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ABSTRACT 
 

Fault Detection of Multivariable System Using Its Directional Properties. 

(December 2004) 

Amit Pandey, 

B.Tech., Indian Institute of Technology Guwahati, India 

Chair of Advisory Committee: Dr. Suhada Jayasuriya 

 
A novel algorithm for making the combination of outputs in the output zero direction of 

the plant always equal to zero was formulated. Using this algorithm and the result of 

MacFarlane and Karcanias, a fault detection scheme was proposed which utilizes the 

directional property of the multivariable linear system. The fault detection scheme is 

applicable to linear multivariable systems. Results were obtained for both continuous and 

discrete linear multivariable systems. A quadruple tank system was used to illustrate the 

results. The results were further verified by the steady state analysis of the plant.    
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NOMENCLATURE 

The symbols used for the continuous time system  are defined as follows 

( )U t  Input vector for both plants P  and P′  

( )x t  State variable vector for both plants P  and P′  

( )y t  Output vector for plant P   

( )y t′  Output vector for plant P′  

g  Input zero direction of the plant P  

g′  Input zero direction of the plant P′  

0x  State zero direction of the plant P  

ox′  State zero direction of the plant P′  

v  Output zero direction of the plant P  

v′  Output zero direction of the plant P′  

z  Transmission zero of the plant P  

z′  Transmission zero of the plant P′  

where the continuous time plants P  and P′  are defined by  (2.5) and (2.6) respectively. 

For the discrete time system the following symbols, as defined below, are used 

( )U k  Input vector for both plants P  and P′  

( )x k  State variable vector for both plants P  and P′  

( )y k  Output vector for plant P   

( )y k′  Output vector for plant P′  

g  Input zero direction of the plant P  

g′  Input zero direction of the plant P′  

0x  State zero direction of the plant P  

ox′  State zero direction of the plant P′  

v  Output zero direction of the plant P  

v′  Output zero direction of the plant P′  



 

x 

 

q  Transmission zero of the plant P  

q′  Transmission zero of the plant P′  

where the discrete time plants P  and P′  are described by (5.5) and (5.6) respectively  
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CHAPTER I 

INTRODUCTION 

 

Ever since the first stone tool was invented man has always been concerned about the 

condition of the machines he uses. For the major part of the human history the only way 

to learn about the malfunctions and their locations was by the five human senses for 

example touching to feel heat or vibration, smelling for fumes from overeating etc. This 

approach is still in use. Measuring devices called sensors were introduced later on to 

detect the state of the system. However with every passing day the importance of product 

quality, safety and reliability is increasing in the industrial processes. A simple 

temperature sensor malfunctioning lead to the loss of seven highly talented astronauts and 

billions of dollar worth Columbia space shuttle. With the advent of feedback control 

system the presence of faults in the plant or the sensor have become even more 

potentially devastating. The feedback may multiply a small fault manifolds. Hence the 

importance of a reliable faults detecting mechanism. 

 

1.1 Terminology 

Before moving further it is advisable to exactly define the terms related to fault detection 

which will be used again and again in this work. Isermann and Balle (2000) in [1] 

presented the definitions of terms commonly used in the fault detection and diagnosis 

field. These definitions were reviewed and discussed at SAFEPROCESS 2000 

conference. Few of those definitions are provided below: 

 
 
 
__________________ 
This thesis follows the style of IEEE Transactions on Control Systems Technology. 
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Fault: an unpermitted deviation of at least one characteristic property or parameter of the 

system from acceptable/usual/standard condition.      

 
Failure: a permanent interruption of a system’s ability to perform a required function 

under specified operating conditions. 

 
Fault Detection: determination of faults present in a system and time of detection. 

 
Fault Isolation: determination of kind, location and time of detection of a fault. It 

follows fault detection. 

 
Fault Identification: determination of size and time-variant behavior of a fault. It 

follows fault isolation. 

 
Fault Diagnosis: determination of kind, size, location and time of a fault. It follows fault 

detection and includes fault isolation and identification.  

 
Reliability: ability of a system to perform a required function under stated conditions, 

within a given scope, during a given period of time. It is measured in mean time between 

failures. 

 
Safety: ability of a system to not cause danger to persons or equipment or the 

environment. 

 
Availability: probability that a system or equipment will operate satisfactorily and 

effectively at any point in time. 

 

1.2 Types of Faults 

Gertler (1998) [1] discusses the work of Basseville and Nikiforov (1993) and Isermann 

(1997) who gave the following three criteria for the classification of faults [1]. 

a) Classification based on location in the physical system: Depending on whether the 

fault is located in the sensor, actuator or in one of the components we have the 

sensor fault, actuator fault or the component fault respectively. In a linear system 
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sensor fault results in a changed C and D  matrices, the actuator fault result in a 

changed B  and D  matrices and the component fault results in the changed A  

matrix. 

b) Classification based on mathematical properties: Depending on whether the faults 

are additive or multiplicative in nature we have the additive faults and the 

multiplicative fault. 

c) Classification based on the time behavior characteristics: if there is an abrupt 

change from the nominal value to the faulty value then it is called abrupt fault. If 

there is a gradual change from the nominal value to the faulty value then it is 

called it is called incipient fault. If the fault term changes from the nominal value 

to the faulty value and returns to the nominal value after a short period of time 

then it is called intermittent fault. 

 

Fault detection and diagnosis systems implement the following tasks: 

1) Fault detection, that is, the indication that something is going wrong in the 

monitored system; 

2) Fault isolation, that is, the determination of the exact location of the fault ( the 

component which is faulty) 

3) Fault identification, that is, the determination of the magnitude of the fault. 

 

The fault isolation and fault identification tasks are referred together as fault diagnosis. 

The detection performance of the diagnostic technique is characterized by a number of 

important and quantifiable benchmarks namely fault sensitivity – the ability to detect 

faults of reasonably small size, reaction speed – the ability of the technique to detect 

faults with reasonably small delay after their arrival and robustness – the ability of the 

technique to operate in the presence of noise, disturbances and modeling errors, with few 

false alarms. Isolation performance is the ability of the diagnostic system to distinguish 

faults depends on the physical properties of the plant, on the size of faults, noise 

disturbances and model errors, and on the design of the algorithm. The tasks to be 

performed in the in the fault detection and diagnosis can be shown by the following 

diagram 
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Figure 1.1: The fault detection and isolation task 

 

1.3 Approaches to the Fault Detection and Diagnosis 

Fault detection schemes can be broadly classified into two main categories depending on 

the plant’s operating condition, namely: 1) off-line detection schemes in which the plant 

is investigated offline, and 2) online detection schemes, where the plant is operational. Of 

these, online schemes, although difficult to develop, are preferable because many faults 

occur only when the plant is running and also because it provides an opportunity to take 

on-line real-time corrective measures and maintain a healthy operation of the plant. A 

schematic diagram is shown in Fig. 1.1  

 
Fault detection and isolation methods can also be classified into two major groups 

namely Model-Based Methods and Model-Free Methods. The former utilize the 

mathematical model of the plant and the latter do not utilize the mathematical model of 

the plant. A brief description is as follows: 

 

1.3.1 Model-Free Method 

 This fault detection and isolation method does not use the mathematical model of the 

plant range from physical redundancy to logical reasoning. Some of the prominent 

model-free methods are as follows: 

1) Physical Redundancy. In this approach multiple sensors are installed to measure 

the same physical quantity. Difference between the measurements indicates a 

sensor fault. One of the drawbacks of the physical redundancy method is that it 

leads to extra hardware costs and extra weights. 

2) Special Sensors. Sometimes special sensors may be installed explicitly for 

detection and diagnosis. 
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3) Limit Checking. In this method plant measurements are compared by computer to 

preset limits. When the threshold quantity is exceeded it indicates a fault. 

Generally there are two levels of limits, the first serving for pre-warning while the 

second triggers an emergency reaction. One of the drawbacks of the limit 

checking method is that the test threshold should be set quite conservatively in 

order to take into account the normal input variations. Also, the effect of a single 

component fault may propagate to many plant variables setting off a confusing 

multitude of alarms. 

4) Spectrum Analysis. Analysis of the spectrum of the measured plant variables may 

also be used for detection and isolation. Most plant variables also exhibit a typical 

frequency spectrum under normal operating conditions. Any deviation from this is 

an indication of the abnormality. Some type of faults may also have their own 

characteristic signature in the spectrum, facilitating fault isolation. 

5) Logical Reasoning. Logical reasoning techniques form a broad class which is 

complementary to the methods outlined above, in that they are aimed at 

evaluating the symptoms obtained by the detection hardware or software. The 

system may process the information presented by the detection hardware/software 

or may interact with a human operator inquiring from him about the particular 

symptoms and guiding him through the entire logical process. 

 

1.3.2 Model Based Methods 

Model based fault detection and diagnosis utilizes an explicit mathematical model of the 

monitored plant. The mathematical description of the plant is in differential equations or 

equivalent transformed representations. Stages of model based fault detection and 

diagnosis are shown in Fig. 1.2.  

 

Residual Residual
Generation Evaluation

→ → →
observation residuals decision
――― ――― ―――  

Figure 1.2: Stages of model-based fault detection and diagnosis 
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According to Isermann & Balle [1] there are three basic categories of model-based fault 

detection and diagnosis: 

1) System Identification and Parameter Estimation. In this method process 

parameters are estimated using a system identification technique on input/output 

measurements. The estimated values are compared with the nominal parameter 

set. The difference is called the residue and is used for fault identification. 

2) State and Output Observer. In this model an observer, often a Kalman filter is 

used to estimate the system’s state variables and reconstruct the system outputs. 

The residual, defined as the difference between the real and the estimated output, 

can be used as a fault indicator. A special class of observer-based approach is the 

multiple-model estimation approach. 

3) Residual Generation. In this approach first of all primary residuals are formed as 

the difference between the actual plant outputs and those predicted by the model. 

The primary residuals are then subjected to a linear transformation to obtain the 

desired fault-detection and isolation properties such as sensitivity to faults. 

 
Figure 1.3 describes the model-based fault detection using parameter estimation and 

residual generation. Here x  is the state variable and θ  is the parameter variable. The hat 

denotes the estimated values.  
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Figure 1.3: Use of estimation for diagnosis of faults and disturbances 

         

1.3.3 Other Methods 

 When a process is too complex to be modeled analytically and signal analysis does not 

yield an unambiguous diagnosis then fault detection is done through some other 

approaches such as artificial intelligence, logic models etc. Some of the approaches are as 

described below: 

1) Logic Models. In this approach a description of the system in the form of logical 

propositions about the relations between the system components and the 

observations available is developed. These descriptions are called logic models. 

Reiter (1987) in [1] developed a general theory of diagnosis for system with logic 

models. However the formulation of logical models suitable for analysis by 

Reiter’s method is not always possible.  

2) Digraph Method. In this method relationship between the variables is coded as a 

signed directed graph also called the digraph. Powerful results from graph theory 

are used to analyze the interrelations in the system. One of the advantages of this 

approach is that detailed modeling is not needed. Therefore they can be applied to 

poorly known systems with relatively little effort. 
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3) Probabilistic Methods. If we consider a long time of operation of the plant then 

the occurrence of faults and disturbances is a stochastic process. In this method 

the probability is used to find the most likely diagnosis compatible with the 

available information about the state of the system.                                

 
Apart from the above described methods some other notable methods include the 

artificial neural network approach and the fuzzy logic approach. 

 

1.4 Brief Description of Previous Work 

According to Gertler [1] R.K. Mehra and J. Peschon and Allan Willsky (1976 and 1986) 

were among the first few who started using Kalman filter for fault detection [1]. Gertler 

also discusses the works of Lund (1992) used multiple Kalman filters to discriminate 

between two or more process models and Alessandri et al, (1999b) who used sliding-

mode observers for the purpose of residual generation in fault diagnosis for unmanned 

underwater vehicles [1]. Alessandri et al, compared performances obtained using sliding-

model observer and extended Kalman filter approaches for residual generation. A special 

class of observer-based approach is the multiple-model estimation approach which was 

described by Rong Li also mentioned by Gertler in his book [1]. Also mentioned in [1] 

are the works of Isermann (1993) who used the system identification techniques to 

determine process parameters which are used for fault detection. Other major contributors 

in the field of parameter estimation mentioned in [1] include A. Rault (1984) G. C. 

Goodwin (1991) [1]. 

 
A brief description of the signal based method was given by Gustafson (2000). Other 

source of information for this method is in the paper by Isermann and Balle (2000)  [1]. 

Rojas-Guzman and Kramer [2] use probability to find the most likely fault based on the 

available information about the state of the system. An alternative approach to fault 

detection and diagnosis that has received considerable interest in recent years is based on 

the use of multivariate statistical techniques (Wise and Gallagher 1996, Macgregor, 

1995) [1]. This idea is motivated by the univariate statistical process control method. 

Frank (1990) gave detailed information about the use of fuzzy logic for fault detection 
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[1]. The artificial neural networks approach was taken by Koppen-Seliger and Frank [1]. 

Neural networks based methods for fault diagnosis have received considerable attention 

over the last few years.  Their learning and interpolation capabilities have led to several 

successful implementations over various processes (Venkatasubramanian and coworkers, 

1989, 1993, 1994) [1].  

 
Reiter (1987) developed logic models for systems and used them in diagnosis. Forbus 

(1984) and Kuipers (1987) used signed directed graph (digraph) for detecting faults [1]. 

Various other methods and variations of the above described methods have been used for 

fault detection and isolation but to the best knowledge none of the fault detection and 

isolation schemes have used the multivariable zeros and zero-directions. 

 

1.5 Motivation for the Present Work 

Considerable amount of effort has been applied in developing the design methodologies 

such as H ,µ and QFT∞ . This has resulted in a knowledge base which is sufficient to solve 

the feedback design problems of the multi-input multi-output (MIMO) systems to a 

satisfactory level. However in none of the previous efforts the directional properties of 

the MIMO systems such as the transmission zeros, input zero direction, output zero 

direction etc was utilized. Neither were the directional properties of MIMO systems 

utilized in the various previously developed popular fault detection and isolation 

techniques of MIMO systems. As a first attempt towards fully utilizing the directional 

properties of MIMO systems the present work aims at developing a novel online fault-

detection scheme for linear MIMO systems was developed based on multivariable zeros 

and zero directions.      
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CHAPTER II 

ZEROING OF OUTPUTS IN OUTPUT-ZERO DIRECTIONS 

 
2.1 Introduction  

The concept of zeros and the zero directions of a system has been the subject of lot of 

research in the last three decades. [1] gives an interesting discussion of the notable works 

done by Amin and Hassan (1988); El-Ghazawi et al; Emami-Naeini and Van Dooren 

(1982); Hewer and Martin (1984); Latawiec (1988); Lataweic et al (1999); Misra et al 

(1994); Owens (1977); Sannuti and Saberi (1987); Tokarzewski (1996 and 1998) and 

Wolovich (1973). MacFarlane and Karcanias, 1976 [3] presented their own definition of 

zeros. This also led to a number of different definitions of transmission zeros and they are 

not necessarily equivalents. Davison and Wang [4] discussed the properties of the 

transmission zeros [4]. Schrader and Sain [5] provided and comprehensive survey about 

the different types of zeros. The classification of different zeros into following three main 

groups by Tokarzewski is discussed in details in [1]: 

 

a) Those originating from the Rosenbrock’s approach and related to the Smith-

Mcmillan form. Some of the notable works in this field mentioned in [1] are by 

Amin and Hassan, ; Emami-Naeini and Van Dooren, 1982; MacFarlane and 

Karcanias, 1976; Misra et al, 1994; Sannuti and Saberi, 1987; Wolovich, 1973, 

Rosenbrock, 1970. 

b) Those connected with the concept of state-zero and input-zero directions 

introduced in MacFarlane and Karcanias, 1976. 

c) Those employing the notions of inverse systems. Notable works in this field 

discussed in [1] are by Lataweic, 1998; Lataweic et al, 1999. 

 

Few of the widely known types of zeros are as follows: 
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1) Invariant Zeros: The set of the zeros of the invariant polynomials of the system 

matrix ( )P s  are called the system invariant zeros. 

2) Transmission Zeros: The zeros of the system transfer function matrix ( )G s  are 

called the transmission zeros. If a system is completely controllable and 

completely observable, then the set of invariant zeros and transmission zeros are 

the same.  

3) Decoupling Zeros. Decoupling zeros were introduced by Rosenbrock, (1970) [1] 

and are associated with the situation were some free modal motion of the system 

state, of exponential type, is uncoupled from the system’s input or output. The 

decoupling zeros are further classified into two categories namely the output 

decoupling zeros and the input decoupling zeros. Sometimes some decoupling 

zeros satisfy the properties the both the input decoupling and output decoupling 

zeros and are called input-output decoupling zeros. 

4) System Zeros. Roughly speaking the set of system zeros is the set of transmission 

zeros plus the set of decoupling zeros. The exact relationship involved is given by 

the following set equality 

     { }
input-output

input-decoupling zeros, output-decoupling 
system zeros decoupling

zeros,transmission zero
zero

⎧ ⎫
⎧ ⎫ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪

⎩ ⎭

                    

 

 

The relationship between system zeros, invariant zeros and transmission zeros is shown 

in Figure 2.1 
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Figure 2.1: Relationship between system zeros, invariant zeros and transmission zeros 

  

The relationship between the transmission zeros, decoupling zeros and the invariant zeros 

is shown in the Figure 2.2 

 

 
Figure 2.2: Relation between transmission, decoupling and invariant zeros 

  

When the system is fully controllable and observable then the transmission zeros and the 

invariant zeros are the same. If the system is not fully controllable and observable then 

under those circumstances there are some zeros called the decoupling zeros which belong 

to the invariant zeros but do not belong to the transmission zeros.  

Invariant 
Zeros ∪  =Transmission  

Zeros 
Decoupling 
Zeros 

Transmission 
      Zero 

Invariant 
Zeros 

System  Zeros  
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However throughout this present work the zeros refer to transmission zero satisfying the 

definitions provided by the MacFarlane and Karcanias in 1976. One fundamental 

difference between SISO and the MIMO system is the presence of directional properties 

in the MIMO system. The input zero direction and the output zero direction are two such 

directional properties. Again the definitions provided by MacFarlane and Karcanias are 

followed.  

 

2.2 Definitions, Problem Setup and Assumptions 

Before proceeding further it will useful to provide some definitions of the terms which 

will be used in the rest of this chapter.  

 

2.2.1 Definitions 

For a linear system defined as  

x Ax Bu
y Cx
= +
=

          (2.1) 

with n states, m inputs and r outputs the polynomial system matrix ( )P s  is defined as  

( )
0

sI A B
P s

C
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

         (2.2) 

MacFarlane and Karcanias [3] defined the transmission zeros are the values s z=  for 

which ( )P s  loses rank. The state zero vector, 0x  and the input zero direction, g  are 

defined as the solution to the following equation. 

0 0
0 0

zI A B x
C g
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

        (2.3) 

The output zero direction  v  is defined as follows 

[ ] 0
0 0

T

v

zI A B
x v

C
− −⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

        (2.4) 
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2.2.2 Transmission-blocking Theorem of MacFarlane and Karcanias [3]  

A necessary and sufficient condition for an input ( ) ( ) ( )exp 1u t g zt t=  to yield a 

rectilinear motion in the state space ( ) ( ) ( )0 exp 1x t x zt t=  and to be such that ( ) 0y t ≡ for 

0t ≥  is that  

0 0
0 0

zI A B x
C g
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

It is a well known fact that in the steady state each output of the plant goes to zero when 

the input is applied in the input zero direction. Also if the plant is in steady state then the 

combination of outputs in the output zero direction is always zero. MacFarlane and 

Karcanias showed that output zeroing property can be obtained even when the plant is not 

in the steady state. In the following sections it has been proved that the zeroing of the 

output combination in the output zero direction is also possible for the non-steady state of 

the plant.        

 

2.2.3 Problem Formulation of the zeroing of output in output zero direction 

Consider a plant P  defined by the following equations 

x Ax Bu
y Cx
= +
=

          (2.5) 

with n  state variables, m  inputs and r  outputs. Now if v  is the output zero direction of 

the plant P  then taking the combination of outputs in the output zero direction can be 

described by following block diagram 

( ) 1( ) ( ) output combination in direction
y

U s G s C sI A B v v−−−→ = − ⎯→ ⎯→  

which can be further simplified to    

( ) 1( ) ( ) output combination in directionU s G s vC sI A B v−′⎯→ = − ⎯→  

Thus the problem of zeroing the output combination in output zero direction of plant P  

can be reduced to the problem of output zeroing of the plant P′  which is defined as 

follows 



 

15 

 

x Ax Bu
y vCx
= +
=

          (2.6) 

 

where ,  and  A B C are the system matrices of the original plant, P  and v  is the output 

zero direction of the original plant P .  At first glance the solution to this problem seems 

very obvious because the transmission zero and input zero direction of P′  can be 

calculated using the following equation  

0 0
0 0

z I A B x
vC g
′ ′− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦
        (2.7) 

and then from the output zeroing result of MacFarlane and Karcanias we can send the 

input signal of the form z tg e ′′  with initial state vector equal to 0x′  in order to get the 

output of the plant P′  always equal to zero or in other words get the combination of the 

outputs of the plant P  in the output zero direction of P , always equal to zero. However 

the problem is not as trivial as it seems. It should be noted that the number of outputs for 

the plant P  is one whereas the number of inputs to the plant P  is m . Davison and Wang 

[4] showed that if the number of inputs and outputs are not same for almost all (A,B,C) 

triples the system has no transmission zeros. Hence there is a need to approach this 

problem in an alternative way.   

 

Let the kth column of the B matrix be denoted by kb . Let kz  be the transmission zero 

corresponding to the kth input channel and is defined as the value ks z=  for which the 

following matrices loses its rank 

0
ksI A b

vC
− −⎡ ⎤

⎢ ⎥
⎣ ⎦

         (2.8) 

Let kg  and 0kx  be the input zero direction and state zero vector respectively 

corresponding to the kth input channel and they are found by the following equation 

0 0
0 0

kk k

k

xz I A b
gvC

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
        (2.9) 

Notice that existence of kz  is guaranteed (Kouvaritakis and MacFarlane, 1976 [8],[9]) for 

almost all cases since the number of output and input for the plant is equal (i.e. one).  
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2.3 Main Result 

If the input to the plants P  and P′  is given by   

1 2
1 2( ) e e .... e .... ek m

Tz t z tz t z t
k mu t g g g g⎡ ⎤= ⎣ ⎦      (2.10)  

 for all 0t ≥ then the following result holds. 

 

Theorem 2.1: For previously defined plants P  and P′  and input ( )u t  the state vector 

for both the plants is given by  

( ) ( ) 0 0
1 1

0 k

m m
z ttA

k k
k k

x t e x x x e
= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∑        (2.11)  

The output of the plant P′  is given by 

( ) ( ) 0
1

0
m

tA
k

k

y t vCe x x
=

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

∑         (2.12) 

and the output to the plant P  is given by  

( ) ( ) 0 0
1 1

0 k

m m
z ttA

k k
k k

y t Ce x x C x e
= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∑       (2.13) 

  

where ( )0x  is the initial state vector for both the plants P  and P′  since the state vector 

for both P  and P′  is same for all time (change in the output matrix has no effect on the 

state variables).   

 

Proof:  The generalized solution for state vector for P  and P′  is given by 

( ) ( ) ( ) ( )
0

0
t

A ttAx t e x e BU dτ τ τ−= + ∫        (2.14)  

Substituting for ( )u τ  we get 

( ) ( ) ( )

10

0 k

t m
A t ztA

k k
k

x t e x e b g e dτ τ τ−

=

⎛ ⎞= + ⎜ ⎟
⎝ ⎠
∑∫       (2.15) 

For the kth input channel we have the following relations from (2.9) 

( ) 0k k k kz I A x b g− =          (2.16) 
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0 0kvCx =           (2.17) 

Substituting (2.16) in (2.15) we get 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

0
1 0

0
1 0

0 0
1 1

0

0

0

k

k

k

tm
A t ztA

k k
k

tm
z I AtA tA

k k
k

m m
z ttA

k k
k k

x t e x e z I A x e d

e x e e z I A x d

e x x x e

τ τ

τ

τ

τ

−

=

−

=

= =

= + −

= + −

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑∫

∑∫

∑ ∑

 

                     (2.18) 

Now, 

( ) ( )y t vCx t′ =          (2.19) 

          

Substituting (2.17) and (2.18) in (2.19) we get 

 

  ( ) ( ) 0
1

0
m

tA
k

k

y t vCe x x
=

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

∑  

Now output to the plant P  is given by  

( ) ( )y t Cx t=           (2.20) 

Substituting (2.18) in (2.20) we get 

( ) ( ) 0 0
1 1

0 k

m m
z ttA

k k
k k

y t Ce x x C x e
= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∑  

 

The above results can be generalized as follows. 

 

Theorem 2.2: For previously defined plants P  and P′  and input ( )u t  defined as  

( ) 1
1 1 ... ...k m

TZ t Z tZ t
k k m mu t g e g e g eα α α⎡ ⎤= ⎣ ⎦      (2.21)  

where kα  is a scalar, the state vector for both the plants is given by  
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( ) ( ) 0 0
1 1

0 k

m m
z ttA

k k k k
k k

x t e x x x eα α
= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∑       (2.22) 

The output of the plant P′  is given by 

( ) ( ) 0
1

0
m

tA
k k

k

y t vCe x xα
=

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

∑        (2.23)  

and the output to the plant P  is given by  

( ) ( ) 0 0
1 1

0 k

m m
z ttA

k k k k
k k

y t Ce x x C x eα α
= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∑      (2.24) 

     
where ( )0x  is the initial state vector for both the plants P  and P′  since the state vector 

for both P  and P′  is same for all time (change in the output matrix has no effect on the 

state variables).   

 

Proof: The proof is similar to the proof of the previous theorem. 

The generalized solution for state vector for P  and P′  is given by 

( ) ( ) ( ) ( )
0

0
t

A ttAx t e x e BU dτ τ τ−= + ∫        (2.25)  

Substituting for ( )u τ  we get 

( ) ( ) ( )

10

0 k

t m
A t ztA

k k k
k

x t e x e b g e dτ τα τ−

=

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑∫       (2.26) 

For the kth input channel we have the following relations from (2.9) 

( ) 0k k k kz I A x b g− =          (2.27) 

        

0 0kvCx =           (2.28) 

Substituting (2.27) in (2.26) we get 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( )

0
1 0

0
1 0

0 0
1 1

0

0

0

k

k

k

tm
A t ztA

k k k
k

tm
z I AtA tA

k k k
k

m m
z ttA

k k k k
k k

x t e x e z I A x e d

e x e e z I A x d

e x x x e

τ τ

τ

α τ

α τ

α α

−

=

−

=

= =

= + −

= + −

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑∫

∑∫

∑ ∑

 

                     (2.29) 

 

Now, 

( ) ( )y t vCx t′ =          (2.30) 

          

Substituting (2.28) and (2.29) in  (2.30) we get 

 

  ( ) ( ) 0
1

0
m

tA
k k

k
y t vCe x xα

=

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

∑  

Now output to the plant P  is given by  

( ) ( )y t Cx t=           (2.31) 

Substituting (2.29) in (2.31) we get 

( ) ( ) 0 0
1 1

0 k

m m
z ttA

k k k k
k k

y t Ce x x C x eα α
= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∑  

 

Lemma 2.1: In the results of Theorem 2.1 and Theorem 2.2 if we substitute 

( ) 0
1

0
m

k
k

x x
=

= ∑  and ( ) 0
1

0
m

k k
k

x xα
=

=∑ respectively, in both the cases we get ( ) 0y t′ = for 

all 0t ≥ . It should be noted that even though the output of plant P  is non-zero yet the 

output of the plant P′  is zero for the above initial condition. In other words even though 

the components of the output of the plant P  are non-zero yet their combination in the 

output zero direction of P is zero. This useful result will be used to obtain the 

combination of outputs of the original plant P  in its output zero direction equal to zero. 
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Remark 2.1: Let , ,m n r∈ ∈ ∈U R X R Y R  be the input vector space, state vector space 

and the output vector space for the plant P  respectively then 

1 0 0
0 1 0

0 0 1

span

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

U  

and ( )01 02 0mspan x x x=X   if ( ) 0
1

0
m

k k
k

x xα
=

=∑ . 

Thus the relationship between the input space, state space and the output space for the 

zeroing of the output combination of plant P  in its output zero direction can be shown by 

the geometrical relationships in Figure 2.3 

 
Using the Lemma 2.1 an algorithm to obtain a set of input signals and the corresponding 

initial state vector is presented below such that the combinations of output components of 

plant P  in the output zero direction of plant P   is always zero. The steps are as follows: 
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Figure 2.3: Geometrical relationships between input, output and state spaces of plant P 

for the zeroing of output combination in output zero direction 

 

Step 1:  Find the transmission zero, output zero direction, input zero direction and state 

zero vector of the plant P using (2.2), (2.3) and (2.4). 

Step 2: If kb  is the kth column of the B matrix then  find the transmission zero kz , input 

zero direction kg  and state zero vector using  0kx  corresponding to kth input channel  

using (2.8) and (2.9). 

Step 3: Set the initial condition of the plant P as follows 

( ) 0
1

0
m

k k
k

x xα
=

=∑   

INPUT SPACE STATE SPACE OUTPUT SPACE 

Output Combination in 
output zero direction  

 

 
1 0 0
0 1 0

0 0 1

span

⎛ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝

 

        0 

 
 
B  

C

v

 
Span( 01x 02x ,
… 0mx ) 
 

A 
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Step 4: Use  ( )u t  defined by (2.21) as the input to the plant P . 

 

Remark 2.2: Theorem 2.2 helps to upscale or downscale the input values for each input 

channel. Thus even though the kz t
kg e may not lie in normal range of ku  yet by careful 

selection of kα  we can bring it into the normal range of ku . 
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CHAPTER III 

USE OF OUTPUT ZEROING THEOREM FOR FAULT DETECTION 

 
In Chapter II it was shown that it is possible to make the combination of outputs in the 

output zero direction equal to zero irrespective of time for some special class of inputs. In 

the present chapter the results derived in the previous chapter and the output zeroing 

result of MacFarlane and Karcanias [3] will be used for the fault detection in linear 

continuous time MIMO plants. 

  
3.1 Novel Fault Detection Scheme Using Multivariable Zeros and Zero-Directions 

Based on Theorem 2.1, Theorem 2.2 and Lemma 2.1 below is a test to find the faulty 

column of the transfer function matrix ( )G s  of plant P . 

 
3.1.1 Column Test 

If the input to the plant P  and its initial conditions are given by 

( ) 0 ... 0 .... 0kz t
ku t g e⎡ ⎤= ⎣ ⎦ and ( ) 00 kx x=  then the combination of the outputs in 

the output zero direction should be zero. A non-zero value indicates that the elements of 

the plant transfer function matrix corresponding to the kth input channel (i.e. the kth 

column of ( )G s  ) have changed. 

 
Based on the output zeroing result of McFarlane and Karcanias [3] stated in Chapter II 

the following Lemma is derived. 

 
Lemma 3.1: Let z , 0x  and g be the transmission zero, state zero vector and the input zero 

direction of the plant respectively. Then for input ( ) ztU t ge=  and initial condition 

( ) 00x x= the non-zero value of the kth output indicates that the kth row of the transfer 

function matrix is faulty. 
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Proof: For the given input and initial condition all the outputs should be identically zero 

according to MacFarlane and Karcanias. Since the kth output depends only on the kth row 

of ( )G s  therefore the non-zero kth output indicates faulty kth row of ( )G s . 

 
Using Lemma 3.1 the following test for finding the faulty rows of the plant transfer 

function matrix of plant P is obtained. 

 

3.1.2 Row Test  

For input ( ) ztu t ge=  and initial condition ( ) 00x x= for the plant P  the non-zero value of 

the kth output indicates that the kth row of the transfer function matrix is faulty. 

 

Using the row test and the column test in conjunction on the plant transfer function 

matrix ( )G s  we can pin-point the faulty element of the plant transfer function matrix. 

Suppose using the row test we find that the ith row of ( )G s  is faulty and using the 

column test we find that the kth column of ( )G s  has faults then we have the scenario as 

show in Figure 3.1 

 

i-th faulty row 

k-th faulty column

ikg

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Figure 3.1: Faulty ith row and faulty kth column   

 

Thus if we have only one faulty row and only one faulty column then we can easily 

deduce that only one element of the plant transfer function matrix is faulty. Thus if the ith 

row and kth column are faulty then we can easily deduce that the ikg  element of plant 

transfer function matrix is faulty. 
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3.2 An Illustrative Example  

The above results are now illustrated using a quadruple tank system. The system has four 

stable poles and two multivariable zeroes. A complete description of the system, 

derivation of the non-linear model using mass balance and Bernoulli’s equation and the 

linearized model was given by Johansson [7]. The outputs are the voltages from level 

measurement devices and the inputs are the input voltages to the pump.  

 

 

Figure 3.2: Schematic representation of quadruple-tank system [7]. 

 

A schematic diagram of the process is shown in Fig. 3.2. The process inputs are 1v  and 

2v  and the outputs are 1y  and 2y . Mass balances and Bernoulli’s law yield 

( )

( )

31 1 1 1
1 3 1

1 1 1

2 2 4 2 2
2 4 2

2 2 2

2 23 3
3 2

3 3

1 14 4
4 1

4 4

2 2

2 2

1
2

1
2

adh a kgh gh v
dt A A A
dh a a kgh gh v
dt A A A

kdh a gh v
dt A A

kdh a gh v
dt A A

γ

γ

γ

γ

= − + +

= − + +

−
= − +

−
= − +

 

where 
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 iA  Cross-section of Tank i  

 ia  Cross-section of the outlet hole 

 ih  Water level 

The voltage applied to Pump is iv  and the corresponding flow is i ik v . The parameters 

( )1 2, 0,1γ γ ∈  are determined from how the valves are set prior to an experiment. The 

flow to Tank 1 is 1 1 1k vγ  and the flow to Tank 4 is ( )1 1 11 k vγ− and similarly for Tank 2 and 

Tank 3. The acceleration of gravity is denoted by g . The measured level signals are 1ck h  

and 2ck h . The parameter values are following: 

1 3,A A  [cm2] 28 

2 4,A A  [cm2] 32 

1 3,a a   [cm2] 0.071 

2 4,a a  [cm2] 0.057 

ck      [V/cm] 0.50 

g    [cm/s2]  981 

 

After linearizing about a particular operating point we have the following system 

matrices 

 

0.0161 0 0.0435 0
0 0.0111 0 0.0333
0 0 0.0435 0
0 0 0 0.0333

A

−

−
=

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

0.0833 0
0 0.0628
0 0.0479

0.0312 0

B =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 
0.5 0 0 0
0 0.5 0 0

C =
⎡ ⎤
⎢ ⎥
⎣ ⎦
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3.2.1 Verification of Theorem 2.1  

Now the transmission zeros corresponding to the first and second input channels found 

using (2.8) are 1 0.0594z = −  and 2 0.0333z = − . Using (2.9) the corresponding input 

directions and state zero vectors are given by 

 [ ]1 0.3827g =  [ ]2 0.0675g = [ ]01 0.7367 0.3168 0.000 0.4587 Tx = − −      

[ ]02 0.8042 0.3458 0.3182 0.3577 Tx = − −  
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Figure 3.3: Plant outputs and their combination in output zero direction 

 

For ( ) 0.0594 0.03330.3827 0.0675
Tt te eu t − −= ⎡ ⎤⎣ ⎦ and initial condition ( ) 01 020x x x= + we get the 

outputs as shown in Figure 3.3. The results of Theorem 2.1 are verified by plots of Figure 

3.3. The plant transfer function matrix of the plant is given by 

( )
( )( )

( )( ) ( )

2.6 1.5
1 62 1 23 1 62

1.4 2.8
1 30 1 90 1 90

s s s
G s

s s s

+ + +
=

+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

     (3.1) 
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Now let us introduce some faults in the second column of ( )G s by changing the second 

column of the B matrix. Note that the changes to ( )G s  can be made by changing either 

,A B or C  matrices however changing second column of B  only changes the second 

column of ( )G s . Let the new B  matrix be given as  

0.0833 0.5
0 0.0628
0 0.0479

0.0312 0

B =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

A and C  matrices remain same. Then the new transfer function matrix is given by 

( )
( )( )

( )( ) ( )

2.6 356.50 16.98
1 62 1 23 1 62

1.4 2.8
1 30 1 90 1 90

changed

s
s s s

G s

s s s

+

+ + +
=

+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

     (3.2) 

It can be noticed that  ( )1, 2  element of ( )G s  has changed. 

 

3.2.2 Column Test 

 We will use the column test to identify the faulty column of ( )G s . Now the transmission 

zeros corresponding to the first and second input channels found using  (2.8) are 

1 0.0594z = −  and 2 0.0333z = − . Using  (2.9) the corresponding input directions and state 

zero vectors are given by 

 [ ]1 0.3827g =  [ ]2 0.0675g = [ ]01 0.7367 0.3168 0.000 0.4587 Tx = − −      

[ ]02 0.8042 0.3458 0.3182 0.3577 Tx = − −  

For input signal ( ) 0.03330 0.0675
Ttu t e−⎡ ⎤= ⎣ ⎦ and the initial condition 

( ) [ ]02 0.8042 0.3458 0.3182 0.35770 Tx x = − −= the combination of outputs in output 

zero direction is shown in Figure 3.4.  
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Figure 3.4: Combination of outputs in the output zero direction for the second column 

 

Using the column test and Figure 3.4 we conclude that the fault lies in the second column 

of the transfer function matrix. This result is verified by looking at the changed ( )G s . By 

following a similar procedure for the first input channel it is concluded that there is no 

fault in the first column of the ( )G s . For this case the combination of outputs in output 

zero direction is shown in Figure 3.5.  
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Figure 3.5: The combination of outputs in output zero direction for the first column 

 

Thus we conclude that the fault lies only in the second column of the plant transfer 

function matrix. 
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3.2.3 Row Test 

Now for our system the transmission zero, state zero vector and the input zero direction 

are as follows 

0.0594z = −  

[ ]0 0 0.000 0.7506 0.4699 Tx =  

[ ]0.3920 0.2494 Tg = − −  

For ( ) [ ] 0.05940.3920 0.2494 T tu t e−= − −  and ( ) [ ]0 0 0.000 0.7506 0.4699 Tx =  the 

outputs are shown in Figure 3.6. 
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Figure 3.6: Outputs of the continuous time plant for an output zeroing input 

 

From Figure 3.6 it is clear that the first row (using the row test) of the plant transfer 

function matrix is faulty.  

 
Since in this case there is only one faulty row and one faulty column we can straightaway 

conclude that the fault lies in ( )1, 2  element of plant transfer function matrix. This 

matches with the result obtained by comparing the transfer function matrices given in . 

(3.1) and (3.2). 
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 3.3 Steady State Analysis 

From the Final Value Theorem we have ( ) ( )
0

lim lim
t s

y t sY s
→∞ →

=  where ( )Y s the Laplace 

transform of stable ( )y t . Thus for an input of the form ( ) [ ] ( )1 2 ... 1T
mu t tα α α= , 

where ( )t1 denotes a unit step function, the steady state output is given by  

( )[ ]1 20 ... T
ss my G α α α=        (3.3) 

 

Lemma 3.1: If ( ) [ ] ( )0 ... ...0 1T
ku t tα=  then the ith steady state output is given by 

( ), 0ss i ik ky G α=  where ( )0ikG  is the ( ),i k element of ( )0G . Thus if actual ith steady state 

output is different from ( )0ik kG α then it can be concluded that the ( ),i k  element of the 

plant transition matrix ( )G s  is faulty. 

 
Using the transmission zeros and the zero directions of the quadruple-tank system we 

concluded that 12G  is faulty. Now since our plant has all the poles in the left half plane 

we can corroborate our previous conclusion using steady state analysis. 

 
Let the input be ( ) [ ] ( )0 1 1Tu t t=  then for the defective plant we get the output plot as 

shown in Figure 3.7. 
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Figure 3.7: Steady state analysis of the second column 

 

Similarly for ( ) [ ] ( )1 0 1Tu t t= we get Figure 3.8 for steady state output of the plant. 

( )
2.6 1.5

0
1.4 2.8idealG =
⎡ ⎤
⎢ ⎥
⎣ ⎦

         (3.4) 

From Figure 3.7 and Lemma 3.1 we conclude that 22G  has not changed whereas 12G  is 

faulty. From Figure 3.8 we conclude that both 11G  and 12G  have no faults. This 

conclusion is the same as the one arrived using transmission zeros and zero directions. 
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Figure 3.8: Steady state analysis of the first column 
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CHAPTER IV 

FURTHER RESULTS FOR FAULT DETECTION USING ZERO 

AND ZERO DIRECTIONS 

 
In the previous chapter novel fault detection scheme for MIMO continuous time system 

using transmission zeros and zero directions, was developed. The results were also 

verified by the steady state analysis of the system. However it was assumed that the 

system has at most one defective column and one defective row. In this chapter the 

scheme will be generalized to multiple defective rows and defective columns. Some other 

results are also discussed in this chapter. 

 

4.1 Extension to Multiple Faulty Rows and Columns 

If we have only one faulty row and only one faulty column then we can easily deduce 

that only one element of the plant transfer function matrix is faulty. Thus if the ith row 

and kth column are faulty then we can easily deduce that the ikg  element of plant transfer 

function matrix is faulty. 

 
Deductions is still easy for the following two cases 1) one faulty row and more than one 

faulty columns  2) more than one faulty rows and one faulty column. For the first case 

(Figure 4.1) the only possibility which satisfies the result of the row test and the column 

test is that the  and ik pkg g  elements are the defective elements. For the second case 

(Figure 4.2) the only possibility is that ikg  and pkg are the defective elements of the plant 

transfer function matrix.  
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i-th faulty row

p-th faulty row

           k-th faulty column

ik

pk

g

g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Figure 4.1: Deduction for the case in which there is multiple faulty rows and single faulty 

column 

 

i-th faulty row

k-th and l-th faulty columns

ik ilg g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Figure 4.2: Deduction for the case in which there is single faulty row and multiple faulty 

columns 

 

However the deduction becomes difficult if both multiple faulty rows and columns exist 

as shown in Figure 4.3  

 

i-th faulty row

j-th faulty row

k-th faulty col l-th  faulty col

ik il

jk jl

g g

g g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Figure 4.3: The case in which there are both multiple faulty rows and multiple faulty 

columns 

 



 

35 

 

Suppose using the row test we found that the ith and jth rows are faulty and similarly using 

the column test we found out that the kth and lth columns are faulty. For the above 

combination of faulty rows and columns we can have the following possibilities: 

(1) , , ,ik il jk jlg g g g  are the faulty elements of the plant transfer function matrix 

(2) , ,ik jk jlg g g  are the faulty elements of the plant transfer function matrix 

(3) , ,il jk jlg g g  are the faulty elements of the plant transfer function matrix 

(4) , ,ik il jlg g g  are the faulty elements of the plant transfer function matrix 

(5) , ,ik il jkg g g  are the faulty elements of the plant transfer function matrix 

 

Therefore we see that in the first possibility all the elements where the faulty rows and 

columns intersect are defective. However in the last four possibilities only three of the 

total four intersection points are defective. In order to find out which of the above five 

possibilities is the real status of the plant we will take the “help” of some faultless row of 

the plant transition matrix. Suppose using the row test it has been found out that the pth 

row of ( )G s  is without any faults. The situation is shown in Figure 4.4 

 

i-th row (faulty)

 p-th row (faultless)

j-th row (faulty)

k-th faulty col.    l-th faulty col. 

ik il

pk pl

jk jl

g g

g g

g g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Figure 4.4: Using the faultless row for finding the faulty elements 

 

Now consider a plant with the transfer function matrix as following 

( ) ik il
i

pk pl

g g
G s

g g
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

         (4.1) 
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It can be shown that the state space realization of this transfer function matrix is 

[ ]; ; i
i i k l i

p

c
A A B b b C

c
⎡ ⎤

= = = ⎢ ⎥
⎣ ⎦

       (4.2)  

 where   and i pc c  are the ith and the pth rows of the C matrix of plant P  and  and k lb b  are 

the kth and the lth columns of the B  matrix of plant P .  If we measure only the ith and pth 

output of plant P  and use the kth and the lth input channel of plant P  for input keeping 

the input to the rest channels equal to zero, then it is same as the plant described by the 

plant transfer function matrix ( )iG s . Now we can calculate the transmission zeros, input 

zero directions and output zero direction of this new plant and perform the row test and 

the column test. However since the second column of the new plant is faultless hence a 

column test is sufficient to find whether the elements and ik ilg g  are faulty. Similarly we 

can construct a plant with transfer function matrix   

( ) pk pl
j

jk jl

g g
G s

g g
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

         (4.3) 

The state space realization of the plant above plant transfer function matrix is 

 [ ]; ; p
j j k l j

j

c
A A B b b C

c
⎡ ⎤

= = = ⎢ ⎥
⎣ ⎦

       (4.4) 

The above plant can be visualized as the plant P  whose pth and jth outputs are only 

measured and which has non-zero inputs to only its kth and lth input channels. Again by 

performing the column test we can find whether the elements and jk jlg g  are faulty. 

 

In case when it is not possible to find a row without faults in the plant transfer function 

matrix of P  then we can take the help of faultless column of ( )G s . Thus if we have the 

scenario as shown in Figure 4.5 then we can take the help of faultless mth column to find 

which elements out of , ,  and il ik jl jkg g g g are faulty.  
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i-th faulty row

j-th faulty row

k-th col.(faulty)  l-th col.(faulty)  m-th col.(faultless) 

ik il im

jk jl jm

g g g

g g g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Figure 4.5: kth and lth columns are faulty and mth column is without any faults 

 

In other words we can perform the row test on the following transfer function matrices to 

find the faulty elements 

( ) ( )  ;  ik im il im
k l

jk jm jl jm

g g g g
G s G s

g g g g
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

       (4.5) 

   

4.2 Extension of Theorem 2.1 and Theorem 2.2 to the non-proper systems 

 In Chapter II, Theorem 2.1 and Theorem 2.2 were derived to make the combination of 

outputs in the output zero direction equal to zero irrespective of time. However the main 

assumption was that the system was proper, that is 0D = . In the following work 

corresponding versions of Theorem 2.1 and Theorem 2.2 are derived for non-proper 

systems ( )0D ≠ .  

 
Let a linear non-proper system P  be defined by the following equations 

 

1 1

1 1 01 1

i i

i ii i

x Ax Bu

d d dy Cx D D D D u
dt dt dt

−

− −

= +

⎧ ⎫
= + + + + +⎨ ⎬

⎩ ⎭

     (4.6) 

with n states, m  inputs and r outputs. 

 
Let another linear non-proper plant P′  be defined by the following equations 

1 1

1 1 01 1

i i

i ii i

x Ax Bu

d d dy vCx v D D D D u
dt dt dt

−

− −

= +

⎧ ⎫
= + + + + +⎨ ⎬

⎩ ⎭

     (4.7) 

where v  is the output-zero direction of plant P  and is defined by the following equation 
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[ ] 0
0

T

v

zI A B
x v

C D
− −⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

        (4.8) 

Here 1
1 0

i i
i iD D z D z D−

−= + + +         (4.9) 

and z is the transmission zero of the plant P . 

Let , 1, 0,,i k i k kd d d−   be the k-th column of 1 0,i iD D D− respectively. Let kz  be the 

transmission zero corresponding to the k-th input channel and is defined as the value of 

kz at which the following matrix loses its rank 

k k

k

z I A b
vC vd
− −⎡ ⎤

⎢ ⎥
⎣ ⎦

 

where kd is defined as follows 

1 1 0
1 1 0

i i
k k i k i k kd z d z d z d z d−

−= + + +        (4.10) 

Let kg  and 0kx  be the input zero direction and state zero vector respectively 

corresponding to the kth input channel and they are found by the following equation 

0 0
0

k k k

k k

z I A b x
vC vd g
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

        (4.11)  

Notice that existence of kz  is guaranteed (Kouvaritakis and MacFarlane, 1976 [8], [9]) 

for almost all cases since the number of output and input for the plant is equal (i.e. one).  

 

4.3 Main Results 

If the input to the plants P  and P′  is given by   

1 2
1 2( ) e e .... e .... ek m

Tz t z tz t z t
k mu t g g g g⎡ ⎤= ⎣ ⎦      (4.12)   

 for all 0t ≥ then the following result holds. 

 

Theorem 4.1: For previously defined plants P  and P′  and input ( )u t  the state vector 

for both the plants is given by  

( ) ( ) 0 0
1 1

0 k

m m
z ttA

k k
k k

x t e x x x e
= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∑        (4.13) 
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The output of the plant P′  is given by 

( ) ( ) 0
1

0
m

tA
k

k

y t vCe x x
=

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

∑         (4.14)  

and the output to the plant P  is given by  

( ) ( ) ( )0 0
1 1

0 k

m m
z ttA

k k k k
k k

y t Ce x x Cx d g e
= =

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

∑ ∑      (4.15) 

  
where ( )0x  is the initial state vector for both the plants P  and P′  since the state vector 

for both P  and P′  is same for all time ( change in the output matrix has no effect on the 

state variables).   

 

Proof:  The generalized solution for state vector for P  and P′  is given by 

( ) ( ) ( ) ( )
0

0
t

A ttAx t e x e BU dτ τ τ−= + ∫        (4.16) 

  

Substituting for ( )U τ  we get 

( ) ( ) ( )

10

0 k

t m
A t ztA

k k
k

x t e x e b g e dτ τ τ−

=

⎛ ⎞= + ⎜ ⎟
⎝ ⎠
∑∫       (4.17) 

For the kth input channel we have the following relations from (4.11) 

( ) 0k k k kz I A x b g− =          (4.18) 

         

0 0k k kvCx vd g+ =          (4.19)  

Substituting (4.18) in  (4.17) we get 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

0
1 0

0
1 0

0 0
1 1

0

0

0

k

k

k

tm
A t ztA

k k
k

tm
z I AtA tA

k k
k

m m
z ttA

k k
k k

x t e x e z I A x e d

e x e e z I A x d

e x x x e

τ τ

τ

τ

τ

−

=

−

=

= =

= + −

= + −

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑∫

∑∫

∑ ∑

 



 

40 

 

           (4.20) 

 
Now, 

( ) ( )
1 1

1 1 01 1

i i

i ii i

d d dy t vCx t v D D D D u
dt dt dt

−

− −

⎧ ⎫
′ = + + + + +⎨ ⎬

⎩ ⎭
    (4.21) 

          
Substituting (4.19) and (4.20) in  (4.21) we get 

 

  

( ) ( )

( ) ( )

( )

0 0
1 1 1

0 0
1 1

0
1

0

0

0

k k

k

m m m
z t z ttA

k k k k
k k k

m m
z ttA

k k k k
k k

m
tA

k
k

y t vCe x x vC x e v d g e

vCe x x v Cx d g e

vCe x x

= = =

= =

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞= − + +⎜ ⎟
⎝ ⎠
⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑

∑

 

Now output to the plant P  is given by  

( ) ( )
1 1

1 1 01 1

i i

i ii i

d d dy t Cx t D D D D u
dt dt dt

−

− −

⎧ ⎫
= + + + + +⎨ ⎬

⎩ ⎭
    (4.22)  

Substituting (4.20) in (4.22) we get 

( ) ( )

( ) ( )

0 0
1 1 1

0 0
1 1

0

0

k k

k

m m m
z t z ttA

k k k k
k k k

m m
z ttA

k k k k
k k

y t Ce x x C x e d g e

Ce x x Cx d g e

= = =

= =

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠
⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑ ∑
 

 

The above results can be generalized as follows. 

 

Theorem 4.2: For previously defined plants P  and P′  and input ( )U t  defined as  

( ) 1
1 1 ... ...k m

TZ t Z tZ t
k k m mU t g e g e g eα α α⎡ ⎤= ⎣ ⎦      (4.23) 

  

where kα  is a scalar, the state vector for both the plants is given by  

( ) ( ) 0 0
1 1

0 k

m m
z ttA

k k k k
k k

x t e x x x eα α
= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∑       (4.24) 
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The output of the plant P′  is given by 

( ) ( ) 0
1

0
m

tA
k k

k

y t vCe x xα
=

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

∑        (4.25) 

  

and the output to the plant P  is given by  

( ) ( ) ( )0 0
1 1

0 k

m m
z ttA

k k k k k k
k k

y t Ce x x Cx d g eα α
= =

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

∑ ∑     (4.26) 

     

where ( )0x  is the initial state vector for both the plants P  and P′  since the state vector 

for both P  and P′  is same for all time ( change in the output matrix has no effect on the 

state variables).   

 
Proof: The proof is similar to the proof of the previous theorem. 

 
4.4 Tests for Diagnosing Faults in A and C Matrices 

In the earlier section we gave a detailed discussion on how to locate the faulty elements 

of the plant transfer function matrix. A fault in ( )G s indicates that there is fault in some o 

of the system matrices (  and A C ) but still we cannot say using the tests described in the 

previous section which of the system matrices are faulty. We present here a set of two 

tests- one each for  and A C , to find the faulty system matrices.  

 

4.4.1 Test for A Matrix 

Let the representation of plant P  given by (2.1) be minimal. Let ( )Aλ ρ∈ . Then there 

exists an eigenvector n
eigx ∈C  such that ( ) 0eigI A xλ − = . Now if the input ( ) 0u t ≡  and 

initial condition is ( )0 eigx x=  then the state vector is given by ( ) t
eigx t x eλ= . Let h be a 

vector orthogonal to px . It can be easily seen that the combination of states in the 

direction of h is always zero. Assuming that all the states are measurable we can detect 

an occurrence of fault in the A  matrix by combining the measured states in the direction 

of h and noting whether the combination is zero or not.  
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4.4.2 Test for the C Matrix  

Suppose that all the states are measurable. The fault in the pth row of C matrix, pc  can be 

found by comparing the pth component of the output vector and the quantity pc x  where 

x is the measured state vector. A difference in the values shows the presence of fault in 

the pth row ofC . 
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CHAPTER V 

ZEROING OF OUTPUTS OF DISCRETE TIME SYSTEMS IN THE 

OUTPUT-ZERO DIRECTIONS 

 

In Chapter II a theorem for zeroing the outputs in the output-zero direction for a 

continuous time system was derived. The theorem provided a method to generate a 

special class of inputs corresponding to which the combination of outputs of a continuous 

time plant in its output-zero direction is zero irrespective of time. However in the real 

world most of the continuous time models are discretized to make them compatible for 

use with microprocessors and digital signal processors. In this chapter similar results for 

the discrete-time system will be derived.        

 
5.1 Definitions, Problem Setup and Assumptions 

Before proceeding further it will useful to provide some definitions of the terms which 

will be used in the rest of this chapter.  

 

5.1.1 Definitions  

For a linear system defined as  

( ) ( ) ( )
( ) ( )

1x k Ax k Bu k

y k Cx k

+ = +

=
        (5.1) 

with n states, m inputs and r outputs the polynomial system matrix  ( )P z  is defined as  

( )
0

zI A B
P z

C
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

         (5.2) 

Here z is the z-transform variable. z has the same role in discrete time system as s  has in 

the continuous time system. The transmission zeros are the values z q=  for which ( )P z  

loses rank. The state zero vector, 0x  and the input zero direction, g  are defined as the 

solution to the following equation. 
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0 0
0 0

qI A B x
C g
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

        (5.3) 

The output zero direction  v  is defined as follows 

[ ] 0
0 0

T

v

qI A B
x v

C
− −⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

        (5.4) 

 

5.1.2 Transmission-blocking Theorem for Discrete-time by Tokarzewski (1999) 

The transmission blocking problem as formulated by Isidori, 1995 [1] is as follows: find 

all pairs ( )( )0 ,x u k , consisting of an initial state 0
nx R∈ and a real-valued input vector 

sequence ( )0 , 0,1, 2.....u k k = , such that the corresponding output ( )y k is identically zero 

for all 0,1,2..k =  In 1999 Tokarzewski [6] came up with a solution to this problem. If 

q C∈ is a transmission zero of plant P then the input 

( )
 for k = 0

 for k = 1,2...k

g
u k

gq
⎧

= ⎨
⎩

 

applied to P at the initial condition ( ) 00x x= yields the solution to the state equation of 

the form 

( ) 0

0

 for k = 0

x  for k = 1,2,..k

x
x k

q
⎧⎪= ⎨
⎪⎩

   

and the system response ( ) 0y k = for 0,1,2,..k =  

 

 It is a well known fact that in the steady state each output of the plant goes to zero when 

the input is applied in the input zero direction. Also if the plant is in steady state then the 

combination of outputs in the output zero direction is always zero. MacFarlane and 

Karcanias showed for continuous time plants and Tokarjewski [6] showed for discrete 

time plants that output zeroing property can be obtained even when the plant is not in the 

steady state. In the following sections it has been proved that the zeroing of the output 

combination in the output zero direction is also possible for the non-steady state of the 

discrete time plants.   
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5.1.3 Problem Formulation of the Zeroing of Output in Output Zero Direction: 

Consider a plant P  defined by the following equations 

( ) ( ) ( )
( ) ( )

1x k Ax k Bu k

y k Cx k

+ = +

=
        (5.5) 

with n  states, m  inputs and r  outputs. Now if v  is the output zero direction of the plant 

P  then taking the combination of outputs in the output zero direction can be described by 

following block diagram 

( ) 1( ) ( ) output combination in direction
y

U z G z C zI A B v v−−−→ = − ⎯→ ⎯→  

which can be further simplified to    

( ) 1( ) ( ) output combination in directionU z G z vC zI A B v−′⎯→ = − ⎯→  

Thus the problem of zeroing the output combination in output zero direction of plant P  

can be reduced to the problem of output zeroing of the plant P′  which is defined as 

follows 

( ) ( ) ( )
( ) ( )

1x k Ax k Bu k

y k vCx k

+ = +

=
        (5.6) 

where ,  and  A B C are the system matrices of original plant P  and v  is the output zero 

direction of the original plant P .  At first glance the solution to this problem seems very 

obvious because the transmission zero and input zero direction of P′  can be calculated 

using the following equation  

0 0
0 0

q I A B x
vC g
′ ′− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦
        (5.7) 

and then from the output zeroing result of Tokarzewski [6] we can send the input signal 

of the form ( )kg q′ ′   ( 0,1,2...k = ) with initial state vector equal to 0x′  in order to get the 

output of the plant P′  always equal to zero or in other words get the combination of the 

outputs of the plant P  in the output zero direction of P , always equal to zero. However 

the problem is not as trivial as it seems. It should be noted that the number of outputs for 

the plant P  is one whereas the number of inputs to the plant P  is m . Davison and Wang 

[4] showed that if the number of inputs and outputs are not same for almost all ( ), ,A B C  
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triples the system has no transmission zeros. Hence there is a need to approach this 

problem in an alternative way.   

 

Let the jth column of the B  matrix be denoted by jb . Let jq  be the transmission zero 

corresponding to the jth input channel and is defined as the value jz q=  for which the 

following matrices loses its rank 

0
jzI A b

vC
− −⎡ ⎤

⎢ ⎥
⎣ ⎦

         (5.8) 

Let jg  and 0 jx  be the input zero direction and state zero vector respectively 

corresponding to the jth input channel and they are found by the following equation 

0 0
0 0

jj j

j

xq I A b
gvC

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
        (5.9) 

Notice that existence of jq  is guaranteed for almost all cases since the number of output 

and input for the plant is equal (i.e. one).  

 

5.2 Main Result 

If the input to the plants P  and P′  is given by   

1 1 2 2( ) .... ....
Tk k k k

j j m mu k g q g q g q g q⎡ ⎤= ⎣ ⎦       (5.10)  

 for all 0,1,2.....k = then the following result holds. 

 

Theorem 5.1: For previously defined plants P  and P′  and input ( )u k  the state vector 

for both the plants is given by  

( ) ( ) 0 0
1 1

0
m m

k k
j j j

j j
x k A x x q x

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑        (5.11)  

The output of the plant P′  is given by 

( ) ( ) 0
1

0
m

k
j

j
y k vCA x x

=

⎛ ⎞
′ = −⎜ ⎟

⎝ ⎠
∑         (5.12) 

and the output to the plant P  is given by  



 

47 

 

( ) ( ) 0 0
1 1

0
m m

k k
j j j

j j
y k CA x x C x q

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑       (5.13) 

  
where ( )0x  is the initial state vector for both the plants P  and P′  since the state vector 

for both P  and P′  is same for all k  ( change in the output matrix has no effect on the 

state variables).   

 
Proof:  The generalized solution for state vector for P  and P′  is given by 

( ) ( ) ( )
1

1

0

0
k

k k l

l

x k A x A Bu l
−

− −

=

= +∑        (5.14)  

Substituting for ( )u l  we get 

( ) ( ) ( )

( )

1
1

1 1 1 2 2 2
0

1
1

0 1

0 .....

0

k
k k l l l l

m m m
l

k m
k k l l

j j j
l j

x k A x A b g q b g q b g q

A x A b g q

−
− −

=

−
− −

= =

= + + + +

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

∑

∑ ∑
    (5.15) 

For the jth input channel we have the following relations from (5.9) 

( ) 0j j j jq I A x b g− =          (5.16) 
        

0 0jvCx =           (5.17) 

Substituting (5.16) in (5.15) we get 

 

( ) ( )

( ) ( )

( )

1
1

0 1

1
1

0
0 1

1 1
1 1

0 0
0 1 0 1

0

0

0

k m
k k l l

j j j
l j

k m
k k l l

j j j
l j

k m k m
k k l l k l l

j j j j
l j l j

I

x k A x A b g q

A x A q I A x q

A x A q x A q x

−
− −

= =

−
− −

= =

− −
− − + −

= = = =

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

= + −

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

 

            

In I  by doing change of variable ( )1l l+ → we get  
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( ) ( )

( )

( )

1

0 0
1 1 0 1

1 1

0 0 0 0
1 1 1 1 1 1

0 0
1 1

0

0

0

k m k m
k k l l k l l

j j j j
l j l j

m m k m k m
k k k k l l k l l

j j j j j j j
j j l j l j

m m
k k

j j j
j j

x k A x A q x A q x

A x q x A x A q x A q x

A x x q x

−
− −

= = = =

− −
− −

= = = = = =

= =

= + −

⎛ ⎞
= + − + −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

  (5.18) 

Now, 

( ) ( )y k vCx k′ =          (5.19) 
          
Substituting (5.17) and (5.18) in  (5.19) we get 

 

  
( ) ( )

( )

0 0
1 1

0
1

0

0

m m
k k

j j j
j j

m
k

j
j

y k vCA x x vC q x

vCA x x

= =

=

⎛ ⎞
′ = − +⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑ ∑

∑
 

Now output to the plant P  is given by  

( ) ( )y k Cx k=           (5.20) 

Substituting (5.18) in  (5.20) we get 

( ) ( ) 0 0
1 1

0
m m

k k
j j j

j j
y k CA x x C x q

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑  

 
The above results can be generalized as follows. 

 
Theorem 5.2: For previously defined plants P  and P′  and input ( )u k  defined as  

1 1 1 2 2 2( ) .... ....
Tk k k k

j j j m m mu k g q g q g q g qα α α α⎡ ⎤= ⎣ ⎦     (5.21)  

where jα  is a scalar, the state vector for both the plants is given by  

( ) ( ) 0 0
1 1

0
m m

k k
j j j j j

j j
x k A x x q xα α

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑       (5.22) 

The output of the plant P′  is given by 
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( ) ( ) 0
1

0
m

k
j j

j
y k vCA x xα

=

⎛ ⎞
′ = −⎜ ⎟

⎝ ⎠
∑        (5.23)  

and the output to the plant P  is given by  

( ) ( ) 0 0
1 1

0
m m

k k
j j j j j

j j
y k CA x x C x qα α

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑      (5.24) 

     

where ( )0x  is the initial state vector for both the plants P  and P′  since the state vector 

for both P  and P′  is same for all k  (change in the output matrix has no effect on the 

state variables).   

 

Proof: The proof is similar to the proof of the previous theorem. The generalized solution 

for state vector for P  and P′  is given by 

( ) ( ) ( )
1

1

0

0
k

k k l

l

x k A x A Bu l
−

− −

=

= +∑        (5.25)  

Substituting for ( )u l  we get 

( ) ( ) ( )

( )

1
1

1 1 1 1 2 2 2 2
0

1
1

0 1

0 .....

0

k
k k l l l l

m m m m
l

k m
k k l l

j j j j
l j

x k A x A b g q b g q b g q

A x A b g q

α α α

α

−
− −

=

−
− −

= =

= + + + +

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠

∑

∑ ∑
   (5.26) 

For the jth input channel we have the following relations from (5.9) 

( ) 0j j j jq I A x b g− =          (5.27) 

        

0 0jvCx =           (5.28) 

Substituting (5.27) in (5.26) we get 
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( ) ( )

( ) ( )

( )

1
1

0 1

1
1

0
0 1

1 1
1 1

0 0
0 1 0 1

0

0

0

k m
k k l l

j j j j
l j

k m
k k l l

j j j j
l j

k m k m
k k l l k l l

j j j j j j
l j l j

I

x k A x A b g q

A x A q I A x q

A x A q x A q x

α

α

α α

−
− −

= =

−
− −

= =

− −
− − + −

= = = =

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

= + −

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

 

            

In I  by doing change of variable ( )1l l+ → we get  

( ) ( )

( )

( )

1

0 0
1 1 0 1

1 1

0 0 0 0
1 1 1 1 1 1

0 0
1 1

0

0

0

k m k m
k k l l k l l

j j j j j j
l j l j

m m k m k m
k k k k l l k l l

j j j j j j j j j j j
j j l j l j

m m
k k

j j j j j
j j

x k A x A q x A q x

A x q x A x A q x A q x

A x x q x

α α

α α α α

α α

−
− −

= = = =

− −
− −

= = = = = =

= =

= + −

⎛ ⎞
= + − + −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

 

(5.29) 

Now, 

( ) ( )y k vCx k′ =          (5.30) 

          

Substituting (5.28) and (5.29) in (5.30) we get 

 

  
( ) ( )

( )

0 0
1 1

0
1

0

0

m m
k k

j j j
j j

m
k

j
j

y k vCA x x vC q x

vCA x x

= =

=

⎛ ⎞
′ = − +⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑ ∑

∑
 

Now output to the plant P  is given by  

( ) ( )y k Cx k=           (5.31) 

Substituting (5.29) in (5.31) we get 

( ) ( ) 0 0
1 1

0
m m

k k
j j j j j

j j
y k CA x x C x qα α

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑  
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Lemma 5.1: In the results of Theorem 5.1 and Theorem 5.2 if we substitute 

( ) 0
1

0
m

j
j

x x
=

= ∑  and ( ) 0
1

0
m

j j
j

x xα
=

=∑ respectively, in both the cases we get ( ) 0y k′ = for 

all 0k ≥ . It should be noted that even though the output of plant P  is non-zero yet the 

output of the plant P′  is zero for the above initial condition. In other words even though 

the components of the output of the plant P  are non-zero yet their combination in the 

output zero direction of P is zero. This useful result will be used to obtain the 

combination of outputs of the original plant P  in its output zero direction equal to zero. 

 

Remark 5.1: Let , ,m n r∈ ∈ ∈U R X R Y R  be the input vector space, state vector space 

and the output vector space for the plant P  respectively then 

1 0 0
0 1 0

0 0 1

span

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

U  

and ( )01 02 0mspan x x x=X   for  ( ) 0
1

0
m

j j
j

x xα
=

=∑ . 

Thus the relationship between the input space, state space and the output space for the 

zeroing of the output combination of plant P  in the output zero direction of plant P  can 

be shown by the geometrical relationships in Figure 5.1 
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Figure 5.1: Geometrical relationships between input, output and state spaces of discrete 

plant P for the zeroing of output combination in output zero direction 

 
 
Using the Lemma 5.1  an algorithm to obtain a set of input signals and the corresponding 

initial state vector such that the combinations of output components of the discrete time 

plant P  in the output zero direction of plant P   is always zero, is presented below. The 

steps are as follows: 

Step 1:  Find the transmission zero, input zero direction, output zero direction and state 

zero vector of the plant P  using (5.2), (5.3) and (5.4). 

INPUT SPACE STATE SPACE OUTPUT SPACE 

Output Combination in 
output zero direction  

 

 
1 0 0
0 1 0

0 0 1

span

⎛ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝

 

        0 

 
 
B  

C

v

 
Span( 01x 02x ,
… 0mx ) 
 

A 
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Step 2 : If jb  is the jth column of the B matrix then  find the transmission zero jq , input 

zero direction jg  and state zero vector using  0 jx  corresponding to jth input channel  

using (5.8) and (5.9). 

Step 3: Set the initial condition of the plant P  as follows 

( ) 0
1

0
m

j j
j

x xα
=

=∑   

Step 4: Use  ( )u k  defined by (5.21) as the input to the plant P . 

 

Remark 5.2: Theorem 5.2 helps us to upscale or downscale the input values for each 

input channel. Thus even though the k
j jg q may not lie in normal range of ju  yet by 

careful selection of jα  we can bring it into the normal range of ju . 
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CHAPTER VI 

USE OF OUTPUT ZEROING THEOREM FOR DISCRETE TIME 

SYSTEM FOR FAULT DETECTION 

 
In Chapter V it was shown that it is possible to make the combination of outputs of 

discrete time systems in the output zero direction equal to zero for all 0,1, 2...k =  for 

some special class of inputs. In the present chapter the results derived in the previous 

chapter and the output zeroing result of Tokarzewski [6] will be used for the fault 

detection in linear continuous time MIMO plants. 

  

6.1 Novel Fault Detection Scheme for Discrete Time Systems 

Based on Theorem 5.1, Theorem 5.2 and Lemma 5.1 below is a test to find the faulty 

column of the transfer function matrix ( )G z  of plant P . 

 

6.1.1 Column Test 

 If the input to the plant P  and its initial conditions are given by 

( ) 0 ... 0 .... 0k
j ju k g q⎡ ⎤= ⎣ ⎦ and ( ) 00 jx x=  then the combination of the outputs in 

the output zero direction should be zero. A non-zero value indicates that the elements of 

the plant transfer function matrix corresponding to the jth input (i.e. the jth column of 

( )G z ) channel has changed. 

 

Based on the output zeroing result of Tokarzewski [6] stated before the following Lemma 

can be stated. 

 

Lemma 6.1: Let q , 0x  and g be the transmission zero, state zero vector and the input zero 

direction of the plant respectively. Then for input ( ) ku k gq=  for all 0k ≥ and initial 
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condition ( ) 00x x= the non-zero value of the ith output indicates that the ith row of the 

transfer function matrix is faulty. 

 

Proof: For the given input and initial condition all the outputs should be identically zero 

according to Tokarzewski [6]. Since the ith output depends only on the ith row of ( )G z  

therefore the non-zero ith output indicates faulty ith row of ( )G z . 

 

Using Lemma 6.1 we get the following test for finding the faulty rows of the plant 

transfer function matrix of plant P . 

 

6.1.2 Row Test  

For input ( ) ku k gq=  and initial condition ( ) 00x x= for the plant P  the non-zero value 

of the ith output indicates that the ith row of the transfer function matrix is faulty. 

 

Using the row test and the column test in conjunction on the plant transfer function 

matrix ( )G z  we can pin-point the faulty element of the plant transfer function matrix. 

Suppose using the row test we find that the ith row of ( )G z  is faulty and using the 

column test we find that the jth column of ( )G z  has faults then we have the scenario as 

show in Figure 6.1 

 

i-th faulty row 

-th faulty column

ijg

j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Figure 6.1: Faulty ith row and faulty jth column   
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Thus if we have only one faulty row and only one faulty column then we can easily 

deduce that only one element of the plant transfer function matrix is faulty. Thus if the ith 

row and jth column are faulty then we can easily deduce that the ijg  element of plant 

transfer function matrix is faulty. 

 

6.2 An Illustrative Example 

The above results are now illustrated using a discrete time model of the quadruple tank 

system discussed in the Chapter IV. The discrete time model was obtained from the 

continuous time model using time step 0.1Ts = second. We have the following system 

matrices after discretization. 

 

0.0984 0 0.0043 0
0 0.0989 0 0.0033
0 0 0.0957 0
0 0 0 0.0967

A =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

0.0083 0
0 0.0063
0 0.0048

0.0031 0

B =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 
0.5 0 0 0
0 0.5 0 0

C =
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

6.2.1 Verification of Theorem 5.1 

Now the transmission zeros corresponding to the first and second input channels found 

using (5.8) are 1 0.0986q =  and 2 0.0967q = . Using (5.9) the corresponding input directions 

and state zero vectors are given by 

 [ ]1 0.0220g = −  [ ]2 0.0675g = [ ]01 0.9178 0.3947 0.000 0.0358 Tx = − − −      

[ ]02 0.8042 0.3458 0.3182 0.3577 Tx = − −  
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Figure 6.2: Plant outputs  
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Figure 6.3: Plot of combination of outputs of discrete time plant 

 
 

For ( ) ( ) ( )0.0220 0.06750.0986 0.0967
Tk ku k = −⎡ ⎤

⎣ ⎦ and initial condition ( ) 01 020x x x= + we 

get the outputs as shown in Figure 6.2. The results of Theorem 2.1 are verified by plots of 

Figure 6.3. The plant transfer function matrix of the plant is given by 

( )
( )( )

( )( ) ( )

2.58 0.74
620 61 620 61 115 11

1.40 2.82
300 29 900 89 900 89

z z z
G z

z z z

− − −
=

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

    (6.1) 

 

Now let us introduce some faults in the second column of ( )G z by changing the second 

column of the B matrix. Note that the changes to ( )G z  can be made by changing either 

,A B or C  matrix however changing second column of B  only changes the second 

column of ( )G z . Let the new B  matrix be given as  
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0.0083 0.5
0 0.0062
0 0.0047

0.0031 0

B =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

A and C  matrices remain same. Then the new transfer function matrix is given by 

 
 

( )
( )( )

( )( ) ( )

2.58 17825 1704.3
620 61 620 61 115 11

1.40 2.82
300 29 900 89 900 89

z
z z z

G z

z z z

−

− − −
=

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

    (6.2) 

 

It can be noticed that  ( )1, 2  element of ( )G z  has changed. 

 
6.2.2 Column Test 

 We will use the column test to identify the faulty column of ( )G z . Now the transmission 

zeros corresponding to the first and second input channels found using (5.8) are 

1 0.0986q =  and 2 0.0967q = . Using (5.9) the corresponding input directions and state zero 

vectors are given by 

 [ ]1 0.0220g = −  [ ]2 0.0675g = [ ]01 0.9178 0.3947 0.000 0.0358 Tx = − − −      

[ ]02 0.8042 0.3458 0.3182 0.3577 Tx = − −  

For input signal ( ) ( )0 0.0675 0.0967
Tku k ⎡ ⎤= ⎣ ⎦ and the initial condition 

[ ]02 0.8042 0.3458 0.3182 0.3577 Tx = − − the combination of outputs in output zero 
direction is shown in Figure 6.4  
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Figure 6.4: Combination of outputs in the output zero direction for the second column of 

the discrete time system 

 

Using the column test and Figure 6.4 we conclude that the fault lies in the second column 

of the transfer function matrix. This result is verified by looking at the changed ( )G s . By 

following a similar procedure for the first input channel it is concluded that there is no 

fault in the first column of the ( )G s . For this case the combination of outputs in output 

zero direction is shown in Figure 6.5 
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Figure 6.5: The combination of outputs in output zero direction for the first column of the 

discrete time system 

 

Thus we conclude that the fault lies only in the second column of the plant transfer 

function matrix. 

 

6.2.3 Row Test 

Now for our system the transmission zero, state zero vector and the input zero direction 

are as follows 

0.0941z =  

[ ]0 0 0.000 0.7506 0.4699 Tx = − − −  

[ ]0.3920 0.2494 Tg =  

For ( ) [ ] ( )0.3920 0.2494 0.0941T ku k =  and ( ) [ ]0 0 0.000 0.7506 0.4699 Tx = − − −  the 

outputs are shown in Figure 6.6 
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Figure 6.6: Outputs of the discrete time plant for an output zeroing input 

 

From Figure 6.6 it is clear that the first row (using the row test) of the plant transfer 

function matrix is faulty.  

 

Since in this case the there is only one faulty row and one faulty column we can 

straightaway conclude that the fault lies in ( )1, 2  element of plant transfer function 

matrix. This matches with the result obtained by comparing the transfer function matrices 

given in . (6.1) and (6.2). 
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6.3 Steady State Analysis 

From the Final Value Theorem we have ( ) ( ) ( )1

1
lim lim 1
k z

y k z Y z−

→∞ →
= −  where ( )Y z the z-

transform of stable is ( )y k . Thus for an input of the form ( ) [ ] ( )1 2 ... 1T
mu k kα α α= , 

where ( )k1 denotes a unit step function, the steady state output is given by  

( )[ ]1 20 ... T
ss my G α α α=        (6.3) 

 

Lemma 6.2: If ( ) ( )0 ... ...0 1
T

ju k kα⎡ ⎤= ⎣ ⎦  then the ith steady state output is given by 

( ), 0ss i ij jy G α=  where ( )0ijG  is the ( ),i j element of ( )0G . Thus if actual ith steady state 

output is different from ( )0ij jG α then it can be concluded that the ( ),i j  element of the 

plant transition matrix ( )G z  is faulty. 

 
Using the transmission zeros and the zero directions of the quadruple-tank system we 

concluded that 12G  is faulty. Now since our plant has all the poles inside the unit circle 

we can corroborate our previous conclusion using steady state analysis. 

Let the input be ( ) [ ] ( )1 0 1Tu k k=  then for the defective plant we get the output plot as 

shown in Figure 6.7. 
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Figure 6.7: Steady state analysis of the first column of the discrete time system 

 

Similarly for ( ) [ ] ( )0 1 1Tu k k= we get Figure 6.8 for steady state output of the plant. 

 

( )
0.0423 0.0011

0
0.0005 0.0317idealG
−

=
−

⎡ ⎤
⎢ ⎥
⎣ ⎦

       (6.4) 

From Figure 6.7 and Lemma 6.2 we conclude that both  11G  and 21G have not changed. 

From Figure 6.8 we conclude that 12G  is faulty whereas 22G  has no faults. This 

conclusion is the same as the one arrived using transmission zeros and zero directions. 
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Figure 6.8: Steady state analysis of the second column of the discrete time system  

 
6.4 Extension of Fault Detection Results to System with Multiple Faulty Rows and 

Columns 

 The results obtained for finding the faulty element of transfer function matrix with the 

help of row test and the column test can be extended to transfer function matrices with 

multiple faulty rows and columns. The method is very similar to the method described for 

the continuous time system described in Chapter IV.  

 

6.5 Tests for Diagnosing Faults in A and C Matrices 

In the earlier section we gave a detailed discussion on how to locate the faulty elements 

of the plant transfer function matrix. A fault in ( )G z indicates that there is fault in some 

of the system matrices (  and A C ) but still we cannot say using the tests described in the 
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previous section which of the system matrices are faulty. We present here a set of three 

tests- one each for  and A C , to find the faulty system matrices of a discrete time system.  

 

6.5.1 Test for A Matrix 

Let the representation of plant P  given by (2.1) be minimal. Let ( )Aλ ρ∈ . Then there 

exists an eigenvector n
eigx ∈C  such that ( ) 0eigI A xλ − = . Now if the input 

( ) 0 for k 0u k ≡ ≥  and initial condition is ( )0 eigx x=  then the state vector is given 

by ( ) k
eigx k x λ= . Let h be a vector orthogonal to eigx . It can be easily seen that the 

combination of states in the direction of h is always zero. Assuming that all the states are 

measurable we can detect an occurrence of fault in the A  matrix by combining the 

measured states in the direction of h and noting whether the combination is zero or not.  

            

6.5.2 Test for the C Matrix  

Suppose that all the states are measurable. The fault in the pth row of C matrix, pc  can be 

found by comparing the pth component of the output vector and the quantity pc x  where 

x is the measured state vector. A difference in the values shows the presence of fault in 

the pth row ofC . 
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CHAPTER VII 

SUMMARY AND FUTURE WORK 

 

Multivariable plants are different from single variable plants in that they have directional 

properties. In other words the MIMO systems behave differently for different direction of 

inputs. Similarly the output measurements are different in different output direction. A 

novel online fault detection scheme for linear systems using multivariable zeros and zero 

directions (input and output) was presented. The scheme is a model based online fault 

diagnosis scheme. We could locate the faulty elements of the plant transfer function 

matrix using the row test and column test. The linearity of the system is a precondition 

for the applicability of this scheme. The plant may have more than one faulty element. 

The scheme was illustrated on a quadruple-tank system.    

 

Recently fault detection and isolation of non-linear system have generated a lot of 

interest. [10] discusses an observer-based fault detection and isolation for nonlinear 

systems. Garcia and Frank, (1997) [11] used observer based FDI for nonlinear system. 

Hammouri et al. [12] extended the geometric approach FDI to nonlinear systems. Though 

the present work deals with only linear systems there is scope of extending this work to 

the non-linear systems. Recently some work on non-linear zeros has been done. There is 

a possibility of using the properties of non-linear zeros to detect and isolate faults present 

in a non-linear plant. 
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APPENDIX 

 
Continuous Time Simulation Code for MATLAB 

clc; 
clear; 
close all; 
T1=62; 
T2=90; 
T3=23; 
T4=30; 
A1=28; 
A2=32; 
A3=28; 
A4=32; 
y1=0.70; 
y2=0.60; 
k1=3.33; 
k2=3.35; 
kc=0.50; 
 
 
A=[-1/T1    0      A3/(A1*T3)   0 
    0      -1/T2     0          A4/(A2*T4) 
    0       0       -1/T3        0 
    0       0         0          -1/T4 ]; 
eig(A); 
 
 
B=[ (y1*k1)/A1    0 
    0        (y2*k2)/A2 
    0         (1-y2)*k2/A3 
    (1-y1)*k1/A4    0]; 
 
C=[kc  0    0    0 
    0  kc   0    0 ]; 
 
sys=ss(A,B,C,0); 
% sys=tf(sys) 
z=zero(sys); 
a=z(1); 
 
P=[a*eye(4)-A     -B 
    C             zeros(2,2)]; 
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X=null(P); 
 
X0=[X(1) 
    X(2) 
    X(3) 
    X(4)]; 
 
g=[ X(5) 
    X(6)]; 
 
t=0:0.01:4; 
 
for i=1:401 
    U(i,1)=g(1)*exp(a*t(i)); 
    U(i,2)=g(2)*exp(a*t(i)); 
end 
%lsim(sys,U,t,X0)  
%This verifies the MacFarlane and Karcanias theorem 
 
% Lets find the output zero direction 
X1=null(P'); 
 
X01=[X1(1) 
     X1(2) 
     X1(3) 
     X1(4)]; 
 
V=[ X1(5) X1(6)];  % This is the output zero direction 
 
 
 
% Now lets find the zero corresponding to the first input 
B1=B(:,1); 
sys1=ss(A,B1,V*C,0); 
z1=zero(sys1); 
a1=z1(1); 
 
% Now lets find the input zero direction and state zero direction 
%corresponding to the first input 
P1=[a1*eye(4)-A     -B1 
    V*C             zeros(1,1)]; 
Xa=null(P1); 
 
Xoa=[Xa(1) 
     Xa(2) 
     Xa(3) 
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     Xa(4)]; 
  
ga=[Xa(5)]; 
  
t=0:0.01:4; 
 
for i=1:401 
    U1(i)=ga*exp(a1*t(i)); 
     
end 
%figure 
% lsim(sys1,U1,t,Xoa)   
% This plot verifies Theorem 2.1 for the first input 
 
% Now lets find the zero corresponding to the second input 
B2=B(:,2); 
sys2=ss(A,B2,V*C,0); 
z2=zero(sys2); 
a2=z2(1) 
 
%Now lets find the input zero direction and state zero direction 
%corresponding to the second input 
 
P2=[a2*eye(4)-A     -B2 
    V*C             zeros(1,1)]; 
Xb=null(P2); 
 
Xob=[Xb(1) 
     Xb(2) 
     Xb(3) 
     Xb(4)] 
 gb=[Xb(5)] 
  
t=0:0.01:4; 
 
for i=1:401 
    U2(i)=gb*exp(a2*t(i)); 
     
end 
 
%figure 
% lsim(sys2,U2,t,Xob)   
% This plot verifies Theorem 2.1 for the second input 
 
U3=[U1' U2']; 
Xo3=Xoa + Xob;  
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sys3=ss(A,B,V*C,0); 
 
% figure 
% [y3,t3,x3]=lsim(sys,U3,t,Xo3);  
%  The plot verifies Theorem 2.1 the for 2 inputs 
 
% [y4,t4,x4]=lsim(sys3,U3,t,Xo3); 
%  
% subplot(2,1,1) 
% plot(t3,y3(:,1),t3,y3(:,2)) 
% subplot(2,1,2) 
% plot(t4,y4) 
 
 
B=[ (y1*k1)/A1    0 
    0        (y2*k2)/A2 
    0         (1-y2)*k2/A3 
    (1-y1)*k1/A4    0] 
 
 
% Lets introduce some fault in G(s) by changing the B matrix 
 
 
delB=[0 0.5  
    0 0  
    0 0  
    0 0]; 
 
Bprime= B+ delB; 
 
 
% Applying the COLUMN TEST 
figure 
sys5=ss(A,Bprime,V*C,0); 
 
for i=1:401 
    U5(i,1)=ga*exp(a1*t(i)); 
    U5(i,2)=0; 
end 
[y5,t5,x5]=lsim(sys5,U5,t,Xoa);    
plot(t5,y5) 
 
 
% Applying the ROW TEST 
figure 
sys6=ss(A,Bprime,C,0) 
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[y6,t6,x6]=lsim(sys6,U,t,X0);     
subplot(2,1,1) 
plot(t6,y6(:,1)) 
subplot(2,1,2) 
plot(t6,y6(:,2)) 
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Discrete Time Simulation Code for MATLAB 

clc; 
clear; 
close all; 
T1=62; 
T2=90; 
T3=23; 
T4=30; 
A1=28; 
A2=32; 
A3=28; 
A4=32; 
y1=0.70; 
y2=0.60; 
k1=3.33; 
k2=3.35; 
kc=0.50; 
 
 
A=[-1/T1    0      A3/(A1*T3)   0 
    0      -1/T2     0          A4/(A2*T4) 
    0       0       -1/T3        0 
    0       0         0          -1/T4 ]; 
 
B=[ (y1*k1)/A1    0 
    0        (y2*k2)/A2 
    0         (1-y2)*k2/A3 
    (1-y1)*k1/A4    0]; 
 
C=[kc  0    0    0 
    0  kc   0    0 ]; 
 
Ts = 0.1; 
 
A = Ts*(A+eye(4)); 
eig(A) 
 
B = Ts*B; 
 
C = C; 
 
sys = ss(A,B,C,0,Ts); 
 
z = zero(sys); 
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a=z(1); 
 
P=[a*eye(4)-A     -B 
    C             zeros(2,2)]; 
     
X=null(P); 
 
X0=[X(1) 
    X(2) 
    X(3) 
    X(4)] 
 
g=[ X(5) 
    X(6)] 
 
t=0:0.01:4; 
 
for i=1:401 
    U(i,1)=g(1)*a^(i-1); 
    U(i,2)=g(2)*a^(i-1); 
end 
%lsim(sys,U,[],X0)   
% The is above plot verifies the Tokarjewski Theorem 
 
% Finding the Output Zero direction of the plant 
X1=null(P'); 
 
X01=[X1(1) 
     X1(2) 
     X1(3) 
     X1(4)]; 
 
V=[ X1(5) X1(6)]  % This is the output zero direction 
 
 
B1=B(:,1); 
sys1=ss(A,B1,V*C,0,Ts); 
z1=zero(sys1); 
a1=z1(2); 
 
% Finding the input zero direction and state zero direction corresponding to  
% to the first input 
P1=[a1*eye(4)-A     -B1 
    V*C             zeros(1,1)]; 
Xa=null(P1); 
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Xoa=[Xa(1) 
     Xa(2) 
     Xa(3) 
     Xa(4)]; 
 ga=[Xa(5)]; 
 
 for i=1:401 
    U1(i)=ga*a1^(i-1); 
end 
%lsim(sys1,U1,[],Xoa,Ts)  
% The plot verifies Theorem 5.1 for the first input 
 
%Finding the zero corresponding to the second input 
B2=B(:,2); 
sys2=ss(A,B2,V*C,0,Ts); 
z2=zero(sys2); 
a2=z2(1); 
 
%Finding the input zero direction and state zero direction corresponding to  
% to the second input 
P2=[a2*eye(4)-A     -B2 
    V*C             zeros(1,1)]; 
Xb=null(P2); 
 
Xob=[Xb(1) 
     Xb(2) 
     Xb(3) 
     Xb(4)]; 
  
gb=[Xb(5)]; 
  
 for i=1:401 
    U2(i)=gb*a2^(i-1); 
 end 
 
 %lsim(sys2,U2,[],Xob,Ts) 
 % The above plot verifies Theorem 5.1 for the second input 
 
U3=[U1' U2']; 
Xo3=Xoa + Xob;  
sys3=ss(A,B,V*C,0,Ts); 
 
% %lsim(sys3,U3,[],Xo3,Ts); 
% [y3,t3,x3]=lsim(sys,U3,[],Xo3,Ts);  
% The above plot verifies Theorem 5.1 for 2 inputs 
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% [y4,t4,x4]=lsim(sys3,U3,[],Xo3,Ts); 
%  figure  
% subplot(2,1,1) 
% stairs(t3,y3(:,1)); 
% subplot(2,1,2) 
% stairs(t3,y3(:,2)) 
%  
% figure 
%  
% stairs(t4,y4) 
 
% Lets introduce some fault in G(z) by changing the B matrix 
delB=[0 0.5  
    0 0  
    0 0  
    0 0]; 
 
Bprime= B+ delB 
 
% s=sym('s'); 
% H=C*inv(s*eye(4)-A)*Bprime 
 
% % Applying the COLUMN TEST 
% figure 
% sys5=ss(A,Bprime,V*C,0,Ts); 
%  
% for i=1:401 
%     U5(i,1)=ga*(a1)^(i-1); 
%     U5(i,2)=0; 
% end 
% [y5,t5,x5]=lsim(sys5,U5,[],Xoa,Ts);    
% stairs(t5,y5) 
 
%  
% % Applying the ROW TEST 
% figure 
% sys6=ss(A,Bprime,C,0,Ts) 
% [y6,t6,x6]=lsim(sys6,U,[],X0,Ts);     
% subplot(2,1,1) 
% stairs(t6,y6(:,1)) 
% subplot(2,1,2) 
% stairs(t6,y6(:,2)) 
%  
 
% STEADY STATE ANALYSIS 
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sys7=ss(A,Bprime,C,0,Ts); 
 
for i=1:401 
     U7(i,1)=0; 
     U7(i,2)=1; 
end 
X0=zeros(4,1); 
[y7,t7,x7]=lsim(sys7,U7,[],X0,Ts); 
subplot(2,1,1) 
stairs(t7,y7(:,1)); 
subplot(2,1,2) 
stairs(t7,y7(:,2)); 
 
H=C*inv(-A)*B  
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