
MOTION PLANNING OF MOBILE ROBOT IN DYNAMIC ENVIRONMENT

USING POTENTIAL FIELD AND ROADMAP BASED PLANNER

A Thesis

by

WAQAR AHMAD MALIK

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2003

Major Subject: Mechanical Engineering

MOTION PLANNING OF MOBILE ROBOT IN DYNAMIC ENVIRONMENT

USING POTENTIAL FIELD AND ROADMAP BASED PLANNER

A Thesis

by

WAQAR AHMAD MALIK

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Sooyong Lee
(Chair of Committee)

Darbha Swaroop
(Member)

John E. Hurtado
(Member)

Dennis L. O’Neal
(Head of Department)

August 2003

Major Subject: Mechanical Engineering

iii

ABSTRACT

Motion Planning of Mobile Robot in Dynamic Environment Using Potential Field

and Roadmap Based Planner. (August 2003)

Waqar Ahmad Malik, B.Tech., Indian Institute of Technology, Kharagpur

Chair of Advisory Committee: Dr. Sooyong Lee

Mobile robots are increasingly being used to perform tasks in unknown envi-

ronments. The potential of robots to undertake such tasks lies in their ability to

intelligently and efficiently locate and interact with objects in their environment. My

research focuses on developing algorithms to plan paths for mobile robots in a partially

known environment observed by an overhead camera. The environment consists of

dynamic obstacles and targets. A new methodology, Extrapolated Artificial Potential

Field, is proposed for real time robot path planning. An algorithm for probabilistic

collision detection and avoidance is used to enhance the planner. The aim of the

robot is to select avoidance maneuvers to avoid the dynamic obstacles.

The navigation of a mobile robot in a real-world dynamic environment is a com-

plex and daunting task. Consider the case of a mobile robot working in an office

environment. It has to avoid the static obstacles such as desks, chairs and cupboards

and it also has to consider dynamic obstacles such as humans. In the presence of

dynamic obstacles, the robot has to predict the motion of the obstacles. Humans

inherently have an intuitive motion prediction scheme when planning a path in a

crowded environment. A technique has been developed which predicts the possible

future positions of obstacles. This technique coupled with the generalized Voronoi

diagram enables the robot to safely navigate in a given environment.

iv

To my Mother and Father.

v

ACKNOWLEDGMENTS

I gratefully acknowledge the support, guidance and encouragement that I received

from my advisor, Dr. Sooyong Lee, throughout the course of my studies. He managed

to give me the confidence and the tools necessary to complete this work. I would

like to thank my committee member, Dr. Darbha Swaroop, for his help, advice and

encouragement. I would like to express my gratitude to Dr. John E. Hurtado for his

careful reading of my thesis.

I want to thank Dr. N. K. Anand, the Graduate Program Director, for his support

during my studies at Texas A&M University. He has been kind enough to act as a

substitute in my thesis defense on very short notice.

This work benefited greatly from the interaction with all the members of the

Robotics Laboratory at Texas A&M University. In particular I want to thank

Mr. JaeYong Lee for his contribution in Gaussian estimation and collision avoidance.

Finally, I thank my parents for their love and support. I thank them for giving

me the constant love, encouragement, inspiration and motivation without which this

research would not be possible.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Motivation . 1

B. Previous Work . 2

C. Organization . 5

II THE POTENTIAL FIELD BASED PATH PLANNER 7

A. Introduction . 7

B. The Traditional Artificial Potential Field Method 7

C. The Extrapolated Artificial Potential Field Method 9

III PROBABILISTIC COLLISION PREDICTION AND AVOID-

ANCE METHOD . 13

A. Introduction . 13

B. Collision Alarms . 13

C. Collision Probability . 15

D. Path Update . 22

IV TIME OPTIMAL MOTION . 24

A. Introduction . 24

B. Description of Trajectory 24

C. Kinematic and Actuators Constraints 25

D. Dynamic Constraints . 26

E. Generation of Time-Optimal Velocity Profile along the

Trajectory . 27

V THE ROADMAP BASED PLANNER 31

A. Introduction . 31

B. Representation of the Environment 31

C. The Generalized Voronoi Diagram 32

D. Prediction of Obstacle’s Position 34

E. Cost Function for Trajectory Generation 36

F. Trajectory Generation . 39

1. Absence of Dynamic Obstacles 39

vii

CHAPTER Page

2. Presence of Dynamic Obstacles 43

VI EXPERIMENTAL AND SIMULATION RESULTS 44

A. Experimental Setup . 44

B. Visual Sensing . 46

1. Setup and Theory . 46

2. Image Processing Results 49

C. Planner Scheme . 49

1. Dynamic Obstacles and Dynamic Target 49

2. Dynamic Obstacles and Static Target 51

D. Experimental Results . 52

E. Simulation Result for Roadmap Based Planner 55

VII CONCLUSION . 59

A. Summary . 59

B. Future Work . 59

REFERENCES . 60

APPENDIX A . 65

APPENDIX B . 71

VITA . 76

viii

LIST OF TABLES

TABLE Page

I Conditions for collision alarm #2 . 14

II Pc values in Fig. 12 . 21

III Algorithm for prediction of obstacle’s position 35

IV Modified Dijkstra’s algorithm . 43

ix

LIST OF FIGURES

FIGURE Page

1 Resultant direction of motion in traditional potential field 10

2 Resultant direction of motion in extrapolated potential field 11

3 Comparison between the use of splines and cubic Hermite polynomial 12

4 Condition for alarming . 14

5 Increase of error ellipse . 15

6 Geometry of the ellipses . 16

7 Arbitrary control input for the mobile robot 17

8 Increment of major and minor axis lengths 18

9 Probability density function . 19

10 Collision probability check . 20

11 Examples of collision probability check 21

12 P.D.F. plotting of the examples in Fig. 11 21

13 Path updates . 22

14 Condition for applying path updates 23

15 Kinematic velocity constraints . 25

16 Generation of optimal velocity . 28

17 Complete optimal trajectory . 29

18 Representation of the environment 32

19 Generalized Voronoi diagram . 33

x

FIGURE Page

20 Calculation of dynamic cost . 38

21 Shortest path along Voronoi edges 40

22 Method for path update . 41

23 Shortest path by drawing circles at the nodes 42

24 Overview of the experiment . 45

25 A video image and its color probability image 49

26 Flowchart of planner for dynamic obstacles and dynamic target . . . 50

27 Flowchart of planner for dynamic obstacles and static target 51

28 Snapshots of the experiment (in sequence) 52

29 Environment for the Roadmap based planner 55

30 Robot path in absence of dynamic obstacles 56

31 Simulation result: Case 1 (in sequence) 57

32 Simulation result: Case 2 (in sequence) 58

33 Ellipse parameters . 68

34 Kinematic model of a differential drive robot 71

1

CHAPTER I

INTRODUCTION

A. Motivation

The common environments where robots are used can be categorized as dynamic or

time varying. In these environments, there are several moving objects. Common

examples of these environments will be manufacturing industry with machinery parts

as the moving objects, an office or a museum where the moving objects will be humans

or a road-system where the moving objects will be the vehicles. The robot has to

negotiate and avoid these obstacles while moving towards its destination.

If mobile robots are to be used to solve various problems, it is necessary that

they be able to autonomously compute a safe trajectory. Mobile robots have been

used as museum guides and office assistants. They have also been used for search and

rescue operations and for exploration of hazardous environments. For these systems

it becomes important that the robot finds an autonomous path with least chance of

collision with any objects and humans. While navigating in a crowded environment,

a dynamic obstacle can block the path of the robot. The robot has to stop its motion

until the obstacle moves away. To plan a successful path, the robot has to make

predictions about the motion of the obstacle and change its path before it faces this

situation.

Motion planning in an environment containing moving obstacles is difficult and

computationally intensive, since it requires simultaneously solving the path planning

and the velocity planning problems. The robot path planning problem can be stated

as the computation of collision free paths between two locations in an environment

The journal model is IEEE Transactions on Automatic Control.

2

containing obstacles. Velocity planning consists of computing the velocity profile

along a given path that minimizes motion time or energy and satisfies system dynam-

ics and actuator limits.

The following section surveys the previous work related to this research. The

last section presents the outline of the following chapters.

B. Previous Work

There are many difficulties associated with enabling the robot to see and interact with

its environment. The robot has to recognize the objects around it and also has to

identify them as obstacles and targets. In addition to this information, the robot has

to find its own position and orientation to enable it to make intelligent decisions so

as to solve the path planning problem. This problem of localization of mobile robots

is an active research field and many techniques using laser range finders [1], sonar

range finders, ultrasonic sensors [2], infrared sensors, dead reckoning [3], GPS and

vision sensors have been used. In vision based sensing, the camera can be on-board

or off-board. A network of cameras has also been used, providing a larger field of

view and data fusion over space and time. This research uses a single overhead sensor

placement. Such systems have been used in robot soccer competitions. Overhead

camera placement is convenient for visual tracking because all objects are currently

in view. Another great advantage of overhead camera is the self localization of the

robot. There is no need for a separate localization algorithm.

After finding the position of robot and a description of its working environment,

the robot path planning problem is solved. The robot path planning problem can

be stated as the computation of collision free paths between two locations in an

environment containing obstacles. Various collision free path planning algorithms

3

have been proposed in [4], [5]. The simplest case is of one robot present in a static

and known environment which has to be moved from its current position to a final

goal position. This thesis deals with an environment consisting of multiple, dynamic

obstacles and a dynamic target.

The potential field method has been used extensively for mobile robot path

planning in the last two decades:[6], [7]. The basic concept of the potential field

approach is to compute a artificial potential field in which the robot is attracted to

the target and repulsed from the obstacles [8]. The artificial potential field is used due

to its computational simplicity. In [9], the mobile robot applies a force generated by

the artificial potential field as the control input to its driving system. Potential field

method for path planning has some limitations [10], namely, local minima, oscillations

in the presence of obstacles, absence of passage between closely spaced obstacles and

oscillations in narrow passages. There also exists a problem of goal non-reachability

with obstacles nearby [11]. A hydrodynamic potential field has been utilized in [12]

to guide a mobile robot towards the goal while avoiding obstacles. The workspace of

the robot is compared with a flow field, with the path corresponding to a streamline.

A potential field method for non-spherical body which simulates steady-state heat

transfer with variable thermal conductivity has been proposed in [13].

This research extends the artificial potential approach to the case of dynamic

motion planning. Future estimated positions of the obstacles also add to the repul-

sive potential, thus providing a path which considers the effect of dynamic obstacle.

Future estimated position of the obstacles will have an uncertainty associated with

it. Miura et al. [14] considers uncertainty only in linear velocity of the obstacles,

thus giving rise to a one-dimensional probability distribution. In [15], the planner

predicts future motion of obstacles by assuming that they will continue to move at

the current velocity, and plans the next best action in space-time. Fiorini and Shiller

4

[16] used the concept of linear velocity obstacles for local motion planning. [17], [18]

formulated a statistical estimation technique which generated the error ellipse based

on the Gaussian probability distribution. These ellipses are used in estimating future

robot position when the path is predefined.

Motion planning is important in the operation of autonomous robots. Simulta-

neous solution of the path planning and the velocity planning problems are required.

The environment could be completely known (when the trajectory of the obstacles

are known) or partially known (when obstacle trajectory is unknown or information

about it is incomplete). In our case we have multiple, dynamic obstacles in a par-

tially known environment. Due to the uncertain nature of the environment, a solution

computed at time t0 may be infeasible at a later time [19].

The geometric path calculated in the path planner does not contain any timing

information but includes only spatial positions. Motion planning in dynamic envi-

ronments was originally addressed by adding the time dimension to the robot’s con-

figuration space, assuming bounded velocities and known trajectories of the obstacles

[20], [21], [22]. Reif and Sharir [20] solved the problem by searching a visibility graph

[8]. Kant and Zucker [23] proposed that the avoidance of the moving obstacles can

be done by adjusting the speed along the geometric path. Lee and Lee [24] developed

a similar approach for two cooperating robots, and compared the effects of delay and

velocity reduction on motion time. Fraichard [25] considered acceleration bounds and

used a search in a state-time space to compute a velocity profile yielding a minimum-

time trajectory. Reister and Pin [26], Renaud and Fourquet [27] and Yamamoto et al

[28] solved the problem to find the time-optimal motion of two independently driven

wheels type robots. Pledel and Bestaoui [29] found an optimal motion problem sub-

ject to various actuator constraints while the motion is constrained to an arbitrary

path. Fiorini and Shiller [16] proposed a planning method based on velocity obstacles,

5

which maps the dynamic environment into the robot velocity space.

When the environment becomes more complex, such as presence of narrow paths,

the potential field method of robot navigation is not so effective. In such a case

roadmap based method is better to implement. An example of a roadmap based

method is the generalized Voronoi diagram, the locus of points equidistant to two

or more obstacles. The generalized Voronoi diagram is an extension of the Voronoi

diagram, the set of points equidistant to two or more points in the plane. Generalized

Voronoi diagrams have long been used as a basis for motion planning algorithms

[30], [31]. The Generalized Voronoi diagrams has been used to guide the potential

field planner in [32]. By following the boundary of a Voronoi cell, the robot will be

guaranteed to remain at a maximum clearance from the obstacles enabling the robot

to move in narrow pathways.

C. Organization

The thesis first discusses about the new Extrapolated Potential Field method for

the trajectory generation of a mobile robot in the presence of dynamic obstacles

and dynamic target. Comparison is made with the traditional artificial potential

method. The chapter following that talks about probabilistic collision prediction and

avoidance. Conditions for collision alarms are stated and error ellipses’ for the mobile

robot and the obstacles are generated and the combined probability distribution is

found. Various kinematic and dynamic constraints of a differential-drive mobile robot

are discussed and a velocity planning scheme is presented.

The problem of a mobile robot navigating in a cluttered environment is discussed

next. This is solved with the generalized Voronoi diagram. Method for improvement

in the Voronoi path is discussed. Method for long-term prediction of obstacle’s posi-

6

tion is developed and planning in the presence of dynamic obstacles is considered.

The last chapter provides an overview of the experimental setup and provides

the experimental and simulation results.

7

CHAPTER II

THE POTENTIAL FIELD BASED PATH PLANNER

A. Introduction

The potential field approach has been used extensively for mobile robot path planning.

This method has been used by researchers because of its ability to find an elegant

solution and its mathematical and computational simplicity. Although many form of

potentials have been studied, the concept behind them is relatively simple. The basic

concept of the potential field method is to fill the workspace with an artificial potential

field in which the goal exerts an attractive force on the robot and every obstacle

exerts a repulsive force. The vector sum of all forces give the resultant direction and

speed of the robot’s motion at any given position. Potential field method for path

planning has some limitations, namely, local minima, oscillations in the presence

of obstacles, absence of passage between closely spaced obstacles and oscillations in

narrow passages.

B. The Traditional Artificial Potential Field Method

In the traditional artificial potential field methods, an obstacle is considered as a

point of highest potential, and a goal as a point of lowest potential. The mobile

robot always moves from a high potential point to a low potential point. The robot is

assumed to be a point mass and moves in a two-dimensional workspace. Its position

in the workspace is denoted by q = [x y]T . The most commonly used attractive

potential has the form, [8] [4] [10]

Uatt(q) =
1

2
ξρm(q,qgoal) (2.1)

8

where ξ is a positive scaling factor, ρ(q,qgoal) = ‖qgoal − q‖ is the distance between

the body q and the goal qgoal, and m=1 or 2.

For m=1, the attractive potential is conic in shape and the resulting attractive

force has constant amplitude except at the goal where its the potential is singular.

For m=2, the attractive potential is parabolic in shape. The corresponding attractive

force is given by the negative gradient of the attractive potential

Fatt(q) = −∇qUatt(q) = ξρ(qgoal − q) (2.2)

which converges linearly towards zero as the robot approaches the goal.

The commonly used repulsive potential function has the form:

Urep(q) =






1
2
η

(
1

ρ(q,qobs)
− 1

ρo

)2
, if ρ(q,qobs) ≤ ρo

0, if ρ(q,qobs) > ρo

(2.3)

where η is a positive scaling factor, ρ(q,qobs) denotes the distance from the robot q

to the obstacle, qobsdenotes the position of the obstacle, and ρo is a positive constant

denoting the distance of influence of the obstacle.

The corresponding repulsive force is given by

Frep(q) = −∇qUrep(q)

=






η
(

1
ρ(q,qobs)

− 1
ρo

)
×

1
ρ2(q,qobs)

∇qρ(q,qobs), if ρ(q,qobs) ≤ ρo

0, if ρ(q,qobs) > ρo

(2.4)

The total force applied to the robot is the sum of the attractive force and the

repulsive force

Ftotal = Fatt + Frep (2.5)

The mobile robot in this traditional potential field approach moves in the direc-

9

tion of this resultant force as in Eq. 2.6.

q̇ = −∇q(Uatt(q) + Urep(q)) (2.6)

C. The Extrapolated Artificial Potential Field Method

The traditional artificial method works well for static obstacles. This method does

not incorporate any mechanism for dynamic obstacles. In a dynamic environment

the path generated through the traditional approach will be safe but not logical. In

order to find a better path in a dynamic environment, a new method named the

Extrapolated Artificial Potential Field is proposed.

New potential functions for the obstacle and goal are proposed which take into

consideration the extrapolated positions for the obstacles and the goal. The path

of minimum potential which is generated thus considers the dynamic nature of the

obstacles and goal.

The attractive potential is given by

Uatt(q) =
n∑

j=0

1

2
ξjρ

m(q,qgoal(j)), if ρ(q,qgoal(0)) ≥ ρg (2.7)

=
1

2
ξ0ρ

m(q,qgoal(0)), if ρ(q,qgoal(0)) < ρg

where n is the number of extrapolated images of the goal, ξ0 is the positive scaling

factor for the attractive potential of the goal and ξ1, ξ2, . . . , ξn are the positive

scaling factor for the attractive potential for each extrapolated image of the goal,

which becomes smaller as n increases, qgoal(0) is the present position of the goal and

qgoal(1), qgoal(2), . . . , qgoal(n) are extrapolated position of the goal. When the robot is

far away from the goal, it considers the future positions of the goal in planning its

path. When it is near the goal (qgoal(0)) < ρg) it does not consider the future goal

10

Obstacle

Goal

Robot

F

Attractive force

Repulsive
force

res

VgoV

Fig. 1. Resultant direction of motion in traditional potential field

positions. This enables it to reach the goal exactly.

The repulsive potential is given by

Urep(q) =
n∑

j=0

1

2
flag × ηj

(
1

ρ(q,qobs(j))
− 1

ρo

)2

(2.8)

flag =






1, if probability of collision > Pthreshold

0, if probability of collision < Pthreshold

where n is the number of extrapolated images of the obstacle, η0 is the positive

scaling factor for the repulsive potential of the obstacle and η1, η2, . . . , ηn are the

positive scaling factor for the repulsive potential for each extrapolated image of the

obstacle, qobs(0) is the present position of the obstacle and qobs(1), qobs(2), . . . , qobs(n)

are extrapolated position of the obstacles. Pthreshhold is the thresh-hold value of the

probability of collision.

There will be the existence of the local minima. However, as the environment

11

Fig. 2. Resultant direction of motion in extrapolated potential field

is dynamic, i.e. the obstacles and goal are continuously moving, we do not have to

worry about the local minima as the mobile robot will not get stuck in the local

minima. The mobile robot will stop its motion for that time instance and in the next

time step the robot is given the appropriate motion command.

Fig. 1 and Fig. 2 show direction in which the robot moves using the traditional

potential field approach and the extrapolated potential field approach respectively.

The dotted circles in Fig. 2 depicts the extrapolated position of the obstacles and

goal. The traditional potential field approach neglects the dynamic nature of the

obstacles and goal.

The future positions of the obstacles and the target are predicted by using the

history of past motion of the obstacles and targets respectively. The extrapolation is

done by using piecewise cubic Hermite polynomial. Given a list of previous locations

of the obstacle, future locations can be extrapolated.

12

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

data
pchip
spline

Fig. 3. Comparison between the use of splines and cubic Hermite polynomial

On each subinterval tk ≤ t ≤ tk+1, P(t) is the cubic Hermite polynomial

to the given values and certain slopes at the two endpoints. P(t) interpolates x,

i.e., P(tj) = xj, and the first derivative Ṗ(t) is continuous. P̈(t) is probably not

continuous; there may be jumps at the tj. The slopes at the tj are chosen in such a

way that P(t) preserves the shape of the data and respects monotonicity. This means

that, on intervals where the data are monotonic, so is P(t); at points where the data

has a local extremum, so does P(t).

The extrapolated values of qobs is thus found.

The method of splines also constructs the function S(t) in almost the same way

as P(t) . However, spline chooses the slopes at the tj differently, namely to make even

S̈(t) continuous. The effects of the two method can be seen in Fig. 3. Cubic Hermite

polynomial has no overshoots and less oscillation if the data are not smooth. Either

the cubic Hermite polynomial or the method of splines can be used for extrapolation

purposes depending on the nature of motion of the obstacle and direction.

13

CHAPTER III

PROBABILISTIC COLLISION PREDICTION AND AVOIDANCE METHOD

A. Introduction

Based on the extrapolated artificial potential field we get a predetermined path for

the mobile robot, which is a feasible solution at that given time. In a static en-

vironment, this solution will hold. In a dynamic environment, this trajectory may

lead to collision. This is because the position of the obstacles and/or target keep

changing. It is not necessary to calculate the repulsive potential due to the obstacles

if the obstacle and the robot are not on a collision course. Smith et al. [17] and

Durrant-White [18] formulated statistical estimation techniques using the Gaussian

probability distribution. They generated the so called error ellipse, which depicts

the uncertainty in the estimated position. These ellipses are used in estimating the

robot’s and the obstacles’ positions

B. Collision Alarms

Before calculating the probability of collision, there needs to be an estimate of whether

the robot and the obstacle are moving towards a possible collision. This is done by

comparing the distance between the robot and the obstacles periodically. Comparison

of the velocities of the robot and the obstacles is used to check the possibility of

collision.

Collision Alarm #1 If the distance between mobile robot and moving obstacle

at a given time tc is less then predefined safety distance (ds), which means |−→RO| < ds

in Fig. 4, first collision alarm is made.

Collision Alarm #2 If the collision alarm #1 is caused, then the predictor

14

R

O

VR

VO

Predefined Robot Path

Fig. 4. Condition for alarming

examines the mobile robot’s and obstacles’ velocity and decides whether second alarm

should be made or not. As shown in Fig. 4, O and R are the obstacle position and

mobile robot position, respectively in the workspace at a given time tc. Vo represents

the velocity of the obstacle and Vr is the velocity of the robot.
−→
RO implies the vector

from R to O and define ê as its unit vector. Then inspection for the second alarming

is made by categorizing into the following possible cases (Table I).

Table I. Conditions for collision alarm #2

Situation Result

sign (Vo · ê) < 0 and sign (Vr · ê) > 0 and

sign (Vo × ê) = sign (Vr × ê))
Alarm

sign (Vo · ê) > 0 and sign (Vr · ê) > 0 and |Vr| > |Vo| and

((cos−1(Vo · ê) > (cos−1(Vr · ê))
Alarm

sign (Vo · ê) < 0 and sign (Vr · ê) < 0 and |Vr| < |Vo| and

((cos−1(Vo · ê) < (cos−1(Vr · ê))
Alarm

In all other cases No Alarm

15

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Robot
Movement

Obstacle
Movement

Fig. 5. Increase of error ellipse

C. Collision Probability

When both the alarm #1 and alarm #2 occur, the need arises to find the probability

of collision. Based on this probability of collision, decision about necessary maneuver

for obstacle avoidance is taken.

Based on the predetermined mobile robot path and obstacle information from

sensors, collision probability at a certain time is made. The determination of whether

the probability of observing the object is greater than a given threshold assumes that

the probability distribution of our knowledge of the object’s location is a multi variate

(x, y, θ) Gaussian distribution. The contours of equal probability of this distribution

16

form ellipses that are centered at the mean location at any time instant.

The probability of collision is calculated by comparing predicted probability of

the common regions of the ellipses (of a given confidence level) of the mobile robot

and obstacles at future time te. However, the errors for mobile robot and obstacles

increase as the moving objects travel, shown in Fig. 5. Fig. 6 shows the error ellipse

(of a given confidence level) formed by the mobile robot and an obstacle. The shaded

region shows the common region.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

X (m)

Y
 (

m
)

Error ellipse
for mobile robot

Error ellipse
for obstacle

ar

br

bo ao

Fig. 6. Geometry of the ellipses

For the error ellipse of mobile robot, major axis length (ar) and minor axis length

(br) are both proportional to the velocity command and the angle changes for each

future time step . In case of obstacle, past data sets are used to determine its mean

17

velocity. These can be summarized as follow:

ar =
m∑

i=0

{(|vri| × α11) + (|∆θri| × α12)} (3.1)

br =
m∑

i=0

{(|vri| × α21) + (|∆θri| × α22)} (3.2)

ao =
n∑

j=1

{(|voj| × β11) + (|∆θoj| × β12)} (3.3)

bo =
n∑

j=1

{(|voj| × β21) + (|∆θoj| × β22)} (3.4)

where m is the number of future steps when the possibility check is made for the

mobile robot, and n is the number of past data required to calculate the mean velocity

of the obstacle. αij and βij depends on the errors which are introduced due to factors,

such as, interaction between the surface and the robot’s wheel, slip, odometric errors

and errors in implementing a given velocity command. Fig. 8 shows the evolution of

the major and minor axes of the mobile robot for the inputs shown in Fig. 7.

0 200 400 600 800 1000

0

0.1

0.2

0.3

Sampling time (msec)

ve
lo

ci
ty

 (
m

/s
)

(a) Velocity command

0 200 400 600 800 1000
1

2

3

Sampling time (msec)

O
rie

nt
at

io
n

(r
ad

)

(b) Orientation input

Fig. 7. Arbitrary control input for the mobile robot

Assuming the robot’s and obstacles’ positional errors are following the gaussian

18

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sampling time (msec)

M
ag

ni
tu

de
 (

m
)

half major axis length

half minor axis length

Fig. 8. Increment of major and minor axis lengths

distribution, the position profile of the moving objects can be described by:

Pr(xr) =
1

2π
√

σ2
xrσ

2
yr(1 − ρ2

r)
e
−

1

2(1−ρ2
r)

[
(xr−µxr)2

σ2
xr

+
2ρr(xr−µxr)(yr−µyr)

σxrσyr
+

(yr−µyr)2

σ2
yr

]

(3.5)

for the mobile robot and

Po(xo) =
1

2π
√

σ2
xoσ

2
yo(1 − ρ2

o)
e
−

1

2(1−ρ2
o)

[
(xo−µxo)2

σ2
xo

+
2ρo(xo−µxo)(yo−µyo)

σxoσyo
+

(yo−µyo)2

σ2
yo

]

(3.6)

for the obstacle. ρr is the correlation coefficient for xr and yr. µxr and µyr are

nominal mean values for xr and yr, respectively. ρo is the correlation coefficient for

xo and yo. µxo and µyo are nominal mean values for xo and yo, respectively. xr

represents the mobile robot coordinates inside the robot’s ellipse boundary at te and

19

4

5

6

7

8

6

7

8

9

10
0

0.2

0.4

0.6

0.8

1

X axis [m]Y axis [m]

Fig. 9. Probability density function

xo represents the coordinates of the obstacle inside the obstacle’s ellipse boundary at

the corresponding time.

Given the estimates of the ellipse major and minor axes (Eq. 3.1–3.4) and the

orientation, it is possible to derive the probability density function parameters as

shown in Appendix A.

If we define A as the set of coordinates where the mobile robot and the obstacle

are in the common area of the two ellipses, then the probability of location of the

robot and the obstacle in the area will be presented as:

Pcr =
∫

A

Pr(xr, yr)dA, {(xr, yr)|(xr, yr) ∈ A} (3.7)

Pco =
∫

A

Po(xo, yo)dA, {(xo, yo)|(xo, yo) ∈ A}, (3.8)

where Pcr denotes the probability that the mobile robot will be inside the intersection

20

in Fig. 9 and Fig. 6. Pco implies the probability of the obstacle being inside the same

area. Then the collision probability Pc can be computed by Pc = Pcr

⋂
Pco as in

Fig. 10.

4

5

6

7

8

6

7

8

9
10

0

0.2

0.4

0.6

0.8

1

Y axis [m] X axis [m]

Fig. 10. Collision probability check

Fig. 11 show some example cases of collision check. Fig. 12 is the probability

density function (p.d.f.) plotting for each case of the example cases and the numerical

values of those probabilities are shown in Table II. Because the probability distribu-

tion is not uniform over the ellipse, the size of the common area does not directly

represent the probability of collision. Pc increases as the common area get near to

the centers of the two ellipses.

21

−6 −2 2 6
−6

−2

2

6

X (m)

Y
 (

m
)

(a) example 1

−6 −2 2 6
−6

−2

2

6

X (m)

Y
 (

m
)

(b) example 2

−6 −2 2 6
−6

−2

2

6

X (m)

Y
 (

m
)

(c) example 3

Fig. 11. Examples of collision probability check

−4

0

4 −4

0

4

0

0.1

0.2

X (m) Y (m)

(a) example 1

−4

0

4 −4

0

4

0

0.06

0.12

Y (m)X (m)

(b) example 2

−4

0

4 −4

0

4

0

0.02

0.04

Y (m)X (m)

(c) example 3

Fig. 12. P.D.F. plotting of the examples in Fig. 11

Table II. Pc values in Fig. 12

Examples Pcr Pco Pc

example 1 0.8909 0.8909 0.6274

example 2 0.8503 0.6791 0.3876

example 3 0.2439 0.2439 0.0857

22

D. Path Update

The obstacle path is estimated from data set obtained by the image processing pro-

gram. Collision check and robot path regeneration are made based on the collision

probability information.

If the probability of collision between the robot and the obstacle is less than

some threshold value, the repulsive potential due to that obstacle is not calculated.

When the target is static, it is not necessary to replan the path at each time step.

The velocity of the robot can be changed along the path to avoid collision with the

obstacles.

The original path is updated with collision probability check. If it is highly likely

to have collision, i.e. having a probability larger than a certain value, the navigator

replans the path to avoid collision. Three ways to avoid the possible collision are

X

Y
Robot Path

Obstacle Path

tc
R2(tc)

R3(tc)

R1(tc)

Path Change

Fig. 13. Path updates

considered (Fig. 13). Let us denote tc at the possible time of collision. The first

way is to increase the robot velocity, so that the robot is located at R1 at time tc.

The second one is to reduce the mobile robot velocity so that the mobile robot can

23

be located at R2 at time tc. Finally, the path itself can be modified to avoid the

collision with obstacle. In this case, the mobile robot is expected to be R3 at time tc.

There exist two constraints in considering the collision avoidance. The first one is the

maximum velocity of the mobile robot, and the second one is the total travel time.

The first constraint can be applied to the first case of possible collision avoidance

strategy. The second one is for the second case of the strategies.

The decision for the different path updates is taken based on the position of

the maximum probability of the collision. Fig. 14 shows the different scenarios. If

the maximum probability occurs in the central shaded circle, then the path needs

to be modified. The maximum probability cannot occur in regions 2 and 4. If the

maximum probability occurs in region 3, then the robot velocity should be reduced

i.e. the robot should allow the obstacle to pass. If the maximum probability occurs

in region 1, then the robot velocity should be increased.

X

Y

1

23

4

Fig. 14. Condition for applying path updates

24

CHAPTER IV

TIME OPTIMAL MOTION

A. Introduction

The potential field approach and the roadmap based approach provides a collision

free path for the robot. The trajectory generated will be optimal based on some

cost function. The generation of these trajectories did not consider the kinematic

and dynamic constraints of the mobile robot. This chapter discusses the different

kinematic, dynamic and actuator constraints and provides a strategy for time-optimal

velocity planning along the given trajectory.

B. Description of Trajectory

The path obtained by the potential field approach and the roadmap based approach

describes the robot motion in space. This path is not obtained as an analytical

function. It is specified as a finite number of points. An analytical expression for

this path is found by using a curve fitting technique which ensures that the curve

obtained is atleast C2 smooth. The path is a function of x, y, θ where x, y is the

position of the robot and θ is the orientation. The path is then represented as a

parameterized curve r = r(s), s is a scalar “path parameter”. It is defined as length

along a specified robot’s path. The trajectory is obtained from the path by specifying

the “path parameter” as a function of time. Differentiating the path function twice

we obtain:

ṙ = rsṡ and r̈ = rssṡ2 + rss̈ (4.1)

where rs is the vector tangent to the path and rss is the curvature vector obtained by

differentiating rs with respect to s. The vector tangent, rs is along the orientation of

25

G

Vmax

v 1max

L

O

1/rss

Fig. 15. Kinematic velocity constraints

the robot.

C. Kinematic and Actuators Constraints

The mobile robot is a kinematic mechanism composed of the body and the rolling

wheels. Its kinematics can be modelled based on the assumption that the wheels are

purely rolling. The robot is assumed to move on a flat surface. The length of the axle

is L. The robot has two independently driven wheels. For any segment of the path,

we get constraints on the velocity of the robot.

Mechanical speed, acceleration and deceleration are limited due to the actuator

constraints. The capabilities of each individual actuator driving the two wheels are

limited. These actuator constraints limit the torque applied to each wheel. This limi-

26

tation will also cause a limitation on the wheels speed and acceleration, the maximum

values of which are obtained by making approximations.

• The maximum value of the acceleration (amax) of each individual wheel cannot

be higher than the maximum servomotor’s acceleration.

• The deceleration must be less than the maximum permissible by the electro-

magnetic motor brakes.

The center of gravity is assumed to be in the middle of the wheel axis (point G

in Fig. 15). When the robot moves along a section of the path with curvature rss, we

get a limit on the maximum velocity and acceleration of the center of gravity of the

robot.

v1max =
2Vmax

2 + Lrss

(4.2)

a1max =
2amax

2 + Lrss

(4.3)

where Vmax is the maximum speed of each wheel, amax is the maximum acceler-

ation of each wheel, L is the distance between the two wheels, and v1max and a1max is

the upper limit on the velocity and acceleration of the center of gravity of the robot

due to the kinematic and actuator constraints.

D. Dynamic Constraints

Whenever the robot moves along any curved path, there is a lateral centrifugal force

acting on the robot. This lateral force can cause the robot to slip sideways. This

lateral force can also cause deformation of the the rubber wheel. This causes a change

in the distance between the wheels. This deformation can cause the robot to deflect

27

from the predefined path. To prevent this we need to restrict the lateral force below

some maximum value. This imposes a restriction on the velocity of the robot at each

radius of curvature. The constraint on the velocity is given by the equation,

v2max =

√√√√√
µlat(Fz1 + Fz2)

M
det rss

(4.4)

where µlat is the coefficient of friction between the wheel and the ground in the lateral

direction, M is the mass of the robot and Fz1 and Fz2 are the normal reaction at the

two traction wheel.

E. Generation of Time-Optimal Velocity Profile along the Trajectory

The path is represented as a parameterized curve r = r(s) as explained in Section B.

This path is then discretized into equal length segments, ri. Kinematic and actuator

constraints and ‘collision avoidance’ scheme, discussed in the previous section, assigns

an upper bound on the velocity and the acceleration.

The constraints in velocity and acceleration can be converted in terms of the

“path parameter” s :

ṡmin ≤ ṡ ≤ ṡmax

s̈min ≤ s̈ ≤ s̈max

(4.5)

Bounds on the slope of any trajectory in the phase-plane (s – ṡ) can be expressed

in the form

κmin(s, λ) ≤ κ(s, λ) ≤ κmax(s, λ) (4.6)

Minimization of travel time along the given trajectory requires that the mobile

robot should try to move with the maximum allowable velocity along the path. The

optimum velocity pattern is obtained by projecting the velocity ṡ along the phase

plane s – ṡ. This technique was first proposed by Kang et al. [33] for finding the

28

Boundary

s
.

sswitch

Accelerate Decelerate
0 maxs

f
ζ

b
ζ

Γ

Fig. 16. Generation of optimal velocity

minimum time control of robotics manipulator with geometric path constraints. Ya-

mamoto et al. [28] used this algorithm for planning the motion of mobile robots and

gave it the name MTTP (Minimum Time Trajectory Planning). Formulation of the

procedure is provided in Appendix B.

Given the bounds on velocity and acceleration, and subsequently on ṡ, s̈, the al-

gorithm to calculate the optimal velocity (time minimizing) along the given trajectory

can be constructed by the following steps.

step 1 Start at s = 0 and λ = vinitial and construct a trajectory that has the maxi-

mum slope value (κmax). Continue this curve until it hits the boundary (Γ) of

the admissible region or goes past s = sfinal. If the curve hits the boundary of

the admissible region, extend the curve along this boundary, if possible. Call

29

Boundary

s
.

s
d1

Accelerate DecelerateDecelerate Accelerate

0 smaxf
s

P*

Γ

f
ζ

1b
ζ

b
ζ

1f
ζ

Fig. 17. Complete optimal trajectory

this curve ζf .

step 2 Construct a second trajectory that starts at s = smax and λ = vfinal and

proceed backwards with maximum deceleration (slope value (κmin)). Continue

this curve until it hits the boundary (Γ) of the admissible region or goes past

s = 0. If the curve hits the boundary of the admissible region, extend the curve

along this boundary, if possible. Call this curve ζb.

step 3 If the two trajectories intersect, then optimal velocity profile is achieved

(Fig. 16). The point where the two curves intersect is the switching point.

The optimal velocity profile consists of the first (accelerating) curve from s = 0

to s = sswitch and the second (decelerating) curve from s = sswitch to s = smax.

step 4 If the two trajectories do not intersect (Fig. 17), it means that the curves

30

hits the admissible boundary curve and the slope of the admissible boundary

(in some region) is outside the limits imposed by Eq. 4.6. Let sf be the point

where ζf ends. Starting at sf move along the boundary (Γ) until the slope is

within the limits imposed by the constraints. Call this point sd1.

step 5 Construct a decelerating curve ζb1 backward from sd1 until it intersects an

accelerating curve. This intersection provides a switching point (Point P ∗ in

Fig. 17.)

step 6 Construct an accelerating curve ζf1 forward from sd1 until it intersects the

decelerating curve ζb, or leaves the admissible region. If it hits the curve ζb,

the algorithm terminates. If the curve leaves the admissible region, then goto

step 4.

This algorithm gives a sequence of accelerating and decelerating curves ζf , ζb1,

ζf1, ζb2, ζf2,...,ζb, which gives the optimal velocity profile along a given path.

31

CHAPTER V

THE ROADMAP BASED PLANNER

A. Introduction

When the environment becomes more complex, such as the presence of narrow paths,

the potential field method of robot navigation is not so effective. The problem of

local minima may become more common due to many objects and their geometric

configurations. The robot will not move between closely spaced obstacles. The robot

has an oscillatory motion when it travels in narrow passages. When the environ-

ment becomes complex, roadmap based method is better to implement. We chose

the roadmap based method over other methods due to its concise representation.

Roadmap based methods are concise as they do not require the entire workspace to

be discretized into smaller grids. An example of a roadmap based method is the gen-

eralized Voronoi diagram, the locus of points equidistant to two or more obstacles.

The generalized Voronoi diagram is an extension of the Voronoi diagram, the set of

points equidistant to two or more points in the plane. Generalized Voronoi diagrams

have long been used as a basis for motion planning algorithms [30], [31]. By following

the boundary of a Voronoi cell, the robot will be guaranteed to remain at a maximum

clearance from the obstacles enabling the robot to move in narrow pathways.

B. Representation of the Environment

The robot is assumed to be circular and operates in a work space W which is a subset

of an two-dimensional planar Euclidean space. The work space W is populated by

polygonal obstacles C1,, Cn, which are closed sets.

For the trajectory generation we need to model the robot as a point. This is

32

done by extending the obstacle’s dimensions by a length equal to the radius of the

robot. These expanded obstacles, CB1,, CBn, are called the C-obstacles. The

set of points where the robot is free to move is called the free space and is defined as

FS = W\⋃i=n
i=1 CB. (see Fig. 18).

(a) Work Space

B

B

1

2

(b) Configuration Space

Fig. 18. Representation of the environment

It is assumed that the robot operates in a bounded, connected subset of the free

space FS. This subset is bounded by obstacles. By working in the configuration

space of the robot, the calculation of the trajectories becomes easier.

C. The Generalized Voronoi Diagram

For each obstacle CBi, define a distance function di(x) = dist(CBi,x). The Voronoi

region of CBi is the set

V Ri = {x | di(x) ≤ dj(x)∀j 6= i}

The Generalized Voronoi Diagram (GVD) (Fig. 19) is a collection of the Voronoi

regions. The GVD partitions the space into cells.

33

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

V1

V2

V3

V4

V5
V6

V7

V8V9V10

V11

V12

V13 V14

V15

V16

V17

V18

V19

V20V21

V22

V23V24

V

V26

Voronoi

Vertex

Obstacle

Edge

E13,14

Fig. 19. Generalized Voronoi diagram

In two-dimensional planar case, the intersection of two Voronoi regions is a

Voronoi edge. The intersection of at least two Voronoi edges is a Voronoi vertex.

The Voronoi edge will a straight line or a parabolic curve segment. A straight line is

the set of configurations that are closest to the same pair of obstacles’ edges or the

same pair of obstacles’ vertices. A parabolic curve segment is the set of configura-

tions that are closest to the same pair consisting of an obstacles’ edge and a vertex.

These pair of the obstacles’ edge/edge, edge/vertex or vertex/vertex determines the

equation of the algebraic curve forming the Voronoi edge.

The set of Voronoi edges and Voronoi vertex form the Generalized Voronoi Graph

(GVG). For a planar case, the GVG will be connected. The GVG is accessible from

any point in the FS, therefore it is possible to move the robot from any initial point

34

to any final point in the FS.

The GVG reduces the motion-planning problem by one dimension. In the pla-

nar case the path planning reduces to searching for a solution in a one-dimensional

network of curves lying in FS.

D. Prediction of Obstacle’s Position

In the presence of dynamic obstacles, the robot has to predict the motion of the obsta-

cles. Humans inherently have an intuitive motion prediction scheme when planning a

path in a crowded environment. When crossing a road humans observe any incoming

traffic and effectively predict its future position and decide whether it is safe to cross

the road or not.

Prediction methods can give satisfactory results for one-step ahead prediction.

For the robot navigation task it would be more useful to have many-steps ahead pre-

diction. This would give the robot sufficient time and space to perform the necessary

maneuvers to avoid obstacles and change its route from a geometrically shortest path

to a path which will be short and with less obstacles.

If the movement of obstacles is considered to be random, it is unlikely that

any available prediction method will give satisfactory results for many-steps ahead

prediction. If we consider humans as the obstacles it may be assumed that the humans

do not move aimlessly but with the intention of reaching a specific location. Hence,

a possible approach for long term prediction would be to define ‘points of interest’

(POI) in the environment. In an office environment desks, doors, telephone, tool-rack

and chairs are objects that may be considered as POI. If the POI of an environment

are defined, then the long-term prediction could refer to the prediction of which POI

a human is targeting. It is assumed that the POI are fixed and the obstacle moves

35

Table III. Algorithm for prediction of obstacle’s position

Input: G̃ = [V,E], Pobs, POI’s

1. Find nearest edge Eij and nodes i, j for the obstacle with position Pobs

2. Using past position data find node from which the obstacle is moving away

(fromnode)

3. Using past position data find node towards which the obstacle is moving (tonode)

4. Construct set S of all POI which have the shortest path from tonode

5. Calculate initial probability and time of entry and exit of each edge (based on

S)

6. while Pobs 6= POI’s

• Find nearest edge Eij and nodes i, j for the obstacle with new position

Pobs

• Find new fromnode and tonode

• If new fromnode and tonode is different from old fromnode and tonode

– Construct set S ′ of all POI which have the shortest path from new

fromnode and the path to the POI contains tonode

– Let new S = S ′
⋂

S

– Calculate new probability and time of entry and exit of each edge

(based on S)

– New path for the robot needs to be calculated

36

towards only one POI. There can be cases that a human moves randomly with no

intention. In such cases, no long term prediction can be made. By considering that

the obstacles also move approximately along the shortest Voronoi paths, the nodes

of the Voronoi diagram can be assigned a probability of an obstacle trying to reach

that node. Considering that the obstacle moves at nearly constant speed we can also

predict the time an obstacle will reach a given node. This combined probability and

knowledge of time allows us to set the cost function. Hence, we can predict with

some probability the position of an obstacle in the long term future. The algorithm

for prediction of obstacle’s position is given in Table III.

E. Cost Function for Trajectory Generation

There will be many trajectories from the robot initial position (xri) to the robot final

position (xrf). In order to calculate the optimal path, we need to form a cost function

(J) and search for a path along which J will be minimized. The cost will consist of

two parts, namely the static and the dynamic cost functions i.e J = Jstatic + Jdynamic.

The static cost function will be due to the static obstacles and will remain fixed and

not change with time. The dynamic cost function is due to the dynamic obstacles

and will change with time.

A cost is associated with each Voronoi edge (Eij). The accumulated cost from

‘start’ to ‘end’ has to be minimized.

The first factor that needs to be considered is the total length of the path. A

shorter path will be given preference over a longer one. Thus cost associated with a

Voronoi edge (Eij) should be proportional to its length.

J ij
static ∝ lij (5.1)

37

where lij is the length of the Voronoi edge Eij, (i, j) are two adjacent Voronoi vertex

(node). If (i, j) are not adjacent then lij = ∞

When a robot is moving through a narrow passageway, it has to follow the path

precisely. In order to do so, it has to localize after it has moved a short distance. Due

to this the robot has to reduce its speed. This is similar to a human trying to walk

through a crowded corridor or on a narrow ledge. Therefore,

J ij
static ∝

1

dmin
ij

(5.2)

where dmin
ij is the minimum distance from a Voronoi edge Eij to an obstacle, (i, j)

are two adjacent Voronoi vertex (node). If (i, j) are not adjacent then dmin
ij = 0

If we consider dynamic obstacles, the robot should give preference to a path on

which it has less probability of encountering an obstacle. In Section D, a method to

predict the long-term future position of an obstacle is presented. The probability of

an obstacle of being at node k at time tok is pk. Let the robot reach node k at time

trk.

Consider an edge on which the robot is trying to move from node i → j and the

obstacle is trying to move from node j → i (Fig. 20). The probability (pij) of the

obstacle of being on the edge Eij is pi. The robot reaches node i and j at time tri

and trj respectively. Similarly, the obstacles reaches nodes j and i at time toj and toi

respectively. Let to = [toj, toi] and tr = [tri, trj]. If tr ∩ to exists, then the robot and

obstacle will be on a collision course with probability pij. The separation between the

two sets will be 0. Let ∆t be the separation between these two sets to, tr. If ∆t > 0

then, in the ideal case, collision does not occur on that edge. If both the obstacle and

the robot are moving from node i → j, then to = [toi] and tr = [tri] and pij = pj. The

38

i
j

tri trj

Robot

Direction of motion

(a) Robot movement

i
j

t t
oi oj

Direction of motion

Obstacle

(b) Obstacle movement

toitojtrjtri

tri

toj

trj

toi

Time

Axis

t

(c) Time axis

Fig. 20. Calculation of dynamic cost

39

cost function associated with a Voronoi edge (Eij) will be proportional to,

J ij
dynamic ∝






pij, if ∆t = 0

0, if ∆t 6= 0
(5.3)

From Eq. 5.1–5.3, the overall cost function becomes,

Jij =






α1lij + α2
1

dmin
ij

+ α3pij, if ∆t = 0

α1lij + α2
1

dmin
ij

, if ∆t 6= 0
(5.4)

where α1, α2, α3 are constants which needs to be assigned with regard to the perfor-

mance required.

F. Trajectory Generation

1. Absence of Dynamic Obstacles

In the absence of dynamic obstacles, the Dijkstra’s shortest path algorithm is used

to find the required trajectory. Dijkstra’s algorithm searches for the shortest path in

a weighted directed graph G = [V,E], where all edge weights are nonnegative.

Let the robot’s initial position be (xri) and it’s final position be (xrf). Find the

nearest point from these positions to the Voronoi graph. Call these ri and rf . Add

ri and rf as nodes to the Voronoi graph and find the new cost functions. Using

Dijkstra’s algorithm, find the shortest path from node ri to node rf . Let these be

the set of nodes η = [ri, vp,, vq, rf]. Thus the minimum path, in the absence

of dynamic obstacles, is [xri, η, xrf] (Fig. 21).

The trajectory which we get in Fig. 21 is along the Voronoi edges and thus has

maximum clearance from the obstacles. In open spaces, this trajectory will not be best

solution available. To get a shorter path, we draw circles at the nodes (Fig. 22(a)).

These circles are the circles with maximum radius which have the center at the nodes

40

3

4

5
6

7

810

13 14

16

17

18

19

20

24

25

i

ri

r
f

X

21

2

1

12

15 9

11

26

23

Xf

22

Fig. 21. Shortest path along Voronoi edges

and lie in the free space FS. All points within these circles will also lie in the FS.

We find the intersection of the calculated path with this circle, and update the path,

by joining the two points where the original cost minimizing path cut these circles.

We repeat this procedure along all the nodes in the original path. The resultant path

is shown in Fig. 22(b) and Fig. 23. The path is smoothened by fitting a bezier curve

through the points in the path.

41

1

4

18

25

(a) Circles at nodes

1

4

18

25

(b) The updated path

Fig. 22. Method for path update

42

4

5
7

810

13 14

15

16
18

19

2021

22

24

25

26

I

12

2

3

23

9

11

6

1

17

F

Fig. 23. Shortest path by drawing circles at the nodes

43

2. Presence of Dynamic Obstacles

The optimization method to minimize the cost function and find the required trajec-

tory is based on the modified Dijkstra’s (Table IV) shortest path algorithm. Modified

Dijkstra’s algorithm searches for the minimum cost path in a weighted directed graph

G = [V,E], where all edge weights are nonnegative. Results are provided in the next

chapter (Section E).

Table IV. Modified Dijkstra’s algorithm

Input: G̃ = [V,E], ri, rf

1. For each v ∈ V cost[v] = ∞, cost[ri] = 0

2. Construct set T L of all v ∈ V

3. While T L 6= 0

• Find a k in T L for which cost[k] is minimum, Delete k from T L

• For each u ∈ T L connected to k

– Calculate timeku, costku

– If cost[u] > cost[k] + costku

∗ cost[u] = cost[k] + costku

∗ time[u] = time[k] + timeku

∗ nodebefore[u] = k

– If u = rf STOP

44

CHAPTER VI

EXPERIMENTAL AND SIMULATION RESULTS

A. Experimental Setup

The mobile robot used is the AmigoBot manufactured by ActivMedia Robotics.

AmigoBot is a small, two wheel, differential drive mobile robot. It has a maximum

linear speed of 750mm/sec and a rotational speed of 300◦/sec. It has two drive wheel

powered by a 12V DC motor. The drive system includes a passive rear caster wheel

for balance. Attached to each drive axle is a high-resolution optical quadrature shaft

encoder that provides 9,550 ticks per wheel revolution. It also has eight sonar sen-

sors. The optical encoders and the sonar are deactivated for this experimental setup

as the localization and obstacle detection are carried out by the overhead camera.

The AmigoBot drive and sensor systems are powered and processed from a single

Hitachi H8 microprocessor. The robot communicates with the computer through a

900MHz wireless radio modem. High level library functions of the Saphira are used

to send simple motion commands to the robot. Saphira is a C/C++ language based

software development environment created by SRI International, Inc.

The robot workspace is an area of 3m×2m. White paper is pasted on the ground

to reduce the noise in the image. The camera used is the Logitech Quickcam Pro.

This is a CCD camera and is one of the many webcam available in the market. The

camera provides an image of resolution 640 × 480 at 15fps and 320 × 240 at 30fps.

The camera is used from a overhead position, 3m directly above the center of the

workspace. The camera is attached to a computer, equipped with NVidia GeForce2

graphics card. The computer has a single Intel Pentium III processor with speed of

850MHz. The operating system used is Linux.

45

Fig. 24. Overview of the experiment

The path planner and the image processing are two different programs. They

share information through memory sharing using memory maps. Intel OpenCV li-

braries and Intel’s Image Processing Library (IPL) are used for image processing.

The image processing program provides the positions and orientations of the robot,

obstacles and the target. The path planner module uses these information to extract

information about the velocities of the objects and to calculate a collision free path

of the robot.

The obstacles and the targets are Lego robots. Each individual robot has a flat

cardboard of different colors on the top to distinguish them from each other. They

46

are programmed to move in a random pattern in the experimental space.

The image processing program, writes the data in the memory. The path planner

takes the latest data from the memory map.

An overview of the experimental setup is provided in Fig. 24.

B. Visual Sensing

The calculation of a collision free path for a mobile robot is dependent on its ability

to correctly and continuously keep track of the poses of the obstacle, target and itself.

Additional knowledge of their velocities is helpful in predicting their future motions.

Use of on-board sensor system provides unlimited workspace but these suffer from

many disadvantages. Advantages of using an overhead camera is noted in [34]. Image

processing is done using Intel OpenCV Library functions. The CAMSHIFT algorithm

[35] is used. This algorithm was developed for tracking human faces, in an effort

towards the creation of a perceptual user interface. This algorithm was adjusted to

track multiple objects simultaneously.

1. Setup and Theory

The visual sensor used in this research is a color CCD camera. The camera is placed

in the overhead off-board position. The optical axis of the camera is perpendicular

to the workspace of the robot. Dissociating the camera and robot and placing it in

the overhead position provides valuable information which would otherwise not be

possible to achieve. The image provided using overhead camera is not restricted to

the field of view. The robot can keep track of its position and those of the obstacle

and the targets at all times, regardless of the relative position of these with respect

to the robot. From each acquired image frame buffer, the following parameters are

47

to be identified:

• The position and orientation of the mobile robot.

• The position and orientation of the obstacles.

• The position and orientation of the target.

These positions have to be converted from pixel coordinates to the physical coor-

dinates. The overhead camera position has the advantage of matching pixels directly

to the physical coordinates.

Intel OpenCV Library functions are used for the image processing part. The

CAMSHIFT 1 algorithm is used. The CAMSHIFT algorithm [35] is a modified mean

shift algorithm [36]. The mean shift algorithm is a non-parametric technique that

climbs the gradient of a probability distribution to find the nearest dominant mode

(peak).

For each video frame, the raw image is converted to a color probability distribu-

tion image via a color histogram model of the color being tracked. The Hue Saturation

Value (HSV) color system is used. The robot, obstacle and the targets are of different

color. The current size and location of the tracked objects are reported and used to

set the size and location of the search window in the next video frame. The process

is repeated for continuous tracking.

For discrete 2D image probability distributions, the mean location (the centroid)

within each search window is found by finding the zeroth and first moment about x

and y. I(x, y) is the probability value at (x, y) and the summation is carried over the

(x, y) range of each search window.

1Library function of Intel OpenCV library

48

The zero-th moment is defined as

M00 =
∑

x

∑

y

I(x, y) (6.1)

The first moment for x and y is defined as

M10 =
∑

x

∑

y

xI(x, y); M01 =
∑

x

∑

y

yI(x, y) (6.2)

The Centroid of the object in each search window is

xc =
M10

M00

; yc =
M01

M00

(6.3)

The 2D orientation of the probability distribution is also obtained from the image

by using the second moments

M20 =
∑

x

∑

y

x2I(x, y); M02 =
∑

x

∑

y

y2I(x, y) (6.4)

Then the object orientation (major axis) is

Θ =

arctan




2

(
M11
M00

−xcyc

)

(
M20
M00

−x2
c

)
−

(
M02
M00

−y2
c

)





2
(6.5)

The length l and width w of the probability distribution (the objects) can be

calculated as follows:

l =

√
(a+c)+

√
b2+(a−c)2

2
,

w =

√
(a+c)−

√
b2+(a−c)2

2

(6.6)

where,

a =
M20

M00

− x2
c , b = 2

(
M11

M00

− xcyc

)
, and c =

M02

M00

− y2
c

49

2. Image Processing Results

Fig. 25 shows a processed video image that has four search windows corresponding to

the robot, target, and the two obstacles. CAMSHIFT calculates the centroid of the 2D

color probability within each of the 2D window of calculation, re-centers the window

and then calculates the area for the next window size. The centroid are marked with

a cross and the search window is displayed with a box. Thus the color probability

distribution (Fig. 25) is not calculated over the whole image, it is calculated for the

smaller image region surrounding the four windows.

Fig. 25. A video image and its color probability image

C. Planner Scheme

1. Dynamic Obstacles and Dynamic Target

For the case when we have the obstacles and the target as dynamic, it becomes

important to update the path at each time interval. Flowchart of the planner is

illustrated in Fig. 26.

50

(,)obs oq qρ ρ≤

Fig. 26. Flowchart of planner for dynamic obstacles and dynamic target

51

2. Dynamic Obstacles and Static Target

When we have dynamic obstacles and static target, it may be possible to avoid the

obstacles by change in velocity of the robot. In certain scenarios it becomes necessary

to change the path too. Probabilistic collision detection is used to find the necessary

action that will be required. Fig. 27 gives an outline of the procedure that needs to

be followed.

(,)obs oq qρ ρ≤

Fig. 27. Flowchart of planner for dynamic obstacles and static target

52

D. Experimental Results

This experiment (Fig. 28) has two dynamic obstacles and one dynamic target. The

farthest robot in the first picture is the target, the two robots in the center are the

obstacle. The mobile robot is at the lower right corner of the picture.

Fig. 28. Snapshots of the experiment (in sequence)

53

Fig. 28. Continued

54

Fig. 28. Continued

55

E. Simulation Result for Roadmap Based Planner

Simulation was carried out to check the validity of the proposed Roadmap based

planner. The environment consists of four static obstacles (Fig. 29). There are four

points of interests (POI #n). Ri and Rf are the initial and final position of the robot.

Obs is the initial position of the dynamic Obstacle.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

1

2

3

4

5 6

7 9

10

11

1213

14

POI #1

R i

Rf

Obs

POI #3

POI #2

POI #4

Fig. 29. Environment for the Roadmap based planner

The motion of the robot in the absence of the dynamic obstacle is shown in

Fig. 30.

The next two sequences of images (Fig. 31 and Fig. 32) show the motion of

the obstacle towards two random POI. The sequence of images shows how the robot

56

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

1

2

3

4

5 6

7 9

10

11

1213

14

F

I

Fig. 30. Robot path in absence of dynamic obstacles

updates its path to avoid the dynamic obstacles. The red lines shows the probable

paths along which the obstacle will move. The black line shows the calculated mini-

mum cost path for the robot. The green circle is the robot and the blue circle is the

obstacle.

57

Fig. 31. Simulation result: Case 1 (in sequence)

58

Fig. 32. Simulation result: Case 2 (in sequence)

59

CHAPTER VII

CONCLUSION

A. Summary

In this thesis, I have developed two trajectory generation plans. The extrapolated ar-

tificial potential field method works in a dynamic environment. Through experiments

I have shown that this method is able to calculate the trajectory in real-time. The

probabilistic collision prediction and avoidance method makes the method mentioned

above more robust. The collision alarms coupled with the prediction of collision, pro-

vides the robot with means to react to probable collision without the need for trajec-

tory update. The vision system (implemented experimentally) is low cost, and can be

used for other experiments in future. The roadmap based planner provides a method

for the planning of robot motion in more realistic environments. The Voronoi dia-

gram has been modified to provide a safe, yet shorter path. The trajectory minimizes

a cost function which takes into consideration the long-term prediction of obstacle

position. The modified Dijkstra’s algorithm is used for finding the trajectory which

minimizes the cost function.

B. Future Work

The roadmap based planner currently considers only one robot. This method can be

extended to form co-operative motion and task planner for multi-robot systems. For

better long-term prediction of obstacles, behavioral models can be implemented. The

cost function needs to be improved to take into account the curvature of the path and

to avoid sharp turns. The generalized Voronoi diagram needs to be updated locally

to facilitate the replanning of path around dynamic obstacles.

60

REFERENCES

[1] H. Bulata and M. Devy, “Incremental construction of a landmark-based and

topological model of indoor environments by a mobile robot,” in Proc. IEEE Con-

ference on Robotics and Automation, Minneapolis, MN, April 1996, pp. 1054-

1060.

[2] P. Veelaert and W. Bogaerts, “Ultrasonic potential field sensors for obstacle

avoidance,” IEEE Transactions on Robotics and Automation, vol. 15, pp. 774-

779, August 1999.

[3] B. Yamauchi, “Mobile robot localization in dynamic environment using dead

reckoning and evidence grids,” in Proc. IEEE Conference on Robotics and Au-

tomation, Minneapolis, MN, April 1996, pp. 1401-1406.

[4] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile

robots,” IEEE Transactions on System, Man, and Cybernetics, vol. 19, pp. 1179-

1187, Sept/Oct 1989.

[5] J. Barraquand and J. Latombe, “A Monte-Carlo algorithm for path planning

with many degrees of freedom,” in Proc. IEEE Conference on Robotics and

Automation, Cincinnati, Ohio, May 1990, pp. 1712-1717.

[6] E. Rimon and D.E. Koditschek, “Exact robot navigation using artificial potential

functions,” IEEE Transactions on Robotics and Automation, vol. 8, pp. 501-518,

October 1992.

[7] C.W. Warren, “Global path planning using artificial potential fields,” in Proc.

IEEE Conference on Robotics and Automation, Scottsdale, AZ, 1989, pp. 316-

321.

61

[8] J. Latombe, Robot Motion Planning, Norwell, MA:Kluwer, 1991.

[9] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”

The International Journal of Robotics Research, vol. 5, pp. 90-98, 1986.

[10] Y. Koren and J. Borenstein, “Potential field methods and their inherent limita-

tions for mobile robot navigation,” in Proc. IEEE Conference on Robotics and

Automation, Sacramento, CA, April 1991, pp. 1398-1404.

[11] S.S. Ge and Y.J. Cui, “New potential functions for mobile robot path planning,”

IEEE Transactions on Robotics and Automation, vol. 16, pp. 615-621, October

2000.

[12] S. Akshita, T. Hisanobu, S. Kawamura, “Fast path planning available for moving

obstacle avoidance by use of Laplace potential,” in Proc. IEEE/RSJ International

Conference on Intelligent Robot and Systems, Yokohama, Japan, July 1993,

pp. 673-678.

[13] Y. Wang, G.S. Chirikjian, “A new potential field method for robot path plan-

ning,” in Proc. IEEE Conference on Robotics and Automation, San Francisco,

CA, April 2000, pp. 977-982.

[14] J. Miura, H. Uozumi, and Y. Shirai, “Mobile robot motion planning considering

the motion uncertainty of moving obstacles,” in Proc. 1999 IEEE International

Conference on Systems, Man, and Cybernetics, Tokyo, Japan, October 1999,

pp. IV-692-698.

[15] T. Tsubouchi and S. Arimoto, “Behavior of a mobile robot navigated by an iter-

ated forecast and planning scheme in the presence of multiple moving obstacles,”

62

in Proc. IEEE Conference on Robotics and Automation, San Diego, CA, 1994,

pp. 2470-2475.

[16] P. Fiorini and Z. Shiller, “Time optimal trajectory planning in dynamic environ-

ments,” in Proc. IEEE Conference on Robotics and Automation, Minneapolis,

MN, April 1996, pp. 1553-1558.

[17] R.C. Smith, P. Cheeseman, “On the representation and estimation of spatial

uncertainty,” International Journal of Robotics Research, vol. 5, no. 4, pp. 56-

88, 1986.

[18] H.F. Durrant-Whyte, “Uncertain geometry in robotics,” IEEE Journal of

Robotics and Automation, vol. 4, no. 1, pp. 23-31, 1988.

[19] J. Sanborn and J. Hendler, “A model of reaction for planning in dynamic envi-

ronments,” International Journal of Artificial Intelligence in Engineering, vol. 3,

no. 2, pp. 95-101, 1988.

[20] J. Reif and M. Sharir, “Motion planning in the presence of moving obstacles,”

in 25th IEEE Symposium on the Foundation of Computer Science, Portland,

Oregon, October 1985, pp. 144-154.

[21] M. Erdmann and Lozano-Perez, “On multiple moving objects,” Algorithmica,

vol. 2, pp. 477-521, 1987.

[22] K. Fujimura and H. Samet, “A hierarchial strategy for path planning among mov-

ing obstacles,” IEEE Transactions on Robotics and Automation, vol. 5, pp. 61-69,

Feb. 1989.

[23] K. Kant and S.W. Zucker, “Towards efficient trajectory planning: the path-

velocity decomposition,” International Journal of Robotics Research, vol. 5,

63

no. 3, pp. 72-89, 1986.

[24] B.H. Lee and C.S.G. Lee, “Collision free motion planning of two robots,” IEEE

Transactions on System, Man, and Cybernetics, vol. 17, no. 2, pp. 21-32, Jan/Feb

1987.

[25] T. Fraichard, “Dynamic trajectory planning with dynamic constraints: a state-

time space approach,” IEEE/RSJ International Conference Intelligent Robots

and Systems, Yokohama, Japan, 1993, pp. 1393-1400.

[26] D.B. Reister and F.G. Pin, “Time-optimal trajectories for mobile robots with

two independently driven wheels,” International Journal of Robotics Research,

vol. 13, no. 1, pp. 38-54, 1994.

[27] M. Renaud and J.Y. Fourquet, “Minimum time motion of a mobile robot with

two independent, acceleration-driven wheels,” in Proc. IEEE Conference on

Robotics and Automation, Albuquerque (USA), 1997, pp. 2608-2613.

[28] M. Yamamoto, M. Iwamura and A. Mohri, “Time-optimal motion planning

of skid-steer mobile robots in the presence of obstacles,” in Proc. of the 1998

IEEE/RSJ International Conference on Intelligent Robots and Systems, Victo-

ria, Canada, 1998, pp. 32-37.

[29] P. Pledel and Y. Bestaoui, “Actuator constraints in optimal motion planning of

manipulators,” in Proc. IEEE Conference on Robotics and Automation, Nagoya,

Japan, 1995, pp. 2427-2432.

[30] H. Choset and J. Burdick, “Sensor based planning, part ii: Incremental construc-

tion of the generalized Voronoi graph,” in Proc. IEEE Conference on Robotics

and Automation, Nagoya, Japan, 1995, pp. 1643-1648.

64

[31] H. Choset and J. Burdick, “Sensor based planning: The hierarchical generalized

Voronoi graph,” The International Journal of Robotic Research, vol. 19, no. 2,

pp. 96-125, February 2000.

[32] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha, “Interactive motion

planning using hardware accelerated computation of generalized Voronoi dia-

grams,” in Proc. IEEE Conference on Robotics and Automation, San Francisco,

CA, April 2000, pp. 2931-2937.

[33] K.G. Shin, N.D. Mckay, “Minimum-time control of robotics manipulator with

geometric path constraints,” IEEE Transactions on Automatic Control, vol. AC-

30 no. 6, pp. 531-541, 1985

[34] E. Kruse, F.M. Wahl, “Camera-based observation of obstacle motions to derive

statistical data for mobile robot motion planning,” in Proc. IEEE Conference on

Robotics and Automation, Leuven, Belgium, 1998, pp. 662-667.

[35] G.R. Bradski, “Computer vision face tracking for use in a percep-

tual user interface,” Intel Technology Journal, 2nd quarter, 1998,

http://developer.intel.com/technology/itj/q21998/pdf/camshift.pdf; accessed

July 16, 2003.

[36] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on

Pattern Analysis Machine Intelligence, vol. 17, pp. 790-799, 1995.

65

APPENDIX A

ERROR ELLIPSE GENERATION

The determination of whether the probability of observing the object is greater

than a given threshold assumes that the probability distribution of our knowledge of

the object’s location is a multi variate (x, y, θ) Gaussian distribution. The general

form is given by:

P (x) =
1

√
(2π)n detC

e−
1
2 [(x−X̂)T C−1(x−X̂)], (A.1)

where n is the number of dimensions, C is the covariance matrix, X̂ is the nominal

mean vector, and x is a vector denoting a particular point. The contours of equal

probability of this distribution form ellipsoids in n dimensional space that are centered

at the mean location X̂, and whose axes are only aligned with the Cartesian frame

if the covariance matrix C is diagonal. The formulas for extracting the principal

axes of a two-dimensional ellipsoid are given below. In the case where we are only

interested in the positional error ellipse, C is the reduced (2 × 2) covariance matrix

formed from the (3 × 3) matrix by extracting only the X, Y terms. In this case the

resulting marginal probability distribution is:

P (x, y) =
1

2π
√

σ2
xσ

2
y(1 − ρ2)

e
−

1
2(1−ρ2)

[
(x−µx)2

σ2
x

+
2ρ(x−µx)(y−µy)

σxσy
+

(y−µy)2

σ2
y

]

(A.2)

C =




σ2

x ρσxσy

ρσxσy σ2
y



 (A.3)

where ρ is the correlation coefficient for x and y. µx and µy are nominal mean values

for x and y, respectively.

For decision making purposes, it is necessary to determine the explicit equiprobable

66

contours (ellipses or ellipsoids) of the multivariate Gaussian distribution specified

by given mean X̂ vector and covariance Cx matrix. These ellipses can be used to

determine the probability that a given vector will lie within, say, the 90% confidence

ellipse. The ellipsoid formula is:

(x − X̂)T C−1(x − X̂) = k2 (A.4)

where k is a constant chosen for a particular confidence threshold, and x is a point on

the ellipsoid boundary. In case of two-dimensional ellipse, the relationship between k

and the probability of a point lying within the ellipsoid specified by k is [17]:

P = 1 − e
k2

2 , (A.5)

and the corresponding family of two-dimensional ellipses is given by Eq. A.4, and

reduces to

Ax2 + 2Bxy + Cy2 − k2 = 0, (A.6)

where A,B and C are found from the two-dimensional covariance matrix and Eq. A.4,

and expressed as:

A =
1

(1 − ρ2) σ2
x

, B = − ρ

(1 − ρ2) σxσy

, C =
1

(1 − ρ2) σ2
y

. (A.7)

The angle θ that the major axis of this ellipse makes with the positive x-axis is:

θ =
1

2
arctan

(
2B

A − C

)
θ =

[−π

2
,
π

2

]
. (A.8)

If we define

T =
√

A2 + C2 − 2AC + 4B2, (A.9)

67

then we find the following lengths:

half major axis =

√
2k2

A + C − T
(A.10)

half minor axis =

√
2k2

A + C + T
(A.11)

As given above, the probability of a point being located inside an ellipse defined by

a particular value of k is given by:

P (x, y ∈ ellipse) = 1 − e−
k2

2 (A.12)

k2 = −2 log(1 − Pr) (A.13)

with the following confidence ellipses for different k:

50% ⇒ k2 = 1.386, (A.14)

90% ⇒ k2 = 4.605. (A.15)

Conversely, if we define the ellipse parameters first (major axis length, minor axis

length, and the angle) based on proper error model, we can now derive probability

density function parameters (σx, σy, and ρ). This is because there exist a unique

ellipse for a given probability density function, and vice vera.

Let us define three ellipse parameters a (half major axis length), b (half minor axis

length) and θ (the angle that the major axis of ellipse makes with the positive x-

axis). If we define T =
√

A2 + C2 − 2AC + 4B2, then these three parameters can be

expressed as:

a2 =
2k2

A + C − T
(A.16)

b2 =
2k2

A + C + T
(A.17)

θ =
1

2
arctan

(
2B

A − C

)
(A.18)

68

a

b

a : half major axis length

b : half minor axis length

X

Y

θ

Fig. 33. Ellipse parameters

To derive those parameters from the probability distribution density function, Eq. A.16

to Eq. A.18 can be rearranged as:

A + C − T =
2k2

a2
(A.19)

A + C + T =
2k2

b2
(A.20)

2B

A − C
= tan 2θ. (A.21)

By extracting Eq. A.19 from Eq. A.20, we can get

2T =
2k2

b2
− 2k2

a2
(A.22)

⇒ T =
k2

b2
− k2

a2
(T > 0). (A.23)

Adding Eq. A.19 and Eq. A.20 gives us:

2 (A + C) =
2k2

b2
+

2k2

a2
(A.24)

69

⇒ A + C =
k2

b2
+

k2

a2
(A.25)

From Eq. A.21 and A.25,

A =
B

tan 2θ
+

k2

2b2
+

k2

2a2
(A.26)

C = − B

tan 2θ
+

k2

2b2
+

k2

2a2
(A.27)

T 2 = A2 + C2 − 2AC + 4B2 =

(
k2

b2
− k2

a2

)2

(A.28)

(A − C)2 + (2B)2 =

(
k2

b2
− k2

a2

)2

(A.29)

(
2B

tan 2θ

)2

+ (2B)2 =

(
k2

b2
− k2

a2

)2

(A.30)

(2B)2 =
tan2 2θ

(tan2 2θ + 1)

(
k2

b2
− k2

a2

)2

(A.31)

Finally, B can be expressed with following two cases based on the condition of angle

θ.

B =






1
2

√
tan2 2θ

tan2 2θ + 1

(
k2

b2 − k2

a2

)
+ k2

2b2 + k2

2a2 (if θ > 0)

−1
2

√
tan2 2θ

tan2 2θ + 1

(
k2

b2 − k2

a2

)
+ k2

2b2 + k2

2a2 (otherwise)

(A.32)

Then, A, B, and C values from ellipse parameters, a (half major axis length), b

(half minor axis length) and θ (angle between major axis and positive x-axis) are

rearranged with the angle condition.

70

Case 1.(θ ≥ 0)

A = − 1

2 tan 2θ

√
tan2 2θ

tan2 2θ + 1

(
k2

b2
− k2

a2

)

+
k2

2b2
+

k2

2a2
(A.33)

B = −1

2

√
tan2 2θ

tan2 2θ + 1

(
k2

b2
− k2

a2

)

(A.34)

C =
1

2 tan 2θ

√
tan2 2θ

tan2 2θ + 1

(
k2

b2
− k2

a2

)

+
k2

2b2
+

k2

2a2
(A.35)

Case 2.(θ < 0)

A =
1

2 tan 2θ

√
tan2 2θ

tan2 2θ + 1

(
k2

b2
− k2

a2

)

+
k2

2b2
+

k2

2a2
(A.36)

B =
1

2

√
tan2 2θ

tan2 2θ + 1

(
k2

b2
− k2

a2

)

(A.37)

C = − 1

2 tan 2θ

√
tan2 2θ

tan2 2θ + 1

(
k2

b2
− k2

a2

)

+
k2

2b2
+

k2

2a2
(A.38)

By rewriting Eq. A.7 in terms of (1 − ρ2), we can get:

(
1 − ρ2

)
=

1

Aσ2
x

=
1

Cσ2
y

=
−ρ

Bσxσy

(A.39)

−Aσ2
xρ = Bσxσy − Aσxρ = Bσy (A.40)

−Cσ2
yρ = Bσxσy − Cσyρ = Bσx (A.41)

Aσ2
x = Cσ2

y (A.42)

A2ρ2σ2
x = B2σ2

y =
A

C
B2σ2

x (A.43)

Consequently, ρ, σx and σy can be expressed in terms of A, B and C,

ρ =






√
B2

AC
(if θ ≥ 0)

−
√

B2

AC
(if θ < 0)

(A.44)

σ2
x =

1

A (1 − ρ2)
(A.45)

σ2
y =

1

C (1 − ρ2)
(A.46)

71

APPENDIX B

MINIMUM TIME TRAJECTORY PLANNING

Minimization of travel time along the given trajectory requires that the mobile

robot should try to move with the maximum allowable velocity along the path. The

optimum velocity pattern is obtained by projecting the velocity ṡ along the phase

plane s — ṡ. Yamamoto et al. [28] has dealt with minimum-time control of a mobile

robot along a specified trajectory.

θ

Fig. 34. Kinematic model of a differential drive robot

Fig. 34 shows a kinematic model of a differential drive robot. The state variable

is defined as X = (x, y, θ, vr, vl, v, φ̇)T . where (x, y) is the location of the center of

72

gravity ‘G’. It is assumed to be coincident with the center of axle. θ is the orientation

of the robot, v is the velocity at ‘G’, φ̇ is the angular velocity of the robot, L is the

distance between the wheels, and vr, vl are the velocities of the right and left wheels

respectively.

The state equation based on the kinematics is given by:

ẋ = v cos θ (B.1)

ẏ = v sin θ (B.2)

θ̇ = φ̇ (B.3)

v̇r = ar (B.4)

v̇l = al (B.5)

v̇ =
ar + al

2
(B.6)

φ̈ =
ar − al

L
(B.7)

where ar, al are the accelerations of the right and left wheels respectively.

The state constraints due to limits in the velocities of the two wheels are:

|vr| ≤ vmax, |vl| ≤ vmax (B.8)

Considering ar, al as inputs in the state equations, the input constraints are:

|ar| ≤ amax, |al| ≤ amax (B.9)

The boundary conditions at the initial and final points are:

x(0) = (x0, y0, θ0, 0, 0, 0) (B.10)

x(tf) = (xf , yf , θf , 0, 0, 0) (B.11)

73

The performance index J is:

J =
∫ tf

0
dt (B.12)

Then, the Minimum-time trajectory planning is stated as: Find X(t)∗ and ur(t)
∗, ul(t)

∗

minimizing Eq. B.12, subject to Eq. B.1–B.7 and Eq. B.8–B.11.

Along any given path rs,

ds

dt
= v(≡ λ) (B.13)

The velocity and acceleration along r(t) is:

ṙ(t) =
dr(s)

ds
λ (B.14)

r̈(t) =
d2r(s)

ds2
λ2 +

dr(s)

ds
λ̇ (B.15)

Eq. B.1–B.3, B.6, B.7 can be rewritten as:

dx

ds
= cos θ (B.16)

dy

ds
= sin θ (B.17)

dθ

ds
=

dφ

ds
(B.18)

λ̇ =
ar + al

2
(B.19)

d2φ

ds2
λ2 +

dφ

ds
λ̇ =

ar − al

L
(B.20)

Solving for ar, al using Eq. B.19 and Eq. B.20 yields:

ar =

(

1 +
L

2

dφ

ds

)

λ̇ +
L

2

d2φ

ds2
λ2 (B.21)

al =

(

1 − L

2

dφ

ds

)

λ̇ − L

2

d2φ

ds2
λ2 (B.22)

74

The following conditions can be derived,

dφ

ds
=

d2y

ds2

dx

ds
− dy

ds

d2x

ds2
(B.23)

d2φ

ds2
=

d3y

ds3

dx

ds
− dy

ds

d3x

ds3
(B.24)

θ = arctan

(
dy
ds
dx
ds

)

(B.25)

Thus, the state equations and the input for the differential drive mobile robot

can be expressed in terms of the spatial path x(s), y(s) and the velocity λ along the

path. The state equations are reduced to:

ṡ = λ (B.26)

λ̇ =
ar + al

2
≡ a (B.27)

The performance index can be rewritten as:

J =
∫ sf

0

dt

ds
ds =

∫ sf

0

1

λ
ds (B.28)

As seen from this equation, λ should be as large as possible to minimize the cost

function J . The constraints are rewritten as,

−vmax ≤ M1λ ≤ vmax

−vmax ≤ M2λ ≤ vmax

−amax − Q1λ
2 ≤ M1λ̇ ≤ amax − Q1λ

2

−amax − Q2λ
2 ≤ M2λ̇ ≤ amax − Q2λ

2

(B.29)

where,

M1 = 1 + L
2

dφ

ds
, M2 = 1 − L

2
dφ

ds

Q1 = L
2

d2φ

ds2 , Q2 = −L
2

d2φ

ds2

75

These constraints can be rewritten in the form,

ṡmin ≤ λ ≤ ṡmax

s̈min ≤ λ̇ ≤ s̈max

(B.30)

The slope of the trajectories in the phase plane (s − ṡ) can be written as,

κ(s, λ) =
dλ

ds
=

dλ
dt
ds
dt

=
λ̇

λ
(B.31)

Bounds on the slope of any trajectory can be expressed in the form

κmin(s, λ) ≤ κ(s, λ) ≤ κmax(s, λ) (B.32)

Using the above formulations the optimal velocity profile along a specified path

can be found.

76

VITA

Waqar Ahmad Malik was born in Burnpur, India in September, 1978. He received

his baccalaureate degree in mechanical engineering, with honors, from the Indian In-

stitute of Technology, Kharagpur, India in July, 2001. After his master’s degree he

will continue doctoral studies in mechanical engineering at Texas A&M University.

He can be reached at the Department of Mechanical Engineering, Texas A&M

University, College Station, TX 77843-3123.

This document was typeset in LATEX by Waqar Ahmad Malik.

