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ABSTRACT 

 

 

Development of a 2-D Black-Oil Reservoir Simulator Using  

a Unique Grid-Block System. 

(December 2004) 

Emeline E. Chong, B.S., Malaysia University of Technology 

Co-Chairs of Advisory Committee:     Dr. David. S. Schechter 
     Dr. Duane A. McVay 

 

 

The grid orientation effect is a long-standing problem plaguing reservoir simulators that 

employ finite difference schemes. A rotation of the computational grids yields a 

substantially different solution under certain circumstances. For example, in a five-spot 

pattern, the predicted recovery, water cut performance and the locations of the fronts 

depend on the type of grid system used. A Cartesian grid with one axis parallel to the line 

joining an injector and producer gives a solution significantly different from a grid that 

has the axes oriented at 45° to this line.  

This study develops a unique grid-block assignment where rectangular grid blocks 

are interspersed with octagonal grid blocks. This grid block system is called the Hybrid 

Grid Block (HGB) system. The objective of this study is to evaluate the grid orientation 

effect of the HGB grid to see whether it is an improvement over the conventional 

Cartesian grid system. 

In HGB, flow can progress in four directions in the octagonal grid blocks and two 

in the square grid blocks. The increase in the number of flow directions in the octagonal 

grid blocks is expected to reduce the grid orientation effect in the model. Hence, this 

study also evaluates the grid orientation effect of the HGB and compares it with the 

Cartesian grid system. 

To test the viability of HGB, a general purpose finite difference IMPES-

formulated two-dimensional black oil simulator was developed in this study, while 

retaining the familiar finite-difference discretization of the flow equations. Several 
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simulation cases were conducted to compare HGB and conventional grid block systems. 

Comparisons with commercial simulator are also made.  

Despite the fact that the reservoir is isotropic and homogeneous, grid orientation 

effect was still observed when rectangular Cartesian grid models are run at mobility ratio, 

M = 1.0. Grid refinement can help to reduce the grid orientation effect in rectangular 

Cartesian grid models when there are favorable mobility ratios, i.e. M = 1.0 or less.  

However, at an unfavorable mobility ratio of M = 10.0, it is found that neither 

parallel nor diagonal orientation can be used reliably for the displacement problems run 

in this study. This is because as the number of grid blocks is increased, the performance 

of diagonal and parallel models actually diverges for the grid spacings investigated here. 

On the other hand, HGB grid is able to reduce the grid orientation effect even for 

unfavorable mobility ratio displacement problems (up to M = 50.0), with maximum 

relative difference in pore volume recovered of 6% between parallel and diagonal HGB 

grid models for all the cases run in this study.  

Comparisons between the conventional Cartesian and HGB grid show that the 

HGB grid is more effective in reducing the grid orientation effect than the Cartesian grid. 

The HGB grid performs better by consistently giving a smaller relative difference 

between HGB parallel grid and HGB diagonal grid in pore volume recovered (6.0, 4.5, 

3.3, and 2.2%) compared to the relative difference between Cartesian parallel grid and 

Cartesian diagonal grid in pore volume recovered (17.0, 13.0, 9.3, 7.9%) at similar 

averaged area per grid block for all the four comparison cases studied. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 Overview of Gridding Techniques 

Most commonly used grids are constructed by aligning the grid block along orthogonal 

coordinate directions, and then distorting the grid, to fit major reservoir features. It is 

generally believed that heterogeneous reservoirs could also be represented if grids are 

made sufficiently small. Even though the Cartesian grids have been widely used, it is not 

always suitable for the simulation of complex reservoirs. Some shortcomings of 

Cartesian grids include its inflexibility in the description of faults, pinch outs and 

discontinuities in reservoirs, and the influence of grid orientation on the results.  

In principle, if extremely fine grids could be created it would be possible to 

represent heterogeneous reservoirs easily. However, the number of grids in a model is 

practically limited by computer capacity and CPU time. In order to solve this problem, 

the concept of local grid refinement has been introduced. Local grid refinement involves 

using a fine grid inside a coarse-based grid. This is usually done for regions with large 

pressure changes near the wellbore, in areas of wide variation in saturation, in regions of 

interest which require finer resolution, and in highly heterogeneous regions. This might 

reduce the computation time but it should yield results which are very similar to a fine-

based grid in accuracy. Nevertheless, the banded structure of the matrix is lost so matrix-

solving procedure may be less efficient. For example, to model radial flow near a well, 

hybrid local grid refinement was proposed by Pedrosa and Aziz1. Orthogonal curvilinear 
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grids are used in the well region and Cartesian grids are used in the rest of the reservoir. 

Different types of locally refined grids have been presented throughout the literature.  

Reservoir simulations are normally being performed on rectangular Cartesian 

grid, radial grid was developed later to simulate flow near the wellbore. Local grid 

refinement was developed to achieve better accuracy in high flow regions1-2. 

Development of corner-point geometry grid3-4 enables the use of non-rectangular grid 

blocks. This provides the ability to model faults and other complex geological features. 

Until then, all grids were structured, where the neighbors of a grid block could be easily 

identified from their i,j,k indices.  

However, in the last decade, unstructured grids5-10 were introduced. In 

unstructured grids, the connections between grid blocks are flexible, and a connection 

list is used to keep track of the connected grid blocks. More and more reservoir 

simulators have flexible grid capabilities already available or in development. More 

studies should be done to determine whether these techniques are reliable and accurate, 

and whether they can allow a significant computer time saving during a reservoir 

simulation run. 

 

1.2 Literature Review on Grid Orientation Effect 

Several methods have been proposed to reduce the grid orientation effect throughout the 

years. The literature can be divided into several major groups in terms of the approach 

taken to reduce the grid orientation effect.  

Grid orientation effect in reservoir simulation caused by conventional rectangular 5-

point discretization scheme was reported by Todd et al.11 The orientation of the grid 

relative to the lines of flow influenced results from the scheme involving five-point 

differencing and single-point upstream weighting. They attributed the problem to single-

point upstream weighting. They proposed the use of two-point upstream mobility 

weighting in replace of the generally used single-point approximation. They reported a 

reduction of both numerical dispersion of flood fronts and the sensitivity of predicted 

areal displacement performance to grid orientation. Holloway et al.12 presented an 
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approach to reduce the grid orientation effect by modifying phase transmissibilities and 

the two-point upstream weighting method proposed by Todd et al.11 that permitted 

diagonal flow, but their modifications only resulted in marginal improvement over the 

original two-point weighting. Meanwhile, a generalization of upstream weighting was 

proposed by Frauenthal et al.13, which involves using a weighting parameter between the 

two mobilities instead of the simple single-point weighting. The main attraction of these 

techniques is that they can be easily implemented into existing computer codes and do 

not add significantly to computational time. However, based on the studies done by 

Vinsome and Au14, they concluded that in an extreme case of unfavorable mobility ratio, 

the upstream formulation predicts a pressure drop across a shock front that is much 

smaller than it is supposed to be, and vice versa in the case of favorable mobility ratio. 

The second group of the literature developed around the method of using a nine-

point finite difference discretization scheme, which was initially proposed by Yanosik 

and McCracken15. This scheme is based on adding diagonal transmissibilities in the areal 

(X-Y) direction in order to reduce grid orientation effects when the flow is not aligned 

with the grid. They introduced a “weighting factor”, which were four and one for the 

diagonal and parallel grids respectively. Various forms of nine-point schemes were also 

introduced by subsequent authors15-21. Ko and Au16 concluded that the nine-point 

scheme proposed by Yanosik and McCracken could not solve the problem of grid 

orientation for all mobility ratios since the weighting factor used in this method is a 

function of mobility ratio itself. In addition, as the nine-point scheme is a weighted-

interpolation between the two five-point grids with a common center point and its 

diagonal transmissibilities, it hence lacks physical justification. 

In single-point upstream mobility weighting, the mobility term is discretized using 

first order scheme. It is generally believed that the grid orientation effect is partly caused 

by numerical dispersion in low order techniques such as this. Also, truncation error 

manifests itself as a numerical dispersion which will cause smearing of the flood front. 

Coarser grids will have larger truncation errors and more dispersion. On the contrary, 

finer grids will have smaller truncation error and less dispersion. However, as stated by 
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Brand et al.22, “…in general the GOE (Grid Orientation Effect) cannot be overcome with 

grid refinement….When the grid is refined, the solutions still depend on the size and 

orientation of the underlying grid, as long as numerical diffusion dominates over 

physical dispersion and diffusion.” 

The third group concerns mainly with the numerical implications23-26 of the finite 

difference solutions - using a higher-order finite difference methods, or generally known 

as the high-order techniques (HOT). For example, Chen et al.23, Pinto and Correa24 and 

Wolcott et al.25 proposed using the Total Variation Diminishing (TVD) methods. 

Wolcott et al.25 used a combination of nine-point scheme and the third order Taylor’s 

series expansion TVD scheme. The authors reported than this method was able to reduce 

numerical dispersion and produce sharper saturation fronts. 

A type of uniform triangular grids was also introduced in the early 1980s27. This 

method requires the use of the point-distributed grid system and the grid generation is 

more complicated than the conventional grid system. The advantage of this grid is that 

the grid boundaries are not aligned in one particular direction or the other. On the other 

hand, Pruess and Bodvarsson26 proposed the use of a seven-point discretization scheme, 

which is essentially a structured and uniform hexagonal grid-block model. They 

investigated steam injection problems with relatively coarse grids and concluded that the 

hexagonal grid can reduce the grid orientation effect. The use of hexagonal grid was 

further supported by Heinemann et al.28 in their PEBI (Perpendicular-Bisector) grid 

model. They also reported the unrealistic saturation front produced by the hexagonal grid 

and by the Cartesian grid with the nine-point formulation for M = 50.  

The current trend includes the development of flexible gridding to alleviate the 

problem associated with grid orientation effect resulted from using rectangular Cartesian 

grid. Even so, the generation and construction of unstructured grids are not as simple as 

Cartesian grids. For example, the construction of an unstructured grid for a reservoir is 

feasible only if it is done by a numerical grid generation procedure.  
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1.3 Grid Orientation Effect 

Finite difference solutions of 2D frontal displacement problems can be strongly 

influenced by the orientation of the underlying grid. In multidimensional models, 

numerical dispersion leads to a phenomenon where calculated performance is influenced 

by the orientation of the grid relative to the locations of injection and production wells. 

This is called the grid orientation effect. The grid orientation effect has been found to be 

particularly pronounced in simulations where the displacing phase is much more mobile 

than the displaced phase.  

Fig. 1.1 illustrates the problem. It is a sketch of part of the Cartesian grid system 

of a model for simulating water flooding in an oil reservoir. This part of the model 

contains one production well and two injection wells. In the simulator, water from Well 

A will move in a direct path to the producer. However, water from Well B will follow a 

zig-zag path to the producer. Not only is the flow path from Well B longer, but water 

from Well B will sweep the reservoir “more efficiently” than water from Well A. 

However, if the grid is rotated 45°, the performances calculated for the two wells would 

be reversed. 

 

A

B
 

Fig. 1.1 - Flow paths for parallel and diagonal flow in a Cartesian grid (after 

Mattax and Dalton)11

 

To complicate matters, grid orientation may distort and affect the accuracy of 

calculated pressures and saturations29. Thus, the grid orientation effect has become one 

of the important factors in evaluating different types of grid. 
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In general, neither parallel nor diagonal orientation can be used reliably for 

displacements at highly unfavorable mobility ratios. Numerous attempts to eliminate the 

grid orientation effect in finite difference simulators have been made, and the latest 

methods being attempted is the use of flexible or unstructured gridding methods.  

 

1.4 Research Methodology 

This study presents a novel approach to reduce the effect of grid orientation on 

computed numerical results in finite difference reservoir simulation. This method 

involves using a unique grid-block assignment where rectangular grid blocks are 

interspersed with octagonal grid blocks. The boundaries are then populated with 

triangular grid blocks. Thus, the entire domain will consist of different structured grid 

block systems called Hybrid Grid Block (HGB) system. In HGB, flow can progress to 

four different directions in the octagonal grid blocks and two in the rectangles. This 

increase in flow directions is expected to reduce the grid orientation effect in the model. 

As a structured grid system, HGB retains the familiar finite-difference discretization of 

the flow equations.   

To test the viability of this grid system, a general purpose IMPES (Implicit 

Pressure Explicit Saturation)-formulated 2-D black oil simulator with HGB system was 

developed using the Visual BASIC programming language. The simulator developed is 

named Sim2D. Furthermore, comparative evaluations are made by comparing several 

simulation cases between HGB and conventional grid block systems. This innovative 

grid block assignment will help to reduce the grid orientation effect.  

Chapter II consists of the derivation of material balance equations, and the final 

IMPES flow equation that is applied in the coding. In Chapter III, the structure and 

algorithm of the reservoir simulator will be discussed. Chapter IV discusses and analyzes 

the results of the developed simulator. This will be followed by the conclusions of this 

study. 

  

 



 7

CHAPTER II 

 

 

FINITE DIFFERENCE FORMULATION: IMPES PROCEDURE 

 

 

2.1 Conservation of Mass Equations 

The basic mass conservation laws of reservoir simulation are the conservation of mass, 

energy and momentum. Mass balance in a grid block is achieved by equating the 

accumulation of mass in the block with the difference between the mass leaving the 

block and the mass entering the block. Many derivations of the oil, water, and gas fluid 

flow equations exist abundantly in the literature30-33. Therefore, only a brief discussion 

will be presented here. 

Considering the grid block i in a 1-D model with three uniform grid blocks size 

in Fig. 2.1 below: 

i - 1 
i i +1 

h ∆y 

∆x

 
Fig. 2.1 – 1-D model with three uniform grid blocks 

 



 8

Net flow rate in (scf/D) = Rate of Accumulation (scf/D),...………………………….(2.1) 

 

The pore volume of grid block i is: 

yhxVp ∆∆= φ ,…………………………………………………...…………….(2.2) 

 

The oil in place (OIP) can be calculated as: 

o

op

B
SV

OIP = ,…………………………………...……………………………..(2.3) 

 

Net flow rate in = ,……...…………………………………………………..(2.4) 11 +− + ii qq

 

Rate of accumulation of oil during the time step: 
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Our material balance equation can now be stated as: 
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Using Darcy’s Law to determine flow rate between adjacent grid blocks, flow from the 

left, from grid block i-1 to i: 

o

i
i B

Auq 1
1

−
− = ,…………………………………………………………...……...(2.7) 

 

Using field units, we can rewrite qi-1 as: 
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To simplify the notations, we can rewrite this equation into 3 parts: 

( ii
oo

i PP
B
kr

x
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The first term is called the “transmissibility”: 

x
ykhTi ∆

∆
=−

00633.0
2/1 ,…………………………………………………..…...(2.10) 

 

The subscript i-1/2 denoted that this term applies between grid block i and i-1. It is a 

directional notation and can be replaced with N(orth), S(outh), E(ast) or W(est), or any 

other notations, as long as it is consistent. 

The second term is called “mobility”. It is dependent on the phase of interest and 

its value changes with time. Mobility is defined as: 

 

2/1−
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where, λ  is the phase of interest – in this case, oil. 

 

Our material balance equation now can be written as: 
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To further simplify this equation, we can group another term, called the “oil symmetrical 

flow coefficient” as follows: 
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−
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,…………………………………………………….(2.13) 

 

The 1-D finite difference equation is: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
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⎞
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o
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o
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B
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t
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1

12/112/1
1)()( ,…………..(2.14) 

Similar derivations can be applied to a 2-D or 3-D model. 

2.2 IMPES Method 

A simple procedure to solve the three-phase reservoir simulation problems is called the 

IMPES Method. IMPES stands for “Implicit Pressure Explicit Saturation”. Contrary to the 

fully implicit method where the main variables are calculated at the same time (ie. all 

primary variables at the new time level are determined simultaneously), the IMPES method 

solves for pressure at the new time level using saturations at the old time level, then uses 

the pressures at the new time level to explicitly calculate saturations at the new time level.  

However, IMPES becomes unstable for large time steps. Using Neumann stability analysis, 

the explicit formulation has the following stability requirement34: 

 

 2

2
1 x

k
ct ∆⎟
⎠
⎞

⎜
⎝
⎛≤∆
φµ ,……………………………………………………...……..(2.15) 

 

where, 

  =  incremental time step t∆

 φ  = porosity 

 µ  = viscosity 

  = compressibility c

  = absolute permeability k

  = grid size x∆
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 This requirement has the consequence that the time step is limited by both the grid 

size and properties of the rock and fluid. IMPES is widely used for field scale reservoir 

simulation as it is simple to implement. It can also be fast and accurate for many reservoir 

problems as long as the time steps are kept small. 

 

2.3 IMPES Flow Equations for Three-Phase Flow 

The three finite difference equations for oil, water and gas for a three-phase system will 

be presented below. For simplicity, we shall assume that porosity is constant and not a 

function of pressure. Here, the solution gas, capillary pressure, and gravity will be 

considered. However, in the development of the simulator Sim2D, these three terms will 

be ignored. 

Starting from the three finite difference equations for oil, water and gas 

respectively: 
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,………….....…(2.16) 

 

Water :  
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Gas : 
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... ,…...………………………………….....(2.18) 

 

Eqs. (2.16), (2.17) and (2.18) contain gravity terms. Now, we are going to add the 

capillary terms: 

 

wocow PPP −=   cowow PPP −=∴ ,…………………...………………..………(2.19) 

ogcog PPP −=   ocogg PPP +=∴ ,…………………………...………...……...(2.20) 

 

Rewrite Equations (2.16), (2.17) and (2.18) by substituting Pw and Pg as we want 

our pressure terms to be with respect to Po:- 
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Expanding and rearranging the gas-phase terms only and putting all the known 

terms in the LHS (left-hand-side of equation) and the unknowns in RHS (right-hand-side 

of equation): 
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Since we need another equation for each grid block in order to find a unique 

algebraic solution, our fourth equation will simply be the volumetric equation saying that 

the saturations sum up to unity. This assures that all the fluid volumes fit the pore 

volume.  

 ,…………...…………………………………………(2.25) 1 = S + S + S g
1+n

w
1+n

o
1+n
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Rearranging equations to solve explicitly for Son+1, Swn+1, Sgn+1: 
1
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 We note that all Pn+1 are known from the previous step, so the right-hand side will 

be easy to evaluate. These are the explicit calculations with only one unknown. They may 

be solved in any order. 

 We can now derive the pressure equation that we need. We start by simply adding 

the saturation equations, noting that the summation of the saturations is equal to unity. 
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 We note that this equation has now eliminated the unknown saturations since they 

have summed to unity. We now have an equation with only unknown pressures, Pn+1. We 

now will manipulate this equation to be in a more convenient form for the pressure 

equation. We multiply by Vp
n+1/∆t and put the flow terms back on the left-hand side. This 

results in: 
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We have several values on the right-hand side which depend on the new pressure, 

Pn+1. We want to replace these values with "chord slopes", so we can solve directly for Pn+1 

with coefficients that are "almost constant". 

 

)( 1
1

1
1 nn

nn

n
p

n
pn

p
n
p PP

PP
VV

VV −
−
−

+= +
+

+
+ ,…………………...……………………..(2.31) 

 ( ⎥
⎦

⎤
⎢
⎣

⎡
−+−−= +

+
++ n

so
n
son

o

n
gnn

o
n
o

n
o RR

B
B

PPcBB 1
1

11 )(1 ) ,………………………...…(2.32) 

 ( ⎥
⎦

⎤
⎢
⎣

⎡
−+−−= +

+
++ n

sw
n
swn

w

n
gnn

w
n
w

n
w RR

B
B

PPcBB 1
1

11 )(1 ) ,…………...…………...…(2.33) 

 

( )[ ]nn
g

n
g

n
g PPcBB −−= ++ 11 1 ,……………………………………………...….(2.34) 

 

These relationships are now substituted in the right-hand side of our pressure 

equation: 
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Let:  
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Now, let us rearrange our equation again, moving the production terms from the 

LHS to RHS: 
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Let us simplify our equation by using these definitions: 
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This gives us the final form of the pressure equation which we can finally state as: 
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Fig. 2.2 shows a flow chart how IMPES can be implemented in a computer 

program. 

Simulation of a black oil reservoir requires solving a system of partial differential 

equations.  The partial differential equations are approximated by algebraic equations 

known as finite difference equations.  The finite difference equations are obtained by 

replacing derivatives with approximations derived from truncated Taylor series 

expansions. 
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Fig. 2.2 - Flow chart showing how IMPES can be implemented in a computer program 
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CHAPTER III 

 

 

PROGRAM CHARACTERISTICS AND PROPERTIES 

 

 

In this chapter, the framework of Sim2D is discussed, as well as its main attributes and 

properties. Sim2D is developed using the Visual Basic 6.0 programming language and it 

is then compiled into an executable file with simple interface to make it an easier to use 

program. In addition, it is equipped with data control/access and file system.  

The Sim2D program simulates isothermal, Darcy’s flow in two dimensions.  It 

assumes reservoir fluids can be described by three fluid phases (oil, gas, and water) of 

constant composition with physical properties that depend on pressure only.  Sim2D is 

designed to be an easy-to-use program which would be suited to simulate primary 

depletion and basic secondary recovery operations (such as water flooding) in a black-oil 

reservoir.  Sim2D is a finite-difference, implicit pressure-explicit saturation (IMPES) 

numerical simulator.  It contains an iterative solution technique (Bi-Conjugate Gradient) 

for solving systems of algebraic equations.  The well model in Sim2D allows 

specification of rate or pressure constraints on well performance. Several user-controlled 

output options are also available.  

On top of that, Sim2D provides two types of grid systems, namely the 

conventional Cartesian grid as well as the proposed grid called the Hybrid Grid Block 

System (HGB). 
 

3.1 Algorithm of VB Code 

Sim2D is developed using the IMPES formulation. The code consists of different 

subroutines. They are contained by a main subroutine that controls the order of the run 

and loops the required subroutines over each time step until the last time step is reached. 

Some basic tasks such as interpolations and averaging are executed by functions instead 

of subroutines. Fig. 3.1 shows the algorithm that is employed by Sim2D.  
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3.1.1 Initialization Data 

Initialization data describes the reservoir model grid dimensions and geometry, the 

distribution of porosity and permeability, relative permeability, fluid PVT data, initial 

pressure and saturation distributions within the reservoir, specification of the solution 

method to be used, and run control parameters. After the input data has been read, the 

required memory is allocated for each variable.  

To complete the mathematical description of a reservoir, it is necessary to specify the 

initial conditions. For the initial conditions at n = 0, a value is specified for pressure and 

saturations. Every node is assigned the values of these initial conditions. Pore volumes 

are calculated for each grid block and the summation of the reservoir pore volume is 

stored. Parameters such as formation volume factors, viscosities and compressibility, as 

well as relative permeabilities at initial conditions are then interpolated from the PVT 

table provided by the user.  

 

3.1.2 Averaging of Flow Equation Terms 

Several parameters in the material balance equation need to be averaged and the most 

common methods used are summarized in Table 3.1.  

In multiphase system, one or more relative permeabilitites must be assigned that 

will control the flow of the individual phases from one grid block to the next. In the case 

of Sim2D simulator, upstream permeability is used. Here, mobilities are evaluated at 

saturations that exist in the block from which the fluid phases are moving. For instance, 

if the flow if from left to right, the relative permeability from the i-1 grid block will be 

considered the “upstream block” so (kro)i-1 is used for (kro)w. Similarly, if flow is from 

right to left, the i+1 grid block will be upstream instead. 
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Fig. 3.1 - Flow chart of the Sim2D code 
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Table 3.1 – Averaging of parameters 

Parameter Method of Averaging 

Porosity Arithmetic Averaging 

Viscosity Arithmetic Averaging 

Absolute Permeability Harmonic Averaging 

Relative Permeability Upstream Weighting 

Formation Volume Factor Arithmetic Averaging 

 

 

3.1.3 Boundary Conditions 

In reservoir simulation problems, initial conditions (initial reservoir pressure) and 

saturation distributions are required to initialize the model. For example, the initial 

conditions are obtained by assuming initial capillary and gravity equilibrium. Then, the 

pressure distribution is obtained by specifying pressure at a given datum and using the 

fluid pressure gradients to determine pressures at all other depths.  

 The boundary conditions used in reservoir simulators can be very complicated as 

the differential equations solved by the simulators require that all boundaries be 

specified. This includes both internal and external boundaries. 

 Consider a 2-D flow domain as depicted in Fig. 3.2.  

The driving force for flow arises from the boundary conditions. Reservoir 

boundaries are represented physically by faults, pinch outs (porosity, permeability), 

aquifers, facies change (shales) etc. In the numerical model, these discontinuities are 

modeled as external boundaries or internal boundaries, depending on the position within 

the reservoir.   

External boundaries are the physical boundaries of the flow domain, while for 

internal boundaries, either well rates or bottomhole pressures can be specified. If a rate is 

specified for a well, a Neumann-type boundary condition is generated. Conversely, if the 

pressure is speficied for the wellbore, then a Dirichlet-type boundary condition is 

obtained. 
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External 
boundary 
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Internal 
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y 

Fig. 3.2 -2-D flow domain with a well 

  

 

 In Sim2D, it assumes that a no-flow outer boundary exists. To model no-flow 

boundaries, phase transmissibilities across the boundary interfaces are set to zero. This 

implied that there is no communication or “flux contribution” across the adjacent 

boundary blocks. 

 

3.1.4 Well Model 

A reservoir simulation uses an analytical model to represent flow within a grid block as 

it enters or leaves a well. This model is called the well model. It is well-known that that 

pressure of the wellblock is different from the bottomhole well flowing pressure at the 

well. This is because in general, the grid block dimensions are significantly greater than 

the wellbore radius. The flow rate in the well is proportional to the difference between 

the block and well pressures. The coefficient of proportionality is known as the 

productivity or injectivity index. The geometric part of this term is usually called the 

well index, and the model used to determine the well index is known as the well model.  

Production of fluids by wells is assumed to be similar to flow from a grid block 

to another grid block. Assuming that Darcy Law holds for flow in a well, writing the 

Darcy law for radial co-ordinates we have: 
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,…...……………………………………...(3.1)

 

 

here, 

 permeability 

y 

ius of influence) 

 ing pressure 

Since the grid block pressure and all other physical properties are assumed to be 

centere

.1.4.1 Peaceman’s Well Model 

eman35 is based on the comparison between numerical 

-)steady state flow 

 flow 

eaceman found that the pressure calculated for a well block is the same as the 

flowing

calculated pressure for the well block”. This definition of ro gives: 

)(
)/ln(

2
wfi

we

r PP
rrB

hkkq −=
µ

π

w

k =

kr = relative permeabilit

h = thickness 

re  =  outer radius (rad

rw =  wellbore radius 

Pi = grid block pressure 

Pwf = bottomhole well flow

 

d at the middle of the grid cell, the well is also assumed to be at the center of the 

grid block.  

 

3

The well model presented by Peac

and analytical solutions for a repeated five-spot pattern. Peaceman’s model also assumes 

the following: 

- (pseudo

- homogeneous reservoir 

- isolated wells 

- incompressible

 

P

 pressure at an equivalent radius, ro, where he defined ro as “the radius at which 

the steady-state flowing pressure for the actual well is equal to the numerically 
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o

w
owf r

rqPP ln
2π
µ

=− ,………………………..………………………………....(3.2) 

where, 

Pwf  =  bottomhole well flowing pressure 

pressure calculated for grid block containing the well 

 blocks (∆x = ∆y), Peaceman showed that if 

 =  and kx = ky then: 

……………………………………………...………….(3.3) 

 In a subse

isotropic reservoir with non-square grid blocks: 

…………………………...………(3.4) 

For an anisotropic reser

Po = 

q = production rate of well 

rw = wellbore radius 

 

Using uniform square Cartesian grid

∆ x ∆ y

 

xro ∆= 2.0 ,…………

 

quent paper, Peaceman (1983)36 derived an expression for ro for an 

 

 2/122 )(14.0 yxro ∆+∆= ,…………………

 

 voir, Peaceman (1983)36 determined that ro is given by: 
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We can now introduce the term well index, J, which is defined as:  

 k/k +  k/k 0.28 2
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khJ 2π
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Now Eq. 3.

 

1 can be rearranged and reduced to: 

)( wfi PPJq −= αα λ ,………………………………………...………...(3.7)           

⎟⎟
⎞

⎜⎜
⎛

=
krλα ,………………………………

⎠⎝ Bµ
………………......………(3.8) 

where, 

 α = species or phase 

 αλ  = mob

 

1. Constant flow rate of any one phase 

is specified, then the rate of the other phase(s) can be 

 …………………………...…………...(3.9) 

ility of the species or phase 

3.1.4.2 Well Constraints 

Producers are operated by the following constraints: 

If the rate of any one phase 

calculated as follows: 

)( wfi PPJq −= αα λ ,……………

o

o
iwf

qPP α−=
J αλ

,……………………………………………...…….(3.10)

here, w

α  = unknown phase 

oα  = known p

2. Constant bottom

If the well bottom  is specified, then the rate of any phase can be 

obtained as follows: 

 ………………………...………………….(3.11) 

 

te 

If the rate of the liquid phase is specified, then: 

hase 

 

 hole pressure 

hole pressure

)( wfi PPJq −= αα λ ,………

3. Constant liquid ra
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 )( osg qRqgwwoot BqBqBq −++= ,…………………………………...……(3.12) 

gwo µµµ
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t

kkk
λ ++= ,…………………………………………………..……(3.13) 

Using equation (2), we can rewrite

 

 it for the rate of other phase(s):        

t
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o

t
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q
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λ
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= ,…………………………………………………………...…….(3.14) 

 

Similarly, 
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g qR
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λ
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,…………………………………………………...…….(3.16) 

 

Injectors are

constant injection pressure. However, in Sim2D, only the constant injection rate 

constraint is implemented. 

 

4.  

 usually operated at two constraints – either constant injection rate or 

Constant Injection Rate 

If the injection rate of any one phase is specified, then the flowing bottomhole 

pressure is computed as follows: 

αλJ
αqPP iwf += ,………………………...………………………….(3.17)  

 

e 

If the injection pressure is specified, then the rate of the injected phase can be 

obtained as follows: 

,…………………………...………………………(3.18) 

5. Constant Injection Pressur

)( iwf PPJq −= αα λ 
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3.1 Time Step Control .5 
In orde

ep cutback” procedure. The simulator that has been developed has 

e capability to set time step  

anges meet specified tolerance criteria. This 

3.1.6 

) at the new 

) time level.  Such a system of equations may be written as: 

=+

r to ensure that the IMPES formulation used will give accurate solutions, there is 

a need for a “time st

th s automatically by calculating the values of saturation

change and adjusting time steps until its ch

tolerance is specified by the user. After the simulator takes a time step, it tests against 

this tolerance. If it is not met, the calculations made with the time step are discarded and 

a smaller time step is selected. A special counter called “ncut” is also used so that the 

user can specify the number of maximum time step cut allowable before it proceeds to 

the next time step. The algorithm is shown in Fig. 3.3. 

Of course, sensitivity runs should be performed to determine an acceptable time 

step (to find a compromise between accuracy of solutions and simulation time required).  

Also, this simulator allows the user to input the frequency of output desired. 

 

Solution Method – Linear Solver 

The finite difference form of the pressure equation leads to a system of linear equation 

for the i-j unknowns 1
,
+n
jiP . Here, 1

,
+n
jiP  denotes the pressure at grid block (i,j

(n+1
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++ B
=+++

,22,11,

2,222,2121

1,122,111,1

L

L

,………………………………………..(3.19) 
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Fig. 3.3 – Algorithm for the time step cutback loop 

Alternatively, the same set of equation ay be expressed in a more compact 

form using matrix not , and P and B 

are column vectors as given below. 
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Various methods exist for solving such a system

generally these methods fall into one of two groups - direct methods, or iterative 

methods.  In Sim2D, the method of preconditioned and stabilized biconjugate-gradient is 

 

 

s m

ation as AP = B, where A is the co-efficient matrix
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⎥
⎥

 of linear equations, but 
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used to solve the system of linear equations, which is a type of iterative solver. In the 

case of

 gridpoints are defined as the centers of these grid blocks. For a 1-D model, 

r flow in the x-direction, a block-centered grid system can be constructed as in Fig. 

ocks is superimposed over a 

ix ,……………………………...…..………………………(3.22) 

Fig. 3.4 illustrates the terms i

 

 the “diagonal grid ordering” for HGB, this method is especially attractive - the 

co-efficient matrix has a sparse structure, containing a large number of non-zero entries. 

Because only non-zero elements are used in the iterative methods, these methods require 

relatively little storage memory. However, the discussion of the matrix solver in details 

is beyond the scope of this thesis. Even so, regardless of the matrix solver used, all 

methods should yield the same results and should be accurate within the specified 

tolerance. 

 

3.2 Spatial Discretization of Cartesian Grid System 

Sim2D uses the block-centered finite difference grid. For the Cartesian coordinate 

system, the

fo

3.4. In this figure, a grid system consisting of nx gridbl

reservoir. These grid blocks have predetermined dimensions of ix∆ that are not 

necessarily equal.  Once the grid blocks are defined, the grid points are placed at the 

center of the blocks. The boundaries of the thi grid block are designated 2/1−ix  and 2/1+ix , 

whereas the block center is named xi. These grid block properties are related through the 

following equations: 

 

2/)( 2/12/1 +− += iii xxx ,…………………………...……………...…………..(3.21) 

 

−=∆ ii xx 2/12/1 −+

 

n these equations. 
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Fig. 3.4 – 1-D, block-centered, finite difference grid 

 

 

The 2-D Cartesian grid is numbered using a single index system, as shown in Fig. 3.5. 

 

Fig. 3.5 – Grid numbering for the Cartesian grid system 

.3 Implementation of Hybrid Grid-Block (HGB) System  

In employing th n order for this 

ystem to be integrated into Sim2D. Changes occur in the areas of calculating intergrid-

lock transmissibilities, the grid block numbering as well as the well model. These 
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3

e HGB grid system, several modifications were made i

s

b

topics will be dealt with in the following discussions: 
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3.3.1 Grid Block Generation 

This method involves using a unique grid-block assignment where rectangular grid 

blocks are interspersed with octagonal grid blocks. The boundaries are then populated 

with triangular grid blocks. Thus, the entire domain will consist of a “structured” grid 

lock system. This arrangement is shown in Fig. 3.6, with the black dots representing 

e fluid will flow to four directions in each of the 

 

The basic elements are generated from put data, including the number of grid 

blocks and the interval length in each direction. Based on this predefined information, 

parameters such as the total grid b tween each grid block and 

the number of flow directions can be calculated.  

 

 

b

the center of each grid block. Th

octagons and two directions in each of the rectangles and triangles.  

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 3.6 - HGB grid model 
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locks, the internal length be
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3.3.2 Transmissibility Calculations 

Since HGB assumes a block-centered geometry, transmissibility calculations are based 

pon the distances between the centers of each grid block. Using Fig. 3.7 as an example, 

ell #1 is connected to Cell #3 “through” cross-sectional area A13. Its transmissibility 

an be calculated as shown in Eq. 3.23. 

u
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Fig. 3.7 – Example of transmissibility calculations in HGB 
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= ,……………………………………………...………….(3.23) 

 

here, 

T =  transmissibility 

 A = cross sectio

 L = distance between the centers of two neighboring grid blocks  

perpendicular to the cross-sectional area 

 

w

 

nal area 
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From earlier sections, we have derived the general oil material balance equation 

s: a
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o illustrate how the left-hand side of this equation would look like for a 2-D 

HGB model, let’s assume that we have named each grid block as shown in Fig. 3.8. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 – Calculations in eight directions for a central octagonal block 

aking Oct1 as the central grid block where it is surrounded by eight other grid 

blocks, this equation relative to Oct1 can be written and simplified as: 

 

,………...……..(2.16)
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+−+−+−+−=∆ )()()()( 15141312 octoctoSoctoctoEoctoctoWoctoctoNo PPaPPaPPaPPaPa
        

∆
 

)()()()( 14131211 octsqoSEoctsqoSWoctsqoNEoctsqoNW PPaPPaPPaPPa −+−+−+− ,..(3.24) 

where, 

N  =  North 

E = East 

 = uth 

W = West 

 = Northwest 

3.3.3 r ure of Matrix Forms 

The str o  depends on the dimensions of the problem and the 

ordering of the grid blocks. The objective of using different grid block-ordering schemes 

is to re p  involved in solving a system of finite difference 

equations. Numbering system for the 2-D grid and the corresponding non-zero co-

ould order the points in such 

 

S  So

NW

SW = Southwest 

NE = Northeast 

SE = Southeast 

 

Grid Numbe ing and Struct

ucture of the c efficient matrix

duce the com utational work

efficient in the matrix equation for AP = B. Therefore, we sh

a way that the band width is the minimum possible. 

 Using the HGB model, several numbering systems were tested. To illustrate the 

importance of grid numbering and its effect on the matrix coefficient band width, three 

different schemes of grid ordering will be presented.  

Considering a simple 3x2 case, the following figure shows an example grid 

ordering and the corresponding matrix structures.  
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Grid O

For the two-dim atrix A would 

ave the form as shown in Fig. 3.10. We can see that matrix formed is sparse, irregular 

nd the band width is large.  

 

 

 

 

 

 

 

Fig. 3.10 - Locations of matrix elements in Ordering #1 
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Fig. 3.9 - Ordering #1: 2-D grid block ordering 
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Grid Ordering #2: 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12 - Locations of matrix elements in Ordering #2 

For the next numbering shown in Fig. 3.11 above, the matrix A would have the 

form as shown in Fig. 3.12. The matrix formed  more regular than Grid Numbering #1, 

but it is still quite sparse.  
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Fig. 3.11 - Ordering #2: 2-D gridblock ordering 
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Fig. 3.13  are numbered 

consecutively along the diagonals starting with the shortest direction, as shown by the 

direction of the arrows. This method groups the cells by “diagonal count”, and increases 

as we 

olve the matrix equation.  

 

 shows a type of “diagonal ordering” where the cells

move from the lower left through the grid to the upper right. The band width in 

Fig. 3.14 is less than Figs. 3.10 and 3.12 which gives us a computing advantage as it 

requires less arithmetic to s

 

Grid Ordering #3: 
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Fig. 3.13 – Ordering #3: Re-ordering of grid blocks to reduce band width 

 

 

3.3.4 Palagi’s Well Model 

In using HGB grid model, we need a different well model as Peaceman’s well model is 

formulated for square grid blocks. Palagi37 presented an analytical well model based on 

Peacem sumes 

at    the   pressure  at  all grid  blocks   that  are  neighbors   of   the   well  block can be 

an’s work which can be applied to grids of any geometry. This model as

th
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Fig. 3.14 - Locations of matrix elements in Ordering #3 

 

 

evaluated by the radial flow equation around the well. Also, flow is assumed to be radial 

around the well block despite of the location of the well. This assumption uses Eq. 3.25 

and it is shown in Fig. 3.15. 

Currently l grid blocks. 

  

, the wells can only be placed in the square and octagona

⎟
⎟
⎟
⎟

⎜
⎜
⎜
⎜

⎝
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠

⎜
⎝

=

∑
j ij

ij
ijj

o

d
b

d
r exp ,………………………………..………………….(3.25) 

⎟

⎠

⎞
⎜
⎛

−⎞⎛∑ b θ

where, 

i 

bij =  length of side of polygon 

dij  =  distance between the centers of grid block i and j 

j  =  grid block that is neighbor of well block 
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θij =  angle open to flow (θ = 2π for an internal well, i.e. well located in  

  the center of

 

 

 

 

Fig. 3.15 – Well m del for a polygon 

 

 

Palagi derived a special case for Eq. 3.25 when he polygon of interest has equal sides, 

where: 

)

 the block that is opened to flow in all directions) 

 

 

 

 

 

 

 

 

 

o

 t

( ) ( Ndb ij /tan/ π= ,………………...………………………………………(3.26) 

 

Substituting Eq. 3.26 into Eq. 3.25 (with θ = 2π) nd solving for ro gives:  a

 ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛ −
=

NN
dr ijo /tan

2exp
π
π ,………………………………..………………..(3.27)

here, 

   

w

N  = number of sides of the polygonal grid block containing the well 

ijθ  

ijb  

i 
 

ijd  

j  

Center of grid   
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CHAPTER IV 

 

 

GRID ORIENTATION EFFECT 

 

 

It has been demonstrated by various authors that two-dimensional simulations of 

immiscible displacements with unfavorable mobility ratio exhibit grid orientation effect. 

In fact, despite the fact that the reservoir is isotropic and homogeneous with favorable 

mobility ratio, there can still be an effect of grid orientation.  

To examine this effect, we conducted simulations using Eclipse™ 100 (ECL™ 100) 

of a quarter five-spot waterflood using parallel and diagonal grid systems, as defined and 

illustrated in Fig. 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X-axis

Y-axisY-axis

Y-axis X-axis
PARALLEL RUNS: 

Flow or-
p  

 direction in the inject
roducer pairs are parallel to

the x and y axes 

DIAGONAL RUNS: 
Flow tor- direction of the injec
producer pairs at 45º relative 

to the x and y axes 

Fig. 4.1 – Parallel and diagonal orientation for simulations of waterflooding in five-spot 

symmetry elements 
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Table 4.1 – Data used for five-spot pattern simulations 
 

Rock Permeability, k   = 100 mD 
Porosity, φ   = 0.20 
Net Pay Thickness  = 10 ft 
Producer-Injector Distance ≈ 933.4 ft 
Production Rate, qo   = 18 STB/D 
Injection Rate, qw   = 18 STB/D 
Initial Pressure   = 5000 psi 
Area of Reservoir (Parallel)  = 20 acres 
Area of Reservoir (Diagonal) = 10 acres 
 
Fluid-Rock Properties : 

22
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)1( ww
w
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w
rw

SS
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Mobility Ratio: 
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µ
'
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Table 4.2 - Grid sizes used in Cartesian grid models 

 
Diagonal 

Grid 
Grid 

Block 
Size 

(∆x=∆y) 

Parallel 
Grid 

Grid 
Block 
Size 

(∆x=∆y) 
6 x 6 132.0 ft 8 x 8 133.34 ft

11 x 11 66.0 ft 15 x 15 66.67 ft 
21 x 21 33.0 ft 29 x 29 33.36 ft 
41 x 41 16.5 ft 57 x 57 16.67 ft 

 
 

 

A parallel grid system is a grid that is oriented parallel to injector-producer pairs. 

Meanwhile, a diagonal grid system is a grid oriented at 45° between injector and 
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producer pairs. The distance of a producer to an injector and the size of the grid blocks 

are the same for both grid systems. Waterflood simulations were performed for oil/water 

mobility ratios (M) of 0.5, 1.0 and 10. The input data and the grid sizes are shown in 

Tables 4.1 and 4.2.  The porosities and permeabilities of the boundary blocks are 

modified so that a five-spot pattern can be simulated using a block-centered model. The 

well index was also modified to reflect these changes. The porosity, permeability and 

well model modifications are shown respectively in the schematic diagrams shown in 

Figs. 4.2-4.4. Essentially, only the area bounded inside the dotted lines in Figs. 4.2-4.4 

are modeled. 
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Fig. 4.2 – Porosity modifications 
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Fig. 4.3 – Permeability modifications 
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Fig. 4.4 – Well model modifications 
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Since the distance of injector to producer is the same, we expect to get similar 

rec

ks at 

M =

rallel grid blocks is increased, the recovery 

per

ep efficiency at M = 1.0 decreases gradually 

as 

overy performance from both grid systems. However, when we compare the recovery 

performance of parallel grid blocks of 8x8 and diagonal of 6x6, the recovery 

performances from both grid blocks are different as seen in Fig. 4.5. This is because 

rotation of the coordinate axes results in differing amounts of truncation error.25 As 

pointed out by previous authors, the grid orientation effect can be reduced by increasing 

the resolution of the grid blocks for cases with favorable mobility ratio (M ≤ 1.0).11 

Thus, we increased the number of grid blocks in diagonal and parallel grid bloc

 0.5. We found that recovery performance is not very sensitive to the number of grid 

blocks in the diagonal model (Fig. 4.6).  

However, as the number of the pa

formance changes gradually until it converges to a single recovery curve (Fig. 4.7). 

The recovery performances of finer grid blocks in both models (diagonal 21x21 vs. 

parallel 29x29), were compared. We found that the grid orientation effect was reduced 

(Fig. 4.8) as the difference in the recovery performance curve between the diagonal 

21x21 and parallel 29x29 was reduced (Fig. 4.5), compared to those results from the 

parallel 8x8 and diagonal 6x6 grid blocks.  

Moreover, as shown in Fig. 4.9, the swe

the number of grid blocks are increased. As for the parallel grid, once again, the 

recovery performance converges at 15x15 number of grid blocks and higher, as shown in 

Fig. 4.10. The results for both the diagonal and parallel grid show a close agreement 

when the grid block numbers are at 57x57 and 41x41 for the parallel and diagonal grid 

models, respectively, finer than the grid block sizes required for agreement at M=0.5 

(Fig. 4.11). 
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Fig. 4.5 – Predicted performance at M=0.5 for parallel (8x8) and diagonal (6x6) grid 

 

Fig. 4.6 – Predicted performance at M=0.5 for different number of diagonal grid blocks 
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Fig. 4.7 – Predicted performance at M=0.5 for different number of parallel grid blocks 
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Fig. 4.8 – Predicted performance at M=0.5 for parallel (29x29) and diagonal (21x21) 
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Fig. 4.9 – Predicted performance at M=1.0 for different number of diagonal grid blocks 

Fig. 4.10 – Predicted performance at M=1.0 for different number of parallel grid 
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Fig. 4.11 – Predicted performance at M=1.0 for parallel (57x57) diagonal (41x41) 

As the mobility ratio is increased to =10.0, the performance of the diagonal 

grid do

ion map for diagonal grid model shows “viscous fingering” at the 

saturati

inimize 

the grid

grid blocks 

 

 

M

es not follow a certain trend (Fig. 4.12). On the other hand, for the parallel grid, 

the solution does not seem to converge to a single curve even when a large number of 

grid blocks were used, as seen in Fig. 4.13. Thus, as the grid spacing is refined, the 

performance of diagonal and parallel models actually diverges for the grid spacings 

investigated here. 

The saturat

on front while the parallel model also shows a distorted front (Fig. 4.14).  

Based on this study, we can conclude that grid refinement can help to m

 orientation effect when we have favorable mobility ratios, i.e. at M=1.0 or less. 

However, at an unfavorable mobility ratio of M=10.0 for displacement problems as 

shown, neither the parallel nor diagonal orientation can be used reliably.  
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Fig. 4.12 – Predicted performance at M=10.0 for different number of diagonal grid 

blocks 
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Fig. 4.13 – Predicted performance at M=10.0 for different number of parallel grid 

blocks 
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Fig. 4.14 – Saturation distribution map for (a) diagonal

(a) ) 

 

PVinj = 1.0 for M = 10.0

 

(b
 model, and (b) parallel model at 
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CHAPTER V 

 

 

PROGRAM VALIDATION AND PERFORMANCE OF HGB MODEL 

 

 

This chapter provides an example problem to validate the Sim2D simulator, illustration 

of the grid orientation effects in conventional Cartesian grid, as well as the application of 

HGB model. Whenever possible, the Sim2D solution is compared with a commercially 

available black oil simulator on the same problem, namely GeoQuest’s (2003A) and 

Eclipse™ 100 (ECL™ 100). Single-point upstream weighting of mobility and IMPES 

solution mode were used in all runs.  

To test the viability of the HGB grid, a two-dimensional IMPES simulator was 

developed and HGB grid is incorporated. Since the HGB grid cannot be validated 

“directly” with any commercial simulators to the best of the author’s knowledge, the 

Cartesian grid model in Sim2D is validated with rectangular Cartesian grid models in 

ECL™ 100 as shown in earlier section. Once the algorithm is validated, it is then applied 

to the HGB grid. 

 

5.1 Program Validation 

This example case is based on a 2-D reservoir model grid of 5x5. The two-phase model 

contains one producer and one injector well. Both injector and producer are under a 

constant rate constraint. The well is rate constrained to a 100 scf/Day oil production. The 

reservoir is homogeneous and is initially at 5000 psi of undersaturated oil and connate 

water.  The simulation was run until the minimum bottomhole pressure (BHP) of 2000 

psi is reached. Other reservoir and simulation data is shown in Table 5.1 and Fig. 5.1. 

The oil and water rates as well as the water cut performance are shown in Fig. 5.2 while 

the Sim2D pressure solutions are presented in Figs. 5.3-5.8 along with the results of the 

same problem runs on ECL™ 100.  
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Table 5.1 – Reservoir data 

Area of Reservoir 50000 ft2   or 1.15 acres 

Grid Block Dimension, ∆x = ∆y (ft) 100 

Reservoir Thickness (ft) 10 

Permeability (mD) 100 

Porosity 0.20 

Initial Water Saturation 0.20 

Initial Oil Saturation 0.80 

Well Radius (ft) 0.33 

Initial Pressure (psi) 5000 

Minimum Bottomhole Pressure (psi) 2000 

Rock Compressibility (1/psi) 3E-06 
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Fig. 5.1 – Relative permeability curve 
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Table 5.2 – PVT data  
Pressure Oil FVF Oil Viscosity Oil Compressibility Water FVF Water Viscosity Water Compressibility

(psi) (rcf/scf) (cp) (1/psi) (rcf/scf) (cp) (1/psi)
6014.7 1.0620 1.0400 2.51E-06 1.0190 0.5060 3.00E-06
5014.7 1.0647 0.8951 2.51E-06 1.0221 0.5060 3.00E-06
4014.7 1.0673 0.7705 2.51E-06 1.0251 0.5060 3.00E-06
3014.7 1.0700 0.6631 2.51E-06 1.0282 0.5060 3.00E-06
2514.7 1.0714 0.6152 2.51E-06 1.0298 0.5060 3.00E-06
2014.7 1.0727 0.5708 2.51E-06 1.0313 0.5060 3.00E-06
1514.7 1.0741 0.5295 2.51E-06 1.0328 0.5060 3.00E-06
1014.7 1.0754 0.4913 2.51E-06 1.0344 0.5060 3.00E-06
514.7 1.0768 0.4558 2.51E-06 1.0360 0.5060 3.00E-06
14.7 1.0781 0.4228 2.51E-06 1.0375 0.5060 3.00E-06  
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Fig. 5.2 – Comparison of Sim2D oil and water rates and watercut with ECL™ 100 

showing good agreement between the two simulators 
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Fig. 5.3 – Comparison of Sim2D well bottomhole pressure at producer with ECL™ 100 

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000

Time (Days)

B
lo

ck
 P

re
ss

ur
e 

(p
si

) a
t P

ro
du

ce
r

ECL Sim

 
Fig. 5.4 – Comparison of Sim2D well block pressure at producer with ECL™ 100 
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Fig. 5.5 – Comparison of Sim2D well block oil saturation at producer with ECL™ 100 
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Fig. 5.6 – Comparison of Sim2D well bottomhole pressure at injector with ECL™ 100 
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Fig. 5.7 – Comparison of Sim2D well block pressure at injector with ECL™ 100 
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Fig. 5.8 – Comparison of Sim2D well block oil saturation at injector with ECL™ 100 
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5.2 Use of HGB Grid to Reduce the Grid Orientation Effect 

Using the HGB scheme, one half of a five-spot model was simulated with a four-well, 

diagonal HGB grid (145 grid blocks), and one quarter five-spot pattern model were 

chosen to run a two-well, parallel HGB grid (85 grid blocks) as defined and shown in 

Fig. 5.9. The reservoir is assumed to be homogeneous and isotropic. Additional rock and 

fluid properties as well as simulation data that are relevant are given in Table 5.3. Other 

reservoir and simulation data is shown in Fig. 5.1 and Table 5.4. Different mobility 

ratios of 0.5, 1.0, 10.0 and 50.0 were used in these cases respectively. Porosity and 

permeability modifications were also performed on the boundary blocks so that the five-

spot pattern can be simulated. The locations of the injectors and producers coincide with 

the locations of the block centers. The well model is also modified to reflect this. This is 

shown in Fig. 5.10.  

 

 

Table 5.3- Data used for HGB pattern simulations 
 
Rock Permeability, k   = 100 mD 
Porosity, φ   = 0.20 
Net Pay Thickness  = 10 ft 
Producer-Injector Distance  = 825 ft 
Production Rate, qo   = 18 STB/D 
Injection Rate, qw   = 18 STB/D 
Initial Water Saturation  = 0.20 
Initial Oil Saturation  = 0.80 
Initial Pressure   = 5000 psi  
Area of Reservoir (Parallel)  = 15 acres 
Area of Reservoir (Diagonal) = 7.5 acres 
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Table 5.4 – 2-Phase PVT data (for M=0.5) 
Pressure Oil FVF Oil Viscosity Oil Compressibility Water FVF Water Viscosity Water Compressibility

(psi) (rcf/scf) (cp) (1/psi) (rcf/scf) (cp) (1/psi)
6014.7 1.0620 1.9300 2.51E-06 1.02E+00 1.0000 3.00E-06
5014.7 1.0647 1.6611 2.51E-06 1.02E+00 1.0000 3.00E-06
4014.7 1.0673 1.4297 2.51E-06 1.02E+00 1.0000 3.00E-06
3014.7 1.0700 1.2306 2.51E-06 1.03E+00 1.0000 3.00E-06
2514.7 1.0714 1.1417 2.51E-06 1.03E+00 1.0000 3.00E-06
2014.7 1.0727 1.0592 2.51E-06 1.03E+00 1.0000 3.00E-06
1514.7 1.0741 0.9827 2.51E-06 1.03E+00 1.0000 3.00E-06
1014.7 1.0754 0.9116 2.51E-06 1.03E+00 1.0000 3.00E-06
514.7 1.0768 0.8458 2.51E-06 1.03E+00 1.0000 3.00E-06
14.7 1.0781 0.7847 2.51E-06 1.03E+00 1.0000 3.00E-06  

 
 

From Fig. 5.11, we can see that the parallel and diagonal HGB grid model give 

very similar results for both favorable and unfavorable mobility ratios cases that were 

run. This is because flow can progress in several different directions in the octagonal 

grid blocks. The result is that the differences between the parallel and diagonal 

orientation are greatly reduced. The parallel HGB grid always predicted a higher areal 

sweep efficiency than the diagonal HGB grid. At lower mobility ratios, the pore volume 

recovered is higher as the sweep mimics a piston-like displacement. Even so, the 

discrepancies between these two grids in HGB have a maximum relative difference of 

approximately 6% (Table 5.5) and it is believed to be caused by the presence of the 

square grid blocks.  

Figs. 5.12-5.13 show the saturation distribution map for the parallel and diagonal 

HGB grid, respectively. The movement of the saturation front is faster when the mobility 

ratio increases. This is due to the fact that the displacing fluid is moving at a much 

higher velocity than oil, the displaced fluid. Fingering of the displacing fluid also results 

in faster breakthrough times.  

This result shows that HGB can reduce significantly the grid orientation effect by 

reducing the rotational variance in the model and hence the differences in results 

between the parallel and diagonal HGB grids.  
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Fig. 5.9 – (a) Parallel and (b) diagonal grid orientation in HGB grid 
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Fig. 5.10 – Porosity, permeability and well model modifications 
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Fig. 5.11 – Influence of mobility ratios on the predicted performance of HGB grid 

 

 

Table 5.5 – Relative difference between parallel and diagonal models of various mobility 

ratios for HGB grid models in Fig. 5.10 

 

M Relative Difference (%)
50.0 5.92
10.0 4.59
1.0 2.24
0.5 1.11  
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M = 0.5 M = 1.0 M = 10 M = 50 

    
PVinj = 0.1 PV PVinj = 0.1 PV PVinj = 0.1 PV PVinj = 0.1 PV 

 

    
PVinj = 0.5 PV PVinj = 0.5 PV PVinj = 0.5 PV PVinj = 0.5 PV 

 

    
PVinj = 1.0 PV PVinj = 1.0 PV PVinj = 1.0 PV PVinj = 1.0 PV 

 
Oil Saturation 

 
 

Fig. 5.12 – Saturation distribution map for parallel HGB grid as shown in Fig. 5.9 (a) at 
various mobility ratios 
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M = 0.5 M = 1.0 M = 10 M = 50 

    
PVinj = 0.1 PV PVinj = 0.1 PV PVinj = 0.1 PV PVinj = 0.1 PV 

 

    
PVinj = 0.5 PV PVinj = 0.5 PV PVinj = 0.5 PV PVinj = 0.5 PV 

 

    
PVinj = 1.0 PV PVinj = 1.0 PV PVinj = 1.0 PV PVinj = 0.5 PV 

 

 

Oil Saturation 
 

Fig. 5.13 – Saturation distribution map for diagonal HGB grid as shown in Fig. 

5.9 (b) at various mobility ratios 
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5.2.1 HGB Sensitivity 

In the previous example, we have shown that the HGB grid is less sensitive to grid 

orientation than conventional Cartesian grid, especially at unfavorable mobility ratios. 

The next point for investigation is the sensitivity of the HGB grid to the grid dimension, 

or in other words, its sensitivity to the number of grid subdivisions in the model. We 

have seen that in Cartesian grids, the parallel grid is more sensitive to the effect of grid 

size than the diagonal grid. We will also see how the performance of the HGB grid 

compares to the Cartesian grid at a similar number of grid blocks. 

Four different sets of grid numbers were run in HGB (diagonal HGB and parallel 

HGB) and the results are compared to similar models run in Cartesian grid (diagonal 

Cartesian and parallel Cartesian). Since the size of each grid block in the HGB model is 

dependent upon its shape, i.e. whether it is octagonal, or rectangular, an average area per 

grid block is calculated for each set of runs. The closest possible average area per grid 

block and the number of grid blocks are then applied to the corresponding Cartesian 

grid. The grid numbers and grid block dimensions are shown in Tables 5.6-5.7 for the 

HGB and Cartesian grid respectively. For a given set of grid dimension, HGB and its 

Cartesian grid counterpart have the same pore volume and well locations. 

Furthermore, since we have shown that the grid orientation effect can be reduced 

by refining the grid at a lower mobility ratio (as shown in Chapter IV), all these cases are 

run at M = 0.5. The reservoir and rock properties are similar to those shown in Fig. 1 and 

Tables 5.3-5.4. 

Figs. 5.14 through 5.17 show the calculated performance for the HGB grids and 

their corresponding Cartesian grids. Results using the HGB grids are always in between 

those calculated on Cartesian grids. 

 However, the differences between the diagonal HGB and parallel HGB are 

reduced as the number of grid blocks in the model was increased. In fact, the 

performances of the parallel and diagonal HGB grid models tend to converge as the grid 

spacing is refined.  
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Table 5.6 – Averaged area per grid block for the HGB grid 

Number of HGB Grid Blocks
ft2 ac ft2 ac

50 6806.25 0.156 13612.5 0.313
98 3472.58 0.080 6945.15 0.159
200 1701.56 0.039 3403.13 0.078
392 868.14 0.020 1736.29 0.040
800 425.39 0.010 850.78 0.020

Averaged area per grid block 
Parallel Diagonal

 
 

Table 5.7 – Averaged area per grid block for the Cartesian grid 

Number of Cartesian Grid Blocks Averaged Area (ac) ∆x=∆y (ft) Averaged Area (ac) ∆x=∆y (ft)
49 0.319 117.8571 0.159 83.3376

100 0.156 82.5000 0.078 58.3363
196 0.080 58.9286 0.040 41.6688
400 0.039 41.2500 0.020 29.1682
784 0.020 29.4643 0.010 20.8344

Parallel Diagonal

 
 

 

Likewise, the differences between diagonal Cartesian and parallel Cartesian are 

reduced as a smaller grid dimension is used. As we have shown in Chapter IV, at low 

mobility ratios, i.e., M = 0.5, the diagonal Cartesian grid is insensitive to the number of 

grid blocks in the model. Contrarily, when more refined grid blocks are used in the 

parallel Cartesian grid, the oil recovery would increase and the results would converge to 

a single recovery curve after an increase in a certain number of grid blocks.   

The results between the HGB and Cartesian grid models are summarized in 

Table 5.8. For reasons mentioned earlier, these two models are compared at a similar 

averaged area per grid block. As the number of grid blocks are increased and the size of 

grid blocks are reduced, we can see that both models give a smaller relative difference in 

pore volume recovered between the parallel and diagonal grid than when coarser grids 

are used. More importantly, the HGB grid performs better by consistently giving a 

smaller relative difference in pore volume recovered compared to the Cartesian grid at 

similar averaged area per grid block for all the cases studied. This indicates that the 
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HGB is more effective in reducing the grid orientation error than the conventional 

Cartesian grid.  

Results of simulation runs at M=0.5 are summarized in Figs. 5.18-5.19 for the 

parallel and diagonal HGB grid, respectively. Performance of the parallel HGB grid is 

not sensitive to the number of grid blocks in the model, as all the four models give 

similar results. On the other hand, oil recovery predicted by the diagonal HGB model 

increased as the number of grid blocks increased, and the results converged when the 

number of grid blocks is at 200 and higher.  

 

 

Table 5.8 – Relative difference between parallel and diagonal grid for both HGB and 

Cartesian grids at M = 0.5 

 

 Averaged area per grid block (ac) Relative Difference in
Diagonal Parallel Pore Volume Recovered (%)

HGB 0.159 (98)* 0.156 (50)* 6.0
Grid 0.078 (200) 0.080 (98) 4.5

0.040 (392) 0.039 (200) 3.3
0.020 (800) 0.020 (392) 2.2

Cartesian 0.156 (100) 0.159 (49) 17.0
Grid 0.080 (196) 0.078 (100) 13.0

0.039 (400) 0.040 (196) 9.3
0.020 (784) 0.020 (400) 7.9  

 

* number in brackets indicates the number of grid blocks used 
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Fig. 5.14 – Comparison between HGB grid (50 and 98 grid blocks) and Cartesian grid 

(49 and 100 grid blocks) at M = 0.5 
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Fig. 5.15 – Comparison between HGB grid (98 and 200 grid blocks) and Cartesian grid 

(100 and 196 grid blocks) at M = 0.5 
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Fig. 5.16 – Comparison between HGB grid (200 and 392 grid blocks) and Cartesian grid 

(196 and 400 grid blocks) at M = 0.5 
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Fig. 5.17 – Comparison between HGB grid (392 and 800 grid blocks) and Cartesian grid 

(400 and 784 grid blocks) at M = 0.5 
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Fig. 5.18 – Effect of grid spacing on parallel HGB grid for M=0.5 
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Fig. 5.19 – Effect of grid spacing on diagonal HGB grid for M=0.5 
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CHAPTER VI 

 

 

CONCLUSIONS 

 

 

We have shown the effect of grid orientation in conventional Cartesian parallel and 

diagonal grid. Also, we have successfully developed the HGB grid system and we have 

shown that HGB is more effective in reducing the grid orientation effect than Cartesian 

grid. This is attributed to the increase of flow connections in the octagonal grid blocks in 

HGB grid. On the other hand, the increase in flow connections also means that there 

would be more terms to solve and hence this would increase the computational time 

compared to Cartesian grid. Moreover, the construction and numbering or indexing of 

the HGB grid is not as intuitive as the Cartesian grid. Extension of the HGB grid to a 3-

D model would also be a challenging task. However, we would recommend the use of 

HGB grid for simulations of displacement problems especially at unfavorable mobility 

ratios. 

 

 

The following conclusions can be derived from this study: 

 

1. Grid orientation effect was observed in rectangular Cartesian grid models even at 

isotropic and homogeneous reservoir of M = 1.0. 

2. Based on this study, grid refinement can help to reduce the grid orientation effect 

in rectangular Cartesian grid models when there are favorable mobility ratios, i.e. 

M=1.0 or less. However, at an unfavorable mobility ratio of M=10.0, it is found 

that neither parallel nor diagonal orientation can be used reliably. This is because 

as the number of grid blocks is increased, the performance of diagonal and 

parallel models actually diverges for the grid spacings investigated in this study. 
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3. With the increased number of connections in the octagonal grid blocks in HGB 

grid compared to Cartesian grid, HGB is able to reduce the grid orientation effect 

even for unfavorable mobility ratio displacement problems (M = 10.0), with 

maximum relative difference of 6% in pore volume recovered between parallel 

and diagonal HGB grid models for all the cases run. However, the grid 

orientation effect in HGB model is believed to be caused by the presence of the 

square grid blocks. 

4. Contrary to the Cartesian parallel grid, HGB parallel grid is less sensitive to the 

number of grid blocks in the model compared to the HGB diagonal grid for M = 

0.5. Also, at a favorable mobility ratio of M = 0.5, the performance of the parallel 

and diagonal HGB grid models converged as the number of grid blocks is 

increased.  

5. The HGB grid performs better by consistently giving a smaller relative difference 

between HGB parallel grid and HGB diagonal grid in pore volume recovered 

(6.0, 4.5, 3.3, and 2.2%) compared to the relative difference between Cartesian 

parallel grid and Cartesian diagonal grid in pore volume recovered (17.0, 13.0, 

9.3, 7.9%) at similar averaged area per grid block for all the four comparison 

cases studied. This indicates that the HGB is more effective in reducing the grid 

orientation error than the conventional Cartesian grid.  

 

 

Recommendations for future work: 

 

1. The numerical solutions obtained from developed simulator and commercial 

simulators should be compared with analytical solutions. The analytical solution 

should be used as a reference to investigate the accuracy of the numerical result. 

2. In Sim2D, we only have one set of grid block configuration using the 

combination of octagonal and rectangular grid blocks. In addition, the octagonal 



 73

and rectangular grid blocks are regular polygons. It would be interesting to vary 

these into irregular polygons. 

3. The treatment of anisotropic reservoirs has yet to be addressed. A full 

permeability tensor can be modeled, though there are several challenging issues 

related to their implementation in a simulator such as the treatment of wells and 

averaging of permeability at each connection. 

4. The range of the test problems need to be extended to multiphase and 

heterogeneous reservoirs.  
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APPENDIX A 

 

 

 

Sim2D VB PROGRAM APPLICATION 

 

 

The main window consists of 5 tab strips for data entries. The main menus are shown in 

Figs. A.1-A.5, namely Grid Builder, Reservoir Description, Initial Condition, Well Data 

and Numerical Method. Data file of the PVT tables can be uploaded in .txt form, while 

the results are output to a MS Excel spreadsheet, although real-time plots are generated 

while the program is running, as shown in Figs. A.6-A.16. Also, the “time step skip” for 

the output is entered by the user.  
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Fig. A.1 – Grid Builder window 
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Fig. A.2 – Reservoir Description window 
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Fig. A.3 – Initial Condition window 
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Fig. A.4 – Well Data window 
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Fig. A.5 – Numerical Method window 
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Fig. A.6 – Example showing oil saturation plot of grid block containing injector 

 

 

 
 

Fig. A.7 – Example showing oil saturation plot of grid block containing producer 
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Fig. A.8 – Example showing water saturation plot of grid block containing injector 

 

 

 
 

Fig. A.9 – Example showing water saturation of grid block containing producer 
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Fig. A.10 – Example showing total saturation plot of grid block containing injector 

 

 

 
 

Fig. A.11 – Example showing total saturation plot of grid block containing producer 

 

 



 88

 
 

Fig. A.12 – Example showing water injection rate plot 

 

 
 

Fig. A.13 – Example showing water production rate plot 
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Fig. A.14 – Example showing oil production rate plot in a constant production rate case 

 

 
 

Fig. A.15 – Example showing pressure profiles plot of injector  
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Fig. A.16 – Example showing pressure profiles plot of producer
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APPENDIX B 

 

 

 

Sim2D VB SOURCE CODE 

 

 

'NFR Group - Texas A&M University - Fall 2003 
 
'Assumptions:- 
'1) Homogeneous reservoir 
'2) No gravity effects 
'3) No capillary pressure 
'4) Isotropic reservoir 
 
'The equations assumed FIELD units and they are shown as follows:- 
'Oil and Water Formation Volume Factor : rcf/scf 
'Oil and Water Rate                      : scf/D 
'Permeability                             : mD 
'Pressures                                 : psi 
'Grid dimensions                          : ft 
 
 
Option Explicit 
Option Base 1 
 
'*********************************************************************** 
'Defining all variables 
'Private constants and variables apply to all procedures in module 
 
Public FindIndexRow As Boolean 
Public Type notzeroIndex 
   n As Integer 
   indexRow() As Integer 
End Type 
Public rowFill() As notzeroIndex 
 
Private Prod_Inj() As String 
Private back_to_origin As Boolean 
Private Cut_Sat As Boolean 
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Private Pn() As Double 
Private Pold() As Double 
Private oct_oct As Double 
Private oct_rect_tri As Double 
Private Amat() As Double 
Private Bmat() As Double 
Private Itmax As Long 
Private ErrorEst As Double 
Private NodeType() As Byte 
 
'Time Variables 
Private t_step As Integer 
Private t_stepmax As Double 
Private delt As Double 
Private tmax As Double 
Private step As Double 
Private SatCut As Integer 
Private MaxCut As Integer 
 
'Spatial Variables 
Private NX As Integer 
Private NY As Integer 
Private xD() As Double, yD() As Double 
Private delx() As Double, dely() As Double 
Private dx() As Double, dy() As Double 
Private gridType As String 
Private u As Integer 
Private v As Integer 
Private NN As Integer 
Private m As Double 
Private p As Double, q As Double, r As Double, S As Double, W As Double, no As 
Double, ht As Double 
Private areaOctagon As Double, areaSquare As Double, areaCornerTriangle As Double, 
areaWallTriangle As Double 
Private TL As Integer, BL As Integer, TR As Integer, BR As Integer 
Private wecount As Double, sncount As Double, owecount As Double, osncount As 
Double 
Private nodeArea() As Byte 
       
'West side wall, East side wall, South side wall, North side wall 
Private WS As Integer, SS As Integer 
Private WSW() As Double, ESW() As Double, SSW() As Double, NSW() As Double 
Private DN() As Integer 
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Private OSW As Double, ONE As Double, ONW As Double, OSE As Double, OWS As 
Double 
Private OSS As Double, OSSW() As Double, ONSW() As Double, OWSW() As Double 
    Private OESW() As Double, Oct() As Double, Oct_XY() As Double, OXY() As 
Double 
Private Start() As Double, Oend() As Double, CenterO() As Double, Squares() As 
Double 
Private startcount As Integer, count As Integer 
Private M_P() As Double 
 
'Fluid Property Variables 
Private Comp As Double, Ct() As Double 
Private MaxSat As Double 
Private Soi() As Double, Swi() As Double, SLi() As Double 
Private Stotal() As Double 
Private Swc As Double, So As Double 
Private LambdaO() As Double, LambdaW() As Double, LambdaT() As Double 
Private Transm() As Double 
Private por() As Double, Por_new() As Double 
Private Perm1 As Double 
Private Perm2 As Double 
Private Porc As Double 
 
'Initial Condition Variables 
Private Pinit As Double 
Private Sor As Double 
 
'Average rock and fluid properties 
Private kavg As Double 
Private kavgw As Double, miuoavgW As Double, BavgW As Double, delxW As Double 
Private kavge As Double, miuoavgE As Double, BavgE As Double, delxE As Double 
Private Perm() As Double 
Private KROUPS As Double 
Private KRWUPS As Double 
 
'Coefficients of Matrix A and B 
Private beta() As Double 
Private AT() As Double 
Private ACT() As Double, MB() As Double 
Private AO() As Double, AW() As Double 
Private ATtemp As Double 
Private AoSat() As Double, AwSat() As Double 
Private SumAO As Double, SumAw As Double 
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'Fluid Property Variables from Input Table 
Private miuo() As Double, Bo() As Double, Co() As Double 
Private miuw() As Double, Bw() As Double, Cw() As Double 
Private Rso() As Double 
Private p_pvt() As Double 
Private Bo_pvt() As Double, miuo_pvt() As Double, Co_pvt() As Double, Rso_pvt() As 
Double 
Private Bw_pvt() As Double, miuw_pvt() As Double, Cw_pvt() As Double 
Private Sw_Tab() As Double, Krw_tab() As Double, Kro_tab() As Double, Krg_tab() As 
Double 
Private Sw_int() As Double, Krwi() As Double, Kroi() As Double, Krgi() As Double 
Private Rsoi() As Double 
Private Son() As Double, Swn() As Double, Sg_n() As Double 
Private Npvt As Integer, nRelperm As Integer, PVT() As Double 
Private SL_tab() As Double, SL_int() As Double, nSL As Integer, SLN() As Double 
Private miuo_avg() As Double, Bo_avg() As Double 
Private miuw_avg() As Double, Bw_avg() As Double 
 
'Well terms/properties 
Private delp() As Double, dp As Double 
Private Nwell As Single 
Private iloc() As Single 
Private WellType() As String 
Private bhp As Double 
Private Pwf() As Double, Pwfn() As Double 
Private Qo() As Double, Qw() As Double, Qt() As Double 
Private Qon() As Double, Qwn() As Double, Qtn() As Double 
Private WConst() As Single 
Private rw() As Double, skin() As Double, Jmodel() As Double, ro() As Double 
Private IOIP As Double, Np As Double, Ni As Double, Nt As Double, Mbe As Double 
'production parameters 
 
'Chord Slope Terms 
Private Vpn() As Double, Vp() As Double 
Private Bon() As Double 
Private Bwn() As Double 
 
'MBE 
Private OOIP() As Double, WWIP() As Double 
Private OOIPn() As Double, WWIPn() As Double 
Private CumOil As Double, CumWater As Double 
Private TotalOIP As Double, TotalWIP As Double 
Private MatBal() As Double 
Private MatBalE() As Double 
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'*********************************************************************** 
 
Sub Main() 
     
    'Time Step Skip 
    FindIndexRow = False 
    Dim prevStep As Double, nextStep As Double 
    Dim position As Integer, skipStep As Integer, countStep As Integer 
    position = 1 
    countStep = 1 
 
    Dim i As Integer, t As Double 
    SatCut = 0 
    Call Clear_Report 
    Call ReadData_Input 
     
    'Read PVT and RelPerm Data from Worksheet 
    Call Read_PVT 
     
    If (gridType = "HGB") Then 
        Call Dimension 
    End If 
     
    Call Memory_Allocation 
     
    If (gridType = "HGB") Then 
        Call GridHGB 
    ElseIf (gridType = "SQ") Then 
        Call GridSQ 
    End If 
     
    Call Initial 
    Call New_Trans 
 
    If Nwell <> 0 Then 
        Call Well 
    End If 
 
    t_stepmax = Int(tmax / delt) 
    t_step = 1 
 
    Do While t < tmax 
 
prev: 
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DoEvents 
    t = t + delt 
    Cut_Sat = False 
 
    Call Interpol 
    Call MatrixB2 
    Call MatrixA 
    Call bicgstab(Pn(), Bmat(), Amat(), ErrorEst, Itmax, Pn()) 
    
    For i = 1 To NN 
        If Pn(i) < 0 Then Stop 
    Next i 
     
    Call Interpol 
    Call UpdateSat 
 
    If Cut_Sat = True And SatCut <= MaxCut Then 
       If SatCut = MaxCut Then 
         SatCut = 0 
         GoTo MaxIter 
       End If 
 
       Cut_Sat = False 
       t = t - delt 
       delt = delt / 2 
       Back_To_Previous 
       SatCut = SatCut + 1 
       GoTo prev 
    End If 
 
MaxIter: 
 
      Call Material_Balance 
      skipStep = 1000 
      If (skipStep = countStep) Then 
        Call Print_Result(position, t) 
        Call Print_Result_WSat(position, t) 
        Call Print_Result_OSat(position, t) 
        Call Print_Result_TSat(position, t) 
        Call Print_Well(position, t) 
        Call Print_Pold(position, t) 
        Call Print_ORate(position, t) 
        Call Print_WRate(position, t) 
        Call Print_TRate(position, t) 
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        Call Print_MBE(position, t) 
        Call Print_Result_MatBal(position, t) 
                   
        prevStep = t 
        position = position + 1 
        countStep = 1 
      End If 
 
      countStep = countStep + 1 
      t_step = t_step + delt 
 
      'Update Properties 
      Call UpdateProperties 
       
      If Nwell <> 0 Then 
        Call Well_New2 
      End If 
       
Loop 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_Result(ByVal step As Integer, ByVal t As Double) 
Dim i As Integer 
With Sheets("Pn") 
    .Cells(i + 1, step + 1) = t 
  For i = 1 To NN 
    .Cells(i + 1, step + 1) = Pn(i) 
  Next 
End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_Pold(ByVal step As Integer, ByVal t As Double) 
Dim i As Integer 
With Sheets("Pold") 
    .Cells(i + 1, step + 1) = t 
  For i = 1 To NN 
    .Cells(i + 1, step + 1) = Pold(i) 
  Next 
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End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub Back_To_Previous() 
Dim i As Integer 
 
    For i = 1 To NN 
        Pn(i) = Pold(i) 
        Son(i) = Soi(i) 
        Swn(i) = Swi(i) 
        Qon(i) = Qo(i) 
        Qwn(i) = Qw(i) 
        Qtn(i) = Qt(i) 
        Pwfn(i) = Pwf(i) 
        Vpn(i) = Vp(i) 
    Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_Result_WSat(ByVal step As Integer, ByVal t As Double) 
Dim i As Integer 
With Sheets("WaterSat") 
    .Cells(i + 1, step + 1) = t 
  For i = 1 To NN 
    .Cells(i + 1, step + 1) = Swn(i) 
  Next 
End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_Result_OSat(ByVal step As Integer, ByVal t As Double) 
Dim i As Integer 
With Sheets("OilSat") 
    .Cells(i + 1, step + 1) = t 
  For i = 1 To NN 
    .Cells(i + 1, step + 1) = Son(i) 
  Next 
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End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_Result_TSat(ByVal step As Integer, ByVal t As Double) 
Dim i As Integer 
With Sheets("TotalSat") 
    .Cells(i + 1, step + 1) = t 
  For i = 1 To NN 
    .Cells(i + 1, step + 1) = Stotal(i) 
  Next 
End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub ReadData_Input() 
Dim i As Integer, k As Integer, j As Integer 
 
    'Read input data from data sheet of workbook 
    With Worksheets("Data") 
        gridType = .Cells(6, 10).Value 
         
        If (gridType = "HGB") Then 
            u = .Cells(4, 2).Value 
            v = .Cells(5, 2).Value 
            m = .Cells(4, 5).Value 
        ElseIf (gridType = "SQ") Then 
            NX = .Cells(2, 13).Value 
            NY = .Cells(2, 16).Value 
            NN = NX * NY 
             
            ReDim dx(NN) 
            ReDim dy(NN) 
     
            k = 1 
            For j = 1 To NY 
                For i = 1 To NX 
                    dx(k) = .Cells(2 + i, 13).Value 
                    k = k + 1 
                Next 
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            Next 
             
            k = 1 
            For j = 1 To NX 
                For i = 1 To NY 
                    dy(k) = .Cells(2 + i, 16).Value 
                    k = k + 1 
                Next 
            Next 
        End If 
         
        Pinit = .Cells(10, 2).Value 
        Comp = .Cells(7, 5).Value 
        ht = .Cells(8, 5).Value 
        delt = .Cells(13, 5).Value 
        tmax = .Cells(14, 5).Value 
        Swc = .Cells(11, 2).Value 
        Sor = .Cells(12, 2).Value 
        Porc = .Cells(5, 5).Value 
        bhp = .Cells(22, 9).Value 
        Perm1 = .Cells(6, 5).Value 
        Perm2 = Perm1 
        Nwell = .Cells(20, 3).Value 
        Itmax = Range("maxIT") 
        ErrorEst = Range("errorEST") 
        MaxSat = Range("maxsat") 
        MaxCut = Range("maxcut") 
         
    End With 
End Sub 
 
'*********************************************************************** 
 
Sub ReadData_Tables() 
'Read input data from PVT Tables 
 
Dim txttmp As String 
Dim i As Byte 
Dim AddR As String 
AddR = ActiveWorkbook.Path 
Open AddR & "\2D2Pv5.TXT" For Input As 1 
Line Input #1, txttmp 
Input #1, Npvt 
 



 101

ReDim p_pvt(1 To Npvt) 
ReDim Bo_pvt(1 To Npvt) 
ReDim Co_pvt(1 To Npvt) 
ReDim Rso_pvt(1 To Npvt) 
ReDim miuo_pvt(1 To Npvt) 
ReDim Bw_pvt(1 To Npvt) 
ReDim miuw_pvt(1 To Npvt) 
ReDim Cw_pvt(1 To Npvt) 
ReDim Kro_tab(1 To Npvt) 
ReDim Krw_tab(1 To Npvt) 
ReDim Sw_Tab(1 To Npvt) 
 
Line Input #1, txttmp 
For i = 1 To Npvt 
  Input #1, p_pvt(i), Bo_pvt(i), Rso_pvt(i), miuo_pvt(i), Co_pvt(i), Bw_pvt(i), 
miuw_pvt(i), _ 
  Cw_pvt(i) 
Next i 
 
Line Input #1, txttmp 
Line Input #1, txttmp 
Input #1, nRelperm 
 
ReDim Sw_Tab(1 To nRelperm) 
ReDim Krw_tab(1 To nRelperm) 
ReDim Kro_tab(1 To nRelperm) 
 
Line Input #1, txttmp 
For i = 1 To nRelperm 
  Input #1, Sw_Tab(i), Krw_tab(i), Kro_tab(i) 
  'Debug.Print Sw_Tab(i), Krw_tab(i), Kro_tab(i) 
Next 
 
Close #1 
 
End Sub 
 
'*********************************************************************** 
 
Sub Read_PVT() 
Dim i As Integer, j As Integer 
 
'Read input data from PVT sheet of workbook 
With Worksheets("PVT") 
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   Npvt = Range("nPVT") 
   nRelperm = Range("nRelPerm") 
End With 
     
ReDim p_pvt(1 To Npvt): ReDim Bo_pvt(1 To Npvt): ReDim Co_pvt(1 To Npvt): 
ReDim Rso_pvt(1 To Npvt) 
ReDim miuo_pvt(1 To Npvt) 
ReDim Bw_pvt(1 To Npvt): ReDim miuw_pvt(1 To Npvt): ReDim Cw_pvt(1 To Npvt) 
ReDim Sw_Tab(1 To nRelperm): ReDim Kro_tab(1 To nRelperm): ReDim Krw_tab(1 
To nRelperm) 
 
With Worksheets("PVT") 
    For i = 1 To Npvt 
        p_pvt(i) = .Cells(3 + i, 1).Value 
        Bo_pvt(i) = .Cells(3 + i, 2).Value 
        Rso_pvt(i) = .Cells(3 + i, 3).Value 
        miuo_pvt(i) = .Cells(3 + i, 4).Value 
        Co_pvt(i) = .Cells(3 + i, 5).Value 
        Bw_pvt(i) = .Cells(3 + i, 6).Value 
        miuw_pvt(i) = .Cells(3 + i, 7).Value 
        Cw_pvt(i) = .Cells(3 + i, 8).Value 
    Next i 
     
    For j = 1 To nRelperm 
        Sw_Tab(j) = .Cells(67 + j, 1).Value 
        Krw_tab(j) = .Cells(67 + j, 2).Value 
        Kro_tab(j) = .Cells(67 + j, 3).Value 
    Next j 
End With 
     
End Sub 
 
'*********************************************************************** 
 
Sub Dimension() 
 
'Total Number of Blocks 
NN = (v * u) + 2 * (v - 1) + 2 * (u - 1) + 4 + (v - 1) * (u - 1) 
 
'Dimensions of polygons 
p = m 
q = p 
r = q 
 



 103

S = 0.5 * m 
W = S 
no = (0.5 + 1 / Sqr(2)) * m 
 
oct_oct = 2 * no 
oct_rect_tri = no + S 
 
'Areas of Polygons 
areaSquare = m * m 
areaOctagon = 2 * (m / Sqr(2)) ^ 2 + 4 * m * (m / Sqr(2)) + m ^ 2 
 
areaCornerTriangle = 0.25 * m * m 
areaWallTriangle = 0.5 * m * m 
 
End Sub 
 
'*********************************************************************** 
 
Sub GridSQ() 
Dim i As Integer, j As Integer, k As Integer 
Dim E As Integer, W As Integer, n As Integer, S As Integer 
ReDim DN(NN, 8) 
 
E = 8 
n = 5 
W = 6 
S = 7 
 
k = 1 
For j = 1 To NY 
    For i = 1 To NX 
         
        If i <> 1 Then 
        DN(k, W) = k - 1 
        End If 
         
        If i <> NX Then 
        DN(k, E) = k + 1 
        End If 
         
        If j <> 1 Then 
        DN(k, n) = k - NX 
        End If 
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        If j <> NY Then 
        DN(k, S) = k + NX 
        End If 
               
        k = k + 1 
    Next 
Next 
 
For i = 1 To NN 
  For j = 1 To 8 
    If DN(i, j) <> 0 Then Perm(i, DN(i, j)) = Perm1 
  Next 
Next 
 
End Sub 
 
'*********************************************************************** 
 
Sub GridHGB() 
Dim i As Integer, j As Integer, k As Integer, kk As Integer, A As Integer, temp As 
Integer 
Dim ii As Integer, jj As Integer 
ReDim DN(NN, 8) 
 
'Corners 
BL = 1 
TL = 2 
 
For i = 1 To v - 1 
    TL = TL + (2 * i + 1) 
Next i 
 
BR = NN - (TL - BL) 
TR = NN 
 
'West Side Wall 
wecount = 0 
ReDim WSW(v) 
WS = 2 
 
For i = 1 To v - 1 
    WSW(i) = WS 
    wecount = wecount + 1 
    WS = WS + ((2 * i) + 1) 
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Next i 
 
'East Side Wall 
ReDim ESW(v) 
 
For i = 1 To wecount 
    ESW(i) = NN - (WSW(i) - BL) 
Next i 
 
'South Side Wall 
sncount = 0 
SS = 4 
ReDim SSW(u) 
For i = 1 To u - 1 
    k = i 
    If k > v - 1 Then 
      k = v - 1 
    End If 
    SSW(i) = SS 
    sncount = sncount + 1 
    SS = SS + ((2 * (k + 1)) + 1) 
Next i 
 
'North Side Wall 
ReDim NSW(u) 
For i = 1 To sncount 
    NSW(i) = NN - (SSW(i) - BL) 
Next i 
 
'Octagons Corners 
OSW = 3 
ONE = NN - 2 
ONW = 3 
 
For i = 1 To v - 1 
    ONW = ONW + (2 * i + 1) 
Next i 
 
OSE = ONE - (ONW - OSW) 
 
'Octagon West Side Walls 
OWS = 3 
owecount = 0 
ReDim OWSW(v) 
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For i = 1 To v - 2 
    OWS = OWS + (2 * i + 1) 
    OWSW(i) = OWS 
    owecount = owecount + 1 
Next i 
 
'Octagon East Side Walls 
ReDim OESW(v) 
 
For i = 1 To owecount 
    OESW(i) = ONE - (OWSW(i) - OSW) 
Next i 
 
'Octagon South Side Walls 
OSS = 3 
osncount = 0 
ReDim OSSW(u) 
i = 2 
 
For j = 1 To u - 2 
    k = i 
    If k > v Then 
      k = v 
    End If 
    OSS = OSS + (2 * k + 1) 
    OSSW(i - 1) = OSS 
    osncount = osncount + 1 
    i = i + 1 
Next j 
 
'Octagon North Side Walls 
ReDim ONSW(u) 
 
For i = 1 To osncount 
    ONSW(i) = ONE - (OSSW(i) - OSW) 
Next i 
 
'Non-corner Octagon 
ReDim Start(owecount + 1 + osncount) 
ReDim Oend(owecount + 1 + osncount) 
ReDim CenterO(2 * owecount * osncount) 
ReDim Squares((owecount + 2) * (osncount + 2)) 
startcount = 0 
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For i = 1 To owecount 
    Start(i) = OWSW(i) 
    Oend(i) = OESW(i) 
    startcount = startcount + 1 
Next i 
 
Start(owecount + 1) = ONW 
Oend(owecount + 1) = OSE 
 
For i = osncount + owecount + 1 To owecount + 2 Step -1 
    Start(i) = ONSW(i - owecount - 1) 
    Oend(i) = OSSW(i - owecount - 1) 
    startcount = startcount + 1 
Next i 
 
Call Sorter(Start(), owecount + 1# + osncount) 
Call Sorter(Oend(), owecount + 1# + osncount) 
 
'Map octagons & squares 
k = 1 
kk = 1 
For i = 1 To startcount + 1 
    For j = Start(i) + 1 To Oend(i) - 1 Step 2 
        Squares(kk) = j 
        kk = kk + 1 
    Next j 
 
    For j = Start(i) + 2 To Oend(i) - 1 Step 2 
        CenterO(k) = j 
        k = k + 1 
    Next j 
Next i 
 
'Map octagons to x & y coordinates 
ReDim Oct(u * v) 
j = 1 
 
For i = 1 To owecount 
    Oct(i) = OWSW(j) 
    j = j + 1 
Next i 
k = i 
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j = 1 
For i = k To (owecount + k) 
    Oct(i) = OESW(j) 
    j = j + 1 
Next i 
k = i - 1 
 
j = 1 
For i = k To (osncount + k) 
    Oct(i) = OSSW(j) 
    j = j + 1 
Next i 
k = i - 1 
 
j = 1 
For i = k To (osncount + k) 
    Oct(i) = ONSW(j) 
    j = j + 1 
Next i 
k = i - 1 
 
j = 1 
For i = k To ((owecount * osncount) + k - 1) 
    Oct(i) = CenterO(j) 
    j = j + 1 
Next i 
 
k = i 
 
Oct(k) = OSW 
Oct(k + 1) = ONW 
Oct(k + 2) = OSE 
Oct(k + 3) = ONE 
 
Call Sorter(Oct(), (u * v)) 
ReDim Oct_XY(u * 2, v * 2) 
i = 1 
j = 1 
count = 1 
Oct_XY(1, 1) = Oct(1) 
 
For A = 2 To (u * v) 
    If Oct(A) = Oct(A - 1) + 3 Then 
        If (j + count) > v Then 
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            temp = count - (v - j) 
            count = count - temp 
        End If 
    j = j + count 
    i = i - (count - 1) 
 
    count = 1 
    ElseIf Oct(A) = Oct(A - 1) + 2 Then 
        j = j - 1 
        i = i + 1 
        count = count + 1 
    End If 
 
Oct_XY(i, j) = Oct(A) 
 
Next A 
 
'Remap Octagons to normal XY Grid 
ii = 1 
ReDim OXY(u * 2, v * 2) 
 
For i = 1 To u 
    jj = 1 
    For j = 1 To v 
        OXY(ii, jj) = Oct_XY(i, j) 
        jj = jj + 2 
    Next j 
    ii = ii + 2 
Next i 
 
'Map Squares to x & y coordinates 
For i = 2 To (u - 1) * 2 Step 2 
    For j = 2 To (v - 1) * 2 Step 2 
        OXY(i, j) = OXY(i - 1, j + 1) + 1 
    Next j 
Next i 
 
'2D Array for Directions - DN 
'1D Array for Node Area - nodeArea 
 
'Corners 
DN(1, 1) = 3 
DN(TL, 4) = ONW 
DN(TR, 3) = ONE 
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DN(BR, 2) = OSE 
 
nodeArea(1) = 3 
nodeArea(TL) = 3 
nodeArea(TR) = 3 
nodeArea(BR) = 3 
 
'West Side Walls 
DN(WSW(1), 4) = OSW 
DN(WSW(1), 1) = OWSW(1) 
DN(WSW(wecount), 4) = OWSW(owecount) 
DN(WSW(wecount), 1) = ONW 
 
nodeArea(WSW(1)) = 2 
nodeArea(WSW(wecount)) = 2 
 
j = 1 
For i = 2 To wecount - 1 
    DN(WSW(i), 4) = OWSW(j) 
    DN(WSW(i), 1) = OWSW(j + 1) 
    nodeArea(WSW(i)) = 2 
j = j + 1 
Next i 
 
'East Side Walls 
Call Sorter(ESW(), wecount) 
Call Sorter(OESW(), owecount) 
 
DN(ESW(1), 2) = OESW(1) 
DN(ESW(1), 3) = OSE 
DN(ESW(wecount), 2) = ONE 
DN(ESW(wecount), 3) = OESW(owecount) 
 
nodeArea(ESW(1)) = 2 
nodeArea(ESW(wecount)) = 2 
 
j = 1 
For i = 2 To wecount - 1 
    DN(ESW(i), 3) = OESW(j) 
    DN(ESW(i), 2) = OESW(j + 1) 
    nodeArea(ESW(i)) = 2 
    j = j + 1 
Next i 
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'South Side Walls 
DN(SSW(1), 1) = OSSW(1) 
DN(SSW(1), 2) = OSW 
DN(SSW(sncount), 1) = OSE 
DN(SSW(sncount), 2) = OSSW(osncount) 
 
nodeArea(SSW(1)) = 2 
nodeArea(SSW(sncount)) = 2 
 
j = 1 
For i = 2 To sncount - 1 
    DN(SSW(i), 2) = OSSW(j) 
    DN(SSW(i), 1) = OSSW(j + 1) 
    nodeArea(SSW(i)) = 2 
j = j + 1 
Next i 
 
'North Side Walls 
Call Sorter(NSW(), sncount) 
Call Sorter(ONSW(), osncount) 
DN(NSW(1), 3) = ONW 
DN(NSW(1), 4) = ONSW(1) 
DN(NSW(sncount), 3) = ONSW(osncount) 
DN(NSW(sncount), 4) = ONE 
 
nodeArea(NSW(1)) = 2 
nodeArea(NSW(sncount)) = 2 
 
j = 1 
For i = 2 To sncount - 1 
    DN(NSW(i), 3) = ONSW(j) 
    DN(NSW(i), 4) = ONSW(j + 1) 
    nodeArea(NSW(i)) = 2 
j = j + 1 
Next i 
 
'Octagons Corners 
DN(OSW, 1) = OXY(2, 2) 
DN(OSW, 2) = WSW(1) 
DN(OSW, 3) = BL 
DN(OSW, 4) = SSW(1) 
DN(OSW, 5) = OWSW(1) 
DN(OSW, 8) = OSSW(1) 
 



 112

DN(ONW, 1) = NSW(1) 
DN(ONW, 2) = TL 
DN(ONW, 3) = WSW(wecount) 
DN(ONW, 4) = OXY(2, 2 * v - 2) 
DN(ONW, 7) = OWSW(owecount) 
DN(ONW, 8) = ONSW(1) 
 
DN(ONE, 1) = TR 
DN(ONE, 2) = NSW(sncount) 
DN(ONE, 3) = OXY(u * 2 - 2, 2 * v - 2) 
DN(ONE, 4) = ESW(wecount) 
DN(ONE, 6) = ONSW(osncount) 
DN(ONE, 7) = OESW(owecount) 
 
DN(OSE, 1) = ESW(1) 
DN(OSE, 2) = OXY(u * 2 - 2, 2) 
DN(OSE, 3) = SSW(sncount) 
DN(OSE, 4) = BR 
DN(OSE, 5) = OESW(1) 
DN(OSE, 6) = OSSW(osncount) 
 
nodeArea(OSW) = 0 
nodeArea(ONW) = 0 
nodeArea(ONE) = 0 
nodeArea(OSE) = 0 
 
'Octagon Walls 
'Octagon West Side Walls 
i = 1 
    count = 2 
    For j = 3 To v + v - 3 Step 2 
        DN(OXY(i, j), 1) = OXY(i + 1, j + 1) 
        DN(OXY(i, j), 2) = WSW(count) 
        DN(OXY(i, j), 3) = WSW(count - 1) 
        DN(OXY(i, j), 4) = OXY(i + 1, j - 1) 
        DN(OXY(i, j), 5) = OXY(i, j + 2) 
        DN(OXY(i, j), 7) = OXY(i, j - 2) 
        DN(OXY(i, j), 8) = OXY(i + 2, j) 
        nodeArea(OXY(i, j)) = 0 
        count = count + 1 
    Next j 
 
'Octagon East Side Walls 
i = u + (u - 1) 
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    count = 2 
    For j = 3 To v + v - 3 Step 2 
        DN(OXY(i, j), 1) = ESW(count) 
        DN(OXY(i, j), 2) = OXY(i - 1, j + 1) 
        DN(OXY(i, j), 3) = OXY(i - 1, j - 1) 
        DN(OXY(i, j), 4) = ESW(count - 1) 
        DN(OXY(i, j), 5) = OXY(i, j + 2) 
        DN(OXY(i, j), 6) = OXY(i - 2, j) 
        DN(OXY(i, j), 7) = OXY(i, j - 2) 
        nodeArea(OXY(i, j)) = 0 
        count = count + 1 
    Next j 
 
'Octagon South Side Walls 
j = 1 
    count = 2 
    For i = 3 To u + u - 3 Step 2 
        DN(OXY(i, j), 1) = OXY(i + 1, j + 1) 
        DN(OXY(i, j), 2) = OXY(i - 1, j + 1) 
        DN(OXY(i, j), 3) = SSW(count - 1) 
        DN(OXY(i, j), 4) = SSW(count) 
        DN(OXY(i, j), 5) = OXY(i, j + 2) 
        DN(OXY(i, j), 6) = OXY(i - 2, j) 
        DN(OXY(i, j), 8) = OXY(i + 2, j) 
        nodeArea(OXY(i, j)) = 0 
        count = count + 1 
    Next i 
 
'Octagon North Side Walls 
j = 2 * v - 1 
    count = 2 
    For i = 3 To u + u - 3 Step 2 
        DN(OXY(i, j), 1) = NSW(count) 
        DN(OXY(i, j), 2) = NSW(count - 1) 
        DN(OXY(i, j), 3) = OXY(i - 1, j - 1) 
        DN(OXY(i, j), 4) = OXY(i + 1, j - 1) 
        DN(OXY(i, j), 6) = OXY(i - 2, j) 
        DN(OXY(i, j), 7) = OXY(i, j - 2) 
        DN(OXY(i, j), 8) = OXY(i + 2, j) 
        nodeArea(OXY(i, j)) = 0 
        count = count + 1 
    Next i 
 
'Center Octagons 
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    For i = 3 To 2 * u - 3 Step 2 
        For j = 3 To 2 * v - 3 Step 2 
            DN(OXY(i, j), 1) = OXY(i + 1, j + 1) 
            DN(OXY(i, j), 2) = OXY(i - 1, j + 1) 
            DN(OXY(i, j), 3) = OXY(i - 1, j - 1) 
            DN(OXY(i, j), 4) = OXY(i + 1, j - 1) 
            DN(OXY(i, j), 5) = OXY(i, j + 2) 
            DN(OXY(i, j), 6) = OXY(i - 2, j) 
            DN(OXY(i, j), 7) = OXY(i, j - 2) 
            DN(OXY(i, j), 8) = OXY(i + 2, j) 
            nodeArea(OXY(i, j)) = 0 
        Next j 
    Next i 
 
'Squares 
For i = 2 To 2 * u - 2 Step 2 
    For j = 2 To 2 * v - 2 Step 2 
            DN(OXY(i, j), 1) = OXY(i + 1, j + 1) 
            DN(OXY(i, j), 2) = OXY(i - 1, j + 1) 
            DN(OXY(i, j), 3) = OXY(i - 1, j - 1) 
            DN(OXY(i, j), 4) = OXY(i + 1, j - 1) 
            nodeArea(OXY(i, j)) = 1 
    Next j 
Next i 
 
For i = 1 To NN 
  For j = 1 To 8 
    If DN(i, j) <> 0 Then Perm(i, DN(i, j)) = Perm1 
  Next 
Next 
 
End Sub 
 
'*********************************************************************** 
 
Sub Memory_Allocation() 
ReDim Pold(NN): ReDim Pn(NN): ReDim Pwf_f(NN) 
ReDim Soi(NN): ReDim Swi(NN): ReDim SLi(NN) 
ReDim Son(NN): ReDim Swn(NN): ReDim Stotal(NN) 
ReDim Vp(NN) 
ReDim nodeArea(NN) 
ReDim por(NN) 
ReDim Perm(NN, NN) 
ReDim Ct(NN) 
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ReDim rowFill(NN) 
ReDim miuo(NN): ReDim Bo(NN): ReDim Co(NN) 
ReDim miuw(NN): ReDim Bw(NN): ReDim Cw(NN) 
ReDim Kroi(NN): ReDim Krwi(NN) 
ReDim LambdaO(NN): ReDim LambdaW(NN): ReDim LambdaT(NN) 
ReDim beta(NN): ReDim MB(NN): ReDim Transm(NN, 8) 
ReDim miuo_avg(NN, 8): ReDim miuw_avg(NN, 8) 
ReDim Bo_avg(NN, 8): ReDim Bw_avg(NN, 8) 
ReDim AO(NN, 8): ReDim AW(NN, 8): ReDim AT(NN, 8) 
ReDim ACT(NN) 
ReDim Qo(NN): ReDim Qw(NN): ReDim Qt(NN) 
ReDim Qon(NN): ReDim Qwn(NN): ReDim Qtn(NN) 
 
If Nwell <> 0 Then 
    ReDim iloc(Nwell): ReDim WConst(Nwell): ReDim WellType(Nwell) 
    ReDim rw(Nwell): ReDim ro(Nwell): ReDim skin(Nwell) 
End If 
 
ReDim Jmodel(NN) 
ReDim Pwf(NN): ReDim Pwfn(NN) 
ReDim LambdaO(NN), LambdaW(NN), LambdaG(NN), LambdaT(NN) 
ReDim Vpn(NN) 
ReDim Bon(NN): ReDim Bwn(NN) 
ReDim OOIP(NN): ReDim WWIP(NN) 
ReDim OOIPn(NN): ReDim WWIPn(NN) 
ReDim MatBal(NN): ReDim MatBalE(NN) 
 
End Sub 
 
'*********************************************************************** 
 
Sub Sorter(Int_no() As Double, Int_ArraySize As Double) 
Dim temp As Double 
Dim i As Integer, j As Integer 
 
For i = Int_ArraySize To 1 Step -1 
    For j = 2 To i 
        If Int_no(j - 1) > Int_no(j) Then 
            temp = Int_no(j - 1) 
            Int_no(j - 1) = Int_no(j) 
            Int_no(j) = temp 
        End If 
    Next j 
Next i 
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End Sub 
 
'*********************************************************************** 
 
Sub Initial() 
Dim i As Integer, j As Integer, k As Integer 
Dim SumC1 As Byte, SumC2 As Byte 
 
'Initializes time and arrays for presure, and coefficients. 
Nt = 0 
Np = 0 
Ni = 0 
 
For i = 1 To NN 
    Pold(i) = Pinit 
    Pn(i) = Pold(i) 
    Pwfn(i) = Pwf(i) 
    Soi(i) = Sor 
    Swi(i) = Swc 
    Son(i) = Soi(i) 
    Swn(i) = Swi(i) 
    por(i) = Porc 
Next i 
 
If (gridType = "HGB") Then 
    For i = 1 To NN 
        SumC1 = 0 
         
        For j = 1 To 8 
            If DN(i, j) <> 0 Then SumC1 = SumC1 + 1 
        Next j 
         
        If SumC1 >= 5 Then 
            Vp(i) = por(i) * areaOctagon * ht 
        ElseIf SumC1 = 4 Then 
            Vp(i) = por(i) * areaSquare * ht 
        ElseIf SumC1 = 2 Then 
            Vp(i) = por(i) * areaWallTriangle * ht 
        ElseIf SumC1 = 1 Then 
            Vp(i) = por(i) * areaCornerTriangle * ht 
        End If 
    Next i 
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ElseIf (gridType = "SQ") Then 
    For i = 1 To NN 
        Vp(i) = por(i) * dx(i) * dy(i) * ht 
    Next i 
End If 
 
Call Call_PVT(Pold()) 
Call Mobilities 
 
TotalOIP = 0# 
TotalWIP = 0# 
 
For i = 1 To NN 
    Bon(i) = Bo(i) 
    Bwn(i) = Bw(i) 
    Vpn(i) = Vp(i) 
    OOIP(i) = Vp(i) * Soi(i)   'rcf 
    WWIP(i) = Vp(i) * Swi(i)   'rcf 
    TotalOIP = TotalOIP + OOIP(i)   'rcf 
    TotalWIP = TotalWIP + WWIP(i)   'rcf 
Next i 
 
CumOil = 0#: CumWater = 0# 
 
End Sub 
 
'*********************************************************************** 
 
Sub Interpol() 
    Call Call_PVT(Pn()) 
    Call Avg_PVT 
    Call Mobilities 
End Sub 
 
'*********************************************************************** 
 
Sub MatrixB() 
Dim i As Integer, j As Integer 
Dim SumC1 As Byte 
ReDim Bmat(NN) 
 
For i = 1 To NN 
    Ct(i) = (Son(i) * Co(i)) + (Swn(i) * Cw(i)) + Comp 
Next i 
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For i = 1 To NN 
    beta(i) = Vpn(i) * Ct(i) / delt 
    MB(i) = -beta(i) * Pold(i)   'rcf/Day 
    Bmat(i) = MB(i) 
Next i 
 
For i = 1 To Nwell 
    j = iloc(i) 
 
    Select Case WellType(i) 
       Case "ORate", "WRate" 
           MB(j) = (-beta(j) * Pold(j)) + Qo(j) + Qw(j)         'rcf/Day 
           Bmat(j) = MB(j) 
 
       Case "Pres" 
           MB(j) = (-beta(j) * Pold(j)) - (Jmodel(i) * LambdaT(j) * Pwf(j)) 'rcf/Day 
           'MB(j) = (-beta(j) * Pn(j)) + (Jmodel(i) * LambdaO(j) * (Pn(j) - Pwf(j))) + 
(Jmodel(i) * LambdaW(j) * (Pn(j) - Pwf(j)))  'rcf/Day 
           'MB(j) = -beta(j) * Pn(j) + Qo(j) + Qw(j) 'rcf/Day 
           Bmat(j) = MB(j) 
    End Select 
Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub Call_PVT(Px() As Double) 
Dim i As Integer 
 
For i = 1 To NN 
    miuo(i) = Interpolate(Px(i), p_pvt(), miuo_pvt()) 
    Bo(i) = Interpolate(Px(i), p_pvt(), Bo_pvt()) 
    Co(i) = Interpolate(Px(i), p_pvt(), Co_pvt()) 
    miuw(i) = Interpolate(Px(i), p_pvt(), miuw_pvt()) 
    Bw(i) = Interpolate(Px(i), p_pvt(), Bw_pvt()) 
    Cw(i) = Interpolate(Px(i), p_pvt(), Cw_pvt()) 
    Kroi(i) = Interpolate(Swi(i), Sw_Tab(), Kro_tab()) 
    Krwi(i) = Interpolate(Swi(i), Sw_Tab(), Krw_tab()) 
Next i 
 
End Sub 
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'*********************************************************************** 
 
Function Interpolate(y As Double, mm() As Double, Nm() As Double) As Double 
Dim i As Double 
Dim A1 As Double, A2 As Double, B1 As Double, B2 As Double 
 
If mm(LBound(mm)) > mm(UBound(mm)) Then 
    For i = LBound(mm) To UBound(mm) - 1 
        If y <= mm(i) And y > mm(i + 1) Then 
            A1 = mm(i) 
            A2 = mm(i + 1) 
            B1 = Nm(i) 
            B2 = Nm(i + 1) 
        End If 
        If y > mm(LBound(mm)) Then 
            A1 = mm(LBound(mm)) 
            A2 = mm(LBound(mm) + 1) 
            B1 = Nm(LBound(mm)) 
            B2 = Nm(LBound(mm) + 1) 
        End If 
        If y < mm(UBound(mm)) Then 
            A1 = mm(UBound(mm)) 
            A2 = mm(UBound(mm) - 1) 
            B1 = Nm(UBound(mm)) 
            B2 = Nm(UBound(mm) - 1) 
        End If 
    Next i 
Else 
    For i = 1 To UBound(mm) - 1 
        If y >= mm(i) And y <= mm(i + 1) Then 
            A1 = mm(i) 
            A2 = mm(i + 1) 
            B1 = Nm(i) 
            B2 = Nm(i + 1) 
        End If 
        If y < mm(LBound(mm)) Then 
            A1 = mm(LBound(mm)) 
            A2 = mm(LBound(mm) + 1) 
            B1 = Nm(LBound(mm)) 
            B2 = Nm(LBound(mm)) 
        End If 
        If y > mm(UBound(mm)) Then 
            A1 = mm(UBound(mm)) 
            A2 = mm(UBound(mm) - 1) 
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            B1 = Nm(UBound(mm)) 
            B2 = Nm(UBound(mm)) 
        End If 
 
    Next i 
End If 
Interpolate = B1 + (B2 - B1) / (A2 - A1) * (y - A1) 
 
End Function 
 
'*********************************************************************** 
 
Sub Avg_PVT() 
 
Dim i As Integer, j As Integer 
For i = 1 To NN 
    For j = 1 To 8 
        If (DN(i, j) <> 0) Then 
            miuo_avg(i, j) = ArithAvg(miuo(i), miuo(DN(i, j))) 
            miuw_avg(i, j) = ArithAvg(miuw(i), miuw(DN(i, j))) 
            Bo_avg(i, j) = ArithAvg(Bo(i), Bo(DN(i, j))) 
            Bw_avg(i, j) = ArithAvg(Bw(i), Bw(DN(i, j))) 
        End If 
    Next j 
Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub Trans() 
Dim i As Integer, j As Integer, k As Byte 
Dim E As Integer, W As Integer, n As Integer, S As Integer 
Dim SumC1 As Byte 
Dim SumC2 As Byte 
 
E = 8 
n = 5 
W = 6 
S = 7 
 
If (gridType = "HGB") Then 
    For i = 1 To NN 
        SumC1 = 0 
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        For k = 1 To 8 
            If DN(i, k) <> 0 Then SumC1 = SumC1 + 1 
        Next 
         
        For j = 1 To 8 
            If (DN(i, j) <> 0) Then 
                 
                kavg = HaAvg(Perm(i, DN(i, j)), Perm(DN(i, j), i)) 
                SumC2 = 0 
                For k = 1 To 8 
                    If DN(DN(i, j), k) <> 0 Then SumC2 = SumC2 + 1 
                Next 
 
                If (SumC1 >= 5 And SumC2 >= 5) Then 
                    Transm(i, j) = 0.00633 * kavg * m * ht / oct_oct 
                ElseIf SumC1 <> SumC2 And (SumC1 <= 4 Or SumC2 <= 4) Then 
                    Transm(i, j) = 0.00633 * kavg * m * ht / oct_rect_tri 
                End If 
                 
            End If 
        Next j 
         
    Next i 
 
ElseIf (gridType = "SQ") Then 
 
    For i = 1 To NN 
        For j = 1 To 8 
            If (DN(i, j) <> 0) Then 
                kavg = HaAvg(Perm(i, DN(i, j)), Perm(DN(i, j), i)) 
                 
                If (j = W) Then 
                    Transm(i, j) = 0.00633 * kavg * dy(i) * ht / dx(i) 
                ElseIf (j = S) Then 
                    Transm(i, j) = 0.00633 * kavg * dx(i) * ht / dy(i) 
                ElseIf (j = E) Then 
                    Transm(i, j) = 0.00633 * kavg * dy(i) * ht / dx(i) 
                ElseIf (j = n) Then 
                    Transm(i, j) = 0.00633 * kavg * dx(i) * ht / dy(i) 
                End If 
                 
            End If 
        Next j 
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    Next i 
End If 
 
End Sub 
 
'*********************************************************************** 
 
Function HaAvg(A As Double, B As Double) As Double 
HaAvg = 2 * A * B / (A + B) 
End Function 
 
'*********************************************************************** 
 
Function ArithAvg(A As Double, B As Double) As Double 
ArithAvg = (A + B) / 2 
End Function 
 
'*********************************************************************** 
 
Sub MatrixA() 
Dim inc As Integer 
Dim i As Integer, j As Integer, k As Integer 
Dim NAt(), sumXt As Double 
ReDim AoSat(NN): ReDim AwSat(NN) 
ReDim NAt(NN) 
ReDim Amat(NN, NN) 
 
 
'ADD UP TRANSM FROM ALL DIRECTIONS 
For i = 1 To NN 
    For j = 1 To 8 
        If (DN(i, j) <> 0) Then 
            Call Kr_upstream(i, DN(i, j)) 
            Debug.Print KROUPS, KRWUPS 
            AO(i, j) = Transm(i, j) * KROUPS / (miuo_avg(i, j) * Bo_avg(i, j))  'scf/psi-Day 
            AW(i, j) = Transm(i, j) * KRWUPS / (miuw_avg(i, j) * Bw_avg(i, j)) 
        End If 
    Next j 
Next i 
 
For i = 1 To NN 
    sumXt = 0 
    For j = 1 To 8 
        If (DN(i, j) <> 0) Then 
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            AT(i, j) = (Bon(i) * AO(i, j)) + (Bwn(i) * AW(i, j)) 'rcf/psi-Day 
            Amat(i, DN(i, j)) = AT(i, j) 
            sumXt = sumXt + AT(i, j) 
        End If 
    Next j 
 
    NAt(i) = sumXt 
    ACT(i) = -NAt(i) - beta(i)      'rcf/psi-Day 
    Amat(i, i) = ACT(i) 
Next i 
 
For i = 1 To Nwell 
    j = iloc(i) 
      
     Select Case WellType(i) 
     Case "Pres" 
        ACT(j) = -NAt(j) - beta(j) - (Jmodel(i) * LambdaT(j))    'rcf/psi-Day 
        Amat(j, j) = ACT(j) 
     End Select 
Next i 
 
If FindIndexRow = False Then 
For i = 1 To NN 
   inc = 0 
   For j = 1 To NN 
      If Amat(i, j) <> 0 Then 
         rowFill(i).n = inc + 1 
         inc = inc + 1 
         ReDim Preserve rowFill(i).indexRow(inc) 
         rowFill(i).indexRow(inc) = j 
      End If 
   Next 
Next 
FindIndexRow = True 
End If 
 
End Sub 
 
'*********************************************************************** 
 
Sub Kr_upstream(A As Integer, B As Integer) 
'Single-point mobility-weighting 
 
If Pn(A) >= Pn(B) Then 
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    KROUPS = Kroi(A) 
    KRWUPS = Krwi(A) 
Else 
    KROUPS = Kroi(B) 
    KRWUPS = Krwi(B) 
End If 
 
End Sub 
 
Sub Kr_upstream2(A As Integer, B As Integer) 
'Two-point mobility-weighting 
 
If Pn(A) >= Pn(B) Then 
    If A = 1 Or A = NN Then 
        KROUPS = Kroi(A) 
        KRWUPS = Krwi(A) 
    Else 
        'For equal gridblock lengths 
        KROUPS = 1.5 * Kroi(A) - 0.5 * Kroi(B) 
        KRWUPS = 1.5 * Krwi(A) - 0.5 * Krwi(B) 
    End If 
Else 
    If A = 1 Or A = NN Then 
        KROUPS = Kroi(B) 
        KRWUPS = Krwi(B) 
    Else 
        KROUPS = 1.5 * Kroi(B) - 0.5 * Kroi(A) 
        KRWUPS = 1.5 * Krwi(B) - 0.5 * Krwi(A) 
    End If 
End If 
 
If (KRWUPS < 0) Then 
    KRWUPS = 0 
End If 
 
If (Kroi(A) > Kroi(B)) Then 
    If (KROUPS > Kroi(A)) Then 
        KROUPS = Kroi(A) 
    End If 
Else 
    If (KROUPS > Kroi(B)) Then 
        KROUPS = Kroi(B) 
    End If 
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End If 
 
If (KRWUPS > 1#) Then 
    KRWUPS = 1 
End If 
 
If (KROUPS < 0#) Then 
    KROUPS = 0 
End If 
 
End Sub 
 
'*********************************************************************** 
 
Sub Well() 
Dim i As Integer, j As Integer, k As Integer, ii As Integer 
Dim SumC1 As Byte 
Dim SumC2 As Byte 
Dim pi As Double 
 
ReDim Prod_Inj(Nwell) 
pi = 22# / 7# 
 
With Worksheets("Data") 
     
    For i = 1 To Nwell 
        iloc(i) = .Cells(21 + i, 1).Value 
        WConst(i) = .Cells(21 + i, 6).Value 
        WellType(i) = .Cells(21 + i, 2).Text 
        rw(i) = .Cells(21 + i, 7).Value 
        skin(i) = .Cells(21 + i, 8).Value 
        Prod_Inj(i) = .Cells(21 + i, 10).Value 
     
        If (gridType = "HGB") Then 
            SumC1 = 0 
             
            For k = 1 To 8 
                If DN(iloc(i), k) <> 0 Then SumC1 = SumC1 + 1 
            Next k 
             
            If SumC1 = 4 Then 
                'Square 
                ro(i) = 0.208 * (m / 2) 
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            ElseIf SumC1 = 2 Then 
                'Wall Triangle 
                ro(i) = Exp((2 * (m / oct_rect_tri) * Log(oct_rect_tri) - 3.142857143) / (2 * (m 
/ oct_rect_tri))) 
                        
            ElseIf SumC1 = 1 Then 
                'Corner Triangle 
                ro(i) = Exp(((m / oct_rect_tri) * Log(oct_rect_tri) - 1.5707963) / (m / 
oct_rect_tri)) 
         
            End If 
               
            For j = 1 To 8 
                If (DN(iloc(i), j) <> 0) Then 
             SumC2 = 0 
                For k = 1 To 8 
                    If DN(DN(iloc(i), j), k) <> 0 Then SumC2 = SumC2 + 1 
                Next k 
                     
                    'Internal Octagons 
                    If (SumC1 = 8 And SumC2 < 5) Then 
                        ro(i) = oct_oct * Exp(-6.285714286 / (8 * m / oct_oct)) 
                         
                    ElseIf SumC1 = 8 And SumC2 >= 5 Then 
                        ro(i) = oct_rect_tri * Exp(-6.285714286 / (8 * m / oct_rect_tri)) 
                     
                    'Octagon Walls 
                    ElseIf SumC1 = 7 Then 
                        ro(i) = ((4 * ((m / oct_rect_tri) * Log(oct_rect_tri)) + _ 
                                2 * ((m / oct_oct) * Log(oct_oct))) - 4.712389) / _ 
                                (4 * (m / oct_rect_tri) + 2 * (m / oct_oct)) 
                 
                    ElseIf SumC1 = 6 Then 
                        ro(i) = ((4 * ((m / oct_rect_tri) * Log(oct_rect_tri)) + _ 
                                3 * ((m / oct_oct) * Log(oct_oct))) - 5.4977871) / _ 
                                (4 * (m / oct_rect_tri) + 3 * (m / oct_oct)) 
                    End If 
               End If 
            Next j 
         
        ElseIf (gridType = "SQ") Then 
            ro(i) = 0.14 * (((dx(iloc(i)) ^ 2) + (dy(iloc(i)) ^ 2)) ^ 0.5) 
        End If 
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    Next i 
     
    For i = 1 To Nwell 
        j = iloc(i) 
     
        Select Case WellType(i) 
           Case "ORate" 
               Qo(j) = (.Cells(21 + i, 3).Value)                     'rcf/d 
               Qw(j) = Qo(j) * LambdaW(j) / LambdaO(j)               'rcf/d 
               Qt(j) = Qo(j) + Qw(j)                                 'rcf/d 
               Pwf(j) = Pn(j) - Qt(j) / (Jmodel(i) * LambdaT(j))     'psi 
     
           Case "WRate" 
               Qw(j) = (.Cells(21 + i, 4).Value)                      'rcf/d 
               If UCase(Prod_Inj(i)) = "PROD" Then 
                  Qo(j) = Qw(j) * LambdaO(j) / LambdaW(j)             'rcf/d 
               End If 
               Qt(j) = Qo(j) + Qw(j)                                  'rcf/d 
               Pwf(j) = Pn(j) - Qt(j) / (Jmodel(i) * LambdaT(j))      'psi 
     
           Case "Pres" 
               Pwf(j) = .Cells(21 + i, 5).Value                       'psi 
          End Select 
    Next i 
 
End With 
 
For i = 1 To NN 
    Qon(i) = Qo(i) 
    Qwn(i) = Qw(i) 
    Qtn(i) = Qt(i) 
    Pwfn(i) = Pwf(i) 
Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub Mobilities() 
Dim i As Integer 
 
For i = 1 To NN 
        LambdaO(i) = Kroi(i) / miuo(i)  
        LambdaW(i) = Krwi(i) / miuw(i) 
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        LambdaT(i) = LambdaO(i) + LambdaW(i) 
Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub Chord_slope() 
Dim i As Integer 
 
    For i = 1 To NN 
        Vpn(i) = Vp(i) * (1 + Comp * (Pn(i) - Pold(i))) 
        Bon(i) = Bo(i) * (1 - Co(i) * (Pn(i) - Pold(i))) 
        Bwn(i) = Bw(i) * (1 - Cw(i) * (Pn(i) - Pold(i))) 
    Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub UpdateSat() 
 
Dim i As Integer, j As Integer 
Dim p_ref As Double, AoTot_DELP As Double, AwTot_DELP As Double 
 
Call Chord_slope 
 
For i = 1 To NN 
AoTot_DELP = 0 
AwTot_DELP = 0 
    p_ref = Pn(i) 
     
    For j = 1 To 8 
        If DN(i, j) <> 0 Then AoTot_DELP = AoTot_DELP + (AO(i, j) * (Pn(DN(i, j)) - 
p_ref))    'scf/Day 
        If DN(i, j) <> 0 Then AwTot_DELP = AwTot_DELP + (AW(i, j) * (Pn(DN(i, j)) - 
p_ref)) 
    Next 
    Son(i) = (Bon(i) / Vpn(i)) * (delt * (AoTot_DELP - Qon(i) / Bo(i)) + (Vp(i) * Soi(i) / 
Bo(i))) 
    Swn(i) = (Bwn(i) / Vpn(i)) * (delt * (AwTot_DELP - Qwn(i) / Bw(i)) + (Vp(i) * 
Swi(i) / Bw(i))) 
 
    If Son(i) < Sw_Tab(LBound(Sw_Tab)) Then 
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      Son(i) = Sw_Tab(LBound(Sw_Tab)) 
    End If 
     
    If Swn(i) > Sw_Tab(UBound(Sw_Tab)) Then 
       Swn(i) = Sw_Tab(UBound(Sw_Tab)) 
    End If 
 
Next i 
 
For i = 1 To NN 
 If ((Abs(Swn(i) - Swi(i)) >= MaxSat) Or (Abs(Son(i) - Soi(i)) >= MaxSat)) Then 
 Cut_Sat = True 
 Exit For 
 End If 
Next 
 
For i = 1 To NN 
    Stotal(i) = Son(i) + Swn(i) 
Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub Well_New() 
Dim i As Integer, j As Integer, count As Integer 
ReDim delp(NN) 
 
Call Call_PVT(Pn()) 
Call Mobilities 
 
LoopAgain: 
For i = 1 To Nwell 
    j = iloc(i) 
    Select Case WellType(i) 
        Case "ORate" 
             Qon(j) = Qo(j)                                     'rcf/d 
             Qwn(j) = Qon(j) * LambdaW(j) / LambdaO(j)          'rcf/d 
             Qtn(j) = Qon(j) + Qwn(j)                           'rcf/d 
             Pwfn(j) = Pn(j) - Qtn(j) / (Jmodel(i) * LambdaT(j)) 'psi 
             If Qon(j) < 0 Then 
                MsgBox "xxxx" 
             End If 
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             If Pwfn(j) <= bhp Then 
             
                 WellType(i) = "Pres" 
                  GoTo LoopAgain 
            End If 
 
         Case "WRate" 
             Qwn(j) = Qw(j)                                'rcf/d 
             If UCase(Prod_Inj(i)) = "PROD" Then 
                Qon(j) = Qwn(j) * LambdaO(j) / LambdaW(j)  'rcf/d 
             Else 
                Qon(j) = 0 
             End If 
             Qtn(j) = Qon(j) + Qwn(j)                             'rcf/d 
             Pwfn(j) = Pn(j) - Qtn(j) / (Jmodel(i) * LambdaT(j))  'psi 
              
 
         Case "Pres" 
            Pwfn(j) = bhp                                                 'psi 
            If UCase(Prod_Inj(i)) = "PROD" And Pn(j) <= Pwfn(j) Then 
                Qon(j) = 0: Qwn(j) = 0: Qtn(j) = 0: Jmodel(i) = 0 
                Qo(j) = 0: Qw(j) = 0: Qt(j) = 0 
                Stop 
                GoTo Next_Well 
            End If 
             
            If UCase(Prod_Inj(i)) = "PROD" And Pn(j) > Pwfn(j) Then 
                Qon(j) = Jmodel(i) * LambdaO(j) * (Pn(j) - Pwfn(j))     'rcf/d 
            End If 
             
            Qwn(j) = Jmodel(i) * LambdaW(j) * (Pn(j) - Pwfn(j))        'rcf/d 
            Qtn(j) = Qon(j) + Qwn(j)                                   'rcf/d 
 
            If Pwfn(j) < bhp Then Stop 
            If Pwfn(j) > Pn(j) Then Stop 
   End Select 
Next_Well: 
Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub UpdateProperties() 
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Dim i As Integer 
 
For i = 1 To NN 
    Pold(i) = Pn(i) 
    Soi(i) = Son(i) 
    Swi(i) = Swn(i) 
    Qo(i) = Qon(i) 
    Qw(i) = Qwn(i) 
    Qt(i) = Qtn(i) 
    Pwf(i) = Pwfn(i) 
    Vp(i) = Vpn(i) 
Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_Well(ByVal step As Integer, ByVal t As Double) 
 
Dim i As Integer 
With Sheets("Pwf") 
    .Cells(i + 1, step + 1) = t 
  For i = 1 To NN 
    .Cells(i + 1, step + 1) = Pwfn(i) 
  Next i 
End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_ORate(ByVal step As Integer, ByVal t As Double) 
 
Dim i As Integer 
 
With Sheets("ORate") 
    .Cells(i + 1, step + 1) = t 
  For i = 1 To NN 
    .Cells(i + 1, step + 1) = Qon(i) / Bon(i) 
  Next 
End With 
 
End Sub 
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'*********************************************************************** 
 
Sub Print_WRate(ByVal step As Integer, ByVal t As Double) 
Dim i As Integer 
 
With Sheets("WRate") 
    .Cells(i + 1, step + 1) = t 
  For i = 1 To NN 
    .Cells(i + 1, step + 1) = Qwn(i) / Bwn(i) 
  Next 
End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_TRate(ByVal step As Integer, ByVal t As Double) 
Dim i As Integer 
 
With Sheets("TRate") 
    .Cells(i + 1, step + 1) = t 
  For i = 1 To NN 
    .Cells(i + 1, step + 1) = Qtn(i) 
  Next 
 
End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub CalcNp() 
Dim i As Integer, j As Integer, k As Byte, t As Double 
Dim SumC1 As Byte: Dim SumC2 As Byte 
Nt = 0 
 
For i = 1 To NN 
    Nt = Nt + Vpn(i) / Bon(i) 
            If t_step <> 0 Then 
               If Qon(i) > 0 Then Np = Np + Qon(i) / Bon(i) * delt 
               If Qwn(i) < 0 Then Ni = Ni - Qwn(i) / Bwn(i) * delt 
            End If 
Next i 
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If t_step = 0 Then IOIP = Nt 
    Mbe = Abs((IOIP + Ni - Nt - Np) / (IOIP + Ni) * 100) 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_MBE(ByVal step As Integer, ByVal t As Double) 
 
With Sheets("FIP") 
    .Cells(1, 2) = "Time,Days" 
    .Cells(1, 3) = "OIP,rcf" 
    .Cells(1, 4) = "WIP,rcf" 
    .Cells(1, 5) = "OOIP,rcf" 
    .Cells(1, 6) = "OWIP,rcf" 
    .Cells(1, 7) = "Cum. Oil Recovery" 
    .Cells(1, 8) = "Cum. Water Injected" 
    .Cells(step + 1, 1) = step 
    .Cells(step + 1, 2) = t 
    .Cells(step + 1, 3) = CumOil 
    .Cells(step + 1, 4) = CumWater 
    .Cells(step + 1, 5) = TotalOIP 
    .Cells(step + 1, 6) = TotalWIP 
    .Cells(step + 1, 7) = CumOil / TotalOIP '* 100 
    .Cells(step + 1, 8) = CumWater / TotalOIP '* 100 
End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub Cum_production() 
Dim i As Integer 
Dim CumO() As Double, CumW() As Double 
 
'Cumulative Oil/Water Produced/Injected 
    For i = 1 To NN 
        CumOil = CumOil + Qon(i) * delt 
        CumWater = CumWater + Qwn(i) * delt 
    Next i 
End Sub 
 
'*********************************************************************** 
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Sub Material_Balance() 
Dim i As Integer 
 
'MBE for every block 
Call Cum_production 
     
    For i = 1 To NN 
        OOIPn(i) = Vpn(i) * Son(i) 'rcf 
        WWIPn(i) = Vpn(i) * Swn(i) 'rcf 
         
        If Qon(i) <> 0 Or Qwn(i) <> 0 Then 
            MatBal(i) = (OOIPn(i) + WWIPn(i)) / (OOIP(i) + WWIP(i) - Qon(i) * delt + 
Qwn(i) * delt) 
            MatBalE(i) = (((OOIPn(i) + WWIPn(i)) / (OOIP(i) + WWIP(i) - Qon(i) * delt + 
Qwn(i) * delt)) - 1) * 100 
        Else 
            MatBal(i) = (OOIPn(i) + WWIPn(i)) / (OOIP(i) + WWIP(i)) 
            MatBalE(i) = (((OOIPn(i) + WWIPn(i)) / (OOIP(i) + WWIP(i))) - 1) * 100 
        End If 
    Next i 
 
End Sub 
 
'*********************************************************************** 
 
Sub Print_Result_MatBal(ByVal step As Integer, ByVal t As Double) 
Dim i As Integer 
With Sheets("MatBal") 
    .Cells(i + 1, step + 1) = t 
   
For i = 1 To NN 
    .Cells(i + 1, step + 1) = MatBal(i) 
Next i 
 
End With 
 
End Sub 
 
'*********************************************************************** 
 
Sub Calc_dxdy() 
Dim i As Integer, im As Integer, ip As Integer 
Dim j As Integer, jm As Integer, jp As Integer 
Dim k As Integer 
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ReDim dx(NN) 
ReDim dy(NN) 
ReDim delx(NX, NY) 
ReDim dely(NX, NY) 
 
k = 1 
For j = 1 To NY 
    For i = 1 To NX 
     
        im = i - 1: ip = i + 1 
        jm = j - 1: jp = j + 1 
         
        If i = 1 Then im = i 
        If i = NX Then ip = NX 
         
        If j = 1 Then jm = j 
        If j = NY Then jp = NY 
         
            
        delx(i, j) = (xD(i, j) - xD(im, j)) / 2 + (xD(ip, j) - xD(i, j)) / 2 
        dx(k) = delx(i, j) 
         
        dely(i, j) = (yD(i, j) - yD(i, jm)) / 2 + (yD(i, jp) - yD(i, j)) / 2 
        dy(k) = dely(i, j) 
         
        k = k + 1 
    Next i 
Next j 
 
End Sub 
 
‘############################################################ 
 
Option Base 1 
 
'*********************************************************************** 
 
Sub bicgstab(x0() As Double, B() As Double, A() As Double, resErr As Double, ByVal 
Itmax As Integer, x() As Double) 
Dim n As Integer 
Dim S() As Double, p() As Double, t() As Double 
Dim ErrTol As Double 
Dim r() As Double, hatr0() As Double 
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n = UBound(B): 
 
ReDim rho(Itmax + 1) 
ReDim r(n): ReDim hatr0(n) 
ReDim S(n): ReDim p(n): ReDim t(n) 
 
ErrTol = resErr * Norm(B()) 
x() = x0() 
If Norm(x()) <> 0 Then 
  For i = 1 To n 
    AX = 0 
    For j = 1 To rowFill(i).n 
     
      AX = AX + A(i, rowFill(i).indexRow(j)) * x(rowFill(i).indexRow(j)) 
    Next 
    r(i) = B(i) - AX 
  Next 
Else 
    r() = B() 
End If 
 
hatr0() = r() 
k = 0: rho(1) = 1: alpha = 1: omega = 1 
ReDim v(n): ReDim p(n): 
 
For i = 1 To n 
   rho(2) = rho(2) + hatr0(i) * r(i) 
Next 
 
zeta = Norm(r()): 
 
Do While ((zeta > ErrTol) And (k < Itmax - 1)) 
    k = k + 1 
     
    If omega = 0 Then 
       GoTo Err 
    End If 
     
    beta = (rho(k + 1) / rho(k)) * (alpha / omega) 
     
    For i = 1 To n 
       p(i) = r(i) + beta * (p(i) - omega * v(i)) 
    Next 
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    tau = 0 
    For i = 1 To n 
       AX = 0 
       For j = 1 To rowFill(i).n 
          AX = AX + A(i, rowFill(i).indexRow(j)) * p(rowFill(i).indexRow(j)) 
       Next 
       v(i) = AX 
       tau = tau + hatr0(i) * v(i) 
    Next 
     
    If tau = 0 Then 
        GoTo Err 
    End If 
     
    alpha = rho(k + 1) / tau 
     
    For i = 1 To n 
        S(i) = r(i) - alpha * v(i) 
    Next 
     
    tau = 0 
     
    For i = 1 To n 
       AX = 0 
       For j = 1 To rowFill(i).n 
          AX = AX + A(i, rowFill(i).indexRow(j)) * S(rowFill(i).indexRow(j)) 
       Next 
       t(i) = AX 
       tau = tau + t(i) ^ 2 
    Next 
     
    If tau = 0 Then 
       GoTo Err 
    End If 
     
    AX = 0 
    For i = 1 To n 
       AX = AX + t(i) * S(i) 
    Next 
     
    omega = AX / tau 
     
    AX = 0 
    For i = 1 To n 
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      AX = AX + (hatr0(i) * t(i)) 
      x(i) = x(i) + alpha * p(i) + omega * S(i) 
      r(i) = S(i) - omega * t(i) 
    Next 
     
    rho(k + 2) = -omega * AX 
    zeta = Norm(r()) 
Loop 
 
Exit Sub 
Err: 
MsgBox "Error" 
End Sub 
 
'*********************************************************************** 
 
Function Norm(RR1() As Double) 
Dim i As Integer, SumX As Double 
Norm = 0 
For i = 1 To UBound(RR1) 
  Norm = Norm + RR1(i) ^ 2 
Next 
Norm = Norm ^ 0.5 
End Function 
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