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ABSTRACT 
 
 

 

Genomic Analysis of 12-Oxo-Phytodienoic Acid Reductase Genes of Zea mays. 

(December 2004) 

Jinglan Zhang, B.S., Wuhan University 

Chair of Advisory Committee: Dr. Michael Kolomiets 

The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes of the octadecanoid pathway  

which converts linolenic acid to a phytohormone, jasmonic acid. Bioinformatics analysis of 

ESTs and genomic sequences from available private and public databases revealed that the 

maize genome encodes eight different OPR genes.    This number of maize OPR genes has 

been independently confirmed by Southern blot analysis and by mapping of individual OPR 

genes to maize chromosomes using oat maize chromosome addition lines.  Survey of 

massively parallel signature sequencing (MPSS) assays revealed that transcripts of each 

OPR gene accumulate differentially in diverse organs of maize plants. This data suggested 

that individual OPR genes may have a distinct function in development.  Similarly, RNA 

blot analysis revealed that distinct OPR genes are differentially regulated in response to 

stress hormones, wounding or pathogen infection.  ZmOPR1 and ZmOPR2 appear to have 

important functions in defense responses to pathogens because they are transiently induced 

by salicylic acid (SA), chitooligosaccharides and by infection with Cochliobolus carbonum, 

Bipolaris maydis and Fusarium verticillioides and not by wounding.  In contrast to these 

two genes, ZmOPR6 and ZmOPR7/8 are highly induced by wounding and treatments
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with wound-associated signaling molecules jasmonic acid, ethylene and abscisic acid. 

ZmOPR6 and ZmOPR7/8 are not induced by SA treatments or pathogen infections 

suggesting their specific involvement in wound-induced defense responses.  Possible 

functions of specific OPR genes are discussed. 
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INTRODUCTION 

  Maize is an ergonomically important crop consumed by humans and cattle. Both 

breeders and scientists have been seeking different means to improve the economic value 

of this crop. With the emergence of modern biology technique applied in modern 

agriculture, scientists are trying to understand how plant conducts adaptive responses to 

environmental signals at the molecular level. It may help scientists and farmers 

manipulate the plants to produce crops with broad spectrum resistance and high 

production. In another hand, maize has been used a model by biologist to study genetics 

for a long time. More recently, accumulated maize gene sequence data available to public 

makes biologists able to study this plant with genomics tools. A conservative estimation 

predicts maize has 59,000 genes  while some private industrial parities can provide two 

million expressed sequence tags (ESTs) and more than 25,000 full-length cDNAs to the 

public (Timmermans et al., 2004; Martienssen et al., 2004) under licensed agreement. 

Also, available genome survey sequence (GSS) database covers 95% of the genic region 

of maize genome. With these resources, it is practical to identify almost any gene in maize. 

My interest of this research project to identify one of maize gene families, 12 

oxo-phytodienoic acid reductase (OPR) gene family , that is associated with maize 

development control and resistance response.  The goals of this project includes: 1) 

Identification of the entire maize OPR gene family; 2) Characterization of the expression 

profiling of maize OPR gene family members in different developmental stages and in  

____________________ 
This thesis follows the style of Plant Physiology. 
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response to stresses; 3)Generating the maize opr1 and opr2 mutants for functional studies 

of their role in defense responses.  

In the past, much of our knowledge about the jasmonate biosynthesis and signaling 

pathway, also known as octadecanoid pathway, came from studies of dicotyledonous 

plants in which most genes encoding enzymes of this pathway have been characterized.  

The jasmonic acid pathway starts from the release of α-linolenic acid (α-LeA) from 

membranes by a phospholipase. This step is followed by addition of molecular oxygen at 

carbon atom 13 of α-LeA by a 13-lipoxygenase (13-LOX), leading to the formation of a 

fatty acid hydroperoxide 13S-hydroperoxy-(9Z,11E,15)-octadecatrienoic acid 

(13(S)-HPOT) (Shaller, 2000 and references therein). After sequential oxidization and 

cyclization by allene oxide synthase (AOS) and cyclase (AOC), the first two committed 

steps of this pathway, 13(S)-hydroperoxide gives rise to the jasmonic acid (JA) precursor, 

12-oxo-phytodienoic acid (OPDA) (Stenzel et al., 1988). The initial steps of JA 

biosynthesis pathway including LOX, AOS and AOC reactions occur in chloroplasts 

determinated by the study of the subcellular localization of these enzymes (Schaller et al., 

1998; Maucher et al., 2000; Ziegler et al., 2000; Froehlich et al., 2001). The following step 

in the pathway involves the reduction of the cyclopentenone ring of OPDA by OPDA 

reductase (OPR)  which reduces the 10,11 double bond of OPDA and gives rise to 3- three 

rounds of β-oxidation, OPC is converted to the final product of this pathway,  

oxo-2-(2’)(z)-pentenyl)-cyclopentane-1 octanoic acid (OPC) (Vick and Zimmerman., 

1984). After  jasmonic acid (JA). β-oxidation is believed to occur in peroxisomes where 

the enzymes for β-oxidation are located (Turner et al., 2002).  
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   Jasmonates such as JA, OPDA and related cyclopentanones were shown to act as plant 

growth regulators in various developmental processes such as root elongation, senescence, 

anther dehiscence, pollen maturation, and tuber formation and they are also potent 

modulators of defense responses against insects and pathogens (Parthier, 1991; Creelman 

and Mullet., 1997; Turner et al., 2002). Jasmonic acid occurs constitutively at a basal level 

(Stenzel et al., 1998). Levels of JA increase dramatically in response to wounding and 

contribute to resistance against herbivores by activating defense genes such as proteinase 

inhibitors (Farmer and Ryan 1990). Studies using Arabidopsis and tomato mutants 

defective either in JA accumulation or perception demonstrated that these mutants are 

highly susceptible to insect predators (McConn et al., 1997). The role of JA as a major 

signaling molecule in defense responses to necrotrophic pathogens is well supported by 

numerous experiments (for reviews, see Farmer, 1994, and 2003). However, a recent 

study indicated that exogenously applied JA decreases disease severity evoked by a 

variety of fungal pathogens with a wide range of life styles including those having a 

biotrophic phase in their pathogenesis (Thaler et al., 2004).  Besides the well known role 

of JA in defense signaling, OPDA, the natural precursor of JA and substrate of OPR, may 

have its own signaling role that is distinct from that of JA, because OPDA and JA can 

induce overlapping but distinct subsets of jasmonate-inducible genes (Stintzi et al., 2001).  

   Plant OPRs are usually encoded by a multigene family. For example, Arabidopsis and 

tomato genomes contain three OPR genes each (Biesgen and Weiler, 1999; Stintzi and 

Browse, 2000; Strassner et al., 1999, 2002), whereas rice appear to have 13 OPR genes 

(Agrawal et al., 2003). Recently, six members of one OPR gene subgrounp were cloned 
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and characterized suggesting that pea genome encodes more than six OPR genes (Ishiga et 

al., 2002; Matsui et al., 2004).  

   All plant OPRs are classified into two groups depending on their substrate specificity. 

Members in subgrounp OPRI preferentially catalyze the reduction of cis-(-) OPDA over 

cis-(+) OPDA and is not required for JA biosynthesis. Members of the OPRII subgrounp 

are required for JA biosynthetic pathway and preferentially catalyze the cis-(+) OPDA 

over cis-(-) OPDA to form the natural precursor of JA, 

3-oxo-2-(2’)(z)-pentenyl)-cyclopentane-1 octanoic acid (OPC 8:0) (Schaller et al., 1998).  

Substrate specificities of several more plant OPR isoforms have been reported recently. In 

both Arabidopsis and tomato, AtOPR3 and LeOPR3 respectively, are classified into 

subgrounp OPRII (Stintzi and Browse, 2000; Strassner et al, 2002). AtOPR1, AtOPR2, 

PsOPR1-6 and OsOPR1 are OPRI enzymes (Schaller et al., 1998; Matsui et al., 2004; 

Sobajima et al., 2003). The biological significance to plants of having multiple OPRs is 

not clearly understood. To date, the biochemical and physiological role of only one plant 

OPR isoform, Arabidopsis AtOPR3 has been relatively well established. This OPR 

enzyme was shown in vivo to be required for JA biosynthesis and male fertility (Stintzi 

and Browse, 2000). A great challenge is to identify the biologically active products that 

are catalyzed by OPRI enzymes as well as their physiological role in plant adaptive 

response. It is possible that individual OPR family members have distinct functions based 

on their regulation of gene expression in response to environmental cues, substrate 

specificity, subcellular and tissue distribution.  For example, wounding only stimulated 

the expression of LeOPR3, the only OPR involved in the JA biosynthesis but did not 
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affect expression of other OPR genes (Strassner et al., 2002). In contrast to these findings, 

Arabidopsis OPR1 and OPRR2, two enzymes that belonging to the OPRI subgrounp, were 

shown to be wound inducible (Biesgen and Weiler, 1999). OsOPR1 is the only OPR gene 

from a monocot species that was characterized molecularly so far (Agrawal et al., 2003).   

This gene was rapidly and transiently up-regulated by a variety of environmental cues 

including JA, SA, Eth and H2O2 (Agrawal et al., 2003). 

   In maize, OPR activity was first reported and characterized about two decades ago by 

Vick and Zimmerman (1986).  However, the constitution of the entire maize OPR family 

and the physiological function of any corn OPR gene remains unknown. In this study, we 

report on the identification, cloning, and sequencing of eight OPR genes in maize. The 

putative genomic sequences of these genes were assembled by a homology search of 

maize GSS database   which allowed us to identify genomic structures and some putative 

cis-elements in these genes. That the maize genome contains eight OPR genes was 

independently confirmed by Southern blot analysis and by mapping each OPR gene to a 

particular chromosome using a PCR approach and oat-maize chromosome addition lines 

(Ananiev et al., 1997).  RNA blot analysis and MPSS expression profiling data suggested 

that individual OPR genes are expressed differentially in diverse tissues of unchallenged 

maize plants and in response to stress-related signals or pathogen infection. The data 

suggests that OPR genes may have a diverse and highly specialized function in plant 

development and in defense responses to wound- and pathogens. 
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MATERIALS AND METHODS 

 

Genomic DNA Isolation and Southern Blot Analysis 

    

   One gram of freshly harvested leaves from two-week old seedlings was used for DNA 

isolation. Ground leaf tissue was suspended in a mixture of 3 ml Urea Extraction Buffer 

(5.5 M Urea, 0.25 M NaCl, 0.04 M Tris, 0.016 M EDTA, 0.8% Sarcosine, pH (change 

throughout) 7.0,) and 3 ml of Phenol: CH3Cl3 (1:1 v/v, PH 8.0) at room temperature for 15 

minutes. After phase separation by centrifugation at 5,000g for 15 minutes, DNA was 

precipitated from the supernatant with an addition of 250 µl 3 M NaOAc (PH 5.0) and 3ml 

isopropanol. DNA pellet was dissolved in Tris-EDTA buffer (PH 8.0).  RNA was 

removed with RNase treatment at 37°C overnight. For genomic Southern blot analysis 10 

µg genomic DNA from several maize inbred lines was digested with EcoRI, BamHI, 

HindIII, XbaI and XhoI. Digested DNA was separated in a 0.8% agarose gel by 

electrophoresis. The DNA was transferred onto a nylon membrane (Magna Nylon 

Transfer Membrane, Osmonics Inc., Minnetonka, MN) with 0.025M phosphate transfer 

buffer and was cross-linked to the membrane by UV exposure. The blots were hybridized 

in ULTRAhyb hybridization buffer (Ambion, Austin, TX) at 42°C overnight with ZmLOX 

gene specific fragments of individual LOX generated by PCR. Washes were performed 

with low strength buffer (2× SSC and 0.1% SDS ) at 42°C for 2 times 5 min, followed by 

an additional wash with high strength buffer (0.2M SSC  and 0.1% SDS) at 42°C   two 
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times for 15 min. The blots were exposed to the X-ray film (Kodak, Rochester, NY) in 

cassettes at -80°C for 72 h.  

 

Localization of Maize OPR Genes to Individual Chromosomes Using Oat Maize 

Chromosome Addition (OMA) Lines 

    

   Detailed information for generating OMA plants was described previously 

(Riera-Lizarazu  et al., 1996). In our study, Oat Maize Chromosome Addition (OMA) line 

genomic DNA containing individual maize chromosome DNA was used as template for 

PCR. Several pairs of PCR primers for each OPR were designed using the DNAStar 

PrimerSelect program. Gene specific forward (F) and reverse (R) primers used in this 

study were,  

OPR1F 5'-AAGTGACCTGCGGTGTTGCATCACATC-3', 

OPR1R 5'-TTCACTTCACACCAGTACATGA-3',  

OPR2F 5'-AAGAAGATGGCAAGAATGAGG-3',  

OPR2R 5'-TAGATTTATTTCACTTCACACC-3', 

OPR3F 5'-GCCAACCCAGACCTGCCTAAAAGGTT-3',  

OPR3R 5'-GCAACACACCGGTATACTCAACTAG-3',  

OPR4F 5'-CTTTTGGCTGCAGCATCATCATCG-3',  

OPR4R 5'-CCTGGTCGGGCGTCCACACTCC-3',  

OPR5F 5'-GCTGAGGCCACGGGGGTTTCAG-3',  

OPR5R 5'-CGGCAGCGGTTCTCCAGACT-3', 
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OPR6F 5'-AGCAGGCTTTGATGGAGTGGA-3',  

OPR6R 5'-TTGGCAAAACGCATCGGAAGG-3',  

OPR7F 5'-CGGCTGTTCATCGCTAATCCCGA-3',  

OPR7R 5'-CAATCGCGGCATTACCCAGATGT-3, 

OPR8F 5'-CCGCCTCAACGCTCTCCAGGAG-3, 

OPR8R 5'-GACTGCTGATTGCTGTGCAAAT-3. 

PCR conditions were adjusted for each primer pair to amplify one LOX gene specifically.   

The PCR contained 1×PCR buffer for the Taq polymerase (Thermopol Buffer, New 

England BioLabs, Beverly, MA) , 2.5 mM of each dNTP, 10% (m:v) sucrose, 1 unit of 

enzyme, 20 ng of OMA genomic DNA and 0.4 μM forward and reverse oligonucleotide 

primers. Higher annealing temperature or the PCR additive DMSO (5%) was added if 

necessary. PCR products were loaded in a 1.0% agarose gel and separated by 

electrophoresis. Maize parent genomic DNA, oat parent genomic DNA from which the 

OMA addition lines were generated (Riera-Lizarazu et al., 1996), and B73 genomic DNA 

were used as controls for the PCR in this study.  

 

Plant Material and Hormonal Treatments   

   

   Maize plants were grown in 7 cm pots in Strong-Lite (circleR) potting soil (Universal 

Mix, Pine Bluff, AZ) in a greenhouse at 22ºC to 30ºC under a 16 hour daylength, 50% 

average relative humidity, 560-620 µE of light from both sun and halogen lamps.  For all 

the hormonal treatments and organ-specific expression studies except for the ear and the 
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silk tissues, we have used two-week-old plants of the maize inbred line B73 at the 

developmental stage V3.  Tassel at the time of pollen shedding, ears at the stage of silk 

emergence, and unpollinated silks were harvested from B73 plants grown in the field and 

used for RNA extraction and Northern blotting (see Fig. 1). For JA treatments, the 

seedlings were cut at the soil level and were incubated with the cut end placed in 100 mL 

of either 0.1% ethanol, 0.01 % Tween-20 (control) or 200 µM JA (Sigma, St. Louis).  

Treatment with 10 µL L-1 ethylene was conducted in hermetically sealed, 5.6 L dessicators. 

The entire seedlings (two seedlings per replicate, three replicates) were harvested at 

different times of treatment, frozen immediately in liquid N2, and stored at -80ºC.   

 

Pathogens, Inoculum Production, and Inoculation 

 

For inoculation with B. maydis we used maize lines provided by the Maize Genetics 

Cooperative, University of Illinois, Urbana/Champaign, stock reference 1526 (in B73 

genetic background) bearing the recessive rhm1 gene for resistance to B. maydis or 1650 

(a heterozygous, susceptible near-isogenic line derived from the outcross of 1526 with 

B73).  B. maydis isolate TX001 (incompatible on the 1526 line and compatible on the 

1650 line), was obtained from field sources at Pioneer Hi-Bred, and was  maintained on 

potato dextrose agar (PDA) medium (Difco).  The fungi were grown for two weeks at 

22°C for sporangia production, and the sporangia were harvested by washing the plates 

with 0.02% Tween-20.  Sporangial suspensions were diluted to approximately 10,000 

sporangia per ml.  Inoculations were performed by spraying spore suspensions as an 
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aerosol on leaves of V3 stage plants.  Inoculated seedlings were immediately covered with 

plastic tents in order to increase humidity and incubated in a greenhouse under the growth 

conditions described above.  Samples were taken after 3, 6, 12, 24 and 48 h, frozen in 

liquid N2, and stored at -80°C. 

For inoculation with Cochliobolus carbonum, we used two-week old seedlings of 

near-isogenic lines Pr or Pr1 witch are either susceptible or resistant to C. carbonum race 1 

Tox2+, respectively (Multani et al., 1998).  For the study of gene expression in response to 

Cochliobolus carbonum race 1 we used near-isogenic strains of Cochliobolus carbonum 

race 1 that did (Tox2+) or did not (Tox2+) produce its pathogenecity factor, HC-toxin. 

Conidial suspensions containing 105 conidia per ml in 0.1% Tween-20 were prepared as 

described in (Meeley et al., 1992).  Control plants were inoculated with sterile water 

(mock-inoculated).  Plants were inoculated by spraying the leaves to imminent run-off 

with conidial suspension. Upon inoculation, plants were immediately covered with a 

plastic cover and were incubated for 3, 6, 12, 18, 24, 48 and 72 h in the greenhouse.  After 

each incubation time, infected leaves were collected   and frozen immediately in liquid N2 

and stored at -80°C until used for RNA extractions. 

 

Massively Parallel Signature Sequencing and Expressed Sequence Tag mRNA 

Profiling 

    

  The maize OPR transcript expression levels were assayed by the Massively Parallel 

Signature Sequencing (MPSS) technique of Lynx Technologies (Brenner et al., 2000), and 
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separately by EST distribution.  The MPSS profiling involves deep transcript sampling on 

microbeads, with a 17 base sequence read (Tag) beginning with ‘GATC’.  A total of 203 

MPSS libraries covering diverse tissues, developmental stages, and treatments were 

assayed.  However, for this study we focused on B73 genotype samples belonging to 12 

distinct non-overlapping tissues and two treatments.   Limiting the data to B73 avoided 

SNP effects on Tag sequences.  Tag to gene associations were done by direct sequence 

matching.  Most genes were represented by Tags corresponding to the plus strand and 

proximal to the polyA tail.  The EST distribution analysis involved standard EST 

sequences obtained from 265 diverse cDNA libraries, from public and private sources.  

The ‘UniCorn 4.1’ EST assembly set (Mark Whitsitt, Pioneer Hi-Bred, personal 

communication) assisted in EST gene assignment.  EST distributions were not limited to 

B73 because identification is largely immune to SNPs. 

  

Northern Blot Analysis 

    

   Corn leaves were harvested and were immediately frozen in liquid nitrogen for RNA 

extraction. Total RNA was extracted using TRI reagent (Molecular Research Center Inc, 

Cincinnati, OH) according to manufacturer protocols. 10 µg of total RNA was loaded and 

subjected to electrophoresis in 1.4% (w/v) formaldehydagarose gels for separation and 

transferred onto a MagnaGraph nylon membrane (Micron Separations Inc., Westboro, 

MA).  Equal loading of RNA samples and uniform transfer onto a nylon membrane was 

confirmed by visualizing RNA stained with ethidium bromide under UV light.  The probe 
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was amplified by PCR from genomic DNA or an EST clone representing the OPR gene.  

Membranes were hybridized with   a 32P-labeled OPR fragment using UltraHyb solution 

(Ambion, Austin, TX) under hybridization conditions described in the manufacturer’s 

protocol.  Membranes were washed in 1X SSC, 0.1% SDS at room temperature for 15 min, 

in 0.1X SSC, 0.1% SDS at room temperature for 30 min, followed by a final wash in 0.1X 

SSC, 0.1% SDS at 42°C for 30 min.  For autoradiography, RNA blots were exposed to a 

BioMax X-ray film (Kodak, Rochester, NY) by using intensifying screens for 2 to 7 days.  

Blots presented are representative examples of at least two independent experiments. 
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RESULTS 

Identification of the Maize OPR Gene Family Members  

    

   Identification of the entire maize OPR family was initiated by BLAST search (Altschul 

et al., 1997) of extensive DuPont/Pioneer and public expressed sequence tag (EST) 

databases representing more than 265 different  cDNA libraries (see Materials and 

Methods for detailed description).  257 EST clones were found encoding maize OPR-like 

sequences and they were grouped into eight contigs and singletons. Full insert sequencing 

was carried out for 12 full length clones that represented each group. Sequence analysis of 

these sequenced cDNA clones revealed that the maize genome contains at least eight 

genes (Table 1).  We designated these genes as ZmOPR1, 2, 3, 4, 5, 6, 7 and 8 in an order 

that reflects their level of sequence similarity.  All OPR clones but the clones representing 

ZmOPR4 were full length containing short 5’ UTR and 3’UTR sequences and entire open 

reading frames as well as a poly-A tail. EST clones representing ZmOPR4 gene sequenced 

did not appear to have any poly-A tail.  Three OPR-like gene sequences were previously 

reported in the NCBI database including two full-length cDNA sequences, AY108052, 

AY106849, and one partial mRNA sequence AY106967.   

   Southern blot analysis was performed to identify the copy number for each OPR gene. 

To avoid potential problems associated with crosshybridization of probes derived from 

different genes, we PCR-amplified the 3’ portions of the OPR cDNA clones and used 

them as gene-specific probes.  Unfortunately, it was impossible to generate gene-specific 

probes to distinguish OPR1 and OPR2 or OPR7 and OPR8, because these two pairs of 
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Table 1. Percentage of the identity of maize OPRs at the amino acid level. 

  ZmOPR2 ZmOPR3 ZmOPR4 ZmOPR5 ZmOPR6 ZmOPR7 ZmOPR8
ZmOPR1 96.5 78.3 69.2 66.9 64.3 50.6 55.8 
ZmOPR2  77.2 67.9 65.6 63.5 50.9 55.9 
ZmOPR3   66.8 63.7 62.1 51.1 55.8 
ZmOPR4    64.0 64.8 52.1 55.0 
ZmOPR5     66.9 52.4 56.2 

ZmOPR6      50.6 55.2 

ZmOPR7       95.2 

 

duplicated genes are highly similar throughout their entire cDNA sequences.  Therefore, 

as expected we detected at least two bands hybridizing to OPR 2 or OPR7 probes.  

However, it is clear from the blot hybridized to the OPR2 gene-specific probe that the 

weaker second band appear to represent OPR1 rather than an additional copy of OPR2. 

Southern analysis (Fig. 1) indicated that OPR3, OPR4, OPR5 and OPR6 gene-specific 

probes hybridized to a single band and therefore, these genes are likely encoded by a 

single copy. 

 

Mapping of OPR Genes to Maize Chromosomes  

 

   Due to the high sequence identity of maize maize OPR genes to each other (Table 1), for 

instance, ZmOPR1 and ZmOPR2 cDFNAs sharing more than 96% identity, the question 

arose whether these highly homologous OPRs represent different genes or different alleles. 

Obviously, Southern blot analysis alone was not sufficient to discriminate amongst the 

highly similar sequences. Therefore we used recently developed OMA lines (Ananiew et 
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al., 1997; Okagaki et al., 2001) to map each OPR gene to maize chromosomes. 

Chromosome location of gene sequences may help us determine whether two similar OPR  
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Figure 1. Southern blot analysis of maize genomic DNA with OPR probes. 10µg genomic DNA of maize 

B73 (B), MO17 (M) and A632 (A) inbred lines were isolated, digested with EcoRI , BamHI , HindIII, XbaI, 

and XhoI, separated by electrophoresis, blotted onto nylon membranes and hybridized with OPR gene 

specific probes. OPR7 and OPR8 were crosshybridized to a probe derived from 3’ end of OPR7 cDNA. 

DNA size markers in kilobases (kb) are indicated on the left. 
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sequences represent different loci or alleles of a single locus. Oat-maize chromosome 

addition lines were produced by crossing maize and oat resulted in preferential 

elimination of maize chromosomes (Ananiew et al., 1997). The recovered 

oat-maizehybrid contains a complete oat chromosome set and a single maize chromosome. 

OMA materials were ideal to identify on which maize chromosome a particular OPR gene 

is located by a PCR approach. We designed several pairs of gene-specific PCR primers for 

each maize OPR gene and used OMA genomic DNA as a template to perform PCR. To 

avoid detection of duplicated sequences or amplification of oat OPR-like sequences, 

different primer pairs or PCR conditions were tested (see Materials and Methods). Fig. 2 

illustrates the localization of OPR genes to maize chromosomes.  These results were 

confirmed independently by using at least two different gene-specific primer pairs for 

each OPR gene. OPR1-7 are located on chromosome 9, 8, 6, 8, 2, 3, and 1, respectively. 

Interestingly, although OPR1 and OPR2 cDNAs share more than 96% sequence identity 

at the nucleotide level, they are located on chromosomes 9 and 8, respectively, meaning 

they represent two separate loci in the maize genome.   

 

The Genomic Structure of Maize OPR Genes and Their Deduced Amino Acid 

Sequences 

    

  To determine the genomic organization of OPR genes, we identified the Survey 

Sequences (GSS) (available in www.plantgdb.org/cgi-bin/PlantGDBblast) that are related 
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to the OPR cDNA sequences. Only were those genomic sequences with 98% or above 

sequence identity to the overlapping region of cDNA sequences selected to assemble the 
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Figure 2.  Localization of maize ZmOPRs to maize chromosomes by using oat-maize chromosome addition 

lines. PCR products obtained by using OPR gene specific primers of genomic DNA of ten oat-maize 

chromosome addition lines (1 to 10) , maize parent (M), oat parent (O) and B73 (B) inbred lines were 

separated by electrophoresis in an agarose gel. Bands represent the PCR products amplified by maize OPR 

gene specific primers and indicate the chromosome on which individual OPR genes are located. 

 

genomic contigs for each OPR gene. It should be noted that we were able to identify the 

genomic sequences covering the full length of cDNA for OPR2, 4, 6, 7 and 8 (Fig. 3) or a 

portion of full length maize OPR genes for OPR1, 3, and 5 from GSS database. Some 

maize OPR transcription start points were tentatively predicted by using a computational 

tool (available at http://www.fruitfly.org/seq_tools/promoter.html.).  

http://www.fruitfly.org/seq_tools/promoter.html
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The predicted distances from the transcription starting point to the TATA box were 

conserved among the maize OPR gene family members, ranging from base -28 to base -32 

(data not shown).  By comparing the cDNA sequences and the genomic sequences, we 

were able to identify the intron/exon composition in all of maize OPR genes. There are 1, 

1, 1, 0, 4, 3, 4 and 4 intron(s) in OPR1 to 8 respectively (Fig. 3). All exon-inron-exon 

borders follow the GT/AG splicing rule (Mount, 1982).   

 

 

 

  

 

 

 

 

 

 

Figure 3. Predicted genomic structures of maize OPR genes. Exons are represented as the black  boxes. 

Introns are presented as black lines. Translation start codon and termination codon are indicated as    . 

 

The Prediction of Putative cis Elements in the Promoters of OPR Genes 

 

   With the predicted genomic sequences of all OPRs, we identified putative promoter 

sequence of OPR1 and OPR2 by a computational program Softberry-TSSP (available at 
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\ www.softberry.com). Two cis-elements , TGACGTTC and TGACGTGC, were found 

in OPR1, located from –218 to –211, and from –257 to –250 respectively (data not shown). 

Both are typical As-1-like element sequences with a palindrome core sequence ACGT 

that can be recognized by TGA transcription factors. The TGA transcription factors 

interact directly with NPR1, a positive regulator of SA-mediated signal transduction 

pathway (Johnson et al., 2003). The presence of an As-1-like elements in the OPR1 

promoter is consistent with results of Northern Blot analysis and reverse 

transcription-PCR (the figure on page 23) demonstrating that ZmOPR1 is induced in 

maize seedlings treated with SA. Duplicated As-1-half elements –TGACG- were also 

found in the promoter of ZmOPR2, located at -259, -136, and -124.  

 

Phylogenetic Analysis of OPR Proteins 

    

   Fig. 4 shows the phylogenetic tree for the amino acid sequences of OPR family members 

of different organisms in plant and fungus. Six maize OPRs, ZmOPR1, ZmOPR 2, 

ZmOPR 3, ZmOPR 4, ZmOPR 5, and ZmOPR 6 are classified to OPRII subgroup 

including AtOPR1, AtOPR2, LeOPR1, and OsOPR1 which are not required for JA 

biosynthesis (see above). ZmOPR7 and ZmOPR8 are classied into OPRII subgroup with 

AtOPR3 and LeOPR3, so they are most likely to involve in JA biosynthesis in maize.   

OPRx was identified from our original EST analysis, but we can not amplify this sequence 

when a maize genomic DNA template was used in PCR (data not shown). Therefore, we 

suspected this sequence may come from a contaminant in the EST library which was 
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prepared from Colletotrichum graminicola infected tissues.  We performed PCR by using 

Colletotrichum graminicola genomic DNA as template and there was still no PCR 

products. We excluded the possibility that this is a Colletotrichum graminicola gene based 

on the phylogenetic analysis. 
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Figure 4. Phylogenetic analysis of plant and fungal OPR deduced amino acid sequences from maize (Zm), 

Arabidopsis (At), rice (Os), tomato (Le), and Aspergillus nidulans (An), Neurospora crassa (Nc). The 

phylogenetic tree was built by using  the neighbor-joining program of PAUP4.0 phylogenetic analysis 

software package. (The amino acid sequence of ZmOPR8 was not included in this analysis) 
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RNA Profiling of Organ-Specific Expression of ZmOPR Genes 

 

   The maize OPR transcript expression levels in diverse maize organs were assayed by the 

Massively Parallel Signature Sequencing (MPSS) technique of Lynx Technologies 

(Brenner et al., 2000), and separately by EST distribution in diverse maize tissues.  The 

MPSS profiling involves deep transcript sampling on microbeads, with a 17 base 

sequence read (tag) beginning with ‘GATC’.  A total of 203 MPSS libraries were assayed  

covering diverse tissues, developmental stages, and treatments (see Materials and 

Methods). 

   However, for this study we focused on B73 genotype samples as all cDNA and genomic 

sequences were derived from this inbred line.   We deployed MPSS tech for transcription 

profiling of OPR genes its advantage that highly homologous sequences can be 

discriminated by this technology based on the 17-base tag signature.   MPSS also provides 

high sampling sensitivity ensuring that OPR genes expressed at very low levels are 

detectable. Fig.5 demonstrates the transcript levels of OPR genes measured in parts per 

million (ppm) in selected maize organs including vegetative (Fig. 5A), reproductive (Fig. 

5B) organs and kernel (Fig. 5C). OPR genes appear to be transcribed more actively in 

leaves at later developmental stage (R1) while they are expressed at a higher level earlier 

in root at the V2 stage (Fig. 5A). In kernel and reproductive organs, most OPR genes are 

expressed at a relatively low level in different developmental stages (Fig. 5B and C).  

OPR6 has the most abundant transcripts in the kernel and reproductive organs. The 

putative JA biosynthesis OPR isoform in maize ZmOPR7 is the predominant OPR 
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member expressed in shoot apical meristem from stages V2 to V4 while it remains 

inactive in root apical meristem. It has been shown that jasmonic acid inhibits the cell 

division in root apical meristem. Thus, OPR7 or jasmonic acid may have a different role in 

the development of shoot apical meristem.   It appears that the regulation of OPR genes is 

fine tuned in a specific spatial and timely manner to control the plant development.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The expression levels of OPR genes measured in parts per million (ppm) in selected maize organs 

of 209 cDNA libraries representing total RNA expressed in specific tissues at different developmental 

stages. A. Vegetative organs. B. Kernel. C. Reproductive organs. OPR4 transcript was not demonstrated 

because a practical Tag is not available for it in MPSS.   
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OPR1/2 Are Dramatically Induced by Fungal Elicitor Treatment, Pathogen 

Infection and Salicylic Acid  

 

Both EST analysis and MPSS data suggest the OPR1/2 are more actively expressed 

than other OPR genes in unchallenged tissues or treatments. Fig. 6A demonstrates the 

induction of OPR1/2 upon fungal elicitor (Chito-oligosaccharide) treatments and   

Fusarium verticillioide spore infection in silk cell suspension culture.  To further our 

understanding of the expression of OPR1/2 in response to stress, we treated two-week old 

plant with stress related signaling molecules including jasmonic acid, salicylic acid,  
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Figure 6. OPR1/2 mRNA accumulates upon fungal elicitor treatment, pathogen infection and SA 

treatment. A. Corn suspension cell cultures treated with C-Chito-oligosaccharides(100 ug/ml); B. 

F-Fusarium verticillioides spores(106 spores/ml); M-Mock – inoculated.  Leaves were treated with SA   

and RNA was isolated for B. Northern blot analysis; C. reverse transcription PCR. OPR1 and OPR2 

plasmid DNA were used in PCR to assure the PCR was performed in a gene specific manner.  
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ethylene and abscisic acid. We found OPR1/2 transcripts only accumulated in response to 

SA treatment suggesting OPR1/2 may be controlled by a salicylic acid signaling pathway. 

We performed reverse transcription PCR to see if both OPR1 and OPR2 are inducible by 

SA because it is not plausible to generate a gene specific probe for OPR1 and OPR2 in 

Northern blot analysis due to their high sequence identity. In agreement with our finding 

in the promoters of OPR1 and OPR2 both of which contain SA-responsive cis elements, 

OPR1 and OPR2 are both indeed inducible by SA (Fig.6 B).   

 

Expression of OPR1/2 in Response to Pathogen Challenge 

 

  Because OPR1/2 are induced strongly by fungal elicitors and pathogen in cell culture and 

by stress related signal SA, we used diverse pathogens to study the dynamics of 

ZmOPR1/2 expression during plant-pathogen interactions. It appears that OPR1/2 are 

induced much more strongly in a corn resistant line against F. verticillioides (Fig. 7A).  

  Also, OPR1/2 transcripts were accumulated in an earlier time in the resistant line to 

Bipolaris maydis than in susceptible line (Fig. 7B). However, when we tested 

OPR1/2expression upon a necrotrophic pathogen, Cochliobolus carbonum, we found that  

 the strain could significantly induce OPR1/2 expression but the avirulent strain failed to 

induce OPR1/2 expression. It suggested OPR1/2 might contribute to the compatibility in 

this plant-pathogen interaction (Fig. 7C).  
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Figure 7. OPR1/2 gene expression in response various pathogens. A. OPR1/2 gene expression in response to 

infection with Fusarium verticillioides. Two corn lines that are either susceptible(S) or resistant (R) to 

Fusarium verticillioides were infected with conidial suspension and total RNA was extrated from the 

infected silks from different time points upon infection. B. RNA gel-blot analysis of ZmOPR1/2 gene  

expression in response to infection with Bipolaris maydis. Two corn lines that are either susceptible (S) or 

resistant (R) to B. maydis(Bm)  were infected with conidial suspension and total RNA was extracted from 

leaves at different time points upon infection. RNA gel blots were hybridized to a 32P-labeled cDNA 

encoding 18S rRNA as a RNA loading control (only a representative blot from Rhm1/rhm1 experiment is 

shown). C. Conidial suspension of Cochliobolus carbonum race 1 either producing Hc-toxin (tox +) or 

deficient in toxin production (tox-) were sprayed on maize seedlings at the developmental stage V3.  10 ug 

of total RNA were loaded in each well and transferred to nylon membrane and hybridized to a cDNA 

fragment of OPR1.  Equal loading of RNA was tested by staining to an rRNA with methylene blue.  
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ZmOPR6 and 7/8 mRNAs Accumulate upon Treatment with Defensive Signals and 

Wounding 

 

  ZmOPR6 and 7/8 are rapidly induced within 1 hour after jasmonic acid, ethylene, and 

abscisic acid treatments (Fig. 8) while all these signals had no significant effect on 

expression of other OPR genes (data not shown). It should be noted that OPR6 and 

OPR7/8 were not responsive to SA treatment (data not shown) suggesting inductions of 

maize OPR individual genes are regulated in distinct pattern. Fig. 8C shows that only  
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Figure 8. Activation of OPR by defense signals or wounding. Total RNA (10 µg lane -1) from B73 leaves 

treated with A.JA (200 µM),  , B. Ethylene (10 µL L -1) or C. ABA and subjected to D.  mechanical 

wounding was used for Northern blotting analysis with a probe derived from OPR6 and OPR7/8 gene.  

 



 27

OPR6 and OPR7/8 are induced by mechanical wounding which is in agreement that JA, 

ethylene and ABA are all believed to be wounding-related response signals. 

 

Advance Genetically opr2 Mutant Alleles into Genetic Backgrounds That Contrast 

in Their Levels of Resistance to Diverse Pathogens Using the Mu-element Insertion 

Materials  

 

  We have identified as described in introduction, an exonic and an intronic mutant allele 

of Fusarium-inducible ZmOPR2 gene (Fig. 9). To identify unambiguously the function of 

this gene in resistance to diverse pathogens, we plan to generate near isogenic lines that 

are either resistant or susceptible to specific pathogens. This will be achieved by 

backcrossing the original allele to several lines that are resistant or susceptible to wheat 

streak mosaic virus, maize dwarf virus, rust fungus, and contamination with fumonisins 

and aflatoxins.  The current genetic stage for this mutant is BC2. To perform the 

functional study of OPR2, we need to advance the mutant material to genetic stage BC3F4. 

This project is still undergoing. 
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Figure 9. Schematic representation of Mu elements in ZmOPR2 gene. 
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DISCUSSION 
 

Phylogenetic Analysis 

    

  We showed and confirmed that it is very likely the entire maize gene family was 

identified in this study because of the depth of both EST and GSS databases. Agrawal et 

al., (2003) determined that rice had at least 13 OPRs (OsOPR1-13), a number much higher 

than that seen in any other plant species and the authors suggested a functionally diverse 

octadecanoid pathway in rice.  Our data revealed maize has the second largest OPR gene 

family of all plant species that have been reported. Schaller et al. (1998) suggested that 

two subgroups of OPRs in plants with regard of their substrate preferentiality. Members of 

OPRII are able to effectively convert the natural 9S, 13S-OPDA to form the precursor of 

(+)-7-epi-JA and can also reduces three other OPDA steroisoforms. Proteins belonging to 

OPRI have enzyme activity more specific to 9R, 13R-OPDA and have moderate reduction 

activity with  other iso-forms of OPDA (Schaller et al., 1998). Therefore, it is possible that 

OPRI subgrounp proteins may not be an enzyme of octadecanoid biosynthesis but in vivo 

have a different, yet unidentified substrate and give rise to a potential signaling molecule 

in adaptive responses. It was reported that tomato LeOPR1 reduced only 9R, 13R-OPDA, 

while LeOPR3 reduced both 9R, 13R-OPDA and 9S, 13S-OPDA which is the precursor of 

natural biologically active jasmonic acid (Strassener el., 2002). However, LeOPR2 did not 

accept any OPDA or α,β-unsaturated carbonyl as a substrate (Strassener el., 2002).  In 

Arabidopsis, AtOPR3 was shown to effectively convert the natural JA precursor, 

9S,13S-OPDA to the corresponding OPC-8:0 while AtOPR1 and AtOPR2 preferentially 
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catalyze the reduction of 9R,13R-OPDA (Schaller et al., 1998; Schaller et al., 2000). 

Based on the isomer preferences of previously characterized OPRs and our phylogenetic 

analysis, it is very likely the OPRs in group B belong to OPRI and those in group C are 

OPRII. Thus, we hypothesize that ZmOPR7 and ZmOPR8 are most likely to be the OPR 

isozymes involved in JA biosynthesis in maize. Group A contains a large number of OPRs 

and represents exclusively the monocot plants maize and rice.  These OPRs may have 

additional functions in monocot plants.  LeOPR2 is the only member of Group C and it 

doesn’t have any OPR reduction activity (Strassener el. 2002).  

 

Mapping of ZmOPR Genes to Chromosomes by Using Oat Maize Addition Lines  

   

  All of the maize OPR cDNA sequences in this study were derived from EST libraries. To 

determine if two similar OPR sequences represent two different loci or two alleles of a 

single locus, localization of these gene sequences on maize chromosomes was needed. For 

this purpose, OMA lines are ideal for mapping maize OPRs to their chromosomes by PCR 

due to the simplicity of this method. Though it can not reveal the precise location of a gene 

on a chromosome, we can obtain substantial evidence to determine that two highly 

homologues sequences are representing two different genes as long as they are localized 

to different chromosomes. In the OMA mapping study, we designed gene-specific primers 

based on the cDNA sequences of OPRs. All of the PCR products, when we used the OMA 

genomic DNA as templates, had the expected sizes corresponding to their genomic 

sequences assembled by GSS sequences. Notably, though ZmOPR1 and ZmOPR2 share 
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95% nucleotide sequence identity, they were localized  to different chromosomes. This 

information will be especially valuable when we generate and identify specific mutants 

for ZmOPR1 and ZmOPR2.  

 

Genomic Organization of OPR Genes 

     

   The genomic sequences of maize OPR genes were obtained from an available GSS 

database. Having full-length cDNA sequences for all maize OPR genes, we were able to 

assemble genomic sequences covering the entire length of cDNA by an extensive GSS 

database search. This approach allowed us to identify the intron/exon structure , putative 

promoters, transcription start points and cis- elements of these OPR genes. No promoter 

sequences could be identified for ZmOPR4 and ZmOPR5 due to the limit of the GSS 

database. The number and length of introns and exons of maize OPR genes are diverse 

suggesting this gene family may undergo different molecular evolution events.  Typical 

binding elements for TGA-transcription factors were found in ZmOPR1 and other 

ZmOPR promoters. It has been shown that TGA-transcription factors can interact with 

NPR1 which is a disease resistance protein stimulated by SA (Johnson et al., 2003). In the 

SA signaling pathway, NPR1 is activated by SA and it in turn activates the 

TGA-transcription factors which induce expression of numerous defense genes including 

PR-1 in Arabidopsis (Johnson et al., 2003).  Our northern blot  and RT-PCR analysis  also 

showed that ZmOPR1 and ZmOPR2 were inducible by SA treatment. Interestingly, It 

seems that the As-1 elements are only present in the OPRs in  Group A, which  exclusively 
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consists of monocot OPRs. Thus, we speculate that OPRs in Group A may have a 

regulatory mechanism that is different from those OPRs found in Group B or Group C, 

which includes OPRs involved in octadecanoid biosynthesis and are inducible by 

octadecanoids.  

 

Survey of MPSS Data 

 

  MPSS provided us an in-depth approach to perform transcription profiling for highly 

related genes such as gene family members. The MPSS data shown in this study 

demonstrated that individual OPR genes have tissue and temporal specific expression 

pattern. For instance,   ZmOPR1 and ZmOPR2 are expressed predominantly in leaves both 

of whose transcripts exceed 2,000 ppm in leaves. ZmOPR6 is mainly transcribed in ovary 

and leaf.  Interestingly, the putative JA biosynthesis OPR isoform in maize ZmOPR7 is 

expressed at the highest among all OPRs in shoot apical meristem from V2 to V4 stage 

while it remains inactive in root apical meristem. Those observations suggest OPR7 or 

jasmonic acid play distinct role in shoot apical meristem but not in root apical meristem. 

 

Hormone Regulation of Expression of ZmOPR Genes  

  

  Examination of environmental and hormonal stimuli that induce OPR expression should 

increase our understanding of the role this enzyme family has in general adaptive and 

stress responses. We, thus, used Northern blot analysis to determine OPR  expression 
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patterns upon treatment with a variety of signaling molecules treatment or stress. 

Octadecanoid pathway genes were previously shown to be differentially regulated by 

wounding. In tomato, LeOPR3 RNA was accumulated upon wounding in local leaves 

while LeOPR1 and LeOPR2 RNA were not affected (Strassner et al., 2002). Arabidopsis 

AtOPR1 and/or  AtOPR2 were induced by wounding in local leaves as well as in systemic 

leaves at a moderate level (Biesgen and Weiler., 1999).   Wounding also induced rice 

OsOPR1 from as early as 30 minute in local leaves (Agrawal et al., 2003).  In this study, 

we found wounding was able to dramatically induce expression of ZmOPR6 and 

ZmOPR7/8 within 3 hours which then declined after 6 hours. The expression of ZmOPR1, 

2, 3, 4, and 5, however, were not affected by wounding treatment.   

    ZmOPR1 and ZmOPR2 RNA levels did not increase in response to exogenous JA while 

the ZmOPR3 RNA level was slightly increased. However, ZmOPR6 and ZmOPR7/8 RNA 

levels increased significantly in response to JA treatment. SA treatment was only able to 

increase OPR1 and OPR2 expression at a high level but failed to significantly induce other 

OPR genes. Plants apparently regulate these OPRs through different mechanisms. 

Although this regulation mechanism is not fully understood, it seems that it occurs 

through a cascade of proteins including transcription factors such as TGA-TF that is 

regulated by salicylic acid or another phytohormone. ABA and ethylene treatments were 

also able to increase OPR6 and OPR7/8 RNA levels but did not affect transcription 

modulation of other OPRs. It is well established that ABA is a required signal along with 

JA for the wound-induced defense responses (Pena-Cortes et al., 1989). Therefore, it was 

not surprising to find that transcripts of ABA and JA inducible OPR6, OPR7/8 are also up 
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regulated in response to mechanical wounding.  Interestingly, the northern blot analysis 

demonstrated that OPR6 and OPR7/8 have  induction patterns  different from OPR1/2. 

OPR6 and 7/8 appeared to be induced by wounding response related signals such as JA, 

ethylene and ABA. Since OPR7/8 are the closest homologs of Arabidopsis and tomato 

OPR3 that is required for JA biosynthesis, we hypothesize that OPR7/8 may be 

specifically involved in wound-induced defense responses to insects. On the other hand, 

OPR1 and/or OPR2 may be specifically involved in SA-dependent defense responses 

against pathogens.  

 

Induction of OPR Transcript Accumulation in Response to Pathogens 

    

   Although the role of maize OPRs in plant/pathogen interaction is not understood, it is 

possible that oxylipins including jasmonates, or other products catalyzed by OPRs are 

factors that play a role in resistance or susceptibility to pathogens. ZmOPR1/2 appeared to 

be highly active in response to pathogens or elicitors. Our RNA blot analysis indicated 

that of all maize OPR genes, only OPR1 and/or OPR2 can be induced. They are more 

likely to be induced in resistant but remain unaffected in susceptible lines. Taken that 

OPR1 and OPR2 are highly inducible by SA but not JA, the yet unidentified OPR1/2 

catalyzed products are more likely to be confined in SA signaling pathways that contribute 

to plant resistance against biotrohpic pathogens with the regard that SA is generally 

believed to primarily induce defense against biotrophic pathogens. Indeed, OPR1 and/or 

OPR2 are induced in mazie silks of an inbred line that is highly resistant to Fusarium ear 
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rot caused by F. verticillioides. Intriguingly, no significant induction of OPR1/2 RNA 

levels was observed in the silks of a susceptible line to Fusarium ear rot. Similarly, 

OPR1/2 are induced  more rapidly in a resistant line to Bipolar maydis  than their 

induction in susceptible line suggesting a potential contribution of OPR1/2 in defense 

response against this pathogen. Though the induction of OPR1/2 in compatible interaction 

between the maize and Cochliobolus carbonum does not contradict our hypothesis that 

OPR1/2 are primarily involved in SA-mediated defense response to biotrophic pathogens, 

we need to use strictly-lifestyle-defined pathogens to test OPR1/2 function in response. 

This project is underway. 
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SUMMARY 

  Eight maize OPR genes have been identified which may consist of the entire maize OPR 

gene family due to the thorough EST and GSS database search. Individual OPR genes are 

confirmed their presence in maize genome by Southern blot analysis and mapping them 

on chromosomes using OMA materials. Genomic structures of OPR genes demonstrated 

they have undergone different molecular evolution events.  Putative cis-acting elements 

were found in some OPR genes suggesting they are regulated by certain phytohormone. 

The maize OPR genes appear to have distinct tissue expression pattern as MPSS data 

showed. OPR1 and OPR2 are mostly expressed in leaves. Other OPRs may have 

important role in specific organ development such as the putative JA biosynthesis OPR7/8. 

Northern blot analysis revealed that OPR1/2 have a very active role in defense responses 

against pathogens which are regulated by a SA-dependent signaling pathway. OPR6, 

OPR7 and OPR8 are involved in wounding defense response as they are inducible by JA, 

ethylene and ABA as well as mechanical wounding.  
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