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ABSTRACT

Multiple Symbol Decoding of

Differential Space-Time Codes. (December 2003)

Rohit Singhal, B.Tech., Indian Institute of Technology Kharagpur, INDIA

Co–Chairs of Advisory Committee: Dr. Xiaodong Wang
Dr. Costas N. Georghiades

Multiple-symbol detection of space-time differential codes (MS-STDC) decodes N

consecutive space-time symbols using maximum likelihood (ML) sequence detection

to gain in performance over the conventional differential detection scheme. However

its computational complexity is exponential in N . A fast algorithm for implementing

the MD-STDC in block-fading channels with complexity O(N 4) is developed. Its per-

formance in both block-fading and symbol-by-symbol fading channels is demonstrated

through simulations.

Set partitioning in hierarchical trees (SPIHT) coupled with rate compatible punc-

tured convolution code (RCPC) and cyclic redundancy check (CRC) is employed as

a generalized multiple description source coder with robustness to channel errors.

We propose a serial concatenation of the above with a differential space-time code

(STDC) and invoke an iterative joint source channel decoding procedure for decod-

ing differentially space-time coded multiple descriptions. Experiments show a gain

of up to 5 dB in PSNR with four iterations for image transmission in the absence

of channel state information (CSI) at the receiver. A serial concatenation of SPIHT

+ RCPC/CRC is also considered with space-time codes (STC) instead of STDC.

Experiments show a gain of up to 7 dB with four iterations in the absence of CSI.
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CHAPTER I

INTRODUCTION

A. Multi-Symbol Detection of Differential Space-Time Codes

Space-time coding (STC) can provide significant capacity gains in wireless channels

by integrating the techniques of multiple antenna spatial processing and channel

coding [1]. Recently in [2, 3] space-time differential coding (STDC) schemes have

been developed. The advantage of the differential scheme over STC is, that it does

not require the information about the state of the channel at the receiver.

In the context of DPSK, a multiple-symbol differential detection (MSDD) scheme

for additive white Gaussian noise (AWGN) channels was developed by Divsalar et al

[4]. An improvement in performance is observed on increasing the detection window

size, and it asymptotically reaches the performance of coherent detection. Even in

flat-fading channels the MSDD shows impressive performance gains over the conven-

tional single symbol detection scheme [5]. The MSDD however, has a computational

complexity exponential in the block size N . In [6] a fast MSDD algorithm with a

complexity O(N log N) was developed.

Similarly, the performance of STDC can be significantly enhanced by using

multiple-symbol detection as shown in [7]. Like MSDD, the complexity of the maxi-

mum likelihood (ML) MS-STDC detection is exponential in N . We try to develop a

fast implementation which becomes necessary considering the huge improvements in

performance MS-STDC can produce. The Fast algorithm is discussed in chapter II.

The results are discussed in chapter V

The journal model is IEEE Transactions on Automatic Control.
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B. Space-Time Coded Multiple Descriptions of Images

A maximum a posteriori (MAP) decoding algorithm for STDC developed by Nguyen

and Ingram [8] showed that it is a recursive code and has a trellis structure . Therefore,

it can also be decoded using the Viterbi or the BCJR algorithm [9]. Nguyen et al

developed an efficient soft-in-soft-out (SISO) receiver for STDC which does not require

the channel state information (CSI). They show through simulations that an iterative

receiver for the serial concatenation (SC) of a STDC with a convolution code as the

outer code produces better performance with each iteration.

Multiple description (MD) source coding is a technique that generates multiple

correlated descriptions of a source. Any one of these descriptions can be used to re-

produce the original source with certain fidelity. When more than one descriptions are

available to the decoder, they can be synergistically combined to enhance the quality

[10]. From a source coding viewpoint, MDs can be generated via MD quantization

[11], MD correlating transforms [12], or MD coding with frames [13]. MD coding can

also be viewed as a means of joint source-channel coding (JSCC). Under this context,

the MDs can be easily generated with embedded coding and unequal error protection

(UEP) [14, 15].

We consider transporting MDs over wireless fading channels rather than the on-

off channels considered in most earlier works. The idea is to treat MD coding as JSCC

and use channel coding techniques developed for SC coding systems to improve the

performance of the receiver with successive iterations [16, 17]. Iterative decoding was

used in [18] to decode MDs transmitted over an AWGN channel. Results obtained on

using a Gaussian source and two MD scalar quantizers [11] indicate that the efficacy

of iterative decoding depends on the amount of correlation in the two descriptions.
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Fig. 1. The proposed serial concatenation of MD coding and STDC.

We propose to use SPIHT 1 + RCPC/CRC 2 [19, 20] as a generalized JSCC. We

use this and an STDC as the two constituent codes to form a SC coding system. Our

proposed receiver consists of a MAP differential space-time decoder [8], an MD source

decoder, an interleaver and a deinterleaver. There are several ways to interpret the

scheme in Fig. 1. We provide here only a motivating one. According to [21], STC

or, for that matter, STDC asymptotically converts a fading channel into a Gaussian

channel, for which the initial scheme [18] for iterative decoding of MDs was designed.

In [22] a SISO decoding algorithm for decoding STC has been developed based on

the expectation-maximization (EM) algorithm [23]. Simulations show improvement

in performance with successive iterations for coded Alamouti STC. We propose to

modify the system described in the fig. 1 by replacing the STDC with the STC. The

receiver end is updated by changing the STDC decoder with a modification of the

receiver developed in [22]. The SC systems and the simulation results are discussed

in chapters III, IV, and V.

1Set Partitioning in Hierarchical Trees.
2Rate Compatible Punctured Convolution Code with Cyclic Redundancy Check
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CHAPTER II

A FAST ALGORITHM FOR MULTIPLE-SYMBOL DETECTION OF

DIFFERENTIAL SPACE-TIME CODES

This chapter begins with the description of the STDC system in section A. As dis-

cussed in the chapter I, a multi-symbol decoding of differential space-time codes (MS-

STDC), discussed in the section B, provides gain in performance over the conventional

one-symbol decoding schemes. This improvement, however, comes at a prohibitive

increase in complexity. A fast and exact implementation of the ML receiver, which

becomes necessary, is discussed in C. The results are discussed in chapter V

A. Space-Time Differential Coding

STDC was first developed in [2, 3]. It is modified as described below for our sys-

tem. Consider a communication system with two transmit antennas and one receive

antenna. Let the M -ary PSK (M -PSK) symbols at time 2i and 2i + 1 be

a2i ∈ A 4
=

{
1√
2

e 2πk
M , k = 0, 1, · · · ,M − 1

}
.

a2i+1 = ±a2i. (2.1)

Define the following matrices:

A0
4
=




a0 a1

−a∗
1 a∗

0


 ,

Ai

4
=




a2i a2i+1

−a∗
2i+1 a∗

2i


 , for i ≥ 1, (2.2)

Gi

4
= AiA

H
0 . (2.3)
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It is easy to see that Ai and Gi are both orthogonal matrices, i.e., AiA
H
i = AH

i Ai =

GiG
H
i = GH

i Gi = I2. Hence, given Gi, Ai can be obtained by

Ai = GiA0. (2.4)

Also, Gi is always an element of a finite set G.

Gi ∈ G 4
=








g 0

0 g∗


 ,




0 g

−g∗ 0








. (2.5)

where, g√
2
∈ A. For example, if A is a QPSK signal constellation, then,

Gi ∈ G 4
=




±




1 0

0 1


 ,±




j 0

0 −j


 ,±




0 1

−1 0


 ,±




0 j

j 0








. (2.6)

The space-time differential block code is recursively defined as follows:

X0 = A0,

X i = GiX i−1, i > 0. (2.7)

By a simple induction, it is easy to show that the matrix X i has the following form

X i

4
=




x2i x2i+1

−x∗
2i+1 x∗

2i


 , (2.8)

where x2i, x2i+1 ∈ A and ‖x2i‖2 + ‖x2i+1‖2 = 1. Hence X i is also an orthogonal

matrix, and by (2.7), we have

X iX
H
i−1 = Gi. (2.9)

At time slot 2i, the symbols on the first row of X i in (2.8), x2i and x2i+1 are
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transmitted simultaneously from antenna 1 and antenna 2, respectively. At time

slot 2i + 1, the symbols on the second row of X i, −x∗
2i+1 and x∗

2i are transmitted

simultaneously from the two antennas. We consider the case where the channel is

block-fading, i.e., it remains static over a block of symbols and it varies from block to

block. Let α1 and α2 be the complex fading gains between the two transmit antennas

and the receive antenna, respectively. The received signals at time slots 2i and 2i+1

are then given respectively by

y2i = α1 x2i + α2 x2i+1 + v2i, (2.10)

y2i+1 = −α1 x∗
2i+1 + α2 x∗

2i + v2i+1, (2.11)

where v2i and v2i+1 are independent zero-mean symmetric complex Gaussian noise

samples with variance σ2 . Note that from (2.10) and (2.11), in the absence of noise,

we can write the following:




y∗
2i y∗

2i+1

y2i+1 −y2i




︸ ︷︷ ︸
Y i

=




α∗
1 α∗

2

α2 −α1




︸ ︷︷ ︸
H




x∗
2i −x2i+1

x∗
2i+1 x2i




︸ ︷︷ ︸
XH

i

. (2.12)

Since

HHH =
(
|α1|2 + |α2|2

)
I2, (2.13)

then using (2.9) and (2.12) , we have

Y H
i Y i−1 =

(
|α1|2 + |α2|2

)
X iX

H
i−1,

=
(
|α1|2 + |α2|2

)
Gi. (2.14)

Based on the above discussion, we arrive at the following differential space-time de-
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coding algorithm.

Algorithm 1 (Differential Space-Time Decoding) Given the initial information

symbol matrix A0, let Â0 = A0. Form Y 0 according to (2.12) using y0 and y1. For

i = 1, 2, · · ·,

• Form the matrix Y i according to (2.12) using y2i and y2i+1.

• Obtain an estimate Ĝi of Gi which is closest to Y H
i Y i−1.

• Perform the following mapping Âi = ĜiÂ0.

B. Multiple-Symbol STDC Decoding

We now rewrite (2.10) and (2.11) as follows,




y2i

y2i+1




︸ ︷︷ ︸
y

i

=




x2i x2i+1

−x∗
2i+1 x∗

2i




︸ ︷︷ ︸
Xi




α1

α2




︸ ︷︷ ︸
α

+




v2i

v2i+1




︸ ︷︷ ︸
vi

. (2.15)

Denote

yn

4
=




y
n

y
n+1

...

y
n+N




and Xn
4
=




Xn

Xn+1

...

Xn+N




. (2.16)

At the receiver, the pdf of the received signal vector yn given Xn and α, is

p(yn|Xn,α) =
1

(πσ2)2N
exp

(
−‖yn − Xnα‖2

σ2

)
. (2.17)
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Now

‖yn − Xnα‖2 =
n+N∑

i=n

(
|y2i − x2iα1 − x2i+1α2|2 + |y2i+1 − x∗

2iα2 + x∗
2i+1α1|2

)

=
n+N∑

i=n

(
|y2i|2 + |y2i+1|2 + |α1|2 + |α2|2

)

−2<
(
α1

n+N∑

i=n

(y∗
2ix2i − y∗

2i+1x
∗
2i+1)

)

−2<
(
α2

n+N∑

i=n

(y∗
2ix2i+1 + y∗

2i+1x
∗
2i)

)
. (2.18)

For simplicity, denote

η1 =
n+N∑

i=n

(
y∗

2ix2i − y∗
2i+1x

∗
2i+1

)
, (2.19)

η2 =
n+N∑

i=n

(
y∗

2ix2i+1 + y∗
2i+1x

∗
2i

)
, (2.20)

K =
n+N∑

i=n

(
|y2i|2 + |y2i+1|2 + |α1|2 + |α2|2

)
. (2.21)

Then we have

‖yn − Xnα‖2 = K − 2|η1|r1 cos(A1 + θ1) − 2|η2|r2 cos(A2 − θ2), (2.22)

where θi = 6 αi, ri = |αi| and Ai = 6 ηi, i = 1, 2. Taking the Rayleigh fading

assumption, we have θ uniformly distributed from −π to π, and ri = |αi| Rayleigh

distributed from 0 to ∞. Therefore,

p(yn|Xn, r1, r2) =
∫ π

−π

∫ π

−π
p(yn|Xn,α)p(θ1)p(θ2)dθ1dθ2,

=
1

(πσ2)2N
exp

(−K

σ2

)

×I0

(
2r1|η1|

σ2

)
× I0

(
2r2|η2|

σ2

)
, (2.23)
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where I0(.) is the zeroth order modified Bessel function of the first kind given by

I0 (x) =
∞∑

k=0

1

(k!)2
x2k, i = 1, 2. (2.24)

Yielding,

p(yn|Xn) =
∫ ∞

0

∫ ∞

0
p(yn|Xn, r1, r2)p(r1)p(r2)dr1dr2, (2.25)

where

p(r) =
πr

2
exp

(
−πr2

4

)
. (2.26)

Substituting (2.23),(2.24) and (2.26) into (2.25), we obtain a sum of Gaussian inte-

grals, which can be written as

p(yn|Xn) =
1

(πσ2)2N
exp

(
−∑n+N

i=n {|y2i|2 + |y2i+1|2}
σ2

)

× π

4c
exp

(
4|η1|2
σ4c

)
× π

4c
exp

(
4|η2|2
σ4c

)

=
1

(πσ2)2N
exp

(
−∑n+N

i=n {|y2i|2 + |y2i+1|2}
σ2

)

×
(

π

4

)2

exp

(
4(|η1|2 + |η2|2)

σ4c

)
, (2.27)

where c = (N+1
σ2 + π

4
).

The ML receiver therefore is of the form

X̂n = arg max
X

(
|η1|2 + |η2|2

)
.

= arg max
X

∥∥∥∥∥

n+N∑

i=n

yH

i
X i

∥∥∥∥∥

2

(2.28)
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where ‖.‖2 is the Frobenius norm and y
i
is as defined in equation (2.15). Let,

η =

∥∥∥∥∥

n+N∑

i=n

yH

i
X i

∥∥∥∥∥

2

=

∥∥∥∥∥

n+N∑

i=n

yH

i
GiXn

∥∥∥∥∥

2

=

∥∥∥∥∥

n+N∑

i=n

yH

i
Gi

∥∥∥∥∥

2

. (2.29)

where Gi =
∏i

j=n Gj, and Gn = I2. We choose Gn+1,Gn+2, · · · ,Gn+N as the ML

estimates if they maximize η. Note that Gi ∈ G defined in equation (2.5) and there

are exactly 2M possible values that each Gi can take. M is defined in (2.1) and N

is the window length. Hence the complexity of the solution to equation (2.28) based

on an exhaustive search is O
(
(2M)N

)
, which is prohibitive in practical applications

for large values of N .

C. Fast STDC Decoding Algorithm

We propose a “3 stage” fast algorithm for finding the optimum solution to the above

problem. Before going into the details of each stage, a brief overview of the function-

alities will be helpful.

1: Find a good suboptimal initial estimate of [GnGn+1 . . . Gn+N ].

2: Reduce the domain for each Gi from a maximum of 2M values to a lesser value.

3: Exact search algorithm based on a “combine and bound” method.
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1. Stage 1

This stage finds a suboptimal estimate which will act as a lower bound for fur-

ther stages, i.e., our search for an ML estimate will be reduced to only those sets

[GnGn+1 . . . Gn+N ] ∈ GN which are better than this suboptimal estimate in terms of

the magnitude of η.

Theorem 1 Let

[

G0,n G0,n+1 . . . G0,n+N

]
maximize η over GN . Let Zi =

∑
k 6=i y

H

k
Gk for all n ≤ i ≤ n + N . Then

G0,i = arg max
Gi∈G

∥∥∥yH

i
Gi + Zi

∥∥∥
2
. (2.30)

Proof: We prove this theorem by contradiction. Suppose there exists an Gl,i ∈ G other

than G0,i, such that

Gl,i = arg max
Gi∈G

∥∥∥yH

i
Gi + Zi

∥∥∥
2
, (2.31)

then,
∥∥∥yH

i
Gl,i + Zi

∥∥∥
2

>
∥∥∥yH

i
G0,i + Zi

∥∥∥
2
.

This contradicts our assumption that [GnGn+1 . . . Gn+N ] maximizes η. Hence

Proved.

Based on this theorem, we will iteratively compute a suboptimal initial estimate

as given below.

Algorithm 2 (Fast MS-STDC Decoding Algorithm - Stage 1) We, start by

picking the Gi’s randomly from G for all n ≤ i ≤ n + N .
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1. Set the loop test condition “flag = 0”.

2. For all n ≤ i ≤ n + N .

• Calculate Z i and over all Gi ∈ G, find the one that maximizes η.

• If the value of η is changed, set “flag=1”.

3. If “flag” is set to 1, repeat steps 1 and 2. This loop iteratively arrives at an

estimate [Gl,nGl,n+1 . . . Gl,n+N ] which satisfies equation (2.30).

4. Calculate ηl =
∥∥∥
∑n+N

i=n yH

i
Gi

∥∥∥
2
.

The ηl thus arrived at will be used as a lower bound for the future calculations.

2. Stage 2

The domain Gi ∈ G for each Gi, n ≤ i ≤ n + N has 2M elements. We wish to reduce

this domain space to a smaller set to simplify further calculations. Before doing that,

we propose a method to find a tight upper-bound for η

η =

∥∥∥∥∥

n+N∑

i=n

yH

i
Gi

∥∥∥∥∥

2

,

=
n+N∑

i=n

(
|y2i|2 + |y2i+1|2

)
+ 2<

n+N−1∑

i=n

n+N∑

j=i+1

yH

i
GiG

H
j y

j
,

=
n+N∑

i=n

(
|y2i|2 + |y2i+1|2

)
+

n+N−1∑

i=n

n+N∑

j=i+1

ηij. (2.32)

where ηij = 2<(yH

i
GiG

H
j y

j
). To compute an upper bound ηu for η, we individually

maximize each ηij in (2.32), choosing Gi ∈ Gi and Gj ∈ Gj.

ηu =
n+N∑

i=n

(
|y2i|2 + |y2i+1|2

)
+

n+N−1∑

i=n

n+N∑

j=i+1

max
Gi∈Gi,Gj∈Gj

(ηij). (2.33)
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It is seen that the calculation of ηu is much easier compared to calculating max η.

A conditional upper bound is defined as an upper bound calculated when the

domain GN is reduced or bounded in some way, e.g, some of the Gi are already set

to a certain value. We can now discuss the Algorithm for iteratively reducing the

constellations Gi.

Algorithm 3 (Fast MS-STDC Decoding Algorithm - Stage 2) Set Gn = {I2}.

For n ≤ i ≤ n + N , initialize Gi = G . Define ci as the number of elements in Gi.

1. Set the loop test condition “flag = 0”.

2. For i = n + 1, . . . , n + N .

• For k = 1, . . . , ci.

– Fix Gi = Gi,k, where Gi,k is the kth element in Gi.

– If the conditional upper bound ηu is less than ηl,

∗ Remove Gi,k from Gi, update ci = ci − 1, Set “flag=1”.

3. If “flag=1”, repeat 1 & 2. This loop will iteratively reduce all the constellations.

3. Stage 3

The problem now reduces to finding an ML estimate, choosing Gi ∈ Gi for all n ≤

i ≤ n + N . An exhaustive search will still have a large complexity proportional to

cncn+1 . . . cn+N . We propose a “combine and bound” algorithm to search for a ML

estimate with a reduced complexity.
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Stage 2 ensures that choosing any Gi ∈ Gi for any i results in a conditional upper

bound ηu ≥ ηl. What happens if we fix both Gn and Gn+1 simultaneously choosing

from Gn and Gn+1 respectively? There can be a total possible of cncn+1 combinations

for choosing [Gn Gn+1]. Not all of these will lead to a conditional upper bound

ηu ≥ ηl. The irrelevant combinations therefore have to be removed.

This notion leads to the concept of a joint constellation Gn,n+1 for [Gn Gn+1],

which can be formed by combining Gn and Gn+1 as described below.

Gn,n+1 = Gn × Gn+1

=
{[

Gn,p Gn+1,q

]
, 1 ≤ p ≤ cn, 1 ≤ q ≤ cn+1

}
(2.34)

Note that Gn,n+1 has exactly cncn+1 elements. Let D
p
n,n+1 be the pth element of Gn,n+1.

Remove D
p
n,n+1 from the set if upon fixing [Gn Gn+1] = D

p
n,n+1, the upper bound

ηu < ηl. Let cn,n+1 be the number of elements remaining in Gn,n+1. Similarly, a joint

constellation set Gn+2,n+3 for [Gn+2 Gn+3] can be formed.

What happens if we fix [Gn Gn+1 Gn+2 Gn+3] simultaneously? We need to

find a joint constellation Gn,n+1,n+2,n+3. For simplicity of notation we can write it as

Gn,n+3 noting only the starting variable and the ending variable index.

Gn,n+3 = Gn,n+1 × Gn+2,n+3

=
{[

D
p
n,n+1 D

q
n+2,n+3

]
, 1 ≤ p ≤ cn,n+1, 1 ≤ q ≤ cn+2,n+3

}
(2.35)

Let D
p
n,n+3 be the pth element in Gn,n+3. Remove D

p
n,n+3 from the set if upon fixing

[Gn Gn+1 Gn+2 Gn+3] = D
p
n,n+3, the upper bound ηu < ηl.

We wish to finally form a joint constellation Gn,n+N . The elements Dn,n+N ∈

Gn,n+N are realizations for [Gn Gn+1 . . . Gn+N ]. An efficient algorithm for finding

Gn,n+N is recursive and can be best understood using the following “pseudo” code.
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main()

{
...

G=makeG(n,n+N); // G is the joint constellation Gn,n+N .

...

}

makeG(i,j)

{

if (j>i)

{

k=midpoint(i,j);

G1=makeG(i,k); // G1 is the joint constellation Gi,k

G2=makeG(k+1,j); // G2 is the joint constellation Gk+1,j

G=combine(G1,G2); // G is the joint constellation Gi,j

}

else if (i==j)

G=Const[i]; // G is the constellation Gi

return G;

}

The function combine() is as described in the above paragraphs. The joint constella-

tion Gn,n+N is formed in the function main().

We now have the following algorithm for computing the ML estimate.

Algorithm 4 (Fast Multiple-Symbol STDC decoding Algorithm - Stage 3)

From stage 2 we have Gi’s for n ≤ i ≤ n + N .
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• Combine them to form Gn,n+N using the pseudo code given above.

• Find a
[
Ĝn Ĝn+1 . . . Ĝn+N

]
∈ Gn,n+N , which maximizes the η.

• Form Âi = GiG
H
i−1A0, where A0 is the pilot symbol sent at the beginning.
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CHAPTER III

ITERATIVE DECODING OF DIFFERENTIALLY SPACE-TIME CODED

MULTIPLE DESCRIPTIONS OF IMAGES

As described in chapter I, we propose a serial concatenation of a JSCC and a STDC

code (section A). Sections B and C describe the maximum a posteriori probability

(MAP) STDC decoder and the SPIHT + RCPC/CRC decoder respectively.

A. Iterative Decoding

We consider an MD source code using SPIHT + RCPC/CRC and a STDC with two

transmit antennas and one receive antenna. The former can be viewed as an effective

source code (with robustness to channel errors), while the latter an effective channel

code. We thus propose a serial concatenation of these two (see Fig. 2) and employ

an iterative decoding technique for differential space-time coded multiple descriptions

(STDC-MD).

Our proposed receiver consists of a MAP STDC decoder [8], an MD source

decoder, an interleaver and a de-interleaver. The two decoders exchange the a priori

probabilities of transmitted bits between themselves in successive iterations. These a

priori probabilities are also known as the extrinsic values. The inputs to the STDC

decoder are the channel values and the a priori probabilities. This MAP decoder

calculates the log likelihood ratio 1 (LLR) for each information bit and passes it on as

the output. These values are then de-interleaved to bring them in the right order for

the MD source decoder. The interleaving is done at the transmitter to counter the

effect of burst errors which are common in fading channels. Using these inputs, the

1defined in section B
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Fig. 2. The proposed serial concatenation of MD coding and differential STC.

MD source decoder calculates the extrinsic values, which are interleaved and passed to

the MAP STDC decoder. The MD source decoder employs a log-MAP algorithm to

calculate the extrinsic values to be passed on to the next stage. At the last iteration,

however, the MD source decoder employs a list decoding technique. The best estimate

in the “list” which satisfies the CRC check is chosen.

B. MAP STDC Decoding in Fading Channel

We consider a flat-fading channel, where the fading processes associated between

a transmit and a receive antenna can be denoted by αt as a function of time t.

These processes are modelled as mutually independent complex Gaussian variables

with Jakes’ correlation structure [24]. Each of them has normalized autocorrelation



19

function

R(n) = E{αt+nαt} = EsJ0(2πBdnT ). (3.1)

where, Es is the average energy, J0(.) is the zeroth order Bessel function of the first

kind, T is the symbol interval, and Bd is the maximum Doppler shift. We assume

that the channel remains constant over a block of two consecutive symbols. Consider

the system described in chapter II, section A. Let α1i and α2i be the complex fading

gains between the two transmit antennas and the receive antenna, respectively. The

received signals are then given respectively by




y2i

y2i+1




︸ ︷︷ ︸
y

i

=




x2i x2i+1

−x∗
2i+1 x∗

2i




︸ ︷︷ ︸
Xi




α1i

α2i




︸ ︷︷ ︸
αi

+




v2i

v2i+1




︸ ︷︷ ︸
vi

. (3.2)

where v2i and v2i+1 are independent zero-mean symmetric complex Gaussian noise

samples with variance σ2.

A MAP decoding algorithm was developed in [8] using the trellis representation.

The trellis has 2M states corresponding to the values that X i can take. There are

2M branches going out of and coming into each state corresponding to the values of

Ai. Further, each branch is a vector consisting of exactly log2 M + 1 bits.

The inputs to the decoder are the channel output vector yn and the a priori

probabilities or the extrinsic values L(di(k)) of the bits. The decoder calculates the

a posteriori probability (APP) or the log likelihood ratio (LLR) of each bit as

Λ(di(k)) = log

(
p (di(k) = 1|yn)

p (di(k) = 0|yn)

)
, (3.3)
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where di(k) is the k-th of the log2 M + 1 bits of the i-th input vector. The APP

can be written in terms of the transition probabilities of the trellis. Following [8], we

define a set of all state transitions corresponding to the input bit di(k) = q as

Bdi(k)=q = {(m′,m) : di(k) = q, Si−1 = m′, Si = m}, (3.4)

where Si denotes the state on the trellis at time i and m is the value that Si takes.

The LLR is defined as

Λ(di(k)) = log

∑
(m′,m)∈Bdi(k)=1

σi(yn,m
′,m)

∑
(m′,m)∈Bdi(k)=0

σi(yn,m
′,m)

, (3.5)

where σi(yn,m
′,m) is the probability that a transition from state m′ to m occurs at

i and can be written as

σi(yn,m′,m) = αi−1(m
′)γi(m

′,m)βi(m), (3.6)

with αi(m) and βi(m) being the probabilities that Si is m. They can be calculated

recursively as

αi(m) =
∑

m′

αi−1(m
′)γi(m

′,m), (3.7)

βi(m) =
∑

m′

βi+1(m
′)γi+1(m,m′). (3.8)

The inner decoder transition metric between m′ and m is given by

γi(m
′,m) = p(Ai)p(y

i
|X i)

=




log2 M+1∏

k=1

p (di(k) = q)


 p

(
y

i
|X i

)
. (3.9)
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where p (di(k)) are the a-priori probabilities. These probabilities are calculated from

the extrinsic information of the outer decoder denoted as L(di(k)).

For estimating p(y
i
|X i), we first estimate αi using the per-survivor processing

[25] and the linear prediction. We can write

p(y
i
|X iαi) ∝ exp

(
−
‖ y

i
− X iαi ‖2

σ2

)
. (3.10)

The perfect αi is not known, so it is replaced by an estimate α̂i, which is obtained by

linear prediction as

α̂i =
P∑

l=1

ωlα̃i−l, (3.11)

where P is the predictor length and ωl are its coefficients. α̃i−l are the previous channel

estimates obtained using the per survivor principle α̃i−l = XH
i−lyi−l

. Therefore , the

metric of the received signal is

p(y
i
|X i) ∝ exp


−1

σ2

∥∥∥∥∥yi
− X i

P∑

l=1

ωlX
H
i−lyi−l

∥∥∥∥∥

2

 . (3.12)

We choose P = 1 and ω1 = 1 for our simulations. The metric becomes,

p(y
i
|X i) ∝ exp

(−1

σ2

∥∥∥y
i
− X iX

H
i−1yi−1

∥∥∥
2
)

. (3.13)

The extrinsic values that are passed onto the next stage are calculated as

Le(di(k)) = Λ(di(k)) − L(di(k)). (3.14)

Algorithm 5 (MAP Decoding Algorithm for Multiple-Symbol STDC) The

following is a MAP decoding algorithm for STDC without requiring the CSI.
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• Calculate the αi(m), βi(m) and γi(m
′,m) for each state and time using the Equa-

tions (3.7),(3.8) and (3.9).

• Calculate the path transition probabilities for each path using the relation

σi(m
′,m) = αi−1(m

′)γi(m
′,m)βi(m). (3.15)

• Calculate the LLR for each bit using (3.5).

• Calculate the extrinsic values using (3.14) from these LLR values.

Fig. 3 shows the BER performance of MAP differential space-time decoding

with a normalized Doppler faT=0.01. The decoding window length is 216 and the

8-PSK constellation is used for transmitting symbols. Fig. 4 shows the performance

of a serially concatenated system of a MAP STDC decoder and a simple rate 1/2

convolution code.

C. MD Source Coding with List Viterbi Decoding

1. SPIHT

SPIHT is a powerful wavelet-based image compression method optimized for progres-

sive image transmissions (like WWW browsers). SPIHT coding converts an image

file into a stream of bits in such a fashion that if there are two encoded files of sizes

M and N bits respectively and if N > M , then the first M bits of both the files are

identical. The SPIHT achieves superior results than most schemes by using a sim-

pler method of uniform scalar quantization. Also, the compression simplicity directly

implies faster coding and decoding.
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Fig. 3. Performance of MAP differential space-time decoding in a fading channel with a

normalized Doppler faT=0.01.

2. List decoding of RCPC/CRC

The CRC is used to protect blocks of data (Frames). The transmitter adds an extra n

parity bit sequence to every frame based on a generator polynomial. These extra bits

hold redundant information about the frame and help detect errors at the receiver.

RCPC codes are generated by puncturing a rate 1
R

convolutional code periodically

with a period P to obtain a family of codes with rate P
P+l

where l can be varied

between 1 and (N − 1)P . For our simulations, we used a rate 1
6

convolution code
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Fig. 4. Performance of MAP differential space-time decoding concatenated with a rate 1/2

convolution code in a fading channel with a normalized Doppler faT=0.01.

with 6 memory elements and deleted the output bits periodically to set the rate to

the required value. More details about these codes can be found in [20].

For the decoding of the RCPC codes we use a log-MAP decoding algorithm

similar to the one developed in [9] using the trellis representation. The trellis has 2k

states corresponding to each of the states of the k − 1 memory elements. Each state

has 2 branches going out of and coming into it. These branches correspond to the

binary values that the input information bit can take. Further, each branch between
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two nodes consists of exactly R bits, in other words it has information about exactly

1 input bit.

The inputs to the decoder are the a priori probabilities or the extrinsic values

L(dk(i)) of the bits, where dk(i) is the i-th of the R output bits corresponding to the

k-th input information bit. The decoder has two kinds of outputs

• In the last iteration, the decoder gives the estimates for the information bits.

• In all other iterations, the decoder produces the log likelihood ratios (LLR) of

each of the constituent R bits.

Lets first discuss the latter, the LLR or the a posteriori probabilities are best

described according to the following equation.

Λ(dk(i)) = log

(
p(dk(i) = 1)

p(dk(i) = 0)

)
(3.16)

The APP can be written in terms of the transition probabilities of the trellis. We

define a set of all state transitions corresponding to the bit dk(i) = q as

Bdk(i)=q = {(m′,m) : dk(i) = q, Sk−1 = m′, Sk = m} (3.17)

where Sk denotes the state on the trellis at time k and m, and m′ are the values that

Sk takes. We now define the LLR as

Λ(dk(i)) = log

∑
(m′,m)∈Bdk(i)=1

σk(m
′,m)

∑
(m′,m)∈Bdk(i)=0

σk(m′,m)
(3.18)

where σk(m
′,m) is the probability that a transition from state m′ to m occurs at k

and can be written as

σk(m
′,m) = αk−1(m

′)γk(m
′,m)βk(m) (3.19)
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with αk(m) and βk(m) being the probabilities that the state at time k is m. They

can be calculated recursively as

αk(m) =
∑

m′

αk−1(m
′)γk(m

′,m), (3.20)

βk(m) =
∑

m′

βk+1(m
′)γk+1(m,m′) (3.21)

The transition metric between m′ and m is given by

γk(m
′,m) =

N∏

i=1

p(dk(i) = q). (3.22)

where p(dk(i)) are the a-priori probabilities input to the decoder. These probabilities

are calculated in the inner decoder as L(dk(i)), and are passed onto the outer decoder

through a deinterleaver.

The extrinsic values that are passed as outputs are simply calculated as

Lc(dk(i)) = Λ(dk(i)) − L(dk(i)) (3.23)

Algorithm 6 (log-MAP Decoding Algorithm for RCPC) We can summarize

the above discussion in terms of an algorithm as follows.

• For each state and time, compute αk(m), βk(m), γk(m
′,m) using (3.20,3.21,3.22).

• Calculate the transition probabilities σk(m
′,m) = αk−1(m

′)γk(m
′,m)βk(m).

• Calculate the LLR for each bit using (3.18).

• Calculate the extrinsic values using Equation (3.23) from these LLR values.

A combination of RCPC + CRC is a very powerful technique to detect and
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correct errors. In the last iteration, the parity bits from the CRC come into play.

A list-decoding procedure is employed. The Viterbi algorithm is employed on the

trellis structure already designed to provide a list of hard estimates for the sequence

of input bits. The best path from the Viterbi occurs at the top of the list, while going

down the list worsens the euclidean distance of the channel values from the estimate.

From the list, the best estimate which satisfies the CRC check is picked as the final

estimate. These estimates from all the frames are combined to form a bit stream

which can be SPIHT decoded to form an image.

3. SPIHT + RCPC/CRC

The MD source coder can be simply based on MD correlating image transforms [12]

or embedded coding (e.g., SPIHT) and UEP [14, 15]. An example of the latter case

is given in Fig. 5 [10], where the embedded source coder (e.g., SPIHT) is employed

to produce a rate (2 − ρ)R bitstream with 0 ≤ ρ ≤ 1. The first ρR portion of the

embedded bitstream is repeated in both descriptions, as indicated by the box, while

the remaining 2(1 − ρ)R portion are split between the two descriptions.

Description 1

Description 2

ρR

ρR

(1−ρ)

(1−ρ)

R

R

Fig. 5. Two descriptions generated with embedded coding and UEP.

In our work, because we are dealing with fading channels, we view both MD cod-

ing and JSCC as means of introducing redundancy into our communication system for
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error robustness. Thus, conceptually any practical JSCC scheme with soft-threshold

channel coding can be employed as the MD coder in our system. Since Sherwood

and Zeger showed the effectiveness of their simple SPIHT+RCPC/CRC scheme in

[19], many works have been done on JSCC for scalable multimedia transmission over

both binary symmetric channels (BSC) and packet erasure channels. In this work, we

choose the SPIHT+RCPC/CRC scheme for MD coding (or JSCC) due to its good

performance even though it is based on equal error protection. Other UEP-based

practical JSCC schemes (e.g., [26]) may also be used in our system.

The performance of the MD source decoder obviously depends on the amount

of redundancy introduced in the RCPC code. For a given channel condition (e.g.,

SNR) and transmission rate, we choose the RCPC code rate to maximize the system

performance with a fixed number of iterations.



29

CHAPTER IV

ITERATIVE DECODING OF SPACE-TIME CODED MULTIPLE

DESCRIPTIONS OF IMAGES

The performance of the system developed in the chapter III is compared against a

serial concatenation of a SPIHT + RCPC/CRC with an STC as opposed to an STDC.

At the receiver, two schemes are considered, one in which the receiver has perfect CSI

and the other in which pilot symbols are used to estimate the CSI. A MAP decoding

algorithm based on the Expectation-Maximization (EM) principle has been developed

in [22] for OFDM systems. It is modified for flat fading channels. Section A describes

the MAP decoder for the STC.

A. MAP Space-Time Decoding in Fading Channel

Consider a communication system with two transmit antennas and one receive an-

tenna. Let the M -ary PSK (M -PSK) symbols at time 2i and 2i + 1 be

a2i, a2i+1 ∈ A 4
=

{
1√
2

e 2πk
M , k = 0, 1, · · · ,M − 1

}
. (4.1)

Define the matrix:

Ai

4
=




a2i a2i+1

−a∗
2i+1 a∗

2i


 , for i ≥ 0, (4.2)

It is easy to see that Ai is an orthogonal matrices, i.e., AiA
H
i = AH

i Ai = I2.

At time slot 2i, the symbols on the first row of Ai in (4.2), a2i and a2i+1 are

transmitted simultaneously from antenna 1 and antenna 2, respectively. At time

slot 2i + 1, the symbols on the second row of Ai, −a∗
2i+1 and a∗

2i are transmitted
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simultaneously from the two antennas. We consider a fast fading channel which

remains constant for the transmission of a single space-time matrix. Let α1i and α2i

be the complex fading gains at the transmission of the ith matrix between the two

transmit antennas and the receive antenna, respectively. The received signals are,




y2i

y2i+1




︸ ︷︷ ︸
y

i

=




a2i a2i+1

−a∗
2i+1 a∗

2i




︸ ︷︷ ︸
Ai




α1i

α2i




︸ ︷︷ ︸
αi

+




v2i

v2i+1




︸ ︷︷ ︸
vi

. (4.3)

where v2i and v2i+1 are independent zero-mean symmetric complex Gaussian noise

samples with variance σ2

We modify the trellis based MAP decoding algorithm for STDC to suite the

STC. The inputs to the decoder are the channel output vector y
i

and the a priori

probabilities or the extrinsic values L(di(k)) of the bits. The decoder calculates the

a posteriori probability (APP) or the log likelihood ratio (LLR) of each bit as

Λ(di(k)) = log

(
p(di(k) = 1|y

i
)

p(di(k) = 0|y
i
)

)
(4.4)

where di(k) is the k-th of the 2 log2 M information bits of the i-th input vector. The

APP can be written in terms of the transition probabilities of the trellis. Following

[8], we define a set of all state transitions corresponding to the input bit di(k) = q as

Bdi(k)=q = {m : di(k) = q, Ai = m} (4.5)

where m is a value that Ai takes out of the M 2 values in the constellation. The LLR
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is defined as

Λ(di(k)) = log

∑
m∈Bdi(k)=1

γi(m)
∑

m∈Bdi(k)=0
γi(m)

(4.6)

where γn(m) is the probability that Ai = m. The inner decoder transition metric is

given by

γi(m) = p(Ai)p(y
i
|Ai)

=




2 log2 M∏

k=1

p(di(k) = q)


 p

(
y

i
|Ai

)
. (4.7)

where p(di(k)) are the a-priori probabilities. These probabilities are calculated from

the extrinsic information of the outer decoder denoted as L(di(k)).

For estimating p(y
i
|Ai), we first estimate αi. We consider two approaches,

• Perfect Channel State Information (CSI) at the Receiver.

• Estimate using a pilot symbol coupled with a per survivor prediction approach.

We can write

p(y
i
|Aiαi) ∝ exp

(
−
‖ y

i
− Aiαi ‖2

σ2

)
(4.8)

When perfect CSI is available, i.e., αi is known at the receiver, the computation of

p(y
i
|Ai) becomes straightforward.

When the perfect αi is not known, we can replace it by an estimate of it.

α̂i = AH
i−1yi−1

(4.9)

where, Ai−1 which has the maximum p(y
i−1

|Ai−1) is chosen among the possible M 2



32

values. We can therefore write

p(y
i
|Ai) = exp

(−1

σ2

∥∥∥y
i
− AiA

H
i−1yi−1

∥∥∥
2
)

(4.10)

Once this has been done, the extrinsic values that are passed onto the next stage

can be simply calculated as

Le(di(k)) = Λ(di(k)) − L(di(k)) (4.11)

We therefore arrive at the following MAP algorithm.

Algorithm 7 (MAP Decoding Algorithm for STC) The following is a MAP

decoding algorithm for space-time codes.

• Calculate the γi(m) for each time and path using the equation (4.7).

• Calculate the LLR for each bit using (4.6).

• Calculate the extrinsic values using (4.11) from these LLR values.

Fig. 6 shows the BER performance of MAP STC decoder in a fading channel

w¡ith a normalized Doppler faT=0.01. The window length is 216. Both the cases of

perfect CSI at the receiver and linear prediction are shown.
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Fig. 6. Performance of MAP STC decoding with a normalized Doppler faT=0.01.
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CHAPTER V

RESULTS AND CONCLUSION

This chapter presents the results and conclusions for the systems and algorithms

designed in the preceding chapters. Section A discusses the performance results of

the fast algorithm. The simulation results for the proposed concatenation of STDC

with SPIHT + RCPC/CRC system are given in section B. Finally, section C has the

simulation results for the serial concatenation of STC with SPIHT + RCPC/CRC.
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Fig. 7. The complexity of the first stage of the fast algorithm.
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Fig. 8. The histograms for complexity of the last two stages combined for N=5 and 6.

A. Fast MS decoding of STDC

Before discussing the BER performance of the multi-symbol decoding of STDC, we

take a look at the complexity of the fast algorithms devised above.

The first stage of the algorithm tries to find a solution that satisfies equation

(2.30). A loop which fine tunes the values Gi for all i = n, . . . , n + 1 sequentially is

executed several times. A simple measure of complexity for this stage can therefore

be the number of times the loop is executed multiplied by the window length N . The
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Fig. 9. The complexity of the last two stages combined of the fast algorithm.

complexity is statistically computed and is shown in Fig. 7. The complexity of this

stage of the algorithm is found to be O(N) for higher values of N .

The basic constituent of the second and the third stage algorithms is the com-

putation of the upper bound ηu. Each calculation comprises of smaller calculations

for maximizing ηij. We measure the joint complexity of the second and the third

stage by counting the number of times the function for maximization of ηij is called.

To measure this we feed the system with a random input vector yn. For window
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Fig. 10. The BER performance of the fast algorithm.

lengths N = 5 and 6, the histograms for the number of times the function for the

maximization of ηij is invoked are shown in fig. 8. The complexity of the algorithm

is the worst case scenario, i.e., the case when the maximization function is invoked

most number of times. The complexity of these stages is shown in fig. 9 and is found

to be O(N 4). But as is evident from the shape of the histograms, most of the time

the complexity is much less than the worst case scenario.

Fig. 10 shows the performance of MS-STDC. It is seen from the plots that the

performance of the decoder is bettered with increasing window size. Fig. 11 shows
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Fig. 11. The BER performance of the first stage of the fast algorithm.

the performance of the suboptimal estimate in the first stage of the algorithm. The

performance closely matches that of the ML receiver. This algorithm can be used

when the complexity and computing time is a big concern.

The performance of this receiver was also studied for fast-fading channels. Figs.

12 and 13 respectively show the performance plots of the ML receiver and the stage

1 receiver for a fading channel with a normalized Doppler frequency fdT=0.01. It

is seen from the simulation results that in a fading channel, increasing the window

size infinitely does not result in better performance after a given window size. The



39

6 7 8 9 10 11 12 13 14 15
10−2

10−1

100

SNR

B
E

R

STDC, N=1
STDC, N=2
STDC, N=4
STDC, N=8
STDC, N=16

Fig. 12. The BER performance of the fast algorithm in a fading channel with a normalized

Doppler frequency faT=0.01.

simulations show that the window size N = 16 gives the best results for low SNRs.

Figs. 14 and 15 respectively show the performance plots of the ML receiver and the

stage 1 receiver for a fading channel with a normalized Doppler frequency fdT=0.001.

B. Iterative decoding of SPIHT + RCPC/CRC with STDC

Experiments are conducted with the 512 × 512 Lena image using the SPIHT +

RCPC/CRC code. Again we assume fast fading channel with a normalized Doppler
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Fig. 13. The BER performance of the first stage of the fast algorithm in a fading channel

with a normalized Doppler frequency faT=0.01.

faT = 0.01 and equal power between each transmit antenna and the receive antenna.

The MAP decoding window length is 216; the transmission rate is fixed at 0.5 b/p

with 8-PSK modulation. For a given number of turbo iterations (with four being the

maximum), we use the criterion that out of 100 image transmissions, we will find the

highest RCPC code rate that results in zero decoding error for the whole image in

each transmission.

The SNR (Eb/N0 in dB) vs. average MSE (converted to PSNR in dB) perfor-
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Fig. 14. The BER performance of the fast algorithm in a fading channel with a normalized

Doppler frequency faT=0.001.

mance of our proposed system is depicted in Fig. 16. A gain of around 5 dB in PSNR

is achieved with four iterations. The image qualities for varying PSNR’s are given in

figs. 17 and 18.

We have presented an iterative scheme for decoding differentially space-time

coded MDs for image transmission over fading channels that performs well even with-

out iterative decoding. We showed impressive performance gain (up to 5 dB in PSNR)

with only four iterations.
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Fig. 15. The BER performance of the first stage of the fast algorithm in a fading channel

with a normalized Doppler frequency faT=0.001.

C. Iterative decoding of SPIHT + RCPC/CRC with STC

Experiments are again conducted with the 512× 512 Lena image using the SPIHT+

RCPC/CRC code. We assume fast fading channel with a normalized Doppler faT =

0.01 and equal power between each transmit antenna and the receive antenna. The

window length is 216; the transmission rate is fixed at 0.5 b/p with QPSK modulation.

For a given number of turbo iterations (with four being the maximum), we use the

criterion that out of 100 image transmissions, we will find the highest RCPC code
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Fig. 16. The SNR (Eb/N0 in dB) vs. average PSNR (in dB) performance of our pro-

posed system.

rate that results in zero decoding errors. The SNR (Eb/N0 in dB) vs. average MSE

(converted to PSNR in dB) performance of our proposed system is depicted in Fig.

19. The perfect CSI at the receiver case is shown in dotted lines, while the linear

predictor performance is shown in solid lines. A gain of around 7 dB in PSNR is

achieved with four iterations. We see that the second iteration tends to eliminate

more decoding errors than additional iterations. Also, the MAPEM approaches the

perfect CSI performance after the third iteration.
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Fig. 17. The images with 37.21, 36.23 and 34.95 dB PSNR compared to the original

image.

We have presented an iterative scheme for decoding STC-MD of images in fading

channels that performs well even without iterative decoding. We showed impressive

performance gain (up to 7 dB in PSNR) with only four iterations. Though this

scheme requires a pilot symbol for channel estimation, the performance is better than

the STDC-MDs.
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image.
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