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ABSTRACT 
 

Multi-Period Optimization of Pavement Management Systems. (May 2004) 
 

Jaewook Yoo, B.S., Hanyang University, Korea; 
 

M.S., Hanyang University, Korea 
 

Chair of Advisory Committee: Dr. Alberto Garcia-Diaz 
 
 

The purpose of this research is to develop a model and solution methodology for 

selecting and scheduling timely and cost-effective maintenance, rehabilitation, and 

reconstruction activities (M & R) for each pavement section in a highway network and 

allocating the funding levels through a finite multi-period horizon within the constraints 

imposed by budget availability in each period, frequency availability of activities, and 

specified minimum pavement quality requirements. M & R is defined as a chronological 

sequence of   reconstruction, rehabilitation, and major/minor maintenance, including a  

“do nothing” activity. A procedure is developed for selecting an M & R activity for each 

pavement section in each period of a specified extended planning horizon. Each activity 

in the sequence consumes a known amount of capital and generates a known amount of 

effectiveness measured in pavement quality. The effectiveness of an activity is the 

expected value of the overall gains in pavement quality rating due to the activity 

performed on a highway network over an analysis period. It is assumed that the unused 

portion of the budget for one period can be carried over to subsequent periods. 

Dynamic Programming (DP) and Branch-and-Bound (B-and-B) approaches are 

combined to produce a hybrid algorithm for solving the problem under consideratioin. 

The algorithm is essentially a DP approach in the sense that the problem is divided into 

smaller subproblems corresponding to each single period problem. However, the idea of 

fathoming partial solutions that could not lead to an optimal solution is incorporated 

within the algorithm to reduce storage and computational requirements in the DP frame 

using the B-and-B approach. 



 

  
  

iv 

The imbedded-state approach is used to reduce a multi-dimensional DP to a one-

dimensional DP. For bounding at each stage, the problem is relaxed in a Lagrangean 

fashion so that it separates into longest-path network model subproblems. The values of 

the Lagrangean multipliers are found by a subgradient optimization method, while the 

Ford-Bellman network algorithm is employed at each iteration of the subgradient 

optimization procedure to solve the longest-path network problem as well as to obtain an 

improved lower and upper bound. If the gap between lower and upper bound is 

sufficiently small, then we may choose to accept the best known solutions as being 

sufficiently close to optimal and terminate the algorithm rather than continue to the final 

stage. 
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CHAPTER I 

 

INTRODUCTION 

 

 

I.1. Motivation 

 
As pavements continue to deteriorate, they become structurally deficient and 

functionally obsolete. For this reason, there is a need for generating both timely and 

cost-effective M & R strategies. In the face of limited resources, selecting and 

scheduling efficient M & R programs has become the major concern of many highway 

agencies in managing their networks.1 

Most estimates show the funds currently being spent on roads are inadequate, 

indicating the need to spend available funds more effectively. According to the highway 

statistics prepared by the Federal Highway Administration (FHWA), $65.2 billion was 

spent on highway M & R by all units of government for fiscal year 2000. According to 

the recent district and county statistics provided by Texas Department of Transportation 

(TxDOT), TxDOT spent $3.2 billion in M & R expenditures for Texas highway facilities 

in fiscal year 2001. Given the great expenditures on highway management, the 

development of an optimization model for M & R scheduling and fund allocation that 

maximizes pavement quality in highway networks over a multi-period planning horizon 

is critical. 

Limited funds should be allocated to pavement work in the most cost-effective 

manner. Typical considerations in the selection of M & R activities and in the 

computation of related cost and effectiveness are (1) pavement material (flexible or 

rigid) and age; (2) service conditions of pavement; (3) highway type (US, state highway, 

farm-to-market); and (4) stochastic variations of pavement service conditions, load 

                                                 
This dissertation follows the format and style of European Journal of Operational 
Research. 
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capacity, and traffic characteristics over time. The magnitude and complexity of the 

process for organizing, recommending, and scheduling these M & R activities in a 

network of pavements has been the principal motivation for developing rational and 

systematic methodologies, known as Pavement Management Systems (PMS).  

The decisions regarding the selection of pavement improvement activities would be 

more effective and consistent if they were considered on a system-wide basis along a 

mid-to-longterm planning horizon. Some of the most important limitations of current 

optimization procedures in most PMS are as follows: (1) only relatively short planning 

periods (3-5 years) are considered; (2) the effects of future resource supplies such as 

budget and frequency of activities on the present management schedule are not 

considered; and (3) state-of-the art mathematical techniques are not effectively used.  

 

I.2. Problem definition 

 
The purpose of this research is to develop a model and solution methodology for 

selecting and scheduling timely and cost-effective M & R activities for each pavement 

section in a highway network and to allocate the funding levels through a finite multi-

period horizon within the constraints imposed by budget availability in each period, 

frequency availability of activities, and specified minimum pavement quality 

requirements.  

Specifically, the measure of effectiveness to be maximized is the total volume of 

pavement benefit derived from the entire set of selected strategies over the multi-period 

planning horizon. It is assumed that the following information is given: (a) the group of 

pavement sections to be considered; (b) the M and R cost and treatment effect associated 

with each action on each pavement section in each period; (c) the available budgets for 

each period; (d) the availability activities on pavement sections over the multi-period 

planning horizon regarding a life time of these activities; and (e) the minimum pavement 

quality level requirements and serviceable pavement quality levels for pavement sections 
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in the multi-period planning horizon. It is also assumed that the unused portion of the 

budget for one period can be carried over to the subsequent periods. 

It should be noted that the stochastic variation of pavement quality over time is a 

typical consideration in the selection of an activity in the computation of effectiveness. It 

could be handled by a transition probability matrix, but, in this research it is assumed 

that this information is known. A study outlining specific procedures for generating 

these data was conducted by Butt et al. (1987). 

 

I.3. Objectives and Contributions  

 
The focus of this dissertation is to formulate and solve an optimization model for 

programming M & R strategies in a PMS along a multi-period planning horizon. To 

accomplish this goal, the following specific objectives will be considered:  

 

• the conversion of the original model to a resource-constrained longest-path 

network problem 

• the application of a dynamic programming approach to solve for management 

solutions 

• the design of a problem-specific branch-and-bound procedure 

• the application of Lagrangean relaxation and subgradient optimization 

procedures to obtain lower and upper bounds on the remaining stages at each 

stage in the dynamic programming model  

• the computerized sample runs of the proposed procedure. 

 

The most significant contributions of the research developed in this dissertation are:  

 

• a computationally efficient solution procedure for multi-period planning 

problems obtained by combining dynamic programming and branch-and-bound 
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procedures, and exploiting the computational efficiency of network algorithms at 

each iteration in a subgradient optimization procedure 

• an optimization procedure that allows for the selection and the scheduling of M 

& R activities for each section in a highway network 

• the capability of the model to allow pavement managers to make more consistent 

and effective decisions regarding the allocation of limited funds in each period as 

well as the frequency of activities 

• the demonstration that more wholistic (i.e. system-wide and multi-period) 

considerations are critical to improving current methods in M & R and PMS 

 

I.4. Organization of Dissertation 

 
This dissertation cons ists of six chapters. The introduction has provided the 

motivation for the research, the definition of the problem, the research objectives, and 

the expected contributions. The second chapter is a brief review of related past work on 

Pavement Management Systems and the mathematical tools used in this dissertation. 

Chapter III presents the mathematical formulation of the problem and the overall 

solution approach. Chapter IV provides the development of each procedural component 

of the proposed solution methodology. Chapter V presents implementation and 

computational results. Finally the summary, conclusions of the work, and directions for 

further research are presented in Chapter VI. In addition to the six chapters, computer 

implementation and data generation procedure are provided in the appendices. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

 

II.1. Introduction 

 
The development of systematic optimization approaches for Pavement Management 

System (PMS) has received increasing attention in the last few decades. The basic 

framework of these approaches is the utilization of mathematical programming 

techniques.  Integrality of the decision variables has shifted most the research efforts 

toward the use of integer programming techniques. 

In this chapter, the literature on the application of optimization approaches to PMS 

will be discussed first. Since the proposed methodology in this research is for solving 

multi-dimensional binary knapsack problems, the second part of the review will be 

devoted to that area. 

 

II.2. Literature on the Application of Optimization Approaches to PMS 

 
Three common mathematical techniques employed by optimization procedures for 

PMS are linear programming (LP), integer programming (IP), and dynamic 

programming (DP). In the rest of this section a brief review of the available literature on 

the application of optimization approaches to PMS will be discussed according to these 

three mathematical techniques. 

 

II.2.1. Linear Programming 

 

Golabi et al. (1982) developed a PMS for the state of Arizona to produce optimal 

maintenance policies for each mile of the 7,400 miles network of highways. This 
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optimization system employed a combination of Markov prediction modeling and LP, 

with minimization of total cost used as the objective function in the LP model. Utilizing 

‘fraction of network’ as decision variables in the LP formulation results in the loss of 

exact location information. It has been subsequently enhanced and used as an analysis 

tool many times by Wang et al. (1993,1994,1995) and Liu (1996). Since the original 

development a number of other PMS’s have adopted the same basic formulation such as 

Alaska, Kansas, and Portugal (Alviti et al., 1994, Golabi, 2002). 

Grivas et al. (1993) presented an LP model for planning period and budget allocation 

involved in network- level pavement management. The LP was formulated to model 

interactions between economic and engineering factors in an effective manner. It 

enabled decisions about the type of treatment, timing, and magnitude of work to be made 

simultaneously. In the mode, both project- and network- level constraints can be imposed 

to develop a pavement managememt that meets specified requirements on condition and 

budget. The developed methodology has been implemented as part of the New York 

State Thruway Authority’s PMS. 

Mbwana and Turnquist (1996) developed a new formulation of a network- level PMS 

using models based on a Markov decision process, utilizing Markov transition 

probabilities for pavement condition modeling and including the identification of 

specific network links in the optimization. The incorporation of specific links into the 

model allowed easier translation of network- level policies to project- level decisions than 

had previously been possible. This formulation also allowed the easy incorporation of 

user and agency costs as well as a variety of other specific constraints on the solution. 

Theodorakopoulos et al. (2002) developed a decision support system to assist 

pavement management agencies in M & R planning and implementation in the road 

network of Greece. Optimal strategy selection in the network level was obtained via LP 

model which aims to minimize agency costs subject to constraints related to the 

desirable pavement condition over the network and planning horizon. In the project 

level, decisions about M & R project structure, planning and resource allocation were 

provided.  
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II.2.2. Integer Programming 

 

Chen et al. (1992) applied on IP model in the Oklahoma Department of 

Transportation for strategic planning of pavement rehabilitation and maintenance, which 

provided a valuable tool for the highway agencies to manage the network properly. In 

this application, the overall effectiveness of all selected maintenance and rehabilitation 

projects is maximized in the 0-1 integer linear programming, which is subject to the 

constraints of minimum pavement serviceability, available budget, and resource 

suppliers. However, integer programming becomes computationally intensive and 

unreasonably long if it is applied to a large scale road network, in particular if multi-

period decisions of pavement preservation strategies are considered. 

Li et al. (1998) developed a cost-effectiveness-based integer programming on a year-

by-year basis for the preservation of deteriorated pavements in a road network with the 

constraints of budget limitations and a required pavement serviceability levels. The 

objective of the optimization system was to select the most effective M & R projects for 

each programming year. 

Fwa et al. (2000) developed a genetic-algorithm-based procedure for solving multi-

objective network level pavement maintenance programming problems. The concepts of 

Pareto optimal solution set and rank-based fitness evalutation for selecting an optimal 

solution were adopted. IP formulation and development of the solution algorithm were 

described and demonstrated with a numerical example problem in which a hypothetical 

network level pavement maintenance programming analysis were performed for two- 

and three-objective optimization, respectively. 

The performance of the genetic algorithms is affected by the method used to handle 

the many constraints present in the formulation of resource allocation problems like the 

network pavement maintenance problem. Chan et al. (2001) proposed a method that is 

based on prioritized allocation of resources to maintenance activities and the maximum 
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utilization of resources. It was demonstrated that the genetic algorithm with the 

prioritized resource allocation method outperforms the traditional genetic algorithm. 

 

II.2.3. Dynamic Programming 

 

The PAVER system was originally developed by the U.S. Army Corps of Engineers 

and has been in existence for more than twenty years. In 1987, the use of Markov chain 

prediction models in DP formulation began to take shape when Butt et al. (1987) 

published a paper on the application of Markov chain to pavement performance 

prediction. Soon afterwards Feighan et al. (1988) showed how to use DP for 

optimization using this Markov model although this had not been fully implemented at 

the time. Since then a number of papers concerning PAVER or similar formulation have 

been published (Butt et al., 1994, Feighan et al., 1989a, 1989b). 

Another DP formulation that has appeared in the literature on a number of occasions 

is Chua et al.’s ‘Dynamic Decision Model’ (1993). Many formulations using Markov 

chain prediction models only allow transition matrices where probabilities are dependent 

only on the current state regardless of history and are thus time invariant. PAVER allows 

different matrices for different broad stages and has been described as time variant, but 

Chua et al.’s formulation (1993) has gone a step further in that overlays of the pavement 

are tracked by a structure vector which dictates reference to a different transition matrix 

depending on the current structure of the pavement. While this is similar it is 

considerably more limited because it has to be an integer in the sigmoidal modeling for 

restoration and deterioration and is incapable of taking partial repair such as patching 

into account. Additionally, a number of different condition variables can be tracked by 

making use of a condition vector. 
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II.3. Solution Procedure for Multi-Dimensional Binary Knapsack Problems  

 
In this research, the optimal allocation of resources in a highway maintenance and 

rehabilitation system over a multi-period planning horizon can be formulated as a multi-

dimensional binary knapsack problem with alternative selection constraints and 

precedence-feasibility constraints. These side constraints and the characteristic of the 

objective function transform the formulation model into a resource-constrained longest-

path problem equivalent to the original problem. One approach for finding an optimal 

solution to this type of model is through the use of DP and B-and-B techniques.  

In the rest of this section a brief review of the available technical literature in the 

computational area of DP and B-and-B algorithms will be presented. After this review, 

the particular algorithms developed for solving multi-dimensional binary knapsack type 

problems will be reviewed, and summarizing remarks will be described. 

Nemhauser and Wolsey (1988) explained an almost complete line of algorithms for a 

variety of 0-1 integer programming problems including knapsack problems. Algorithms 

give an exact solution or an approximate solution. Exact solution procedures are 

basically one of two types: an implicit enumeration approach or a polyhedral approach. 

Heuristics for an approximate solution include primal heuristics, dual approaches, and 

heuristics employing relaxation techniques such as linear programming relaxation, 

surrogate relaxation, and Lagrangean relaxation to get information about the optimal 

solution.  

Implicit enumeration approaches are based on the techniques of DP and B-and-B. 

Since the enumeration is basically of exponential time, the number of decision variables 

makes this approach difficult. Therefore, efficient algorithms usually employ a reduction 

scheme in which a sensitivity analysis is conducted to set as many variables as possible 

equal to their optimal values before initiating the implicit enumeration.  

DP is a well-known approach for the optimization of a separable function which 

provides a global optimal solution even in the case of nonconvex programming 

problems. However, the use of this powerful technique for discrete variable problems is 
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limited by its excessive computer storage and computational requirements. These 

computational problems become more severe whenever: 1) the state variables are 

defined by a vector of more than three dimensions and 2) the states are in a low 

dimension form, but the number of discontinuities of the states grow exponentially in the 

algorithmic process.  

Considerable research has been devoted to overcoming the problem of 

dimensionality in DP techniques. A significant attempt for reducing the dimensionality 

of state variables is found in the approach of Morin and Marsten (1976a) who developed 

an algorithmic procedure for solving multi-dimensional DP problems by searching over 

an imbedded state space. The idea behind an imbedded state approach is to find the 

integer lattice points which cause a jump in the values of the return function. The points 

of discontinuities are then checked for feasibility and based upon this information sets of 

infeasible solutions can be eliminated. Feasible points are checked for dominancy and 

the dominated points are eliminated. As a result, a set of feasible and efficient solution 

points is defined as an imbedded state, and a search is performed over these points in a 

stagewise manner. 

As mentioned earlier, DP approaches tend to require excessive storage space and this 

makes the algorithm very inefficient when the problem is multi-dimensional or the value 

of the right-hand side is quite large. B-and-B techniques tend not to be effected by this 

disadvantage and this is why the most efficient enumeration algorithms for more 

complicated problems are based on branch-and bound. 

In B-and-B algorithms it is essential to have a design that is well-balanced between 

bounding schemes, branching rules, and heuristics for improving feasible solutions. 

When a B-and-B procedure fails, it is usually because of too many nodes in the search 

tree or too much computing time at each node. The size of the search tree largely 

depends on the branching rules and the tightness of the bounds.  

It is often the case that obtaining an exact solution may not be necessary. For 

instance, a solution close to optimal would be sufficient when the parameters of the 

model are only expectations of returns. In computational complexity most 0-1 problems 
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are in the class of NP-complete, an approximate solution may be satisfactory, especially 

for large problems when restrictions on computational times are made. Moreover, even 

if an exact method is applicable, the first step for the method is usually to obtain a good 

starting feasible solution by use of heuristics. 

The employment of relaxation involves a tradeoff between the bound strength and 

calculation speed. LP and Lagrangean relaxations are widely used for bounding. The LP 

relaxation is not considered in this dissertation. The strength of bounds depends upon the 

choice of constraints to be relaxed in Lagrangean relaxation [see Geoffrion (1974) and 

Fisher (1981) for a general theory of Lagrangean relaxation; see Fisher (1985) for a 

practical guide to the Lagrangean relaxation with many examples and illustrations; see 

Handler and Zang (1980) and Beasley and Christofides (1989) for the Lagrangean 

relaxation with a resource-constrained shortest-path problem].  

Morin and Marsten (1976b, 1978) have also demonstrated how the B-and-B method 

can be implemented in DP for reducing the storage and computational requirements. The 

use of the simple yet effective techniques of B-and-B to eliminate states in DP 

algorithms is a general approach in the sense that it can be applied to all finite dynamic 

programs. Both the idea of B-and-B and the imbedded state approach have been 

incorporated with the separation and initial fathoming provided by DP to produce a 

hybrid DP/B-and-B algorithm. 

Dyer et al. (1995) deve loped a hybrid DP/B-and-B algorithm to solve the multiple 

choice knapsack problems. Lagrangean duality was used in a computationally efficient 

manner to compute tight bounds on every active node in the search tree. The use of 

Lagrangean duality also enabled the use of a reduction procedure to reduce the size of 

the problem for the enumeration phase. 
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CHAPTER III 

 

MODEL AND SOLUTION APPROACH 

 

 

III.1. Introduction 

 
Multi-period optimization problems of PMS’s can be formulated as a multi-

dimensional binary knapsack models with alternative selection and precedence-

feasibility constraints. Since the practical problems are large, the algorithm must be 

computationally efficient as well as feasible. This chapter is organized in three sections. 

The mathematical model formulation is presented in the first section; the overall 

conceptual approach to solving the model is described in the second; and a brief 

summary of the chapter is provided in the last section 

 

III.2. The Model 

 
Suppose that there are I pavement sections in a system, T periods in the planning 

horizon, and J actions for each pavement section in each period to be considered. Let eijt 

represent the effectiveness of alternative j for pavement section i in period t, cijt the cost 

of alternative j for pavement section i in period t, Bt the budget available for period t, Nij 

the maximum number of times alternative j can be used on pavement section i in the 

planning period horizon, PQit the pavement quality level of pavement section i in period 

t, ∆pj the treatment effect of alternative j, s the serviceable pavement quality level such 

that if the pavement quality level is above this level in any time period t, then pavement 

section i is not considered for a maintenance in that particular period t, m the minimum 

pavement quality level, and M the maximum pavement quality level. The decision 

variable xijt
 is equal to 1 if alternative j for pavement section i in period t is selected, and 

it is equal to 0 otherwise.  
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The problem of generating a sequence of interrelated M & R strategies over a fixed 

planning time period for each pavement section so as to maximize the overall highway 

pavement quality level while not exceeding budget availability in each period, as well as 

not exceeding frequency availability of actions for pavement sections over the planning 

periods, under the assumption that unused budget portions in a period are carried over to 

subsequent periods, can be formulated as a multi-dimensional 0-1 knapsack problem 

with alternative selection and precedence-feasibility constraints.  

 

Problem (P)      

ijt

T

t

I

i

J

j
ijt xe∑∑∑

= = =1 1 1

max                                                                                         (1) 

     s.t         tijt

I

i

J

j
ijt Bxc ≤∑ ∑

= =1 1

                                for all t                                          (2) 

                   
1

ij

T

t
ijt Nx ≤∑

=

                                            for some i, j                                   (3)  

 1
1

=∑
=

J

j
ijtx                                                  for all i, t                                       (4) 

                  mPQit ≥                                                  for all i, t                                       (5) 

                 sPQit ≥         0  
2

=⇒ ∑
=

J

j
ijtx                      for all i, t                                       (6) 

                 MxpPQ ijt

J

j
jti ≤+ ∑

=
−

1
1, ∆                          for all i, t                                       (7) 

                 }1,0{∈ijtx                                                   for all i, j, t                                    (8) 

 

In the formulation of Problem (P) the objective function (1) maximizes the total 

effectiveness for the system; the budget constraint set (2) indicates that the capital 

consumption by the selected alternatives can not exceed the available budget in each 

period; the frequency constraint set (3) ensures that some alternatives on some pavement 

sections can not be taken more than the available frequency regarding the lifetimes of 
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the alternatives over the multi-period planning horizon; the alternative selection 

constraint set (4) forces the problem to choose one and only one strategy for each 

pavement section in any time period. (Note: Strategy ‘1’ stands for ‘do-nothing’ 

activity.); the constraint set (5) is used to eliminate any alternative strategy that does not 

meet the minimum pavement quality level requirements for a pavement section in a 

period; the constraint set (6) ensures that a pavement section is not considered for a 

maintenance if its condition is better than a predefined serviceable pavement quality 

level in a given period; the constraint set (7) makes the alternatives infeasible when 

treatment effects make the pavement quality exceed the maximum pavement quality 

level; and the constraint set (8) imposes the integrality of the decision variables.  

There are three types of constraints imposed on this problem: resource, alternative 

selection, and precedence-feasibility. The resource constraints consist of constraint sets 

(2) and (3). Constraint set (4) is an alternative selection constraint. Constraint sets (5), 

(6), and (7) are associated with precedence-feasibility constraints.  

 

Example 1. For illustrating the problem definition, consider an example with two 

pavement sections, three maintenance alternatives (in which alternative 1 is do nothing, 

alternative 2 is minor maintenance, and alternative 3 is major maintenance), and three 

planning periods. It is assumed that pavement qualities for each pavement section are 3.9 

and 2.6 respectively, the minimum pavement quality m is 2.5, the serviceability pavement 

quality s is 4.0, and the maximum pavement quality M is 5.0. It assumed that the 

transition probability matrix for each section is known, the major maintenance cannot be 

taken more than 1 time for 3 planning periods for each section, and that the budgets for 

the three planning periods are 20, 22, and 24 respectively. The required data for this 

example is given in Table III.1.  

Using matrix notation, Problem (P) can be reformulated as 

},:max{ Ω∈≤ XbAXRX , where R is the total effectiveness for the system, (A, b) is 

for the knapsack constraint set, and Ω = {X: alternative selection constraint set, 

precedence-feasibility constraint set, and 0-1 integrality constraint set}.  
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R is calculated using a transition probability matrix and a state vector.  Details of the 

calculation procedure for objective function are discussed in Appendix B. X = (x111, x121, 

x131, x211, x221, x231, x112, x122, x132, x212, x222, x232, x113, x123, x133, x213, x223, x233)T. Matrix A 

and vector b are obtained from Table III.1:   

A =

0   9 15   0 12 20   0   0   0   0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0 11 18   0 15 24   0   0   0   0   0   0
0   0   0   0   0   0   0   0   0   0   0   0   0 13 22   0 18 29
0   0   1   0   0   0   0   0   1   0   0   0   0   0   1   0   0   0
0   0   0   0   0   1   0   0   0   0   0   1   0   0   0   0   0   1

, b =

20
22
24
1
1

 

 

Table III.1. An Example Data Set 

Cost in period 1 Cost in period 2 Cost in period 3 Action 
Sect 1 Sect 2 Sect 1 Sect 2 Sect 1 Sect 2 

 Treat 
  Effect Frequency 

1 0 0 0 0 0 0 0    - 
2 9 12 11 15 13 18 0.5    - 
3 15 20 18 24 22 29 1    1 

Bedget 20 22 24 -     - 
 

 

Figure III.1 shows an overall frame of the formulation of Problem (P), where tX̂  is 

an M & R strategy for a highway network in period t; 

),...,,(ˆ
21 Itttt XXXX = ; ),...,,( 21 iJttitiit xxxX = ; and Rt is a return (effectiveness) of 

strategy tX̂ .  

  



 

  
  

16 

 

 

 

 

 

 

 

 

 

 

 

      

 

  

Figure III.1. Overall Frame of Formulation 

 

 

III.3. Solution Approach  

 
DP and B-and-B approaches are combined to produce a hybrid algorithm for solving 

the problem formulated as a multi-dimensional 0-1 knapsack problem with alternative 

selection and precedence-feasibility constraint. The algorithm is essentially a DP 

approach in the sense that the problem is divided into smaller subproblems 

corresponding to each single period problem. However, the idea of fathoming partial 

solutions that could not lead to an optimal solution is incorporated within the algorithm 

Max  11 X̂R   + + +           + 22 X̂R 33 X̂R  TT XR ˆ

s.t
. 

11 X̂C   

22 X̂C

33 X̂C  
          

TT XC ˆ

≤ 

≤ 

≤ 

≤ 

B1 

B2 

B3 

BT 

 

 

≤ N11 

≤ N12 

 ≤ NIJ 

TtX tt ,...,2,1   ˆ =∈ Ω  

Ωt = { tX̂ : alternative selection constraint set, precedence-feasibility constraint set, 
and 0-1 integrality constraint set}. 
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to reduce storage and computational requirements in the DP using the B-and-B 

approach. The feature of the hybrid algorithm is its capability of reducing the state-space 

which otherwise would present an obstacle in solving multi-dimensional DP problems. 

This is due to the use of the imbedded-state approach, which reduces a multi-

dimensional DP to a one-dimensional DP (Morin and Marsten, 1976a). Other reductions 

are made through fathoming the state-space and subsequent elimination of the state-

space, which tends to eliminate inferior solutions compared to the predetermined lower 

bound or updated lower bound. 

Due to alternative selection, precedence-feasibility, and an integrality constraint set, 

the original problem is transformed to a resource-constrained longest-path network 

model. A Lagrangean relaxation of the resource-constrained longest-path problem 

(RCLPP) into an unconstrained longest-path problem is developed, providing an initial 

lower and upper bound for the objective function as well as a lower and upper bound for 

bounding tests at each stage of DP. At each stage, the lower and upper bound are also 

updated and are used for termination and fathoming criteria. The relaxed problem can be 

solved by using a subgradient optimization procedure, while a network algorithm (Ford-

Bellman) is employed at each iteration of the subgradient optimization procedure to 

solve the longest-path network problem as well as to obtain an improved lower and 

upper bound. If the gap of the lower and upper bound is in predetermined parameter ε or 

the improved lower bound is optimal, then the procedure is terminated rather than 

continuing to stage T. Otherwise, the DP approach for a single period problem is 

conducted to identify feasible solutions to the next period problem corresponding to the 

next stage in the multi-period DP.  

Feasible solutions that are dominated by any other feasible solutions are eliminated. 

Efficient solutions that are not dominated are then obtained. By performing a bounding 

test, the efficient partial solutions that cannot lead to a solution that has a lower bound 

better than the best known bound are fathomed. Lagrangean relaxation and subgradient 

optimization procedures are applied to the remaining problem in order to perform the 
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bounding process at the current stage. Then the survivors are used to generate potential 

solutions for the next stage.  

Figure III.2 shows the overall conceptual approach of the proposed methodology. 

The proposed approach can be divided into two procedures: DP and B-and-B. The DP 

procedure consists of steps 4 and 5, and B-and-B procedure steps 1, 2, 3, 6, and 7.  Step 

6 is a repetition of step 2 and 3. A brief description of each major component of the 

methodology is provided as follows. 

 

 

Step 1.   Reformulation 

The alternative selection, precedence-feasibility, and integrality constraint set 

transform Problem (P) into a RCLPP equivalent to the original Problem (P). 

Step 2.   Lagrangean Relaxation  

The RCLPP is relaxed in a Lagrangean fashion by dualizing the budget 

constraint set in each period and the frequency constraint set over a multi-

period planning horizon so that the relaxed problem is decomposable into 

subproblems, one subproblem per pavement section. 

Step 3.   Subgradient Optimization  

The value of the Lagrangean multipliers, which gives the least upper bound for 

Problem (P), is obtained by subgradient optimization. At each iteration of the 

subgradient optimization procedure, a network algorithm (Ford-Bellman) is 

employed to solve the longest-path network problem as well as to obtain an 

improved lower and upper bound for Problem (P). If the improved lower 

bound is optimal or the gap of the lower and upper bound are in predetermined 

parameter ε, then the procedure is terminated: Otherwise, Step 4 is performed. 

Step 4.   Single Period DP 

DP approach is conducted to identify feasible solutions to a single period 

problem corresponding to a stage in multi-period DP making use of the 

imbedded-state approach. 
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Figure III.2. Overall Conceptual Approach 
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Step 5.   Dominance Test 

By dominance testing, the feasible solutions that are dominated by any other 

feasible solutions are eliminated. The efficient solutions, which are not 

dominated by any other feasible solution, are obtained. 

Step 6.   Bounding Test 

By bounding testing, the efficient partial solutions, which cannot lead to a 

solution that is better than the incumbent, are fathomed. The survivors at the 

stage t, which are not eliminated by bounding test, are obtained and used to 

generate potential solutions to the next stage.  

Step 7.   Update Upper Bound (UB) and Lower Bound (LB) 

The UB and LB at stage t are updated if it is available. 

 

 

III.4. Summary 

 
Multi-period optimization of PMS’s is formulated as a multi-dimensional binary 

knapsack problem with alternative selection and precedence-feasibility constraints, and a 

solution approach is outlined. The approach is a hybrid DP/B-and-B procedure with 

imbedded Lagrangean relaxation. Relaxation and fathoming criteria, which are 

fundamental to B-and-B, are incorporated within the separation and fathoming provided 

by the DP framework in order to provide the hybrid DP/B-and-B algorithm. 

Detailed descriptions of each step of the solution approach (including resource-

constrained longest-path network representation, Lagrangean relaxation, subgradient 

optimization, multi-period DP, single period DP, imbedded state space approach, and B-

and-B procedure) are presented in Chapter IV. 
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CHAPTER IV 

 

DEVELOPMENT OF SOLUTION PROCEDURES 

 

 

IV.1. Introduction 

 
The detailed procedures of the algorithm proposed in chapter III are presented in this 

chapter. The approach is a hybrid algorithm combining DP and B-and-B. The remaining 

portion of this chapter consists of eight additional sections. Section IV.2 describes and 

discusses a resource-constrained longest-path network representation of Problem (P); 

Section IV.3 presents Lagrangean relaxation and some theoretical results; Section IV.4 

covers the subgradient optimization procedure; Section IV.5 presents dynamic 

programming for multiple periods; Section IV.6 describes single-period dynamic 

programming; Section IV.7 presents the imbedded state space approach; Section IV.8 

describes B-and-B techniques; and Section IV.9 provides a brief summary of the 

chapter. A small hypothetical example will be considered to illustrate each step of the 

proposed methodology doing the way.  

 

IV.2. Resource-Constrained Longest-Path Network Representation 

 
Because of the alternative selection, precedence-feasibility, and integrality 

constraints, it is easy to model Problem (P) as an RCLPP. A network model of Problem 

(P) is shown in Figure IV.1.  The network model for pavement section i is constructed in 

a stagewise fashion, where each stage corresponds to a value of period t, and there are a 

total of T stages. Variables considered for network generation at each stage t consist of 

the variables in the corresponding alternative selection constraint set.  

For example, at stage t variables xi1t,xi2t,…,  xiJt are considered. Node si is a source 

node. A feasible set of variables in an alternative selection constraint set is determined  
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Figure IV.1. A Network Model for Pavement Sections 
 

 

from the precedence-feasibility constraints set with period t=1, and arcs are added for 

each feasible strategy xij1 from the source node to nodes 1, 2, . . . , m, where m is the 

number of feasible strategies in stage 1 (m ≤ J). This set of nodes is considered to 

represent stage 1. A feasible set of strategies at stage 2 is again determined at each of the 

nodes 1, 2, . . . , m, and more arcs and nodes are generated for each of these nodes to 

represent stage 2. This process is continued until stage T is reached. Arcs emanating 

from each node in stage T are converged to a single node ei which is defined as the sink 

node. The arc lengths are calculated from the objective function for the corresponding 

value of alternative j and period t on pavement section i. This calculation is possible 

because each eijt is a function of the strategies employed at previous stages on a path 

from node si to a particular node.  
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Even if there were only four or five strategies feasible at each stage, the number of 

nodes and arcs rapidly increases beyond computational limitations. The number of arcs 

and nodes can be reduced by the following method. Suppose at some node n at stage t 

strategy j is feasible and an arc is emanated from node n to some other node q > n. Node 

q is at a stage t+1 by the previously described, but if only strategy 1 (do nothing) were 

feasible for node q, the corresponding effective coefficient ei,1,t+1 would be added to the 

length of the arc from node n to node q, and at this point node q is moved into stage t+2. 

This process is repeated until node q reaches a stage t  such that a strategy other than just 

strategy 1 is feasible or node q reaches state T. This procedure is always applicable if 

there are precedence-feasibility constraints in the problem. 

The length of the longest-path from source node si to node ei (satisfying resource 

constraints) is the optimal solution to the subproblem corresponding to pavement section 

i, and the corresponding solution can be obtained from the arcs and nodes on this path. A 

similar network is generated for each subproblem corresponding to each pavement 

section in the highway network. The network models for each subproblem are linked 

sequentially such that ei is connected to si+1 for i = 1, 2, …, I-1. Then the longest-path 

from source s1 to sink node eI (satisfying resource constraints) is an optimal solution to 

Problem (P).  
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Example 2. Consider the problem given in Example 1 in section III.2. As assumed in 

Example 1, the current pavement qualities for each pavement section are 3.9 and 2.6 

respectively, the minimum pavement quality is 2.5, the serviceability pavement quality is 

4.0, and the maximum pavement quality is 5.0. It is also assumed that the transition 

probability matrices for these two pavement sections are as follows. 

 

 

0.366  0.634  0         0         0         0
0         0.715  0.285  0         0         0
0         0         0.97    0.03    0         0
0         0         0         0.814  0.186  0
0         0         0         0         0.574  0.426
0         0         0         0         0         1

P2 =

0.717  0.283  0         0         0         0
0         0.727  0.273  0         0         0
0         0         0.95    0.05    0         0
0         0         0         0.664  0.336  0
0         0         0         0         0.692  0.308
0         0         0         0         0         1

P1 =

 
 

 

The arc lengths are calculated from the objective function for the corresponding value of 

alternative j and period t on pavement section i using the state vector and transition 

probability matrix. (Details of the calculation procedure for objective functions are 

discussed in Appendix A.) The arcs are added for each feasible strategy determined from 

the precedence-feasibility constraint set in each period. 

The resource-constrained longest-path network model for this example is also 

shown in Figure IV.2. 
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Figure IV.2. Network Representation of Example 1 



      

 

26 
 

  

IV.3. Lagrangean Relaxation 

 
The Lagrangean relaxation approach to obtaining bounds in IP problems is the 

second most widely used after LP relaxation. A Lagrangean relaxation of an IP problem 

is obtained by removing the complicating constraints and including them in the objective 

function using multipliers so that the resulting problem is much easier to solve because 

of the special structure of the remaining constraints, and sometimes being decomposable 

by itself. A Lagrangean relaxation scheme is more attractive than the LP relaxation if the 

decomposition and continuity of the special structure can be achieved.  

Using matrix notation, Problem (P) can be reformulated as 

 

Problem (P) 

                 }  ,: max{ Ω∈≤ XbAXRX                                               (9) 

 

where (A, b) is for the knapsack constraint set and Ω = {X : alternative selection 

constraint, precedence-feasibility constraint, integrality constraint}. By dualizing the 

knapsack constraint set, the relaxed Problem (LR (λ)) is obtained: 

 

Problem (LR (λ)) 

}:)max{( Ωλλ ∈+− XbXAR                                       (10) 

 

where λ is the vector of Lagrangean multipliers. This problem can be easily solved by 

decomposing it into I subproblems, one subproblem for each pavement section which 

represents a longest-path problem. The solution to each subproblem is obtained by 

applying the Ford-Bellman algorithm. 

The least upper bound for Problem (P) is obtained by solving Problem (LD). 

 

Problem (LD) 

}0:)(min{ ≥λλLR                                                 (11) 
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An optimal value of the Lagrangean multipliers, λ*, is an optimal solution to the 

Lagragean dual, Problem (LD), but it need not be solved optimally. Since the 

convergence rate of λ is very slow in the neighborhood of the optimal value, a near 

optimal value will be satisfactory. The subgradient optimization method will be used to 

solve Problem (LD). The following are some theoretical results. 

 

Proposition 1. If X0 is an optimal solution to Problem (LR(λ0)), then 

s0  = b – AX0 

is a subgradient of f(λ) = v(LR(λ)) at λ = λ0. 

Proof. See Proposition 4.1 of Section II.5.4 of Nemhauser and Wolsey (1988). In the 

statement, v( * ) represents the solution value of the problem ( * ). 

 

Theorem 1. If, for a given λ ≥ 0, a vector X satisfies the three conditions 

 

(i) X is an optimal solution to Problem (LR (λ)), 

(ii) AX ≤ b, 

(iii) λ (b –AX) = 0, 

 

then X is an optimal solution to Problem (P). If X satisfies (i) and (ii) but not (iii), then X 

is an ξ-optimal solution to Problem (P) with ξ = λ(b-AX). 

Proof. See Theorem 1 of Geoffrion (1974) or Corollary 6.10 of Section II.3.6 of 

Nemhauser and Wolsey (1988). 

 

IV.4. Subgradient Optimization 

 
 A review of methods for solving the Lagrangean dual, Problem (LD), can be found 

in Bazaraa and Goode (1979) or Gavish (1978). Near-optimal multipliers are obtained by 

a subgradient optimization method or a multiplier adjustment method. The latter method 

is generally a specialized algorithm that exploits the structure of a particular problem. 



      

 

28 
 

  

The most popular method is subgradient optimization, because it is easy to implement 

and has worked well on many practical problems, especially on 0-1 IP problems (see 

Fisher for examples, 1985). Subgradient optimization is also considered to be a 

promising approach for solving the dual, Problem (LD), especially when the relaxed 

problem is easy to solve. In this research the relaxed problem, Problem (LR (λ)), is a 

longest-path network problem as mentioned before. 

The subgradient method is an adaptation of the gradient method in which gradients 

are replaced by subgradients. Given λ0, a sequence λp is generated by the rule  

 
T

pppp bAXt )( *
1 −+=+ λλ ,                                           (12) 

 

where: 

• λp = the value of λ at iteration p of the subgradient procedure, usually λ0 = 0 is 

the most natural choice, but in some cases other appropriate values (which are 

obtainable through experiments) can do better. 

• tp = the step length at iteration p, given by  

 

2* ||||

LB))(LR(

bAX

v
t

p

p
pp −

−
=

λ
π ,                                               (13) 

 

• *
pX = the optimal solution to Problem (LR (λp)), 

• pπ = a scalar satisfying 20 ≤< pπ , 

• v (LR (λp)) = the value of the optimal solution to Problem (LR (λp)), 

• LB = the lower bound = the value of the best known solution, and 

• Every negative element of λp+1 must be replaced with zero because of the 

nonnegativity requirement of λ. 
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Computational performance and theoretical convergenece properties of the 

subgradient method are discussed by Held et al (1974). The fundamental theoretical 

result is that the sequence {v(LR (λp))} converges to v(LD) if the sequence {tp} 

converges to 0 as p approaches to ∞ and ∑ 0≤p≤k tp approaches ∞ as k approaches ∞, as 

has been discussed by Bazaraa and Goode (1979), Fisher (1981), and Held et al. (1974). 

The subgradient method guarantees convergence to the optimal, but it does not guarantee 

a monotone improvement of v (LR (λ)) at every iteration. 

Often π0 = 2 and πp is multiplied by a factor whenever v (LR (λ)) has failed to 

improve in some fixed number of iterations or in some combination of the number of 

iterations and the rate of improvement. The most widely used multiplication factor is 

0.5. Gavish and Pirkul (1991) used it whenever no improvement was made in 15 

consecutive iterations for the multi- resource generalized assignment problem, but Diaby 

et al. (1992) used 0.8 for very- large-scale capacitated lot-sizing whenever the 

improvement was not more than 0.5% in 3 consecutive iterations. These rules have 

worked well empirically, even though they do not guarantee to satisfy the sufficient 

condition given above for optimal convergence. 

The procedure is terminated upon obtaining an optimal solution or upon reaching a 

predetermined iteration limit. If v(LR (λp)) = LB, then the best known solution is optimal. 

The condition v (LR (λp)) – LB < 1 can be applied when the objective function 

coefficients of Problem (P) are integers. Again, Gavish and Pirkul (1991) terminated the 

procedure if the total number of iterations = 500 or the number of iterations without 

improvement  = 75, while Diaby et al. (1992) terminated the procedure if the 

improvement was not more than 0.5% in 40 iterations. 

The subgradient optimization algorithm used in this dissertation is delineated as 

follows. Since the subproblem structure is straightforward, the subgradient algorithm can 

be run for a large number of iterations in order to ensure the convergence of the 

Lagragean multipliers to a near-optimal value. 
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Subgradient Optimization Procedure  

 

(i) Choose λ0 ≥ 0, 0<π0 ≤ 2, z* = a large number, X* = 0, and η* = λ0, Let p = 0 

and LB=0 (the value of the best known solution).  

(ii) Solve Problem (LR (λp)). Let X*
p be the solution. 

(iii) If X* is feasible, then if v (LR (λp)) – LB < ε, go to (xi); otherwise, X = X*
p. 

(iv)  If RX > LB, then LB = RX and the best known solution = X. 

(v) If z* > v (LR (λp)), then z* = v (LR (λp)), X* = X*
p, and η* = λp. 

(vi) If the improvement of v (LR (λp)) is not more than 1 in 10 consecutive 

iterations, then set πp equal to 0.5 πp. 

(vii)  If the improvement of v (LR (λp)) is not more than 1 in 20 consecutive 

iterations, then go to (x). 

(viii) Obtain (λp+1) using Equation 12. 

(ix)  Set p equal to p+1. Go to (ii). 

(x) Terminate with λ* = η*, v (LD) = v (LR (λ*)) = z*, X*, and the best known 

solution and LB. 

(xi) X*
p is an optimal solution to Problem (P) and the procedure is terminated. 

 

 

Example 3. The subgradient optimization procedure outlined above is applied to the 

problem given in Example 1, where the matrix A and vector b are given. The procedure is 

initialized with π0 = 0.25, λ0 = (λ1, λ2, λ3, λ4, λ5)0 = (0, 0, 0, 0, 0), and LB = 0. The 

procedure terminated in 20 iterations with the best known lower bound (x111, x121, x131, 

x112, x122, x132, x113, x123, x133, x211, x221, x231, x212, x222, x232, x213, x223, x233) = (1, 0, 0, 0, 0, 1, 

1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0). The solution value is 24.1325, obtained at iteration 15 and 

the best known upper bound is obtained at iteration 17 with the Lagrangean multiplier, 

λ17 = (0.1107, 0.0405, 0.0227, 0.0130, 0.0150) and v (LR (λ17)) = 25.0805. 
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IV.5 Dynamic Programming for Multiple Periods  

 
Both the problem of allocating funds in each period and the problem of selecting and 

scheduling activities could be handled by DP. The DP model for multiple periods is 

developed in a compact form of the separable nonlinear multidimensional knapsack 

problem (NKP) as shown in problem (D), which is equivalent to Problem (P), and is as 

shown in Figure IV.3: 

 

Problem (D) 

                         t

T

t
tT XRbf ˆmax  )(

1
∑

=

=                                                                            (14) 

s.t   rt

T

t
rt bXA ≤∑

=

ˆ
1

     JITr ×+≤≤1                                    (15) 

ttX Ω∈ˆ             t = 1,2,…,T                                            (16) 

 

where tX̂  is an M & R strategy for a highway network in period t; 

),...,,(ˆ
21 Itttt XXXX = ; ),...,,( 21 iJttitiit xxxX = , Rt is a return (effectiveness) of strategy 

tX̂ ,  Art is  the amount of resource (budget and frequency of actions) r taken by strategy 

tX̂  for a highway network in period t, br is an available resource r, and Ωt={ tX̂  : 

alternative selection constraint, precedence-feasibility constraint, and 0-1 integrality 

constraint}. 
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Figure IV.3. Dynamic Programming for Multi-Period 

 

 

Referring to Figure IV.3, allocation of resources to a highway network using the DP 

approach results in the following recursive relationship:  

 

)}ˆ,()({max)( 1
*

1ˆ

*
nnnnn

X
nn XSRSfSf

nn

+= −−
∈Φ

                                (17) 

 

where nn X̂{=Φ ; budget constraint, frequency of action constraint, alternative selection 

constraint, precedence/feasibility constraint, & 0-1 integrality constraint} and the state 

variable Sn represents the amount of resource b which is available for allocation in 

period n and is a T+I×J dimensional vector. The vector is divided into two groups. The 

first group is represented by T dimensional vector corresponding to the budget in each 

period. The second group is represented by I×J dimensional vector corresponding to 

frequency availability of actions for pavement sections.  

Problem (D) can be decomposed into subproblems that can be considered as a single 

stage in the multi-period DP problem. In each single period, the feasible solutions are 

obtained by applying a single-period DP approach and the efficient solutions that are not 

dominated by any other feasible solutions are constructed by dominance testing.  
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IV.6. Single Period Dynamic Programming 

 
In order to obtain feasible and efficient solutions in each period, a DP approach is 

applied to single period problems corresponding to single stages in a multi-period DP. A 

single-period DP model is developed in a compact form (nonlinear knapsack model) as 

shown in Problem (DS) and in Figure IV.4: 

 

Problem (DS)      

                 in

I

i
innnn XRXSR ∑

=

=
1

max )ˆ,(                                                                          (18) 

s. t. rnin

I

i
rin SXA ≤∑

=1

     JITr ×+≤≤1                                (19) 

                                              ininX Ω∈ ,          i=1, 2,…, I                                            (20)   

                      

where ),...,,(  is 21 iJnniniin xxxX , Arin is the amount of resource (budget and available 

frequency of actions) r taken by strategy Xin for pavement section i in period n; 

JITr ×+≤≤1 , Srn is an available resource r in period n,  Rin is the return 

(effectiveness) of strategy Xin, and  Ωin={ Xin : alternative selection constraint, 

precedence/feasibility constraint, and 0-1 integrality constraint}. 

Allocation of resources to a highway network using the DP approach in a single 

period results in the following recursive relationship: 

 

)},()({max)( ,1
*

,1
*

mnmnmnnmnm
X

mnmn XSRSfSf
mnmn

+= −−
∈Φ

                         (21) 

 

where mnmn X{=Φ ; budget constraint, frequency of action constraint, alternative 

selection constraint, precedence/feasibility constraint, and 0-1 integrality constraints}, 

and the state variable Smn represents the amount of resources available for allocation on 
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pavement section m in period n. The solution to )(*
InIn Sf in period n is equal to the 

solution to )ˆ,( nnn XSR . 

 

 

 

Figure IV.4. Single Period Dynamic Programming Model 

 

 

IV.7. Imbedded State Space Approach 

 
The imbedded state space approach for state reduction in DP problems is a 

methodology that converts a multi-dimensional state variable (vector) to a single-state 

variable. This is accomplished utilizing the points of discontinuity in the return function 

as a possible solution space. It is assumed that the return function remains constant in the 

consecutive points of discontinuity. This is a realistic assumption since in the case of IP, 

the function’s value between two integer points is of no concern to decision makers. To 

illustrate the concept of imbedded-state, consider Problem (D) presented in section 

IV.5. For any Sn =(S1n, . . . , ST+I×J,n) in the state space 
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}0|{ bSRSS n
JIT

n ≤≤∈= ×+                                             (22) 

 

we have    

        )}ˆ,()({max)( 1
*

1ˆ

*
nnnnn

X
nn XSRSfSf

nn

+= −−
∈Φ

                                    (23) 

 

for n=1,2,…,T, with the boundary condition 
 
     

                                 0)( 0
*

0 =Sf             0 0 ≥∀ S                                                   (24) 
 

where 
 

},...,2 ,1 ,ˆ  and   ˆ|ˆmax{)(
11

* ntXrSXAXRSf ttrnt

n

t
rt

n

t
ttnn =∈∀≤= ∑∑

==

Ω            (25) 

 

 } ,|{max)ˆ,(
11

rSXAXRXSR rnin

I

i
rin

I

i
inin

X
nnn

inin

∀≤= ∑∑
==

∈Ω
                       (26) 

 
 
and vector inequalities are taken element-wise. The solution of the functional equation 

for )(* bfT  and the subsequent (policy) reconstruction process to determine an optimal 

solution is straightforward, but the multi-dimensionality of the state space may present a 

serious computation problem. However, we can effect a dramatic reduction in 

dimensionality by exploiting the imbedded state space approach. 

 

Theorem 2. For each n=1, 2,…,T, )ˆ,( nnn XSR , )(*
nn Sf , and )( 1

*
1 −− nn Sf  are 

nondecreasing step functions on S . Moreover, if the respective domain sets of points of 

discontinuity of *
nf , Rn and *

1−nf  are denoted by Fn, nR , and Fn-1, and F0={0} where 0 

denotes a multi-dimensional vector, then we have following recurrence relation 

 

SFRF nnn ⊆⊗⊆ − }{ 1 ,       n = 1, 2,…, T,                               (27) 
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where 1−⊗ nn FR  denotes the set obtained by forming all sums of exactly one element of 

nR  and exactly one element of Fn-1. 

Proof. See Morin and Marsten (1976). 

 

As an immediate consequence of the theorem we have 

 

Corollary 1. ).()(such that   ** zfbfFz TTT =∈∃  

 

Therefore, we only have to calculate )(*
nn Sf  for Sn∈Fn, and Fn can be determined 

recursively from nR  and Fn-1 using (27). In this calculation we can usually eliminate 

certain elements of }{ 1−⊗ nn FR  as being either inefficient or infeasible, thereby reducing 

the cardinality of Fn. We have reduced a multi-dimensional DP defined on S  to a one-

dimensional DP defined on the sequence of imbedded state space F0, F1, . . . , FT ⊆ S . 

The method of generating these successive imbedded state spaces will now be 

described. For each n = 1, 2,  . . . , T, the set nR  of points of discontinuity of )ˆ,( nnn XSR  

on S  may be obtained by applying the imbedded state space  approach to the single 

period problems corresponding to n stages in the multi-period dynamic programming 

model. 

 

  },...,,{ 10 k
nR γγγ⊆                                                     (28) 

 

where  

                                )ˆ,...,ˆ( ,1
k
nnJIT

k
nn

k XAXA ×+=γ ,     k = 0, 1,…, K. 

 

The point γk belongs to nR  unless γk ∉ S  or unless there exists a k ′ ≠ k, 0 ≤  k ′ ≤ K, such 

that  
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         k
nrn

k
nrn XAXA ˆˆ '

≤ ,         1 ≤ r ≤ T+I×J, and                                      (29) 

 

         k
nn

k
nn XRXR ˆˆ '

≥ ,                                                           (30) 

 

with at least one strict inequality among (29) and (30). When this is the case, we say that 
'kγ  dominates γk and that γk is inefficient. When γk ∉ S  we say that γk is infeasible. 

Letting nU  contain the indices of the undominated feasible points we have  

 

}|{ n
k

n UkR ∈= γ , and                                                    (31) 

 

 k
nn

k
n XRR ˆ)( =γ       for nUk ∈                                                       (32) 

 

Labelling the elements of Fn-1 as },...,,{ 1
1

1
0

1
P
nnn SSS −−− , where 00

1 =−nS , gives 

 

}0 ,|{ 11 PpUkSFR n
p
n

k
nn ≤≤∈+=⊗ −− γ .                                 (33) 

 

If there exists r ∈ {1, 2, . . ., T+I×J} such that 

 

r
p

nr
k
nrn bSXA >+ −1,

ˆ                                                         (34) 

 

then SS p
n

k ∉+ −1γ  and hence n
p

n
k FS ∉+ −1γ . As above, we say that p

n
k S 1−+γ  is 

infeasible if it falls outside of S . 

If , on the other hand, nUkk ∈∃ ' ,  and 0 ≤ p, p ′ ≤ P such that  

p
nr

k
nrn

p
nr

k
nrn SXASXA 1,1,

ˆˆ ''

−− +≤+ ,      r = 1,…,T+I×J, and                         (35) 
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)(ˆ)(ˆ
1111

'' p
nn

k
nn

p
nn

k
nn SfXRSfXR −−−− +≥+ ,                                    (36) 

 

with at least one strict inequality among (35) and (36), then p
n

k S 1−+γ  is dominated by 

''

1
p
n

k S −+γ  and cannot be an element of Fn. By eliminating all infeasible and dominated 

points from }{ 1−⊗ nn FR  we obtain Fn. For each n
p

n
k FS ∈+ −1γ , then we have 

 

)(ˆ)( 1
*

11
* p

nn
k
nn

p
n

k
n SfXRSf −−− +=+γ .                                    (37) 

 

The origin belongs to Fn for all n = 0, 1, . . . , T and will be denoted 0
1−nS . Notice that 

nU∈0  for all n = 1, . . . , T  and that  

 
0

,1
0 )0,...,0())0(),...,0(( nnJITn SAA === ×+γ                                      (38) 

 

by our assumption that (∀ rn) Arn(0) = 0. It follows that every element of Fn-1, unless 

dominated, is also an element of Fn since p
n

p
n SS =+ −1

0γ .  The following algorithm uses 

the feasibility and dominance tests to construct the successive imbedded state spaces and 

terminates with the complete family of undominated feasible solutions FT. 

 

DP Algorithm 

 

Step 1. Set n = 0, F0 = {γ0}, and f0 (γ0) = 0. 

Step 2. Set n = n + 1 and k = 0. 

Step 3. If n > T, stop. 

Step 4. Set P = |Fn-1| - 1 and label the points of Fn-1 as },...,,{ 1
1

1
0

1
P
nnn SSS −−−  

Step 5. Set Fn = Fn-1. 

Step 6. Set k = k + 1. If k > K, go to Step 2. 
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Step 7. If nUk ∉ , go to Step 6. 

Step 8. Set p = 0. 

Step 9. If  SS p
n

k ∉+ −1γ , go to Step 13. (Feasibility test) 

Step 10. If  p
n

k S 1−+γ  is dominated by some point already in Fn, go to Step 13.  

Step 11. Set }{ 1
p

n
k

nn SFF −+∪= γ and )(ˆ)( 1
*

11
* p

nn
k
nn

p
n

k
n SfXRSf −−− +=+γ . 

Step 12. Set }by  dominated points all { 1
p

n
k

nn SFF −+−= γ . 

Step 13. Set p=p+1. If p > P, go to Step 6. Otherwise, go to Step 9. 

 

 

Example 4. Consider again the problem given in Example 1. The imbedded state space 

approach outlined above is applied to the first stage problem. The nonlinear knapsack 

model and data for the problem are as follows. 

 

}2,1,,51,:max{)( 1111

2

1
11

2

1
11

*
1 =∈≤≤≤= ∑∑

==

iXrSXAXRSf iiri
i

rii
i

i Ω  

 

where X11= (x111, x121, x131)T, X21 = (x211, x221, x231)T, R11 = [3.8875, 4.3318, 4.8293], R21 = 

[2.3900, 3.0535, 3.5925], 

 
 
         0     9   15     0   12   20                        20 

         0     0     0     0     0     0                        22 

A =   0     0     0     0     0     0      , and S1 =   24   . 

         0     0     1     0     0     0                          1 

         0     0     0     0     0     1                          1 

 
Stage1. F0 = {(0, 0, 0, 0, 0)}. 1R ={(0, 0, 0, 0, 0), (9, 0, 0, 0, 0), (15, 0, 0, 1, 0)}. 

01 FR ⊗ = {(0, 0, 0, 0, 0), (9, 0, 0, 0, 0), (15, 0, 0, 1, 0)}. None of these points are 

infeasible or dominated, so F1= {(0, 0, 0, 0, 0), (9, 0, 0, 0, 0), (15, 0, 0, 1, 0)}. 
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Stage 2. 2R ={(12, 0, 0, 0, 0), (20, 0, 0, 0, 1)}, where, x211 must be zero because minimum 

pavement quality for pavement sections should be greater than 2.5 according to the 

precedence-feasibility constraint. F1= {(0, 0, 0, 0, 0), (9, 0, 0, 0, 0), (15, 0, 0, 1, 0)}. 

12 FR ⊗ ={(12, 0, 0, 0, 0), (20, 0, 0, 0, 1), (21, 0, 0, 0, 0), (29, 0, 0, 0, 1), (27, 0, 0, 0, 0), 

(35, 0, 0, 1, 1)}. The points (21, 0, 0, 0, 0), (29, 0, 0, 0, 1), (27, 0, 0, 0, 0), (35, 0, 0, 1, 1) 

are infeasible since S1 = (20, 22, 24, 1, 1). None of these points are dominated. At the end 

of the final stage, the imbedded state space approach is summarized as Table IV.1. 

 

 

Table IV.1. Summary for Example 4 

),(ˆ
21111 XXX =  S1 )( 1

*
1 Sf  

(1 0 0 0 1 0) 12 0 0 0 0 6.9410 
(1 0 0 0 0 1) 20 0 0 0 1 7.4800 
(0 1 0 0 1 0) 21 0 0 0 0 infeasible  
(0 1 0 0 0 1) 29 0 0 0 1 infeasible  
(0 0 1 0 1 0) 27 0 0 0 0 infeasible  
(0 0 1 0 0 1) 35 0 0 1 1 infeasible  

 

 

IV.8. Branch-and-Bound Approach 

 
Fathoming of a partial solution by the B-and-B approach effectively eliminates 

nonpromising points from the state space and hence provides extensive savings in 

computational time and storage. This is done by incorporating elimination by bound into 

the  DP framework.  

Consider any e
nnn XXXXX

~
)ˆ,...,ˆ,ˆ(

~
21 ∈= , where e

nX
~

 denotes the set of efficient 

solutions, and let 

 

t

n

t
t XA ˆ

1
∑

=

=β .                                                        (39) 
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We may interpret β  as the resource consumption vector for the partial solution nX
~

. 

Given nX
~

, the remaining problem at stage n, Problem (R) is formulated below: 

 

Problem (R)      

                      t

T

nt
tn XRbf ˆmax)(

1

*
1 ∑

+=
+ =− β                                                                     (40)    

                                               s.t. rrt

T

nt
rt bXA β−≤∑

+=

ˆ
1

   JITr ×+≤≤1              (41)                                         

ttX Ω∈ˆ             Ttn ≤≤+1                            (42) 

 

Thus )(*
1 β−+ bf n  is the maximum possible return from the remaining stages, given that 

resources β  have already been consumed. For each 10 −≤≤ Tn , let UBn+1 be an upper 

bound functional for )(*
1 β−+ bf n , i.e. 

 

)()( 1
*

1 ββ −≤− ++ bUBbf nn    for all 0 ≤ β  ≤ b                          (43) 

 

UBn+1 may be taken as the optimal value of any relaxation of Problem (R). 

Any known feasible solution of Problem (D) provides a lower bound on )(* bfT . The 

best of the known solutions is called the incumbent and its value denoted LB, so that 

)(* bfLB T≤ . These upper and lower bounds can be used to eliminate efficient partial 

solutions, which cannot lead to a solution that is better than the incumbent.  

That is, if e
nn XX

~~
∈  and  

 

LBXAbUBXR t
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t
tnt
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t
t ≤−+ ∑∑

=
+
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1
1

,                                    (44) 
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then no completion of nX
~

 can be better than the incumbent. The survivors at stage n will 

be denoted s
nX

~
 where  

 

})ˆ(ˆ|
~~

{
~

1
1

1

LBXAbUBXRXXX t

n

t
tnt

n

t
t

e
n

s
n >−+∈= ∑∑

=
+

=

.                (45) 

 

The lower bound may be improved during the course of the algorithm by finding 

additional feasible solutions. Only the survivors at stage n are used to generate potential 

solutions at stage n+1.   

As mentioned in section IV.3 and IV.4, Lagrangean relaxation and subgradient 

optimization techniques are applied to obtain tight bounds on Problem (R) at each stage 

in multi-period DP. The relaxed problem, Problem′ (LR (λ)), is formulated as  

 

Problem′ (LR (λ)) 

}ˆ:)(ˆ)(max{
1

tt

T

nt
ttt XbXAR Ωβλλ ∈−+−∑

+=

,                            (46) 

 

where λ is the Lagrangean multiplier vector. This problem can be solved by 

decomposing it into I subproblems, one subproblem for each pavement section, each of 

which is a longest-path problem and is solved by the Ford-Bellman network flow 

algorithm. 

The subgradient optimization method is applied to Problem′ (LR (λ)) to obtain a 

good (near optimal) set of Lagrangean multipliers while improving feasible solutions. 

An integer feasible solution could be obtained through the solution process of Problem′ 

(LR (λ)). If this integer feasible solution is better than the currently known best solution, 

 

i.e.                                       LBXAbUBXR
n

t
ttn

n

t
tt >−+ ∑∑

=
+

=

)ˆ(ˆ
1

1
1

                                  (47) 
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then this solution becomes the best known solution or the incumbent. 

At the end of stage n we know that )(* bfT  falls between LB and the global upper bound 

 

}
~~

|)ˆ(ˆmax{
1

1
1

s
nn

n

t
ttn

n

t
tt XXXAbUBXRUB ∈−+= ∑∑

=
+

=

.                   (48) 

 

If the gap (UB-LB) is sufficiently small, then we may choose to accept the incumbent as 

being close to optimality in value and terminate the algorithm rather than continuing to 

stage T. 

 

 

Example 5. In Example 3, the initial lower and upper bound are obtained with 24.1325 

and 25.0805 (respectively) by applying the subgradient optimization approach to problem 

(LR (λ)). It is presented in Example 4 that in the first stage of a multi-period DP, single -

period DP is applied to )}ˆ,({max)( 111ˆ1
*

1
11

XSRSf
X Φ∈

=  in order to obtain all efficient 

solutions. Then 0) 1, 0, 0, 0, ,1(ˆ 1
1 =X and 1) 0, 0, 0, 0, ,1(ˆ 2

1 =X  are obtained as efficient 

solutions with 9410.6)0,0,0,0,12(*
1 =f  and 48.7)1,0,0,0,20(*

1 =f  (respectively), 

where ),,,,,(ˆ
2312212111311211111 xxxxxxX = . Lagrangean relaxation and subgradient 

optimization approaches are applied to the remaining problems at stage 1 based on the 

efficient solutions 1
1X̂  and 2

1X̂ , in which knapsack constraints are relaxed in Lagragean 

fashion, to get improved bounds as well as survivors.  The network models for the 

remaining problems based on the efficient solutions 1
1X̂  and 2

1X̂  are shown in Figure 

IV.5 and Figure IV.6.  The lower and upper bounds are 23.3801 and 24.1008 for the 

remaining problem for 1
1X̂  as well as 24.1324 and 25.0498 for the remaining problem for 

2
1X̂ .  

 



      

 

44 
 

  

1

4

e1

5

6

9

10

11

12

13

e216

18

19

20

24

25

26

27

28

29
30

31

32

3.8589

4.3068

4.8043

3.8235

4.2746

4.7721

4.2044

4.6981

2.9837

3.4995

3.9358

2.9028

3.4140

3.9530

3.4493

3.9845

4.4208
3.8926

4.2932

4.7060

 

Figure IV.5. Network Representation for Remaining Problem on 1
1X̂  
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Figure IV.6. Network Representation for Remaining Problem on 2
1X̂  

 

 

By bounding test, 1
1X̂  is fathomed and 2

1X̂  remains the survivor. At stage 1 the 

lower and upper bounds are updated with 24.1324 and 25.0498 respectively. Eventually, 

2
1X̂  is used to generate potential solutions at stage 2. The procedure continues until the 

third stage, and is terminated with an optimal solution )ˆ,ˆ,ˆ(
~ *

3
*
2

*
1

*
3 XXXX = , where 

),0,0,0,0,11(ˆ *
1 =X , )0,0,1,1,0,0(ˆ *

2 =X , and )0,0,1,0,1,0(ˆ *
3 =X . Figure IV.7 shows the 

overall solution procedure for the example. 
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Figure IV.7. Overall Solution Procedure for Example 4 

 

 

IV.9. Summary 

 
The proposed solution approach is a hybrid algorithm in which DP and B-and-B are 

combined, as outlined in section III.3. The DP procedures are approaches for solving 

multi-period and single-period problems formulated as a multi-dimensional binary 

knapsack with side constraint sets and using an imbedded state space approach to reduce 

a multi-dimensional DP to a one-dimensional DP. The procedures for B-and-B are a 

resource-constrained longest-path network representation of the original problem, a 

Lagrangean relaxation of the problem, and a subgradient optimization to obtain near-

optimal values of Lagrangean multipliers as well as lower and upper bounds.  
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CHAPTER V 

 

COMPUTERIZATION AND APPLICATIONS 

 

 

V.1. Introduction 

 
All the developed procedures have been computerized and run for a range of multi-

period planning PMS scenarios to test the computational performance of the proposed 

methodology. In order to demonstrate the application of the proposed methodology to a 

state department of transportation, typical data for the state of Texas has been used.  All 

procedures were coded using the MATLAB language and executed on a personal 

computer with an Intel Pentium IV 3.06 GHz processor.  

The problem for the application is described in Section V.2. Section V.3 presents 

experimentation and computational results. A brief summary of the chapter is provided 

in Section V.4. 

 

V.2. Problem Description 

 
The Texas Department of Transportation maintains a highway pavement network 

divided into a number of autonomous regions called districts and each district is 

allocated a certain fraction of the yearly state budget depending on its needs. A district 

contains a number of highways and these highways are further divided into management 

sections. Ideally a management section has uniform environmental conditions and traffic 

intensity through the process of segmentation.  

The district maintains highways by management section rather than entire portions of 

the highway system. A district highway management system is defined as a system that 

analyzes the data on highway conditions and generates a good maintenance schedule 

within the constraints of resources and desired driving characteristics. Each year, district 

supervisors schedule maintenance for some subsets of the highway management sections 
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in the district within the limits of resource availability. The solution approaches of this 

research have been applied to one such set of highway management sections. 

 This is a real world application and data for the problem was obtained from the 1998 

Road Inventory File. The state of Texas is divided into 5 regions by climatic factors such 

as temperature, precipitation, evaporation, and freeze-thaw cycles. In each region, there 

are 25 districts which are considered for M & R activities. The districts in each region 

are given in Table V.1.  

 

Table V.1. Climatic Regions and Their Districts 

Region 1 Region 2 Region 3 Region 4 Region 5 
 

East Texas 
 

West Texas 
Texas 

Panhandle 
 

South Texas 
North-Central 

Texas 
Atlanta Abilene Amarillo Corpus Christi Austin 
Beaumont El Paso Childress Laredo Brownwood 
Houston Odessa Lubbock Pharr Bryan 
Lufkin San Angelo  San Antonio Dallas 
Paris   Yoakum Fort Worth 
Tyler    Waco 
    Wichita Falls 
 

 

For the sample highway maintenance problem, a total of 402.5 lane-miles of 

different class of highways are taken from Brazos and Robertson county in the Bryan 

district. The network is segmented into 40 pavement management sections. The 

pavement management sections are classified into two groups. The first group consists 

of ‘US’ and ‘State Highways’, whereas the second group consists of ‘Farm-to-Market’. 

Both groups of highways have asphalt pavements, but have different thickness of road 

base and surface. The Farm-to-Market, because of the lower traffic intensity, have a 

thinner base and surface asphalt layers.  

There are nineteen ‘group 1’ highway sections and twenty-one ‘group 2’ highway 

sections, and the pavement network information data, including pavement section code, 
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highway type, section length and lane, traffic volume, and the current PSI (Present 

Serviceability Index) are shown in Table V.2.  

PSI is used to measure pavement section deterioration. The Markov chain approach 

is used to reflect the stochastic nature of individual changes in present serviceability and 

service life. To model the way in which the pavement deteriorates with time, it is 

necessary to identify the Markov probability matrix. As mentioned in Section 1.2, it is 

assumed that this information is known. Details for PSI and transition probabilities are 

provided in Appendix B. 

There are a total of five alternatives to be considered for managing a highway 

network: (1) do nothing; (2) minor maintenance; (3) major maintenance; (4) 

rehabilitation; and (5) reconstruction.  Table V.3 lists four standardized M & R treatment 

strategies for the highway network. Each of the strategies includes: (1) treatment 

requirements and specifications for each M & R action; (2) treatment effects in terms of 

raising the existing pavement condition state by a certain amount of PSI points; and (3) 

unit costs for implementing the M & R actions. It is assumed that application of M & R 

treatment strategies to highway pavement sections in groups 1 and 2, results in that 

highway pavement rating being set equal to the points gained by application of these 

strategies for respective groups of highway pavements. The highway pavement quality 

level resulting from application of any maintenance strategy cannot be greater than the 

ideal highway pavement quality or less than the minimum. If an application of any one 

strategy causes this to occur, the maintenance strategy is infeasible because of the 

constraints of desired driving requirements of highway pavement quality. 

The minimum pavement quality level and the serviceable pavement quality level are 

defined to be 50% and 80% of the maximum quality level. These are used to determine 

feasible strategies in each time period. A pavement section is also not considered for 

maintenance scheduling if the pavement qua lity levels are greater than the serviceable 

pavement quality level. Theses constraints, along with the alternative selection 

constraints, are used to construct the network model for each pavement section over 

multiple periods. 
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Table V.2. Pavement Network Information Data 

Pavement 
Management 

Section 
Highway Type 

Length   
(miles) Lane 

Traffic Volume 
AADT/Truck 

(%) 
Current PSI 

004909 US 7.5 4 224170/7.9 3.9 
004912 SH 13.6 3.8 456510/11.7 2.6 
005001 SH 7.9 4 573500/1.8 2.7 
005002 SH 15.5 4 192080/12.6 3.2 
011604 SH 11.8 3.4 424200/14.3 2.8 
011605 FM 1.3 4 55700/9.2 3.3 
011701 US 9.8 2.9 162500/12.3 3.4 
011702 US 6.8 2 42200/16.1 2.6 
021203 FM 12.9 2.7 283200/11.5 3.8 
047501 SH 8 2 5020/18.5 3.2 
047502 SH 21 2 13800/16.8 2.6 
050601 FM 10.8 3.8 894200/4.6 4 
054003 FM 11.6 2 35700/9.6 3.8 
054004 FM 21.4 3 306180/4.4 4.1 
054005 FM 16.6 2 4170/8.5 3.9 
059901 SH 1.4 4 46500/1.9 3.7 
064802 FM 4.8 2 7850/10.7 2.6 
131601 FM 14.9 3 263410/6.8 3.8 
131602 FM 5.4 2 920/15.3 2.5 
156001 FM 10.8 2 10030/10.4 3.3 
004906 US 14.5 2.8 140700/23.4 3.5 
004907 US 7.1 3.4 153300/18.7 3.3 
004908 US 12.2 4 332600/14.7 3.6 
004914 FM 1.3 2 4050/14.2 3.8 
004915 SH 4.2 2 8950/12.6 3.5 
009308 US 1.3 2 3500/12.9 3.3 
020409 US 8.5 2.7 60300/18.9 3.4 
020501 US 9.1 2.3 56100/22.9 2.6 
020502 US 17.5 2.3 111000/25 3.8 
026203 FM 6.1 2 14000/9.3 3.2 
026206 SH 13.3 2 24450/6.5 2.6 
038204 SH 8.9 2 20150/14.9 4 
054001 FM 16.9 2 26060/9.3 3.8 
054002 FM 13 2 19050/9.6 4.1 
054006 FM 10.5 2 3150/13.1 3.9 
064801 FM 11.8 2 8700/15.4 3.7 
119105 FM 5.5 2 1240/13.7 2.6 
121001 FM 10.7 2 720/12.6 3.8 
121002 FM 5.1 2 1020/12.4 2.5 
156301 FM 11.3 2 3120/10.8 3.2 
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Table V.3. Treatment Types and Costs 

No. of Treatment 
Strategy 

Treatment Requirements and 
Specifications 

Treatment Effect & 
Impact/ Cost 

($1000/lane mile) 
1. Minor 
Maintenance 

• Crack Sealing 
• Joint Sealing 
• Surface Sealing 

• Raise of the exiting 
PSI by 0.5 

• Unit Cost: $6 
2. Major 
Maintenance 

• Concrete Pavement 
Restoration 

• Thin Asphalt Overlay 

• Raise of the exiting 
PSI by 1.0 

• Unit Cost: $60 
3. Rehabilitation • Patching 

• Mill and Thick Asphalt 
Overlay 

• Raise of the exiting 
PSI by 1.5 

• Unit Cost: $125 
4. Reconstruction • Concrete Overlay  

• Remove Asphalt Surface 
• Replace and Rework Base 

• Raise of the exiting 
PSI by 2.0 

• Unit Cost: $400 

 

 

 V.3. Experimentation and Computational Results 

 
To examine the behavior of the proposed algorithm as a function of both problem 

size and budget availability, the following combinations are considered: (1) number of 

pavement sections ∈ {20, 40}; (2) number of M & R alternatives ∈ {3, 4}; (3) number 

of periods ∈ {5, 7}; and (4) budget availability factor ∈ {10%, 20%}. Each combination 

will be referred to as a problem type. Let i represent the number of pavement sections in 

a problem, j represent the number of M & R alternatives, t represent the number of 

periods, and θ represent the budget availability factor.   

For any choice of i, j, and t, the available budget in each period is determined by the 

formula Bt = biθ, where Bt is the budget available in period t in Problem (P), and b is 

the average cost of the M & R alternatives in each pavement section (obtained by 

summing the costs of all of the M & R alternatives in a highway network and dividing 

by the term of multiplying the number of pavement sections and the number of M & R 
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alternatives in each pavement section). It is assumed that the unused portion of the 

budget for one period can be carried over to subsequent periods and major maintenance 

and rehabilitation on each pavement section can not be taken more than one time over 

the planning periods for which the number of M & R alternatives factor is 3 and 4. 

A fractional factorial design was applied to plan the experiments. In this experiment 

there are four factors, each with 2 levels: (1) the number of pavement sections; (2) the 

number of M & R alternatives; (3) the number of periods; and (4) budget availability 

factor. The eight experimental conditions obtained from orthogonal arrays for the 

experimentation ran. Table V.4 represents the orthogonal array OA (8,4,2,3): in this 

notation, 8 indicates the number of the run; 4 the number of the factor; 2 the number of 

the levels; and 3 the strength, which is the number of columns where it is guaranteed to 

see all the possibilities an equal number of times. The per- level combination factors are 

translated into problem types. The rows of the array represent the experimental 

conditions. The columns of the orthogonal array correspond to the different variables or 

factors whose effects are being analyzed. The entries in the array specify the levels at 

which the factors are to be applied.  

 

 

Table V.4. Orthogonal Array OA (8,4,2,3) 

0   0   0   0 
0   0   1   1 
0   1   0   1 
0   1   1   0 
1   0   0   1 
1   0   1   0 
1   1   0   0 
1   1   1   1 

 

 

The quality of solutions is measured by a gap. The gap is defined as truncated 

hundredths of a percent of the difference between the lower bound (the value of an 
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optimal solution or the best known solution) and the upper bound compared to the upper 

bound: 

 

Value BoundUpper 
Value BoundLower -Value BoundUpper 

100Gap =  

 

In this case study, it is assumed that the gap between lower bound and upper bound is 

within 2 percents for a termination rule of the proposed algorithm. 

In addition to the gaps, the computational performance is measured by computation 

times in minutes and seconds. Computational experience for the experiment is reported 

in Table V.5. Table V.5 indicates that every solution for each experimental condition is 

within a 2 % gap and memory usage increases with increasing the problem size.  

 

 

Table V.5. Computational Results for Experiment 

Problem Type Measures 

Section( i) Alternative(j) Period(t) Budget(θ) CPU time 
(min:sec) 

Gap 

Memory 
Usage 

(MegaByte) 
20 3 5 10 % 02:55 0.0143 0.45 
20 3 7 20 % 08:10 0.0116 2.69 
20 4 5 20 % 00:28 0.0171 0.78 
20 4 7 10 % 24:19 0.0138 3.66 
40 3 5 20 % 02:07 0.0158 0.82 
40 3 7 10 % 133:09 0.0050 5.33 
40 4 5 10 % 02:11 0.0112 1.55 
40 4 7 20 % 19:23 0.0142 8.01 

 

 

The effect of a factor is defined to be the change in response that is computation time 

in this experiment produced by a change in the level of the factor. This is frequently 

called a main effect because it refers to the primary factors of interest in the experiment. 

The main effect of a factor in this two- level design can be thought of as the difference 
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between the average response at the low level of the factor and the average response at 

the high level of the factor. Numerically, in this experiment these are 
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That is, increasing factor i, j, t, and θ from the low level to the high level causes an 

average response increase of 30:15, -25:00, 44:20, and –33:06, respectively. 

In the range of this experiment, computation times seem to decrease with the earlier 

periods in finding the solution within the 2% gap and seem to increase with the 

increasing number of efficient solutions obtained by using DP in each period. This 

indicates that more efficient solutions in each period take much more time to obtain 

survivors (or a solution within the 2% gap) because of the number of performing 

bounding tests. The increasing budget level reduces the fewer variables since the number 

of promising M & R alternative combinations is increased. Hence, from the standpoint 

of problem reduction, difficulty levels seem to be affected by budget availability and 

data structure within budget levels.  
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Generally, computation time is a function of the problem size and difficulty. The 

problem size is exponentially proportional to the number of pavement sections and 

periods. Increasing the number of periods seems to increase computation time in 

obtaining bounds on efficient solutions (using Lagrangean relaxation and subgradient 

optimization methodology), while increasing the number of pavement sections tends to 

increase computation time in obtaining efficient solutions in each period (using DP).  

The dominating factor in difficulty is likely to be budget availability and the data 

structure since the computation time appears to decrease or increase according to the 

combination of the two. Problems with some combination of the two will be harder to 

solve than those of larger size with the other combinations. For example, the 

computation time for a problem with 40 pavement sections, 3 alternatives, 7 periods, and 

10% of the budget level is about 133 minutes, compared to about 19 minutes for a 

problem with 40 pavement sections, 4 alternatives, 7 periods, and 20% of the budget 

level. Figure V.1 shows the trend of computation times according to the problem size. 

The tendency of memory usages according to the problem size is shown in Figure V.2. 

No problem was solved to optimality in the proposed algorithm. It is not possible to 

compare the computational results from this algorithm with those from others, since no  

special purpose algorithms for this type of research problem are available in the related 

technical literature. 

 

 



      

 

56 
 

  

5

10

15

20

25

30

5 7

Number of Periods

Computation Time (Minutes)

(20,4,5)
(40,3,5)
(40,4,5)

(20,3,5)

(20,3,7)

(20,4,7)

(40,4,7)

(40,3,7)

 
 

Figure V.1. Computation Time vs Number of Periods 
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Figure V.2. Memory Usage vs Number of Periods 
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V.4. Summary 

 
In this chapter, the problem for the application was described and the experiments 

computational results were presented. The data for the problem was obtained from 1998 

Road Inventory File. The set of pavement sections used in this problem was segmented 

by the column of ‘highway department control/section number’ in 1998 Road Inventory 

File. All computations were conducted on an Intel Pentium 3.06 GHz process personal 

computer using MATLAB code.  

Based on the results reported in this chapter, the following derivations can be made: 

(1) solutions to problems are near optimal within 2 percent maximum accuracy; (2) 

computation times and solution accuracy tend to increase according to the combination 

of the budget availability factor and the data structure as well as the increasing numbers 

of pavement sections, maintenance alternatives, and planning periods. 
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CHAPTER VI 

 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

 

VI.1. Summary 

 
The purpose of this dissertation is to develop a model and solution methodology for 

determining the most cost-effective M & R activities for each pavement section in a 

highway network along a specified extended planning horizon.  A pavement project is 

defined as a chronological sequence of M & R activities along the given horizon, 

including the “do-nothing” activity. Each M & R activity in a project is associated with 

an estimated cost and an effectiveness measure.  

The problem under investigation is that of selecting and scheduling timely and cost-

effective M & R activities for each pavement section in a highway network and 

allocating the funding levels through a finite multi-period horizon, within the constraints 

imposed by budget availability, frequency activities, and specified minimum pavement 

quality. It is assumed that the unused portion of the budget for one period can be carried 

over to subsequent periods. 

The problem is formulated as a multi-dimensional 0-1 knapsack model with 

alternative selection and precedence-feasibility constraints. DP and B-and-B approaches 

are combined to produce a hybrid DP/B-and-B algorithm for solving the problem. The 

algorithm is essentially a DP approach in the sense that the problem is divided into 

smaller subproblems corresponding to each single period problem. The idea of 

fathoming partial solutions that could not lead to an optimal solution is incorporated 

within the algorithm to reduce storage and computational requirements. 

The imbedded-state approach is used to reduce a multi-dimensional DP to a one-

dimensional DP and to obtain all promising solution points in a stagewise fashion. The 

non-promising solution points that cannot lead to an optimal solution are eliminated by 

three schemes: (1) feasibility tests; (2) dominance tests; and (3) bounding tests. The 



      

 

60 
 

  

feasibility test eliminates the solution space leading to an infeasible point. The 

dominance test is conducted to screen those solution points which consume more of the 

resources and provide lesser returns. The bounding test eliminates solutions in the state 

space tha t result in a return worse than the best known bound.  

In order to obtain initial bounds and bounds at each stage in the DP, the original 

problem is transformed to a resource-constrained longest-path network model. A 

Lagrangean optimization methodology for solving the RCLPP is developed. For 

bounding tests at each stage in the DP, the Lagrangean optimization methodology 

applies to each of the remaining problems. In Lagrangean optimization, the values of the 

Lagrangean multipliers are found by a subgradient optimization method, while the  Ford-

Bellman network algorithm is employed at each iteration of the subgradient optimization 

procedure to solve the longest-path network problem as well as to obtain an improved 

lower and upper bound. 

The proposed algorithm was implemented in the MATLAB language on an Intel 

Pentium IV 3.06 GHz processor. Tests for the proposed solution methodology were 

conducted using a typical data set for the state of Texas as well as an experimental 

design concept. The duality gap of the problems was sufficiently small enough (2% 

maximum) and the lower bound was near optimal. 

 

VI.2. Conclusions and Contributions  

 
In this dissertation a model and solution algorithm is developed to obtain an optimal 

or near-optimal solution to the problem of selecting and scheduling timely and cost-

effective M & R strategies of pavement sections in a highway network and for allocating 

the available funding levels in each period along an extended planning horizon resulting 

in maximum benefits.  

The model developed in this research is a multi-dimensional 0-1 knapsack problem 

with side constraint sets. One special property of the model is that every coefficient 

column and the right hand side value column of the knapsack constraints have non-
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decreasing elements. This property comes from the realistic assumption that the unused 

portion of the budget for a period can be carried over to subsequent periods.  

It is not possible to compare the performance of the proposed solution algorithm with 

that of other algorithms since there are no other special-purpose algorithms for this kind 

of research. However, it can be concluded that the proposed algorithm solves multi-

period optimization problems in an efficient and effective manner: (1) solutions are 

optimal or near-optimal within 2% maximum in accuracy; (2) computation times and 

solution accuracy tend to increase according to the combination of the budget 

availability factor, and the data structure as well as problem size. 

The methodology developed in this research is considered to be a significant step in 

the development of multi-period optimization methodology for PMS’s because of:  (1) a 

computationally efficient solution procedure for multi-period problems obtained by 

combining DP and B-and-B procedures and exploiting not only the imbedded state space 

approach for state reduction in DP, but also the computational efficiency of network 

algorithms at each iteration in a subgradient optimization procedure; (2) an optimization 

procedure that allows the selection and scheduling of timely and cost-effective M & R 

activities for each pavement section in a highway network along an extended planning 

horizon as well as the allocation of the available funding levels in each period resulting 

in maximum benefits for multi-period PMS; and (3) the capability of the model to allow 

pavement managers to make more consistent and effective decisions regarding the 

allocation of limited funds in each period as well as the frequency of activities over time. 

The significance of contributions also comes from the fact that the decisions 

regarding the lifetime of pavement improvement activities would be more effective and 

consistent by considering them on a system-wide basis and along a mid-to- long term 

planning horizon. Furthermore, the proposed procedure is general enough to be 

successfully and directly applied to real life PMS’s.  
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VI.3. Recommendations for Further Research 

 
Further extensions to the model and solution methodology can be considered as 

follows. The identified bottleneck in the computational performance for large-scale hard 

problems has been the time required for solving the resource-constrained longest-path 

network model at each iteration in the subgradient optimization methodology.  The 

network modeling technique cannot be used in some cases because the size of the 

resulting network grows exponentially beyond computational capabilities as the number 

of planning periods increases. It should be an area of further research to develop 

techniques other than network modeling to be used in solving the network model. 

Further, a heuristic device for generating an appropriate feasible solution from an 

infeasible integer solution (obtained using Lagrangean optimization) needs to be 

developed for use in the B-and-B procedure. Most of the computation time for this 

procedure is used for Lagrangean relaxation and subgradient optimization, which is 

called for every efficient solution in each stage of the DP frame. The employment of 

such a heuristic tool at each iteration will save a significant amount of computational 

efforts. 

Finally, more constraints can be added to the model. For instance, other resources 

such as man-hours, materials, etc. can be added to expand the scope of its capacity. 
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APPENDIX A      

 

COMPUTER IMPLEMENTATIOIN 

 

 

A.1. Introduction 

 
The computer implementation of the proposed algorithm in this research is described 

in this appendix. Section A.2 presents the general description of the code. Section A.3 

explains the program flow and some critical values of the flow control parameters to 

control the flow of execution in the developed code. Section A.4 discusses input data 

format. The main part of MATLAB code is provided in A.5. 

 

A.2. General Description of the Code  

 
All procedures of the algorithm were coded in the MATLAB language. The code can 

be executed on a computer with an Intel Pentium IV 3.06 GHz processor and 512 

megabytes of main memory. The maximum problem size that has been solved by the 

developed code is 40 pavement sections, 4 M & R alternatives (including ‘do nothing’) 

for each pavement sections, and seven years in the planning period horizon.  

In developing the code for the algorithm, no effort was made to optimize the code 

with respect to main memory use and computational requirements. In the network 

modeling procedure, the concept of the depth first search rule was employed to build the 

network. In the B-and-B procedure, the search tree was set-up by applying a dynamic 

programming approach and computations of bound values at nodes was conduc ted from 

the root node until the gap between the lower and upper bound is in the predetermined 

parameter ε or the improved lower bound is optimal. The width first search rule was 

utilized in fathoming the efficient solutions and building the survivors with the improved 

bounds at each stage by bounding tests. 
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A.3. Flow and Flow Control Parameters  

 
The basic steps of the code are as follows. 

 

(1) Input the problem data. This includes the capital consumption by each alternative 

for each pavement section in each period, the budget available in each period, the 

alternative frequency available for the planning periods, transition probability 

matrices for each pavement section, treatment effect of alternatives, and the 

current pavement quality level of pavement sections. 

(2) Perform the network generation to transform the original problem into an 

RCLPP. 

(3) Obtain the initial bounds 

a) Take the Lagrangean relaxation of the RCLPP into a longest-path 

problem. 

b) Perform the subgradient optimization procedure. 

c) If the gap between the lower and upper bound is in ε, stop; otherwise, go 

to (4). 

(4) Perform the dynamic programming for a single period. 

a) Feasibility test 

b) Dominance test 

(5) Build the remaining problems. 

(6) Perform the bounding test. 

a) Perform (3.a) and (3.b) for the remaining problems. 

b) Build the survivors by bounding test. 

c) Obtain the updated bounds. 

d) If the gap is in ε or the current period is the last, stop; otherwise, go to 

(4). 

 



      

 

69 
 

  

The output of the code is the lower and upper bound values and the M & R schedules 

for a highway network under consideration. Computational experiments showed that 

problems having more than a seven-year period planning horizon and more than forty 

pavement sections consume excessive amounts of time in performing subgradient 

optimization procedures and dynamic programming approaches in each period. For 

computational implementation within a reasonable computation time, forty pavement 

sections, four M & R alternatives, and seven-years planning period were considered as 

reasonable-sized problems in this dissertation. 

 

A.4. Input Data Format 

 
The input data file consists of three parts. Their forms are matrices. The first part 

contains the capital consumptions for each M & R alternative in each period and the 

frequency of alternatives for pavement sections over the planning periods. The second 

part includes the budget available in each period and the frequency of alternatives 

available over the planning period in which the frequency of the most expensive action 

over the period is constrained once. The transition probability matrix for each pavement 

section is included in the third part. Table A.1 is an example of input data for a problem 

that has twenty pavement sections, three M & R alternatives, and seven-year planning 

period.  

 

A.5. Output 

 
The output from the computer code is shown in Table A.2. It includes a list of M & 

R activities selected and scheduled for each pavement section in a highway network and 

the funding level allocated over the planning periods. 
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Table A.1. Input Data 

   

                           0  180   1799  0  306  3065  0 189  1890  0  371  3708  0  241  2414  0  30  302  0  172  1722 0  81  814 0  211  2114  0  96  961  0  251  2514  0  249  2488  0  140  1398   
                           0  391  3909  0  199  198   0  33  333  0  57  574 0  264  2641 0  64  645 0  129  1292 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0    0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0  0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1  
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Table A.1. (Continue) 

 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0  189  1888  0  322  3218  0  198  1984  0  389  3893  0  253  2535  0  32  317 0  181  1808 0  85  855 0  222  2219  0  101  1009  0  264  2640  0  261  2613 0  14 1468 
                            0  410  4104  0  209  2088  0  35  349  0  60  603  0  277  2773  0  68  677  0  136  1357 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1 
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Table A.1. (Continue) 

 

                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0  198  1983  0  338  3379  0  208  2083  0  409  4088  0  266  2662  0  33  333  0  190  1899  0  90  897 0  233  2330  0  106  1059  0  277  2772  0  274  2743  0  154  1541  
                           0  431  4309  0  219  2193  0  37  367  0  63  633  0  291  2912  0  71  711  0  142  1425 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0  0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0    0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0    0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1  
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Table A.1. (Continue) 

 

                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0  0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0  208  2082  0  355  3548  0  219  2187  0  429  4292  0  279  2795  0  35  350  0  199  1994  0  94  942  0  245  2447  0  111  1112  0  291  2910  0  288  2881  0  162  1618  
                           0  452  4525  0  230  2302  0  39  385  0  66  665  0  306  3057  0  75  746  0  150  1496 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0  0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0  0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0    0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1  
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Table A.1. (Continue) 

 

                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0    0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0  219  2186  0  372  3725  0  230  2297  0  451  4507  0  293  2934  0  37  367  0  209  2094  0  99  989  0  257  2569  0  117  1168  0  306  3056  0  302  3025  0  170  1699  
                           0  475  4751  0  242  2417  0  40  404  0  70  698  0  321  3210  0  78  784  0  157  1571 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0  0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0  0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0  
                           0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1  
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Table A.1. (Continue) 

 
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 230  2295  0  391  3911  0  241  2412  0  473  4732  0  308  3081  0  39  385  0  220  2198  0  104  1039  0  270  2698  0  123  1226  0  321  3209  0  318  3176  0  178 1784       
                          0  499  4989  0 254  2538  0  42  425  0  73  733  0  337  3370  0  82  823  0  165  1649 
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0  
                          0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1  
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Table A.1. (Continue) 

 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0  241  2410  0  411  4107  0  253  2532  0  497  4969  0  324  3235  0  40  405  0  231 2308  0  109  1091  0  283  2832  0  129  1288  0  337  3369  0 333  3335  0  187        
                            1873  0  524  5238  0  267  2665  0  45  446  0  77  769  0  354  3539  0  86  864  0  173  1732 
                            0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0  0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0  0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0  0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0    0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0    0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1   0 0 0 
                            0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 0   0 0 1 
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Table A.1. (Continue) 

 

2681 0 0 0 0 0 0  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

0 2815 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

         0 0 2956 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 3104 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0  3259 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 3422 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0  3593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 

 

 

 0.15  0.85  0  0  0  0 
 0  0.31  0.69  0  0  0 
 0  0  0.41  0.59  0  0 
 0  0  0  0.01  0.99  0 
 0  0  0  0  0.79  0.21 
 0  0  0  0  0  1 
 

 0.315  0.685  0  0  0  0 
 0  0.445  0.555  0  0  0 
 0  0  0.565  0.435  0  0 
 0  0  0  0.565  0.435  0 
 0  0  0  0  0.565  0.435 
 0  0  0  0  0  1 
    

 0.215  0.785  0  0  0  0 
 0  0.355  0.645  0  0  0 
 0  0  0.455  0.545  0  0 
 0  0  0  0.555  0.445  0 
 0  0  0  0  0.445  0.555  
 0  0  0  0  0  1 
           

 0.41  0.59  0  0  0  0 
 0  0.52  0.48  0  0  0 
 0  0  0.42  0.58  0  0 
 0  0  0  0.52  0.48  0 
 0  0  0  0  0.52  0.48 
 0  0  0  0  0   1 
 

 0.315  0.685   0  0  0  0 
 0  0.445  0.555  0  0  0 
 0  0  0.565  0.435  0  0 
 0  0  0  0.565  0.435  0 
 0  0  0  0  0.565  0.435 
 0  0  0  0  0  1 
   

 0.39  0.61  0  0  0  0 
 0  0.61  0.39  0  0  0 
 0  0  0.76  0.24  0  0 
 0  0  0  0.76  0.24  0 
 0  0  0  0  0.76  0.24 
 0  0  0  0  0  1 
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Table A.1. (Continue) 

 
 
0.19  0.81  0  0  0  0 
0  0.31  0.69  0  0  0 
0  0  0.35  0.65  0  0 
0  0  0  0.62  0.38  0 
0  0  0  0  0.62  0.38 
0  0  0  0  0  1 
 

0.39  0.61  0  0  0  0 
0  0.64  0.36  0  0  0 
0  0  0.74  0.26  0  0 
0  0  0  0.54  0.46  0 
0  0  0  0  0.74  0.26 
0  0  0  0  0  1 
          

         0.39  0.61  0  0  0  0 
0  0.64  0.36  0  0  0 
0  0  0.74  0.26  0  0 
0  0  0  0.54  0.46  0 
0  0  0  0  0.74  0.26 
0  0  0  0  0  1  
           

         0.39  0.61  0  0  0  0 
0  0.64  0.36  0  0  0 
0  0  0.74  0.26  0  0 
0  0  0  0.54  0.46  0 
0  0  0  0  0.74  0.26 
0  0  0  0  0  1 
             

         0.15  0.85  0  0  0  0 
0  0.31  0.69  0  0  0 
0  0  0.41  0.59  0  0 
0  0  0  0.01  0.99  0 
0  0  0  0  0.79  0.21 
0  0  0  0  0  1 
 

0.315  0.685  0  0  0  0 
0  0.445  0.555  0  0  0 
0  0  0.565  0.435  0  0 
0  0  0  0.565  0.435  0 
0  0  0  0  0.565  0.435 
0  0  0  0  0  1 
    

         0.215  0.785  0  0  0  0 
0  0.355  0.645  0  0  0 
0  0  0.455  0.545  0  0 
0  0  0  0.555  0.445  0 
0  0  0  0  0.445  0.555  
0  0  0  0  0  1 
           

0.41  0.59  0  0  0  0 
0  0.52  0.48  0  0  0 
0  0  0.42  0.58  0  0 
0  0  0  0.52  0.48  0 
0  0  0  0  0.52  0.48 
0  0  0  0  0  1 
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Table A.1. (Continue) 

 
 
0.315  0.685   0  0  0  0 
0  0.445  0.555  0  0  0 
0  0  0.565  0.435  0  0 
0  0  0  0.565  0.435  0 
0  0  0  0  0.565  0.435 
0  0  0  0  0  1 
   

0.39  0.61  0  0  0  0 
0  0.61  0.39  0  0  0 
0  0  0.76  0.24  0  0 

         0  0  0  0.76  0.24  0 
0  0  0  0  0.76  0.24 
0  0  0  0  0  1 
       

0.19  0.81  0  0  0  0 
0  0.31  0.69  0  0  0 
0  0  0.35  0.65  0.1  0 
0  0  0  0.62  0.38  0 
0  0  0  0  0.62  0.38 
0  0  0  0  0  1 
 

0.39  0.61  0  0  0  0 
0  0.64  0.36  0  0  0 
0  0  0.74  0.26  0  0 
0  0  0  0.54  0.46  0 
0  0  0  0  0.74  0.26 
0  0  0  0  0  1 
          

0.39  0.61  0  0  0  0 
0  0.64  0.36  0  0  0 
0  0  0.74  0.26  0  0 
0  0  0  0.54  0.46  0 
0  0  0  0  0.74  0.26 
0  0  0  0  0  1 
           

0.39  0.61  0  0  0  0 
0  0.64  0.36  0  0  0 
0  0  0.74  0.26  0  0 
0  0  0  0.54  0.46  0 
0  0  0  0  0.74  0.26 
0  0  0  0  0  1 
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Table A.2 M & R Actions and Capital Consumed for Each Pavement Section in Each Period 

 
M&R Actions and Capital Consumed for Each Pavement Section in Each Period 
 
                      1 year                 2 year                  3 year                 4 year                  5 year                  6 year                 7 year 
Section   M&R     Cap      M&R      Cap      M&R      Cap      M&R      Cap      M&R      Cap      M&R      Cap      M&R      Cap    
 1                2        180           1             0           2         198          1              0          2          219          1             0           2         241 
 2                2        306           1             0           2         338          2          355          2          372          2         391           2         411 
 3                2        189           2         198           2         208          2          219          2          230          2         241           1             0 
 4                1            0           2         389           1             0          2          429          2          451          2         473           2         497 
 5                1            0           2         253           1             0          2          279          2          293          2         308           1             0 
 6                2          30           2           32           2           33          2            35          1              0          3         385           1             0 
 7                2        172           1             0           1             0          2          199          2          209          1             0           2         231 
 8                2          81           2           85           2           90          1              0          1              0          2         104           1             0 
 9                2        211           2         222           2         233          1              0          2          257          1             0           2         283 
10               2          96           2         101           2         106          1              0          1              0          1             0           2         129 
11               1            0           2         264           1             0          2          291          2          306          2         321           1             0 
12               2        249           2         261           2         274          2          288          2          302          2         318           1             0 
13               2        140           2         147           2         154          2          162          2          170          2         178           1             0 
14               1            0           2         410           1             0          2          452          2          475          2         499           2         524 
15               2        199           1             0           2         219          2          230          1              0          2         254           1             0 
16               2          33           2           35           2           37          2            39          1              0          3         425           1             0 
17               2          57           1             0           2           63          1              0          2            70          1             0           2           77 
18               2        264           1             0           2         291          1              0          2          321          1             0           1             0 
19               2          64           2           68           2           71          2            75          1              0          1             0           2           86 
20               2        129           2         136           2         142          1              0          1              0          1             0           2         173
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A.6. Main Body of MATLAB Code  

 
format compact 
clear all 
clc 
 
global Efft A b set_sol T_E  PQ_origin Prob  cum_b cpu_start AM cpu_start = cputime; 
 
% Get A matirx from input_A.txt 
fid1 = fopen('input_A.txt','r'); 
for i = 1 : 7 
    transp_A{i} = fscanf(fid1,'%d',[60,27]); 
    A{i} = sparse(transp_A{i}'); 
end 
fclose(fid1); 
 
% Get b matrix from input_b.txt 
fid1 = fopen('input_b.txt','r'); 
for i = 1 : 7 
    transp_b(:,i) = fscanf(fid1,'%d',[27,1]); 
    b = transp_b'; 
end 
fclose(fid1); 
 
% Get Probability matrix from input_Prob.txt 
fid1 = fopen('input_Prob.txt','r'); 
for i = 1 : 20 
    Prob(:,:,i) = fscanf(fid1,'%f',[6,6]); 
    Prob(:,:,i) = sparse(Prob(:,:,i)'); 
end 
fclose(fid1); 
 
% cumulative budget for each period 
cum_b = [b(1,1) b(1,1)+b(2,2) b(1,1)+b(2,2)+b(3,3) b(1,1)+b(2,2)+b(3,3)+b(4,4) 
b(1,1)+b(2,2)+b(3,3)+b(4,4)+b(5,5) b(1,1)+b(2,2)+b(3,3)+b(4,4)+b(5,5)+b(6,6) 
b(1,1)+b(2,2)+b(3,3)+b(4,4)+b(5,5)+b(6,6)+b(7,7)]; 
     
% j = 1 ; Do nothing        ;       
% j = 2 ; Minor maintenance ; 
% j = 3 ; Major maintenance ; 
 
T_E = [0 .5  1]; % Treatment_Effect 
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% PQ_it is pavement quality of section i in period t % 
 
PQ_origin = [3.9 2.6 2.7 3.2 3.5 2.6 3.5 3.2 2.8 3.3 3.9 2.6 2.7 3.2 3.5 2.6 3.5 3.2 2.8 3.3] 
; 
    
     
%Network Generation from original problem 
     
[Efft,ini_Efft,Adj]=ng*; 
 
Efft; % coefficients of objective function 
ini_Efft; % sorted Efft for network representation 
Adj; % Adjacent matrix for network representation 
 
%Lagrangean Relaxation and Subgradient optimization 
  
[LB, UB,Long_path_info] = Ini_subgradient(ini_Efft,Adj); 
 
Incumb = LB; % the best known lower bound 
UB; % the best known upper bound 
 
% If the gap LB and UB is in a fixed range, then the following will be implemented. 
for num_pave = 1 : 20 
    for i = 1 : size(Long_path_info{1,num_pave},2)-2 
        for j = 1 : size(Adj{1,num_pave},2) 
            search_Adj = Long_path_info{1,num_pave}(i:i+1); 
            if isempty(Adj{1,num_pave}{search_Adj(1),j}) == 0 
                if search_Adj == Adj{1,num_pave}{search_Adj(1),j}  
                    M_and_R{1,num_pave}(i)=[j]; 
                    PSI{1,num_pave}(i) = ini_Efft{1,num_pave}(search_Adj(1),7+j);%5 is the                   
                                                                                                                          # of periods. 
                    break 
                end 
            end 
        end 
    end 
end   
 
%find cost for each action 
 
consum={[zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] 
[zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] 
[zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)] [zeros(1,7)]}; 
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for period = 1 : 7 
    for num_pave = 1 : 20 
        if M_and_R{num_pave}(period) == 1 
            consum{num_pave}(period) = AM{period,num_pave}(period,1); 
        elseif M_and_R{num_pave}(period) == 2 
            consum{num_pave}(period) = AM{period,num_pave}(period,2); 
        elseif M_and_R{num_pave}(period) == 3 
            consum{num_pave}(period) = AM{period,num_pave}(period,3); 
        elseif M_and_R{num_pave}(period) == 4 
            consum{num_pave}(period) = AM{period,num_pave}(period,4); 
        end 
    end 
end 
             
% open an output file 
fid1 = fopen('output.txt','w+'); 
[RowM_and_R] = size(M_and_R,2); 
[ColumnM_and_R] = size(M_and_R{1,1},2); 
fprintf(fid1,'%c','M&R Actions and Capital Consumed for Each Pavement Section in 
Each Period'); 
fprintf(fid1,'\n');fprintf(fid1,'\n'); 
fprintf(fid1,'%c','          1 year            2 year            3 year            4 year            5 year            
6 year            7 year'); 
fprintf(fid1,'\n'); 
fprintf(fid1,'%c','Section  M&R     Cap      M&R      Cap      M&R      Cap      M&R      
Cap      M&R      Cap      M&R      Cap      M&R      Cap   '); 
fprintf(fid1,'\n'); 
 
 
for k = 1 : RowM_and_R 
    fprintf(fid1,'%2d',k);         
    for kk = 1 : ColumnM_and_R 
        fprintf(fid1,'%9d',M_and_R{1,k}(1,kk)); 
        fprintf(fid1,'%9d',consum{1,k}(1,kk)); 
    end 
    fprintf(fid1,'\n'); 
end 
fclose(fid1); 
 
%%%%% termination rule %%%%%% 
if (UB-LB)/UB < .02 
    cpu_end = cputime; 
    execute_time = cpu_end-cpu_start; 
    finishsav; 
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    exit; 
end 
 
%%%%% Initialize variables %%%%% 
solution=[]; % solutions for single period DP 
state_var = []; % state variable of each stage in single period DP 
L=[0 0 0 0 0 0 0]; % the index of nodes in search tree (7 is the # of periods) 
set_sol={[] [] [] []}; % solution information of single DP;{solution, f_state, state_var, L} 
red_L = [0 0 0 0 0 0 0]; % the index of nodes in search tree after bounding test 
 
for num_period=1:7 
     
    %find all possible Efft(objective function) for each period according to set_sol 
    [all_index] = find_index(Efft,num_period,set_sol);      
     
    m = size(all_index,1); 
    n = size(set_sol,1); 
    k = n-m+1; 
     
    for i = 1 : m 
         
        % pick a Efft among all Efft         
        [index,res] = pick_index(all_index,i,k,set_sol,b,num_period);  
         
        % Solve Single DP for each Efft from pick_index         
        [solut ion,f_state,state_var]=SDP(res,index,num_period);  
         
        % Make index for each solution from SDP         
        [dp_index,sol,period_sol] = comp_dp_index(solution,f_state, state_var,  
                                                        num_period,L,set_sol,k);                 
        L = dp_index; 
        dp_index = []; 
        set_sol = sol;  
        sol = []; 
        sol_for_dom{i} = period_sol;% sol_for_dom is for dominance test 
         
        % Dominace Test 
        if num_period ~= 1 
            [set_sol,red_L,L] = dominance_test(num_period, 
                                              sol_for_dom,set_sol,red_L,L);    
        end 
        k = k + 1; 
    end   
    index = [];   
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    sol_for_dom = []; period_sol=[];     
    
   % Bounding Test % 
    if num_period ~= 7 
        [net_sol,temp_Adj,temp_ini_Efft,res] = remain_prob(set_sol,num_period) 
         
        n = size (net_sol,1); 
        for ind = 1 : n 
            [max_lb, min_ub] =     
            subgradient(temp_Adj,temp_ini_Efft,re s,net_sol,ind,num_period); 
            temp_lb(ind) = max_lb + net_sol{ind,3}; 
            temp_ub(ind) = min_ub + net_sol{ind,3}; 
        end 
        temp_Adj = []; temp_ini_Efft = []; 
         
        % Fathom and find elements of L that must be reduced % 
        n = size(temp_ub,2); 
        kk = 1; 
        for ind = n : -1 : 1 
            if temp_ub(ind) < Incumb;  
                temp_ub(ind) = []; 
                temp_lb(ind) = []; 
                red_L(kk,:) = net_sol{ind,1}; 
                kk = kk + 1; 
                m = size(set_sol,1); 
                for j = m :-1: 2 
                    if set_sol{j,1} == net_sol{ind,1} 
                        set_sol(j,:) = []; 
                    end 
                end 
            end 
        end 
        net_sol = []; 
         
        max(temp_lb); 
        max(temp_ub); 
        if Incumb < max(temp_lb) 
            Incumb = max(temp_lb); 
        end 
        if UB > max(temp_ub) 
            UB = max(temp_ub) 
        end 
 
        %terminatioin rule% 
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        if (UB-Incumb)/UB < .02 
            cpu_end = cputime; 
            execute_time = cpu_end-cpu_start; 
            finishsav; 
            exit; 
        end 
         
        % Reduce elements of L from L 
        m = size(red_L,1); 
        for j = 1 : m 
            n = size(L,1); 
            for jj = n : -1 : 1 
                if  red_L(j,:) == L(jj,:) 
                    L(jj,:) = []; 
                end 
            end 
        end 
        red_L = []; 
        temp_lb = []; temp_ub = []; 
    end 
end 
 

* :  Bold texts represent functions. 
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APPENDIX B      

 

DATA GENERATION PROCEDURE 

 

 

B.1. Measure of Pavement Quality 

 

Present serviceability index (PSI) is a measure of pavement surface roughness or 

riding comfort. It is measured on a scale between 0 and 5, with 5 being a perfectly 

smooth ride. PSI can be estimated for a pavement section (see Table B.1). In reality, new 

pavement has a PSI of 4.2 to 4.5. At the point where the pavement cannot perform in a 

serviceable manner, the index drops to between 2.0 to 2.5.  Local roads have a terminal 

serviceability index (TSI) of around 2.0, while highways such as interstates and principal 

arterials have a TSI of 2.5 to 3.0. In this dissertation, it is assumed that pavement 

sections are usable until the index reaches a value of 2.5. 

 

 

Table B.1. Present Serviceability Index 

PSI Pavement Quality Condition 
5 ~ 4 Very Good 
4 ~ 3 Good 
3 ~ 2 Fair 
2 ~ 1 Bad 
1 ~ 0 Very Bad 

 

 

B.2. Pavement Quality Prediction 

 
In this section, results found in Butt, A. et al. (1987) are summarized. A pavement 

performance curve is a relationship between pavement quality and pavement age, which 
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reflects the deterioration and level of service of a pavement section. These curves can be 

used to estimate the remaining service life of a pavement section as well as to estimate a 

measure of effectiveness of a pavement improvement activity. Two approaches are 

generally used for obtaining the curves. 

The statistical approach describes the average behavior of pavement sections using 

regression functions. However, when the regression function is used to predict service 

life, it is hard to obtain the service life for individual pavement sections that currently 

have a different condition rating in the same age. The Markov chain approach reflects 

the stochastic nature of individual changes in condition rating and service life. In this 

dissertation, the Markov chain approach was used to predict the future pavement quality 

of sample pavement sections 

The Markov chain is based on a definition of the state of pavement quality and the 

probability of pavement quality from one state to another. The assumption that the 

pavement condition rating does not drop more than one in a single year is generally 

made. Thus, the pavement will either stay in its current state or move to the next lower 

state in one year. Figure B.1 shows the schematic representation of condition state, 

pavement quality, and the transition probability matrix for a particular pavement section. 

The transition probability matrix has a diagonal structure, where pi is the probability that 

a pavement in condition state i will remain in that condition state after one year and qi = 

1-pi. Since a pavement section is considered to be usable until its pavement quality 

reaches 2, a state of 1 is defined to represent an absorbing state. The pavement condition 

cannot transit from this state unless repairs are performed.  
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Figure B.1. Diagram of pavement quality, condition state, probabilities 

 

                     

Pavement condition state at any period t can be represented by a state vector S(t). 

This is a vector of probabilities that a pavement section will be one state at the beginning 

of period t. The state vector for any period t, S(t) is obtained by multiplying the initial 

state vector S(0) by the  transition probability matrix Pi for pavement section i raised to 

the power of t. Thus, 

 

S(1) = S(0) * Pi 

S(2) = S(1) * Pi = S(0) * Pi
2  

  

S(t) = S(t-1) * Pi = S(0) * Pi
t 

 

Using this state vector and the Markov transition probabilities, the future cond ition of 

the road at any time t can be predicted. 

 

B.3. Generation of a Set of Standardized M & R Treatment Alternatives 

 
An improvement activity is selected to correct any identified deficiencies using the 

optimization methodology developed in this dissertation. For the application, a set of 

five standardized pavement M & R treatment strategies has been developed for use in 
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the network optimization. As shown in Figure B.2, these five M & R treatment strategies 

are: (1) Do Nothing; (2) Minor Maintenance; (3) Major Maintenance; (4) Rehabilitation; 

and (5) Reconstruction. Each of the five treatment strategies is defined by pavement 

maintenance action, work content, unit cost and treatment effect on the existing 

pavement.   

The minimum level of PSI for all the pavements in the network was chosen to be 2.5. 

The unit cost for each of the five treatments is based on the information of average 

pavement construction and maintenance costs in Texas. In this application, the cost for 

each treatment activity is 0, 6, 60, 125, and 400 dollars per lane mile. 

In addition, the treatment effect of an M & R action on improvement of the existing 

pavement quality is defined in terms of raising the existing pavement PSI up to a certain 

amount. In other words, after implementation of a maintenance action, the PSI will be 

rising to a higher level, depending on which maintenance strategy is selected. For 

instance, if Minor Maintenance is selected for year t, then a rise of 0.5 units of PSI can 

be obtained in that year, and there should be a small jump in that year on the 

performance prediction curves. Alternatively, if a Rehabilitation treatment (i.e., strategy 

4) is selected in year t, then the PSI of the pavement will be increased by 1.5 units in that 

year. Following the PSI jump point, where a treatment action is applied, a new 

deterioration model, which reflects the improved pavement structure by the treatment, 

should be established to predict the pavement deterioration in year t+1. The procedure is 

repeated in each consecutive year until the entire analysis period is completed for the 

integrated performance prediction. 
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Evaluation of Existing Pavement Conditions and Determination of Feasible
Pavement M&R Alternatives for Network Preservation Actions

Development of A Set of Asphalt Pavement M&R
Treatment Strategies for the Network Optimization System

(2)
Minor

Maintenance

(3)
Major

Maintenance

(1)
Do Nothing

(4)
Rehabilitation

(5)
Reconstruction

Requirements and Specifications for Each M&R Strategy Design and Implementation

� Crack Sealing
� Joint Sealing
� Surface Sealing

� Concrete Pavement
Restoration

� Thin Asphalt
Overlay

� Patching
� Mill and Thick

Asphalt Overlay

� Concrete Overlay
� Remove Asphalt

Surface
� Replace and Rework

Base

Unit Cost and Treatment Effect of Each Implemented M&R Action on the Existing
Pavement

Rise of the Existing PSI
by 0.5 Units
Unit Cost: $ 6/lane mile

Rise of the Existing PSI
by 1.0 Units
Unit Cost: $60/lane mile

Rise of the Existing PSI
by 1.5 Units
Unit Cost: $125/lane mile

Rise of the Existing PSI
by 2.0 Units
Unit Cost: $400/lane mile

 

Figure B.2. Generation of Five Standardized Asphalt M & R Treatment Strategies 
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B.4. Effectiveness of Improvement Activities 

 
The effectiveness measure of pavement improvement activities can be used as the 

objective criterion. As described in Section B.2, performance curves are obtained by a 

Markov chain approach. A pavement improvement activity moves up the performance 

curves and extends the remaining service life of improved pavement. The objective 

function value for an M & R strategy set applied to a particular pavement section is 

determined from the pavement quality level curves in the following manners. Suppose 

an M & R strategy set for a pavement section is as shown in Table B.2. (Note: 

alternative 1 is a ‘do nothing’ and all other strategy numbers correspond to the different 

M & R alternatives) 

 

 

Table B.2. An M & R Strategy for a Particular Pavement Section 

Period 1 2 3 4 5 6 7 8 9 10 
M & R 
Strategy 1 1 1 1 j 1 1 k 1 1 

 

 

The corresponding pavement quality level curves for this M & R strategy set are 

shown in Figure B.3. As illustrated in Section III.2, M represents the  maximum 

pavement quality level, m the  minimum pavement quality level, and s the serviceable 

pavement quality level such that if the pavement quality level is above this level in any 

time period t, then pavement section i is not considered for maintenance in that particular 

period t.  

The objective function value, called the total effectiveness for a given M & R 

strategy set, is the sum of areas in the corresponding pavement quality level curves for 

the given M & R strategy set. For example, the objective function coefficient for a 

strategy ‘j’ in period 5, eij5, is the area under the pavement quality level curve in period 5 

(the shaded area in Figure B.3). It is assumed that a pavement quality level curve is 
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linear piecewise. As an illustration, suppose that the pavement quality level at the 

beginning of period 5 is 3.75 and transition probability matrix for the pavement section 

is P1 given in the example in section IV.2. Then the pavement quality level at the end of 

period 5 (3.725) is obtained by multiplying the state vector corresponding to the 

pavement quality level at the beginning of period 5,  [0 0 1 0 0 0], and transition 

probability matrix P1 and taking the expectation of the resulting state vector. Therefore, 

the objective function coefficient for a strategy ‘j’ in period 5, eij5, is 3.7325, the area 

under the pavement quality level curve in period 5 (the shaded area in Figure B.3). 

 

 

PQ

m

M

s

2 3 4 5 6 7 8 9 10

Period

1

 

Figure B.3. Pavement Quality Level Curves of an M & R Strategy Set for a Section 
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