodes are recursively computed. Local coefficients due to list l3

are computed in a similar manner. Local coefficients of a node due to nodes far enough

from its parent are computed from its parent’s local coefficients. This is accomplished by

a recursive subroutine.

Finally, the potential at each charge location is computed by sending a message to

the subtree (in the parallel part of the subtree) in which the charge is present.

1. Serial Experiments

For the experiments reported in Tables I and II, the performance of the system (running

time) is observed as a function of the degree of spherical harmonics, p, for three different

values of N, the number of charges in the system. The experiments in this section were

run on the 1 � 5GHz Pentium 4 dual processor Linux workstation with 1GB of memory.

As can be observed in the Table I, the running time of the system increases linearly

with N, the number of charges in the system, for any given degree of spherical harmonics.

Thus the experiments validate the fact that the algorithm is of O
�
n � complexity.
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Table I. Execution time (in seconds) as a function of degree, p and number of charges, N.

Degree N

(p) 1000 10000 100000

1 0.19 3.99 54.0

2 0.30 6.43 87.0

4 0.61 12.90 175.3

2. Experiments for Error Analysis

The error is in infinity norm ( �H�I�H� ∞), which is defined as�H� E �H� ∞ � maxN
j � 1

&&&&& φ̂ j � φ j

φ j

&&&&& � (4.1)

where E is the error vector, N is the number of charges, φ j is the exact potential and φ̂ j,

the calculated potential at the jth charge location.

The experiments illustrate the exponential convergence of error w.r.t. the degree. In

Table II, the error characteristics are observed as a function of the degree of spherical

harmonics, p for three different values of N, the number of charges. As observed in Table

II, the error reduces exponentially with increasing multipole degree. Small degrees of

spherical harmonics (2, 3, 4) result in fairly accurate results.

Table II. Percentage error as a function of degree, p.

Degree N

(p) 1000 10000 100000

1 2.03 3.11 3.04

2 2.9 - 10 � 1 2.9 - 10 � 1 3.7 - 10 � 1

4 2.0 - 10 � 2 3.0 - 10 � 2 5.1 - 10 � 2

7 3.0 - 10 � 4 4.1 - 10 � 3 6.9 - 10 � 3

10 2.0 - 10 � 5 7.7 - 10 � 4 9.5 - 10 � 4
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B. Parallel Formulation

In order to improve the overall running time of the algorithm, a parallel version of the

multipole algorithm is developed. The primary goal in parallelization is to divide the

entire task into smaller independent sub-tasks which can be executed in parallel on differ-

ent processors, thereby, reducing the work per processor, resulting in an reduced overall

running time. Parallelization was performed by employing Open MP directives, and the

parallel code was run on the IBM p690 machines at the National Center for Supercomput-

ing Applications (NCSA) at University of Illinois. All the computation intensive modules

of the proposed algorithm, namely, the tree construction, the multipole coefficient evalu-

ation, local coefficient evaluation and potential computation are efficiently parallelized.

1. Tree Formation

The tree formation is done in two parts: a serial part, and a parallel part. In the serial part,

we start from the root box which encloses all charges, and subdivide it till each leaf has

atmost a constant number of charges in it. At this stage only the serial part of the tree is

formed and in the final tree, the leaves formed in the serial part of the tree will be replaced

by sub-trees rooted at those leaves.

In the parallel part, we partition the leaves (formed at the serial part of the tree)

equally among the processors, each of which will form a subtree by recursively sub-

dividing the node. This part of the tree constructed in parallel will be referred as the

parallel part of the tree.

Herein, we have a concurrent parallel execution followed by a single serial execution.

In the parallel execution, the multipole vector of the nodes in the parallel part of the tree

are evaluated in parallel in a bottom-up manner. After the parallel execution, the multipole

vectors of the roots of each of the sub-trees (in the parallel part of the tree) are available.
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The roots of the sub-trees are leaves of the serial tree. Now, the multipole vectors of all

the other nodes, i.e., the nodes in the serial part of the tree are evaluated serially in a

bottom-up manner.

The local coefficients of the nodes in the serial part of the tree are first computed.

The leaves of the serial part of the tree, which are the roots of the sub-trees in the parallel

part of the tree are divided equally among the processors and the local vectors of the nodes

in parallel part of the tree are computed in parallel.

The local coefficients of the serial part of the tree are first accumulated in a top-down

manner, followed by the accumulation of the nodes in the parallel part of the tree, again,

in a top-down manner. The sub-trees in the parallel part of the tree are divided equally

among all the processors.

Potential computation at the charge locations is done in parallel, by dividing the

sub-trees in the parallel part of the tree equally among all the processors, each of which

computes potential of charges in its subtrees.

2. Parallel Experiments

In each of the tables below, the number of charges is kept constant and the parallel per-

formance of the system is observed as a function the number of parallel processors. The

parallel performance is also studied as a function of the degree of spherical harmonics p.

The speedup, as shown in Table III, is linear for number of processors, pr � 4, after

which the speedup becomes slightly sub-linear for pr � 8 and even more sub-linear for

pr � 16. This reduction in efficiency can be attributed to increased communication for

more number of parallel processors, pr.

As can be seen in Table IV, the parallel efficiency decreases as we go from degree, p � 1

to degree, p � 2, and increases from then on for higher degrees. The initial reduction in

efficiency can be attributed to increased communication and the general increase in effi-

ciency for higher degrees is due to higher computation to communication ratio.
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Table III. Parallel efficiency for a degree, p � 2.

Processors Number of charges, N

(pr) 10000 100000

Time Speedup Eff. Time Speedup Eff.

(s) (%) (s) (%)

1 4.99 1.00 100.0 65.26 1.00 100.0

2 2.47 2.02 101.0 33.69 1.94 96.9

4 1.26 3.97 99.1 16.91 3.86 96.5

8 0.66 7.57 94.7 8.84 7.39 92.3

16 0.41 12.26 76.7 4.84 13.5 84.4

Table IV. Parallel performance as a function of degree p, for N � 100000 charges.

Degree Number of Processors (pr)

2 4 8 16

(p) Time Eff. Time Eff. Time Eff. Time Eff.

(s) (%) (s) (%) (s) (%) (s) (%)

1 24.53 98.4 12.13 99.5 6.50 92.9 3.45 87.5

2 33.69 96.9 16.91 96.5 8.84 92.3 4.84 84.4

4 61.26 97.6 31.65 94.4 15.47 96.6 8.37 89.3
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CHAPTER V

CONCLUSIONS

A simpler matrix-based hierarchical approach is developed for the potential evaluation

problem. The simplicity of this approach makes it easier to comprehend. Optimization

is accomplished in this novel approach by extracting redundancy in the problem, leading

to precomputation of the conversion matrices and storing mostly the non-zero entries of

these matrices. Further optimizations include relationships among the nodes in the var-

ious lists of each node and thereby reducing storage and computation cost. A strategy

of constructing the top part of the tree first and then constructing the rest of the tree in

parallel facilitates a logical and efficient parallelization of the algorithm at every cost-

intensive step, thereby a near linear speedup is achieved. The algorithm is scalable and

high efficiency is achieved for increasing problem sizes and degree of parallelization. Ef-

ficient object-oriented design is implemented for the potential evaluation problem as this

design provides a simple top-down approach for understanding and solving the potential

evaluation problem.
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