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ABSTRACT 

Study of the Utilization and Benefits of Phasor Measurement Units  
 

for Large Scale Power System State Estimation. (December 2005) 
 

Yeo Jun Yoon, B.S., Korea University, South Korea 

Chair of Advisory Committee: Dr. Ali Abur 

 

This thesis will investigate the impact of the use of the Phasor Measurement Units 

(PMU) on the state estimation problem. First, incorporation of the PMU measurements in a 

conventional state estimation program will be discussed. Then, the effect of adding PMU 

measurements on the state estimation solution accuracy will be studied. Bad data 

processing in the presence of PMU measurements will also be presented. Finally, a multi-

area state estimation method will be developed. This method involves a two level 

estimation scheme, where the first level estimation is carried out by each area 

independently. The second level estimation is required in order to coordinate the solutions 

obtained by each area and also to detect and identify errors in the boundary measurements.  

The first objective of this thesis is to formulate the full weighted least square state 

estimation method using PMUs. The second objective is to derive the linear formulation of 

the state estimation problem when using only PMUs. The final objective is to formulate a 

two level multi-area state estimation scheme and illlustrate its performance via simulation 

examples. 

 

  

 

 

 



  

  

                                                                                                                                               iv 

 ACKNOWLEDGMENTS 

First and foremost, I would like to express my deepest gratitude to Dr. Ali Abur for his 

guidance and encouragement. He has been a source of inspiration, throughout my graduate 

studies at Texas A&M University. 

I would like to thank my committee members, Dr. Chanan Singh, Dr. Laszlo Kish and 

Dr. Steven D. Taliaferro, for their help. I would also like to acknowlege my professors at 

Texas A&M University from whom I have learned so much. 

The work described in this thesis was sponsored by the Power Systems Engineering 

Research Center (PSERC).  I also express my appreciation for the support provided by 

PSERC. 

Finally, I would like to express my love and gratitude to my girl friend, Ara Cho , and 

my parents for their endless support and encouragement.  



  

  

                                                                                                                                               v 

TABLE OF CONTENTS 

Page 

ABSTRACT ………………………………………………………………………………. iii 

ACKNOWLEDGMENTS ………………………………………………………………... iv 

TABLE OF CONTENTS ..…………………………………………………………………v 

LIST OF FIGURES ……………………. ……………………………………………….. vii 

LIST OF TABLES .……………………………………………………………………….. ix 

CHAPTER 

I INTRODUCTION .……………………………………………………..………..1 

1.1 Modern Power System Operations ...…………………………………….1 
1.2 Multi-Area State Estimation Using PMUs ………………………………1 
1.3 Thesis Contributions ...……………………………………………….…..2 
1.4 Organization of This Thesis ...……………………………………………3 

II FULL WEIGHTED LEAST SQUARE STATE ESTIMATION …………….…4 

2.1 Introduction ...…………………………………………..……….….….…4 
2.2 WLS State Estimation Algorithm ...……………………………….……..5 
2.3 Measurement and Component Modeling ...………………………………7 
2.4 State Estimation Algorithm with PMUs ………………………………....9 
2.5 Observability and Bad Data Detection ...……………………………….12 

III LINEAR FORMULATION OF STATE ESTIMATION USING ONLY            

PMUS …………………………………………………………………...…….15 

3.1 Introduction ...…………………………………………………………...15 
3.2 Linear State Estimation Algorithm ...…………………………………...16 
3.3 Simulation Results ...………………………………………………...….18 
3.4 Bad Data Processing ...……………………………………………….....22 

IV BENEFITS OF USING PMUS ..…………………………………………….…25 

4.1 Improved Accuracy of Variables with PMUs ….……………………….25 
4.2 Simulation Results ...…………………….……………………………...28 

V MULTI-AREA STATE ESTIMATION ...…………..……………………........44 

5.1 Current Method of Multi-Area State Estimation ...…………………......44 
5.2 Proposed Method for Multi-Area State Estimation …...……………......46 
5.3 Simulation Example of IEEE14 Bus System ...…………………..……..47 
5.4 Simulation Example of IEEE118 Bus System ...……………….....….....53 



  

  

                                                                                                                                               vi 

CHAPTER                                                                                                                         Page 

VI CONCLUSIONS AND FUTURE WORK .…………………………….……...59 

6.1 Conclusions ...………………………………………………….………..59 
6.2 Future Work ...……………………………………………….………….60 

REFERENCES ...……………………………………….………………………………….61 

VITA ...……………………………………………………………………………….……66 

  

 



  

  

                                                                                                                                               vii 

LIST OF FIGURES 

FIGURE                                                                                                                             Page 

1    Flow-Chart for the WLS State Estimation Algorithm ...………...…………….……..6  

2    Equivalent ‘π ’Model of Two Bus System ..................................................................7 

3    Single PMU Measurement Model ...………………………………………………...10 

4    Transmission Line Model ………………………………………………………..…10 

5    Tranmission Line Model with Rectangular Form ...……………………………...…15 

6    Two Bus System with Measurements …...………………………………………….17 

7    IEEE14 Bus System with PMU Locations ...……………………………………….19 

8    IEEE30 Bus System with PMU Locations ...………………………………….……19 

9    IEEE57 Bus System with PMU Locations ...………………………………….……20 

10 IEEE118 Bus System with PMU Locations ...……………………………….……..21 

11 Imposed Bad Data at C(37,40) from 0.4258 to 0 in IEEE118 Bus System ...……...23 

12 Three Bus System with Measurement Data ...…………………………………...…26 

13 IEEE14 Bus System Diagram with Conventional Measurements ...…………….…30 

14 IEEE30 Bus System Diagram with Conventional Measurements ...…………….…31 

15 IEEE57 Bus System Diagram with Conventional Measurements ...……………….32 

16 IEEE118 Bus System Diagram with Conventional Measurements ...……….….….33 

17 Accuracy of |V| of  IEEE14 Bus System with PMUs ...………………….………...34 

18 Accuracy of |V| of IEEE30 Bus System with PMUs ...…………………….……....35 

19 Accuracy of |V| of IEEE57 Bus System with PMUs ...……………………….……35 

20 Accuracy of |V| of IEEE118 Bus System with PMUs ...…………………….……..36 



  

  

                                                                                                                                               

viii 

FIGURE                                                                                                                             Page 

21 Voltage Angle Accuracy of IEEE14 Bus System with PMUs …..……...………….36 

22 Voltage Angle Accuracy of IEEE30 Bus System with PMUs …..………...……….37 

23 Voltage Angle Accuracy of IEEE57 Bus System with PMUs .………………….....37 

24 Voltage Angle Accuracy of IEEE118 Bus System with PMUs .…………………...38 

25 Average |V| Standard Deviation of IEEE14 Bus System …………………………..38 

26 Average |V| Standard Deviation of IEEE30 Bus System …………………………..39 

27 Average |V| Standard Deviation of IEEE57 Bus System …………………………..39 

28 Average |V| Standard Deviation of IEEE118 Bus System …………………….…...40 

29 Average Voltage Angle Standard Deviation of IEEE14 Bus System ………….…..40 

30 Average Voltage Angle Standard Deviation of IEEE30 Bus System ………..…….41 

31 Average Voltage Angle Standard Deviation of IEEE57 Bus System ………….…..41 

32 Average Voltage Angle Standard Deviation of IEEE118 Bus System ………….…42 

33 Diagram and Measurement Placement of Integrated System ………………….…..48 

34 Diagram and Measurement Placement of Area 1 ...…………….……………….…48 

35 Diagram and Measurement Placement of Area 2 …...……….………………….…48 

36 Second Level Estimation with Boundary Buses ...…………….………….…….….49 

37 Diagram of IEEE14 Bus System with Bad Data ….……………………….…….…51 

38 Diagram and PMU Placement of IEEE118 Bus System ….…………….……….....54 

39 Diagram of Area 3 and Area 6 with Bad Data .………………………………….…57 

 

 

 



  

  

                                                                                                                                               ix 

 LIST OF TABLES 

TABLE                                                                                                                            Page         

1    PMU Locations for Each IEEE System .......……………………………….……….18 

2    Linear Formulation Simulation Results of Several IEEE Bus Systems ..……….…..22 

3    Objective Function Value with Bad Data at C(37,40) ...……….………………...…23 

4    Sorted Normalized Residual Test Results with Bad Data ...………………….….….24 

5    Objective Function Value with No Bad Data ...………………………………….…24 

6    Sorted Normalized Residual Test Results with No Bad Data ...………………….…24 

7    Measurement Type, Value and Error Standard Deviation ...………………….…….26 

8    Variances and Standard Deviations of the Variables of Three Bus System ...…...…27 

9    Six Different Cases by Adding PMUs ...…………………………………………....28 

10 Variable Numbers and Measurement Type and Numbers ...…………………….…29 

11 Standard Deviations of the Measurements for the Test ...………………..…..…….29 

12 Average Error Standard Deviations of the Estimated Variables ...…………….…...42 

13 Various Measurement Types with PMU …...……………………………………....47 

14 Type, Number, and Error S.D. for Different Estimation Levels ...……….…….......49 

15 Estimation Results of IEEE14 Bus System ...………………………………………50 

16 State Estimation Results of Area 2 with Bad Data ...……………………………....51 

17 Sorted Normalized Residuals of Area 2 Estimation ...……………………………..52 

18 State Estimation Results of the Second Level with Bad Data ...…………..…….…52 

19 Sorted Normalized Residuals of the Second Level Estimation ...………………….52 

20 Number of Bus Types and PMUs for Different Estimation Levels ...………..…….55 

 



  

  

                                                                                                                                               x 

TABLE                                                                                                                            Page         

21 Type, Number, and Error Standard Deviation for Different Levels …...………..…55 

22 State Estimation Results of IEEE118 Bus System …………………………………56 

23 State Estimation Results of Area 3 with Bad Data …………………...…………....57 

24 Sorted Normalized Residuals of Area 3 Estimation …………………...………..…57 

25 State Estimation Results of the Second Level with Bad Data …………...…….…..58 

26 Sorted Normalized Residuals of the Second Level Estimation ………...……….…58 



 

________ 

This thesis follows the style and format of IEEE Transactions on Power Systems. 

1 

CHAPTER I 

INTRODUCTION 

 

1.1 Modern Power System Operations 

Over the twenty years, electric power industry in many countries has been undergoing 

fundamental changes due to the process of deregulation [1]-[4]. The belief is that 

competitive markets will lead to more efficient power generation, more technological 

innovations, and eventually to lower retail prices. In an interconnected system, there are 

multiple companies who must cooperate to run the system. Some companies may be 

reluctant to exchange their data for security concerns. In addition,  the power system 

network is growing larger and more complex shared by more providers after the 

deregulation.  

In this situation, the function of state estimation is becoming more important, because 

it is the primary tool for monitoring and control based on the real-time data received from 

the measurement units. As an example, one of the causes of Northeast blackout of 2003 

was the poor control-room procedures and failure of  power-grid organization to keep it 

from spreading [5]. The security analysis, economic dispatch, etc. strongly depend on the 

accuracy of data provided by the state estimation. 

Recently, synchronized phasor measurement techniques based on a time signal of the 

GPS (Global Positioning System) are introduced in the field of power systems. In order to 

obtain simultaneous measurements of different buses it is necessary to synchronize 

sampling clocks at different locations. A PMU (Phasor Measurement Unit) which can 

increase the confidence in the state estimation result is practically introduced via the use of 

synchronized measurements [6]-[16]. Wide-area information from properly distributed 

PMUs enables the effective assessment of the dynamic performance of the power system 

and multi-area state estimation with independently operating system areas. 

 

1.2 Multi-Area State Estimation Using PMUs 

Since the start of the deregulation, power system operators are confronted with the 



 

 

2 

need to monitor and coordinate power transactions taking place over large distances in 

remote parts of the power grid. Each operating center may have its own state estimator 

which processes the measurements given by its local substations. A system-wide state 

estimation solution is needed when the power transactions are involved in several control 

areas. A central state estimator will collect wide area measurements and will solve very 

large scale state estimation problem. However, solving the large scale state estimation is 

not easy. Other than the problem of huge size of the interconnnected system, each 

indepenent system operators may be reluctant to modify their existing system method in 

order to meet the new specifications imposed by the central state estimator for the large 

area solution. Then, a hierarchical multi-area state estimation is a solution for the individual 

system operators to keep their existing method and a central coordinator to determine the 

state of the overall system.  

Synchronized phasor measurement units are indispensable to get a second level state 

estimation. PMUs can measure voltage and currents as phasors. The error is small 

compared with the conventional measurements such as power injection and power flow 

measurements. Until very recently, the measurements used by the multi-area state 

estimators typically included only synchronized voltage phasors from the PMUs. However, 

this thesis will include all the measured data from PMUs, such as voltage magnitudes and 

phasors and real and reactive part of currents. 

 

1.3 Thesis Contributions 

One of the contributions of this thesis is that it shows the effect of PMUs on the 

accuracy of variables. After showing how to implement the PMU measurement in state 

estimation, the effect is discussed by gradually increasing the PMU numbers. Four different 

kinds of IEEE Bus Systems are tested. Interesting thing is that the improved accuracy of 

variables are somewhat saturated when PMUs are implemented at nearly 10% of the total 

system buses. Second contribution of this thesis is the introduction of the linear formulated 

state estimation. There’s no need to update the Jacobian matrix in state estimation 

algorithm when using only PMU measured data. Simulation example of the linearly 
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formulated state estimation and its bad data detection and identification process is 

illustrated. Lastly, this thesis presents a multi-area state estimation method including PMU 

measurements. 

 

1.4 Organization of This Thesis 

This thesis is composed of 6 chapters. Chapter I is the introduction. It shows the 

current problems and reviews the problem of state estimation. Chapter II presents the 

specific modeling and simulation method of the full weighted least square state estimation. 

Chapter III is the introduction of the linear formulation of the state estimation problem 

when using PMUs. Simulation works and bad data processing with the linear formulation 

are illustrated. Chapter IV shows the benefits of using PMUs. Improved accuracy of the 

estimated variables with PMUs is illustrated. Chapter V shows a multi-area state estimation 

method with PMUs. Firstly, current method of multi-area state estimation is reviewed, and 

proposed method is described. Then, the simulation results of the proposed multi-area state 

estimation method described. Finally, Chapter VI contains conclusions about this thesis and 

future work to make the state estimation method more applicable for real systems. 
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CHAPTER II 

 FULL WEIGHTED LEAST SQUARE STATE ESTIMATION 

 

2.1 Introduction   

Power system state estimation derives a real-time model through the  received data 

from a redundant measurement set. Different kinds of methods about state estimation are 

reviewed in [17]-[19]. Among them, detailed weighted least squares(WLS) state estimation 

methods are shown in [20]-[23]. 

WLS state estimation minimizes the weighted sum of squares of the residuals. 

Consider the set of measurements given by the vector z : 

                               

1 1 1 2 1

2 2 1 2 2

1 2

( , , , )

( , , , )
( )

( , , , )

n

n

m m n m

z h x x x e

z h x x x e
z h x e

z h x x x e

� � � � � �
� � � � � �
� � � � � �= = + = +
� � � � � �
� � � � � �
� � � � � �

�

�

� � �

�

                          (2.1)  

      1 2[ ( ), ( ), , ( )]T
mh h x h x h x= �        

        ( )ih x  is the nonlinear function relating measurement i  to the state vector x  

        1 2[ , , ]T
nx x x x= �  is the system state vector 

        1 2[ , , ]T
me e e e= �  is the vector of measurement errors. 

Let ( )E e denote the expected value of e , with the following assumptions:  

( ) 0iE e = , 1, ,i m= �                                                         (2.2) 

                                             ( ) 0i jE e e =                                                                     (2.3) 

Measurement errors are assumed to be independent and their covariance matrix is 

given by a diagonal matrix R : 

                                  2 2 2
1 2( ) [ ] { , , , }T

mCov e E e e R diag σ σ σ= ⋅ = = �                        (2.4) 

The WLS estimator will minimize the following objective function: 

                        2

1

( ) ( ( )) /
m

i i ii
i

J x z h x R
=

= −� 1[ ( )] [ ( )]Tz h x R z h x−= − −                        (2.5) 

At the minimum value of the objective function, the first-order optimality conditions 
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have to be satisfied. These can be expressed in compact form as follows: 

       
( )

( )
J x

g x
x

∂=
∂

1( ) [ ( )] 0TH x R z h x−= − − =         where, 
( )

( )
h x

H x
x

∂� �= � �∂� �
            (2.6) 

The non-linear function ( )g x  can be expanded into its Taylor series around the state 

vector kx  neglecting the higher order terms. An iterative solution scheme known as the 

Gauss-Newton method is used to solve (2.6): 

                                          
11 ( ) ( )k k k kx x G x g x

−+ � �= − ⋅� �                                             (2.7) 

where, k  is the iteration index and kx  is the solution vector at iteration k . 

( )G x  is called the gain matrix, and expressed by: 

                                 1( )
( ) ( ) ( )

k
k T k kg x

G x H x R H x
x

−∂= = ⋅ ⋅
∂

                                    (2.8) 

                                    
1( ) ( ) ( ( ))k T k kg x H x R z h x−= − ⋅ ⋅ −                                         (2.9) 

Generally, the gain matrix is quite sparse and decomposed into its triangular factors. 

At each iteration k , the following sparse linear set of equations are solved using 

forward/backward substitutions, where 1 1k k kx x x+ +∆ = − : 

               1 1 1( ) ( ) ( ) ( )k k T k k T k kG x x H x R z h x H x R z+ − −� � � �∆ = ⋅ ⋅ − = ⋅ ⋅∆� � � �                 (2.10) 

This iterations are going on until the maximum variable difference satisfies the 

condition, ' 'kMax x ε∆ < . A detailed flow-chart of this algorithm is shown in next section. 

 

2.2 WLS State Estimation Algorithm 

WLS state estimation uses the iterative solution of Equation (2.10). Iterations start at 

an initial guess 0x  which is typically chosen as the flat start, i.e. all bus voltages are 

assumed to be 1.0 per unit and in phase with each other. The flow-chart of the iterative 

algorithm for WLS state estimation problem can be outlined in Figure 1. 
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Figure 1.  Flow-Chart for the WLS State Estimation Algorithm 
 

 

 

1) Initially set the iteration counter 0k = , define the convergence tolerance ε  and the 

iteration limit lim itk  values. 

2) If limitk k> , then terminate the iterations.  

3) Calculate the measurement function ( )kh x , the measurement Jacobian ( )kH x , and 

Set iteration index 0k =  
Set ε  and lim itk  value 

Initialize kx , typically as a flat start 
 

Build the measurement Jacobian ( )kH x  
Build 1( ) ( ) ( )k T k kG x H x R H x−=  

 

Calculate the mismatch vector ( )k kz z h x∆ = −  
Calculate kx∆  by 1( ) ( )k k T k kG x x H x R z−� �∆ = ⋅ ⋅∆� �    

 

Calculate the measurement function ( )kh x   

Update 1k k= + ,  

Update 1k k kx x x+ = + ∆  

kx ε∆ ≤ ? 

lim itk k< ? 

End  

Start 

Yes 

 

No 

No No 
Convergence ! 
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the gain matrix 1( ) ( ) ( )k T k kG x H x R H x−= .  

4) Solve kx∆  using Equation (2.10). 

5) If kx ε∆ > , then go to step 2). Else, stop. Algorithm converged. 

 

2.3 Measurement and Component Modeling 

There are three most commonly used measurement types in power system state 

estimation. They are the bus power injections, the line power flows and bus voltage 

magnitudes. These measurement equations can be expressed using the state variables. 

Consider a system having N  buses, the state vector will have ( 2 1N − ) components which 

are composed of N  bus voltage magnitudes and ( 1N − ) phase angles. The state vector is 

equal to 1 2 2 3[ ]T
N Nx V V V θ θ θ= � � . An arbitrary value, such as 0 is set to be the phase 

angle of one reference bus. If we define ij ijg jb+  as the admittance of the series branch line 

connecting buses i  and j , and si sig jb+  as the admittance of the shunt branch connected at 

bus i , the equivalent π  model can be shown in Figure 2 below. 

 

 

 

Figure 2.  Equivalent ‘π ’Model of Two Bus System 
 

 

 

Let the (i,j)th entry of the admittance matrix Y  be ij ij ijY G jB= + . The expression for 

each of the above types of measurements are then given below: 

Real and reactive power injection at bus i can be expressed by,  
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                             ( cos sin )
i

N

i i j ij ij ij ij
j N

P V V G Bθ θ
∈

= +�                                          (2.11) 

                              ( sin cos )
i

N

i i j ij ij ij ij
j N

Q V V G Bθ θ
∈

= −�  

Real and reactive power flow from bus i  to bus j  are, 

                        
2 ( ) ( cos sin )ij i si ij i j ij ij ij ijP V g g V V g bθ θ= + − +                             (2.12) 

                        
2 ( ) ( sin cos )ij i si ij i j ij ij ij ijQ V b b V V g bθ θ= − + − −  

Jacobian matrix H  components for real power injection measurement are, 

                           
2

1

( sin cos )
N

i
i j ij ij ij ij i ii

ji

P
V V G B V Bθ θ

θ =

∂ = − + −
∂ �                         (2.13) 

                           ( sin cos )i
i j ij ij ij ij

j

P
V V G Bθ θ

θ
∂ = −
∂

 

                          
2

1

( cos sin )
N

i
j ij ij ij ij i ii

ji

P
V G B V G

V
θ θ

=

∂ = + −
∂ �  

                          ( cos sin )i
i ij ij ij ij

j

P
V G B

V
θ θ∂ = +

∂
 

Jacobian matrix H  components for reactive power injection measurement are, 

                                   
2

1

( cos sin )
N

i
i j ij ij ij ij i ii

ji

Q
V V G B V Gθ θ

θ =

∂ = + −
∂ �                            (2.14) 

                                   ( sin sin )i
i j ij ij ij ij

j

Q
V V G Bθ θ

θ
∂ = − −
∂

 

                                  
2

1

( sin cos )
N

i
j ij ij ij ij i ii

ji

Q
V G B V B

V
θ θ

=

∂ = − −
∂ �  

                                  ( sin cos )i
i ij ij ij ij

j

Q
V G B

V
θ θ∂ = −

∂
 

Jacobian matrix H  components for real power flow measurement are, 
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                               ( sin cos )ij
i j ij ij ij ij

i

P
V V g bθ θ

θ
∂

= −
∂

                                           (2.15) 

                               ( sin cos )ij
i j ij ij ij ij

j

P
V V g bθ θ

θ
∂

= − −
∂

 

                              ( cos sin ) 2( )ij
j ij ij ij ij ij si i

i

P
V g b g g V

V
θ θ

∂
= − + + +

∂
 

                              ( cos sin )ij
i ij ij ij ij

j

P
V g b

V
θ θ

∂
= − +

∂
 

Jacobian matrix H  components for reactive power flow measurement are, 

                               ( cos sin )ij
i j ij ij ij ij

i

Q
V V g bθ θ

θ
∂

= − +
∂

                                        (2.16) 

                               ( cos sin )ij
i j ij ij ij ij

j

Q
V V g bθ θ

θ
∂

= +
∂

 

                              ( sin cos ) 2( )ij
j ij ij ij ij ij si i

i

Q
V g b b b V

V
θ θ

∂
= − − − +

∂
 

                              ( sin cos )ij
i ij ij ij ij

j

Q
V g b

V
θ θ

∂
= − −

∂
 

The H  matrix has rows at each measurements and columns at each variables. If the 

system is large, the H  matrix has more zero components. Therefore, usually the sparse 

matrix technique is used to build this matrix.  

 

2.4 State Estimation Algorithm with PMUs 

One PMU can measure not only the voltage phasor, but also the current phasors. 

Figure 3  shows a 4-bus system example which has single PMU at bus 1. It has one voltage 

phasor measurement and three current phasor measurements, namely 1 1V θ∠ , 1 1I δ∠ , 

2 2I δ∠ , 3 3I δ∠ .  
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Figure 3.  Single PMU Measurement Model  
 

 

 

If we define y as the series admittance and shunty  as the shunt admittance, current 

phasor measurements can be written in rectrangular coordinates as shown in Figure 4. 

 

 

 

 

Figure 4.  Transmission Line Model  
 

 

 

The expressions for ijC and ijD  are:       

                 cos( ) cos( ) cos( )ij i si i si j ij j ij i ij i ijC VY V Y VYδ θ δ θ δ θ= + + + − +               (2.17) 
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                  sin( ) sin( ) sin( )ij i si i si j ij j ij i ij i ijD VY V Y VYδ θ δ θ δ θ= + + + − +  

where, the state vector is given as : 1 2 2 3[ ]T
n nx VV V δ δ δ= � � . 

The entries of the measurement Jacobian H  corresponding to the real and reactive 

parts of the current phasors are: 

                                   cos( ) cos( )ij
si i si ij i ij

i

C
Y Y

V
δ θ δ θ

∂
= + − +

∂
                              (2.18) 

                                   cos( )ij
ij j ij

j

C
Y

V
δ θ

∂
= +

∂
 

                                   sin( ) sin( )ij
i si i si i ij i ij

i

C
VY VYδ θ δ θ

δ
∂

= − + + +
∂

 

                                   sin( )ij
j i j j ij

j

C
V Y δ θ

δ
∂

= − +
∂

 

                                   sin( ) sin( )ij
si i si ij i ij

i

D
Y Y

V
δ θ δ θ

∂
= + − +

∂
                                (2.19) 

                                   sin( )ij
ij j ij

j

D
Y

V
δ θ

∂
= +

∂
 

                                   cos( ) cos( )ij
i si i si i ij i ij

i

D
VY VYδ θ δ θ

δ
∂

= + − +
∂

 

                                   cos( )ij
j ij j ij

j

D
V Y δ θ

δ
∂

= +
∂

 

The measurement vector z contains , ,ij ijC Dδ , as well as the power injections, power 

flows and voltage magnitude measurements. 

                             [ , , , , , , , ]
TT T T T T T T T

inj inj flow flow ij ijz P Q P Q V C Dδ=                          (2.20) 

Generally, those measurements received from PMUs are more accurate with small 

variances compared to the variances of conventional measurements. Therefore, including 

PMU measurements is expected to produce more accurate estimates. Multi-area state 

estimation also benefits from this technology. 
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2.5 Observability and Bad Data Detection   

If the entire state vector of bus voltage magnitudes and angles can be estimated from 

the set of available measurements, the power system with the specified measurement set is 

said to be observable. However, some measurement failures may occur in the power system 

at anytime. In this situation, the power system state estimator can not estimate bus voltage 

magnitudes and angles at all buses. It can only estimate a portion of the entire network. If a 

limited number of measurement units are exist, then the units should be placed properly to 

make the entire system observable. Observability and measurement placement problems are 

well described in [24]-[27]. Other than these problems, the method of bad data detection is 

also studied in this thesis. 

Every actual measurement may contain small random errors due to various reasons, 

such as the limited precision of the measuring meters and the unexpected noise in the  

communication channals. However, such errors may be filtered out by the state estimator. 

One of the essential functions of a state esimator is to detect gross measurement errors, and 

to identify and eliminate them if possible. Different kinds of bad data processing methods 

are explained in  [28]-[32].  

When using the WLS estimation method, detection and identification of bad data are 

done only after the estimation algorithm converges, by processing the measurement 

residuals. In this thesis, chi-squares detection test and largest normalized residual test will 

be discussed. The chi-squares test only determines if the measurement set has any bad data. 

Once bad data are detected, they need to be identified and eliminated or corrected. The 

largest normalized residual has the ability to identify bad data. 

Consider the objective function ( )J x , written in terms of the measurement errors, 

                                    1 2 2 2

1 1 1

( ) ( ) ( )
m m m

Ni
ii i i

i i iii

e
J x R e e

R
−

= = =

= = =� � �                            (2.21) 

ie  is the i th measurement error, iiR  is the diagonal entry of the measurement error 

covariance matrix and m  is the total number of measurements. Assuming that ie ’s are all 

normally distributed random variables with zero mean and iiR  variances, N
ie ’s will have a 
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standard normal distribution, i.e.: 

                                                     ~ (0,1)N
ie N                                                        (2.22) 

Then, ( )J x  will have a 2χ  distribution with at most ( m n− ) degree of freedom. 

2
( ) ,m n αχ −  means chi-squares distribution with ( m n− ) degrees of freedom with probability 

of false alarmα . ( )J x value which is larger than the distribution curve 2
( ) ,m n αχ −  indicates 

that there are bad data in the measurement set. After detecting  bad data, identification and 

elimination of bad data is required. 

Considering the residual sensitivity and covariance matrices, measurement residuals 

may still be correlated even if errors are assumed independent with ( ) 0E e = , cov( )e R= . 

Then, the WLS estimator of the linearized state vector will be given by, 

                            1 1 1ˆ ( )T Tx H R H H R z− − −∆ = ∆  1 1TG H R z− −= ∆                                 (2.23) 

If we define K  matrix which is sometimes called the hat matrix as 1 1TK HG H R− −= , 

then the estimated value of z∆ can be denoted by: 

                                                  ˆẑ H x K z∆ = ∆ = ∆                                                    (2.24) 

Now, the measurement residuals can be expressed as follows: 

                                              ˆ ( )r z z I K z= ∆ − ∆ = − ∆                                              (2.25) 

                                                                ( )( ) ( )I K H x e I K e= − ∆ + = −  

                                                                Se=  

The matrix S , called the residual sensitivity matrix, represents the sensitivity of the 

measurement residuals to the measurement errors. Normalized value of the residual for 

measurement i  can be obtained by simply dividing its absolute value by the corresponding 

diagonal entry in the residual covariance matrix,  

                                               i iN
i

ii ii ii

r r
r

R S
= =

Ω
                                                (2.26) 

The normalized residual vector Nr  will then have a standard normal distribution, i.e. 

~ (0,1)N
ir N . Thus, the largest element in Nr  can be compared against a statistical 

threshold to decide on the existence of bad data. This threshold can be chosen based on the 
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desired level of detection sensitivity. 

Bad data may show up in several different ways depending on the type, location and 

number of measurements that are in error. When there are multiple bad data in the 

measurement set, estimates of measuerments may be significantly affected by the errors of 

each other, if they have strongly correlated residuals. They are referred to as interacting bad 

data which will make bad data processing very difficult. Futhurmore, conforming errors are 

those that appear consistent with each other, making their identification more difficult.  

When a single bad measurement exists in the measurement set, the largest normalized 

residual test will identify and eliminate the bad data, but only if the measurement is not 

critical. A critical measurement is the one whose elimination from the measurement set will 

result in an unobservable system. The measurement residual of a critical measurement will 

always be zero. There are also critical pairs and critical k-tuples. When simultaneous 

removal of two redundant measurements makes the system unobservable, it is called a 

critical pair. A critical k-tuple contains k redundant measurements, where removal of all of 

them will cause the system to become unobservable. Therefore, the bad data processing is 

not so easy when there are multiple interacting or conforming  bad data or any critical 

measurements which are bad. 
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 CHAPTER III 

LINEAR FORMULATION OF STATE ESTIMATION USING ONLY PMUS 

 

3.1 Introduction   

One phasor measurement unit can measure a synchronized voltage phasor and several 

synchronized current phasors. If the measurement set is composed of only voltages and 

currents measured by PMUs, the state estimation can be formulated as a linear problem. 

The state vector and measurement data can be expressed in rectrangular coordinate system. 

The voltage measurement (V V θ= ∠ ) can be expressed as (V E jF= + ), and the current 

measurement can be expressed as ( I C jD= + ).  

 

 

 

 
Figure 5.  Transmission Line Model with Rectangular Form 

 

 

 

In the Figure 5, ( ij ijg jb+ ) is the series admittance of the line, and ( si sig jb+ ) is the 

shunt admittance of the transmission line. Line current flow ijI  can be expressed as a linear 

fucntion of voltages. 

                             [( ) ( )] [ ( )]i j i j i j ij i si siI V V g jb V g jb= − × + + × +                        

                                  [( ) ( )] ( )i j ij si si i i j ij jg jb g jb V g jb V= + + + × − + ×                      (3.1) 
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The measurement vector z  is expressed as ( )z h x e= + , (where x  is a state vector, 

( )h x  is a matrix of the linear equations, and e is an error vector). In rectangular 

coordinates: 

                                    ( )( )z Hr jHm E jF e= + + +                                                   (3.2) 

                         where, H Hr jHm= +  , x E jF= +  and z A jB= + . 

A  and B  are expressed by:                                                     

                                              A Hr E Hm F= × − ×                                                    (3.3) 

                                              B Hm E Hr F= × + ×      

In matrix form,  

                                             
A Hr Hm E

e
B Hm Hr F

−� � � � � �
= +� � � �� �

� � � �� �
                                         (3.4) 

Then, the estimated value ˆ ˆx̂ E jF= +  can be obtained by solving the linear equation 

below: 

                                                1 1 1ˆ ( )T Tx H R H H R z− − −=                                             (3.5) 

If we define the linear matrix newH  as new

Hr Hm
H

Hm Hr

−� �
= � �
� �

, then the above equation 

can be rewritten by:        

                                     1 1 1
ˆ

ˆ ( )
ˆ

T T
new new new

E A
x H R H H R

BF
− − −

� � � �
= =� � � �

� �� �� �
                            (3.6) 

Therefore, the equation for rectangular formed variable x̂  can be given by the  

rectangular forms of H  matrix and z  vector. They are all real numbers. 

 

3.2 Linear State Estimation Algorithm 

Consider the two bus system shown in  Figure 6. Note that PMU located at bus 1 

measures voltage 1V  and line current 12I . According to (3.1), the line current flow 12I  can be 

expressed as:                                           

                   12 1 1 2 2I k V k V= × + ×   ( 1k , 2k  are constant complex value)                      (3.7) 
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Figure 6.  Two Bus System with Measurements 

 

 

 

Measurement vector z  has two entries, 1V  and 12I . 

                                      1

12 1 2

1 0V E
z e

I k k F
� � � � � �

= = +� � � �� �
� �� � � �

                                                (3.8) 

Expressing (3.8) in rectrangular coordinates: 

           
1 2 1 1 2 2 1 2 1 2

1 0 1 0 1 0 0 0
j Hr jHm

k k kr jkm kr jkm kr kr km km
� � � � � � � �

= = + = +� � � � � � � �+ +� � � � � � � �
 

where, 1 1 1V E jF= + ,    12 12 12I C jD= +  

            1 1 1k kr jkm= + ,    2 2 2k kr jkm= +   

The measurement vector z  becomes, 

                            

1 1

12 1 2 1 2 2

1 1

12 1 2 1 2 2

1 0 0 0

0 0 1 0

E E

C kr kr km km E
z e

F F

D km km kr kr F

� � � � � �
� � � �� �− −� � � �� �= = +
� � � �� �
� � � �� �
� � � �� �

                          (3.9) 

Finally, x̂  is calculated using (3.6): 
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1

2

1

2

ˆ
ˆ

ˆ

E

EE
x

FF
F

� �
� �� �
� �= =� �
� �� �� � � �
� �

 ,    

1

12

1

12

E

CA
z

FB
D

� �
� �

� � � �= =� � � �� �
� �
� �

                                           (3.10) 

This is very simple and fast, because it dosen’t need any iterations. 

 

3.3 Simulation Results  

Four different IEEE test systems (IEEE14, IEEE30, IEEE57, IEEE118 bus system) are 

used for the simulations [33]-[35]. A gaussian random errors are imposed on each 

measurement. The error variance of measurements is set to be 0.00001. Table 1 shows the 

locations of PMUs at each system. These PMUs are placed as a minimum required number. 

Each PMU has one voltage measurement and several current flow measurements connected 

to the neighboring buses.  

 

 

 

Table 1.  PMU Locations for Each IEEE System 
 PMU locations at Bus 

IEEE14 Bus 2,6,7,9 
IEEE30 Bus 3,5,6,9,10,12,19,23,25,29 
IEEE57 Bus 1,4,7,9,15,20,24,25,27,32,36,38,39,41,46,50,53 

IEEE118 Bus 2,5,9,11,12,17,21,24,25,28,34,37,40,45,49,52,56, 
62,63,68,73,75,77,80,85,86,90,94,101,105,110,114 

 

 

 

Network diagrams showing the PMU locations for the test systems are given in 

Figures 7~10. 
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Figure 7.  IEEE14 Bus System with PMU Locations 

 

 

 

 
Figure 8.  IEEE30 Bus System with PMU Locations 
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Figure 9.  IEEE57 Bus System with PMU Locations 
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Table 2  shows the total results of the state estimation using only PMUs. The objective 

functions ( )J x  is also much less than the chi-squares threshold with 99% confidence.  

 

 

 

Table 2.  Linear Formulation Simulation Results of Several IEEE Bus Systems 
 IEEE 14Bus IEEE 30Bus IEEE 57Bus IEEE 118Bus 

Number of PMUs 4 10 17 32 
Number of voltage measure 4 10 17 32 
Number of current measure 15 34 54 125 

H matrix dimension 38 by 27 88 by 59 142 by 113 314 by 235 
Computation time (s) 0.11 0.161 0.341 0.451 
Degree of freedeom 11 29 29 79 

Chi-square limit 24.725 49.588 49.588 111.144 
J(x) (objective function) 0.0678 0.0938 0.0877 0.3538 

Largest normalized residual 0.2275 0.1485 0.1586 0.2293 

 

 

 

 

3.4 Bad Data Processing  

The method of bad data detection and identification with linear formulation of state 

estimation is investigated in this section. Bad data processing includes chi-squares test and 

largest normalized residual test. As an example, Figure 11 shows a portion of the IEEE118 

bus system with PMU locations at bus 37 and bus 40. 



 

 

23 

 
 

Figure 11.  Imposed Bad Data at C(37,40) from 0.4258 to 0 in IEEE118 Bus System 
 

 

 

One bad data is imposed to the current measurement from bus 37 to bus 40. Real part 

of current measurement (37,40) is 0.4258 in normal operating condition. C(37,40) is forced 

to change from 0.4258 to 0. There are PMUs in bus 37 and 40. Therefore, C(37,40) is a 

redundant measurement. The state estimation result with objective function is shown in 

Table 3. The objective function J(x) is much larger than chi-sqaures limit, which means that 

the test detected bad data. Then, the largest normalized residual test identified the bad data 

at C(37,40) which has the largest normalzied residual of 369.72 in Table 4.  

 

 

 
Table 3.  Objective Function Value with Bad Data at C(37,40) 

Degree of Freedom Chi-Sqaures limit Objective function J(x) 
78 109.96 13595 
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Table 4.  Sorted Normalized Residual Test Results with Bad Data 
Measurement Type Sorted Normalized Residual  

Real part of current measurement (37,40) 369.72 
Real part of current measurement (40,39) 207.37 
Real part of current measurement (37,39) 207.35 
Real part of current measurement (40,37) 122.37 

: : 
 

 

 

The current measurement (37,40) has been removed, because the real part of current 

measurement has been identified as a bad data. After removing it, the chi-squares test did 

not detect any bad data, and the largest normalized residual is 0.21842 which is far below 

the test criteria 3.0, as shown in Tables 5-6. 

 

 

 

Table 5.  Objective Function Value with No Bad Data 
Degree of Freedom Chi-sqaures limit Objective function J(x) 

76 107.58 0.3612 
 

 

 

Table 6.  Sorted Normalized Residual Test Results with No Bad Data 
Measurement Type Sorted Normalized Residual  

Real part of current measurement (85,86) 0.21842 
Real part of current measurement (86,85) 0.21683 
Real part of current measurement (77,75) 0.20642 

Real part of voltage measurement (11) 0.20138 
: : 

 

 

 

In this example, the bad data C(37,40) has been successfully detected and sorted out 

with two tests, a chi-squares test and a largest normalized residual test. 
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CHAPTER IV 

BENEFITS OF USING PMUS  

 

4.1 Improved Accuracy of Variables with PMUs 

This section investigates the effects of increasing the number of PMUs on the 

accuracy of the estimated variables. If some PMU measurements are added to the state 

estimation, the state estimation accuracy will be affected, because the PMU measurements 

have smaller error variances compared to other measurements. One PMU has one voltage 

phasor measurement and several current phasor measurements at any branch connected to 

the PMU installed bus. A PMU will measure two quantities, the real and reactive part of the 

phasor for each voltage or current. 

Firstly, consider how to measure the accuracy of the estimated variables. One of the 

way of representing the level of state estimation accuracy is to refer the covariance of the 

estimated variables. From (3.5), the covariance of the estimated variable vector x̂  can be 

expressed as: 

                        1 1 1 1 1ˆ( ) (( ) ) ( )T T TCov x Cov H R H H R z Cov G H R z− − − − −= =                   (4.1)   

The covariance of the measurement vector z  is R  from (2.4): 

                            ( ) ( ( ) ) ( )Cov z Cov h x e Cov e R= + = =                                             (4.2) 

Then, (4.1) can be rewritten as: 

                             1 1 1 1ˆ( ) ( ) ( )( )T T TCov x G H R Cov z G H R− − − −=                                    (4.3) 

                                         1 1 1 1 1( ) (( ) )T T T TG H R R H R H H R− − − − −=  

                                         1 1 1 1 1( ) ( ) (( ) )T T T T TG H R R H R H R H− − − − −=  

                                         1 1 1 1 1( ) ( )T TG H R RR HH R H− − − − −=  

                                         1 1 1( )T TG H R R H− − −=  

                                         1G−=                             

Therefore, the inverse of the gain matrix is equal to the covariance of the x̂ . 

Consider a three bus system example of Figure 12. All the line impedances are 

assumed to be ‘j10’. There are 5 measurements shown in Table 7. S.D. means an error 
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standard deviation. 

 

 

 

  
Figure 12.  Three Bus System with Measurement Data 

 

 

 

Table 7.  Measurement Type, Value and Error Standard Deviation 
Measure #1: Pflow(1,2) #2: Qflow(1,2) #3: Pinj(3) #4: Qinj(3) #5: Voltage(1) 

Value 0.2 0.4 -0.04 -0.02 1.0 
S.D. 0.01 0.01 0.01 0.01 0.004 

 

 

 

Variable vector x  in the system can be express as ],[ T
i

T
iVx δ= .             

With 3-bus example,  1 2 3[ , , ]
T

iV V V V= , 2 3[ , ]T
iδ δ δ=  (bus 1 is chosen as slack). 

The Jacobian matrix, ‘ H ’ and the inverse of weight, ‘ R ’ can be calculated as: 
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39.8 40 0 0.1 0

0.1 0.1 0 40.2 0
40.12 40.12 80.28 0.04 0.02
0.06 0.04 0.02 40.32 80.44
1 0 0 0 0

H

−� �
� �−� �
� �= −
� �− − −� �
� �� �

,

0.0001 0 0 0 0
0 0.0001 0 0 0
0 0 0.0001 0 0
0 0 0 0.0001 0
0 0 0 0 0.000016

R

� �
� �
� �
� �=
� �
� �
� �� �

  

Inverse of gain matrix can be calculated by (2.8), ( ) 11 1TG H R H
−− −= : 

5 5 5 8 8

5 5 5 8 8

1 5 5 5 8 8

8 8 8

1.6 10 1.592 10 1.5952 10 7.9205 10 4.7713 10
1.592 10 1.5903 10 1.5903 10 7.8809 10 4.7451 10
1.5952 10 1.5903 10 1.5935 10 7.9007 10 4.7586 10
7.9205 10 7.8809 10 7.9007 10 6.2

G

− − − − −

− − − − −

− − − − − −

− − −

× × × × ×
× × × × ×

= × × × × ×
× × × 8 8

8 8 8 8 8

271 10 3.1253 10
4.7713 10 4.7451 10 4.7586 10 3.1253 10 3.1144 10

− −

− − − − −

� �
� �
� �
� �
� �

× ×� �
� �× × × × ×� �

 

If we have the value of the inverse of the gain matrix ‘ 1G− ’, we can find error 

variances of variables by taking diagonal elements. 

                                          )ˆcov(1 xG =−  , 1
ˆii xG σ− =                                              (4.4) 

                     Error Variance ( 2σ ) is 

5

5

1 5

8

8

1.6 10

1.5903 10
( ) 1.5935 10

6.2271 10
3.1144 10

iiG diagonal

−

−

− −

−

−

� �×
� �×� �
� �= ×
� �

×� �
� �×� �

 

 

 

 

Table 8.  Variances and Standard Deviations of the Variables of Three Bus System 
Measure 

1V  2V  3V  2δ  3δ  

Variance ( 2
x̂σ ) 51.6 10−×  51.5903 10−×  51.5935 10−×  86.2271 10−×  83.1144 10−×  

S.D. ( x̂σ ) 0.004  0.0039878 0.0039919  0.00024954  0.00017648 
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In Table 8, the error standard deviation of variable 1V  is obtained as 0.004 from the 

square root of  the first element of the inverse gain matrix, 2V  as 0.0039878, and so on.  

Regarding the accuracy, PMU can deliver more precise measurement data. Several 

cases are tested with different number of added PMUs to the conventional measurement set . 

Simulations and analysis of six different cases which are shown in Table 9 are done with 

several IEEE bus systems in the next section. 

 

 

 
Table 9.  Six Different Cases by Adding PMUs 

Case 1 Conventional Measurements with No PMUs 

Case 2 Conventional Measurements with PMUs of  (10% of bus number) 

Case 3 Conventional Measurements with PMUs of  (20% of bus number) 

Case 4 Conventional Measurements with PMUs of  (30% of bus number) 

Case 5 Conventional Measurements with PMUs of  (40% of bus number) 

Case 6 Only Minimum PMUs 
 

 

 

 

4.2 Simulations Results 

In this section, 4 different IEEE bus systems (IEEE14 bus system, IEEE30 bus system, 

IEEE57bus system, IEEE118bus system) are tested with 6 cases to find out the effect of the 

PMUs to the accuracy of the estimated variables. 

Define m  as the number of measurements, n  as the number of variables, and η  as the 

ratio of the number of measurements per the number of variables. During the tests, η  is 

maintained to be 1.6. Table 10 has more detailed information about the measurement 

numbers for the tests. 
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Table 10.  Variable Numbers and Measurement Type and Numbers  
Measurements 

 Variables Power 
Injection 

Power  
Flow 

Voltage 
Magnitude Total 

Ratio η   

(
m
n

) 

IEEE14 Bus 27 18 24 1 43 1.6 
IEEE30 Bus 59 38 56 1 95 1.6 
IEEE57 Bus 113 72 108 1 181 1.6 

IEEE118 Bus 235 150 226 1 376 1.6 
 

 

 

For 14 bus system example, variable number is 14 2 1 27n = × − =  (excluding slack bus 

angle), and  m  should be 43 to maintain 6.1=η . To place measurement evenly at each 

system, 40% of injection easurements and 60% of flow measurements are distributed to 

each systems. Therefore, the injection measurement number is 18 and flow measurement 

number is 24 in 14 bus system. Lastly one voltage magnitude measurement is placed at 

each system. The settings for error standard deviations for those measurements are shown 

in Table 11. A PMU has much smaller error deviations than other conventinal 

measurements as 0.00001. 

 

 

 

Table 11.  Standard Deviations of the Measurements for the Test 
Power Injection Power Flow Voltage Magnitude PMU 

0.01 0.008 0.004 0.00001 
 

 

Figures 13~16 show the network diagrams for each systems. Arrow with circle at the 

bus means a pair of real and reactive power injection measurements, and arrow with ‘v’ 
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means a voltage magnitude measurement. If there’s any point on the transmission line, it 

means a pair of real and reactive power flow measurements. The point is placed at the 

starting position regarding the direction of the flow measurement.  

 

 

 

 
Figure 13.  IEEE14 Bus System Diagram with Conventional Measurements 
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Figure 14.  IEEE30 Bus System Diagram with Conventional Measurements 
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Figure 15.  IEEE57 Bus System Diagram with Conventional Measurements 
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The accuracy of two variables (voltage magnitude, voltage angle) are investigated 

separately. The variances of variables are obtained from the inverse diagonal elements of 

‘G’ matrix. The standard deviation is a square root of the variance.  Figures 17~20 show the 

accuracy of the estimated voltage magnitudes of each system, and Figures 21~24 show the 

accuracy of the estimated voltage angles of each system. 

 

 

 

 
Figure 17.  Accuracy of |V| of  IEEE14 Bus System with PMUs  
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Figure 18.  Accuracy of |V| of IEEE30 Bus System with PMUs 

 

 

 

 
Figure 19.  Accuracy of |V| of IEEE57 Bus System with PMUs 
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Figure 20.  Accuracy of |V| of IEEE118 Bus System with PMUs 

 

 

 

 
Figure 21.  Voltage Angle Accuracy of  IEEE14 Bus System with PMUs 
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Figure 22.  Voltage Angle Accuracy of IEEE30 Bus System with PMUs 

 

 

 

 
Figure 23.  Voltage Angle Accuracy of  IEEE57 Bus System with PMUs 
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Figure 24.  Voltage Angle Accuracy of  IEEE118 Bus System with PMUs 

 

 

 

Average valued S.D.(Standard Deviation) of each variables are shown in Figures 

25~28 for voltage magnitudes, and in Figures 29~32 for voltage angles. 

 

 

 

 
Figure 25.  Average |V| Standard Deviation of IEEE14 Bus System 
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Figure 26.  Average |V| Standard Deviation of IEEE30 Bus System   

 

 

 

 
Figure 27.  Average |V| Standard Deviation of IEEE57 Bus System 
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Figure 28.  Average |V| Standard Deviation of IEEE118 Bus System 

 

 

 

 
           Figure 29.  Average Voltage Angle Standard Deviation of IEEE14 Bus System 
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Figure 30.  Average Voltage Angle Standard Deviation of IEEE30 Bus System 

 

 

 

 
Figure 31.  Average Voltage Angle Standard Deviation of IEEE57 Bus System 
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Figure 32.  Average Voltage Angle Standard Deviation of IEEE118 Bus System 

 

 

 

Table 12.  Average Error Standard Deviations of the Estimated Variables 
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Type of 
Variables 

Type of 
IEEE Bus  
Systems 

No PMUs 10% 
PMUs 

20% 
PMUs 

30% 
PMUs 

40% 
PMUs 

Only 
PMUs 

14 Bus 0.0043741 
(100%) 

0.0008449 
(19.31%) 

0.0001727 
(3.95%) 

0.0001497 
(3.42%) 

0.0000810 
(1.85%) 

0.0000055 
(0.13%) 

30 Bus 0.0046548 
(100%) 

0.0010444 
(22.43%) 

0.0004986 
(10.70%) 

0.0003240 
(6.96%) 

0.0003229 
(6.94%) 

0.0000042 
(0.09%) 

57 Bus 0.0048461 
(100%) 

0.0016503 
(34.05%) 

0.0010682 
(22.00%) 

0.0006291 
(12.98%) 

0.0005864 
(12.12%) 

0.0000063 
(0.13%) 

Voltage 
Magnitude 

( V ) 

118 Bus 0.0026439 
(100%) 

0.0003763 
(14.23%) 

0.0001916 
(7.25%) 

0.0001522 
(5.76%) 

0.0001110 
(4.20%) 

0.0000045 
(0.17%) 

14 Bus 0.0023332 
(100%) 

0.0008298 
(35.56%) 

0.0001555 
(6.66%) 

0.0001311 
(5.62%) 

0.0000618 
(2.65%) 

0.0000027 
(0.11%) 

30 Bus 0.0030143 
(100%) 

0.0010244 
(33.98%) 

0.0004918 
(16.3%) 

0.0003182 
(10.56%) 

0.0003171 
(10.52%) 

0.0000032 
(0.11%) 

57 Bus 0.0028824 
(100%) 

0.0017072 
(59.23%) 

0.0011105 
(38.53%) 

0.0006607 
(22.92%) 

0.0006291 
(21.82%) 

0.0000054 
(0.19%) 

 Voltage 
Angle 
(δ ) 

118 Bus 0.0017892 
(100%) 

0.0003832 
(19.31%) 

0.0001940 
(3.95%) 

0.0001542 
(3.42%) 

0.0001122 
(1.85%) 

0.0000041 
(0.13%) 
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The percentage values in the Table 12 mean that how the S.D. values at each cases are 

decreased compared to the S.D. of ‘Case 1’ which are forced to be set as 100%  for each 

systems. In the IEEE118 bus system for example, the S.D. of the estimated voltage 

magnitude is approximately 0.00264 (Set to be 100%) when there is no PMUs, but after 

adding 10% of  PMUs to the system, it becomes nearly 0.000376 (14.23%). It means that 

‘85.77%’ of the S.D. of ‘Case 1’ is decreased by adding only 10% of PMUs. In case of 

‘Only PMUs’, it becomes nearly zero, such as 0.000006 which is far less than the ‘No 

PMUs’ case.  The interesting thing is that the rates of percent decreasing are maximum at 

‘Case 2’ which has 10% of PMUs. Therefore, this result shows that the most cost effective 

way of installing PMUs is to add them to the system around 10% of the total bus numbers, 

while decreasing the errors of the estimated variables. 
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CHAPTER V 

MULTI-AREA STATE ESTIMATION 

 

5.1 Current Method of Multi-Area State Estimation 

After the deregulation of the power systems, state estimation solution for a large 

scaled interconnected system is needed. Several kinds of research for the multi-area 

methods of the state estimation are done earlier in [36]-[44]. Different kinds of analysis for 

the system network by nodes [36], tie-lines [37],[38],[39] or the structure of the gain matrix 

[40] are suggested. However, their ideas are mainly centered on the computing time, 

memory issues, and exchange of data between areas. Recently, multi-area state estimation 

including boundary measurements and requiring no iterations between the local and central 

estimators is proposed in [45]. The existing multi-area state estimation method is briefly 

introduced in this section mostly based on [45], and new proposed strategy is discussed 

next. 

Consider a large power system including several local areas. In each areas, the buses 

are classified into three different types of buses. Supposing that the area i  is taken as an 

example, their definitions are following: 

1) Internal bus : All of whose neighbors are belong to the area i  

2) Boundary bus : Whose neighbors are area i  internal buses and at least one boundary  

bus from another area. 

3) External bus : Which is a boundary bus of another area with a connection to at least 

one boundary bus in area i  

After excluding the voltage angle at the reference bus, the state vector for the area i  is 

given by, int, ,
T T T T

b ext
i i i ix x x x� �=

� �
.Where 

Tb
ix  is the state vector for the boundary buses, 

intT

ix  is for the internal buses, and 
Text

ix  is for the external buses. This defined state vector 

of the voltage magnitudes and angles is for the first level state estimation. The second level 

state estimation includes another variables, the synchronized phase angles of the slack 

buses in each areas. The second level estimator coordinates the results of the individual 
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local area estimation, and make sure that all bad data related to the boundary measurements 

are identified and removed. The state vetor to be estimated in this stage is defined as: 

                                                     [ , ]
Tb T T

sx x u=                                                        (5.1) 

where,  

1 2[ , , , ]
T T T Tb b b b T

nx x x x= � ,  

2 3[ , , , ]T T
nu u u u= �  

When the reference area is arbitrarily chosen to be area 1 with 1 0u = ,  iu  represents a 

voltage angle of the slack bus of the i th area with respect to the slack bus of area 1. While 

processing the first and second level state estimations, a WLS state estimation method is 

used. The central coordinator receives GPS based phasor measurement data and raw 

measurement data from area boundary buses. These data are used in second level state 

estimation to get an unbiased solutions for the whole system state. The measurement vector 

z  is given by: 

                                            ˆ ˆ[ , , , ]
T TT T b ext T

s u psz z z x x=                                                (5.2) 

where, 

1) uz  : Boundary measurement vector. 

2) psz : GPS synchronized phasor measurement vector.    

3) ˆbx : Boundary state variables estimated by individual area state estimation.  

4) ˆextx : external state variables. 

The central coordinator takes those values as pseudo-measurements. The measurement 

model is then be given by: 

                                                  ( )s s s sz h x e= +                                                          (5.3) 

The covariance of these measurements can be obtained from the covariance matrix of 

the state for individual areas. From the (4.3), this matrix is equal to the inverse of the gain 

matrix related to that area’s WLS state estimator. For the effectiveness of the coordinator 

estimation, synchronized phasor measurements provide the measurement redundacy 

effectively, while improving the quality of the estimation.  The largest normalized residual 
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test is carried out, in both the individual area SE and the coordinator SEto detect and 

identify the bad data.  

The main idea of this formulation is to allow each local estimator to remain 

completely independent in the first level and let the first stage results be coordinated by an 

independent central entity in the second level. 

 

5.2 Proposed Method for Multi-Area State Estimation  

The multi-area state estimation method presented in the previous section utilizes PMU 

measured voltage angles while accomplishing the second level state estimation. Which 

means that the synchronized voltage angles at slack bus in each areas are added to the 

measurement vector. However, those are not the only measurement data from a PMU. 

Single PMU can measure a voltage and currents with magnitudes and phasors. In this 

section, an upgraded method for multi-area state estimation with all the measurement data 

from PMU is introduced.   

The method of incorporating PMU measurements to the conventional state estimation 

is explained in detail in chapter II.  Considering the the second stage SE, the measurement 

vector sz  can have all the measurement data from PMU. The measurement vector from 

PMU can be expressed as pmuz : 

                                                [ , , , ]T T T T T
pmu angle c dvz z z z z=                                      (5.4) 

Total measurement vector  sz  can be expressed as: 

                                                 ˆ ˆ[ , , , ]
T TT T b ext T

s u pmuz z z x x=                                         (5.5)                       

                                                     ˆ ˆ[ , , , , , , ]
T TT T T T T b ext T

u angle c dvz z z z z x x=                          

The variable vector sx  in the second stage is composed of the variables in the 

boundary buses, PMU located buses, and neighboring buses to the PMU located buses. 

Therefore, the sx  can be expresssed as: 

                                                       [ , ]
Tb T T

s pmux x x=                                                          (5.6) 
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Table 13.  Various Measurement Types with PMU   
Measurement Type Measurement 

Pinj (Real Power Injection)  Power Injection  
Qinj (Reactive Power Injection) 

Pflow (Real Power Flow) Power flow 
Qflow (Reactive Power Flow) 

|V| (Voltage Magnitude) Voltage from PMU 
Vangle (Voltage Angle) 

Cij (Real  Part of Current) Current from PMU 
Dij (Reactive part of current) 

|V| (Result of Boundary Bus from First Level Estimation  )  
Estimated Result ˆbx  

Vangle (Result of Boundary Bus from First Level Estimation) 

|V| (Result of External Bus from First Level Estimation) 
Estimated Result ˆextx  

Vangle (Result of External Bus from First Level Estimation) 

 

 

 

There are totally 12 measurement types in the second level state estimation as shown 

in Table 13. Simulation works of this method is carried out in the next section. The only 

difference with the existing method is that the central coordinator SE has more 

measurements data from PMU. As expected, the accuracy of the estimated results of this 

method is improved by including current measurements which has small error standard 

deviations.         

   

5.3 Simulation Example of IEEE14 Bus System 

This system is arbitrariliy divided by two areas. Area 1 has 5 buses (1,2,3,4,5) and area 

2 has 9 buses (6,7,8,9,10,11,12,13,14).  Figure 33 shows the diagram and measurement 

placement of the integrated system. Figures 34~35 depict the segmented area 1 and area 2. 

Lastly, Figure 36 illustrates the buses which has to be estimated at the second level, and 

measuremet placement for that.  
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Figure 33.  Diagram and Measurement Placement of Integrated System 

 

 

 

 
Figure 34.  Diagram and Measurement Placement of Area 1 

 

 

 

 
Figure 35.  Diagram and Measurement Placement of Area 2 
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Figure 36.  Second Level Estimation with Boundary Buses  

 

 

 

Table 14 indicates the types and number of measurements and the error standard 

deviations for them. Gaussian errors are imposed to every measurement for the test from 

the exact values. Measurement data for the second level state estimation has boundary and 

external bus measurement variables which are estimated from the first level estimator. The 

gaussian standard deviations for the voltages and currents are small compared to the power 

injection and power flow measurement cases.  

  

 

 

Table 14.  Type, Number, and Error S.D. for Different Estimation Levels 

 Power 
inj. 

Power 
flow |V| Voltage 

Angle 
Real 

Current 
Reactive 
Current 

Boundary 
(|V|, δ ) 

External 
(|V|, δ ) 

Integrated 12 18 2 2 8 8   

First level 
(Area1) 4 8 1 1 4 4   

First level 
(Area2) 8 10 1 1 4 4   

Second 
level 6 2 2 2 8 8 10 10 

Gaussian 
error S.D. 0.01 0.008 0.004 0.0001 0.001 0.001 

Diag- 
(Gi-1(i,i)) 

Diag- 
(Gi-1(i,i)) 
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The results of the estimation for the different levels are summarized in Table 15. The 

objective functions of each cases are quite below the chi-squares limits, and the largest 

normalized residuals are also far below the criteria ‘3.0’. The result of this example 

indicates that the estimation is carried out successfully by two level estimation method with 

PMUs while including current measurements data.  

 

 

 

Table 15.  Estimation Results of IEEE14 Bus System 

 Degree of 
Freedom 

Chi-squares 
Limit 

Objective 
Function J(x) 

Largest rN 

Integrated 21 38.93 23.38 1.7791 
 Area1 6 16.81 2.52 1.3218 
 Area2 6 16.81 9.09 1.8095 

Second-level 24 42.98 33.25 2.1457 
 

 

 

Again, this method is tested for the bad data case, when there’s a bad data in real 

power injection measurement at bus 6. The value of the Pinj(6), which was originally ‘-

0.016’, is replaced by ‘2’ as a bad data. Then, the estimation with WLS method is fulfilled 

out by two levels. Figure 37 depicts the diagram with bad data location. 
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Figure 37.  Diagram of IEEE14 Bus System with Bad Data 

 

 

 

Tables 16-17 are the chi-squares and the largest normalized residual test results of 

state estimation in area 2 at the first level estimation.  

 

 

 

Table 16.  State Estimation Results of Area 2 with Bad Data 
Degree of Freedom Chi-squares Limit Objective Function J(x) 

6 16.81 4.03 
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Table 17.  Sorted Normalized Residuals of Area 2 Estimation 
Measurement Type Largest Normalized Residual (rN) 

Real part of current (9,10) 1.8095 

Imaginary part of current (9,7) 1.8073 

Real part of current (9,14) 1.6774 

: : 

 

 

 

 

 

 

Table 18.  State Estimation Results of the Second Level with Bad Data 
Degree of Freedom Chi-squares Limit Objective Function J(x) 

24 42.98 27965 
 

 

 

 

 

 
 

Table 19.  Sorted Normalized Residuals of the Second Level Estimation 
Measurement Type Largest Normalized Residual (rN) 

Real power injection (6) 146.43 
Real part of current (5,6) 117.54 

Reactive power injection (6) 94.3880 
: : 
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Tho objective function value ‘4.03’ is far below the chi-squares limit ’16.81’, and the 

largest normalized residual is ‘1.8095’ at real current measurement (9,10).  Therefore, the 

estimator failed to detect and identify the bad data measurement, Pinj(6) at the first level 

local estimation. It is because that the bad data is belong to a critical measurement at this 

stage. However, the coordinator SE successfully detect and identify the bad data in Tables 

18-19.  The objective function value ‘27965’ is over the chi-squares limit, and the largest 

normalized residual value is 146.43 at Pinj(6).  

Example of IEEE14 bus system is tested in this section, The two-level estimation is 

accomplished successfully, and the benefits of the coordinator SE is investigated by 

adopting a bad data at Pinj(6). Only the second level estimator could detect the bad data at 

this time with the help of the measurement redundancy. 

 

5.4 Simulation Example of IEEE118 Bus System 

More larger power system is tested this time with same method with the IEEE14 bus 

case. This system is arbitrariliy divided by nine areas with 9 PMUs at each areas. Figure 38 

shows the area segments and the PMU placements.  
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55 

Tables 20-21 illustrate the number of different bus types, number of measurements, 

and error standard deviations for the IEEE118 bus system.  

 

 

 
Table 20.  Number of Bus Types and PMUs for Different Estimation Levels 

 Area1 Area2 Area3 Area4 Area5 Area6 Area7 Area8 Area9 

Total Buses 13 13 12 14 13 13 13 14 13 

Internal Buses 10 4 7 9 6 4 11 5 7 

Boundary Buses 3 9 5 5 7 9 2 9 6 

External Buses 4 10 6 7 6 13 4 8 6 

Slack Bus Number 3 18 35 27 76 47 103 93 55 

Voltage Meas. (PMU) 1 1 1 1 1 1 1 1 1 

Current Meas. (PMU) 3 2 2 4 2 3 4 2 3 

 

 

 

Table 21.  Type, Number, and Error Standard Deviation for Different Levels 

 Power 
Inj. 

Power 
Flow |V| Voltage 

Angle 
Real 

Current 
Reactive 
Current 

Boundary 
(|V|,Angle) 

External 
(|V|,Angle) 

Integ-
rated 110 274 9 . . . . . 

Area1 6 8 1 . . . . . 
Area2 18 30 1 . . . . . 
Area3 10 26 1 . . . . . 
Area4 10 32 1 . . . . . 
Area5 14 28 1 . . . . . 
Area6 18 42 1 . . . . . 
Area7 4 30 1 . . . . . 
Area8 18 30 1 . . . . . 
Area9 12 28 1 . . . . . 

Second- 
level 110 48 9 9 25 25 110 128 

Gaussian 
(S.D) 0.01 0.008 0.004 0.00001 0.001 0.001 

Diag- 
(Gi-1(m,m)) 

Diag- 
(Gi-1(m,m)) 
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 The results of the WLS of the integrated and two level state estimation is 

summarized in Table 22. It has chi-squares test result and largest normalized residual test 

results. All the values of the objective function are below the chi-squares limit and the 

largest normalized residual values are also below the criteria ‘3.0’. 

 

 

 

Table 22.  State Estimation Results of IEEE118 Bus System 

 Integ-
rated Area1 Area2 Area3 Area4 Area5 Area6 Area7 Area8 Area9 Second-

level 
Degree of 
Freedom 368 14 24 16 18 24 8 16 32 26 348 

Chi-Squares 
Limit 404.04 29.14 42.98 32.00 34.81 42.98 20.09 32.00 53.49 45.64 412.30 

Objective 
Function J(x) 113.69 6.62 6.66 4.94 9.77 6.18 12.59 3.73 11.09 10.98 324.68 

Largest rN 2.64 2.10 2.13 1.79 1.97 1.72 2.34 1.57 2.09 2.18 2.87 

 

 

 

Then, a test is conducted for the bad data case. Pinj(44) is changed from ‘-0.154’ to ‘1’ 

as a bad data in Figure 39.  

 

 

 



 

 

57 

 
Figure 39.  Diagram of Area 3 and Area 6 with Bad Data 

 

 

 

Pinj(44) is a critical measurement for the area 3 local estimator. Therefore, the first 

level estimation can’t detect the bad data. Tables 23-24 have the results of the area 3 

estimation. Two tests indicates that there is no bad data at this level of estimation. 

 

 

 

Table 23.  State Estimation Results of Area 3 with Bad Data 
Degree of Freedom Chi-square limit Objective function J(x) 

16 32.00 4.94 
                                                         

 

                  

Table 24.  Sorted Normalized Residuals of Area 3 Estimation 
Measurement Type Largest normalized residual (rN) 

Reactive Power Flow (39,40) 1.79 

Reactive Power Flow (37,40) 1.73 

Reactive Power Flow (37,49) 1.67 

: : 
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However, the second level estimator detects and identifies the bad data exactly. Table 

25 tells the objective function values is quite over the chi-squares limit, and Table 26 shows 

that the exact bad data is the Pinj(44) which has the largest normalized residual value.  

 

 

 

Table 25.  State Estimation Results of the Second Level with Bad Data 
Degree of Freedom Chi-squares Limit Objective Function J(x) 

348 412.30 10586 
 

 

 

 

Table 26.  Sorted Normalized Residuals of the Second Level Estimation 
Measurement Type Largest normalized residual (rN) 

Pinj (44) 77.9204 

External angle (45) 69.364 

Boundary angle (45) 47.978 

: : 

 

 

 

By two simulation examples, the proposed multi-area state estimation method is tested 

and analyzed. In case of that the mesurement on the boundary bus is bad and is critical, the 

second level estimator could detect it with the PMUs while the first level state estimator 

failed to detect it.  
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

In chapter II the way of incorporating the PMU data to the conventional measurement 

set is discussed. A  PMU can measure voltage and current with magnitude and phasors. The 

current measurement is implemented to the measurement set as a rectangular form. 

Equations for the added measurements are illustrated in detail including the elements of the 

Jacobian matrix. It is expected that those PMU measured data improve the measurement 

redundancy and accuracy, due to the small error standard deviations of PMU.   

A linear formulation of the state estimation is investigated in chapter III, using only 

PMU measured data. All the variables and measurements are reformed as a rectangular 

form, and they are treated separately during the estimation process. This linear formulation 

of the PMU data can produce the estimation result by a single calculation not requiring any 

iterations. Several examples are tested including bad data detection case. If a mesaurement 

set having only PMU data is exist in the real world, the improvement of the computation 

time and accuracy is expected, with the linear formulation of the state estimation.  

Chaper IV examines the benefits of using PMU, which improves the accuracy of the 

estimated variables. Six cases are tested while gradually increasing the number of PMUs 

which are added to the measurement set. With the help of advanced accuracy of PMU, it 

was seen that the estimated accuracy is also gradually increase. One of the interesting thing 

is that the accuracy improves most effectively when the number of implemented PMUs are 

around ‘10%’ of the system buses. It is proved that the quality of the estimation is bettered 

by adopting PMU data to the measurement set. 

Lastly, chapter V surveys a multi-area state estimation process and proposes advanced 

method applying all the measurements of PMU to the two level estimator. This method is 

tested by two examples. The test results show that the first level state estimation at each 

area is completely independent as a local estimator. This estimated results of all the 

boundary and external buses are sent to the central coordinator for the second level 
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estimation, and there’s no iterations between the local estimator and the central entity. In 

case of imposed bad data to a boundary bus, the local estimator fails to detect it while the 

second level estimator exactly detects and identifies it. As a conclusion, the synchronized 

measurements from PMU, makes possible the multi-area state estimation for a large power 

system, and improves the accuracy and quality of the estimation results.  

 

6.2 Future Work 

The work done in this report indicates that PMU has many benefits in the state 

estimation process. If the PMU is installed through the entire system, the linear formulation 

of the state estimation can be used which has fast execution time and improved accuracy. 

While the information about the interconnected different areas is becoming more important, 

a multi-area state stimation for a huge size of system is needed nowadays. Furthermore, 

each area should install  PMU for the synchronization, and communicate between the 

different areas and central coordinator, while the concerned network areas are becoming 

more larger. By doing so, the multi-area state estimation for a large network system can be 

done.  

In order to efficiently install PMUs to the existing system, a research for the optimal 

PMU placement is needed. The way of deploying the PMUs would determine   

improvement level of the accurcy and the cost. Also, an analysis for the cost effects of  

adding more PMU is required.  
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