

DEVELOPMENT OF A 2-D BLACK-OIL RESERVOIR SIMULATOR USING

A UNIQUE GRID-BLOCK SYSTEM

A Thesis

by

EMELINE E. CHONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2004

Major Subject: Petroleum Engineering

DEVELOPMENT OF A 2-D BLACK-OIL RESERVOIR SIMULATOR USING

A UNIQUE GRID-BLOCK SYSTEM

A Thesis

by

EMELINE E. CHONG

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

David S. Schechter
(Co-Chair of Committee)

 Duane A. McVay
(Co-Chair of Committee)

Wayne M. Ahr
(Member)

 Stephen A. Holditch
(Head of Department)

December 2004

Major Subject: Petroleum Engineering

 iii

ABSTRACT

Development of a 2-D Black-Oil Reservoir Simulator Using

a Unique Grid-Block System.

(December 2004)

Emeline E. Chong, B.S., Malaysia University of Technology

Co-Chairs of Advisory Committee: Dr. David. S. Schechter
 Dr. Duane A. McVay

The grid orientation effect is a long-standing problem plaguing reservoir simulators that

employ finite difference schemes. A rotation of the computational grids yields a

substantially different solution under certain circumstances. For example, in a five-spot

pattern, the predicted recovery, water cut performance and the locations of the fronts

depend on the type of grid system used. A Cartesian grid with one axis parallel to the line

joining an injector and producer gives a solution significantly different from a grid that

has the axes oriented at 45° to this line.

This study develops a unique grid-block assignment where rectangular grid blocks

are interspersed with octagonal grid blocks. This grid block system is called the Hybrid

Grid Block (HGB) system. The objective of this study is to evaluate the grid orientation

effect of the HGB grid to see whether it is an improvement over the conventional

Cartesian grid system.

In HGB, flow can progress in four directions in the octagonal grid blocks and two

in the square grid blocks. The increase in the number of flow directions in the octagonal

grid blocks is expected to reduce the grid orientation effect in the model. Hence, this

study also evaluates the grid orientation effect of the HGB and compares it with the

Cartesian grid system.

To test the viability of HGB, a general purpose finite difference IMPES-

formulated two-dimensional black oil simulator was developed in this study, while

retaining the familiar finite-difference discretization of the flow equations. Several

 iv

simulation cases were conducted to compare HGB and conventional grid block systems.

Comparisons with commercial simulator are also made.

Despite the fact that the reservoir is isotropic and homogeneous, grid orientation

effect was still observed when rectangular Cartesian grid models are run at mobility ratio,

M = 1.0. Grid refinement can help to reduce the grid orientation effect in rectangular

Cartesian grid models when there are favorable mobility ratios, i.e. M = 1.0 or less.

However, at an unfavorable mobility ratio of M = 10.0, it is found that neither

parallel nor diagonal orientation can be used reliably for the displacement problems run

in this study. This is because as the number of grid blocks is increased, the performance

of diagonal and parallel models actually diverges for the grid spacings investigated here.

On the other hand, HGB grid is able to reduce the grid orientation effect even for

unfavorable mobility ratio displacement problems (up to M = 50.0), with maximum

relative difference in pore volume recovered of 6% between parallel and diagonal HGB

grid models for all the cases run in this study.

Comparisons between the conventional Cartesian and HGB grid show that the

HGB grid is more effective in reducing the grid orientation effect than the Cartesian grid.

The HGB grid performs better by consistently giving a smaller relative difference

between HGB parallel grid and HGB diagonal grid in pore volume recovered (6.0, 4.5,

3.3, and 2.2%) compared to the relative difference between Cartesian parallel grid and

Cartesian diagonal grid in pore volume recovered (17.0, 13.0, 9.3, 7.9%) at similar

averaged area per grid block for all the four comparison cases studied.

 v

DEDICATION

To all my family members for their love, care and support throughout the years

 vi

ACKNOWLEDGMENTS

First of all, a heartfelt thanks to my advisor, Dr. David S. Schechter for giving me all the

opportunities to study this research topic as well as his guidance, support and

understanding throughout my time here as a graduate student.

I would also like to thank Dr. Duane A. McVay, Dr. Wayne M. Ahr, and Dr.

Thomas A. Blasingame for taking the time to serve on my committee and for their helpful

suggestions.

Thanks also to Dr. Erwin Putra for his advice and valuable suggestions. In

addition, I am very grateful for the kind assistance and suggestions by Mr. Zuher Syihab

during the course of my work.

Special thanks to fellow graduate students at the Harold Vance Department of

Petroleum Engineering, especially members of the Naturally Fractured Reservoirs Group

and all my friends here at Texas A&M University for enriching my life in countless

ways.

This work was supported by the Department of Energy. This support is gratefully

acknowledged.

Finally, I would like to thank my entire family for their prayers, love, support and

encouragement – without whom the completion of this project would not have been

possible.

 vii

TABLE OF CONTENTS

 Page

ABSTRACT... iii

DEDICATION………………………………………………………………………….. v

ACKNOWLEDGMENTS ... vi

TABLE OF CONTENTS... vii

LIST OF FIGURES ... ix

LIST OF TABLES... xiii

CHAPTER

I INTRODUCTION .. 1

1.1 Overview of Gridding Techniques... 1
1.2 Literature Review on Grid Orientation Effect 2
1.3 Grid Orientation Effect .. 5
1.4 Research Methodology .. 6

II FINITE DIFFERENCE FORMULATION: IMPES PROCEDURE.......... 7

2.1 Conservation of Mass Equations ... 7
2.2 IMPES Method .. 10
2.3 IMPES Flow Equations for Three-Phase Flow...................... 11

III PROGRAM CHARACTERISTICS AND PROPERTIES 20

3.1 Algorithm of VB Code... 20
 3.1.1 Initialization Data.. 21
 3.1.2 Averaging of Flow Equation Terms 21
 3.1.3 Boundary Conditions .. 23
 3.1.4 Well Model ... 24
 3.1.4.1 Peaceman’s Well Model 25
 3.1.4.2 Well Constraints.. 27
 3.1.5 Time Step Control... 29
 3.1.6 Solution Method – Linear Solver.................................. 29
3.2 Spatial Discretization of Cartesian Grid System 31
3.3 Implementation of Hybrid Grid-Block (HGB) System 32
 3.3.1 Grid Block Generation.. 33
 3.3.2 Transmissibility Calculations.. 34
 3.3.3 Grid Numbering and Structure of Matrix Forms 36

 viii

CHAPTER Page

 3.3.4 Palagi’s Well Model ... 39

IV GRID ORIENTATION EFFECT ... 42

V PROGRAM VALIDATION AND PERFORMANCE OF HGB MODEL 53

5.1 Program Validation.. 53
5.2 Use of HGB Grid to Reduce Grid Orientation Effect............ 59
 5.2.1 HGB Sensitivity .. 65

VI CONCLUSIONS... 71

REFERENCES .. 74

APPENDIX A.. 79

APPENDIX B .. 91

VITA.. 139

 ix

LIST OF FIGURES

FIGURE Page

1.1 Flow paths for parallel and diagonal flow in a Cartesian
grid .. 5

2.1 1-D model with three uniform grid blocks ... 7

2.2 Flow chart showing how IMPES can be implemented in a

computer program... 19

3.1 Flow chart of the Sim2D code .. 22

3.2 2-D flow domain with a well .. 24

3.3 Algorithm for the time step cutback loop ... 30

3.4 1-D, block-centered, finite difference grid ... 32

3.5 Grid numbering for the Cartesian grid system.. 32

3.6 HGB grid model.. 33

3.7 Example of transmissibility calculations in HGB....................................... 34

3.8 Calculations in eight directions for a central octagonal

block.. 35

3.9 Ordering #1: 2-D grid block ordering... 37

3.10 Locations of matrix elements in Ordering #1 ... 37

3.11 Ordering #2: 2-D grid block ordering... 38

3.12 Locations of matrix elements in Ordering #2 ... 38

3.13 Ordering #3: Re-ordering of grid blocks to reduce band

width .. 39

3.14 Locations of matrix elements in Ordering #3 ... 40

3.15 Well model for a polygon ... 41

 x

FIGURE Page

4.1 Parallel and diagonal orientation for simulations of
waterflooding in five-spot symmetry elements... 42

4.2 Porosity modifications……………………… .. 44

4.3 Permeability modifications……………………… 45

4.4 Well model modifications………………………....................................... 45

4.5 Predicted performance at M=0.5 for parallel (8x8) and

diagonal (6x6) grid blocks .. 47

4.6 Predicted performance at M=0.5 for different number of

diagonal grid blocks.. 47

4.7 Predicted performance at M=0.5 for different number of

parallel grid blocks.. 48

4.8 Predicted performance at M=0.5 for parallel (29x29) and

diagonal (21x21) grid blocks .. 48

4.9 Predicted performance at M=1.0 for different number of

diagonal grid blocks.. 49

4.10 Predicted performance at M=1.0 for different number of

parallel grid blocks.. 49

4.11 Predicted performance at M = 1.0 for parallel (57x57) and

diagonal (41x41) grid blocks .. 50

4.12 Predicted performance at M = 10.0 for different number

of diagonal grid blocks.. 51

4.13 Predicted performance at M = 10.0 for different number

of parallel grid blocks ... 51

4.14 Saturation distribution map for (a) diagonal model, and

(b) parallel model at PVinj=1.0 for M = 10.0... 52

5.1 Relative permeability curve……………………… 54

5.2 Comparison of Sim2D oil and water rates and watercut

with ECL100 showing good agreement between the two
simulators.. 55

 xi

 FIGURE Page

5.3 Comparison of Sim2D well bottomhole pressure at

producer with ECL™ 100... 56

5.4 Comparison of Sim2D well block pressure at producer

with ECL™ 100.. 56

5.5 Comparison of Sim2D well block oil saturation at

producer with ECL™ 100... 57

5.6 Comparison of Sim2D well bottomhole pressure at

injector with ECL™ 100... 57

5.7 Comparison of Sim2D well block pressure at injector

with ECL™ 100.. 58

5.8 Comparison of Sim2D well block oil saturation at

injector with ECL™ 100... 58

5.9 (a) Parallel and (b) diagonal grid orientation in HGB grid......................... 61

5.10 Porosity, permeability and well model modifications 61

5.11 Influence of mobility ratios on the predicted performance

of HGB grid .. 62

5.12 Saturation distribution map for parallel HGB grid as

shown in Fig. 5.9(a) at various mobility ratios ... 63

5.13 Saturation distribution map for diagonal HGB grid as

shown in Fig. 5.9(b) at various mobility ratios... 64

5.14 Comparison between HGB grid (50 and 98 grid blocks)

and Cartesian grid (49 and 100 grid blocks) at M = 0.5 68

5.15 Comparison between HGB grid (98 and 200 grid blocks)

and Cartesian grid (100 and 196 grid blocks) at M = 0.5 68

5.16 Comparison between HGB grid (200 and 392 grid

blocks) and Cartesian grid (196 and 400 grid blocks) at M
= 0.5 .. 69

5.17 Comparison between HGB grid (392 and 800 grid

blocks) and Cartesian grid (400 and 784 grid blocks) at M

 xii

Page

 = 0.5 ... 69

5.18 Effect of grid spacing on parallel HGB for M = 0.5 70

5.19 Effect of grid spacing on diagonal HGB for M = 0.5 70

 xiii

LIST OF TABLES

 TABLE Page

3.1 Averaging of parameters... 23

4.1 Data used for five-spot pattern simulations .. 43

4.2 Grid sizes used in Cartesian grid models.. 43

5.1 Reservoir data ... 54

5.2 PVT data ... 55

5.3 Data used for HGB pattern simulations .. 59

5.4 2-Phase PVT data (for M=0.5).. 60

5.5 Relative difference between parallel and diagonal models
of various mobility ratios for HGB grid models in

 Fig. 5.10 .. 62

5.6 Averaged area per grid block for the HGB grid ... 66

5.7 Averaged area per grid block for the Cartesian grid................................... 66

5.8 Relative difference between parallel and diagonal grid for
both HGB and Cartesian grid at M = 0.5 .. 67

 1

CHAPTER I

INTRODUCTION

1.1 Overview of Gridding Techniques

Most commonly used grids are constructed by aligning the grid block along orthogonal

coordinate directions, and then distorting the grid, to fit major reservoir features. It is

generally believed that heterogeneous reservoirs could also be represented if grids are

made sufficiently small. Even though the Cartesian grids have been widely used, it is not

always suitable for the simulation of complex reservoirs. Some shortcomings of

Cartesian grids include its inflexibility in the description of faults, pinch outs and

discontinuities in reservoirs, and the influence of grid orientation on the results.

In principle, if extremely fine grids could be created it would be possible to

represent heterogeneous reservoirs easily. However, the number of grids in a model is

practically limited by computer capacity and CPU time. In order to solve this problem,

the concept of local grid refinement has been introduced. Local grid refinement involves

using a fine grid inside a coarse-based grid. This is usually done for regions with large

pressure changes near the wellbore, in areas of wide variation in saturation, in regions of

interest which require finer resolution, and in highly heterogeneous regions. This might

reduce the computation time but it should yield results which are very similar to a fine-

based grid in accuracy. Nevertheless, the banded structure of the matrix is lost so matrix-

solving procedure may be less efficient. For example, to model radial flow near a well,

hybrid local grid refinement was proposed by Pedrosa and Aziz1. Orthogonal curvilinear

This thesis follows the style and format of the journal of SPE Reservoir Evaluation and
Engineering.

 2

grids are used in the well region and Cartesian grids are used in the rest of the reservoir.

Different types of locally refined grids have been presented throughout the literature.

Reservoir simulations are normally being performed on rectangular Cartesian

grid, radial grid was developed later to simulate flow near the wellbore. Local grid

refinement was developed to achieve better accuracy in high flow regions1-2.

Development of corner-point geometry grid3-4 enables the use of non-rectangular grid

blocks. This provides the ability to model faults and other complex geological features.

Until then, all grids were structured, where the neighbors of a grid block could be easily

identified from their i,j,k indices.

However, in the last decade, unstructured grids5-10 were introduced. In

unstructured grids, the connections between grid blocks are flexible, and a connection

list is used to keep track of the connected grid blocks. More and more reservoir

simulators have flexible grid capabilities already available or in development. More

studies should be done to determine whether these techniques are reliable and accurate,

and whether they can allow a significant computer time saving during a reservoir

simulation run.

1.2 Literature Review on Grid Orientation Effect

Several methods have been proposed to reduce the grid orientation effect throughout the

years. The literature can be divided into several major groups in terms of the approach

taken to reduce the grid orientation effect.

Grid orientation effect in reservoir simulation caused by conventional rectangular 5-

point discretization scheme was reported by Todd et al.11 The orientation of the grid

relative to the lines of flow influenced results from the scheme involving five-point

differencing and single-point upstream weighting. They attributed the problem to single-

point upstream weighting. They proposed the use of two-point upstream mobility

weighting in replace of the generally used single-point approximation. They reported a

reduction of both numerical dispersion of flood fronts and the sensitivity of predicted

areal displacement performance to grid orientation. Holloway et al.12 presented an

 3

approach to reduce the grid orientation effect by modifying phase transmissibilities and

the two-point upstream weighting method proposed by Todd et al.11 that permitted

diagonal flow, but their modifications only resulted in marginal improvement over the

original two-point weighting. Meanwhile, a generalization of upstream weighting was

proposed by Frauenthal et al.13, which involves using a weighting parameter between the

two mobilities instead of the simple single-point weighting. The main attraction of these

techniques is that they can be easily implemented into existing computer codes and do

not add significantly to computational time. However, based on the studies done by

Vinsome and Au14, they concluded that in an extreme case of unfavorable mobility ratio,

the upstream formulation predicts a pressure drop across a shock front that is much

smaller than it is supposed to be, and vice versa in the case of favorable mobility ratio.

The second group of the literature developed around the method of using a nine-

point finite difference discretization scheme, which was initially proposed by Yanosik

and McCracken15. This scheme is based on adding diagonal transmissibilities in the areal

(X-Y) direction in order to reduce grid orientation effects when the flow is not aligned

with the grid. They introduced a “weighting factor”, which were four and one for the

diagonal and parallel grids respectively. Various forms of nine-point schemes were also

introduced by subsequent authors15-21. Ko and Au16 concluded that the nine-point

scheme proposed by Yanosik and McCracken could not solve the problem of grid

orientation for all mobility ratios since the weighting factor used in this method is a

function of mobility ratio itself. In addition, as the nine-point scheme is a weighted-

interpolation between the two five-point grids with a common center point and its

diagonal transmissibilities, it hence lacks physical justification.

In single-point upstream mobility weighting, the mobility term is discretized using

first order scheme. It is generally believed that the grid orientation effect is partly caused

by numerical dispersion in low order techniques such as this. Also, truncation error

manifests itself as a numerical dispersion which will cause smearing of the flood front.

Coarser grids will have larger truncation errors and more dispersion. On the contrary,

finer grids will have smaller truncation error and less dispersion. However, as stated by

 4

Brand et al.22, “…in general the GOE (Grid Orientation Effect) cannot be overcome with

grid refinement….When the grid is refined, the solutions still depend on the size and

orientation of the underlying grid, as long as numerical diffusion dominates over

physical dispersion and diffusion.”

The third group concerns mainly with the numerical implications23-26 of the finite

difference solutions - using a higher-order finite difference methods, or generally known

as the high-order techniques (HOT). For example, Chen et al.23, Pinto and Correa24 and

Wolcott et al.25 proposed using the Total Variation Diminishing (TVD) methods.

Wolcott et al.25 used a combination of nine-point scheme and the third order Taylor’s

series expansion TVD scheme. The authors reported than this method was able to reduce

numerical dispersion and produce sharper saturation fronts.

A type of uniform triangular grids was also introduced in the early 1980s27. This

method requires the use of the point-distributed grid system and the grid generation is

more complicated than the conventional grid system. The advantage of this grid is that

the grid boundaries are not aligned in one particular direction or the other. On the other

hand, Pruess and Bodvarsson26 proposed the use of a seven-point discretization scheme,

which is essentially a structured and uniform hexagonal grid-block model. They

investigated steam injection problems with relatively coarse grids and concluded that the

hexagonal grid can reduce the grid orientation effect. The use of hexagonal grid was

further supported by Heinemann et al.28 in their PEBI (Perpendicular-Bisector) grid

model. They also reported the unrealistic saturation front produced by the hexagonal grid

and by the Cartesian grid with the nine-point formulation for M = 50.

The current trend includes the development of flexible gridding to alleviate the

problem associated with grid orientation effect resulted from using rectangular Cartesian

grid. Even so, the generation and construction of unstructured grids are not as simple as

Cartesian grids. For example, the construction of an unstructured grid for a reservoir is

feasible only if it is done by a numerical grid generation procedure.

 5

1.3 Grid Orientation Effect

Finite difference solutions of 2D frontal displacement problems can be strongly

influenced by the orientation of the underlying grid. In multidimensional models,

numerical dispersion leads to a phenomenon where calculated performance is influenced

by the orientation of the grid relative to the locations of injection and production wells.

This is called the grid orientation effect. The grid orientation effect has been found to be

particularly pronounced in simulations where the displacing phase is much more mobile

than the displaced phase.

Fig. 1.1 illustrates the problem. It is a sketch of part of the Cartesian grid system

of a model for simulating water flooding in an oil reservoir. This part of the model

contains one production well and two injection wells. In the simulator, water from Well

A will move in a direct path to the producer. However, water from Well B will follow a

zig-zag path to the producer. Not only is the flow path from Well B longer, but water

from Well B will sweep the reservoir “more efficiently” than water from Well A.

However, if the grid is rotated 45°, the performances calculated for the two wells would

be reversed.

A

B

Fig. 1.1 - Flow paths for parallel and diagonal flow in a Cartesian grid (after

Mattax and Dalton)11

To complicate matters, grid orientation may distort and affect the accuracy of

calculated pressures and saturations29. Thus, the grid orientation effect has become one

of the important factors in evaluating different types of grid.

 6

In general, neither parallel nor diagonal orientation can be used reliably for

displacements at highly unfavorable mobility ratios. Numerous attempts to eliminate the

grid orientation effect in finite difference simulators have been made, and the latest

methods being attempted is the use of flexible or unstructured gridding methods.

1.4 Research Methodology

This study presents a novel approach to reduce the effect of grid orientation on

computed numerical results in finite difference reservoir simulation. This method

involves using a unique grid-block assignment where rectangular grid blocks are

interspersed with octagonal grid blocks. The boundaries are then populated with

triangular grid blocks. Thus, the entire domain will consist of different structured grid

block systems called Hybrid Grid Block (HGB) system. In HGB, flow can progress to

four different directions in the octagonal grid blocks and two in the rectangles. This

increase in flow directions is expected to reduce the grid orientation effect in the model.

As a structured grid system, HGB retains the familiar finite-difference discretization of

the flow equations.

To test the viability of this grid system, a general purpose IMPES (Implicit

Pressure Explicit Saturation)-formulated 2-D black oil simulator with HGB system was

developed using the Visual BASIC programming language. The simulator developed is

named Sim2D. Furthermore, comparative evaluations are made by comparing several

simulation cases between HGB and conventional grid block systems. This innovative

grid block assignment will help to reduce the grid orientation effect.

Chapter II consists of the derivation of material balance equations, and the final

IMPES flow equation that is applied in the coding. In Chapter III, the structure and

algorithm of the reservoir simulator will be discussed. Chapter IV discusses and analyzes

the results of the developed simulator. This will be followed by the conclusions of this

study.

 7

CHAPTER II

FINITE DIFFERENCE FORMULATION: IMPES PROCEDURE

2.1 Conservation of Mass Equations

The basic mass conservation laws of reservoir simulation are the conservation of mass,

energy and momentum. Mass balance in a grid block is achieved by equating the

accumulation of mass in the block with the difference between the mass leaving the

block and the mass entering the block. Many derivations of the oil, water, and gas fluid

flow equations exist abundantly in the literature30-33. Therefore, only a brief discussion

will be presented here.

Considering the grid block i in a 1-D model with three uniform grid blocks size

in Fig. 2.1 below:

i - 1
i i +1

h ∆y

∆x

Fig. 2.1 – 1-D model with three uniform grid blocks

 8

Net flow rate in (scf/D) = Rate of Accumulation (scf/D),...………………………….(2.1)

The pore volume of grid block i is:

yhxVp ∆∆= φ ,…………………………………………………...…………….(2.2)

The oil in place (OIP) can be calculated as:

o

op

B
SV

OIP = ,…………………………………...……………………………..(2.3)

Net flow rate in = ,……...…………………………………………………..(2.4) 11 +− + ii qq

Rate of accumulation of oil during the time step:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

=
+ n

o

op
n

o

op

B
SV

B
SV

t

1
1 ,…………………...………………...………….(2.5)

Our material balance equation can now be stated as:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

=+
+

+−

n

o

op
n

o

op
ii B

SV
B
SV

t
qq

1

11
1 ,……………...………………………(2.6)

Using Darcy’s Law to determine flow rate between adjacent grid blocks, flow from the

left, from grid block i-1 to i:

o

i
i B

Auq 1
1

−
− = ,…………………………………………………………...……...(2.7)

Using field units, we can rewrite qi-1 as:

(yt
x

PP
B

KKq ii

oo

ro
i ∆⎟

⎠
⎞

⎜
⎝
⎛

∆
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

−
1

1
00633.0
µ

) ,………………...…………………….(2.8)

 9

To simplify the notations, we can rewrite this equation into 3 parts:

(ii
oo

i PP
B
kr

x
ykhq −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

= −− 11
00633.0) ,………………………………..……..(2.9)

The first term is called the “transmissibility”:

x
ykhTi ∆

∆
=−

00633.0
2/1 ,…………………………………………………..…...(2.10)

The subscript i-1/2 denoted that this term applies between grid block i and i-1. It is a

directional notation and can be replaced with N(orth), S(outh), E(ast) or W(est), or any

other notations, as long as it is consistent.

The second term is called “mobility”. It is dependent on the phase of interest and

its value changes with time. Mobility is defined as:

2/1−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

iB
kr

λµ
,…………………………………………...……………………...(2.11)

where, λ is the phase of interest – in this case, oil.

Our material balance equation now can be written as:

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

−
++

+

)()(12/1
2/1

12/1
2/1

iii
oi

iii
oi

PPT
B
KrPPT

B
kr

µµ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

+ n

o

op
n

o

op

B
SV

B
SV

t

1
1 ,…………………………………...…….(2.12)

To further simplify this equation, we can group another term, called the “oil symmetrical

flow coefficient” as follows:

 10

2/1
2/1

2/1 −
−

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= i

oi
oi T

B
kra
µ

,…………………………………………………….(2.13)

The 1-D finite difference equation is:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

=−+−
+

−−++

n

o

op
n

o

op
iioiiioi B

SV
B
SV

t
PPaPPa

1

12/112/1
1)()(,…………..(2.14)

Similar derivations can be applied to a 2-D or 3-D model.

2.2 IMPES Method

A simple procedure to solve the three-phase reservoir simulation problems is called the

IMPES Method. IMPES stands for “Implicit Pressure Explicit Saturation”. Contrary to the

fully implicit method where the main variables are calculated at the same time (ie. all

primary variables at the new time level are determined simultaneously), the IMPES method

solves for pressure at the new time level using saturations at the old time level, then uses

the pressures at the new time level to explicitly calculate saturations at the new time level.

However, IMPES becomes unstable for large time steps. Using Neumann stability analysis,

the explicit formulation has the following stability requirement34:

 2

2
1 x

k
ct ∆⎟
⎠
⎞

⎜
⎝
⎛≤∆
φµ ,……………………………………………………...……..(2.15)

where,

 = incremental time step t∆

 φ = porosity

 µ = viscosity

 = compressibility c

 = absolute permeability k

 = grid size x∆

 11

 This requirement has the consequence that the time step is limited by both the grid

size and properties of the rock and fluid. IMPES is widely used for field scale reservoir

simulation as it is simple to implement. It can also be fast and accurate for many reservoir

problems as long as the time steps are kept small.

2.3 IMPES Flow Equations for Three-Phase Flow

The three finite difference equations for oil, water and gas for a three-phase system will

be presented below. For simplicity, we shall assume that porosity is constant and not a

function of pressure. Here, the solution gas, capillary pressure, and gravity will be

considered. However, in the development of the simulator Sim2D, these three terms will

be ignored.

Starting from the three finite difference equations for oil, water and gas

respectively:

Oil :

sco

n

o

op
n

o

opo
ooo q

B
SV

B
SV

t
z

aPa +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

=⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆∆

+1
1

144
ρ

,………….....…(2.16)

Water :

scw

n

w

wp
n

w

wpw
www q

B
SV

B
SV

t
zaPa +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

=⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆∆

+1
1

144
ρ ,……...…...…..(2.17)

Gas :

−∆∆+⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆∆+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆∆−∆∆ wwsw

o
osoooso

g
ggg PaRzaRPaR

z
aPa

144144
ρρ

=⎟
⎠
⎞

⎜
⎝
⎛∆

144
zaR w

wsw
ρ

 12

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆

+
+

+
+

+

...1
1

1
1

1

1 n

g

gp
n

w

wpn
sw

n

o

opn
so

n

g

gp

B
SV

B
SV

R
B
SV

R
B
SV

t

scg

n

w

wpn
sw

n

o

opn
so q

B
SV

R
B

SV
R +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
... ,…...………………………………….....(2.18)

Eqs. (2.16), (2.17) and (2.18) contain gravity terms. Now, we are going to add the

capillary terms:

wocow PPP −= cowow PPP −=∴ ,…………………...………………..………(2.19)

ogcog PPP −= ocogg PPP +=∴ ,…………………………...………...……...(2.20)

Rewrite Equations (2.16), (2.17) and (2.18) by substituting Pw and Pg as we want

our pressure terms to be with respect to Po:-

Oil :

sco

n

o

op
n

o

opo
ooo q

B
SV

B
SV

t
zaPa +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

=⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆∆

+1
1

144
ρ ,………...………(2.21)

Water :

scw

n

w

wp
n

w

wpw
wcowwow q

B
SV

B
SV

t
zaPaPa +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

=⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆∆−∆∆

+1
1

144
ρ ,….(2.22)

Gas :

−∆∆+⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆∆+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆∆−∆∆−∆∆ owsw

o
osoooso

g
gogcogg PaRzaRPaR

z
aPaPa

144144
ρρ

⎟
⎠
⎞

⎜
⎝
⎛∆−∆∆−

144
zaRPaR w

wswcowwsw
ρ

 13

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆

+

+

+

+

+

...1
1

1
1

1

1 n

o

opn
so

n

g

gp
n

w

wpn
sw

n

o

opn
so

n

g

gp

B
SV

R
B
SV

B
SV

R
B
SV

R
B
SV

t

scg

n

w

wpn
sw q

B
SV

R +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
... ,…….………………………………………………….(2.23)

Expanding and rearranging the gas-phase terms only and putting all the known

terms in the LHS (left-hand-side of equation) and the unknowns in RHS (right-hand-side

of equation):

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∆∆+⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆∆+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆∆−∆∆−∆∆∆ owsw

o
osoooso

g
gogcogg PaR

z
aRPaR

z
aPaPat

144144
ρρ

scg
w

wswcowwsw qzaRPaR ±⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆−

144
ρ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆∆∆− +

n

o

op
sco

o
ooo

n
so B

SV
qzaPatR

144
1 ρ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠

⎞
⎜
⎝

⎛
±⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆−∆∆∆− +

n

w

wp
scw

w
ocowwow

n
sw B

SV
qzaPaPatR

144
1 ρ

n

w

wpn
sw

n

o

opn
so

n

g

gp

B
SV

R
B
SV

R
B
SV

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

1+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
n

g

gp

B
SV

,…...……………...…(2.24)

Since we need another equation for each grid block in order to find a unique

algebraic solution, our fourth equation will simply be the volumetric equation saying that

the saturations sum up to unity. This assures that all the fluid volumes fit the pore

volume.

 ,…………...…………………………………………(2.25) 1 = S + S + S g
1+n

w
1+n

o
1+n

 14

Rearranging equations to solve explicitly for Son+1, Swn+1, Sgn+1:
1

1

144

+

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆∆∆=

n

p

o

n

o

op
sco

o
ooo

n
o V

B
B
SV

qzaPatS ρ ,……...….…(2.26)

1

1

144

+

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
±⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆∆−∆∆∆=

n

p

w

n

w

wp
scw

w
wcowwow

n
w V

B
B
SV

qzaPaPatS ρ

,………………………………………………………………………………(2.27)

()[{ −∆∆+∆∆−∆−∆+∆+∆−∆= +++
coggow

n
swo

n
sowswosog

n
g PaPaRaRaRaRatS 111

 () () −⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆∆−∆∆−∆

++

144144
11 z

aRaR
z

aPaRaR o
o

n
sooso

g
gcoww

n
swwsw

ρρ

 ()] +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+±+±⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆ ++

n

g

gp
scw

n
swscososcg

w
w

n
swsw B

SV
qRqRqzaRawR 11

144
ρ

 () ()
1

11

+

++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

n

p

g
n

w

wpn
sw

n
sw

n

o

opn
so

n
so V

B
B
SV

RR
B
SV

RR ,……….……….(2.28)

 We note that all Pn+1 are known from the previous step, so the right-hand side will

be easy to evaluate. These are the explicit calculations with only one unknown. They may

be solved in any order.

 We can now derive the pressure equation that we need. We start by simply adding

the saturation equations, noting that the summation of the saturations is equal to unity.

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆∆∆=

+1

144
1

n

p

o

n

o

op
sco

o
ooo V

B
B
SV

qzaPat ρ

1

144

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
±⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆∆−∆∆∆

n

p

w

n

w

wp
sc

w
wcowwow V

B
B
SV

qwzaPaPat ρ +

 15

 ()[{ −∆∆+∆∆−∆−∆+∆+∆−∆ ++
coggow

n
swo

n
sowswosog PaPaRaRaRaRat 11

 () () −⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆∆−∆∆−∆ ++

144144
11 z

aRaR
z

aPaRaR o
o

n
sooso

g
gcoww

n
swwsw

ρρ

 ()] +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+±+±⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆ ++

n

g

gp
scw

n
swscososcg

w
w

n
swwsw B

SV
qRqRqzaRaR 11

144
ρ

 () ()
1

11

+

++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

n

p

g
n

w

wpn
sw

n
sw

n

o

opn
so

n
so V

B
B
SV

RR
B
SV

RR ,…………….…..(2.29)

 We note that this equation has now eliminated the unknown saturations since they

have summed to unity. We now have an equation with only unknown pressures, Pn+1. We

now will manipulate this equation to be in a more convenient form for the pressure

equation. We multiply by Vp
n+1/∆t and put the flow terms back on the left-hand side. This

results in:

+
⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆∆∆ +++ 111

144
n

osc
o

o
n

ooo
n

o BqozaBPaBt ρ

+⎥
⎦

⎤
⎢
⎣

⎡
±⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆∆−∆∆∆ +++ 111

144
n

wscw
w

wcoww
n

wow
n

w BqzaPaBPaBt ρ

()[oaw
n

g
n

swo
n

g
n

sowsw
n

goso
n

gg
n

g PBRaBRaRBaRBaBt ∆∆−∆−∆+∆+∆−∆ +++++++ 1111111

() −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆∆−∆∆−∆−∆∆+ +++++

144
11111 z

aBPaBRaRBPaB g
g

n
gcoww

n
g

n
swwsw

n
gcogg

n
g

ρ

() () −⎟
⎠
⎞

⎜
⎝
⎛∆∆−∆−⎟

⎠
⎞

⎜
⎝
⎛∆∆−∆ ++++++

144144
111111 zaBRaRBzaBRaRB w

w
n

g
n

swwsw
n

g
o

o
n

g
n

sooso
n

g
ρρ

()scw
n

swsco
n

soscg
n

g qRqRqB 111 +++ ±−±

1111 ++++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= n

g

n

g

gpn
w

n

w

wpn
o

n

o

opn
p B

B
SV

B
B

SV
B

B
SV

V

 16

() () 1111 ++++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−− n

g

n

w

wpn
sw

n
sw

n
g

n

o

opn
so

n
so B

B
SV

RRB
B
SV

RR ,………………..…….(2.30)

We have several values on the right-hand side which depend on the new pressure,

Pn+1. We want to replace these values with "chord slopes", so we can solve directly for Pn+1

with coefficients that are "almost constant".

)(1
1

1
1 nn

nn

n
p

n
pn

p
n
p PP

PP
VV

VV −
−
−

+= +
+

+
+ ,…………………...……………………..(2.31)

 (⎥
⎦

⎤
⎢
⎣

⎡
−+−−= +

+
++ n

so
n
son

o

n
gnn

o
n
o

n
o RR

B
B

PPcBB 1
1

11)(1) ,………………………...…(2.32)

 (⎥
⎦

⎤
⎢
⎣

⎡
−+−−= +

+
++ n

sw
n
swn

w

n
gnn

w
n
w

n
w RR

B
B

PPcBB 1
1

11)(1) ,…………...…………...…(2.33)

()[]nn
g

n
g

n
g PPcBB −−= ++ 11 1 ,……………………………………………...….(2.34)

These relationships are now substituted in the right-hand side of our pressure

equation:

()[] () () −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−−−−+= +

+
++ n

so
n

son
o

n
gnn

o
n

o
n

p
nn

f
n

p RR
B

B
PPcSVPPcVRHS 1

1
11 11

() () −
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−− +

+
+ n

sw
n

swn
w

n
gnn

w
n

w
n

p RR
B

B
PPcSV 1

1
11

()[] () −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−

+++ 1111 n
g

n

o

opn
so

n
so

nn
g

n
g

n
p B

B
SV

RRPPcSV

 () 11 ++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− n

g

n

w

wpn
sw

n
sw B

B
SV

RR ,……...………………………..……….(2.35)

 17

Let:

 ,…………………………………….....(2.36) Sc + Sc + Sc + c = c n
gg

n
ww

n
ooft

()()[]nnn
gg

n
ww

n
oof

n PPSc + Sc + Sc + cVpRHS −= +1 ,………………………......(2.37)

(nn
t

n
p PPcVRHS −= +1),………………………………………………….....(2.38)

Now, let us rearrange our equation again, moving the production terms from the

LHS to RHS:

() () +⎟
⎠
⎞

⎜
⎝
⎛∆∆−−∆− ++++++

144
111111 zaBRBPaBRB o

o
n

g
n

so
n

ooo
n

g
n

so
n

o
ρ

() () −∆∆−−∆− ++++++
coww

n
g

n
sw

n
wow

n
g

n
sw

n
w PaBRBPaBRB 111111

() +⎟
⎠
⎞

⎜
⎝
⎛∆∆− +++

144
111 zaBRB w

w
n

g
n

sw
n

w
ρ

⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆∆−∆∆+∆∆+∆∆+∆∆−

144
z

aPaPaRPaRPaB g
gcoggowswoosoogg

ρ

]cowwsw
w

wsw
o

oso PaR
z

aR
z

aR ∆∆−⎟
⎠
⎞

⎜
⎝
⎛∆∆−⎟

⎠
⎞

⎜
⎝
⎛∆∆

144144
ρρ

() ()scw
n

swsco
n

soscg
n

g
n

wscw
n

osco
n

o
n

o
t

n
p qRqRqBBqBqPP

t
CV 111111 ++++++ ±−±+±+−

∆
=

,………………………………………………………………………………………(2.39)

Let us simplify our equation by using these definitions:

⎟
⎠
⎞

⎜
⎝
⎛∆∆−=

144
z

aCGOT o
o

ρ
,…………………..…………...…………………….(2.40)

⎟
⎠
⎞

⎜
⎝
⎛ +∆∆−=

144
z

PaCGWT w
coww

ρ
,……………………………...………...……(2.41)

 18

 ⎟
⎠
⎞

⎜
⎝
⎛ +∆∆−⎟

⎠
⎞

⎜
⎝
⎛∆∆−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∆∆=

144144144
zPaRzaR

z
PaCGgT w

cowwsw
o

oso
g

cogg
ρρρ

,…....(2.42)

 ()scw
n

swsco
n

soscg
n

g
n

wscw
n

oscot qRqRqBBqBqq 11111 +++++ ±−±+±= ,……...…..(2.43)

This gives us the final form of the pressure equation which we can finally state as:

() () +∆∆−+∆∆− ++++++
oo

n
g

n
sw

n
woo

n
g

n
so

n
o PaBRBPaBRB 111111

()owswoosoog
n

g PaRPaRPaB ∆∆+∆∆+∆∆+1

() () −−−+−
∆

= ++++ CGOTBRBqPP
t
CV n

g
n

so
n

ot
n

o
n

o
t

n
p 1111

() CGgTBCGWTBRB n
g

n
g

n
sw

n
w

1111 ++++ −− ,……………...……...……………….(2.44)

Fig. 2.2 shows a flow chart how IMPES can be implemented in a computer

program.

Simulation of a black oil reservoir requires solving a system of partial differential

equations. The partial differential equations are approximated by algebraic equations

known as finite difference equations. The finite difference equations are obtained by

replacing derivatives with approximations derived from truncated Taylor series

expansions.

 19

TIME STEP n

DATA

Pn, So
n,

Sg
n, Sw

n

FORMULATE FINITE DIFFERENCE
FORM OF EQUATIONS

SOLVE MATRIX SYSTEM

 c

 b * =

 a

Pn+1

CALCULATE
So

n+1, Sg
n+1, Sw

n+1 from Pn+1

n = n + 1

ITERATE

Fig. 2.2 - Flow chart showing how IMPES can be implemented in a computer program

 20

CHAPTER III

PROGRAM CHARACTERISTICS AND PROPERTIES

In this chapter, the framework of Sim2D is discussed, as well as its main attributes and

properties. Sim2D is developed using the Visual Basic 6.0 programming language and it

is then compiled into an executable file with simple interface to make it an easier to use

program. In addition, it is equipped with data control/access and file system.

The Sim2D program simulates isothermal, Darcy’s flow in two dimensions. It

assumes reservoir fluids can be described by three fluid phases (oil, gas, and water) of

constant composition with physical properties that depend on pressure only. Sim2D is

designed to be an easy-to-use program which would be suited to simulate primary

depletion and basic secondary recovery operations (such as water flooding) in a black-oil

reservoir. Sim2D is a finite-difference, implicit pressure-explicit saturation (IMPES)

numerical simulator. It contains an iterative solution technique (Bi-Conjugate Gradient)

for solving systems of algebraic equations. The well model in Sim2D allows

specification of rate or pressure constraints on well performance. Several user-controlled

output options are also available.

On top of that, Sim2D provides two types of grid systems, namely the

conventional Cartesian grid as well as the proposed grid called the Hybrid Grid Block

System (HGB).

3.1 Algorithm of VB Code

Sim2D is developed using the IMPES formulation. The code consists of different

subroutines. They are contained by a main subroutine that controls the order of the run

and loops the required subroutines over each time step until the last time step is reached.

Some basic tasks such as interpolations and averaging are executed by functions instead

of subroutines. Fig. 3.1 shows the algorithm that is employed by Sim2D.

 21

3.1.1 Initialization Data

Initialization data describes the reservoir model grid dimensions and geometry, the

distribution of porosity and permeability, relative permeability, fluid PVT data, initial

pressure and saturation distributions within the reservoir, specification of the solution

method to be used, and run control parameters. After the input data has been read, the

required memory is allocated for each variable.

To complete the mathematical description of a reservoir, it is necessary to specify the

initial conditions. For the initial conditions at n = 0, a value is specified for pressure and

saturations. Every node is assigned the values of these initial conditions. Pore volumes

are calculated for each grid block and the summation of the reservoir pore volume is

stored. Parameters such as formation volume factors, viscosities and compressibility, as

well as relative permeabilities at initial conditions are then interpolated from the PVT

table provided by the user.

3.1.2 Averaging of Flow Equation Terms

Several parameters in the material balance equation need to be averaged and the most

common methods used are summarized in Table 3.1.

In multiphase system, one or more relative permeabilitites must be assigned that

will control the flow of the individual phases from one grid block to the next. In the case

of Sim2D simulator, upstream permeability is used. Here, mobilities are evaluated at

saturations that exist in the block from which the fluid phases are moving. For instance,

if the flow if from left to right, the relative permeability from the i-1 grid block will be

considered the “upstream block” so (kro)i-1 is used for (kro)w. Similarly, if flow is from

right to left, the i+1 grid block will be upstream instead.

 22

R ead D ata

A lloca te M em ory

In itia lize M od el

C artesian G rid or H yb rid
G rid B lock (H G B) System

S a tu ra tion s w ith in
to leran ce?

O u tp u t R esu lts

C alcu late R a tes and P ressu res

B uild M atrices A A n d B

C all M atrix S o lver

O b tain P n n + 1, S on + 1, S w n + 1, S gn + 1

U p date PV T , S atu rations
C a lcu late N ew R ates

T im e step C u tb ack or
S a tu ra tion C ontrol

IM P E S Fo rm u la tion

O b tain and In terp ola te:
 R ock and F lu id P rop erties

Last tim e step reach ed ?

S top R unn in g

W ell M od el / W ell C on strain ts

B egin T im e S tepp in g

U p date P aram eters

Y es

N o

N o

Fig. 3.1 - Flow chart of the Sim2D code

 23

Table 3.1 – Averaging of parameters

Parameter Method of Averaging

Porosity Arithmetic Averaging

Viscosity Arithmetic Averaging

Absolute Permeability Harmonic Averaging

Relative Permeability Upstream Weighting

Formation Volume Factor Arithmetic Averaging

3.1.3 Boundary Conditions

In reservoir simulation problems, initial conditions (initial reservoir pressure) and

saturation distributions are required to initialize the model. For example, the initial

conditions are obtained by assuming initial capillary and gravity equilibrium. Then, the

pressure distribution is obtained by specifying pressure at a given datum and using the

fluid pressure gradients to determine pressures at all other depths.

 The boundary conditions used in reservoir simulators can be very complicated as

the differential equations solved by the simulators require that all boundaries be

specified. This includes both internal and external boundaries.

 Consider a 2-D flow domain as depicted in Fig. 3.2.

The driving force for flow arises from the boundary conditions. Reservoir

boundaries are represented physically by faults, pinch outs (porosity, permeability),

aquifers, facies change (shales) etc. In the numerical model, these discontinuities are

modeled as external boundaries or internal boundaries, depending on the position within

the reservoir.

External boundaries are the physical boundaries of the flow domain, while for

internal boundaries, either well rates or bottomhole pressures can be specified. If a rate is

specified for a well, a Neumann-type boundary condition is generated. Conversely, if the

pressure is speficied for the wellbore, then a Dirichlet-type boundary condition is

obtained.

 24

External
boundary

x

Internal
boundary

y

Fig. 3.2 -2-D flow domain with a well

 In Sim2D, it assumes that a no-flow outer boundary exists. To model no-flow

boundaries, phase transmissibilities across the boundary interfaces are set to zero. This

implied that there is no communication or “flux contribution” across the adjacent

boundary blocks.

3.1.4 Well Model

A reservoir simulation uses an analytical model to represent flow within a grid block as

it enters or leaves a well. This model is called the well model. It is well-known that that

pressure of the wellblock is different from the bottomhole well flowing pressure at the

well. This is because in general, the grid block dimensions are significantly greater than

the wellbore radius. The flow rate in the well is proportional to the difference between

the block and well pressures. The coefficient of proportionality is known as the

productivity or injectivity index. The geometric part of this term is usually called the

well index, and the model used to determine the well index is known as the well model.

Production of fluids by wells is assumed to be similar to flow from a grid block

to another grid block. Assuming that Darcy Law holds for flow in a well, writing the

Darcy law for radial co-ordinates we have:

 25

,…...……………………………………...(3.1)

here,

 permeability

y

ius of influence)

 ing pressure

Since the grid block pressure and all other physical properties are assumed to be

centere

.1.4.1 Peaceman’s Well Model

eman35 is based on the comparison between numerical

-)steady state flow

 flow

eaceman found that the pressure calculated for a well block is the same as the

flowing

calculated pressure for the well block”. This definition of ro gives:

)(
)/ln(

2
wfi

we

r PP
rrB

hkkq −=
µ

π

w

k =

kr = relative permeabilit

h = thickness

re = outer radius (rad

rw = wellbore radius

Pi = grid block pressure

Pwf = bottomhole well flow

d at the middle of the grid cell, the well is also assumed to be at the center of the

grid block.

3

The well model presented by Peac

and analytical solutions for a repeated five-spot pattern. Peaceman’s model also assumes

the following:

- (pseudo

- homogeneous reservoir

- isolated wells

- incompressible

P

 pressure at an equivalent radius, ro, where he defined ro as “the radius at which

the steady-state flowing pressure for the actual well is equal to the numerically

 26

o

w
owf r

rqPP ln
2π
µ

=− ,………………………..………………………………....(3.2)

where,

Pwf = bottomhole well flowing pressure

pressure calculated for grid block containing the well

 blocks (∆x = ∆y), Peaceman showed that if

 = and kx = ky then:

……………………………………………...………….(3.3)

 In a subse

isotropic reservoir with non-square grid blocks:

…………………………...………(3.4)

For an anisotropic reser

Po =

q = production rate of well

rw = wellbore radius

Using uniform square Cartesian grid

∆ x ∆ y

xro ∆= 2.0 ,…………

quent paper, Peaceman (1983)36 derived an expression for ro for an

 2/122)(14.0 yxro ∆+∆= ,…………………

 voir, Peaceman (1983)36 determined that ro is given by:

() ()[]
)k/k(+)k/k(

 = r 4/1
yxxy

4/1o ,……………………………...…..(3.5)

We can now introduce the term well index, J, which is defined as:

 k/k + k/k 0.28 2
yx

2
xy

2/1
yx ∆∆

w

o
r

rln

khJ 2π
= ,……………………………………………………………...……(3.6)

 27

Now Eq. 3.

1 can be rearranged and reduced to:

)(wfi PPJq −= αα λ ,………………………………………...………...(3.7)

⎟⎟
⎞

⎜⎜
⎛

=
krλα ,………………………………

⎠⎝ Bµ
………………......………(3.8)

where,

 α = species or phase

 αλ = mob

1. Constant flow rate of any one phase

is specified, then the rate of the other phase(s) can be

 …………………………...…………...(3.9)

ility of the species or phase

3.1.4.2 Well Constraints

Producers are operated by the following constraints:

If the rate of any one phase

calculated as follows:

)(wfi PPJq −= αα λ ,……………

o

o
iwf

qPP α−=
J αλ

,……………………………………………...…….(3.10)

here, w

α = unknown phase

oα = known p

2. Constant bottom

If the well bottom is specified, then the rate of any phase can be

obtained as follows:

 ………………………...………………….(3.11)

te

If the rate of the liquid phase is specified, then:

hase

 hole pressure

hole pressure

)(wfi PPJq −= αα λ ,………

3. Constant liquid ra

 28

)(osg qRqgwwoot BqBqBq −++= ,…………………………………...……(3.12)

gwo µµµ
rgrwro

t

kkk
λ ++= ,…………………………………………………..……(3.13)

Using equation (2), we can rewrite

 it for the rate of other phase(s):

t

o

o

t
o B

q
q

λ
λ

= ,…………………………………………………………...…….(3.14)

Similarly,

t

w

w

t
w B

q
q

λ
λ

= ,………………………………………………………...………(3.15)

os
t

g

g

t
g qR

B
q

+=
λ

q
λ

,…………………………………………………...…….(3.16)

Injectors are

constant injection pressure. However, in Sim2D, only the constant injection rate

constraint is implemented.

4.

 usually operated at two constraints – either constant injection rate or

Constant Injection Rate

If the injection rate of any one phase is specified, then the flowing bottomhole

pressure is computed as follows:

αλJ
αqPP iwf += ,………………………...………………………….(3.17)

e

If the injection pressure is specified, then the rate of the injected phase can be

obtained as follows:

,…………………………...………………………(3.18)

5. Constant Injection Pressur

)(iwf PPJq −= αα λ

 29

3.1 Time Step Control .5
In orde

ep cutback” procedure. The simulator that has been developed has

e capability to set time step

anges meet specified tolerance criteria. This

3.1.6

) at the new

) time level. Such a system of equations may be written as:

=+

r to ensure that the IMPES formulation used will give accurate solutions, there is

a need for a “time st

th s automatically by calculating the values of saturation

change and adjusting time steps until its ch

tolerance is specified by the user. After the simulator takes a time step, it tests against

this tolerance. If it is not met, the calculations made with the time step are discarded and

a smaller time step is selected. A special counter called “ncut” is also used so that the

user can specify the number of maximum time step cut allowable before it proceeds to

the next time step. The algorithm is shown in Fig. 3.3.

Of course, sensitivity runs should be performed to determine an acceptable time

step (to find a compromise between accuracy of solutions and simulation time required).

Also, this simulator allows the user to input the frequency of output desired.

Solution Method – Linear Solver

The finite difference form of the pressure equation leads to a system of linear equation

for the i-j unknowns 1
,
+n
jiP . Here, 1

,
+n
jiP denotes the pressure at grid block (i,j

(n+1

NNNNNN

NN

NN

BPaPaPa

PaPaPa
BPaPaPa

=+++

++ B
=+++

,22,11,

2,222,2121

1,122,111,1

L

L

,………………………………………..(3.19)
MM

L

 30

From Matrix Solver and
Saturation Update

Counter ≤ ncut
Max. Saturation ≥ Tolerance

Continue

Decrease Time Step
Increase ncut by 1

Go back to beginning of
time stepping loop

Fig. 3.3 – Algorithm for the time step cutback loop

Alternatively, the same set of equation ay be expressed in a more compact

form using matrix not , and P and B

are column vectors as given below.

⎦
⎢
⎢

⎣
⎥
⎥

⎦⎣⎥⎦⎢⎣ NNNNNN BPaaa
M

L ,2,1,

Various methods exist for solving such a system

generally these methods fall into one of two groups - direct methods, or iterative

methods. In Sim2D, the method of preconditioned and stabilized biconjugate-gradient is

s m

ation as AP = B, where A is the co-efficient matrix

 ⎥
⎥
⎤

⎢
⎢
⎡

=⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

=

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

= N

N

B
B

B
P
P

P
aaa
aaa

A
MMM

L

L

2

1

2

1

,22,21,2

,12,11,1

,……………………...……...…….(3.20)

⎥
⎥

 of linear equations, but

 31

used to solve the system of linear equations, which is a type of iterative solver. In the

case of

 gridpoints are defined as the centers of these grid blocks. For a 1-D model,

r flow in the x-direction, a block-centered grid system can be constructed as in Fig.

ocks is superimposed over a

ix ,……………………………...…..………………………(3.22)

Fig. 3.4 illustrates the terms i

 the “diagonal grid ordering” for HGB, this method is especially attractive - the

co-efficient matrix has a sparse structure, containing a large number of non-zero entries.

Because only non-zero elements are used in the iterative methods, these methods require

relatively little storage memory. However, the discussion of the matrix solver in details

is beyond the scope of this thesis. Even so, regardless of the matrix solver used, all

methods should yield the same results and should be accurate within the specified

tolerance.

3.2 Spatial Discretization of Cartesian Grid System

Sim2D uses the block-centered finite difference grid. For the Cartesian coordinate

system, the

fo

3.4. In this figure, a grid system consisting of nx gridbl

reservoir. These grid blocks have predetermined dimensions of ix∆ that are not

necessarily equal. Once the grid blocks are defined, the grid points are placed at the

center of the blocks. The boundaries of the thi grid block are designated 2/1−ix and 2/1+ix ,

whereas the block center is named xi. These grid block properties are related through the

following equations:

2/)(2/12/1 +− += iii xxx ,…………………………...……………...…………..(3.21)

−=∆ ii xx 2/12/1 −+

n these equations.

 32

Fig. 3.4 – 1-D, block-centered, finite difference grid

The 2-D Cartesian grid is numbered using a single index system, as shown in Fig. 3.5.

Fig. 3.5 – Grid numbering for the Cartesian grid system

.3 Implementation of Hybrid Grid-Block (HGB) System

In employing th n order for this

ystem to be integrated into Sim2D. Changes occur in the areas of calculating intergrid-

lock transmissibilities, the grid block numbering as well as the well model. These

9 10 11 12

5 6 7 8

1 2 3 4

j

i

k

1 2 nx-1 nxi-1 i i+1

∆x-1/2 ∆x+1/2

3

e HGB grid system, several modifications were made i

s

b

topics will be dealt with in the following discussions:

 33

3.3.1 Grid Block Generation

This method involves using a unique grid-block assignment where rectangular grid

blocks are interspersed with octagonal grid blocks. The boundaries are then populated

with triangular grid blocks. Thus, the entire domain will consist of a “structured” grid

lock system. This arrangement is shown in Fig. 3.6, with the black dots representing

e fluid will flow to four directions in each of the

The basic elements are generated from put data, including the number of grid

blocks and the interval length in each direction. Based on this predefined information,

parameters such as the total grid b tween each grid block and

the number of flow directions can be calculated.

b

the center of each grid block. Th

octagons and two directions in each of the rectangles and triangles.

 Fig. 3.6 - HGB grid model

in

locks, the internal length be

 34

3.3.2 Transmissibility Calculations

Since HGB assumes a block-centered geometry, transmissibility calculations are based

pon the distances between the centers of each grid block. Using Fig. 3.7 as an example,

ell #1 is connected to Cell #3 “through” cross-sectional area A13. Its transmissibility

an be calculated as shown in Eq. 3.23.

u

C

c

2 5
A23

1 4

3

A35

A34

L13

A13

2 5
A23

1 4

3

A35

A34

L13

A13

Fig. 3.7 – Example of transmissibility calculations in HGB

13

13
13

00633.0
L

kAT
∆

= ,……………………………………………...………….(3.23)

here,

T = transmissibility

 A = cross sectio

 L = distance between the centers of two neighboring grid blocks

perpendicular to the cross-sectional area

w

nal area

 35

From earlier sections, we have derived the general oil material balance equation

s: a

sco

n
op

n
op SVSVz ⎤⎡ ⎞⎛⎞⎛⎞⎛

+1
1ρ

oo

o q
BBt

+
⎥
⎥
⎦⎢

⎢
⎣

⎟⎟
⎠

⎜⎜
⎝

−⎟⎟
⎠

⎜⎜
⎝∆

=⎟
⎠

⎜
⎝

∆
144ooo aPa ∆−∆∆

o illustrate how the left-hand side of this equation would look like for a 2-D

HGB model, let’s assume that we have named each grid block as shown in Fig. 3.8.

Fig. 3.8 – Calculations in eight directions for a central octagonal block

aking Oct1 as the central grid block where it is surrounded by eight other grid

blocks, this equation relative to Oct1 can be written and simplified as:

,………...……..(2.16)

T

Oct3 Oct4

 Oct2

Oct

Sq2

Sq4Sq3

Sq1

Oct1

5

T

 36

+−+−+−+−=∆)()()()(15141312 octoctoSoctoctoEoctoctoWoctoctoNo PPaPPaPPaPPaPa

∆

)()()()(14131211 octsqoSEoctsqoSWoctsqoNEoctsqoNW PPaPPaPPaPPa −+−+−+− ,..(3.24)

where,

N = North

E = East

 = uth

W = West

 = Northwest

3.3.3 r ure of Matrix Forms

The str o depends on the dimensions of the problem and the

ordering of the grid blocks. The objective of using different grid block-ordering schemes

is to re p involved in solving a system of finite difference

equations. Numbering system for the 2-D grid and the corresponding non-zero co-

ould order the points in such

S So

NW

SW = Southwest

NE = Northeast

SE = Southeast

Grid Numbe ing and Struct

ucture of the c efficient matrix

duce the com utational work

efficient in the matrix equation for AP = B. Therefore, we sh

a way that the band width is the minimum possible.

 Using the HGB model, several numbering systems were tested. To illustrate the

importance of grid numbering and its effect on the matrix coefficient band width, three

different schemes of grid ordering will be presented.

Considering a simple 3x2 case, the following figure shows an example grid

ordering and the corresponding matrix structures.

 37

Grid O

For the two-dim atrix A would

ave the form as shown in Fig. 3.10. We can see that matrix formed is sparse, irregular

nd the band width is large.

Fig. 3.10 - Locations of matrix elements in Ordering #1

x x x x x x x

x x x x x
x

x x
x x x

x x x
x x x

x x x
x x x

x x x
x x

x x
x x

x x

rdering #1:

Fig. 3.9 - Ordering #1: 2-D grid block ordering

ensional problem shown in Fig. 3.9 above, the m

h

a

x x x x x x x x
x x x x x x x

x x x x x x
x x x x x x x x

x x
x x x x

x x x

1 2 3

4 5 6

13 7 8 14

15 9 10 16

17 11 12 18

1 2 3

4 5 6

13 7 8 14

15 9 10 16

17 11 12 18

 38

Grid Ordering #2:

Fig. 3.12 - Locations of matrix elements in Ordering #2

For the next numbering shown in Fig. 3.11 above, the matrix A would have the

form as shown in Fig. 3.12. The matrix formed more regular than Grid Numbering #1,

but it is still quite sparse.

x x
x x x x x x x

x x x
x x x x x x x x

x
x

x x
x x x
x x x x x x x
x x x x x

x x x x x x x x
x x x x x

x x x x x x x
x x x

x x
x x x

x x x
x x

Fig. 3.11 - Ordering #2: 2-D gridblock ordering

is

x x
x x x x x x

2 4 6

9 11 13

8 10 12 14

1 3 5 7

15 16 17 18

2 4 6

9 11 13

8 10 12 14

1 3 5 7

15 16 17 18

 39

Fig. 3.13 are numbered

consecutively along the diagonals starting with the shortest direction, as shown by the

direction of the arrows. This method groups the cells by “diagonal count”, and increases

as we

olve the matrix equation.

 shows a type of “diagonal ordering” where the cells

move from the lower left through the grid to the upper right. The band width in

Fig. 3.14 is less than Figs. 3.10 and 3.12 which gives us a computing advantage as it

requires less arithmetic to s

Grid Ordering #3:

6 13 20

11 18

10 17 22 25

 23

5 12 19 24

2 7 14 21

1 4

3 8

 9 16

 15

6 13 20

 23

5 12 19 24

2 7 14 21

11 18

10 17 22 25

1 4 9 16

3 8 15

6 13 20

 23

5 12 19 24

2 7 14 21

11 18

10 17 22 25

1 4 9 16

3 8 15

6 13 20

 23

5 12 19 24

2 7 14 21

11 18

10 17 22 25

1 4 9 16

3 8 15

Fig. 3.13 – Ordering #3: Re-ordering of grid blocks to reduce band width

3.3.4 Palagi’s Well Model

In using HGB grid model, we need a different well model as Peaceman’s well model is

formulated for square grid blocks. Palagi37 presented an analytical well model based on

Peacem sumes

at the pressure at all grid blocks that are neighbors of the well block can be

an’s work which can be applied to grids of any geometry. This model as

th

 40

x x
x x x

x x x x x x x
x x x

x x x
x x x x x x x x

x x x x x
x x x x x x x x

x x x
x x

x x x x x x x
x x x x x
x x x x x x x x x

x x x x x
x x x x x x x

x x
x x x
x x x x x x x x

x x x x x
x x x x x x x

x x x
x x x
x x x x x x x

x x x
x x

Fig. 3.14 - Locations of matrix elements in Ordering #3

evaluated by the radial flow equation around the well. Also, flow is assumed to be radial

around the well block despite of the location of the well. This assumption uses Eq. 3.25

and it is shown in Fig. 3.15.

Currently l grid blocks.

, the wells can only be placed in the square and octagona

⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜

⎝
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠

⎜
⎝

=

∑
j ij

ij
ijj

o

d
b

d
r exp ,………………………………..………………….(3.25)

⎟

⎠

⎞
⎜
⎛

−⎞⎛∑ b θ

where,

i

bij = length of side of polygon

dij = distance between the centers of grid block i and j

j = grid block that is neighbor of well block

 41

θij = angle open to flow (θ = 2π for an internal well, i.e. well located in

 the center of

Fig. 3.15 – Well m del for a polygon

Palagi derived a special case for Eq. 3.25 when he polygon of interest has equal sides,

where:

)

 the block that is opened to flow in all directions)

o

 t

() (Ndb ij /tan/ π= ,………………...………………………………………(3.26)

Substituting Eq. 3.26 into Eq. 3.25 (with θ = 2π) nd solving for ro gives: a

 ()⎟⎟⎠
⎞

⎜⎜
⎝

⎛ −
=

NN
dr ijo /tan

2exp
π
π ,………………………………..………………..(3.27)

here,

w

N = number of sides of the polygonal grid block containing the well

ijθ

ijb

i

ijd

j

Center of grid

 42

CHAPTER IV

GRID ORIENTATION EFFECT

It has been demonstrated by various authors that two-dimensional simulations of

immiscible displacements with unfavorable mobility ratio exhibit grid orientation effect.

In fact, despite the fact that the reservoir is isotropic and homogeneous with favorable

mobility ratio, there can still be an effect of grid orientation.

To examine this effect, we conducted simulations using Eclipse™ 100 (ECL™ 100)

of a quarter five-spot waterflood using parallel and diagonal grid systems, as defined and

illustrated in Fig. 4.1.

X-axis

Y-axisY-axis

Y-axis X-axis
PARALLEL RUNS:

Flow or-
p

 direction in the inject
roducer pairs are parallel to

the x and y axes

DIAGONAL RUNS:
Flow tor- direction of the injec
producer pairs at 45º relative

to the x and y axes

Fig. 4.1 – Parallel and diagonal orientation for simulations of waterflooding in five-spot

symmetry elements

 43

Table 4.1 – Data used for five-spot pattern simulations

Rock Permeability, k = 100 mD
Porosity, φ = 0.20
Net Pay Thickness = 10 ft
Producer-Injector Distance ≈ 933.4 ft
Production Rate, qo = 18 STB/D
Injection Rate, qw = 18 STB/D
Initial Pressure = 5000 psi
Area of Reservoir (Parallel) = 20 acres
Area of Reservoir (Diagonal) = 10 acres

Fluid-Rock Properties :

22

2

)1(ww
w

o

w
rw

SS

Sk
−−

=

µ
µ rwro kk −= 1

Mobility Ratio:

o

ro

w

rw

k

k

M

µ

µ
'

'

=

Table 4.2 - Grid sizes used in Cartesian grid models

Diagonal

Grid
Grid

Block
Size

(∆x=∆y)

Parallel
Grid

Grid
Block
Size

(∆x=∆y)
6 x 6 132.0 ft 8 x 8 133.34 ft

11 x 11 66.0 ft 15 x 15 66.67 ft
21 x 21 33.0 ft 29 x 29 33.36 ft
41 x 41 16.5 ft 57 x 57 16.67 ft

A parallel grid system is a grid that is oriented parallel to injector-producer pairs.

Meanwhile, a diagonal grid system is a grid oriented at 45° between injector and

 44

producer pairs. The distance of a producer to an injector and the size of the grid blocks

are the same for both grid systems. Waterflood simulations were performed for oil/water

mobility ratios (M) of 0.5, 1.0 and 10. The input data and the grid sizes are shown in

Tables 4.1 and 4.2. The porosities and permeabilities of the boundary blocks are

modified so that a five-spot pattern can be simulated using a block-centered model. The

well index was also modified to reflect these changes. The porosity, permeability and

well model modifications are shown respectively in the schematic diagrams shown in

Figs. 4.2-4.4. Essentially, only the area bounded inside the dotted lines in Figs. 4.2-4.4

are modeled.

2
φ

2
φ

2
φ 4

φ

4
φ

4
φ

4
φ

2
φ

Fig. 4.2 – Porosity modifications

 45

2
yk

2
yk

2
xk

,2
yk

2
xk

2
xk ,2

yk
2

xk

,2
yk

2
xk

,2
yk

2
xk

Fig. 4.3 – Permeability modifications

4
q

4
q

4
q 4

q

Fig. 4.4 – Well model modifications

 46

Since the distance of injector to producer is the same, we expect to get similar

rec

ks at

M =

rallel grid blocks is increased, the recovery

per

ep efficiency at M = 1.0 decreases gradually

as

overy performance from both grid systems. However, when we compare the recovery

performance of parallel grid blocks of 8x8 and diagonal of 6x6, the recovery

performances from both grid blocks are different as seen in Fig. 4.5. This is because

rotation of the coordinate axes results in differing amounts of truncation error.25 As

pointed out by previous authors, the grid orientation effect can be reduced by increasing

the resolution of the grid blocks for cases with favorable mobility ratio (M ≤ 1.0).11

Thus, we increased the number of grid blocks in diagonal and parallel grid bloc

 0.5. We found that recovery performance is not very sensitive to the number of grid

blocks in the diagonal model (Fig. 4.6).

However, as the number of the pa

formance changes gradually until it converges to a single recovery curve (Fig. 4.7).

The recovery performances of finer grid blocks in both models (diagonal 21x21 vs.

parallel 29x29), were compared. We found that the grid orientation effect was reduced

(Fig. 4.8) as the difference in the recovery performance curve between the diagonal

21x21 and parallel 29x29 was reduced (Fig. 4.5), compared to those results from the

parallel 8x8 and diagonal 6x6 grid blocks.

Moreover, as shown in Fig. 4.9, the swe

the number of grid blocks are increased. As for the parallel grid, once again, the

recovery performance converges at 15x15 number of grid blocks and higher, as shown in

Fig. 4.10. The results for both the diagonal and parallel grid show a close agreement

when the grid block numbers are at 57x57 and 41x41 for the parallel and diagonal grid

models, respectively, finer than the grid block sizes required for agreement at M=0.5

(Fig. 4.11).

 47

Fig. 4.5 – Predicted performance at M=0.5 for parallel (8x8) and diagonal (6x6) grid

Fig. 4.6 – Predicted performance at M=0.5 for different number of diagonal grid blocks

 blocks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

PV Injected

PV
 R

ec
ov

er
ed

Diagonal6x6

Parallel8x8

8x8

6x6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

PV Injected

PV
 R

ec
ov

er
ed

Diagonal6x6

Diagonal11x11

Diagonal21x21

Diagonal41x41

 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

PV Injected

PV
 R

ec
ov

er
ed

Parallel8x8

Parallel15x15

Parallel29x29

Parallel57x57

Fig. 4.7 – Predicted performance at M=0.5 for different number of parallel grid blocks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

PV Injected

PV
 R

ec
ov

er
ed

Parallel29x29

Diagonal21x21

29x29

21x21

Fig. 4.8 – Predicted performance at M=0.5 for parallel (29x29) and diagonal (21x21)

8x8

grid blocks

 49

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

PV Injected

PV
 R

ec
ov

er
ed

Diagonal6x6

Diagonal11x11

Diagonal21x21

Diagonal41x41

41x41

6x6

Fig. 4.9 – Predicted performance at M=1.0 for different number of diagonal grid blocks

Fig. 4.10 – Predicted performance at M=1.0 for different number of parallel grid

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

PV Injected

PV
 R

ec
ov

er
ed

Parallel8x8

Parallel15x15

Parallel29x29

Parallel57x57

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

PV Injected

PV
 R

ec
ov

er
ed

Parallel8x8

Parallel15x15

Parallel29x29

Parallel57x57

blocks

 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

PV Injected

PV
 R

ec
ov

er
ed

Parallel 57x57

Diagonal 41x41

Fig. 4.11 – Predicted performance at M=1.0 for parallel (57x57) diagonal (41x41)

As the mobility ratio is increased to =10.0, the performance of the diagonal

grid do

ion map for diagonal grid model shows “viscous fingering” at the

saturati

inimize

the grid

grid blocks

M

es not follow a certain trend (Fig. 4.12). On the other hand, for the parallel grid,

the solution does not seem to converge to a single curve even when a large number of

grid blocks were used, as seen in Fig. 4.13. Thus, as the grid spacing is refined, the

performance of diagonal and parallel models actually diverges for the grid spacings

investigated here.

The saturat

on front while the parallel model also shows a distorted front (Fig. 4.14).

Based on this study, we can conclude that grid refinement can help to m

 orientation effect when we have favorable mobility ratios, i.e. at M=1.0 or less.

However, at an unfavorable mobility ratio of M=10.0 for displacement problems as

shown, neither the parallel nor diagonal orientation can be used reliably.

 51

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

PV Injected

PV
 R

ec
ov

er
ed

Diagonal6x6

Diagonal11x11

Diagonal21x21

Diagonal41x41

41x41

6x6

11x11
21x21

Fig. 4.12 – Predicted performance at M=10.0 for different number of diagonal grid

blocks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

PV Injected

PV
 R

ec
ov

er
ed

Parallel8x8

Parallel15x15

Parallel29x29

Parallel57x57

57x57

8x8

29x29

15x15

Fig. 4.13 – Predicted performance at M=10.0 for different number of parallel grid

blocks

 52

Fig. 4.14 – Saturation distribution map for (a) diagonal

(a))

PVinj = 1.0 for M = 10.0

(b
 model, and (b) parallel model at

 53

CHAPTER V

PROGRAM VALIDATION AND PERFORMANCE OF HGB MODEL

This chapter provides an example problem to validate the Sim2D simulator, illustration

of the grid orientation effects in conventional Cartesian grid, as well as the application of

HGB model. Whenever possible, the Sim2D solution is compared with a commercially

available black oil simulator on the same problem, namely GeoQuest’s (2003A) and

Eclipse™ 100 (ECL™ 100). Single-point upstream weighting of mobility and IMPES

solution mode were used in all runs.

To test the viability of the HGB grid, a two-dimensional IMPES simulator was

developed and HGB grid is incorporated. Since the HGB grid cannot be validated

“directly” with any commercial simulators to the best of the author’s knowledge, the

Cartesian grid model in Sim2D is validated with rectangular Cartesian grid models in

ECL™ 100 as shown in earlier section. Once the algorithm is validated, it is then applied

to the HGB grid.

5.1 Program Validation

This example case is based on a 2-D reservoir model grid of 5x5. The two-phase model

contains one producer and one injector well. Both injector and producer are under a

constant rate constraint. The well is rate constrained to a 100 scf/Day oil production. The

reservoir is homogeneous and is initially at 5000 psi of undersaturated oil and connate

water. The simulation was run until the minimum bottomhole pressure (BHP) of 2000

psi is reached. Other reservoir and simulation data is shown in Table 5.1 and Fig. 5.1.

The oil and water rates as well as the water cut performance are shown in Fig. 5.2 while

the Sim2D pressure solutions are presented in Figs. 5.3-5.8 along with the results of the

same problem runs on ECL™ 100.

 54

Table 5.1 – Reservoir data

Area of Reservoir 50000 ft2 or 1.15 acres

Grid Block Dimension, ∆x = ∆y (ft) 100

Reservoir Thickness (ft) 10

Permeability (mD) 100

Porosity 0.20

Initial Water Saturation 0.20

Initial Oil Saturation 0.80

Well Radius (ft) 0.33

Initial Pressure (psi) 5000

Minimum Bottomhole Pressure (psi) 2000

Rock Compressibility (1/psi) 3E-06

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Water Saturation, Sw

R
el

at
iv

e
Pe

rm
ea

bi
lit

y,
 K

r

Krw Kro

Fig. 5.1 – Relative permeability curve

 55

Table 5.2 – PVT data
Pressure Oil FVF Oil Viscosity Oil Compressibility Water FVF Water Viscosity Water Compressibility

(psi) (rcf/scf) (cp) (1/psi) (rcf/scf) (cp) (1/psi)
6014.7 1.0620 1.0400 2.51E-06 1.0190 0.5060 3.00E-06
5014.7 1.0647 0.8951 2.51E-06 1.0221 0.5060 3.00E-06
4014.7 1.0673 0.7705 2.51E-06 1.0251 0.5060 3.00E-06
3014.7 1.0700 0.6631 2.51E-06 1.0282 0.5060 3.00E-06
2514.7 1.0714 0.6152 2.51E-06 1.0298 0.5060 3.00E-06
2014.7 1.0727 0.5708 2.51E-06 1.0313 0.5060 3.00E-06
1514.7 1.0741 0.5295 2.51E-06 1.0328 0.5060 3.00E-06
1014.7 1.0754 0.4913 2.51E-06 1.0344 0.5060 3.00E-06
514.7 1.0768 0.4558 2.51E-06 1.0360 0.5060 3.00E-06
14.7 1.0781 0.4228 2.51E-06 1.0375 0.5060 3.00E-06

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000

Time (Days)

O
il

an
d

W
at

er
 R

at
e

(S
C

F/
D

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
at

er
cu

t (
Fr

ac
tio

n)

Water Rate-ECL

Water Rate-Sim

Oil Rate-ECL

Oil Rate-Sim

Watercut-ECL

Watercut-Sim

Fig. 5.2 – Comparison of Sim2D oil and water rates and watercut with ECL™ 100

showing good agreement between the two simulators

 56

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000

Time (Days)

B
H

P
(p

si
) a

t P
ro

du
ce

r

ECL Sim

Fig. 5.3 – Comparison of Sim2D well bottomhole pressure at producer with ECL™ 100

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000

Time (Days)

B
lo

ck
 P

re
ss

ur
e

(p
si

) a
t P

ro
du

ce
r

ECL Sim

Fig. 5.4 – Comparison of Sim2D well block pressure at producer with ECL™ 100

 57

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000
Time (Days)

B
lo

ck
 O

il
Sa

tu
ra

tio
n

(p
si

) a
t P

ro
du

ce
r

ECL Sim

Fig. 5.5 – Comparison of Sim2D well block oil saturation at producer with ECL™ 100

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000

Time (Days)

B
H

P
(p

si
) a

t I
nj

ec
to

r

ECL Sim

Fig. 5.6 – Comparison of Sim2D well bottomhole pressure at injector with ECL™ 100

 58

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000

Time (Days)

B
lo

ck
 P

re
ss

ur
e

(p
si

) a
t I

nj
ec

to
r

ECL Sim

Fig. 5.7 – Comparison of Sim2D well block pressure at injector with ECL™ 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000
Time (Days)

B
lo

ck
 O

il
Sa

tu
ra

tio
n

(p
si

) a
t I

nj
ec

to
r

ECL Sim

Fig. 5.8 – Comparison of Sim2D well block oil saturation at injector with ECL™ 100

 59

5.2 Use of HGB Grid to Reduce the Grid Orientation Effect

Using the HGB scheme, one half of a five-spot model was simulated with a four-well,

diagonal HGB grid (145 grid blocks), and one quarter five-spot pattern model were

chosen to run a two-well, parallel HGB grid (85 grid blocks) as defined and shown in

Fig. 5.9. The reservoir is assumed to be homogeneous and isotropic. Additional rock and

fluid properties as well as simulation data that are relevant are given in Table 5.3. Other

reservoir and simulation data is shown in Fig. 5.1 and Table 5.4. Different mobility

ratios of 0.5, 1.0, 10.0 and 50.0 were used in these cases respectively. Porosity and

permeability modifications were also performed on the boundary blocks so that the five-

spot pattern can be simulated. The locations of the injectors and producers coincide with

the locations of the block centers. The well model is also modified to reflect this. This is

shown in Fig. 5.10.

Table 5.3- Data used for HGB pattern simulations

Rock Permeability, k = 100 mD
Porosity, φ = 0.20
Net Pay Thickness = 10 ft
Producer-Injector Distance = 825 ft
Production Rate, qo = 18 STB/D
Injection Rate, qw = 18 STB/D
Initial Water Saturation = 0.20
Initial Oil Saturation = 0.80
Initial Pressure = 5000 psi
Area of Reservoir (Parallel) = 15 acres
Area of Reservoir (Diagonal) = 7.5 acres

 60

Table 5.4 – 2-Phase PVT data (for M=0.5)
Pressure Oil FVF Oil Viscosity Oil Compressibility Water FVF Water Viscosity Water Compressibility

(psi) (rcf/scf) (cp) (1/psi) (rcf/scf) (cp) (1/psi)
6014.7 1.0620 1.9300 2.51E-06 1.02E+00 1.0000 3.00E-06
5014.7 1.0647 1.6611 2.51E-06 1.02E+00 1.0000 3.00E-06
4014.7 1.0673 1.4297 2.51E-06 1.02E+00 1.0000 3.00E-06
3014.7 1.0700 1.2306 2.51E-06 1.03E+00 1.0000 3.00E-06
2514.7 1.0714 1.1417 2.51E-06 1.03E+00 1.0000 3.00E-06
2014.7 1.0727 1.0592 2.51E-06 1.03E+00 1.0000 3.00E-06
1514.7 1.0741 0.9827 2.51E-06 1.03E+00 1.0000 3.00E-06
1014.7 1.0754 0.9116 2.51E-06 1.03E+00 1.0000 3.00E-06
514.7 1.0768 0.8458 2.51E-06 1.03E+00 1.0000 3.00E-06
14.7 1.0781 0.7847 2.51E-06 1.03E+00 1.0000 3.00E-06

From Fig. 5.11, we can see that the parallel and diagonal HGB grid model give

very similar results for both favorable and unfavorable mobility ratios cases that were

run. This is because flow can progress in several different directions in the octagonal

grid blocks. The result is that the differences between the parallel and diagonal

orientation are greatly reduced. The parallel HGB grid always predicted a higher areal

sweep efficiency than the diagonal HGB grid. At lower mobility ratios, the pore volume

recovered is higher as the sweep mimics a piston-like displacement. Even so, the

discrepancies between these two grids in HGB have a maximum relative difference of

approximately 6% (Table 5.5) and it is believed to be caused by the presence of the

square grid blocks.

Figs. 5.12-5.13 show the saturation distribution map for the parallel and diagonal

HGB grid, respectively. The movement of the saturation front is faster when the mobility

ratio increases. This is due to the fact that the displacing fluid is moving at a much

higher velocity than oil, the displaced fluid. Fingering of the displacing fluid also results

in faster breakthrough times.

This result shows that HGB can reduce significantly the grid orientation effect by

reducing the rotational variance in the model and hence the differences in results

between the parallel and diagonal HGB grids.

 61

45o

45o

Y-ax
is

(b) “Diagonal” HGB

X-ax
is

(a) “Parallel” HGB

Y-axis

X-axis

45o

45o

Y-ax
is

45o

45o

Y-ax
is

(b) “Diagonal” HGB

X-ax
is

(b) “Diagonal” HGB

X-ax
is

(a) “Parallel” HGB

Y-axis

(a) “Parallel” HGB

Y-axis

X-axis

Fig. 5.9 – (a) Parallel and (b) diagonal grid orientation in HGB grid

4,2,2,4
qkk yxφ

2,2
xkφ

2,2
ykφ

Fig. 5.10 – Porosity, permeability and well model modifications

 62

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

PV Injected

P
V

 R
ec

ov
er

ed

Parallel

Diagonal

45o

45o

M=0.5

M=1.0 M=10

M=50

Fig. 5.11 – Influence of mobility ratios on the predicted performance of HGB grid

Table 5.5 – Relative difference between parallel and diagonal models of various mobility

ratios for HGB grid models in Fig. 5.10

M Relative Difference (%)
50.0 5.92
10.0 4.59
1.0 2.24
0.5 1.11

 63

M = 0.5 M = 1.0 M = 10 M = 50

PVinj = 0.1 PV PVinj = 0.1 PV PVinj = 0.1 PV PVinj = 0.1 PV

PVinj = 0.5 PV PVinj = 0.5 PV PVinj = 0.5 PV PVinj = 0.5 PV

PVinj = 1.0 PV PVinj = 1.0 PV PVinj = 1.0 PV PVinj = 1.0 PV

Oil Saturation

Fig. 5.12 – Saturation distribution map for parallel HGB grid as shown in Fig. 5.9 (a) at
various mobility ratios

 64

M = 0.5 M = 1.0 M = 10 M = 50

PVinj = 0.1 PV PVinj = 0.1 PV PVinj = 0.1 PV PVinj = 0.1 PV

PVinj = 0.5 PV PVinj = 0.5 PV PVinj = 0.5 PV PVinj = 0.5 PV

PVinj = 1.0 PV PVinj = 1.0 PV PVinj = 1.0 PV PVinj = 0.5 PV

Oil Saturation

Fig. 5.13 – Saturation distribution map for diagonal HGB grid as shown in Fig.

5.9 (b) at various mobility ratios

 65

5.2.1 HGB Sensitivity

In the previous example, we have shown that the HGB grid is less sensitive to grid

orientation than conventional Cartesian grid, especially at unfavorable mobility ratios.

The next point for investigation is the sensitivity of the HGB grid to the grid dimension,

or in other words, its sensitivity to the number of grid subdivisions in the model. We

have seen that in Cartesian grids, the parallel grid is more sensitive to the effect of grid

size than the diagonal grid. We will also see how the performance of the HGB grid

compares to the Cartesian grid at a similar number of grid blocks.

Four different sets of grid numbers were run in HGB (diagonal HGB and parallel

HGB) and the results are compared to similar models run in Cartesian grid (diagonal

Cartesian and parallel Cartesian). Since the size of each grid block in the HGB model is

dependent upon its shape, i.e. whether it is octagonal, or rectangular, an average area per

grid block is calculated for each set of runs. The closest possible average area per grid

block and the number of grid blocks are then applied to the corresponding Cartesian

grid. The grid numbers and grid block dimensions are shown in Tables 5.6-5.7 for the

HGB and Cartesian grid respectively. For a given set of grid dimension, HGB and its

Cartesian grid counterpart have the same pore volume and well locations.

Furthermore, since we have shown that the grid orientation effect can be reduced

by refining the grid at a lower mobility ratio (as shown in Chapter IV), all these cases are

run at M = 0.5. The reservoir and rock properties are similar to those shown in Fig. 1 and

Tables 5.3-5.4.

Figs. 5.14 through 5.17 show the calculated performance for the HGB grids and

their corresponding Cartesian grids. Results using the HGB grids are always in between

those calculated on Cartesian grids.

 However, the differences between the diagonal HGB and parallel HGB are

reduced as the number of grid blocks in the model was increased. In fact, the

performances of the parallel and diagonal HGB grid models tend to converge as the grid

spacing is refined.

 66

Table 5.6 – Averaged area per grid block for the HGB grid

Number of HGB Grid Blocks
ft2 ac ft2 ac

50 6806.25 0.156 13612.5 0.313
98 3472.58 0.080 6945.15 0.159
200 1701.56 0.039 3403.13 0.078
392 868.14 0.020 1736.29 0.040
800 425.39 0.010 850.78 0.020

Averaged area per grid block
Parallel Diagonal

Table 5.7 – Averaged area per grid block for the Cartesian grid

Number of Cartesian Grid Blocks Averaged Area (ac) ∆x=∆y (ft) Averaged Area (ac) ∆x=∆y (ft)
49 0.319 117.8571 0.159 83.3376

100 0.156 82.5000 0.078 58.3363
196 0.080 58.9286 0.040 41.6688
400 0.039 41.2500 0.020 29.1682
784 0.020 29.4643 0.010 20.8344

Parallel Diagonal

Likewise, the differences between diagonal Cartesian and parallel Cartesian are

reduced as a smaller grid dimension is used. As we have shown in Chapter IV, at low

mobility ratios, i.e., M = 0.5, the diagonal Cartesian grid is insensitive to the number of

grid blocks in the model. Contrarily, when more refined grid blocks are used in the

parallel Cartesian grid, the oil recovery would increase and the results would converge to

a single recovery curve after an increase in a certain number of grid blocks.

The results between the HGB and Cartesian grid models are summarized in

Table 5.8. For reasons mentioned earlier, these two models are compared at a similar

averaged area per grid block. As the number of grid blocks are increased and the size of

grid blocks are reduced, we can see that both models give a smaller relative difference in

pore volume recovered between the parallel and diagonal grid than when coarser grids

are used. More importantly, the HGB grid performs better by consistently giving a

smaller relative difference in pore volume recovered compared to the Cartesian grid at

similar averaged area per grid block for all the cases studied. This indicates that the

 67

HGB is more effective in reducing the grid orientation error than the conventional

Cartesian grid.

Results of simulation runs at M=0.5 are summarized in Figs. 5.18-5.19 for the

parallel and diagonal HGB grid, respectively. Performance of the parallel HGB grid is

not sensitive to the number of grid blocks in the model, as all the four models give

similar results. On the other hand, oil recovery predicted by the diagonal HGB model

increased as the number of grid blocks increased, and the results converged when the

number of grid blocks is at 200 and higher.

Table 5.8 – Relative difference between parallel and diagonal grid for both HGB and

Cartesian grids at M = 0.5

 Averaged area per grid block (ac) Relative Difference in
Diagonal Parallel Pore Volume Recovered (%)

HGB 0.159 (98)* 0.156 (50)* 6.0
Grid 0.078 (200) 0.080 (98) 4.5

0.040 (392) 0.039 (200) 3.3
0.020 (800) 0.020 (392) 2.2

Cartesian 0.156 (100) 0.159 (49) 17.0
Grid 0.080 (196) 0.078 (100) 13.0

0.039 (400) 0.040 (196) 9.3
0.020 (784) 0.020 (400) 7.9

* number in brackets indicates the number of grid blocks used

 68

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

PV Injected

P
V

R
ec

ov
er

ed

Parallel HGB (50 blocks)
Cartesian Diagonal (49 blocks)
Diagonal HGB (98 blocks)
Cartesian Parallel (100 blocks)

100 Cartesian parallel grid blocks

98 diagonal HGB grid blocks

49 Cartesian diagonal grid blocks

50 parallel HGB grid blocks

Fig. 5.14 – Comparison between HGB grid (50 and 98 grid blocks) and Cartesian grid

(49 and 100 grid blocks) at M = 0.5

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

PV Injected

P
V

R
ec

ov
er

ed

Parallel HGB (98 grid blocks)
Cartesian Diagonal (100 grid blocks)
Diagonal HGB (200 grid blocks)
Cartesian Parallel (196 grid blocks)

196 Cartesian parallel grid blocks

200 diagonal HGB grid blocks

100 Cartesian diagonal grid blocks

98 parallel HGB grid blocks

Fig. 5.15 – Comparison between HGB grid (98 and 200 grid blocks) and Cartesian grid

(100 and 196 grid blocks) at M = 0.5

 69

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
PV Injected

P
V

R
ec

ov
er

ed

Parallel HGB (200 grid blocks)

Cartesian Diagonal (196 grid blocks)

Diagonal HGB (392 grid blocks)

Cartesian Parallel (400 grid blocks)

400 Cartesian parallel grid blocks

392 diagonal HGB grid blocks

196 Cartesian diagonal grid blocks

200 parallel HGB grid blocks

Fig. 5.16 – Comparison between HGB grid (200 and 392 grid blocks) and Cartesian grid

(196 and 400 grid blocks) at M = 0.5

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

PV Injected

P
V

R
ec

ov
er

ed

Parallel HGB (392 grid blocks)

Cartesian Diagonal (400 grid blocks)

Diagonal HGB (800 grid blocks)

Cartesian Parallel (784 grid blocks)

784 Cartesian parallel grid blocks

800 diagonal HGB grid blocks

400 Cartesian diagonal grid blocks

392 parallel HGB grid blocks

Fig. 5.17 – Comparison between HGB grid (392 and 800 grid blocks) and Cartesian grid

(400 and 784 grid blocks) at M = 0.5

 70

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

PV Injected

P
V

R
ec

ov
er

ed

Parallel HGB (50 blocks)

Parallel HGB (98 grid blocks)

Parallel HGB (200 grid blocks)

Parallel HGB (392 grid blocks)

50 grid blocks

392 grid blocks

Fig. 5.18 – Effect of grid spacing on parallel HGB grid for M=0.5

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

PV Injected

P
V

R
ec

ov
er

ed

Diagonal HGB (98 blocks)

Diagonal HGB (200 grid blocks)

Diagonal HGB (392 grid blocks)

Diagonal HGB (800 grid blocks)

98 grid blocks

Fig. 5.19 – Effect of grid spacing on diagonal HGB grid for M=0.5

 71

CHAPTER VI

CONCLUSIONS

We have shown the effect of grid orientation in conventional Cartesian parallel and

diagonal grid. Also, we have successfully developed the HGB grid system and we have

shown that HGB is more effective in reducing the grid orientation effect than Cartesian

grid. This is attributed to the increase of flow connections in the octagonal grid blocks in

HGB grid. On the other hand, the increase in flow connections also means that there

would be more terms to solve and hence this would increase the computational time

compared to Cartesian grid. Moreover, the construction and numbering or indexing of

the HGB grid is not as intuitive as the Cartesian grid. Extension of the HGB grid to a 3-

D model would also be a challenging task. However, we would recommend the use of

HGB grid for simulations of displacement problems especially at unfavorable mobility

ratios.

The following conclusions can be derived from this study:

1. Grid orientation effect was observed in rectangular Cartesian grid models even at

isotropic and homogeneous reservoir of M = 1.0.

2. Based on this study, grid refinement can help to reduce the grid orientation effect

in rectangular Cartesian grid models when there are favorable mobility ratios, i.e.

M=1.0 or less. However, at an unfavorable mobility ratio of M=10.0, it is found

that neither parallel nor diagonal orientation can be used reliably. This is because

as the number of grid blocks is increased, the performance of diagonal and

parallel models actually diverges for the grid spacings investigated in this study.

 72

3. With the increased number of connections in the octagonal grid blocks in HGB

grid compared to Cartesian grid, HGB is able to reduce the grid orientation effect

even for unfavorable mobility ratio displacement problems (M = 10.0), with

maximum relative difference of 6% in pore volume recovered between parallel

and diagonal HGB grid models for all the cases run. However, the grid

orientation effect in HGB model is believed to be caused by the presence of the

square grid blocks.

4. Contrary to the Cartesian parallel grid, HGB parallel grid is less sensitive to the

number of grid blocks in the model compared to the HGB diagonal grid for M =

0.5. Also, at a favorable mobility ratio of M = 0.5, the performance of the parallel

and diagonal HGB grid models converged as the number of grid blocks is

increased.

5. The HGB grid performs better by consistently giving a smaller relative difference

between HGB parallel grid and HGB diagonal grid in pore volume recovered

(6.0, 4.5, 3.3, and 2.2%) compared to the relative difference between Cartesian

parallel grid and Cartesian diagonal grid in pore volume recovered (17.0, 13.0,

9.3, 7.9%) at similar averaged area per grid block for all the four comparison

cases studied. This indicates that the HGB is more effective in reducing the grid

orientation error than the conventional Cartesian grid.

Recommendations for future work:

1. The numerical solutions obtained from developed simulator and commercial

simulators should be compared with analytical solutions. The analytical solution

should be used as a reference to investigate the accuracy of the numerical result.

2. In Sim2D, we only have one set of grid block configuration using the

combination of octagonal and rectangular grid blocks. In addition, the octagonal

 73

and rectangular grid blocks are regular polygons. It would be interesting to vary

these into irregular polygons.

3. The treatment of anisotropic reservoirs has yet to be addressed. A full

permeability tensor can be modeled, though there are several challenging issues

related to their implementation in a simulator such as the treatment of wells and

averaging of permeability at each connection.

4. The range of the test problems need to be extended to multiphase and

heterogeneous reservoirs.

 74

REFERENCES

1. Pedrosa, O.A. and Aziz, K.: “Use of Hybrid Grid in Reservoir Simulation”, paper

SPE 13507, presented at the 1985 SPE Symposium on Reservoir Simulation,

Dallas, Texas, 10-13 February.

2. Nacul, E.C.: Use of Domain Decomposition and Local Grid Refinement in

Reservoir Simulation, Ph.D. Dissertation, Stanford University, Palo Alto,

California (March 1991).

3. Ding, Y. and Lemonnier, P.: “Use of Corner Point Geometry in Reservoir

Simulation”, paper SPE 29933 presented at the 1995 International Meeting on

Petroleum Engineering held in Beijing, PR China, 14 -17 Nov..

4. Peaceman, D.W.: “Calculation of Transmissibilities of Grid blocks Defined by

Arbitrary Corner Point Geometry”, paper SPE 37306 presented at the 1996 SPE

Reservoir Simulation Symposium, New Orleans, Louisiana, 31 Jan - 3 Feb.

5. Heinemann, Z.E. and Brand, C.W.: “Modeling Reservoir Geometry with

Irregular Grids”, paper 18412 presented at the 1989 SPE Symposium on

Reservoir Simulation, Houston, Texas, 6-8 February.

6. Palagi, C.L. and Aziz, K.: “Use of Voronoi Grid in Reservoir Simulation”, paper

SPE 22889 presented at the 1991 SPE Reservoir Simulation Symposium held in

New Orleans, Louisiana, 31 Jan - 3 Feb.

7. Gunasekera, D., Cox, J. and Lindsey, P.: “The Generation and Application of K-

Orthogonal Grid Systems”, paper SPE 37998 presented at the 1997 SPE

Symposium on Reservoir Simulation, Dallas, Texas, 8-11 June.

8. Kocberber, S.: “An Automatic, Unstructured Control Volume Generation System

for Geologically Complex Reservoirs”, paper SPE 38001 presented at the 1997

SPE Symposium on Reservoir Simulation, Dallas, Texas, 8-11 June.

 75

9. Aavatsmark, I., Barkve, T., Boe, O., and Mannseth, T.: “Discretization on

Nonorthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media”, J.

Computational Physics (1996) 127, 2-14.

10. Verma, S. and Aziz, K.: “A Control Volume Scheme for Flexible Grids in

Reservoir Simulation”, paper SPE 37999 presented at the 1997 SPE Symposium

on Reservoir Simulation, Dallas, Texas, 8-11 June.

11. Todd, M.R., O’Dell, P.M. and Hirasaki, G.J.: “Methods for Increased Accuracy

in Numerical Simulation”, paper SPE 3516 presented at the 1971 PE Annual Fall

Meeting, New Orleans, Louisiana, 3-6 October.

12. Holloway, C.C., Thomas, L.K., and Pierson, R.G.: “Reduction of Grid

Orientation Effects in Reservoir Simulation”, paper SPE 5522 presented at the

1975 Annual Fall Meeting of the Society of Petroleum Engineers of AIME,

Dallas, Texas, 28 September – 1 October.

13. Frauenthal, J.C., Rolaud, B. and Towler, B.F.: “Reduction of Grid-Orientation

Effects in Reservoir Simulation with Generalized Upstream Weighting”, paper

SPE 11593 presented at the 1983 SPE Symposium on Reservoir Simulation, San

Francisco, California, 15-18 November.

14. Vinsome, P.K. and Au A.K.: “One Approach to the Grid Orientation Problem in

Reservoir Simulation,” paper SPE 8247 presented at the 1979 Annual Fall

Technical Conference and Exhibition of the Society of Petroleum Engineers of

AIME, Los Angeles, California, 23-26 September.

15. Yanosik, J.L. and McCracken, T.A.: “A Nine-Point, Finite-Difference Simulator

for Realistic Prediction of Adverse Mobility Ratio Displacements”, paper SPE

5734 presented at the 1976 SPE-AIME Symposium of Numerical Simulation of

Reservoir Performance, Los Angeles, California, 19-20 February.

16. Ko, S.C.M. and Au, A.D.K.:“A Weighted Nine-Point Finite-Difference Scheme

for Eliminating the Grid Orientation Effect in Numerical Reservoir Simulation”,

paper SPE 8248 presented at the 1979 SPE Annual Fall Meeting, Las Vegas,

Nevada, 23-26 September.

 76

17. Coats, K.H. and Modine, A.D.: “A Consistent Method for Calculating

Transmissibilities in Nine-Point Difference Equations”, paper SPE 12248

presented at the 1983 Reservoir Simulation Symposium, San Francisco,

California, 15-18 November.

18. Shah, P.C.: “A Nine-Point Finite Difference Operator for Reduction of the Grid

Orientation Effect,” paper SPE 12251 presented at the 1983 Reservoir Simulation

Symposium, San Francisco, California, 15-18 November.

19. Ostebo, B. and Kazemi, H: “Mixed Five-Point/Nine-Point Finite-Difference

Formulation of Multiphase Flow in Petroleum Reservoirs”, paper SPE 21227

presented at the 1991 Reservoir Simulation Symposium, Anaheim, California,

17-20 February.

20. Shiralkar, G.S. and Stephenson, R.E.: “A General Formulation for Simulating

Physical Dispersion and a New Nine-Point Scheme”, paper SPE 16975 presented

at the 1987 Annual Technical Conference and Exhibition, Dallas, Texas, 27-30

September.

21. Vinsome, P.K. and Au A.K.: “One Approach to the Grid Orientation Problem in

Reservoir Simulation,” paper SPE 8247 presented at the 1979 Annual Fall

Technical Conference and Exhibition of the Society of Petroleum Engineers of

AIME, Los Angeles, California, 23-26 September.

22. Brand, C.W., Heinemann, J.E., and Aziz, K.: “The Grid Orientation Effect in

Reservoir Simulation”, paper SPE 21228 presented at the 1991 SPE Symposium

on Reservoir Simulation, Anaheim, California, 17-20 February.

23. Chen, W.H. and Durlofsky, L.J.: “Minimization of Grid Orientation Effects

Through Use of Higher-Order Finite Difference Methods”, paper SPE 22887

presented at the 1991 Annual Technical Conference and Exhibition, Dallas,

Texas, 6-9 October.

24. Pinto A.C.C. and Correa, A.C.F.: “High-Resolution Schemes for Conservation

Laws: Applications to Reservoir Engineering,” paper SPE 24262 presented at the

 77

1992 European Petroleum Computer Conference, Stavanger, Norway, 25-27

May.

25. Wolcott, D.S., Kazemi, H., and Dean, R.H.: “A Practical Method for Minimizing

the Grid Orientation Effect in Reservoir Simulation”, paper SPE 36723 presented

at the 1996 Annual Technical Conference and Exhibition, Denver, Colorado, 6-9

October.

26. Shin, D. and Merchant, A.R.: “Higher-Order Flux Update Function Method for

Reduction of Numerical Dispersion and Grid Orientation Effect in Reservoir

Simulation”, paper SPE 25600 presented at the 1993 Middle East Oil Technical

Conference and Exhibition, Bahrain, 3-6 April.

27. Pruess, K. and Bodvarsson, G.S.: “A Seven-Point Finite Difference Method for

Improved Grid Orientation Performance in Pattern Steamfloods,” paper SPE

12252 presented at the 1983 Reservoir Simulation Symposium, San Francisco,

California, 15-18 November.

28. Heinemann, Z.E. and Brand, C.W.: “Modeling Reservoir Geometry with

Irregular Grids”, paper 18412 presented at the 1989 SPE Symposium on

Reservoir Simulation, Houston, Texas, 6-8 February.

29. Mattax, C.C. and Dalton R.L.: Reservoir Simulation, Monograph #13, SPE,

Richardson, Texas (1990).

30. Crichlow, H.B.: Modern Reservoir Engineering – A Simulation Approach,

Prentice Hall, Englewood Cliffs, New Jersey (1977).

31. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation, Elsevier,

New York (1977).

32. Aziz K. and Settari A.: Petroleum Reservoir Simulation, Elsevier, New York

(1979).

33. Fanchi, J.R.: Principles of Applied Reservoir Simulation, Gulf Publishing

Company, Houston, Texas (1997).

34. Wattenbarger, R.A.: PETE 603 Class Notes, Department of Petroleum

Engineering, Texas A&M University, College Station, Texas (2003).

 78

35. Peaceman, D.W.: “Interpretation of Well-Block Pressures in Numerical

Reservoir Simulation”, paper SPE 6893 presented at the 1977 SPE-AIME

Annual Fall Technical Conference and Exhibition, Denver, Colorado, 9-12 Oct.

36. Peaceman, D.W.: “Interpretation of Well-Block Pressures in Numerical

Reservoir Simulation with Nonsquare Grid Blocks and Anisotropic

Permeability”, paper SPE 10528 presented at the 1982 SPE Reservoir Simulation

Symposium New Orleans, Louisiana, 31 Jan - 3 Feb.

37. Palagi, C.L.: Generation and Application of Voronoi Grid to Model Flow in

Heterogeneous Reservoirs, Ph.D. Dissertation, Stanford University, Palo Alto,

California, (May 1992).

 79

APPENDIX A

Sim2D VB PROGRAM APPLICATION

The main window consists of 5 tab strips for data entries. The main menus are shown in

Figs. A.1-A.5, namely Grid Builder, Reservoir Description, Initial Condition, Well Data

and Numerical Method. Data file of the PVT tables can be uploaded in .txt form, while

the results are output to a MS Excel spreadsheet, although real-time plots are generated

while the program is running, as shown in Figs. A.6-A.16. Also, the “time step skip” for

the output is entered by the user.

 80

Fig. A.1 – Grid Builder window

 81

Fig. A.2 – Reservoir Description window

 82

Fig. A.3 – Initial Condition window

 83

Fig. A.4 – Well Data window

 84

Fig. A.5 – Numerical Method window

 85

Fig. A.6 – Example showing oil saturation plot of grid block containing injector

Fig. A.7 – Example showing oil saturation plot of grid block containing producer

 86

Fig. A.8 – Example showing water saturation plot of grid block containing injector

Fig. A.9 – Example showing water saturation of grid block containing producer

 87

Fig. A.10 – Example showing total saturation plot of grid block containing injector

Fig. A.11 – Example showing total saturation plot of grid block containing producer

 88

Fig. A.12 – Example showing water injection rate plot

Fig. A.13 – Example showing water production rate plot

 89

Fig. A.14 – Example showing oil production rate plot in a constant production rate case

Fig. A.15 – Example showing pressure profiles plot of injector

 90

Fig. A.16 – Example showing pressure profiles plot of producer

 91

APPENDIX B

Sim2D VB SOURCE CODE

'NFR Group - Texas A&M University - Fall 2003

'Assumptions:-
'1) Homogeneous reservoir
'2) No gravity effects
'3) No capillary pressure
'4) Isotropic reservoir

'The equations assumed FIELD units and they are shown as follows:-
'Oil and Water Formation Volume Factor : rcf/scf
'Oil and Water Rate : scf/D
'Permeability : mD
'Pressures : psi
'Grid dimensions : ft

Option Explicit
Option Base 1

'***
'Defining all variables
'Private constants and variables apply to all procedures in module

Public FindIndexRow As Boolean
Public Type notzeroIndex
 n As Integer
 indexRow() As Integer
End Type
Public rowFill() As notzeroIndex

Private Prod_Inj() As String
Private back_to_origin As Boolean
Private Cut_Sat As Boolean

 92

Private Pn() As Double
Private Pold() As Double
Private oct_oct As Double
Private oct_rect_tri As Double
Private Amat() As Double
Private Bmat() As Double
Private Itmax As Long
Private ErrorEst As Double
Private NodeType() As Byte

'Time Variables
Private t_step As Integer
Private t_stepmax As Double
Private delt As Double
Private tmax As Double
Private step As Double
Private SatCut As Integer
Private MaxCut As Integer

'Spatial Variables
Private NX As Integer
Private NY As Integer
Private xD() As Double, yD() As Double
Private delx() As Double, dely() As Double
Private dx() As Double, dy() As Double
Private gridType As String
Private u As Integer
Private v As Integer
Private NN As Integer
Private m As Double
Private p As Double, q As Double, r As Double, S As Double, W As Double, no As
Double, ht As Double
Private areaOctagon As Double, areaSquare As Double, areaCornerTriangle As Double,
areaWallTriangle As Double
Private TL As Integer, BL As Integer, TR As Integer, BR As Integer
Private wecount As Double, sncount As Double, owecount As Double, osncount As
Double
Private nodeArea() As Byte

'West side wall, East side wall, South side wall, North side wall
Private WS As Integer, SS As Integer
Private WSW() As Double, ESW() As Double, SSW() As Double, NSW() As Double
Private DN() As Integer

 93

Private OSW As Double, ONE As Double, ONW As Double, OSE As Double, OWS As
Double
Private OSS As Double, OSSW() As Double, ONSW() As Double, OWSW() As Double
 Private OESW() As Double, Oct() As Double, Oct_XY() As Double, OXY() As
Double
Private Start() As Double, Oend() As Double, CenterO() As Double, Squares() As
Double
Private startcount As Integer, count As Integer
Private M_P() As Double

'Fluid Property Variables
Private Comp As Double, Ct() As Double
Private MaxSat As Double
Private Soi() As Double, Swi() As Double, SLi() As Double
Private Stotal() As Double
Private Swc As Double, So As Double
Private LambdaO() As Double, LambdaW() As Double, LambdaT() As Double
Private Transm() As Double
Private por() As Double, Por_new() As Double
Private Perm1 As Double
Private Perm2 As Double
Private Porc As Double

'Initial Condition Variables
Private Pinit As Double
Private Sor As Double

'Average rock and fluid properties
Private kavg As Double
Private kavgw As Double, miuoavgW As Double, BavgW As Double, delxW As Double
Private kavge As Double, miuoavgE As Double, BavgE As Double, delxE As Double
Private Perm() As Double
Private KROUPS As Double
Private KRWUPS As Double

'Coefficients of Matrix A and B
Private beta() As Double
Private AT() As Double
Private ACT() As Double, MB() As Double
Private AO() As Double, AW() As Double
Private ATtemp As Double
Private AoSat() As Double, AwSat() As Double
Private SumAO As Double, SumAw As Double

 94

'Fluid Property Variables from Input Table
Private miuo() As Double, Bo() As Double, Co() As Double
Private miuw() As Double, Bw() As Double, Cw() As Double
Private Rso() As Double
Private p_pvt() As Double
Private Bo_pvt() As Double, miuo_pvt() As Double, Co_pvt() As Double, Rso_pvt() As
Double
Private Bw_pvt() As Double, miuw_pvt() As Double, Cw_pvt() As Double
Private Sw_Tab() As Double, Krw_tab() As Double, Kro_tab() As Double, Krg_tab() As
Double
Private Sw_int() As Double, Krwi() As Double, Kroi() As Double, Krgi() As Double
Private Rsoi() As Double
Private Son() As Double, Swn() As Double, Sg_n() As Double
Private Npvt As Integer, nRelperm As Integer, PVT() As Double
Private SL_tab() As Double, SL_int() As Double, nSL As Integer, SLN() As Double
Private miuo_avg() As Double, Bo_avg() As Double
Private miuw_avg() As Double, Bw_avg() As Double

'Well terms/properties
Private delp() As Double, dp As Double
Private Nwell As Single
Private iloc() As Single
Private WellType() As String
Private bhp As Double
Private Pwf() As Double, Pwfn() As Double
Private Qo() As Double, Qw() As Double, Qt() As Double
Private Qon() As Double, Qwn() As Double, Qtn() As Double
Private WConst() As Single
Private rw() As Double, skin() As Double, Jmodel() As Double, ro() As Double
Private IOIP As Double, Np As Double, Ni As Double, Nt As Double, Mbe As Double
'production parameters

'Chord Slope Terms
Private Vpn() As Double, Vp() As Double
Private Bon() As Double
Private Bwn() As Double

'MBE
Private OOIP() As Double, WWIP() As Double
Private OOIPn() As Double, WWIPn() As Double
Private CumOil As Double, CumWater As Double
Private TotalOIP As Double, TotalWIP As Double
Private MatBal() As Double
Private MatBalE() As Double

 95

'***

Sub Main()

 'Time Step Skip
 FindIndexRow = False
 Dim prevStep As Double, nextStep As Double
 Dim position As Integer, skipStep As Integer, countStep As Integer
 position = 1
 countStep = 1

 Dim i As Integer, t As Double
 SatCut = 0
 Call Clear_Report
 Call ReadData_Input

 'Read PVT and RelPerm Data from Worksheet
 Call Read_PVT

 If (gridType = "HGB") Then
 Call Dimension
 End If

 Call Memory_Allocation

 If (gridType = "HGB") Then
 Call GridHGB
 ElseIf (gridType = "SQ") Then
 Call GridSQ
 End If

 Call Initial
 Call New_Trans

 If Nwell <> 0 Then
 Call Well
 End If

 t_stepmax = Int(tmax / delt)
 t_step = 1

 Do While t < tmax

prev:

 96

DoEvents
 t = t + delt
 Cut_Sat = False

 Call Interpol
 Call MatrixB2
 Call MatrixA
 Call bicgstab(Pn(), Bmat(), Amat(), ErrorEst, Itmax, Pn())

 For i = 1 To NN
 If Pn(i) < 0 Then Stop
 Next i

 Call Interpol
 Call UpdateSat

 If Cut_Sat = True And SatCut <= MaxCut Then
 If SatCut = MaxCut Then
 SatCut = 0
 GoTo MaxIter
 End If

 Cut_Sat = False
 t = t - delt
 delt = delt / 2
 Back_To_Previous
 SatCut = SatCut + 1
 GoTo prev
 End If

MaxIter:

 Call Material_Balance
 skipStep = 1000
 If (skipStep = countStep) Then
 Call Print_Result(position, t)
 Call Print_Result_WSat(position, t)
 Call Print_Result_OSat(position, t)
 Call Print_Result_TSat(position, t)
 Call Print_Well(position, t)
 Call Print_Pold(position, t)
 Call Print_ORate(position, t)
 Call Print_WRate(position, t)
 Call Print_TRate(position, t)

 97

 Call Print_MBE(position, t)
 Call Print_Result_MatBal(position, t)

 prevStep = t
 position = position + 1
 countStep = 1
 End If

 countStep = countStep + 1
 t_step = t_step + delt

 'Update Properties
 Call UpdateProperties

 If Nwell <> 0 Then
 Call Well_New2
 End If

Loop

End Sub

'***

Sub Print_Result(ByVal step As Integer, ByVal t As Double)
Dim i As Integer
With Sheets("Pn")
 .Cells(i + 1, step + 1) = t
 For i = 1 To NN
 .Cells(i + 1, step + 1) = Pn(i)
 Next
End With

End Sub

'***

Sub Print_Pold(ByVal step As Integer, ByVal t As Double)
Dim i As Integer
With Sheets("Pold")
 .Cells(i + 1, step + 1) = t
 For i = 1 To NN
 .Cells(i + 1, step + 1) = Pold(i)
 Next

 98

End With

End Sub

'***

Sub Back_To_Previous()
Dim i As Integer

 For i = 1 To NN
 Pn(i) = Pold(i)
 Son(i) = Soi(i)
 Swn(i) = Swi(i)
 Qon(i) = Qo(i)
 Qwn(i) = Qw(i)
 Qtn(i) = Qt(i)
 Pwfn(i) = Pwf(i)
 Vpn(i) = Vp(i)
 Next i

End Sub

'***

Sub Print_Result_WSat(ByVal step As Integer, ByVal t As Double)
Dim i As Integer
With Sheets("WaterSat")
 .Cells(i + 1, step + 1) = t
 For i = 1 To NN
 .Cells(i + 1, step + 1) = Swn(i)
 Next
End With

End Sub

'***

Sub Print_Result_OSat(ByVal step As Integer, ByVal t As Double)
Dim i As Integer
With Sheets("OilSat")
 .Cells(i + 1, step + 1) = t
 For i = 1 To NN
 .Cells(i + 1, step + 1) = Son(i)
 Next

 99

End With

End Sub

'***

Sub Print_Result_TSat(ByVal step As Integer, ByVal t As Double)
Dim i As Integer
With Sheets("TotalSat")
 .Cells(i + 1, step + 1) = t
 For i = 1 To NN
 .Cells(i + 1, step + 1) = Stotal(i)
 Next
End With

End Sub

'***

Sub ReadData_Input()
Dim i As Integer, k As Integer, j As Integer

 'Read input data from data sheet of workbook
 With Worksheets("Data")
 gridType = .Cells(6, 10).Value

 If (gridType = "HGB") Then
 u = .Cells(4, 2).Value
 v = .Cells(5, 2).Value
 m = .Cells(4, 5).Value
 ElseIf (gridType = "SQ") Then
 NX = .Cells(2, 13).Value
 NY = .Cells(2, 16).Value
 NN = NX * NY

 ReDim dx(NN)
 ReDim dy(NN)

 k = 1
 For j = 1 To NY
 For i = 1 To NX
 dx(k) = .Cells(2 + i, 13).Value
 k = k + 1
 Next

 100

 Next

 k = 1
 For j = 1 To NX
 For i = 1 To NY
 dy(k) = .Cells(2 + i, 16).Value
 k = k + 1
 Next
 Next
 End If

 Pinit = .Cells(10, 2).Value
 Comp = .Cells(7, 5).Value
 ht = .Cells(8, 5).Value
 delt = .Cells(13, 5).Value
 tmax = .Cells(14, 5).Value
 Swc = .Cells(11, 2).Value
 Sor = .Cells(12, 2).Value
 Porc = .Cells(5, 5).Value
 bhp = .Cells(22, 9).Value
 Perm1 = .Cells(6, 5).Value
 Perm2 = Perm1
 Nwell = .Cells(20, 3).Value
 Itmax = Range("maxIT")
 ErrorEst = Range("errorEST")
 MaxSat = Range("maxsat")
 MaxCut = Range("maxcut")

 End With
End Sub

'***

Sub ReadData_Tables()
'Read input data from PVT Tables

Dim txttmp As String
Dim i As Byte
Dim AddR As String
AddR = ActiveWorkbook.Path
Open AddR & "\2D2Pv5.TXT" For Input As 1
Line Input #1, txttmp
Input #1, Npvt

 101

ReDim p_pvt(1 To Npvt)
ReDim Bo_pvt(1 To Npvt)
ReDim Co_pvt(1 To Npvt)
ReDim Rso_pvt(1 To Npvt)
ReDim miuo_pvt(1 To Npvt)
ReDim Bw_pvt(1 To Npvt)
ReDim miuw_pvt(1 To Npvt)
ReDim Cw_pvt(1 To Npvt)
ReDim Kro_tab(1 To Npvt)
ReDim Krw_tab(1 To Npvt)
ReDim Sw_Tab(1 To Npvt)

Line Input #1, txttmp
For i = 1 To Npvt
 Input #1, p_pvt(i), Bo_pvt(i), Rso_pvt(i), miuo_pvt(i), Co_pvt(i), Bw_pvt(i),
miuw_pvt(i), _
 Cw_pvt(i)
Next i

Line Input #1, txttmp
Line Input #1, txttmp
Input #1, nRelperm

ReDim Sw_Tab(1 To nRelperm)
ReDim Krw_tab(1 To nRelperm)
ReDim Kro_tab(1 To nRelperm)

Line Input #1, txttmp
For i = 1 To nRelperm
 Input #1, Sw_Tab(i), Krw_tab(i), Kro_tab(i)
 'Debug.Print Sw_Tab(i), Krw_tab(i), Kro_tab(i)
Next

Close #1

End Sub

'***

Sub Read_PVT()
Dim i As Integer, j As Integer

'Read input data from PVT sheet of workbook
With Worksheets("PVT")

 102

 Npvt = Range("nPVT")
 nRelperm = Range("nRelPerm")
End With

ReDim p_pvt(1 To Npvt): ReDim Bo_pvt(1 To Npvt): ReDim Co_pvt(1 To Npvt):
ReDim Rso_pvt(1 To Npvt)
ReDim miuo_pvt(1 To Npvt)
ReDim Bw_pvt(1 To Npvt): ReDim miuw_pvt(1 To Npvt): ReDim Cw_pvt(1 To Npvt)
ReDim Sw_Tab(1 To nRelperm): ReDim Kro_tab(1 To nRelperm): ReDim Krw_tab(1
To nRelperm)

With Worksheets("PVT")
 For i = 1 To Npvt
 p_pvt(i) = .Cells(3 + i, 1).Value
 Bo_pvt(i) = .Cells(3 + i, 2).Value
 Rso_pvt(i) = .Cells(3 + i, 3).Value
 miuo_pvt(i) = .Cells(3 + i, 4).Value
 Co_pvt(i) = .Cells(3 + i, 5).Value
 Bw_pvt(i) = .Cells(3 + i, 6).Value
 miuw_pvt(i) = .Cells(3 + i, 7).Value
 Cw_pvt(i) = .Cells(3 + i, 8).Value
 Next i

 For j = 1 To nRelperm
 Sw_Tab(j) = .Cells(67 + j, 1).Value
 Krw_tab(j) = .Cells(67 + j, 2).Value
 Kro_tab(j) = .Cells(67 + j, 3).Value
 Next j
End With

End Sub

'***

Sub Dimension()

'Total Number of Blocks
NN = (v * u) + 2 * (v - 1) + 2 * (u - 1) + 4 + (v - 1) * (u - 1)

'Dimensions of polygons
p = m
q = p
r = q

 103

S = 0.5 * m
W = S
no = (0.5 + 1 / Sqr(2)) * m

oct_oct = 2 * no
oct_rect_tri = no + S

'Areas of Polygons
areaSquare = m * m
areaOctagon = 2 * (m / Sqr(2)) ^ 2 + 4 * m * (m / Sqr(2)) + m ^ 2

areaCornerTriangle = 0.25 * m * m
areaWallTriangle = 0.5 * m * m

End Sub

'***

Sub GridSQ()
Dim i As Integer, j As Integer, k As Integer
Dim E As Integer, W As Integer, n As Integer, S As Integer
ReDim DN(NN, 8)

E = 8
n = 5
W = 6
S = 7

k = 1
For j = 1 To NY
 For i = 1 To NX

 If i <> 1 Then
 DN(k, W) = k - 1
 End If

 If i <> NX Then
 DN(k, E) = k + 1
 End If

 If j <> 1 Then
 DN(k, n) = k - NX
 End If

 104

 If j <> NY Then
 DN(k, S) = k + NX
 End If

 k = k + 1
 Next
Next

For i = 1 To NN
 For j = 1 To 8
 If DN(i, j) <> 0 Then Perm(i, DN(i, j)) = Perm1
 Next
Next

End Sub

'***

Sub GridHGB()
Dim i As Integer, j As Integer, k As Integer, kk As Integer, A As Integer, temp As
Integer
Dim ii As Integer, jj As Integer
ReDim DN(NN, 8)

'Corners
BL = 1
TL = 2

For i = 1 To v - 1
 TL = TL + (2 * i + 1)
Next i

BR = NN - (TL - BL)
TR = NN

'West Side Wall
wecount = 0
ReDim WSW(v)
WS = 2

For i = 1 To v - 1
 WSW(i) = WS
 wecount = wecount + 1
 WS = WS + ((2 * i) + 1)

 105

Next i

'East Side Wall
ReDim ESW(v)

For i = 1 To wecount
 ESW(i) = NN - (WSW(i) - BL)
Next i

'South Side Wall
sncount = 0
SS = 4
ReDim SSW(u)
For i = 1 To u - 1
 k = i
 If k > v - 1 Then
 k = v - 1
 End If
 SSW(i) = SS
 sncount = sncount + 1
 SS = SS + ((2 * (k + 1)) + 1)
Next i

'North Side Wall
ReDim NSW(u)
For i = 1 To sncount
 NSW(i) = NN - (SSW(i) - BL)
Next i

'Octagons Corners
OSW = 3
ONE = NN - 2
ONW = 3

For i = 1 To v - 1
 ONW = ONW + (2 * i + 1)
Next i

OSE = ONE - (ONW - OSW)

'Octagon West Side Walls
OWS = 3
owecount = 0
ReDim OWSW(v)

 106

For i = 1 To v - 2
 OWS = OWS + (2 * i + 1)
 OWSW(i) = OWS
 owecount = owecount + 1
Next i

'Octagon East Side Walls
ReDim OESW(v)

For i = 1 To owecount
 OESW(i) = ONE - (OWSW(i) - OSW)
Next i

'Octagon South Side Walls
OSS = 3
osncount = 0
ReDim OSSW(u)
i = 2

For j = 1 To u - 2
 k = i
 If k > v Then
 k = v
 End If
 OSS = OSS + (2 * k + 1)
 OSSW(i - 1) = OSS
 osncount = osncount + 1
 i = i + 1
Next j

'Octagon North Side Walls
ReDim ONSW(u)

For i = 1 To osncount
 ONSW(i) = ONE - (OSSW(i) - OSW)
Next i

'Non-corner Octagon
ReDim Start(owecount + 1 + osncount)
ReDim Oend(owecount + 1 + osncount)
ReDim CenterO(2 * owecount * osncount)
ReDim Squares((owecount + 2) * (osncount + 2))
startcount = 0

 107

For i = 1 To owecount
 Start(i) = OWSW(i)
 Oend(i) = OESW(i)
 startcount = startcount + 1
Next i

Start(owecount + 1) = ONW
Oend(owecount + 1) = OSE

For i = osncount + owecount + 1 To owecount + 2 Step -1
 Start(i) = ONSW(i - owecount - 1)
 Oend(i) = OSSW(i - owecount - 1)
 startcount = startcount + 1
Next i

Call Sorter(Start(), owecount + 1# + osncount)
Call Sorter(Oend(), owecount + 1# + osncount)

'Map octagons & squares
k = 1
kk = 1
For i = 1 To startcount + 1
 For j = Start(i) + 1 To Oend(i) - 1 Step 2
 Squares(kk) = j
 kk = kk + 1
 Next j

 For j = Start(i) + 2 To Oend(i) - 1 Step 2
 CenterO(k) = j
 k = k + 1
 Next j
Next i

'Map octagons to x & y coordinates
ReDim Oct(u * v)
j = 1

For i = 1 To owecount
 Oct(i) = OWSW(j)
 j = j + 1
Next i
k = i

 108

j = 1
For i = k To (owecount + k)
 Oct(i) = OESW(j)
 j = j + 1
Next i
k = i - 1

j = 1
For i = k To (osncount + k)
 Oct(i) = OSSW(j)
 j = j + 1
Next i
k = i - 1

j = 1
For i = k To (osncount + k)
 Oct(i) = ONSW(j)
 j = j + 1
Next i
k = i - 1

j = 1
For i = k To ((owecount * osncount) + k - 1)
 Oct(i) = CenterO(j)
 j = j + 1
Next i

k = i

Oct(k) = OSW
Oct(k + 1) = ONW
Oct(k + 2) = OSE
Oct(k + 3) = ONE

Call Sorter(Oct(), (u * v))
ReDim Oct_XY(u * 2, v * 2)
i = 1
j = 1
count = 1
Oct_XY(1, 1) = Oct(1)

For A = 2 To (u * v)
 If Oct(A) = Oct(A - 1) + 3 Then
 If (j + count) > v Then

 109

 temp = count - (v - j)
 count = count - temp
 End If
 j = j + count
 i = i - (count - 1)

 count = 1
 ElseIf Oct(A) = Oct(A - 1) + 2 Then
 j = j - 1
 i = i + 1
 count = count + 1
 End If

Oct_XY(i, j) = Oct(A)

Next A

'Remap Octagons to normal XY Grid
ii = 1
ReDim OXY(u * 2, v * 2)

For i = 1 To u
 jj = 1
 For j = 1 To v
 OXY(ii, jj) = Oct_XY(i, j)
 jj = jj + 2
 Next j
 ii = ii + 2
Next i

'Map Squares to x & y coordinates
For i = 2 To (u - 1) * 2 Step 2
 For j = 2 To (v - 1) * 2 Step 2
 OXY(i, j) = OXY(i - 1, j + 1) + 1
 Next j
Next i

'2D Array for Directions - DN
'1D Array for Node Area - nodeArea

'Corners
DN(1, 1) = 3
DN(TL, 4) = ONW
DN(TR, 3) = ONE

 110

DN(BR, 2) = OSE

nodeArea(1) = 3
nodeArea(TL) = 3
nodeArea(TR) = 3
nodeArea(BR) = 3

'West Side Walls
DN(WSW(1), 4) = OSW
DN(WSW(1), 1) = OWSW(1)
DN(WSW(wecount), 4) = OWSW(owecount)
DN(WSW(wecount), 1) = ONW

nodeArea(WSW(1)) = 2
nodeArea(WSW(wecount)) = 2

j = 1
For i = 2 To wecount - 1
 DN(WSW(i), 4) = OWSW(j)
 DN(WSW(i), 1) = OWSW(j + 1)
 nodeArea(WSW(i)) = 2
j = j + 1
Next i

'East Side Walls
Call Sorter(ESW(), wecount)
Call Sorter(OESW(), owecount)

DN(ESW(1), 2) = OESW(1)
DN(ESW(1), 3) = OSE
DN(ESW(wecount), 2) = ONE
DN(ESW(wecount), 3) = OESW(owecount)

nodeArea(ESW(1)) = 2
nodeArea(ESW(wecount)) = 2

j = 1
For i = 2 To wecount - 1
 DN(ESW(i), 3) = OESW(j)
 DN(ESW(i), 2) = OESW(j + 1)
 nodeArea(ESW(i)) = 2
 j = j + 1
Next i

 111

'South Side Walls
DN(SSW(1), 1) = OSSW(1)
DN(SSW(1), 2) = OSW
DN(SSW(sncount), 1) = OSE
DN(SSW(sncount), 2) = OSSW(osncount)

nodeArea(SSW(1)) = 2
nodeArea(SSW(sncount)) = 2

j = 1
For i = 2 To sncount - 1
 DN(SSW(i), 2) = OSSW(j)
 DN(SSW(i), 1) = OSSW(j + 1)
 nodeArea(SSW(i)) = 2
j = j + 1
Next i

'North Side Walls
Call Sorter(NSW(), sncount)
Call Sorter(ONSW(), osncount)
DN(NSW(1), 3) = ONW
DN(NSW(1), 4) = ONSW(1)
DN(NSW(sncount), 3) = ONSW(osncount)
DN(NSW(sncount), 4) = ONE

nodeArea(NSW(1)) = 2
nodeArea(NSW(sncount)) = 2

j = 1
For i = 2 To sncount - 1
 DN(NSW(i), 3) = ONSW(j)
 DN(NSW(i), 4) = ONSW(j + 1)
 nodeArea(NSW(i)) = 2
j = j + 1
Next i

'Octagons Corners
DN(OSW, 1) = OXY(2, 2)
DN(OSW, 2) = WSW(1)
DN(OSW, 3) = BL
DN(OSW, 4) = SSW(1)
DN(OSW, 5) = OWSW(1)
DN(OSW, 8) = OSSW(1)

 112

DN(ONW, 1) = NSW(1)
DN(ONW, 2) = TL
DN(ONW, 3) = WSW(wecount)
DN(ONW, 4) = OXY(2, 2 * v - 2)
DN(ONW, 7) = OWSW(owecount)
DN(ONW, 8) = ONSW(1)

DN(ONE, 1) = TR
DN(ONE, 2) = NSW(sncount)
DN(ONE, 3) = OXY(u * 2 - 2, 2 * v - 2)
DN(ONE, 4) = ESW(wecount)
DN(ONE, 6) = ONSW(osncount)
DN(ONE, 7) = OESW(owecount)

DN(OSE, 1) = ESW(1)
DN(OSE, 2) = OXY(u * 2 - 2, 2)
DN(OSE, 3) = SSW(sncount)
DN(OSE, 4) = BR
DN(OSE, 5) = OESW(1)
DN(OSE, 6) = OSSW(osncount)

nodeArea(OSW) = 0
nodeArea(ONW) = 0
nodeArea(ONE) = 0
nodeArea(OSE) = 0

'Octagon Walls
'Octagon West Side Walls
i = 1
 count = 2
 For j = 3 To v + v - 3 Step 2
 DN(OXY(i, j), 1) = OXY(i + 1, j + 1)
 DN(OXY(i, j), 2) = WSW(count)
 DN(OXY(i, j), 3) = WSW(count - 1)
 DN(OXY(i, j), 4) = OXY(i + 1, j - 1)
 DN(OXY(i, j), 5) = OXY(i, j + 2)
 DN(OXY(i, j), 7) = OXY(i, j - 2)
 DN(OXY(i, j), 8) = OXY(i + 2, j)
 nodeArea(OXY(i, j)) = 0
 count = count + 1
 Next j

'Octagon East Side Walls
i = u + (u - 1)

 113

 count = 2
 For j = 3 To v + v - 3 Step 2
 DN(OXY(i, j), 1) = ESW(count)
 DN(OXY(i, j), 2) = OXY(i - 1, j + 1)
 DN(OXY(i, j), 3) = OXY(i - 1, j - 1)
 DN(OXY(i, j), 4) = ESW(count - 1)
 DN(OXY(i, j), 5) = OXY(i, j + 2)
 DN(OXY(i, j), 6) = OXY(i - 2, j)
 DN(OXY(i, j), 7) = OXY(i, j - 2)
 nodeArea(OXY(i, j)) = 0
 count = count + 1
 Next j

'Octagon South Side Walls
j = 1
 count = 2
 For i = 3 To u + u - 3 Step 2
 DN(OXY(i, j), 1) = OXY(i + 1, j + 1)
 DN(OXY(i, j), 2) = OXY(i - 1, j + 1)
 DN(OXY(i, j), 3) = SSW(count - 1)
 DN(OXY(i, j), 4) = SSW(count)
 DN(OXY(i, j), 5) = OXY(i, j + 2)
 DN(OXY(i, j), 6) = OXY(i - 2, j)
 DN(OXY(i, j), 8) = OXY(i + 2, j)
 nodeArea(OXY(i, j)) = 0
 count = count + 1
 Next i

'Octagon North Side Walls
j = 2 * v - 1
 count = 2
 For i = 3 To u + u - 3 Step 2
 DN(OXY(i, j), 1) = NSW(count)
 DN(OXY(i, j), 2) = NSW(count - 1)
 DN(OXY(i, j), 3) = OXY(i - 1, j - 1)
 DN(OXY(i, j), 4) = OXY(i + 1, j - 1)
 DN(OXY(i, j), 6) = OXY(i - 2, j)
 DN(OXY(i, j), 7) = OXY(i, j - 2)
 DN(OXY(i, j), 8) = OXY(i + 2, j)
 nodeArea(OXY(i, j)) = 0
 count = count + 1
 Next i

'Center Octagons

 114

 For i = 3 To 2 * u - 3 Step 2
 For j = 3 To 2 * v - 3 Step 2
 DN(OXY(i, j), 1) = OXY(i + 1, j + 1)
 DN(OXY(i, j), 2) = OXY(i - 1, j + 1)
 DN(OXY(i, j), 3) = OXY(i - 1, j - 1)
 DN(OXY(i, j), 4) = OXY(i + 1, j - 1)
 DN(OXY(i, j), 5) = OXY(i, j + 2)
 DN(OXY(i, j), 6) = OXY(i - 2, j)
 DN(OXY(i, j), 7) = OXY(i, j - 2)
 DN(OXY(i, j), 8) = OXY(i + 2, j)
 nodeArea(OXY(i, j)) = 0
 Next j
 Next i

'Squares
For i = 2 To 2 * u - 2 Step 2
 For j = 2 To 2 * v - 2 Step 2
 DN(OXY(i, j), 1) = OXY(i + 1, j + 1)
 DN(OXY(i, j), 2) = OXY(i - 1, j + 1)
 DN(OXY(i, j), 3) = OXY(i - 1, j - 1)
 DN(OXY(i, j), 4) = OXY(i + 1, j - 1)
 nodeArea(OXY(i, j)) = 1
 Next j
Next i

For i = 1 To NN
 For j = 1 To 8
 If DN(i, j) <> 0 Then Perm(i, DN(i, j)) = Perm1
 Next
Next

End Sub

'***

Sub Memory_Allocation()
ReDim Pold(NN): ReDim Pn(NN): ReDim Pwf_f(NN)
ReDim Soi(NN): ReDim Swi(NN): ReDim SLi(NN)
ReDim Son(NN): ReDim Swn(NN): ReDim Stotal(NN)
ReDim Vp(NN)
ReDim nodeArea(NN)
ReDim por(NN)
ReDim Perm(NN, NN)
ReDim Ct(NN)

 115

ReDim rowFill(NN)
ReDim miuo(NN): ReDim Bo(NN): ReDim Co(NN)
ReDim miuw(NN): ReDim Bw(NN): ReDim Cw(NN)
ReDim Kroi(NN): ReDim Krwi(NN)
ReDim LambdaO(NN): ReDim LambdaW(NN): ReDim LambdaT(NN)
ReDim beta(NN): ReDim MB(NN): ReDim Transm(NN, 8)
ReDim miuo_avg(NN, 8): ReDim miuw_avg(NN, 8)
ReDim Bo_avg(NN, 8): ReDim Bw_avg(NN, 8)
ReDim AO(NN, 8): ReDim AW(NN, 8): ReDim AT(NN, 8)
ReDim ACT(NN)
ReDim Qo(NN): ReDim Qw(NN): ReDim Qt(NN)
ReDim Qon(NN): ReDim Qwn(NN): ReDim Qtn(NN)

If Nwell <> 0 Then
 ReDim iloc(Nwell): ReDim WConst(Nwell): ReDim WellType(Nwell)
 ReDim rw(Nwell): ReDim ro(Nwell): ReDim skin(Nwell)
End If

ReDim Jmodel(NN)
ReDim Pwf(NN): ReDim Pwfn(NN)
ReDim LambdaO(NN), LambdaW(NN), LambdaG(NN), LambdaT(NN)
ReDim Vpn(NN)
ReDim Bon(NN): ReDim Bwn(NN)
ReDim OOIP(NN): ReDim WWIP(NN)
ReDim OOIPn(NN): ReDim WWIPn(NN)
ReDim MatBal(NN): ReDim MatBalE(NN)

End Sub

'***

Sub Sorter(Int_no() As Double, Int_ArraySize As Double)
Dim temp As Double
Dim i As Integer, j As Integer

For i = Int_ArraySize To 1 Step -1
 For j = 2 To i
 If Int_no(j - 1) > Int_no(j) Then
 temp = Int_no(j - 1)
 Int_no(j - 1) = Int_no(j)
 Int_no(j) = temp
 End If
 Next j
Next i

 116

End Sub

'***

Sub Initial()
Dim i As Integer, j As Integer, k As Integer
Dim SumC1 As Byte, SumC2 As Byte

'Initializes time and arrays for presure, and coefficients.
Nt = 0
Np = 0
Ni = 0

For i = 1 To NN
 Pold(i) = Pinit
 Pn(i) = Pold(i)
 Pwfn(i) = Pwf(i)
 Soi(i) = Sor
 Swi(i) = Swc
 Son(i) = Soi(i)
 Swn(i) = Swi(i)
 por(i) = Porc
Next i

If (gridType = "HGB") Then
 For i = 1 To NN
 SumC1 = 0

 For j = 1 To 8
 If DN(i, j) <> 0 Then SumC1 = SumC1 + 1
 Next j

 If SumC1 >= 5 Then
 Vp(i) = por(i) * areaOctagon * ht
 ElseIf SumC1 = 4 Then
 Vp(i) = por(i) * areaSquare * ht
 ElseIf SumC1 = 2 Then
 Vp(i) = por(i) * areaWallTriangle * ht
 ElseIf SumC1 = 1 Then
 Vp(i) = por(i) * areaCornerTriangle * ht
 End If
 Next i

 117

ElseIf (gridType = "SQ") Then
 For i = 1 To NN
 Vp(i) = por(i) * dx(i) * dy(i) * ht
 Next i
End If

Call Call_PVT(Pold())
Call Mobilities

TotalOIP = 0#
TotalWIP = 0#

For i = 1 To NN
 Bon(i) = Bo(i)
 Bwn(i) = Bw(i)
 Vpn(i) = Vp(i)
 OOIP(i) = Vp(i) * Soi(i) 'rcf
 WWIP(i) = Vp(i) * Swi(i) 'rcf
 TotalOIP = TotalOIP + OOIP(i) 'rcf
 TotalWIP = TotalWIP + WWIP(i) 'rcf
Next i

CumOil = 0#: CumWater = 0#

End Sub

'***

Sub Interpol()
 Call Call_PVT(Pn())
 Call Avg_PVT
 Call Mobilities
End Sub

'***

Sub MatrixB()
Dim i As Integer, j As Integer
Dim SumC1 As Byte
ReDim Bmat(NN)

For i = 1 To NN
 Ct(i) = (Son(i) * Co(i)) + (Swn(i) * Cw(i)) + Comp
Next i

 118

For i = 1 To NN
 beta(i) = Vpn(i) * Ct(i) / delt
 MB(i) = -beta(i) * Pold(i) 'rcf/Day
 Bmat(i) = MB(i)
Next i

For i = 1 To Nwell
 j = iloc(i)

 Select Case WellType(i)
 Case "ORate", "WRate"
 MB(j) = (-beta(j) * Pold(j)) + Qo(j) + Qw(j) 'rcf/Day
 Bmat(j) = MB(j)

 Case "Pres"
 MB(j) = (-beta(j) * Pold(j)) - (Jmodel(i) * LambdaT(j) * Pwf(j)) 'rcf/Day
 'MB(j) = (-beta(j) * Pn(j)) + (Jmodel(i) * LambdaO(j) * (Pn(j) - Pwf(j))) +
(Jmodel(i) * LambdaW(j) * (Pn(j) - Pwf(j))) 'rcf/Day
 'MB(j) = -beta(j) * Pn(j) + Qo(j) + Qw(j) 'rcf/Day
 Bmat(j) = MB(j)
 End Select
Next i

End Sub

'***

Sub Call_PVT(Px() As Double)
Dim i As Integer

For i = 1 To NN
 miuo(i) = Interpolate(Px(i), p_pvt(), miuo_pvt())
 Bo(i) = Interpolate(Px(i), p_pvt(), Bo_pvt())
 Co(i) = Interpolate(Px(i), p_pvt(), Co_pvt())
 miuw(i) = Interpolate(Px(i), p_pvt(), miuw_pvt())
 Bw(i) = Interpolate(Px(i), p_pvt(), Bw_pvt())
 Cw(i) = Interpolate(Px(i), p_pvt(), Cw_pvt())
 Kroi(i) = Interpolate(Swi(i), Sw_Tab(), Kro_tab())
 Krwi(i) = Interpolate(Swi(i), Sw_Tab(), Krw_tab())
Next i

End Sub

 119

'***

Function Interpolate(y As Double, mm() As Double, Nm() As Double) As Double
Dim i As Double
Dim A1 As Double, A2 As Double, B1 As Double, B2 As Double

If mm(LBound(mm)) > mm(UBound(mm)) Then
 For i = LBound(mm) To UBound(mm) - 1
 If y <= mm(i) And y > mm(i + 1) Then
 A1 = mm(i)
 A2 = mm(i + 1)
 B1 = Nm(i)
 B2 = Nm(i + 1)
 End If
 If y > mm(LBound(mm)) Then
 A1 = mm(LBound(mm))
 A2 = mm(LBound(mm) + 1)
 B1 = Nm(LBound(mm))
 B2 = Nm(LBound(mm) + 1)
 End If
 If y < mm(UBound(mm)) Then
 A1 = mm(UBound(mm))
 A2 = mm(UBound(mm) - 1)
 B1 = Nm(UBound(mm))
 B2 = Nm(UBound(mm) - 1)
 End If
 Next i
Else
 For i = 1 To UBound(mm) - 1
 If y >= mm(i) And y <= mm(i + 1) Then
 A1 = mm(i)
 A2 = mm(i + 1)
 B1 = Nm(i)
 B2 = Nm(i + 1)
 End If
 If y < mm(LBound(mm)) Then
 A1 = mm(LBound(mm))
 A2 = mm(LBound(mm) + 1)
 B1 = Nm(LBound(mm))
 B2 = Nm(LBound(mm))
 End If
 If y > mm(UBound(mm)) Then
 A1 = mm(UBound(mm))
 A2 = mm(UBound(mm) - 1)

 120

 B1 = Nm(UBound(mm))
 B2 = Nm(UBound(mm))
 End If

 Next i
End If
Interpolate = B1 + (B2 - B1) / (A2 - A1) * (y - A1)

End Function

'***

Sub Avg_PVT()

Dim i As Integer, j As Integer
For i = 1 To NN
 For j = 1 To 8
 If (DN(i, j) <> 0) Then
 miuo_avg(i, j) = ArithAvg(miuo(i), miuo(DN(i, j)))
 miuw_avg(i, j) = ArithAvg(miuw(i), miuw(DN(i, j)))
 Bo_avg(i, j) = ArithAvg(Bo(i), Bo(DN(i, j)))
 Bw_avg(i, j) = ArithAvg(Bw(i), Bw(DN(i, j)))
 End If
 Next j
Next i

End Sub

'***

Sub Trans()
Dim i As Integer, j As Integer, k As Byte
Dim E As Integer, W As Integer, n As Integer, S As Integer
Dim SumC1 As Byte
Dim SumC2 As Byte

E = 8
n = 5
W = 6
S = 7

If (gridType = "HGB") Then
 For i = 1 To NN
 SumC1 = 0

 121

 For k = 1 To 8
 If DN(i, k) <> 0 Then SumC1 = SumC1 + 1
 Next

 For j = 1 To 8
 If (DN(i, j) <> 0) Then

 kavg = HaAvg(Perm(i, DN(i, j)), Perm(DN(i, j), i))
 SumC2 = 0
 For k = 1 To 8
 If DN(DN(i, j), k) <> 0 Then SumC2 = SumC2 + 1
 Next

 If (SumC1 >= 5 And SumC2 >= 5) Then
 Transm(i, j) = 0.00633 * kavg * m * ht / oct_oct
 ElseIf SumC1 <> SumC2 And (SumC1 <= 4 Or SumC2 <= 4) Then
 Transm(i, j) = 0.00633 * kavg * m * ht / oct_rect_tri
 End If

 End If
 Next j

 Next i

ElseIf (gridType = "SQ") Then

 For i = 1 To NN
 For j = 1 To 8
 If (DN(i, j) <> 0) Then
 kavg = HaAvg(Perm(i, DN(i, j)), Perm(DN(i, j), i))

 If (j = W) Then
 Transm(i, j) = 0.00633 * kavg * dy(i) * ht / dx(i)
 ElseIf (j = S) Then
 Transm(i, j) = 0.00633 * kavg * dx(i) * ht / dy(i)
 ElseIf (j = E) Then
 Transm(i, j) = 0.00633 * kavg * dy(i) * ht / dx(i)
 ElseIf (j = n) Then
 Transm(i, j) = 0.00633 * kavg * dx(i) * ht / dy(i)
 End If

 End If
 Next j

 122

 Next i
End If

End Sub

'***

Function HaAvg(A As Double, B As Double) As Double
HaAvg = 2 * A * B / (A + B)
End Function

'***

Function ArithAvg(A As Double, B As Double) As Double
ArithAvg = (A + B) / 2
End Function

'***

Sub MatrixA()
Dim inc As Integer
Dim i As Integer, j As Integer, k As Integer
Dim NAt(), sumXt As Double
ReDim AoSat(NN): ReDim AwSat(NN)
ReDim NAt(NN)
ReDim Amat(NN, NN)

'ADD UP TRANSM FROM ALL DIRECTIONS
For i = 1 To NN
 For j = 1 To 8
 If (DN(i, j) <> 0) Then
 Call Kr_upstream(i, DN(i, j))
 Debug.Print KROUPS, KRWUPS
 AO(i, j) = Transm(i, j) * KROUPS / (miuo_avg(i, j) * Bo_avg(i, j)) 'scf/psi-Day
 AW(i, j) = Transm(i, j) * KRWUPS / (miuw_avg(i, j) * Bw_avg(i, j))
 End If
 Next j
Next i

For i = 1 To NN
 sumXt = 0
 For j = 1 To 8
 If (DN(i, j) <> 0) Then

 123

 AT(i, j) = (Bon(i) * AO(i, j)) + (Bwn(i) * AW(i, j)) 'rcf/psi-Day
 Amat(i, DN(i, j)) = AT(i, j)
 sumXt = sumXt + AT(i, j)
 End If
 Next j

 NAt(i) = sumXt
 ACT(i) = -NAt(i) - beta(i) 'rcf/psi-Day
 Amat(i, i) = ACT(i)
Next i

For i = 1 To Nwell
 j = iloc(i)

 Select Case WellType(i)
 Case "Pres"
 ACT(j) = -NAt(j) - beta(j) - (Jmodel(i) * LambdaT(j)) 'rcf/psi-Day
 Amat(j, j) = ACT(j)
 End Select
Next i

If FindIndexRow = False Then
For i = 1 To NN
 inc = 0
 For j = 1 To NN
 If Amat(i, j) <> 0 Then
 rowFill(i).n = inc + 1
 inc = inc + 1
 ReDim Preserve rowFill(i).indexRow(inc)
 rowFill(i).indexRow(inc) = j
 End If
 Next
Next
FindIndexRow = True
End If

End Sub

'***

Sub Kr_upstream(A As Integer, B As Integer)
'Single-point mobility-weighting

If Pn(A) >= Pn(B) Then

 124

 KROUPS = Kroi(A)
 KRWUPS = Krwi(A)
Else
 KROUPS = Kroi(B)
 KRWUPS = Krwi(B)
End If

End Sub

Sub Kr_upstream2(A As Integer, B As Integer)
'Two-point mobility-weighting

If Pn(A) >= Pn(B) Then
 If A = 1 Or A = NN Then
 KROUPS = Kroi(A)
 KRWUPS = Krwi(A)
 Else
 'For equal gridblock lengths
 KROUPS = 1.5 * Kroi(A) - 0.5 * Kroi(B)
 KRWUPS = 1.5 * Krwi(A) - 0.5 * Krwi(B)
 End If
Else
 If A = 1 Or A = NN Then
 KROUPS = Kroi(B)
 KRWUPS = Krwi(B)
 Else
 KROUPS = 1.5 * Kroi(B) - 0.5 * Kroi(A)
 KRWUPS = 1.5 * Krwi(B) - 0.5 * Krwi(A)
 End If
End If

If (KRWUPS < 0) Then
 KRWUPS = 0
End If

If (Kroi(A) > Kroi(B)) Then
 If (KROUPS > Kroi(A)) Then
 KROUPS = Kroi(A)
 End If
Else
 If (KROUPS > Kroi(B)) Then
 KROUPS = Kroi(B)
 End If

 125

End If

If (KRWUPS > 1#) Then
 KRWUPS = 1
End If

If (KROUPS < 0#) Then
 KROUPS = 0
End If

End Sub

'***

Sub Well()
Dim i As Integer, j As Integer, k As Integer, ii As Integer
Dim SumC1 As Byte
Dim SumC2 As Byte
Dim pi As Double

ReDim Prod_Inj(Nwell)
pi = 22# / 7#

With Worksheets("Data")

 For i = 1 To Nwell
 iloc(i) = .Cells(21 + i, 1).Value
 WConst(i) = .Cells(21 + i, 6).Value
 WellType(i) = .Cells(21 + i, 2).Text
 rw(i) = .Cells(21 + i, 7).Value
 skin(i) = .Cells(21 + i, 8).Value
 Prod_Inj(i) = .Cells(21 + i, 10).Value

 If (gridType = "HGB") Then
 SumC1 = 0

 For k = 1 To 8
 If DN(iloc(i), k) <> 0 Then SumC1 = SumC1 + 1
 Next k

 If SumC1 = 4 Then
 'Square
 ro(i) = 0.208 * (m / 2)

 126

 ElseIf SumC1 = 2 Then
 'Wall Triangle
 ro(i) = Exp((2 * (m / oct_rect_tri) * Log(oct_rect_tri) - 3.142857143) / (2 * (m
/ oct_rect_tri)))

 ElseIf SumC1 = 1 Then
 'Corner Triangle
 ro(i) = Exp(((m / oct_rect_tri) * Log(oct_rect_tri) - 1.5707963) / (m /
oct_rect_tri))

 End If

 For j = 1 To 8
 If (DN(iloc(i), j) <> 0) Then
 SumC2 = 0
 For k = 1 To 8
 If DN(DN(iloc(i), j), k) <> 0 Then SumC2 = SumC2 + 1
 Next k

 'Internal Octagons
 If (SumC1 = 8 And SumC2 < 5) Then
 ro(i) = oct_oct * Exp(-6.285714286 / (8 * m / oct_oct))

 ElseIf SumC1 = 8 And SumC2 >= 5 Then
 ro(i) = oct_rect_tri * Exp(-6.285714286 / (8 * m / oct_rect_tri))

 'Octagon Walls
 ElseIf SumC1 = 7 Then
 ro(i) = ((4 * ((m / oct_rect_tri) * Log(oct_rect_tri)) + _
 2 * ((m / oct_oct) * Log(oct_oct))) - 4.712389) / _
 (4 * (m / oct_rect_tri) + 2 * (m / oct_oct))

 ElseIf SumC1 = 6 Then
 ro(i) = ((4 * ((m / oct_rect_tri) * Log(oct_rect_tri)) + _
 3 * ((m / oct_oct) * Log(oct_oct))) - 5.4977871) / _
 (4 * (m / oct_rect_tri) + 3 * (m / oct_oct))
 End If
 End If
 Next j

 ElseIf (gridType = "SQ") Then
 ro(i) = 0.14 * (((dx(iloc(i)) ^ 2) + (dy(iloc(i)) ^ 2)) ^ 0.5)
 End If

 127

 Next i

 For i = 1 To Nwell
 j = iloc(i)

 Select Case WellType(i)
 Case "ORate"
 Qo(j) = (.Cells(21 + i, 3).Value) 'rcf/d
 Qw(j) = Qo(j) * LambdaW(j) / LambdaO(j) 'rcf/d
 Qt(j) = Qo(j) + Qw(j) 'rcf/d
 Pwf(j) = Pn(j) - Qt(j) / (Jmodel(i) * LambdaT(j)) 'psi

 Case "WRate"
 Qw(j) = (.Cells(21 + i, 4).Value) 'rcf/d
 If UCase(Prod_Inj(i)) = "PROD" Then
 Qo(j) = Qw(j) * LambdaO(j) / LambdaW(j) 'rcf/d
 End If
 Qt(j) = Qo(j) + Qw(j) 'rcf/d
 Pwf(j) = Pn(j) - Qt(j) / (Jmodel(i) * LambdaT(j)) 'psi

 Case "Pres"
 Pwf(j) = .Cells(21 + i, 5).Value 'psi
 End Select
 Next i

End With

For i = 1 To NN
 Qon(i) = Qo(i)
 Qwn(i) = Qw(i)
 Qtn(i) = Qt(i)
 Pwfn(i) = Pwf(i)
Next i

End Sub

'***

Sub Mobilities()
Dim i As Integer

For i = 1 To NN
 LambdaO(i) = Kroi(i) / miuo(i)
 LambdaW(i) = Krwi(i) / miuw(i)

 128

 LambdaT(i) = LambdaO(i) + LambdaW(i)
Next i

End Sub

'***

Sub Chord_slope()
Dim i As Integer

 For i = 1 To NN
 Vpn(i) = Vp(i) * (1 + Comp * (Pn(i) - Pold(i)))
 Bon(i) = Bo(i) * (1 - Co(i) * (Pn(i) - Pold(i)))
 Bwn(i) = Bw(i) * (1 - Cw(i) * (Pn(i) - Pold(i)))
 Next i

End Sub

'***

Sub UpdateSat()

Dim i As Integer, j As Integer
Dim p_ref As Double, AoTot_DELP As Double, AwTot_DELP As Double

Call Chord_slope

For i = 1 To NN
AoTot_DELP = 0
AwTot_DELP = 0
 p_ref = Pn(i)

 For j = 1 To 8
 If DN(i, j) <> 0 Then AoTot_DELP = AoTot_DELP + (AO(i, j) * (Pn(DN(i, j)) -
p_ref)) 'scf/Day
 If DN(i, j) <> 0 Then AwTot_DELP = AwTot_DELP + (AW(i, j) * (Pn(DN(i, j)) -
p_ref))
 Next
 Son(i) = (Bon(i) / Vpn(i)) * (delt * (AoTot_DELP - Qon(i) / Bo(i)) + (Vp(i) * Soi(i) /
Bo(i)))
 Swn(i) = (Bwn(i) / Vpn(i)) * (delt * (AwTot_DELP - Qwn(i) / Bw(i)) + (Vp(i) *
Swi(i) / Bw(i)))

 If Son(i) < Sw_Tab(LBound(Sw_Tab)) Then

 129

 Son(i) = Sw_Tab(LBound(Sw_Tab))
 End If

 If Swn(i) > Sw_Tab(UBound(Sw_Tab)) Then
 Swn(i) = Sw_Tab(UBound(Sw_Tab))
 End If

Next i

For i = 1 To NN
 If ((Abs(Swn(i) - Swi(i)) >= MaxSat) Or (Abs(Son(i) - Soi(i)) >= MaxSat)) Then
 Cut_Sat = True
 Exit For
 End If
Next

For i = 1 To NN
 Stotal(i) = Son(i) + Swn(i)
Next i

End Sub

'***

Sub Well_New()
Dim i As Integer, j As Integer, count As Integer
ReDim delp(NN)

Call Call_PVT(Pn())
Call Mobilities

LoopAgain:
For i = 1 To Nwell
 j = iloc(i)
 Select Case WellType(i)
 Case "ORate"
 Qon(j) = Qo(j) 'rcf/d
 Qwn(j) = Qon(j) * LambdaW(j) / LambdaO(j) 'rcf/d
 Qtn(j) = Qon(j) + Qwn(j) 'rcf/d
 Pwfn(j) = Pn(j) - Qtn(j) / (Jmodel(i) * LambdaT(j)) 'psi
 If Qon(j) < 0 Then
 MsgBox "xxxx"
 End If

 130

 If Pwfn(j) <= bhp Then

 WellType(i) = "Pres"
 GoTo LoopAgain
 End If

 Case "WRate"
 Qwn(j) = Qw(j) 'rcf/d
 If UCase(Prod_Inj(i)) = "PROD" Then
 Qon(j) = Qwn(j) * LambdaO(j) / LambdaW(j) 'rcf/d
 Else
 Qon(j) = 0
 End If
 Qtn(j) = Qon(j) + Qwn(j) 'rcf/d
 Pwfn(j) = Pn(j) - Qtn(j) / (Jmodel(i) * LambdaT(j)) 'psi

 Case "Pres"
 Pwfn(j) = bhp 'psi
 If UCase(Prod_Inj(i)) = "PROD" And Pn(j) <= Pwfn(j) Then
 Qon(j) = 0: Qwn(j) = 0: Qtn(j) = 0: Jmodel(i) = 0
 Qo(j) = 0: Qw(j) = 0: Qt(j) = 0
 Stop
 GoTo Next_Well
 End If

 If UCase(Prod_Inj(i)) = "PROD" And Pn(j) > Pwfn(j) Then
 Qon(j) = Jmodel(i) * LambdaO(j) * (Pn(j) - Pwfn(j)) 'rcf/d
 End If

 Qwn(j) = Jmodel(i) * LambdaW(j) * (Pn(j) - Pwfn(j)) 'rcf/d
 Qtn(j) = Qon(j) + Qwn(j) 'rcf/d

 If Pwfn(j) < bhp Then Stop
 If Pwfn(j) > Pn(j) Then Stop
 End Select
Next_Well:
Next i

End Sub

'***

Sub UpdateProperties()

 131

Dim i As Integer

For i = 1 To NN
 Pold(i) = Pn(i)
 Soi(i) = Son(i)
 Swi(i) = Swn(i)
 Qo(i) = Qon(i)
 Qw(i) = Qwn(i)
 Qt(i) = Qtn(i)
 Pwf(i) = Pwfn(i)
 Vp(i) = Vpn(i)
Next i

End Sub

'***

Sub Print_Well(ByVal step As Integer, ByVal t As Double)

Dim i As Integer
With Sheets("Pwf")
 .Cells(i + 1, step + 1) = t
 For i = 1 To NN
 .Cells(i + 1, step + 1) = Pwfn(i)
 Next i
End With

End Sub

'***

Sub Print_ORate(ByVal step As Integer, ByVal t As Double)

Dim i As Integer

With Sheets("ORate")
 .Cells(i + 1, step + 1) = t
 For i = 1 To NN
 .Cells(i + 1, step + 1) = Qon(i) / Bon(i)
 Next
End With

End Sub

 132

'***

Sub Print_WRate(ByVal step As Integer, ByVal t As Double)
Dim i As Integer

With Sheets("WRate")
 .Cells(i + 1, step + 1) = t
 For i = 1 To NN
 .Cells(i + 1, step + 1) = Qwn(i) / Bwn(i)
 Next
End With

End Sub

'***

Sub Print_TRate(ByVal step As Integer, ByVal t As Double)
Dim i As Integer

With Sheets("TRate")
 .Cells(i + 1, step + 1) = t
 For i = 1 To NN
 .Cells(i + 1, step + 1) = Qtn(i)
 Next

End With

End Sub

'***

Sub CalcNp()
Dim i As Integer, j As Integer, k As Byte, t As Double
Dim SumC1 As Byte: Dim SumC2 As Byte
Nt = 0

For i = 1 To NN
 Nt = Nt + Vpn(i) / Bon(i)
 If t_step <> 0 Then
 If Qon(i) > 0 Then Np = Np + Qon(i) / Bon(i) * delt
 If Qwn(i) < 0 Then Ni = Ni - Qwn(i) / Bwn(i) * delt
 End If
Next i

 133

If t_step = 0 Then IOIP = Nt
 Mbe = Abs((IOIP + Ni - Nt - Np) / (IOIP + Ni) * 100)

End Sub

'***

Sub Print_MBE(ByVal step As Integer, ByVal t As Double)

With Sheets("FIP")
 .Cells(1, 2) = "Time,Days"
 .Cells(1, 3) = "OIP,rcf"
 .Cells(1, 4) = "WIP,rcf"
 .Cells(1, 5) = "OOIP,rcf"
 .Cells(1, 6) = "OWIP,rcf"
 .Cells(1, 7) = "Cum. Oil Recovery"
 .Cells(1, 8) = "Cum. Water Injected"
 .Cells(step + 1, 1) = step
 .Cells(step + 1, 2) = t
 .Cells(step + 1, 3) = CumOil
 .Cells(step + 1, 4) = CumWater
 .Cells(step + 1, 5) = TotalOIP
 .Cells(step + 1, 6) = TotalWIP
 .Cells(step + 1, 7) = CumOil / TotalOIP '* 100
 .Cells(step + 1, 8) = CumWater / TotalOIP '* 100
End With

End Sub

'***

Sub Cum_production()
Dim i As Integer
Dim CumO() As Double, CumW() As Double

'Cumulative Oil/Water Produced/Injected
 For i = 1 To NN
 CumOil = CumOil + Qon(i) * delt
 CumWater = CumWater + Qwn(i) * delt
 Next i
End Sub

'***

 134

Sub Material_Balance()
Dim i As Integer

'MBE for every block
Call Cum_production

 For i = 1 To NN
 OOIPn(i) = Vpn(i) * Son(i) 'rcf
 WWIPn(i) = Vpn(i) * Swn(i) 'rcf

 If Qon(i) <> 0 Or Qwn(i) <> 0 Then
 MatBal(i) = (OOIPn(i) + WWIPn(i)) / (OOIP(i) + WWIP(i) - Qon(i) * delt +
Qwn(i) * delt)
 MatBalE(i) = (((OOIPn(i) + WWIPn(i)) / (OOIP(i) + WWIP(i) - Qon(i) * delt +
Qwn(i) * delt)) - 1) * 100
 Else
 MatBal(i) = (OOIPn(i) + WWIPn(i)) / (OOIP(i) + WWIP(i))
 MatBalE(i) = (((OOIPn(i) + WWIPn(i)) / (OOIP(i) + WWIP(i))) - 1) * 100
 End If
 Next i

End Sub

'***

Sub Print_Result_MatBal(ByVal step As Integer, ByVal t As Double)
Dim i As Integer
With Sheets("MatBal")
 .Cells(i + 1, step + 1) = t

For i = 1 To NN
 .Cells(i + 1, step + 1) = MatBal(i)
Next i

End With

End Sub

'***

Sub Calc_dxdy()
Dim i As Integer, im As Integer, ip As Integer
Dim j As Integer, jm As Integer, jp As Integer
Dim k As Integer

 135

ReDim dx(NN)
ReDim dy(NN)
ReDim delx(NX, NY)
ReDim dely(NX, NY)

k = 1
For j = 1 To NY
 For i = 1 To NX

 im = i - 1: ip = i + 1
 jm = j - 1: jp = j + 1

 If i = 1 Then im = i
 If i = NX Then ip = NX

 If j = 1 Then jm = j
 If j = NY Then jp = NY

 delx(i, j) = (xD(i, j) - xD(im, j)) / 2 + (xD(ip, j) - xD(i, j)) / 2
 dx(k) = delx(i, j)

 dely(i, j) = (yD(i, j) - yD(i, jm)) / 2 + (yD(i, jp) - yD(i, j)) / 2
 dy(k) = dely(i, j)

 k = k + 1
 Next i
Next j

End Sub

‘##

Option Base 1

'***

Sub bicgstab(x0() As Double, B() As Double, A() As Double, resErr As Double, ByVal
Itmax As Integer, x() As Double)
Dim n As Integer
Dim S() As Double, p() As Double, t() As Double
Dim ErrTol As Double
Dim r() As Double, hatr0() As Double

 136

n = UBound(B):

ReDim rho(Itmax + 1)
ReDim r(n): ReDim hatr0(n)
ReDim S(n): ReDim p(n): ReDim t(n)

ErrTol = resErr * Norm(B())
x() = x0()
If Norm(x()) <> 0 Then
 For i = 1 To n
 AX = 0
 For j = 1 To rowFill(i).n

 AX = AX + A(i, rowFill(i).indexRow(j)) * x(rowFill(i).indexRow(j))
 Next
 r(i) = B(i) - AX
 Next
Else
 r() = B()
End If

hatr0() = r()
k = 0: rho(1) = 1: alpha = 1: omega = 1
ReDim v(n): ReDim p(n):

For i = 1 To n
 rho(2) = rho(2) + hatr0(i) * r(i)
Next

zeta = Norm(r()):

Do While ((zeta > ErrTol) And (k < Itmax - 1))
 k = k + 1

 If omega = 0 Then
 GoTo Err
 End If

 beta = (rho(k + 1) / rho(k)) * (alpha / omega)

 For i = 1 To n
 p(i) = r(i) + beta * (p(i) - omega * v(i))
 Next

 137

 tau = 0
 For i = 1 To n
 AX = 0
 For j = 1 To rowFill(i).n
 AX = AX + A(i, rowFill(i).indexRow(j)) * p(rowFill(i).indexRow(j))
 Next
 v(i) = AX
 tau = tau + hatr0(i) * v(i)
 Next

 If tau = 0 Then
 GoTo Err
 End If

 alpha = rho(k + 1) / tau

 For i = 1 To n
 S(i) = r(i) - alpha * v(i)
 Next

 tau = 0

 For i = 1 To n
 AX = 0
 For j = 1 To rowFill(i).n
 AX = AX + A(i, rowFill(i).indexRow(j)) * S(rowFill(i).indexRow(j))
 Next
 t(i) = AX
 tau = tau + t(i) ^ 2
 Next

 If tau = 0 Then
 GoTo Err
 End If

 AX = 0
 For i = 1 To n
 AX = AX + t(i) * S(i)
 Next

 omega = AX / tau

 AX = 0
 For i = 1 To n

 138

 AX = AX + (hatr0(i) * t(i))
 x(i) = x(i) + alpha * p(i) + omega * S(i)
 r(i) = S(i) - omega * t(i)
 Next

 rho(k + 2) = -omega * AX
 zeta = Norm(r())
Loop

Exit Sub
Err:
MsgBox "Error"
End Sub

'***

Function Norm(RR1() As Double)
Dim i As Integer, SumX As Double
Norm = 0
For i = 1 To UBound(RR1)
 Norm = Norm + RR1(i) ^ 2
Next
Norm = Norm ^ 0.5
End Function

 139

VITA

Name: Emeline E. Chong

Permanent Address: 8B, Jalan Meritam,

96000 Sibu, Sarawak,

Malaysia.

E-mail: ak970097@hotmail.com

Educational Background: B.S., Petroleum Engineering

Malaysia University of Technology (UTM),

Skudai, Johor,

Malaysia.

(May 1997 – April 2001)

M.S., Petroleum Engineering

Texas A&M University,

College Station,

Texas, U.S.A.

(September 2002 - December 2004)

mailto:eec9696@tamu.edu

	Section2.pdf
	Section2.pdf
	LIST OF TABLES

	ChapterII&III.pdf
	2.2 IMPES Method
	Fig. 3.2 -2-D flow domain with a well

