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ABSTRACT 

 

Near Real-Time Runoff Estimation Using Spatially Distributed Radar Rainfall Data. 

(December 2003) 

Jennifer Lyn Hadley, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Raghavan Srinivasan 

 

 

The purpose of this study was to evaluate variations of the Natural Resources 

Conservation Service (NRCS) curve number (CN) method for estimating near real-time 

runoff for naturalized flow, using high resolution radar rainfall data for watersheds in 

various agro-climatic regions of Texas.  The CN method is an empirical method for 

calculating surface runoff which has been tested on various systems over a period of 

several years.  Many of the findings of previous studies indicate the need to develop 

variations of this method to account for regional and seasonal changes in weather 

patterns and land cover that might affect runoff.  This study seeks to address these 

issues, as well as the inherent spatial variability of rainfall, in order to develop a means 

of predicting runoff in near real-time for water resource management.  In the past, 

raingauge networks have provided data for hydrologic models.  However, these 

networks are generally unable to provide data in real-time or capture the spatial 

variability associated with rainfall.  Radar networks, such as the Next Generation 

Weather Radar (NEXRAD) of the National Weather Service (NWS), which are widely 

available and continue to improve in quality and resolution, can accomplish these tasks.  

In general, a statistical comparison of the raingauge and NEXRAD data, where both 

were available, shows that the radar data is as representative of observed rainfall as 

raingauge data.  In this study, watersheds of mostly homogenous land cover and 

naturalized flow were used as study areas.  Findings indicate that the use of a dry 

antecedent moisture condition CN value and an initial abstraction (Ia) coefficient of 0.1 
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produced statistically significant results for eight out of the ten watersheds tested.  The 

urban watershed used in this study produced more significant results with the use of the 

traditional 0.2 Ia coefficient.  The predicted results before and during the growing 

season, in general, more closely agreed with the observed runoff than those after the 

growing season.  The overall results can be further improved by altering the CN values 

to account for seasonal vegetation changes, conducting field verification of land cover 

condition, and using bias-corrected NEXRAD rainfall data. 
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I. INTRODUCTION 

 

Water availability has become a major issue in Texas in the last several years.  Adding to 

this issue is the expected doubling of the population within the next 50 years, mainly in 

areas of the state presently without abundant water supplies (Texas Water Development 

Board 2000).  To combat the problems that Texas will face in the future, there has been a 

move toward active planning and management of water resources.  Real-time weather 

data processing and hydrologic modeling can provide information useful for this 

planning in addition to flood and drought mitigation, reservoir operation, and watershed 

and water resource management practices.  However, in order to provide this 

information to managers, it is necessary to first obtain reliable weather data.  Rainfall 

data, in particular, is extremely important in hydrologic modeling because rainfall is the 

driving force in the hydrologic process. 

 

Raingauge networks are generally sparse and insufficient to capture the spatial 

variability of rainfall across large watersheds.  This is especially true in arid and semi-

arid regions, such as west Texas, where most rainfall occurs in short, heavy, localized 

thunderstorms.  It is often difficult to capture such events using the sparsely scattered 

raingauge networks present today.  The dense networks necessary to provide such data 

are generally available only for experimental or research watersheds.  In addition, only a 

limited number of raingauge networks are currently able to provide data in real-time.  

The use of data from weather radar systems could help alleviate these problems.  One 

such system is the Next Generation Weather Radar (NEXRAD) of the National Weather 

Service (NWS), formally known as the Weather Surveillance Radar-1988 Doppler 

(WSR-88D).  
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Weather radars estimate precipitation using remote sensing techniques by transmitting 

and receiving electromagnetic signals. They provide rainfall data with better spatial and 

temporal resolution than the current raingauge networks, and this data is available in 

real-time over large areas.  However, radar estimates suffer from several sources of 

errors, including incorrect hardware calibration and ground clutter contamination, 

making data quality control for these networks extremely important.  Nevertheless, radar 

rainfall data provides the best real-time, spatially and temporally distributed rainfall 

estimates available with current technologies.   

 

The purpose of this study was to evaluate several variations of the Natural Resources 

Conservation Service (NRCS – formerly known as the Soil Conservation Service – SCS) 

curve number (CN) method for estimating near real-time runoff for naturalized flow, 

using high resolution radar rainfall data for watersheds in various agro-climatic regions 

of Texas. 
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II. OBJECTIVES 

 
The primary objectives of this study were to: 

 

1. Select study areas based on the size of the watershed, land use, soil hydrologic 

group, rainfall pattern/agro-climatic region, and streamgauge location.  In 

addition, calculate the weighted average CN for all study areas with CN grids at 

several different resolutions to account for issues concerning spatial variability of 

soil and land use inputs. 

2. Compare traditional raingauge with NEXRAD radar rainfall data on a point by 

point basis for all chosen study areas.  Then evaluate several variations of the 

NRCS CN method in selected study areas by comparing the modeled runoff for 

NEXRAD and raingauge data with observed streamgauge data for the entire 

study period to determine the most appropriate method for estimating runoff in 

various regions of Texas. 

3. Evaluate the intra-annual variability of chosen methods as well as characterize 

rainfall and runoff across watersheds through statistical analysis. 

 

The first objective of this study was to select test watersheds that were of various size, 

land use, soil composition, and agro-climatic region, in order to best account for the 

wide variety of hydrologic conditions throughout the state.  However, these sites also 

required U.S. Geological Survey (USGS) streamgauge monitoring stations at the 

watershed outlets to provide a means of comparison between model outputs and actual 

streamflow observations.  Also, study areas should have natural, or unregulated flow, i.e. 

these areas should not have reservoirs or other diversions within the watershed 

boundaries.  In addition, the weighted average CN was calculated for each watershed 

based on CN grids at various resolutions, in order to account for spatial variability of 

land use and soil inputs. 
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The raingauge and NEXRAD radar rainfall data was compared on a point by point basis 

for all watersheds to determine the statistical significance of the NEXRAD rainfall data 

as compared with the available raingauge rainfall data.  Once these comparisons were 

made, the NRCS CN method for runoff estimation was modified and tested in each 

watershed for comparison with observed streamflow.   

 

These modifications included the choice of CN based on antecedent soil moisture 

condition and the input value for initial abstractions.  These models were tested over 

multiple years, and included the NEXRAD rainfall for 1999 – 2001, as well as historical 

data from raingauge locations for comparison purposes.  Initially, all variations of the 

CN method and both rainfall data inputs were used to determine the significance of each 

alternative.  Once this was determined for the initial sample set, the more effective 

alternatives were applied to the remaining study areas.  

 

The final objective of this study was to compare the seasonal accuracy of the chosen 

runoff estimation methods.  In addition, a statistical analysis of flow events, with ranked 

natural rainfall to runoff pairs was completed.  These statistical comparisons helped to 

identify issues associated with runoff estimation. 
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III. RELEVANT LITERATURE 

 

3.1 NRCS Curve Number Method   

 

In the 1950’s the SCS developed the CN method for estimating runoff in ungaged 

watersheds.  The methodology for this model is outlined in the SCS National 

Engineering Handbook, Section 4 (NEH-4) (SCS 1972).  The model estimates runoff 

based on rainfall depth and a CN variable.  Curve number is a unit-less variable that is 

assigned based on land cover and soil hydrologic group/ soil texture.  CNs range from 0 

– 100 and runoff increases with CN value.  Average values for an area can be found in 

CN tables in the NEH-4 manual. 

 

The CN method is widely used by hydrologist and engineers for watershed modeling, 

and has been used as a simple watershed model and incorporated into various computer 

models worldwide (Woodward et al. 2002; Hawkins et al. 2002).  Although this is an 

accepted method for runoff estimation, several studies have indicated that the method 

should be evaluated and adapted to regional agro-climatic conditions.   

 

First, because the variables used in the model are based on overall watershed 

characteristics, it should not be used as a point observation model, but rather as an 

expression of net watershed performance (Van Mullem et al. 2002).  Hawkins (1998) and 

Hawkins and Woodward (2002) state that CN tables should be used as guidelines and 

that actual CNs and their empirical relationships should be determined based on local 

and regional data.  This is supported by Van Mullem et al. (2002).  They state that the 

direct runoff calculated by the CN method is more sensitive to the CN variable than 

rainfall inputs.  This would suggest an increased need for field verification of land cover 

type and condition before CN assignment.     
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Price (1998) determined that CN could be variable due to seasonal changes in vegetation 

and rainfall pattern.  The study evaluated the seasonal variability in CN values calculated 

from event data in 270 watersheds across the U.S.  The study indicated that there was 

little seasonal variation in CN for agricultural and grassland dominated watersheds; 

however, there was noticeable change in CN value for forested watersheds.  This finding 

was based on lower average CN and high serial correlation coefficient values.  Van 

Mullem et al. (2002) also note seasonal variations in CN values.  Their findings indicate 

that this may be more obvious in humid areas, and is evidenced by higher CNs during 

the dormant season and lower CNs during the summer months, or growing season.  This 

study also indicated that the seasonal change in CNs in forested areas may be attributed 

to leafing stages of the vegetation.   

 

In addition, Ponce and Hawkins (1996) stated that values for initial abstractions (Ia) 

could be interpreted as a regional parameter to improve runoff estimates.  According to 

Hawkins et al. (2002) and Jiang (2001) an Ia value of 0.05 was generally a better fit than 

a value of 0.2.  In 252 of 307 cases, a higher r2 was produced with the 0.05 value.   

 

Walker et al. (1998) used baseflow as a measure of watershed wetness in determining 

the CN value for modeling applications in mildly-sloped and tile-drained watersheds in 

east-central Illinois.  Their findings suggested that the use of baseflow, rather than 

antecedent moisture condition, provided better results in runoff estimations.  They also 

suggested that future research include a study of alternative measures of watershed 

wetness and assumptions concerning Ia.   

 

The accuracy of hydrologic models depends heavily on the accuracy of input data, 

especially rainfall.  In addition, for hydrologic models such as the NRCS CN method, 

there is a need to determine the most accurate variable inputs based on regional 

conditions.  This study seeks to incorporate the use of NEXRAD radar rainfall into 
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variations of the NRCS curve number method in an attempt to better represent the spatial 

variability of rainfall and produce more accurate runoff estimates. 

 

3.2 NEXRAD 

 

A number of previous studies have evaluated all stages of NEXRAD rainfall data in 

relation to raingauge data for corresponding areas (a more detailed description of 

NEXRAD stage data will follow).  Lott and Sittel (1996) compared Stage III NEXRAD 

rainfall data with a network of 220 raingauges for rainfall events from 1994 to 1995.  In 

80% of the raingauge locations, radar underestimated rainfall totals.  Anagnostou et al. 

(1998) compared Stage I data from the Tulsa, Oklahoma radar with 240 raingauge 

stations.  Although the correlation coefficient (CC) at several locations was less than 

0.30, the CC for most of the locations in the study ranged from 0.30 to 0.95.  Their 

findings suggest that Stage III bias-adjusted data was a better comparison with raingauge 

data.  In addition, this study indicates a potential for a seasonal mean-field bias (defined 

as the ratio of difference in total precipitation depth between radar and raingauge to 

raingauge total precipitation (Bedient et al. 2000)).  This bias was lower during warmer 

season months than during the colder season months.   

 

Other studies found underestimation due to terrain blockage (Westrick et al., 1999) and 

extremely high rainfall events (Baeck and Smith 1998).  Baeck and Smith (1998) noted 

that the data processing system used at the time was responsible for the extreme 

underestimation of rainfall totals, in some instances by a factor of more than five.  

Legates (2000) derived a reflectivity-rainfall rate relationship (Z-R relationship) to 

address issues in radar calibration with the use of raingauge data.  This relationship 

increased rainfall estimates, which more closely matched observed rainfall.  This same 

study indicated that standard Z-R relationships used in data processing tend to 

overestimate light rainfall events and underestimate heavy rainfall events.  Jayakrishnan 

(2001) compared NEXRAD and raingauge data in the Texas-Gulf basin.  This study 
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suggests that based on improved data processing algorithms and on-going developments, 

after 1998, NEXRAD was more accurate when compared to raingauge data.  In addition, 

this data did not suffer from the underestimation seen in the past.  The study states that 

raingauges with more than 20% underestimation dropped from 75% in 1995 to 6% in 

1999. 

 

These studies highlight the need for accurately calibrated radar data and suggest that 

there have been improvements in data processing over the history of this technology.  

Still, there is a need for comparison between NEXRAD and raingauge data in order to 

eliminate ground clutter or other sources of data contamination (Sauvageot 1992; 

Legates 2000).  However, based on technological advances and the spatial and temporal 

variability that radar can capture, hydrologic studies have begun to incorporate 

NEXRAD as an input to various models. 

 

3.3 Hydrologic Modeling with NEXRAD  

 

Bedient et al. (2000) used NEXRAD as an input to the HEC-1 model to develop a flood 

forecasting system in the Brays Bayou watershed in Houston, Texas.  Their findings 

show that NEXRAD rainfall estimates performed as well as or better than raingauge data 

in their model.   This data is now being used in a near real-time flood warning system 

application.  Ogden et al. (2000) used NEXRAD rainfall data with the CASC2D model 

to evaluate hydrologic prediction of extreme events in urban environments in the Spring 

Creek watershed in Fort Collins, Colorado.  They found that radar rainfall was useful in 

hydrologic modeling when gauge adjusted.  Otherwise the radar underestimated the 

rainfall totals in extreme events.  Using the uncalibrated rainfall data, the estimated 

rainfall volume for the watershed study area was 42% less than the raingauge reference 

rainfall volume.   
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IV. MATERIALS AND METHODS 

 

The main goal of this study was to evaluate various alternatives of the NRCS CN 

method for estimating runoff, using high resolution radar rainfall data for watersheds in 

various agro-climatic regions of Texas.  The CN method calculates runoff based on the 

land cover and soil hydrologic group, as well as the rainfall depth for the day.  Basically, 

variations in land cover types and the infiltration rate of the associated soil, as well as the 

amount of rainfall at any given time, will change the rate at which rainfall becomes 

surface runoff.   

 

The input data needed for the CN method includes land cover and condition and soil 

hydrologic group data for CN assignment, and weather data for the runoff equation 

calculation.  For this study, a fair condition was assumed due to the difficulty in 

obtaining such information for a large area in a spatially consistent manner.  In addition, 

the observed streamflow data is needed as a reference to determine the statistical 

significance of the runoff estimates produced by these calculations.  Once this data was 

collected, the study areas were identified based on a variety of criteria, including size, 

land use, rainfall pattern/agro-climatic region, and streamgauge location. 

 

Each of the delineated watersheds is composed of subbasins which are 4 km x 4 km 

pixels, corresponding to the NEXRAD grid.  After some additional data analysis and 

processing, as well as a comparison of raingauge to NEXRAD rainfall data, runoff 

estimates were generated for each study area. 

 

4.1 Input Data 

 
4.1.1 Land Cover Data.  The 1992 USGS National Land Cover Data (NLCD) was used 

as the land cover dataset for this study.  This dataset was derived from Landsat 5 

Thematic Mapper (TM) imagery through a process of unsupervised clustering.  Clusters 
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were then placed into one of 21 thematic classes similar to the Anderson Level II land 

use classification scheme (Anderson et al. 1976).  The accuracy assessment process has 

not been completed for Region 6, which includes Texas; however, this is the most 

detailed state-wide coverage available at the current time.  The scale for this dataset is 

1:24,000 (30 m resolution).   

 

Land cover information was used in selecting study areas and as an input to the various 

runoff equations to assign average CN values.  Only areas with a homogenous/dominant 

cover or similar CN assignments were used in this study, which simplified the modeling 

process by reducing the number of variables. 

   

The dominant land use was determined with the use of ESRI’s ArcView 3.x software 

Tabulate Area function.  This function identifies the area of land use within each user 

identified zone, in this case the watershed boundary.  This information was then 

processed to determine the percentage of each cover type.  

 

4.1.2 Soil Data.  The U.S. Department of Agriculture (USDA)-NRCS State Soil 

Geographic (STATSGO) Database, at a 1:250,000 scale (250 m resolution), was used to 

determine the soil hydrologic group.  This dataset was created by generalizing more 

detailed soil survey maps or with the use of auxiliary data and Landsat imagery.  The 

maps are delineated into map units of dominant soil type and may consist of 1-21 

different components.  This dataset is designed to support regional, multi-state, state, or 

river basin resource planning, management, and monitoring; however, it offers the only 

detailed state-wide coverage available at the current time. 

 

Soil hydrologic group information helped to determine runoff potential for a particular 

study area as an input to runoff equations for CN assignment.  For the purposes of this 

study, soils were placed in one of four classes based on the infiltration rate (Wurbs and 

Sisson 1999):  



 

 

11

 Group A:  deep sand, deep loess, aggregated silts (infiltration 0.30 – 0.45 in/hr) 

 Group B:  shallow loess, sandy loam (infiltration 0.15 – 0.30 in/hr) 

 Group C:  clay loams, shallow sandy loams, soils low in organic content, soils  

                 high in clay content (infiltration 0.05 – 0.15 in/hr) 

 Group D:  soils that swell significantly when wet, heavy plastic clays, certain  

                 saline soils (infiltration 0 – 0.15 in/hr) 

 

The STATSGO soils database was reclassified to a four-class grid based on the 

dominant soil hydrologic group and resampled to a 30 m grid in order to be consistent 

with the NLCD dataset. 

 

4.1.3 Streamflow Data.  Measured streamflow data was obtained from the USGS for 

comparison purposes.  Streamgauge data for each watershed outlet was downloaded 

from the USGS website and processed through a filter program to separate the baseflow 

from the runoff portions of total streamflow.   

 

Total streamflow is composed of baseflow (shallow ground water discharge to streams) 

and surface runoff.  In order to make comparisons between streamgauge measured flow 

and the runoff estimates generated in this study (NRCS CN method provides only direct 

runoff after a rainfall event), it was necessary to determine the portion of streamflow that 

could be attributed to surface runoff.   

 

The filter program used in this study was obtained from the Soil and Water Assessment 

Tool (SWAT) website (http://www.brc.tamus.edu/swat).  Although there are a number 

of filter programs available, according to Arnold et al. (1995) and Arnold and Allen 

(1999), this program is comparable to other automated separation techniques, and had 

74% efficiency when compared to manual separation.  In addition, this program is used 

with the SWAT program internationally, and has been tested on a wide variety of 

hydrologic systems.   
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This program works much like the filtering of high frequency signals in signal analysis.  

Low frequency signals would represent baseflow, where as high frequency signals 

would represent runoff (Arnold et al. 1995).  After separation, baseflow can be 

subtracted from total streamflow, which provides the portion of flow that can be 

attributed to runoff.   

 

This data was used to evaluate the accuracy of model results; therefore, only sites with 

adequate historical data were used.  For this study, a period of 20-30 years with 

corresponding weather data was considered adequate to account for rainfall variability 

and the hydrologic cycle.  Lastly, because the runoff algorithms used in this study do not 

account for reservoirs or other diversions, only sites with natural, or unregulated, flow 

were used.  This allowed for a direct comparison of runoff estimates to measured 

streamflow data. 

 

4.1.4 Weather Data.  NEXRAD data was obtained from the West Gulf River 

Forecasting Center (WGRFC) of the National Weather Service (NWS).  Only data for 

the 1999 – 2001 time period was used in this study based on findings by Jayakrishnan 

(2001), citing improved NEXRAD data quality and accuracy in recent years.   

 

Twenty-three radar stations in Texas, Louisiana, New Mexico, and Colorado make up 

the Hourly Digital Precipitation (HDP) network utilized by the WGRFC.  The raw data 

obtained from the HDP network is considered Stage I output, and is available in 4 km x 

4 km resolution grids, with cells identified by the Hydrologic Rainfall Analysis Project 

(HRAP) number.  Stage I data is then corrected using a bias adjustment factor based on 

available one-hour raingauge reports.  The resulting correction is available as Stage II 

data.  Finally, Stage II data for all radars are combined into one map with ground truth 

data from gauge stations, and overlapping areas are averaged together.  The result is 

multi-sensor Stage III adjusted data, which will be used in this study.  In this process, the 

combining and averaging of overlapping data, or mosaicking, helps to compensate for 
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the overestimation or underestimation of individual radars (Jayakrishnan 2001).  More 

detailed information about NEXRAD products and processing algorithms can be found 

in Crum and Alberty (1993), Klazura and Imy (1993), Smith et al. (1996), and Fulton et 

al. (1998). 

 

Daily rainfall data from raingauge stations in and around the chosen study areas were 

collected from the National Climatic Data Center (NCDC) of the NWS.  This data 

corresponds to the available streamflow data collected from the USGS for each 

watershed, and was used as an input for runoff estimation.   

 

The nearest raingauge and NEXRAD stations were identified for each subbasin within 

the delineated watersheds using ESRI’s ArcGIS 8.x software.  Missing data were 

replaced with data from the next nearest station, and the data was used to generate daily 

precipitation files for the watersheds for each year.  

 

The runoff results based on NEXRAD and raingauge data were compared to USGS 

streamflow data to determine estimation accuracy.  In addition, a point comparison of 

raingauge and NEXRAD daily rainfall data was completed for each station in this study 

for all three years. 

 

4.2 Study Areas 

 

Ten subwatersheds of varying size, in four river basins, throughout different agro-

climatic regions of Texas (Figure 4.1), were used in this study in order to account for the 

wide variety of hydrologic conditions throughout the state (Table 4.1).  These areas were 

chosen based on the dominant land use, soil hydrologic group, and streamgauge location. 

The time period for streamgauge data was also a factor in determining these study areas.  

In addition, all point source locations were identified with the use of a point source 

permitting system database obtained from the Texas Commission on Environmental 



 

 

14

Quality (TCEQ).  Watersheds with a number of minor facility class locations, a major 

facility class location, or any location at the identified outlet of the watershed were 

omitted from further analysis.   

 

 

Figure 4.1.  Major Land Resource Area (MLRA) boundaries in Texas. 
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Table 4.1.  Description of watershed study areas chosen for analysis. 

Watershed USGS 
Streamgauge  Stream Name MLRA 

Drainage 
Area      
(km2) 

Rainfall 
Range     
(mm) 

Major Land Cover 
Characteristics 

Trinity-1 8042800 West Fork Trinity 
River 

Texas North Central 
Prairies 1,769 550 - 750 

56% herbaceous rangeland; 
17% shrubland; 13% 

deciduous forest 

Trinity-2 8065800 Bedias Creek Texas Claypan 831 750 - 1,075 76% improved pasture and 
hay 

Trinity-3 8066200 Long King Creek Western Coastal 
Plains 365 1,025 - 1,350 80% forested; 15% improved 

pasture and hay 

Red-1 7311600 North Wichita 
River Rolling Red Plains 1,399 500 - 750 

33% herbaceous rangeland; 
40% row crops; 18% 

shrubland 

Red-2 7311783 South Wichita 
River Rolling Red Plains 578 500 - 750 60% herbaceous rangeland; 

28% shrubland 

LCR-1 8144500 San Saba River Edwards Plateau 2,940 375 - 750 71% shrubland; 21% 
herbaceous rangeland 

LCR-2 8150800 Beaver Creek Edwards Plateau 557 375 - 750 40% shrubland; 40% 
evergreen forest 

LCR-3 8152000 Sandy Creek Texas Central Basin 896 625 - 750 
41% evergreen forest; 33% 
shrubland; 16% herbaceous 

rangeland 

SA-1 8178880 Medina River Edwards Plateau 850 375 - 750 60% forest; 20% shrubland; 
14% herbaceous rangeland 

SA-2 8178700 Salado Creek 
Edwards Plateau / 
Texas Blackland 

Prairie 
355 375 - 1,150 

50% forest; 32% urban; 10% 
shrub and herbaceous 

rangeland  
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Once watershed boundaries and flow direction were identified, USGS streamgauges 

were used to aggregate the subbasins and define outlets for subwatersheds.  Only 

streamgauges with records corresponding to weather data used in this study were used in 

this delineation process.  In addition, no subwatersheds were delineated in areas with 

reservoirs in the upper reaches of the stream or major point source facilities.  The 

drainage area for the streamgauge was matched to the drainage area above the gauge to 

within plus or minus ten percent to determine subwatershed boundaries. 

 

After the subwatersheds were delineated, the dominant land use was determined using 

ESRI’s ArcView 3.x software Tabulate Area function.  Only subwatersheds with 

homogenous/dominant cover or similar CN values were used in this study.  Ten of these 

subwatersheds were chosen as the basic watershed study areas.  

 

Of the ten watersheds chosen for this study, three are located in the Trinity River Basin, 

two in the Red River Basin, three in the Lower Colorado River Basin, and two in the San 

Antonio River Basin (Figure 4.2). 

 

4.2.1 Trinity River Basin.  The three watersheds in the Trinity River Basin fall within 

three separate MLRA regions of the state (Figure 4.3). 

 

The largest watershed (Trinity-1) is located within the Texas North Central Prairies 

Region.  It drains a 1,769 km2 area and is composed of 56% herbaceous rangeland, 17% 

shrubland, and 13% deciduous forest.   
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    Figure 4.2.  Texas river basin boundaries. 
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  Figure 4.3.  Trinity River Basin watershed boundaries. 

 
 

 

The Texas North Central Prairies region is almost all ranches and farms and supports 

mainly savannah type vegetation.  It is composed of nearly 80% native range and 

pastureland and scrub oak forests.  An additional 15% of the area is composed of 

cropland, mainly wheat, oats, cotton, and grain sorghum.  The average elevation in the 

region ranges from 200-700 m.  Average annual rainfall ranges from 550-750 mm, with 

maximum rainfall in the spring and fall.  Average annual temperatures range from 18-

19º C (NRCS 1997).   

 

The second largest watershed (Trinity-2) is located in the Texas Claypan Area.  It covers 

831 km2 and is composed of 76% improved pasture and hay.   
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This region is mainly farmland used for pasture and range.  About half is in fertilized, 

improved pasture and much of the rangeland has been overgrazed.  Cropland is mainly 

grain sorghum, and about a third of the farmland is in wood lots.  Remaining acreage is 

native and annual grasses.  The area supports a variety of legumes, forbs, shrubs, and 

woody vines, with mixed pine-hardwood forests in the south and east, and hardwood 

forests in the bottomland areas.  The average elevation in the region ranges from 50-200 

m.  Average annual rainfall ranges from 750-1,075 mm, with maximum rainfall coming 

in winter and spring.  The average temperature ranges from 18-22º C, and increases from 

north to south (NRCS 1997).   

 

The smallest of the Trinity watersheds (Trinity-3) is found in the Western Coastal Plains 

Region.  It is approximately 365 km2 in size, and is composed of 80% forested area, with 

an additional 15% in improved pasture and hay.   

 

The Western Coastal Plains Region is 50-75% forest or woodland, and is dominated by 

pine-hardwood forests.  Lumber and pulp wood production is important to the region, 

and land that is cleared is mainly used for improved pasture and hay.  Only about one-

sixth of the area is used for cropland.   Elevation in the region ranges from 25-200 m.  

Annual rainfall ranges from 1,025-1,350 mm, increasing from northwest to southeast.  

The maximum rainfall occurs in the spring and early summer with the minimum 

occurring in the late summer and fall.  Average annual temperature ranges from 16-22º 

C (NRCS 1997). 

 

4.2.2 Red River Basin.  The two watersheds within this basin are located in the Central 

Rolling Red Plains Region of Texas.  The larger of the two (Red-1) is composed of 50% 

shrub and herbaceous rangeland and 40% row crops, and drains approximately 1,399 

km2.  The smaller watershed (Red-2) drains approximately 578 km2, and is composed of 

60% herbaceous rangeland and 28% shrubland (Figure 4.4). 
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  Figure 4.4.  Red River Basin watershed boundaries. 

 
 

 

According to the NRCS major land resource area (MLRA) description, the Central 

Rolling Red Plains are composed of 60% rangeland and 35% cropland, and supports 

mostly mid and tall grasses.  Nearly all of the area is used in farming or ranching, and 

ranges and pastures are generally grazed by beef cattle.  Major crops include grain 

sorghum and winter wheat, and cotton in the south.  Elevation in this region ranges from 

500-900 m, increasing from east to west.  Average annual rainfall ranges from 500-750 

mm, increasing from west to east, with maximum rainfall in the spring months and 

minimum rainfall in the winter months.  Average annual temperatures in the region 

range from 14-18º C (NRCS 1997). 
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4.2.3 Lower Colorado River Basin.  Of the three watersheds in this basin, two are 

located in the Edwards Plateau region of Texas, and one in the Texas Central Basin 

(Figure 4.5). 

 

 

  Figure 4.5.  Lower Colorado River Basin watershed boundaries. 

 
 

 

The largest watershed in this basin (LCR-1) covers approximately 2,940 km2, and is 

composed of 71% shrubland and 21% herbaceous rangeland.  The smallest watershed in 

this basin (LCR-2) drains 557 km2, and is composed of 40% shrubland and 40% 

evergreen forest.  Both of these watersheds are located in the Edwards Plateau Region of 

Texas.   
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This region is composed mainly of rangeland, which is grazed by beef cattle, sheep, and 

goats.  Cropland is used mainly for improved pasture, hay, and small grains.  The area 

supports vegetation ranging from desert shrubland in the west to mixed oak savannah 

with mid and tall grasses in the east.  The average elevation ranges from 200-500 m on 

valley floors to 400-1,200 m in the hills and plateaus, and increases from east to west.  

Average annual rainfall ranges from 375-750 mm, three-fourths of which falls during the 

growing season.  Temperatures range from 18-20º C (NRCS 1997).   

 

The final watershed in the Lower Colorado River Basin (LCR-3) drains 896 km2.  It is 

composed of mainly forest and rangeland cover, with 41% evergreen forest, 33% 

shrubland, and 16% herbaceous rangeland.  This watershed falls within the Texas 

Central Basin Region.   

 

This region is mainly rangelands grazed by beef cattle and sheep.  Grain sorghum, 

peanuts, cotton, and other small grains are the main cash crops of the region.  In some 

places, formerly cropped lands are now used as pasture or reverted to rangelands.  The 

region supports mainly mixed oak savannah with mid and tall grass vegetation types.  

The elevation ranges from 200-300 m on valley floors to 300-400 m in the hills and 

plateaus.  Average rainfall varies from 625-750 mm, with three-fourths falling during the 

growing season.  The average annual temperature ranges from 18-20ºC (NRCS 1997).   

 

4.2.4 San Antonio River Basin.  In this basin, the largest watershed (SA-1) falls within 

the Edwards Plateau Region, (this is the same as the LCR-1 and LCR-2 watersheds).  

The smaller watershed (SA-2) falls between the Edwards Plateau and Texas Blackland 

Prairie Regions (Figure 4.6). 
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  Figure 4.6.  San Antonio River Basin watershed boundaries. 

 
 

 

SA-1 drains 850 km2, and is composed primarily of forested areas (60%), with an 

additional 20% shrubland, and 14% herbaceous rangeland.  The final watershed in this 

study, SA-2, falls between two MLRA regions, with approximately 60% of its 355 km2 

area in the Edwards Plateau Region and the remaining 40% in the Texas Blackland 

Prairie Region.  In addition, this subwatershed is unique, in that it is composed of 50% 

forested areas, 10% shrub and herbaceous rangeland, and the remaining 32% is urban 

area (residential/ industrial/ transportation) in and around San Antonio, Texas.  

Approximately 60% of this watershed is similar to SA-1, as well as LCR-1 and 2; 

however, the remaining area falls in the Texas Blackland Prairie Region of Texas.   
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This region is mainly farmland with increasing urban development.  It is composed of 

approximately 40% cropland, 45% improved pasture or rangeland, and the remainder is 

urban area with forested areas along rivers and streams.  It supports a true prairie 

vegetation type with some forbs and savannah type vegetation along streams and rivers.  

The major cash crops are cotton and grain sorghum and the major livestock is beef 

cattle.  Elevation ranges from 100-200 m, from south to north and east to west.  Rainfall 

ranges from 750-1,150 mm, with maximum rainfall in the spring and fall.  Average 

annual temperatures range from 17-21º C (NRCS 1997). 

 

4.3 Estimating Curve Numbers 

 

Daily runoff calculations for the study sites were made using the NRCS CN method, 

which provided a means of estimating runoff based on various land uses, soil types, and 

precipitation.   

 

This calculation is based on the retention parameter, S, initial abstractions Ia (surface 

storage, interception, and infiltration prior to runoff), and the rainfall depth for the day, 

Rday, (all in mm H20).   

 

The retention parameter is variable due to changes in soil type, land use, and soil 

moisture, and is defined as (Equation 1): 

 

 





 −= 1010004.25

CN
S        (1) 

 

CN varies based on one of three antecedent soil moisture conditions, CNI- dry (wilting 

point), CNII- average, and CNIII- wet (field capacity) (Neitsch et al. 2001).  Runoff 

estimates would increase with increasing antecedent soil moisture condition, and thereby 

with increasing CN.  Therefore, CNI would produce the least runoff, whereas CNIII 

would produce the most. 
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CNII was assigned based on the dominant land use and soil hydrologic group according 

to the SCS – Texas Engineering Technical Note No. 210-18-TX5 (1990), as shown in 

Table 4.2.  CNI and CNIII were calculated from CNII and are defined by Equations (2) 

and (3) respectively (Neitsch et al. 2001).  A GIS layer in grid format was created for 

each watershed based on CNII values at 30 m, 100 m, 1 km, and 4 km resolutions, from 

which CNI and CNIII grids were calculated.   

 

 

      
         (2)                                   

                                                                                                                                               
 
 

                                     (3)  
 

 

With the use of ESRI’s ArcGIS 8.x software Zonal Statistics grid function, the number 

of pixels of the various CN values was identified within each watershed boundary at 

each resolution.  This information was then processed to determine the weighted average 

CNII value for the entire watershed.  Because CNs I and III are calculated from CNII, 

the weighted average value was not calculated for these grids.  This information was 

used to determine the amount of spatial variability and possible error that could be 

caused by the use of input grids at various resolutions. 

 

4.4 Comparing Raingauge and NEXRAD Rainfall Data 

 
The raingauge and NEXRAD radar rainfall data was compared on a point by point basis 

for all watersheds to determine the accuracy of the NEXRAD rainfall data as compared 

with the available raingauge rainfall data.  A standard statistical comparison was used to 

evaluate the accuracy of the NEXRAD estimates based on available raingauge data.  

( )[ ]CNIICNIICNIII −⋅⋅= 10000673.0exp

( )
( )[ ]( )CNIICNII

CNIICNIICNI
−⋅−+−

−⋅−=
1000636.0533.2exp100

10020
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These statistics included estimation efficiency (Nash and Sutcliffe 1970) and standard 

linear regression analysis. 

 
 
      Table 4.2.  Average curve number assignment for NLCD data. 

CNII NLCD 
Code 

Land Use/ 
Land Cover 

NRCS – Texas 
Description A B C D 

11 Open water  0 0 0 0 

21 low intensity 
residential 

1/2 acre – 25% 
average impervious 

surface 
54 70 80 85 

22 high intensity 
residential 

1/8 acre residential 
– 65% average 

impervious surface 
77 85 90 92 

23 commercial/industrial
/transportation 

paved streets and 
roads 83 89 92 93 

31 bare rock/sand/clay fallow/bare soil 77 86 91 94 

32 quarries/strip 
mines/gravel pits newly graded areas 77 86 91 94 

33 transitional newly graded areas 77 86 91 94 
41 deciduous forest woods – fair 36 60 73 79 
42 evergreen forest woods – fair 36 60 73 79 
43 mixed forest woods – fair 36 60 73 79 
51 shrubland brush – fair 35 56 70 77 

61 orchards/vineyards/ 
other 

woods – grass 
combination – fair 32 58 72 79 

71 grasslands/ 
herbaceous meadow 30 58 71 78 

81 pasture/hay pasture/grassland/ 
range – fair 49 69 79 84 

82 row crops straight row crops – 
good 67 78 85 89 

83 small grains straight small 
grains – good 67 78 85 89 

84 fallow crop residue cover 
– poor 76 85 90 93 

85 urban/ 
recreational grasses open spaces – fair 49 69 79 84 

91 woody wetlands  0 0 0 0 

92 emergent herbaceous 
wetlands  0 0 0 0 
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4.4.1 Estimation Efficiency.  Estimation efficiency is commonly used in hydrologic 

model evaluation and is calculated as (Equation 4): 
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where COE is the coefficient of efficiency, or runoff estimation efficiency, n is the 

number of days of comparison, Oi is the observed streamgauge runoff for a watershed 

for day i, Om is the mean observed streamgauge runoff for a watershed over all days, and 

Ri is the estimated runoff for a watershed for day i.  When Ri = Oi, COE = 1.  This would 

represent a good comparison between observed and estimated runoff values.  Where 

COE < 1, the estimated runoff value is less representative than the mean value for the 

dataset.  For this study, values greater than 0.4 are considered to be highly significant. 

 

4.4.2 Linear Regression.  For linear regression, both the coefficient of determination (r2) 

and slope with intercept = 0 for the linear regression fit between observed (raingauge) 

and estimated (NEXRAD) rainfall values were used to determine significance.   

 

Data was compared for all raingauge stations used in the modeling process (Figure 4.7).  

However, this data was compared only to the data for the NEXRAD grid in which the 

gauge was physically located.  This helped to prevent errors based on the interpolation of 

rainfall amounts by NEXRAD stations between the raingauges. 

 

First, daily data was visually inspected for shifts in rainfall records.  These shifts can be 

caused by the time of day that data is recorded.  Raingauge data is recorded at variable 

times, whereas hourly NEXRAD rainfall is added from 7 AM one day to 7 AM the 

following day to arrive at daily NEXRAD rainfall data.   
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  Figure 4.7.  NWS raingauge station locations. 

 
 

 

All rainfall events greater than 25.4 mm were highlighted for both datasets.  If these days 

did not match, and shifts were common throughout the datasets, the data for the 

raingauge was shifted up or down to match NEXRAD.  Once these modifications were 

completed, any missing data was removed before comparison.  Days with missing data 

in either dataset were removed from both datasets to provide more accurate day to day 

comparisons.   

  

4.5 Calculating Surface Runoff   

 

For the runoff calculation, initial abstractions (Ia) are generally approximated as 0.2 S.  

However, Ponce and Hawkins (1996) suggest that this may not be the most appropriate 
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number for Ia, and that it should be interpreted as a regional parameter.  To test this, 0.2 

S, 0.1 S, and 0.05 S were used in the runoff equation to determine the most appropriate 

constant for Ia in various agro-climatic regions.   

 

Rainfall depth for this study was obtained from corrected Stage III NEXRAD data for 

1999 – 2001.  Historical raingauge data was also used for validation purposes in a 

sample data set in the Trinity River Basin.  The basic equation becomes (Equation 5):  

 

( )
( )SR

SR
Q

day

day
surf 8.0

2.0 2

+
−

=              (5) 

 

Where Qsurf is surface runoff in mm and Rday is rainfall depth for the day, also in mm. 

Runoff will occur only when Rday > Ia (Neitsch et al. 2001). 

 

A CN grid was created from the land use and soil data, and a daily rainfall grid was 

generated for each year within each watershed.  These datasets were used as the inputs to 

the CN equation and processed with ESRI’s ArcInfo software, and an Arc Macro 

Language (AML) program.  This helped to speed the processing of large datasets and 

prevent errors that could have resulted from manual processing.  The result was an 

estimate of runoff for each 4 km x 4 km subbasin.  According to Van Mullem et al. 

(2002), the NRCS CN method should be used to evaluate overall watershed 

characteristics; therefore, the subbasin data was summarized to estimate runoff for each 

watershed. 

 

4.6 Comparing Flow Data 

 

Once data for each variation of the runoff equation was generated, the results were 

compared to the baseflow filtered USGS observed gauge flow data (Figure 4.8) and 
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analyzed to determine the most appropriate method for estimating runoff in various 

agro-climatic regions. 

 

 

   Figure 4.8.  USGS streamgauge station locations. 

 
 

A standard statistical comparison, similar to that used in the raingauge and NEXRAD 

comparison, was used to evaluate the accuracy of the runoff estimates generated in this 

study.  These statistics again included estimation efficiency and standard linear 

regression analysis, as well as basic summary statistics.   

 

This was not a daily comparison, rather a comparison of runoff events generated by 

rainfall greater than 12 mm for both raingauge and NEXRAD rainfall data.  Events with 

rainfall less than 12 mm produced minimal amounts of runoff and were therefore 
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omitted from further analysis.  Once an event was identified based on the amount of 

rainfall associated with it, the ratio of filtered streamflow to rainfall was considered.  In 

situations where this ratio was extremely high, it was assumed that there was some sort 

of storm water or other point source discharge to the stream channel affecting the flow 

rates based on the TCEQ point source permitting system database.  Therefore, these 

events were omitted from the comparison.   

 

If an event was identified to have sufficient rainfall and a reasonable streamflow to 

rainfall ratio based on average runoff for a particular area, the rainfall, streamflow, and 

runoff estimates for each variation of the runoff equation were totaled for that event.  

The event would begin on the first day of significant rainfall, and continue until the 

streamflow had returned to normal levels, similar to the levels before the rainfall event 

began. 

 

Statistical comparisons were then completed for the summarized events.  In addition, the 

data was separated into three seasonal categories for further comparison.  These seasons 

generally mimic the pre, growing, and post season vegetation changes, and ran from 

January 1st to April 25th, April 26th to September 30th, and October 1st to December 31st.  

The same statistical comparison that was used for the entire dataset was then repeated 

for each season.  These comparisons were completed for each watershed individually.   

 

Next, all events from all watersheds were ranked by rainfall in natural pairs for each 

river basin.  They were then separated into the top 20%, middle 60%, and lower 20% of 

rainfall events for a ranked pair comparison.  Estimation efficiency and regression 

analysis were performed on each of these categories to determine the accuracy of 

predictions with varying rainfall.  This process was then repeated for all identified events 

for all basins in this study and statistics were generated for a combined ranked pair 

analysis. 
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The Trinity River Basin watersheds were used to evaluate the effectiveness of the runoff 

equation variations, as well as raingauge and NEXRAD rainfall data in the modeling 

processes used in this study.  Based on this information, only the more effective methods 

were used in the remaining watersheds.   



 

 

33

V. RESULTS AND DISCUSSION 

 

5.1 Evaluation of Spatial Variability in Curve Number Assignment 

 

To determine the amount of spatial variability and possible error that could be caused by 

the use of input grids at various resolutions, the weighted average CN for each watershed 

was calculated from 30 m, 100 m, 1 km, and 4 km using CNII grids (Table 5.1).   

 

 

                           Table 5.1.  Weighted average CN by watershed. 

Watershed 30 m 100 m 1 km 4 km 

Trinity-1 53 53 53 51 
Trinity-2 58 58 59 57 
Trinity-3 58 58 58 60 
Red-1 51 51 51 51 
Red-2 50 50 50 49 
LCR-1 57 57 57 57 
LCR-2 59 59 59 59 
LCR-3 55 55 55 54 
SA-1 58 58 58 57 
SA-2 65 65 66 63 

 

 

The most overall change between values among various grids was found in the Trinity 

River Basin.  Values ranged from 51 to 53 in Trinity-1, 57 to 59 in Trinity-2, and 58 to 

60 in Trinity-3.  In the Red River Basin, Red-1 showed no difference in weighted CN 

value between the various resolutions.  However, Red-2 values ranged from 49 to 50.  

For the Lower Colorado River Basin, the only difference in CN values was found in 

LCR-3, with a range of 54 to 55.  All other basins had the same CN value at all 

resolutions.  Finally, in the San Antonio Basin, for SA-1 values ranged from 57 to 58.  

However, in the SA-2 watershed, the values ranged from 63 at the 4 km resolution, to 65 

at the 30 m and 100 m resolutions, and the 66 at the 1 km resolution.  In general, these 

changes are negligible and the findings are not surprising due to the fact that the selected 
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watersheds had a mostly homogenous land use distribution and a regionally generalized 

soils dataset was used for this study. 

 

Hence, the evaluation of various runoff models was not completed for each resolution 

based on the small variability in weighted average CN values within each watershed.  It 

was determined that running the models with grids at various resolutions would cause 

little change in the runoff estimates.  Therefore, only the 4 km CN grid was used 

throughout the study. 

 

5.2 Comparison of Raingauge and NEXRAD Rainfall Data  

 

According to Jayakrishnan (2001), NEXRAD rainfall estimates have improved since 

1999.  In order to test this, a statistical comparison of raingauge and NEXRAD rainfall 

data was completed. 

 

Many of the raingauge stations used in this study were missing at least one day of 

rainfall data.  In one instance a single gauge was missing 746 days.  In addition, many 

raingauge stations are no longer active, or have moved.  In four of the study watersheds, 

only one gauge remains active.  Generally, this data is collected on a cooperative basis 

and in most cases, study sites are in rural areas.  The quality of this data and its 

processing are therefore not strictly maintained.  None of the NEXRAD radar stations 

were missing rainfall data for the study period.  Therefore, in cases where there were 

observed data shifts, raingauge data was shifted up or down to match the NEXRAD 

rainfall.  In general, the raingauge and NEXRAD rainfall measurements matched 

reasonably well in areas where there was a complete data record.   

 

The similarity between these two datasets was based on coefficient of efficiency (COE) 

and regression analysis.  A COE = 1 would represent a good match between the 

estimated (NEXRAD) and observed (raingauge) rainfall measurements.  Additionally, 
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for the regression analysis, a slope = 1 (with y-intercept = 0) and coefficient of 

determination (r2) = 1 would also represent a good match between estimated and 

observed rainfall measurements and support the use of NEXRAD rainfall data for use in 

the CN method runoff equation.   

 

5.2.1 Trinity River Basin.  There are seven raingauge stations in the Trinity-1 

watershed; however, there are only two stations in Trinity-2, and one station in Trinity-3.  

 

Five of the seven stations in Trinity-1 show an excellent match between the two datasets, 

one is fair, and one is rather poor (Appendix A, Table A-1).  Station 1 has a COE of 

0.60, a slope of 0.82, and an r2 value of 0.64.  Station 2 has a COE of 0.56, a slope of 

0.74, and an r2 of 0.59.  Station 3 is the best overall match between the datasets with a 

COE of 0.79, and a slope of 0.84 with an r2 of 0.79 (Figure 5.1).  Station 5 had a COE of 

0.60, a slope of 0.72, and an r2 of 0.61.  Finally, station 7 was again a very close match, 

only station 3 was a better match.  This station had a COE of 0.74, a slope of 0.81, and 

an r2 value of 0.74.   

 

Station 4 was a fairly decent match, and considered to be statistically significant.  The 

COE for this comparison was 0.41, the slope was 0.59, and the r2 was 0.44.  Station 6, 

on the other hand, showed a poor comparison between the datasets.  The COE for this 

station was 0.03, the slope was 0.50, and the r2 was 0.23 (Figure 5.2).  Station 6 was 

missing a total of 67 days of data that were removed from both datasets.  However, the 

rainfall for the missing days seems to have been recorded on a single day when 

recording resumed.  The totals for that day match the NEXRAD rainfall estimates 

corresponding to all of the missing days. 

 

 

 

 



 

 

36

                            Figure 5.1.  Trinity-1 station 3 raingauge and NEXRAD  
                            comparison. 
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    Figure 5.2.  Trinity-1 station 6 raingauge and NEXRAD  
                            comparison. 
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The rainfall estimates from NEXRAD stations in Trinity-2 (Appendix A, Table A-2) and 

Trinity-3 (Appendix A, Table A-3) matched the raingauge rainfall data reasonably well.  

In Trinity-2, station 1 had a COE of 0.37, a slope of 1.06, and an r2 of 0.63.  Station 2 

had a COE of 0.61, a slope of 0.95, and an r2 of 0.69 (Figure 5.3).  In the Trinity-3 

watershed, there was only one station comparison.  Data was unavailable for all other 

stations in this watershed.  For the available station the COE was 0.69, the slope was 

0.90, and the r2 value was 0.72 (Figure 5.4).  These findings, in general, help to establish 

the fact that the level of accuracy of NEXRAD can be reasonably well established and 

that the data is appropriate for this study. 

 

 

                           Figure 5.3.  Trinity-2 station 2 raingauge and NEXRAD  
                           comparison. 
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                           Figure 5.4.  Trinity-3 station 1 raingauge and NEXRAD  
                           comparison. 
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5.2.2 Red River Basin.  There are four raingauge stations in the Red-1 watershed, and 

three stations in Red-2.   

 

Red-1 showed a very high correlation between the rainfall recorded by the raingauge and 

NEXRAD stations (Appendix A, Table A-4), despite the large number of missing days 

of data (640 days for one station and 121 for another, out of 1,096 days total for each 

station).  These days were removed from the two datasets before comparison. 

 

In the Red-1 watershed, station 1 had a high COE value (0.59); however, this station has 

the lowest slope and r2 values, both were 0.59.  Station 2 had the highest overall COE 

value and regression statistics of all of the stations in this watershed, with a COE of 0.60, 

a slope of 0.73, and an r2 value of 0.61 (Figure 5.5).  Station 3 has the lowest COE value 

1:1
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at 0.44.  The slope and r2 for this station were 0.76 and 0.53.  Finally, station 4 had a 

COE of 0.57, a slope of 0.68, and an r2 value of 0.58. 

 

 

                           Figure 5.5.  Red-1 station 2 raingauge and NEXRAD  
                           comparison. 
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Whereas Red-1 showed a very high match between the raingauge and NEXRAD rainfall 

data, Red-2 did not (Appendix A, Table A-5).  Station 1 had a COE of -0.38, a slope of 

0.51, and an r2 of 0.17.  In addition, there were 28 events that with a greater than 25.4 

mm difference in the measured rainfall for that day.  Station 2 showed a somewhat better 

match between the two datasets.  The COE for this station was 0.34, the slope was 0.68, 

and the r2 was 0.44.  This station was missing 62 days of data and had 12 days with a 

greater than 25.4 mm difference in recorded daily rainfall.  The final station in this 

watershed, station 3, had a COE of 0.38, a slope of 0.65, and an r2 value of 0.44.  This 

station was missing a total of 455 days of rainfall data, including all of 1999. 

1:1
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5.2.3 Lower Colorado River Basin.  There are two raingauge stations in the LCR-1 and 

LCR-2 watersheds and four in LCR-3. 

 

The two LCR-1 stations both showed a poor match between raingauge and NEXRAD 

rainfall data (Appendix A, Table A-6).  Station 1 had a COE of 0.08, a slope of 0.65, and 

an r2 of 0.33 (Figure 5.6).  Station 2 has a COE value of -0.01, a slope of 0.56, and an r2 

of 0.26 (Figure 5.7).  In this watershed there were several inactive stations that had to be 

removed from comparison, as well as missing days, and some inconsistent shifts in 

rainfall events.  This inconsistency prevented adjusting the entire dataset. 

 

 

  Figure 5.6.  LCR-1 station 1 raingauge and NEXRAD 
                          comparison. 
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   Figure 5.7.  LCR-1 station 2 raingauge and NEXRAD 
                           comparison. 
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In the LCR-2 watershed, both stations showed a very good match between the two 

datasets (Appendix A, Table A-7).  For station 1, the COE was 0.72, the slope was 0.84, 

and the r2 was 0.73.  Station 2 was an even better match, with a COE of 0.73, a slope of 

0.98, and an r2 value of 0.78 (Figure 5.8).   

 

Three of the four stations in LCR-3 were equally well matched (Appendix A, Table A-

8).  Station 1 had a COE of 0.76, a slope of 0.84, and an r2 of 0.76.  Station 2 had a COE 

of 0.72, a slope of 0.96, and an r2 of 0.76.  Station 3 had a COE of 0.73, a slope of 0.98, 

and an r2 of 0.78 (Figure 5.9).  Station 4 was the poorest match in this watershed with a 

COE of 0.56, a slope of 0.87, and an r2 of 0.63, which is still a very good overall match. 

 

 

 

1:1
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   Figure 5.8.  LCR-2 station 2 raingauge and NEXRAD 
                           comparison. 

  
 

   Figure 5.9.  LCR-3 station 3 raingauge and NEXRAD 
                           comparison. 
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5.2.4 San Antonio River Basin.  There are four raingauge stations in the SA-1 watershed 

and two in SA-2. 

 

The stations in SA-1 generally show a good match between the raingauge and NEXRAD 

rainfall data (Appendix A, Table A-9).  Station 1 had a COE of 0.56, a slope of 0.96, and 

an r2 of 0.68 (Figure 5.10).  Station 2 had the lowest COE value, at 0.31, and a slope of 

1.02 with an r2 of 0.60.  Station 3 had a COE of 0.65, a slope of 0.82, and an r2 of 0.68.  

Finally, station 4 had a COE of 0.54, with a slope of 0.89, and an r2 of 0.63.   

 

 

  Figure 5.10.  SA-1 station 1 raingauge and NEXRAD 
                          comparison. 
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1999 and 2001.  For 1999, the COE was 0.48, with a slope of 0.87, and an r2 of 0.60.  

For 2001, the COE was 0.52, slope was 0.87, and the r2 was 0.61.  However, for the year 

2000, the COE was -0.24, the slope was 0.68, and the r2 was 0.26.  In this watershed, 

station 2 had a COE of 0.61, a slope of 0.81, and an r2 value of 0.64 (Figure 5.11). 

 

 

  Figure 5.11.  SA-2 station 2 raingauge and NEXRAD 
                          comparison. 
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verify accurate calibration of the NEXRAD data before using it in modeling 

applications.  This could be achieved through post calibration of NEXRAD stage III data 

using some of the real-time raingauge data obtained from airport network stations.  

Using this information, a bias correction factor could be estimated and extended to the 

entire study area with the proper statistical method.  Runoff could then be recomputed 

with improved accuracy. 

 

5.3 Evaluation of NRCS Curve Number Method Alternatives for Various Agro-

climatic Regions from 1999 – 2001 

 

For this analysis, CNI and CNII were used as the CN variables in the runoff equation 

with an Ia ratio of 0.1, 0.2, and 0.05.  Also, raingauge and NEXRAD data were each 

used as the rainfall input for the runoff equation and the results of each of the 

alternatives was then evaluated with observed runoff to determine which would produce 

the most statistically significant results.   

 

Estimation efficiency and linear regression analysis were completed for each watershed 

to determine the significance of the runoff estimates.  Again, a COE, slope, and r2 equal 

to one would represent a best match between estimated and observed runoff values.  

Also, these comparisons are based on summarized events with rainfall greater than 12 

mm.   

 

5.3.1 Trinity River Basin.  The watersheds in this basin were used to evaluate variations 

of the NRCS CN method for estimating runoff before application in other watersheds.  

Only the most effective methods were used in the remaining study areas.  

 

The runoff equation was first run with CNI and CNII, using 0.2, 0.1, and 0.05 for the Ia 

ratio.  Through a systematic procedure as explained in the materials and methods 

section, events were isolated from the three year daily model run.  Trinity-1 had a total 
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of 31 identified events (Appendix B, Table B-1) for both the CNI and CNII alternatives 

(Table 5.2).  For CNI, with 0.2 as the Ia ratio, the COE was -0.02, whereas the COE with 

0.1 was 0.54.  The COE with 0.05 was -0.29.  In addition, the slope and r2 for the CNI – 

0.1 alternative was 0.95 and 0.53, respectively (Figure 5.12).  This alternative appeared 

to be the best match for modeled and observed runoff in this watershed for the events 

during this study period. 

 

For CNII, none of the alternatives used in this study were representative of the observed 

runoff in this watershed.  The alternative that most closely matched observed runoff was 

the CNII – 0.2 alternative.  The COE was -1.57, slope was 0.38, and the r2 was 0.44.  

This is to be expected with the close match in the CNI – 0.1 alternative.  Using CNII 

would suggest a wetter antecedent soil moisture and thereby increase the runoff 

associated with an event.  This alternative was more representative than the 0.1 and 0.05 

alternatives because using 0.2 for the Ia ratio would reduce some of the runoff by 

increasing the total initial abstractions, thereby preventing more of the runoff from 

reaching the stream channel.   

 

Next, based on information from Ponce and Hawkins (1996), 0.05 was used for the Ia 

ratio, with a modified CN that was back calculated using the retention parameter (S) 

equation.  This new CN was used in the runoff equation with the 0.05 Ia value.  For this 

alternative, 30 events were identified.  Again, this process did not produce a 

representative match to the observed runoff.  The COE for this alternative was -2.73, the 

slope was 0.33, and the r2 value was 0.44.   
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                Table 5.2.  Summary of NRCS CN method alternatives for the Trinity-1 watershed.        
  0.2 Ia Coefficient           0.1 Ia Coefficient            0.05 Ia Coefficient        

Rainfall 
Data 

Curve 
Number 

Identified 
Events COE   Slope r2 COE  Slope r2 COE  Slope r2 

NEXRAD CNI 31 -0.02 4.30 0.33 0.54 0.95 0.53 -0.29 0.50 0.56 
NEXRAD CNII 31 -1.57 0.38 0.44 -8.07 0.23 0.46 -15.40 0.18 0.46 

Raingauge CNI 20 - - - 0.09 0.62 0.43 - - - 
 

 

                               Figure 5.12.  Trinity-1 NRCS CNI – 0.1 alternative. 
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For the Trinity-2 watershed, again the CNI and CNII alternatives with 0.2, 0.1, and 0.05 

Ia ratios were used (Table 5.3).  For the CNI alternative, 32 events were identified 

(Appendix B, Table B-2).  The COE for the 0.2 alternative was 0.77, with a slope of 

1.61, and an r2 of 0.91.  For the 0.1 alternative, the COE was 0.90, slope was 0.85, and 

the r2 was 0.93 (Figure 5.13).  The 0.05 alternative had a COE of 0.53, a slope of 0.62, 

and an r2 of 0.92.  Again, the CNI – 0.1 alternative appears to produce overall results 

that are the most comparable to the observed runoff. 

 

For the CNII alternative, again, no results were considered to be significant enough for 

this study.  The alternative that produced results that most closely matched observed 

runoff was the CNII – 0.2 alternative, with a COE of -6.07, a slope of 0.28, and an r2 of 

0.91.  The runoff was also estimated for the 0.05 alternative with the back-calculated 

CN.  The COE was -789.11, with a slope of 0.32, and an r2 of 0.28. 

 

Finally, the raingauge rainfall data was used with the CNI – 0.1 variation of the runoff 

equation.  For this alternative, 38 events were identified, with a COE of -1.38, a slope of 

0.38, and an r2 of 0.23.   

 

For Trinity-3, CNI and CNII and the back-calculated CN with 0.05 were the only 

alternatives completed (Table 5.4).  It was determined that the use of raingauge rainfall 

data did not produce reasonable results, and therefore model runs were not carried out.   

 

For CNI, 40 events were identified (Appendix B, Table B-3).  For the 0.2 alternative the 

COE was 0.78, the slope was 1.15, and the r2 was 0.79.  For the 0.1 alternative, the COE 

was 0.64, slope was 0.77, and the r2 was 0.72 (Figure 5.14).  For the 0.05 alternative, the 

COE was 0.31, with a slope of 0.61, and an r2 of 0.66.  Again, the CNI – 0.1 alternative 

was determined to produce the best overall match between estimated and observed 

runoff.   



 

 

49

                 Table 5.3.  Summary of NRCS CN method alternatives for the Trinity-2 watershed.        
  0.2 Ia Coefficient            0.1 Ia Coefficient            0.05 Ia Coefficient         

Rainfall 
Data 

Curve 
Number 

Identified 
Events COE  Slope r2 COE  Slope r2 COE  Slope r2 

NEXRAD CNI 32 0.77 1.61 0.91 0.90 0.85 0.93 0.53 0.62 0.92 
NEXRAD CNII 32 -6.07 0.28 0.91 -9.82 0.23 0.89 -12.38 0.21 0.88 

Raingauge CNI 38 - - - -1.38 0.38 0.23 - - - 
 

 

                               Figure 5.13.  Trinity-2 NRCS CNI – 0.1 alternative. 
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                  Table 5.4.  Summary of NRCS CN method alternatives for the Trinity-3 watershed.        
  0.2 Ia Coefficient            0.1 Ia Coefficient            0.05 Ia Coefficient         

Rainfall 
Data 

Curve 
Number 

Identified 
Events COE  Slope r2 COE  Slope r2 COE  Slope r2 

NEXRAD CNI 40 0.78 1.15 0.79 0.64 0.77 0.72 0.31 0.61 0.66 
NEXRAD CNII 40 -1.09 0.41 0.62 -2.51 0.33 0.56 -3.61 0.29 0.53 

 

 

 

                              Figure 5.14.  Trinity-3 NRCS CNI – 0.1 alternative. 
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The statistics for all of the CNII alternatives and the back-calculated CN – 0.05 

alternative showed poor results for the representation of estimated to observed runoff.  

Of these alternatives, the CNII – 0.2 alternative most closely matched observed runoff, 

with a COE of -1.09, a slope of 0.41, and an r2 value of 0.62.   

 

After comparing the results for each of the three Trinity River Basin watersheds, it was 

determined that using the CNI – 0.1 variation of the runoff equation, with NEXRAD 

radar rainfall input produced the most accurate runoff estimates when compared with 

filtered streamflow data.  The results from this alternative were used in the seasonal and 

ranked pair analysis for this basin, and to model streamflow in the remaining watershed 

study areas.  In cases where this alternative did not produce reasonable results, additional 

alternatives which might improve the results were run for comparative purposes.   

 

5.3.2 Red River Basin.  The CNI – 0.1 alternative was used as a first run in this basin.  

Additional alternatives were unnecessary based on the comparison of estimated to 

observed runoff in the watersheds in this basin (Table 5.5).   

 

 

     Table 5.5.  Summary of the NRCS CNI – 0.1 
       alternative for the Red River Basin watersheds. 

Watershed Identified 
Events COE  Slope  r2      

Red-1 22 0.97 1.10 0.98 
Red-2 25 0.43 0.77 0.51 

 

 

For the Red-1 watershed, 22 total events were identified for the three year study period 

(Appendix B, Table B-4).  The COE for this watershed with the CNI – 0.1 alternative 

was 0.97, slope was 1.10, and the r2 was 0.98 (Figure 5.15).  Based on the results for this 

model run, it was decided that additional runs were unnecessary.  The CNI – 0.1 
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alternative produced runoff estimates that closely matched the observed runoff obtained 

from the filtered streamflow data.  

 

For Red-2, 25 events were identified (Appendix B, Table B-5).  First, the CNI – 0.1 

variation was used to estimate runoff.  The COE for this run was 0.43, the slope was 

0.78, and the r2 was 0.51 (Figure 5.16).  It was again determined that the CNI – 0.1 

variation of the runoff equation produced the best results, and the seasonal and ranked 

pair analysis was completed for this alternative. However, it should be noted that the 

raingauge and NEXRAD point comparison for this watershed was not statistically 

significant.  This would explain the less significant values produced by the modeling 

process in this watershed.     

 

 

 

Figure 5.15.  Red-1 NRCS CNI – 0.1 alternative. 
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Figure 5.16.  Red-2 NRCS CNI – 0.1 alternative. 
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5.3.3 Lower Colorado River Basin.  For the three watersheds in this basin, the CNI – 0.1 

alternative was used as a first run.  However, because this alternative method did not 

produce satisfactory results for LCR-1, the CNI – 0.2 alternative was also used for 

comparative purposes (Table 5.6).   

 

 

                Table 5.6.  Summary of the NRCS CNI – 0.1 and CNI – 0.2 
                alternatives for the Lower Colorado River Basin watersheds. 

  0.2 Ia Coefficient           0.1 Ia Coefficient          Watershed Identified 
Events COE  Slope r2 COE  Slope r2 

LCR-1 38 0.02 0.74 0.09 -3.98 0.33 0.40 
LCR-2 30 - - - 0.56 0.73 0.68 
LCR-3 15 - - - 0.85 1.17 0.86 
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For LCR-1, 38 events were identified (Appendix B, Table B-6).  Results from the CNI – 

0.1 model run produced a COE of -3.98, a slope of 0.33, and an r2 value of 0.40.  After 

individual event comparison, an over-prediction of runoff estimates was identified.  

Therefore the CNI – 0.2 alternative was used for comparison purposes.  This run 

produced a COE of 0.02, a slope of 0.74, and an r2 of 0.09.  An individual event 

comparison of the results produced by this alternative helped to identify an under-

prediction of runoff estimates.  The inaccuracy of these results led to further analysis to 

determine the cause for such results. 

 

First, the raingauge and NEXRAD comparison in this watershed highlighted issues in 

the NEXRAD calibration that would prevent an accurate runoff estimate.  Only two 

comparison points for raingauge and NEXRAD stations were identified for this 

watershed, and the comparison was not statistically significant at either point.  This lack 

of adequate data prevents accurate modeling of the watershed with either rainfall data 

source. 

 

Next, point source issues were investigated.  There are two points that could lead to 

issues in modeling streamflow in this watershed that are located at the outlet of the 

identified watershed boundary.  Although these are both considered minor facility 

classes by the TCEQ, they may have some affect on the actual flow in the stream 

channel.  One is a retention pond for a feed lot facility and the other is a discharge point 

for the City of Menard, Texas.   

 

Furthermore, a comparison of the NLCD dataset to the previous USGS land cover 

dataset from the early 1980s was inconclusive in that there was no accurate way to 

directly compare the datasets.  The 1980 dataset is at a 250 m resolution, whereas the 

NLCD dataset is at a 30 m resolution.  In addition, the classification schemes used for 

the two datasets were somewhat different.  The inability to compare the datasets leads to 

the conclusion that possibly the area is classified incorrectly or in such a manner that 
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would lead to an incorrect CN assignment.  Also, the area was classified as shrubland in 

fair condition, which would indicate 50 – 75% ground cover according to the SCS 

(1990).  Further investigation of the actual field condition could help to identify a more 

appropriate CN assignment. 

 

Based on the poor results in this watershed it was eliminated from further analysis and 

removed from the overall comparisons within the Lower Colorado River Basin.  

However, this watershed is composed of approximately 71% shrubland.  Therefore, it 

was determined that this finding should not have a major effect in other watersheds that 

are not predominately shrubland but have a more mixed land cover.   

 

A total of 30 events were identified for the LCR-2 watershed (Appendix B, Table B-7).  

The CNI – 01 alternative produced a COE of 0.56, a slope of 0.73, and an r2 of 0.68 

(Figure 5.17).  These results were considered acceptable, and this alternative was chosen 

for further analysis.   

 

In the LCR-3 watershed, only 15 events were identified (Appendix B, Table B-8).  Many 

events were not included because of odd runoff to rainfall ratios.  The runoff from many 

events seemed to be “flashy”, i.e. rainfall generated relatively high runoff (occasionally 

exceeding rainfall) in a short period of time.  This could be attributed to storm water or 

other point source discharge.  For the events that were identified, the CNI – 0.1 

alternative was again used.  The COE was 0.85, slope was 1.17, and the r2 was 0.86 

(Figure 5.18).  Based on the overall accuracy of the results generated by the CNI – 0.1 

alternative, no other alternatives were tested in this watershed.  
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Figure 5.17.  LCR-2 NRCS CNI – 0.1 alternative. 

 
 

 

Figure 5.18.  LCR-3 NRCS CNI – 0.1 alternative. 
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5.3.4 San Antonio River Basin. For the two watersheds in this basin, both CNI – 0.1 and 

CNI – 0.2 alternatives were used (Table 5.7). 

 

 
                Table 5.7.  Summary of the NRCS CNI – 0.1 and CNI – 0.2 
                alternatives for the San Antonio River Basin watersheds. 

  0.2 Ia Coefficient           0.1 Ia Coefficient          Watershed Identified 
Events COE  Slope r2 COE  Slope r2 

SA-1 26 - - - 0.53 0.77 0.68 
SA-2 35 0.72 1.14 0.73 0.41 0.63 0.73 

 

 

For the SA-1 basin, 26 events were identified (Appendix B, Table B-9).  The CNI – 0.1 

alternative produced a COE of 0.53, a slope of 0.77, and an r2 of 0.68 (Figure 5.19).  The 

results for this alternative were determined to be accurate and were used to represent 

runoff in this watershed.   

 

A total of 35 events were identified for the SA-2 watershed (Appendix B, Table B-10).  

First, the CNI – 0.1 alternative was used in the modeling process.  The COE for this run 

was 0.41, slope was 0.63, and the r2 was 0.73.  The CNI – 0.2 alternative was run for 

comparison purposes, despite the fairly decent accuracy of the CNI – 0.1 alternative.  

Surprisingly, this alternative more closely matched the observed runoff in this 

watershed.  The COE improved to 0.72, with a slope of 1.14, and an r2 value of 0.73 

(Figure 5.20).  

 

The overall accuracy of the runoff estimates in this watershed, along with the relatively 

high number of identifiable events was somewhat unexpected based on the location of 

this watershed and the amount of urban land cover associated with it.  It is also the only 

watershed in this study that was more accurately represented by an alternative other than 

CNI – 0.1.   
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Figure 5.19.  SA-1 NRCS CNI – 0.1 alternative. 

 
 

 

Figure 5.20.  SA-2 NRCS CNI – 0.2 alternative. 
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5.3.5 Combined Study Area Results for 1999-2001. Finally, an overall combined 

statistical comparison for all events in all watersheds in this study was completed, the 

results of which were highly significant.  The COE was 0.72, the slope was 0.81, and the 

r2 was 0.76 (Figure 5.21).  This would suggest that the methods identified for each of the 

watersheds in this study are relevant.  The next step in this analysis was to evaluate the 

intra-annual variability of the runoff estimates to identify seasonal trends. 

 

 

Figure 5.21.  Combined study area results for 1999-2001. 
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5.4 Evaluation of Intra-annual Variability in NRCS Curve Number Method Runoff 

Estimates 

 

As previously discussed, the CNI – 0.1 alternative was determined to be the best match 

for all of the watersheds in this study except the SA-2 watershed.  Although the CNI – 

0.1 alternative did produce significant results, the watershed was better represented by 

the CNI – 0.2 alternative.  Results from the most statistically significant alternatives 

were used in evaluating the intra-annual variability between seasons and for a ranked 

pair analysis for the various watersheds in order to better understand runoff prediction 

during high and low flow events.   

 

Although the methods used in this study are significant for the entire year, it is important 

to understand the significance of these alternative methods on a seasonal basis, 

especially during the low, moderate, and high rainfall periods.  In addition, variations of 

CN on a seasonal basis may improve the overall performance of the model based on 

findings in Price (1998) and Van Mullem et al. (2002).  It has been proposed that CN 

may change with seasonal weather pattern or land cover changes.  This breakdown 

analysis will highlight the possible need for such variations.   

 

The seasons identified for analysis ran from January 1st to April 25th, April 26th to 

September 30th, and October 1st to December 31st.   In general, there were more 

identified events in seasons 1 and 2, before and during the growing season, than season 

3, after the harvest in the dormant season. 

 

For the ranked pair analysis, all events from all watersheds within each basin were first 

ranked according to rainfall into natural pairs.  Statistics were then generated for the top 

20%, middle 60%, and lower 20% of the events identified for each basin, which 

corresponds to the high, average, and low rainfall events. 
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5.4.1 Trinity River Basin.  The CNI – 0.1 alternative was determined to be the best 

match for all of the Trinity River Basin watersheds; therefore, only this alternative was 

used in the seasonal and ranked pair analysis for the basin.   

 

In Trinity-1, there were 11 events in season 1, 16 events in season 2, and four events in 

season 3 (Table 5.8).  For season 1, the COE was 0.41, with a slope of 0.83 and an r2 of 

0.38.  NEXRAD rainfall for this season ranged from 12.03 to 56.31 mm.  The estimated 

runoff ranged from 0.01 to 4.19 mm, whereas the filtered streamflow ranged from 0.002 

to 4.02 mm.   

 

Season 2 had a COE of 0.70, slope of 1.05, and an r2 of 0.68.  For this season, the 

rainfall ranged from 12.92 to 112.71 mm.  Estimated runoff ranged from 0.02 to 4.61 

mm; however, filtered streamflow, or observed runoff, ranged from 0.002 to 5.77 mm. 

 

Season 3 showed the least satisfactory results when compared with observed runoff.  

This season had a COE of-1.17, a slope of 1.63, and an r2 of -1.78.  However, there were 

only four events in this season, which would help to explain the lack of statistically 

significant results.  Also, this season comprises approximately 13% of the total rainfall 

for this watershed.  Therefore, 87% of the rainfall for this watershed can be better 

explained using the CNI – 0.1 runoff equation alternative.  Based on findings by Price 

(1998) these results may be improved by altering the CN assignment or initial 

abstraction ratio for the period after the growing season, i.e. season 3.  Rainfall in this 

season ranged from 24.14 to 46.21 mm.  The estimated runoff ranged from 0.07 to 0.54 

mm.  The observed runoff ranged from 0.27 to 1.60 mm.  

 

Trinity-2 had 10 events for season 1, 18 events for season 2, and four events for season 3 

(Table 5.9).  Season 1 had a COE of 0.51, a slope of 2.31, and an r2 of 0.85.  The rainfall 

for this season ranged from 12.76 to 38.91 mm.  Estimated runoff ranged from 0.07 to 

3.28 mm.  Observed runoff ranged from 0.03 to 8.08 mm.
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      Table 5.8.  Intra-annual variability in runoff estimates for the NRCS CNI – 0.1 alternative for the Trinity-1 watershed. 

Season Identified 
Events 

Min     
Runoff 

Max     
Runoff 

Min 
Rainfall 

Max 
Rainfall 

Min 
Observed 

Streamflow 

Max 
Observed 

Streamflow
COE    Slope    r2       

Season 1 11 0.01 4.19 12.03 56.31 0.00 4.02 0.41 0.83 0.38 
Season 2 16 0.02 4.61 12.92 112.71 0.00 5.77 0.70 1.05 0.68 
Season 3 4 0.07 0.54 24.14 46.21 0.27 1.60 -1.17 1.63 -1.78 

 

 
      Table 5.9.  Intra-annual variability in runoff estimates for the NRCS CNI – 0.1 alternative for the Trinity-2 watershed.  

Season Identified 
Events 

Min     
Runoff 

Max     
Runoff 

Min 
Rainfall 

Max 
Rainfall 

Min 
Observed 

Streamflow 

Max 
Observed 

Streamflow
COE    Slope    r2       

Season 1 10 0.07 3.28 12.76 38.91 0.03 8.08 0.51 2.31 0.85 
Season 2 18 0.03 32.42 13.22 281.19 0.01 27.02 0.93 0.83 0.97 
Season 3 4 0.27 1.71 23.9 26.21 0.01 0.51 -11.89 0.08 -0.34 

 

 

      Table 5.10.  Intra-annual variability in runoff estimates for the NRCS CNI – 0.1 alternative for the Trinity-3 watershed.  

Season Identified 
Events 

Min     
Runoff 

Max     
Runoff 

Min 
Rainfall 

Max 
Rainfall 

Min 
Observed 

Streamflow 

Max 
Observed 

Streamflow
COE    Slope    r2       

Season 1 8 0.07 45.71 11.46 122.27 0.15 52.44 0.96 1.10 0.97 
Season 2 26 0.29 21.05 12.75 247.97 0.03 11.93 -1.70 0.38 0.14 
Season 3 6 0.38 41.56 17.89 228.29 0.05 28.71 0.61 0.69 0.77 
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Season 2 had a COE of 0.93, a slope of 0.83, and an r2 of 0.97.  This season had a range 

of rainfall from 13.22 to 281.19 mm.  The estimated runoff ranged from 0.03 to 32.42 

mm.  The observed runoff ranged from 0.01 to 27.02 mm.     

 

As in Trinity-1, season 3 produced the least statistically significant match between 

estimated and observed runoff, with a COE of -11.89, a slope of 0.08, and an r2 of -0.34.  

Again, there were only four events identified for this season, representing 13% of the 

total number of events for the three year study period.  The range of rainfall for this 

season was 23.9 to 26.21 mm.  The estimated runoff ranged from 0.27 to 1.71 mm.  The 

observed runoff ranged from 0.006 to 0.51 mm.   

 

Trinity-3 had eight events for season 1, with a COE of 0.96, a slope of 1.10, and an r2 of 

0.97 (Table 5.10).  The rainfall range for this season was 11.46 to 122.27 mm.  The 

estimated runoff ranged from 0.07 to 45.71 mm.  The observed runoff ranged from 0.15 

to 52.44 mm.     

 

Season 2 had 26 events, with a COE of -1.70, a slope of 0.38, and an r2 of 0.14.  Rainfall 

ranged from 12.75 to 247.97 mm.  Estimated runoff ranged from 0.29 to 21.05 mm.  

Observed runoff ranged from 0.03 to 11.93 mm.  In general, this season is statistically 

significant in other watersheds; however, the fact that this watershed is 80% forested 

could explain the less than significant results.  During this time period tree foliage would 

increase interception and therefore prevent rainfall from becoming runoff at expected 

levels.  Instead, a large amount of rainfall would be lost to evapotranspiration. 

 

For the six events in season 3, the COE was 0.61, the slope was 0.69, and the r2 value 

was 0.77.  Rainfall for this season ranged from 17.89 to 228.29 mm.  Estimated runoff 

ranged from 0.38 to 41.56 mm.  Observed runoff ranged from 0.05 to 28.71 mm.    
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Although statistics for season 2 are not as accurate as seasons 1 and 3, this alternative is 

still the best overall match between modeled and observed runoff.   

 

For the ranked pair analysis in the Trinity River Basin, the top 20% of events make up 

approximately 49% of the total rainfall for the three year study period (Table 5.11).  For 

the CNI – 0.1 alternative, the COE was 0.67, with a slope of 0.78, and an r2 of 0.75 

(Figure 5.22).  For the middle 60% of events, which make up 44% of the rainfall in the 

watershed, the COE was 0.21, the slope was 0.89, and the r2 was 0.20.  The lower 20% 

of events are responsible for approximately 7% of the rainfall in this watershed for the 

three year study period.  The COE for this portion of the events was -1.83, the slope was 

0.32, and the r2 value was -0.42.  Clearly, the model produces a more accurate 

representation of observed runoff in the higher flow events.  Furthermore, there appears 

to be a direct correlation between the accuracy of model results and the amount of 

rainfall associated with an event.  Hence the need to capture spatially accurate rainfall is 

critical for hydrologic modeling and proper runoff prediction. 

 

 

                           Table 5.11.  Ranked pair analysis for the Trinity River  
                           Basin watersheds.  

Identified 
Events 

Percent 
Rainfall COE Slope r2 

Top 20% 49.3 0.67 0.78 0.75 
Middle 60% 43.9 0.21 0.89 0.20 
Bottom 20% 6.8 -1.83 0.32 -0.42 
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Figure 5.22.  Trinity River Basin top 20% ranked  
pair analysis. 

 
 

 

5.4.2 Red River Basin.  The CNI – 0.1 alternative was again the only alternative used in 

the seasonal and ranked pair analysis for the Red River Basin.  
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Season 2 estimates produced better results with a COE of 0.98, a slope of 1.11, and an r2 

of 0.99.  The rainfall for this season ranged from 14.85 to 138.93 mm.  The estimated 

runoff ranged from 0.03 to 18.77 mm.  The observed runoff ranged from 0.18 to 21.38 

mm.  Seasons 1 and 2 accounted for 82% of the events within this watershed.  As for 
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was1.26, and the r2 was 0.47.  The rainfall ranged from 19.21 to 30.11 mm.  The 

estimated runoff ranged from 0.1 to 1.22 mm.  The observed runoff ranged from 0.1 to 

2.56 mm. 

 

In Red-2, there were 10 events in season 1, 12 in season 2, and three in season 3 (Table 

5.13).  For season 1, the COE was 0.91, the slope was 0.85, and the r2 was 0.94.  The 

range of rainfall was 12.14 to 53.10 mm.  The estimated runoff ranged from 0.04 to 4.31 

mm.  The observed runoff ranged from 0.0007 to 3.67 mm. 

 

In season 2, the COE was -0.94, the slope was 0.57, and the r2 was -0.65.  The rainfall 

range was 18.73 to 89.69 mm.  The estimated runoff ranged from 0.02 to 1.99 mm.  The 

observed runoff ranged from 0.02 to 1.39 mm.   

 

For season 3, the COE was -0.37, slope was 0.72, and the r2 was -0.94.  The rainfall 

ranged from 11.55 to 81.56 mm.  The estimated runoff ranged from 0.01 to 1.1 mm.  The 

observed runoff ranged from 0.003 to 1.22 mm.    

 

Estimates for the top 20% of events, responsible for 44% of rainfall in the basin, had a 

COE of 0.97, a slope of 1.10, and an r2 of 0.98 (Figure 5.23).  For the middle 60%, the 

COE was -0.09, slope was 0.64, and the r2 was 0.10.  The lower 20% of events had a 

COE of -0.04, a slope of 1.04, and an r2 of -0.15 (Table 5.14).  The same correlation 

between the amount of rainfall and the accuracy of modeled rainfall estimates seen in the 

Trinity River Basin was seen in the Red River Basin. 
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                Table 5.12.  Intra-annual variability in runoff estimates for the NRCS CNI – 0.1 alternative for the Red-1  
                watershed.  

Season Identified 
Events 

Min     
Runoff

Max    
Runoff

Min 
Rainfall

Max 
Rainfall

Min 
Observed 

Streamflow 

Max 
Observed 

Streamflow
COE   Slope  r2     

Season 1 9 0.03 2.5 11.95 47.43 0.05 1.83 0.69 0.70 0.90 
Season 2 9 0.03 18.77 14.85 138.93 0.18 21.38 0.98 1.11 0.99 
Season 3 4 0.1 1.22 19.21 30.11 0.10 2.56 0.57 1.26 0.47 

 

 

                Table 5.13.  Intra-annual variability in runoff estimates for the NRCS CNI – 0.1 alternative for the Red-2  
                watershed.  

Season Identified 
Events 

Min     
Runoff

Max    
Runoff

Min 
Rainfall

Max 
Rainfall

Min 
Observed 

Streamflow 

Max 
Observed 

Streamflow
COE   Slope  r2     

Season 1 10 0.04 4.31 12.14 53.1 0.00 3.67 0.91 0.85 0.94 
Season 2 12 0.02 1.99 18.73 89.69 0.02 1.39 -0.94 0.57 -0.65 
Season 3 3 0.01 1.1 11.55 81.56 0.00 1.22 -0.37 0.72 -0.94 
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Figure 5.23.  Red River Basin top 20% ranked  
pair analysis. 

 
 

  

  Table 5.14.  Ranked pair analysis for the Red River  
                             Basin watersheds. 

Identified 
Events 

Percent 
Rainfall COE Slope r2 

Top 20% 43.5 0.97 1.10 0.98 
Middle 60% 46.9 -0.09 0.64 0.10 
Bottom 20% 9.6 -0.04 1.04 -0.15 
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various additional issues that could not be resolved. 
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For LCR-2, the results for seasons 1 and 3 were not considered to be extremely accurate; 

however, season 2 comprises 60% of all events in this watershed (Table 5.15).  There 

were seven events in season 1, 18 in season 2, and five in season 3.  Season 1 had a COE 

of -6.31, a slope of 0.37, and an r2 of -0.15.  The rainfall range for this season was 16.55 

to 43.15 mm.  The estimated runoff ranged from 0.12 to 3.89 mm.  The observed runoff 

ranged from 0.21 to 1.46 mm.  The small number of events and low rainfall associated 

with them would explain the less than significant results.  Not only is a statistical 

analysis difficult with such a small number of samples, but this model produces more 

significant results with the higher rainfall events. 

 

Season 2 had a COE of 0.62, a slope of 0.76, and an r2 of 0.70.  Rainfall for this season 

ranged from 10.84 to 88.54 mm.  The estimated runoff ranged from 0.01 to 10 mm.  

Observed runoff ranged from 0.005 to 12.49 mm. 

 

Season 3 had a COE of -1.63, a slope of 0.81, and an r2 of -1.90.  The range of rainfall 

was from 17.6 1 to 36.02 mm.  The estimated runoff ranged from 0.28 to 0.65 mm.  The 

observed runoff ranged from 0.27 to 0.68 mm.   

 

In LCR-3, there were six events in each of the first two seasons and three events in 

season 3 (Table 5.16).  The results for season 2, which make up 40% of the events 

identified for this watershed, were considered to be relatively accurate.  The COE for 

season 2 was 0.89, the slope was 1.18, and the r2 was 0.89.  The range for rainfall in this 

season was 16.45 to 69.55 mm.  The estimated runoff range was 0.1 to 9.03 mm.  The 

observed runoff ranged from 0.06 to 11.68 mm.   

 

For season 3, which was only slightly less accurate, and accounts for 20% of the total 

events, the COE was 0.51, the slope was 1.52, and the r2 was 0.50.  In this season, the 

rainfall ranged from 16.44 to 46.87 mm.  Estimated runoff ranged from 0.02 to 0.57 mm.  

The observed runoff ranged from 0.03 to 0.98 mm.   



 

 

70

                Table 5.15.  Intra-annual variability in runoff estimates for the NRCS CNI – 0.1 alternative for the LCR-2  
                watershed.  

Season Identified 
Events 

Min     
Runoff

Max    
Runoff

Min 
Rainfall

Max 
Rainfall

Min 
Observed 

Streamflow 

Max 
Observed 

Streamflow
COE   Slope  r2     

Season 1 7 0.12 3.89 16.55 43.15 0.21 1.46 -6.31 0.37 -0.15 
Season 2 18 0.01 10 10.84 88.54 0.00 12.49 0.62 0.76 0.70 
Season 3 5 0.28 0.65 17.61 36.02 0.27 0.68 -1.63 0.81 -1.90 

 
 
 
                Table 5.16.  Intra-annual variability in runoff estimates for the NRCS CNI – 0.1 alternative for the   
                LCR-3 watershed.  

Season Identified 
Events 

Min     
Runoff 

Max     
Runoff 

Min 
Rainfall

Max 
Rainfall

Min 
Observed 

Streamflow 

Max 
Observed 

Streamflow
COE   Slope  r2     

Season 1 6 0.03 1.44 14.58 46.85 0.17 2.27 -0.07 0.91 -0.27 
Season 2 6 0.10 9.03 16.45 69.55 0.06 11.68 0.89 1.18 0.89 
Season 3 3 0.02 0.57 16.44 46.87 0.03 0.98 0.51 1.52 0.50 
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Season 1 was the least accurate with a COE of -0.07, a slope of 0.91, and an r2 of -0.27.  

The rainfall for this season ranged from 14.58 to 46.85 mm.  The estimated runoff 

ranged from 0.03 to 1.44 mm.  The observed runoff ranged from 0.17 to 2.27 mm.  

Again, the small number of events and low rainfall associated with them would explain 

the less than significant results.   

 

In the ranked pair analysis, the top 20% of events accounted for 37% of the total rainfall 

in the basin (Table 5.17).  The results for this portion of the events had a COE of 0.65, a 

slope of 0.82, and an r2 of 0.68 (Figure 5.24).  The middle 60% had a COE of -1.50, a 

slope of 0.40, and an r2 of 0.12.  The lower 20% of events had a COE of -0.77, a slope of 

0.39, and an r2 of -0.56. 

 

 

  Table 5.17.  Ranked pair analysis for the Lower  
                             Colorado River Basin watersheds. 

Identified 
Events 

Percent 
Rainfall COE Slope r2 

Top 20% 37.4 0.65 0.82 0.68 
Middle 60% 53.0 -1.50 0.40 0.12 
Bottom 20% 9.6 -0.77 0.39 -0.56 
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Figure 5.24.  Lower Colorado River Basin top 20% ranked  
pair analysis. 

 
 

 

5.4.4 San Antonio River Basin.  The CNI – 0.1 results were used for the SA-1 

watershed, whereas the CNI – 0.2 results were used for SA-2 in the additional seasonal 

and ranked pair analysis in this basin. 

 

The seasonal results for SA-1 were as expected.  There were eight events in season 1, 16 

events in season 2, and two events in season 3 (Table 5.18).  Seasons 1 and 2 were fairly 

well represented, whereas season 3 was not.  The COE for season 1 was 0.75, the slope 

was 1.25, and the r2 was 0.86.  The rainfall range was 11.53 to 51.35 mm.  The estimated 

runoff ranged from 0.11 to 1.97 mm.  The observed runoff ranged from 0.41 to 2.54 mm.   

 

The statistics for season 2 were also fairly accurate.  The COE was 0.54, the slope was 

0.72, and the r2 value of 0.76.  The rainfall range for this season was 13.73 to 89.07 mm.  
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The estimated runoff range was 0.05 to 6.28 mm.  The observed runoff ranged from 0.10 

to 4.96 mm.     

 

Season 3, on the other hand, had a COE of -4.92, a slope of 0.45, and an r2 of -0.22.  The 

rainfall range was 36.82 to 37.36 mm.  The estimated runoff ranged from 0.42 to 2.17 

mm.  The observed runoff ranged from 1.48 to 1.92 mm.  This season was composed of 

only two events (8%), which would help to explain the less than accurate comparison 

results.  

 

Again, the seasonal accuracy for SA-2 was as expected (Table 5.19).  Season 1 had 11 

events, with a COE of 0.96, a slope of 0.96, and an r2 of 0.96.  The rainfall range for this 

season was 10.7 to 64.75 mm.  The estimated runoff range was 0.03 to 5.75 mm.  The 

observed runoff ranged from 0.05 to 5.50 mm.  

 

Season 2 had 19 events, with a COE of 0.77, a slope of 1.15, and an r2 of 0.77.  For this 

season, the rainfall ranged from 12.11 to 145.93 mm.  The estimated runoff ranged from 

0.01 to 12.11 mm.  The observed runoff ranged from 0.01 to 19.69 mm.   

 

Season 3, accounting for only 14% of the events in this watershed, had five events with a 

COE of 0.13, a slope of 1.72, and an r2 value of 0.09.  The rainfall range for this season 

was 25.11 to 51.78 mm.  The estimated runoff ranged from 0.46 to 2.4 mm.  The 

observed runoff ranged from 0.01 to 6.77 mm.   
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                 Table 5.18.  Intra-annual variability in runoff estimates for the NRCS CNI – 0.1 alternative for  
                 the SA-1 watershed.  

Season Identified 
Events 

Min     
Runoff

Max    
Runoff

Min 
Rainfall

Max 
Rainfall

Min 
Observed 

Streamflow 

Max 
Observed 

Streamflow
COE   Slope   r2     

Season 1 8 0.11 1.97 11.53 51.35 0.41 2.54 0.75 1.25 0.86 
Season 2 16 0.05 6.28 13.73 89.07 0.10 4.96 0.54 0.72 0.76 
Season 3 2 0.42 2.17 36.82 37.36 1.48 1.92 -4.92 0.45 -0.22 

 
 

                 Table 5.19.  Intra-annual variability in runoff estimates for the NRCS CNI – 0.2 alternative for  
                 the SA-2 watershed.  

Season Identified 
Events 

Min     
Runoff

Max    
Runoff

Min 
Rainfall

Max 
Rainfall

Min 
Observed 

Streamflow 

Max 
Observed 

Streamflow
COE   Slope   r2     

Season 1 11 0.03 5.75 10.7 64.75 0.05 5.50 0.96 0.96 0.96 
Season 2 19 0.01 12.11 12.11 145.93 0.01 19.69 0.77 1.15 0.77 
Season 3 5 0.46 2.4 25.11 51.78 0.01 6.77 0.13 1.72 0.09 
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The ranked pair analysis for this study was somewhat different, in that the CNI – 0.1 

runoff estimates were used for SA-1 and CNI – 0.2 estimates were used for SA-2 (Table 

5.20).  These events were ranked according to rainfall totals, and the top 20%, middle 

60%, and lower 20% of events were then evaluated.  Again, the top 20%, responsible for 

approximately 40% of the rainfall in the basin, produced the best match between the 

estimated and observed runoff.  The COE was 0.69, slope was 1.07, and r2 was 0.67 

(Figure 5.25).  For the middle 60%, the COE was 0.39, the slope was 0.89, and the r2 

was 0.38.  For the lower 20%, again with the poorest results, the COE was -0.26, slope 

was 0.79, and the r2 was -0.24.     

 

 

 Table 5.20.  Ranked pair analysis for the San Antonio  
                            River Basin watersheds. 

Identified 
Events 

Percent 
Rainfall COE Slope r2 

Top 20% 40.2 0.69 1.07 0.67 
Middle 60% 51.2 0.39 0.89 0.38 
Bottom 20% 8.7 -0.26 0.79 -0.24 

 

 

5.4.5 Combined Intra-annual Variability Results.  An overall combined ranked pair 

analysis of all events in all watersheds supports the conclusion that the CN method 

alternatives chosen in this study produce significant results for the high flow events.  For 

the top 20% of overall events the COE was 0.72, the slope was 0.81, and the r2 was 0.77 

(Figure 5.26).  The results from this ranked pair analysis highlight a reduced significance 

from the high to low rainfall events.  For the middle 60% of the flow events, the COE 

was 0.21, the slope was 0.79, the r2 was 0.24 (Figure 5.27).  For the bottom 20% of 

events, the COE was -0.67, the slope was 0.54, and the r2 was -0.33 (Figure 5.28).       
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 Figure 5.25.  San Antonio River Basin top 20% ranked  
 pair analysis. 

 
 

Figure 5.26.  Combined ranked pair analysis for the  
top 20% of events. 
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Figure 5.27.  Combined ranked pair analysis for the  
middle 60% of events. 

 
 
 
Figure 5.28.  Combined ranked pair analysis for the  
bottom 20% of events. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 

The objective of this study was to evaluate several variations of the NRCS CN method 

for estimating runoff using NEXRAD radar rainfall data for watersheds in various agro-

climatic regions of Texas.   

 

In general, the ability of NEXRAD radar to capture the spatial variability of rainfall 

more accurately than the traditional raingauge networks seems to have improved the 

runoff estimates generated by the hydrologic modeling process.  In eight out of ten 

watersheds in various agro-climatic regions and rainfall patterns across the state, the CNI 

– 0.1 method represented both annual and seasonal runoff reasonably well.  In the urban 

SA-2 watershed, the CNI – 0.2 method was chosen as the most representative method.  

This appears to be true even in situations where the point comparison between raingauge 

and NEXRAD rainfall data is less than favorable.  In the Red-2 watershed for instance, 

in spite of the fairly insignificant point comparison between raingauge and NEXRAD 

rainfall data, the model results for the watershed using the NEXRAD data seem to be 

statistically significant over the course of the study period.  Also, in some areas where 

the NEXRAD modeled results seem to be insignificant, the results would not be 

improved with the use of raingauge data.  In the LCR-1 watershed the combination of 

missing data, inactive stations, and apparent inaccuracy and inconsistency in the 

measurement of raingauge data suggest that using this as a source of rainfall inputs 

would not improve model results.   

 

Altering inputs to the CN equation seemed to further improve runoff estimates.  

Traditionally, 0.2 would have been used for the Ia ratio with all CNs, and CNII would be 

the average CN value used.  For this study, in almost every instance, the CNI – 0.1 

alternative produced the most statistically significant results.  Because CNI is used to 
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represent a dry antecedent soil moisture condition, the use of CNII would have caused an 

overestimation of total runoff.  In addition, the CNI – 0.2 alternative would not have 

produced results that were as statistically significant as the CNI – 0.1 alternative.  The 

change in Ia ratio from 0.2 to 0.1 allows for more runoff by decreasing the total initial 

abstractions.  The only instance in which the CNI – 0.1 alternative did not produce the 

most accurate results was in the SA-2 watershed.  In this case, the CNI – 0.2 alternative 

was most appropriate.  This would suggest that there was an increase in initial 

abstractions in this watershed.  This is to be expected based on the location of this 

watershed in the basin and thereby the land cover associated with it.  This watershed is 

located in the San Antonio, Texas urban area.  One would expect more detention of 

runoff in this setting, as opposed to the relatively uninhibited flow of runoff in the other 

watersheds in this study. 

 

In general, the results of the intra-annual variability analysis indicate a need to adjust the 

CN value and/or the Ia ratio during the period after the growing season.  The results for 

the periods before and during the growing season appear to be significant for most areas.  

The exception to this might be in areas where the land cover would interfere with runoff, 

such as forested areas.  In these areas, there may be a need to further adjust variables 

during the growing season.       

 

For the ranked pair analysis, the top 20% of events were responsible for 37 – 49 % of the 

runoff for the watersheds in this analysis, including the flood events.  Results from the 

ranked pair analysis for this portion of the identified events were highly significant.  This 

would suggest that the methods identified in this study produce results that could be used 

in flood prediction applications. 

 

Therefore, based on the findings of this research, the use of a CN value for dry 

antecedent soil moisture conditions with a reduced initial abstraction ratio should 

produce a fairly statistically significant representation of runoff in most areas when 
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using NEXRAD radar rainfall estimates.  This appears to be the case in all agro-climatic 

regions of the state.  However, the use of the 0.2 Ia ratio with this same CN value 

appears to be more representative of areas with increased initial abstractions, such as 

would be expected in urban settings.  It should also be noted that this appears to apply 

more specifically to higher rainfall events, which could make this information useful to 

flood prediction and mitigation in the future.   

 

6.2 Recommendations 

 

Future research endeavors should concentrate on issues associated with both the CN 

assignment and bias correction for NEXRAD radar rainfall data.  First, an effort to 

improve the land cover input data is needed.  This dataset needs to be current with the 

rainfall data used.  In addition, a ground-truthing effort is needed.  This would help to 

prevent inaccurate CN assignments early in the modeling process.  Also, as noted by 

Price (1998) and Van Mullem et al. (2002), there is a need to develop a seasonal 

variation for the CN assignment.  As evidenced by this research, there may be little 

variation before and during the growing season, except in forested areas; however, there 

is a potential need to increase CN values after the growing season during the winter 

months when ground cover has decreased.  Also, NEXRAD rainfall data must be 

compared to available raingauge data to determine the need for bias correction. 

 

Although the CN method is well documented and widely used, there is clearly a need to 

use this as a guideline and interpret inputs on a more local and regional level combined 

with seasonal variation.  In addition, there is a need to vigilantly scrutinize the 

NEXRAD rainfall data before use in a hydrologic model.  However, the use of this data 

in the CN method has been shown here to produce statistically significant results when 

used in a modified CN model.  The radar is able to capture the spatial variability 

associated with rainfall better than the current raingauge networks.  If corrected and used 

properly this data appears to generate improved modeling results and do so in a near 
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real-time fashion, thereby improving the information available to water resource 

managers.  This correction could be accomplished with the use of data from the near 

real-time airport raingauge stations that are currently available.  

 

The methods outlined in this research also need to be applied to areas of more mixed and 

complex land use patterns to determine the usefulness of this approach in all areas of the 

state.  Once this method can be validated, the data processing can be automated and 

posted on the World Wide Web.  This would provide a source of real-time information 

for water resource managers and decision makers that is not currently available. 
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APPENDIX A 

DAILY COMPARISON OF RAINGAUGE AND NEXRAD RAINFALL DATA FOR 1999 – 2001 

 

Table A-1.  Raingauge and NEXRAD comparison for the Trinity-1 watershed. 

Station 
NWS 

Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID) 

Distance 
to 

Watershed 
(km) 

COE Slope  r2 

1 410271 556266 0.00 0.60 0.82 0.64 
2 414517 561261 0.00 0.56 0.74 0.59 
3 416331 563268 1.53 0.79 0.84 0.79 
4 416641 546265 7.68 0.41 0.59 0.44 
5 410313 549270 9.36 0.60 0.72 0.61 
6 416636 547264 6.45 0.03 0.50 0.23 
7 413668 552256 15.78 0.74 0.81 0.74 

 
 

Table A-2.  Raingauge and NEXRAD comparison for the Trinity-2 watershed. 

Station 
NWS 

Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID) 

Distance 
to 

Watershed 
(km) 

COE Slope  r2 

1 415477 624204 0.00 0.37 1.06 0.63 
2 411596 621213 15.56 0.61 0.95 0.69 
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Table A-3.  Raingauge and NEXRAD comparison for the Trinity-3 watershed. 

Station 
NWS 

Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID) 

Distance 
to 

Watershed 
(km) 

COE Slope  r2 

1 415271 649202 0.66 0.69 0.90 0.72 
 

 

                                       Table A-4.  Raingauge and NEXRAD comparison for the Red-1 watershed. 

Station 
NWS 

Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID) 

Distance 
to 

Watershed 
(km) 

COE Slope  r2 

1 412621 505272 0.00 0.59 0.59 0.59 
2 416742 509272 0.00 0.60 0.73 0.61 
3 415086 508274 0.00 0.44 0.76 0.53 
4 416740 509278 0.00 0.57 0.68 0.58 

 
 
                                       Table A-5.  Raingauge and NEXRAD comparison for the Red-2 watershed. 

Station 
NWS 

Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID) 

Distance 
to 

Watershed 
(km) 

COE Slope  r2 

1 417060 505266 0.00 -0.38 0.51 0.17 
2 413828 510267 0.00 0.34 0.68 0.44 
3 418468 507264 4.68 0.38 0.65 0.44 
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                                       Table A-6.  Raingauge and NEXRAD comparison for the LCR-1 watershed. 

Station 
NWS 

Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID)

Distance 
to 

Watershed 
(km) 

COE Slope  r2 

1 415822 529192 0.00 0.08 0.65 0.33 
2 418449 509180 16.28 -0.01 0.56 0.26 

 
 
                                       Table A-7.  Raingauge and NEXRAD comparison for the LCR-2 watershed. 

Station 
NWS 

Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID)

Distance 
to 

Watershed 
(km) 

COE Slope  r2 

1 413954 544175 3.43 0.72 0.84 0.73 
2 418877 555180 24.04 0.73 0.98 0.78 

 
 
                                       Table A-8.  Raingauge and NEXRAD comparison for the LCR-3 watershed. 

Station 
NWS 

Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID)

Distance 
to 

Watershed 
(km) 

COE Slope  r2 

1 413605 558178 2.45 0.76 0.84 0.76 
2 417787 566182 11.03 0.72 0.96 0.76 
3 418877 555180 0.00 0.73 0.98 0.78 
4 415272 557190 13.88 0.56 0.87 0.63 
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                                     Table A-9.  Raingauge and NEXRAD comparison for the SA-1 watershed. 

Station 
ID 

NWS 
Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID) 

Distance to 
Watershed 

(km) 
COE Slope  r2 

1 418845 545157 7.91 0.56 0.96 0.68 
2 417232 532163 18.68 0.31 1.02 0.60 
3 415742 545160 0.00 0.65 0.82 0.68 
4 414374 542168 11.61 0.54 0.89 0.63 

 
 
                                       Table A-10.  Raingauge and NEXRAD comparison for the SA-2 watershed. 

Station 
ID 

NWS 
Raingauge 
Station ID 

NEXRAD 
Station 

(HRAP ID)

Distance 
to 

Watershed 
(km) 

COE Slope  r2 

1 411215 566161 6.01 0.27 0.81 0.47 
2 417945 566155 0.00 0.61 0.81 0.64 

 



 

 

90

APPENDIX B 

IDENTIFIED RUNOFF AND RAINFALL EVENTS FOR ALL STUDY 

WATERSHEDS FOR 1999-2001 

 

                      Table B-1.  Identified events for the Trinity-1 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  
(mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

1/29/1999 37.49 0.45 0.12 
3/7/1999 33.32 0.94 0.00 
3/11/1999 20.39 0.01 0.18 
3/18/1999 56.31 4.19 4.02 
3/27/1999 23.36 0.19 0.09 
4/13/1999 30.3 0.52 0.03 
4/25/1999 45.05 2.1 1.01 
5/1/1999 21.68 0.02 0.05 
5/25/1999 112.71 4.61 5.77 
6/5/1999 14.24 0.02 0.02 
3/10/2000 20.74 0.19 0.00 
4/16/2000 21.62 0.1 0.02 
4/29/2000 53.64 0.52 2.73 
5/6/2000 17.58 0.69 0.16 
5/20/2000 23.99 0.15 0.00 
5/27/2000 50.9 1.88 0.09 
6/15/2000 12.92 0.03 0.02 
6/27/2000 51.12 0.35 0.09 
7/13/2000 16.37 0.12 0.01 
10/29/2000 28.09 0.54 0.55 
11/2/2000 34.54 0.09 0.27 
11/6/2000 46.21 0.08 1.60 
12/26/2000 24.14 0.07 0.79 
1/28/2001 22.07 0.1 2.97 
2/9/2001 12.03 0.01 0.01 
2/23/2001 24.92 0.07 1.32 
4/11/2001 14.42 0.03 0.16 
5/4/2001 52.45 0.95 1.15 
5/20/2001 26.08 0.43 0.01 
6/14/2001 22.36 0.14 0.01 
6/28/2001 26.96 1.12 0.01 
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 Table B-2.  Identified events for the Trinity-2 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  (mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

1/1/1999 38.91 3.28 8.08 
1/22/1999 18 0.29 0.68 
3/9/1999 15.12 0.07 0.06 

3/13/1999 22.9 0.64 0.63 
4/4/1999 23.85 0.46 0.30 

4/14/1999 26.42 0.53 2.98 
4/27/1999 34.7 2.75 0.87 
5/10/1999 50.88 0.73 0.67 
5/18/1999 13.22 0.03 0.11 
5/24/1999 13.36 0.04 0.01 
5/27/1999 54.18 0.82 1.14 
6/23/1999 25.81 0.17 0.45 
7/10/1999 81.96 6.84 4.09 
10/17/1999 24.05 0.39 0.01 
12/5/1999 24.03 1.71 0.04 
12/12/1999 26.21 0.4 0.51 

1/7/2000 33.2 0.9 0.24 
3/3/2000 12.76 0.24 0.03 

3/11/2000 16.64 0.23 0.52 
4/11/2000 17.51 0.2 0.84 
5/13/2000 15.29 0.28 0.05 
5/20/2000 47.15 6.6 8.47 
5/28/2000 14.09 0.36 0.15 
6/10/2000 50.24 2.18 0.25 
6/19/2000 33.96 1.32 0.37 
9/13/2000 23.19 0.68 0.02 
9/25/2000 22.41 0.82 0.01 
10/7/2000 23.9 0.27 0.03 
5/21/2001 17.48 0.69 0.08 
5/27/2001 24.55 0.62 0.09 
7/1/2001 51.62 2.3 1.96 

8/27/2001 281.19 32.42 27.02 
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                       Table B-3.  Identified events for the Trinity-3 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  
(mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

1/23/1999 12.33 0.16 0.46 
3/25/1999 12.86 0.65 0.27 
3/30/1999 11.46 0.07 0.26 
4/4/1999 122.27 45.71 52.44 

4/15/1999 14.28 0.17 0.45 
4/27/1999 22.2 1.63 0.53 
5/10/1999 77.95 8.3 3.25 
5/18/1999 18.36 0.39 0.29 
5/26/1999 31.45 1.6 1.29 
7/4/1999 109.97 3.46 7.97 

7/18/1999 28.71 0.34 1.04 
9/1/1999 27.34 0.29 0.10 
9/9/1999 27.93 1.76 0.08 

9/29/1999 62.88 12.42 0.85 
10/9/1999 17.89 0.38 0.16 
10/31/1999 31.33 1.91 0.71 
12/13/1999 27.81 1.27 0.48 
3/26/2000 19.64 0.13 0.15 
4/2/2000 69.83 9.76 4.75 

4/13/2000 52.88 6.4 0.69 
5/2/2000 99.53 21.05 8.80 

5/10/2000 32.88 4.36 8.67 
5/20/2000 63.81 13.02 7.55 
6/10/2000 84.06 5.93 5.96 
6/19/2000 33.52 1.05 1.63 
7/30/2000 84.15 11.02 0.36 
8/22/2000 31.18 0.59 0.05 
9/9/2000 54.47 5 0.03 

9/21/2000 81.37 11.26 0.21 
10/17/2000 32.25 4.6 0.05 
11/3/2000 228.29 41.56 28.71 
11/16/2000 51.29 1.81 13.55 

5/5/2001 83.54 2.64 1.04 
5/28/2001 74.27 5.46 2.59 
6/15/2001 66.94 6.32 11.93 
6/27/2001 62.5 0.66 0.68 
8/7/2001 24.86 1.1 0.03 

8/17/2001 12.75 1.09 0.05 
8/27/2001 247.97 17.44 4.34 
9/22/2001 45.93 2.04 0.91 
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                       Table B-4.  Identified events for the Red-1 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  
(mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

1/28/1999 21.54 0.04 0.44 
3/27/1999 21.69 0.39 0.22 
4/24/1999 13.83 0.03 0.08 
4/28/1999 63.09 5.38 4.14 
5/9/1999 31.03 1.28 1.11 
6/10/1999 55.7 1.73 2.68 
6/19/1999 138.93 18.77 21.38 
8/27/1999 18.52 0.35 0.24 
10/7/1999 30.11 1.22 2.56 
10/29/1999 29.48 0.98 0.24 
1/7/2000 13.7 0.16 0.19 
2/24/2000 31.12 0.67 0.28 
4/11/2000 27.22 0.25 0.08 
4/22/2000 11.95 0.04 0.05 
6/17/2000 21.95 0.03 0.18 
7/1/2000 14.85 0.64 0.63 

10/13/2000 19.21 0.1 0.10 
11/23/2000 21.94 0.54 0.21 
2/8/2001 23.84 0.41 0.13 
2/23/2001 47.43 2.5 1.83 
5/25/2001 32.71 1.34 0.60 
6/22/2001 19.04 0.69 0.28 
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                      Table B-5.  Identified events for the Red-2 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  (mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

3/27/1999 31.54 0.68 0.16 
4/2/1999 15.54 0.05 0.03 

4/28/1999 35.22 0.58 1.39 
6/6/1999 89.69 0.65 1.06 

6/12/1999 26.85 0.4 0.76 
7/9/1999 30.31 0.47 0.14 

2/24/2000 18.61 0.08 0.05 
3/22/2000 53.1 4.31 3.67 
4/15/2000 12.14 0.28 0.20 
4/22/2000 15.34 0.04 0.00 
6/1/2000 35.09 0.61 1.03 

6/17/2000 34.08 0.02 0.58 
10/14/2000 21.9 0.04 0.00 
10/23/2000 81.56 1.1 0.79 
11/23/2000 11.55 0.01 1.22 

2/8/2001 14.83 0.06 0.00 
2/23/2001 18.12 0.13 0.41 
3/7/2001 35.16 0.21 0.81 

3/23/2001 21.39 0.07 0.19 
5/17/2001 21.15 0.38 0.05 
6/1/2001 41.22 0.83 0.23 

6/22/2001 28.75 1.15 1.37 
7/14/2001 18.73 0.05 0.02 
9/2/2001 24.61 0.09 0.67 

9/20/2001 29.03 1.99 0.02 
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                      Table B-6.  Identified events for the LCR-1 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  
(mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

1/28/1999 22.26 0.69 0.73 
3/11/1999 62.97 3.66 2.32 
3/27/1999 17.01 0.12 0.15 
4/2/1999 30.92 0.63 0.13 
4/25/1999 32.03 0.91 0.18 
5/3/1999 15.96 0.37 0.06 
5/26/1999 32.16 1.09 0.24 
6/19/1999 56.01 2.51 0.60 
7/10/1999 36.39 0.88 0.67 
9/8/1999 19.55 0.82 0.06 

10/16/1999 16.59 0.8 0.33 
10/29/1999 21.15 0.14 0.11 
2/22/2000 17.58 0.06 0.17 
3/28/2000 14.16 0.89 0.05 
4/11/2000 31.11 1.46 0.27 
4/19/2000 10.79 0.1 0.05 
4/27/2000 26.04 2.06 0.50 
5/19/2000 21.74 0.71 0.33 
5/27/2000 18.13 0.28 0.10 
6/3/2000 29.49 1.92 0.24 
6/9/2000 23.38 0.09 0.24 
6/17/2000 49.62 2.9 0.51 
7/25/2000 12.02 0.09 0.04 
9/12/2000 18.42 0.29 0.07 
9/24/2000 33.29 1.35 0.18 
10/15/2000 23.88 0.15 0.41 
10/21/2000 35.06 0.6 0.29 
2/15/2001 13.59 0.05 0.27 
3/8/2001 13.85 0.08 0.05 
3/11/2001 17.98 0.72 0.04 
4/10/2001 19.81 0.73 0.29 
4/22/2001 32.79 2.26 0.11 
5/4/2001 47.13 1.55 1.20 
6/23/2001 17.63 0.58 0.09 
7/1/2001 20.86 0.49 0.27 
8/16/2001 25.62 0.43 0.18 
8/26/2001 66.57 2.05 1.36 
9/18/2001 51.5 3.37 0.54 
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                        Table B-7.  Identified events for the LCR-2 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  
(mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

3/12/1999 16.55 0.28 0.67 
3/27/1999 33.61 1.63 1.46 
4/24/1999 38.19 0.64 0.68 
5/9/1999 88.54 9.98 4.55 
5/26/1999 51.58 1.44 1.48 
6/12/1999 36.97 3.01 0.34 
6/20/1999 26.82 0.81 0.95 
7/10/1999 46.98 2.83 0.56 
9/8/1999 14.12 0.62 0.01 

10/16/1999 30.31 0.58 0.27 
10/29/1999 21.56 0.28 0.45 
12/11/1999 17.61 0.32 0.34 
2/22/2000 36.16 2.38 0.34 
2/25/2000 16.62 0.12 0.21 
3/7/2000 31.07 1.38 0.42 
4/11/2000 43.15 3.89 1.31 
5/1/2000 62.97 10 12.49 
5/12/2000 27.59 1.74 0.11 
5/19/2000 10.84 0.01 0.24 
5/27/2000 20.81 0.27 0.16 
6/2/2000 14.36 0.06 0.37 
6/9/2000 40.03 1.38 0.81 
6/17/2000 26.75 0.16 0.34 
9/12/2000 22.59 0.15 0.00 
10/7/2000 36.02 0.65 0.36 
10/15/2000 32.45 0.34 0.68 
5/4/2001 41.67 2.29 3.21 
5/24/2001 48.05 5.6 3.21 
6/23/2001 15.27 0.3 0.36 
8/14/2001 52.14 3.12 1.18 
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                      Table B-8.  Identified events for the LCR-3 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  (mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

3/12/1999 14.58 0.03 1.70 
10/29/1999 25.17 0.22 0.03 
12/11/1999 16.44 0.02 0.38 
2/22/2000 27.99 0.43 0.30 
3/7/2000 46.85 1.44 0.28 

3/26/2000 38.85 0.53 0.69 
4/2/2000 15.67 0.29 0.17 

4/11/2000 35.93 1.42 2.27 
5/1/2000 69.55 9.03 11.68 

5/27/2000 18.7 0.12 0.33 
10/22/2000 46.87 0.57 0.98 
5/20/2001 16.45 0.1 0.57 
7/1/2001 36.25 0.36 0.40 

8/14/2001 62.15 2.73 0.07 
8/26/2001 55.79 0.62 0.06 
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                       Table B-9.  Identified events for the SA-1 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  
(mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

3/12/1999 15.44 0.38 0.41 
3/18/1999 11.53 0.11 0.70 
3/27/1999 30.18 1.23 1.41 
4/24/1999 51.35 1.97 2.54 
5/9/1999 55.76 2.55 2.80 

5/17/1999 24.23 1.19 1.77 
5/26/1999 42.45 4.53 4.96 
6/12/1999 56.04 6.28 4.00 
10/16/1999 37.36 2.17 1.92 

2/1/2000 21.44 0.33 0.66 
2/22/2000 33.24 0.99 0.80 
4/11/2000 24.28 0.67 0.86 
5/1/2000 29.78 1.25 1.54 

5/12/2000 16.83 0.37 0.32 
5/19/2000 16.99 0.65 0.22 
5/27/2000 29.62 1.38 0.10 
6/2/2000 18.07 0.07 0.22 
6/9/2000 55.83 3.15 2.81 

7/23/2000 13.73 0.05 0.13 
7/30/2000 24.45 0.84 0.44 
9/12/2000 26.1 0.39 0.13 
9/24/2000 34.1 2.31 0.19 
10/7/2000 36.82 0.42 1.48 
4/15/2001 30.17 1.71 2.34 
8/16/2001 23.53 1.16 0.23 
8/26/2001 89.07 5.94 3.45 
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                        Table B-10.  Identified events for the SA-2 watershed. 

Event Start 
Date 

NEXRAD  
Total 

Rainfall  
(mm) 

Estimated 
Runoff       
(mm) 

USGS  
Observed 

Runoff 
 (mm) 

3/12/1999 10.7 0.03 0.05 
3/18/1999 17.76 0.27 0.33 
3/27/1999 39.49 3.52 3.98 
4/24/1999 34.65 0.15 0.13 
5/9/1999 28.14 1.39 1.62 
5/17/1999 15.91 0.82 0.55 
6/20/1999 103 6.79 3.36 
7/3/1999 21.99 0.01 0.01 
7/10/1999 55.84 5.36 2.61 
7/17/1999 28.78 0.35 0.97 
8/23/1999 26.71 1.99 0.02 
8/29/1999 12.11 0.21 0.03 
10/16/1999 26.76 0.46 0.01 
1/7/2000 19.25 0.49 0.34 
2/1/2000 21.04 0.74 0.45 
2/22/2000 28.95 0.77 0.45 
4/1/2000 34.37 0.65 0.39 
5/1/2000 18.79 0.37 0.66 
5/19/2000 26.25 1.31 0.75 
6/4/2000 28.74 0.98 0.38 
6/8/2000 145.93 12.11 19.69 
6/18/2000 24.01 0.88 0.64 
9/12/2000 47.21 1.59 0.19 
9/24/2000 21.77 0.42 0.03 
10/7/2000 51.78 1.74 1.69 
10/17/2000 32.13 2.4 3.25 
10/21/2000 42.08 0.72 0.29 
11/23/2000 25.11 1.1 6.77 
2/15/2001 15.06 0.19 0.17 
3/11/2001 38.29 1.6 0.65 
4/22/2001 64.75 5.75 5.50 
5/4/2001 72.8 3.92 5.32 
5/20/2001 29.92 1.04 0.05 
6/14/2001 31.72 5.13 3.48 
9/22/2001 23.56 0.37 0.15 
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