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ABSTRACT 

 
Cerebellar Purkinje Cell Death in the P/Q-Type Voltage-Gated Calcium Ion Channel 

Mutant Mouse, Leaner.  (December 2005) 

Tamy Catherine Frank-Cannon, B.S.; B.S.; DVM, Texas A&M University 

Chair of Advisory Committee:  Dr. Louise C. Abbott 

 
 Mutations of the α1A subunit of P/Q-type voltage-gated calcium channels are 

responsible for several inherited disorders affecting humans, including familial 

hemiplegic migraine, episodic ataxia type 2 and spinocerebellar ataxia type 6.  These 

disorders include phenotypes such as a progressive cerebellar atrophy and ataxia.  The 

leaner mouse also carries a mutation in the α1A
 subunit of P/Q-type voltage-gated 

calcium channels, which results in a severe cerebellar atrophy and ataxia.  The leaner 

mutation causes reduced calcium ion influx upon activation of P/Q-type voltage-gated 

calcium channels.  This disrupts calcium homeostasis and leads to a loss of cerebellar 

neurons, including cerebellar Purkinje cells.  Because of its similarities with human P/Q-

type voltage-gated calcium channel mutations, leaner mouse has served as a model for 

these disorders to aid our understanding of calcium channel function and 

neurodegeneration associated with calcium channel dysfunction. The aims of this 

dissertation were: (1) to precisely define the timing and spatial pattern of leaner Purkinje 

cell death and (2) to assess the role of caspases and specifically of caspase 3 in directing 

leaner Purkinje cell death.   
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 We used the mechanism independent marker for cell death Fluoro-Jade and 

demonstrated the leaner Purkinje cell death begins around postnatal day 25 and peaks at 

postnatal day 40 to 50.  Based on this temporal pattern of Purkinje cell death we then 

investigated the role of caspases in leaner Purkinje cell death.  These studies showed that 

caspase 3 is specifically activated in dying leaner cerebellar Purkinje cells.  In addition, 

in vitro inhibition of caspase 3 activity partially rescued leaner Purkinje cells.  Further 

investigation revealed that caspase 3 activation may be working together with or in 

response to macroautophagy.  This study also indicated a potential role for mitochondrial 

signaling, demonstrated by the loss of mitochondrial membrane potential in leaner 

cerebellar Purkinje cells.  However, our study revealed that if the loss of mitochondrial 

membrane potential is associated with leaner Purkinje cell death, this process is not 

mediated by the mitochondrial protein cytochrome C. 
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NOMENCLATURE 

 

∆Ψm  Mitochondrial membrane potential 

AIF  Apoptosis inducing factor 

ANOVA Analysis of variance 

Apaf 1  Apoptosis associated factor 1 

BH  Bcl-2 homology domain 

Ca2+  Calcium ion 

CICR  Calcium induced calcium release 

CNS  Central nervous system 

DAB  Diaminobenzadine 

DMSO  Dimethylsulfoxide 
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IAP  Inhibitor of apoptosis protein 
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K+  Potassium ion 
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VGCC  Voltage-gated calcium ion channel 
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CHAPTER I 

INTRODUCTION 

 

CEREBELLAR ANATOMY AND FUNCTION 

The cerebellum is part of the central nervous system (CNS) responsible for 

coordination of motor function and balance.  The cerebellum does not initiate motor 

actions.  Instead, it receives sensory input from the body, head, eyes and ears as well as 

intention of planned movements from the cerebral motor cortex in order to control rate, 

range and force of motion (Nolte, 1999).  The cerebellum is situated caudal to the 

cerebral hemispheres and dorsal to the 4th ventricle, metencephalon and myelencephalon 

of the brain stem.  Grossly, the cerebellum can be divided into three regions: a central 

vermis, paired lateral hemispheres and flocculi (Figure I-1).  The vermis is primarily 

responsible for spinocerebellar or somatosensory functions, while the hemispheres 

function in motor planning to coordinate motor function in the limbs and motor learning 

(Nolte, 1999).  The flocculi are part of the floculonodular lobe of the cerebellum, which 

is responsible for balance and equilibrium (Nolte, 1999).  

 

 

 

  

____________ 
This dissertation follows the style of Neuroscience. 

 



 

 

2

 
 
 
 
 
 
 
 
 
 
 
Figure I-1: Dorsal view of the adult mouse cerebellum.  V indicates vermis, H indicates 
hemispheres and arrows indicate flocculi.  Scale bar is 2 mm.  Image provided by Kerry 
A. Thuett. 
 
 

The cerebellum can be divided into rostral (or anterior) and caudal (or posterior) 

parts separated by the primary fissure and a flocculonodular lobe which is separated 

from the remaining cerebellum by the posterolateral fissure (Marani and Voogd, 1979; 

Altman and Bayer, 1997).  The cerebellum is a highly lobulated structure.  By 

convention, there are 10 distinct lobules or folia within the cerebellum (Altman and 

Bayer, 1997; Voogd and Glickstein, 1998).  Different nomenclature for these lobules is 

used between human and other mammalian species (Table I-1).  In the mouse cerebellar 

vermis (Figure I-2), lobules I and II are fused as are lobules IV and V, while lobule III 

remains separate (Marani and Voogd, 1979). 

 

H H V 



 

 

3

Table I-1: Nomenclature of cerebellar lobules. 

              Vermis                                  Hemispheres 
Human Other Mammals Human Other Mammals 
Lingual Lobule I Vincingulum lingulae Anterior lobule 
Central Lobule II & III Ala lobulus centralis Anterior lobule 
Culmen Lobule IV & V Anterior quadrangulate lob. Anterior lobule 
Declive Lobule IV Posterior quandrangulate lob. Lobule simplex 
Folium Lobule VIIA Superior semilunar lobule Ansiform lob. Crus I 
Tuber Lobule VIIB Inf. semilunar & gracile lob. Ansiform lob. Crus II 
Pyramis Lobule VIII Biventral lobule Paramedian lobule 
Uvula Lobule IX Tonsilla Dorsal paraflocculus 
Nodulus Lobule X Accessory paraflocculus  Ventral paraflocculus 
  Flocculus Flocculus 
Lob. = lobule; Inf. = inferior (Altman and Bayer, 1997; Voogd and Glickstein, 1998) 

 

 Microscopically, the cerebellar cortex is arranged into three layers: molecular 

layer, Purkinje cell layer, and granule cell layer (Figure I-2).  The molecular layer 

consists of interneurons (stellate and basket cells), the dendritic processes of Purkinje 

cells and the axons of granule cells (parallel fibers) and inferior olive neurons (climbing 

fibers).  The Purkinje cell layer consists of the cell bodies of Purkinje neurons, and the 

granule cell layer includes granule cell neurons, unipolar brush cell interneurons and 

Golgi cell interneurons. 
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Figure I-2: Microscopic anatomy of the adult mouse cerebellum.  A sagittal view of a 
mouse cerebellar vermis, identifying of lobules I - X (A).  Arrow indicates primary 
fissure.  A high magnification view of a cerebellar lobule I & II (B).  A and B are 
paraformaldehyde fixed, frozen sections stained with 1% thionin.  M represents 
molecular layer, PC is Purkinje cell layer, g is granule cell layer and Wm is white matter.  
Scale bar in A is 500 µm.  Scale bar in B is 100 µm. 
 
 
 

Communication between the different neurons in the cerebellar cortex is 

summarized in Figure I-3.  The cerebellum receives afferent inputs from climbing fibers 

and mossy fibers.  Climbing fibers originate from neurons in the inferior olive and relay 

information from the spinal cord, red nucleus and cerebral motor cortex through the 

caudal (or inferior) cerebellar peduncles to cerebellar Purkinje cells as well as sending 

collateral innervation to deep cerebellar nuclei neurons (O'Leary, et al., 1970; Altman 

and Bayer, 1997).  Mossy fibers originate from neurons in the brain stem, pontine nuclei 

and spinal cord to relay information from the cerebral motor cortex (pontine nuclei) and 

body (spinal cord and brain stem) through the middle and caudal cerebellar peduncles to 

cerebellar granule cells, unipolar brush cells, and collateral innervation to the deep 

cerebellar nuclei neurons (Chan-Palay, et al., 1977; Olschowka and Vijayan, 1980; 
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Altman and Bayer, 1997; Morin, et al., 2001).  Somatosensory information from spinal 

cord and brain stem is projected to the cerebellar vermis while information from the 

cerebral motor cortex is projected to the cerebellar hemispheres (Nolte, 1999).  

Cerebellar granule cells in the granule cell layer project into the molecular layer via 

parallel fibers to modulate cerebellar Purkinje cells, stellate cells, and basket cells 

(Eccles, et al., 1967; Palkovits, et al., 1971).   

Granule cell parallel fiber innervation and climbing fiber innervation of Purkinje 

cells is excitatory (Altman and Bayer, 1997; Voogd and Glickstein, 1998).  Granule cell 

parallel fibers will innervate several Purkinje cells, while climbing fibers are strictly 

limited to a single Purkinje cell (Larramendi and Victor, 1967).  The molecular layer 

interneurons, stellate cells and basket cells, are inhibitory to cerebellar Purkinje cells 

(Altman and Bayer, 1997; Voogd and Glickstein, 1998).  The combined innervation of 

climbing fibers, parallel fibers, stellate cells and basket cells modulate Purkinje cell 

activity.  In addition, Purkinje cells send inhibitory collateral innervation to the granule 

cell layer interneuron, Golgi cells (Eccles, et al., 1967).  Since Golgi cells are inhibitory 

to cerebellar granule cells, this provides a negative feedback loop for Purkinje cell 

excitability and further modulates Purkinje cell activity.  In contrast, unipolar brush 

cells, which receive excitatory input from mossy fibers, are excitatory to cerebellar 

granule cells providing a positive feedback loop for Purkinje cell excitability (Dino, et 

al., 2000).   
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Figure I-3: Overview of cerebellar circuitry.  IO is inferior olive, DCN is deep cerebellar 
nuclei, MF are mossy fibers, CF are climbing fibers, UBC’s are unipolar brush cells, 
GC’s are granule cells, Gol are Golgi cells, PC are Purkinje cells, BC are basket cells, 
SC are stellate cells, and PF’s are parallel fibers.  Solid lines represent excitatory 
innervation.  Dashed lines represent inhibitory innervation. 
 
 
 

Cerebellar Purkinje cells are the only efferent axons from the cerebellar cortex.  

They project to and inhibit neurons in the deep cerebellar nuclei and vestibular nuclei.  

The flocculonodular lobe or vestibulocerebellum includes lobules IX, X and the flocculi, 

and Purkinje cell axons of flocculonodular lobe project directly to the vestibular nuclei 
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to influence equilibrium and balance (De Zeeuw, et al., 1994).  The remaining Purkinje 

cells axons project to the deep cerebellar nuclei, which occur in bilateral pairs and 

include the fastigial, interpositus and dentate nuclei (Marani and Voogd, 1979).  In 

humans, the interpositus nucleus is often further subdivided into globus and 

emboliformis parts (Chan-Palay, et al., 1977).  The fastigial nuclei receive axons from 

the cerebellar vermis, while the interpositus and dentate nuclei receive axons from the 

paravermis and hemispheres respectively (Nolte, 1999).  The deep cerebellar nuclei 

project through the rostral (or superior) cerebellar peduncle to various regions of the 

brain stem including, vestibular nuclei, red nuclei and thalamus (Altman and Bayer, 

1997; Nolte, 1999).  The fastigial and interpositus nuclei are responsible for modulating 

motor activity, while the dentate nuclei relay information to the motor and premotor 

cerebral cortex to influence motor function and planning (Nolte, 1999).  A summary of 

neurotransmission associated with cerebellar innervation is found in Table I-2. 
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Table I-2: Summary of neurotransmission in cerebellar circuits. 
 

Synapse 
 

Neurotransmitter Effect 

Climbing fiber→Purkinje cell 
 

Corticotropin releasing factor, 
aspartate 
 

Excitatory 

Climbing fiber→deep cerebellar n. 
 

Corticotropin releasing factor Excitatory 

Mossy fiber→granule cell 
 

Glutamate, acetylcholine Excitatory 

Mossy fiber→unipolar brush cell 
 

Glutamate Excitatory 

Unipolar brush cell→granule cell 
 

Glutamate* Excitatory 

Granule cell→Purkinje cell 
 

Glutamate Excitatory 

Granule cell→stellate cell 
 

Glutamate Excitatory 

Granule cell→basket cell 
 

Glutamate Excitatory 

Stellate cell→Purkinje cell 
 

γ-amino butyric acid (GABA), 
taurine 
 

Inhibitory 

Basket cell→Purkinje cell 
 

GABA Inhibitory 

Golgi cell→granule cell 
 

GABA, glycine Inhibitory 

Purkinje cell→Golgi cell 
 

GABA Inhibitory 

Purkinje cell→deep cerebellar n. GABA Inhibitory 
(Altman and Bayer, 1997; Voogd and Glickstein, 1998) *(Dino, et al., 2000; Billups, et 
al., 2002) 

 

Cerebellar afferents, climbing fibers and mossy fibers, are segregated along the 

parasagittal bands and functionally divide the cerebellum along these lines (Oberdick, et 

al., 1998).  In addition to the compartmentalization determined by afferent innervation, 

the expression of certain genes within the cerebellum is also restricted to parasagittal 
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bands (Hawkes and Herrup, 1995; Herrup and Kuemerle, 1997; Ozol, et al., 1999).  One 

of the most recognized is that of Zebrin II labeling of cerebellar Purkinje cells.  Zebrin II 

staining, which labels the glycolytic enzyme aldolase C, is restricted to alternating 

parasagittal bands of Purkinje cells throughout development and adulthood (Leclerc, et 

al., 1992; Hawkes and Herrup, 1995).  Other genes, such as tyrosine hydroxylase (TH) 

and calbindin are developmentally expressed in parasagittal banded patterns (Herrup and 

Kuemerle, 1997).  While the expression of TH is transient and not present in the adult 

cerebellum, the expression of calbindin becomes uniform throughout the adult 

cerebellum (Herrup and Kuemerle, 1997).  These examples of the partitioning of the 

cerebellum into compartments demonstrate an important fundamental aspect of the 

cerebellum.  This complex organization and patterning of the cerebellum often results in 

the patterned dysfunction or loss of neurons in seen in many neuropathology of diseases 

and disorders affecting the cerebellum. 

 

EARLY CEREBELLAR DEVELOPMENT 

 The cerebellum is derived from the alar (dorsal) plate of the neural tube at the 

mesencephalon-metencephalon junction shortly after neural tube closure at embryonic 

day (E) 8.5 in rats and mice (McMahon and Bradley, 1990; Herrup and Kuemerle, 1997; 

Goldwitz and Hamre, 1998).  Initially the cerebellum develops as two bilaterally 

symmetrical bulges in the roof of the 4th ventricle (Hallonet, et al., 1990; Hallonet and 

Le Douarin, 1993).  Over the course of development these two bilateral anlages 

preferentially proliferate on the medial surface and fuse on midline to form the 
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precursors of the central cerebellar vermis and bilaterally paired cerebellar hemispheres 

by E16.5 in mice (Sgaier, et al., 2005).  Beginning in late embryogenesis there is an 

overall outward, radial expansion of the cerebellum accompanied by folding that 

produces lobules (Herrup and Kuemerle, 1997; Goldwitz and Hamre, 1998).  In the 

mouse, cerebellar development is complete by about postnatal day (P) 20. 

The cells in the cerebellum arise from two germinal zones.  The initial germinal 

matrix consists of a rostral neuroepithelial ventricular zone (derived from 

mesencephalon and metencephalon) and a more caudal rhombic lip (derived only from 

metencephalon) (Goldwitz and Hamre, 1998).  The ventricular zone gives rise to the first 

germinal matrix and most of the neurons in the cerebellum from E7 – 13 in rats and mice 

(Goldwitz and Hamre, 1998).   Neurons of the deep cerebellar nuclei develop first 

followed by Purkinje cells (Altman and Bayer, 1978; Altman and Bayer, 1985a; Altman 

and Bayer, 1985b).  Golgi cells are born last in the diminishing ventricular zone (Altman 

and Bayer, 1978; Altman and Bayer, 1985a; Altman and Bayer, 1985b).  At 

approximately E13, which is the time that deep cerebellar nuclear neurons and Purkinje 

cells stop dividing in the ventricular zone (Miale and Sidman, 1961), the secondary 

germinal matrix, derived from the rhombic lip, gives rise to the external granule cell 

layer (Goldwitz and Hamre, 1998).  The secondary germinal matrix migrates over the 

cerebellar surface to a position immediately beneath the pia mater.  Unipolar brush cell 

interneurons develop around E14, migrate to the internal or adult granule cell layer by 

P2 to P9 where the complete their differentiation and maturation by P20 (Abbott and 

Jacobowitz, 1995; Morin, et al., 2001).  During early postnatal development in the 
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mouse, molecular layer interneurons (stellate and basket cells) are generated deep in the 

white matter of the cerebellum (Zhang and Goldman, 1996).  Basket cells migrate into 

the molecular layer at P6 – 7 and complete their differentiation from P10 to P14, while 

stellate cells move into the molecular layer at P8 – 11 and complete differentiation by 

P20 (Zhang and Goldman, 1996; Collin, et al., 2005).  The external granule cell layer 

gives rise to granule cell neuroblasts that migrate inward guided by Bergmann glial 

radial fibers past cerebellar Purkinje cells to their adult location in the internal or adult 

granule cell layer by P20 (Fujita, et al., 1966).     

 

DEVELOPMENT OF CEREBELLAR PURKINJE CELLS 

Cerebellar Purkinje cells are derived from precursors in the ventricular zone, 

beginning about E8.  Initially the parasagittal banding pattern, typical of Zebrin II 

staining (zebrin phenotype) and compartmentalization of the adult cerebellum, is not 

detectible (Hawkes, et al., 1998).  However, by the time Purkinje cells undergo their 

terminal mitosis at E10 – 13 they are committed to their zebrin phenotype as the 

cerebellum initiates compartmentalization (Miale and Sidman, 1961; Leclerc, et al., 

1988).  Purkinje cells migrate from the ventricular zone at E11 – 13 into the cerebellar 

anlage forming a temporary multiple cell layered plate-like structure (Edwards, et al., 

1990; Goldwitz and Hamre, 1998).  At approximately E14 climbing fiber and mossy 

fiber afferents begin to enter the cerebellum and make initial contacts with specific 

Purkinje cell groups.  The earliest detected molecular banding pattern, first becomes 

evident beginning at E14.5 (Arsenio Nunes and Sotelo, 1985; Grishkat and Eisenman, 
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1995).  Around the time of birth, Purkinje cells disperse rostrocaudally into a monolayer 

committed to specific parasagittal bands or zones (Goldwitz and Hamre, 1998). 

Postnatal development of mouse cerebellar Purkinje cells consists primarily of 

the formation and elaboration of dendritic arbors and their synaptic contacts.  Following 

formation of the monolayer of cerebellar Purkinje cell bodies beneath the external 

granule cell layer, Purkinje cells become oriented in a translobular plan (Altman and 

Bayer, 1997).  Dendritic development begins at P3 as apical swellings which then form 

main stem dendrites by P10 – 12 (Altman and Bayer, 1997).  Branching of the main 

stem dendrite begins immediately and the Purkinje cell dendritic arbor is further 

elaborated and dendritic spines develop from P12 – 20 (Altman and Bayer, 1997).  

During this time, Purkinje cells form synapses at dendritic spines with granule cell 

parallel fibers (Larramendi and Victor, 1967).  Most of the development and elaboration 

of the dendritic arbor is dependent on the synaptic contacts between granule cells and 

Purkinje cells (Schrenk, et al., 2002; Adcock, et al., 2004).  Also during this time, 

Purkinje cells limit synaptic contacts between its dendritic shafts and climbing fibers to 

achieve a 1:1 association between Purkinje cells and inferior olive neurons (Mason and 

Gregory, 1984; Mason, et al., 1990).  At P20 cerebellar Purkinje cells have settled into 

their adult location and become their distinctive adult shape with its elaborate dendritic 

arbors that is flattened and oriented in a translobular plan (Altman and Bayer, 1997). 
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PROGRAMMED CELL DEATH 

Overview 

 Cell death is an integral part of the nervous system, playing roles in both 

neurodevelopment and in many neurodegenerative diseases.  Cell death can be divided 

into two broad categories: necrosis and programmed cell death (Kerr, et al., 1972; 

Schweichel and Merker, 1973).  The morphologic features of cell death are summarized 

in Table I-3.  Necrosis is characterized by energy independent cellular swelling and lysis 

that leads to inflammation (Leist, et al., 1997).  Necrosis is seen in some 

neurodegenerative disorders including ischemic brain injuries (stroke) and excitotoxicity 

(Yuan and Yankner, 2000; Yuan, et al., 2003).  Programmed cell death is an energy 

dependent, highly regulated process that allows for controlled breakdown of a cell 

without inducing an inflammatory response in the tissue surrounding the affected cell 

(Sastry and Rao, 2000; Yuan and Yankner, 2000; Yuan, et al., 2003).  Programmed cell 

death is an essential requirement for normal neurodevelopment and a key component of 

many neurodegenerative disorders including spinocerebellar ataxias, Alzheimer’s 

disease, Parkinson’s disease, Huntington’s disease and stroke (Oppenheim, et al., 2001; 

Benn and Woolf, 2004). 

 



 

 

14

Table I-3: Morphologic features of different mechanisms of cell death. 

 Programmed Cell Death 
 

Necrosis 
Macroautophagy Apoptosis 

 
ATP Synthesis 

 
Lost 

 
Maintained 

 
Maintained 

 
Mitochondrial 
morphology 

 
Swelling 

 
Some swelling 
#’s decreased 
Some normal 

 
Normal 

 
ER/Golgi 

 
Swelling 

 
Some swelling 
Some normal 

 
Normal 

 
Cytoplasm 

 
Empty spaces 

(nonlysosomal) 

 
Autophagic vacuoles 

Loss of density 

 
Condensation 

 
Plasma 
membrane 

 
Fragmentation 

 
Minor blebbing  
late in process 

 
Blebbing into 

apoptotic bodies 
 
Nucleus 

 
Fragmentation  
+/– swelling 

 
Some pyknosis  
late in process 

 
Pyknosis 

 
Chromatin/DNA 

 
Release in loss of 
nuclear integrity 

 
+/– Fragmentation 

late in process 

 
Condensation 
Fragmentation 

 
Final Clean Up 

 
Loss of membrane 
integrity & lysis; 

Removed by 
phagocytosis with 

inflammation 

 
Remaining cell 

removed by 
phagocytosis without 

inflammation 

 
Membrane bound 
apoptotic bodies 

removed by 
phagocytosis without 

inflammation 
(Bursch, 2001; Yuan, et al., 2003) 

  

Programmed cell death can be further divided into macroautophagy and 

apoptosis based on its morphologic features, see Table I-3.  Both types of programmed 

cell death are highly conserved signaling pathways found from yeast to vertebrates 

(Bursch, 2001; Yuan, et al., 2003).  Macroautophagy represents a normal homeostatic 
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process of a cell that when, triggered in excess, leads to cell death (Shintani and 

Klionsky, 2004).  Macroautophagy shares features with both necrosis and apoptosis.  For 

example, while some mitochondrial swelling is observed and there is a decrease in 

mitochondrial numbers, enough normal mitochondria are retained to maintain ATP 

synthesis and complete a controlled break down of the cell (Bursch, 2001).  

Macroautophagy tends to be activated when there is a demand for elimination of larger 

cells, requiring the removal bulk cytoplasm before nuclear breakdown (Bursch, 2001).  

Apoptosis is a highly regulated process by which specific proteases are activated and 

execute the degradation of the cytosolic and nuclear contents (Yuan and Yankner, 2000; 

Hengartner, 2000).  Both types of programmed cell death are essential for normal 

neurodevelopment and both are found in neurodegenerative disorders.  While these 

processes are distinct, they are not necessarily mutually exclusive events (Nitatori, et al., 

1995; Xue, et al., 1999).  Additionally, if the initiating stimulus is too severe or other 

factors interfere with the death program, both types of cell death are able to abort their 

programs, resulting in necrotic cell death (Leist, et al., 1997; Vercammen, et al., 1998). 

 

Apoptosis 

 Apoptotic machinery consists of two basic components, mitochondrial signaling 

and caspase proteases, which may work in concert with one another or independently to 

execute cell death (Hengartner, 2000; Yuan, et al., 2003).   Many different cellular 

signals are able to trigger apoptosis.  Certain cell surface death receptors, including Fas 

receptors, TNF receptors, TRAIL receptors activate apoptotic cell death upon binding 
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their specific ligands and forming a trimeric complex of three ligands and three receptors 

(Vercammen, et al., 1998; Ashkenazi and Dixit, 1998; Werner, et al., 2002).  Other 

signals such as growth factor withdrawal, altered intracellular calcium (Ca2+) signaling, 

or reactive oxygen species (ROS) are also able to initiate apoptosis (Yuan and Yankner, 

2000; Benn and Woolf, 2004).  These signals use numerous pathways, such as mitogen 

activated protein kinases (MAPK) (Kharbanda, et al., 2000), ceramide signaling (De 

Maria, et al., 1997), lysosomal proteases (Hishita, et al., 2001) or direct activation of 

caspases or mitochondrial signaling, to carry out cell death. 

 Mitochondrial mediated apoptosis is regulated by the Bcl-2 family of proteins.  

The Bcl-2 family of proteins are a group of proteins that share a conserved Bcl-2 

homology (BH) domain (Cory and Adams, 2002).  This family of proteins can be 

divided into three functional groups, one that is anti-apoptotic and two that are pro-

apoptotic.  The Bcl-2 subfamily of proteins, including Bcl-2, Bcl-xL, and Bcl-w, have 

BH domains 1 – 4 and are anti-apoptotic (Cory and Adams, 2002).  The Bax subfamily 

proteins have BH domains 1 – 3, are pro-apoptotic, and include proteins such as Bax, 

Bak, and Bok (Cory and Adams, 2002).  The second group of pro-apoptotic proteins 

contain only the BH 3 domain and are refer to as BH3 proteins (Cory and Adams, 2002).  

BH3 proteins include members such as Bid and Bad.   

Bax proteins execute mitochondrial death signals by oligomerizing and either 

forming a pore or triggering opening of the mitochondrial permeability transition pore 

causing the release of key death signaling factors from the mitochondrial intermembrane 

space (Desagher, et al., 1999; Eskes, et al., 2000; Letai, et al., 2002).  Bcl-2-like proteins 
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prevent apoptosis by binding Bax proteins, preventing oligomerization (Luo, et al., 1998; 

Letai, et al., 2002).  BH3 proteins promote apoptosis by sequestering Bcl-2, preventing 

its inhibition of Bax proteins (Letai, et al., 2002).  Apoptotic initiating signals interact 

with the Bcl-2 family of proteins in numerous ways.  Some directly activate BH3 

proteins, others phosphorylate Bcl-2-like proteins to prevent their function, and yet 

others alter the relative gene expression of the various subfamily members to favor 

apoptosis (Cory and Adams, 2002).  Once released from mitochondria, proteins such as 

cytochrome C and second mitochondrial activator of caspase (SMAC), activate caspase 

proteases, which carry out degradation of the cell (Liu, et al., 1996; Du, et al., 2000).  

Cytochrome C forms a protein complex which activates caspases directly (Li, et al., 

1997).  SMAC, alternatively blocks the action of inhibitor of apoptosis proteins (IAP) to 

free caspases for activation (Du, et al., 2000).  Other proteins such as apoptosis inducing 

factor (AIF) act independent of caspases to breakdown the cell (Susin, et al., 1999; Joza, 

et al., 2001). 

 Caspases are proteases responsible for many of the morphologic features of 

apoptosis (Earnshaw, et al., 1999; Hengartner, 2000; Yuan, et al., 2003).  They possess 

an active site cysteine residue and cleave their substrates following an aspartate residue 

(Thornberry, et al., 1997).  Caspases are produced as inactive zymogens, which must be 

cleaved in order to become proteolytically active (Earnshaw, et al., 1999).  Caspases 

may be activated directly through death receptor signaling or other cell signaling 

pathways, or their activation may be mediated through mitochondrial apoptotic pathways 

(Earnshaw, et al., 1999; Hengartner, 2000).  Caspases are divided into two groups.  The 
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first are initiator caspases, which include caspases 2, 8, 9, 10 and 12 (Slee, et al., 1999; 

Earnshaw, et al., 1999; Hengartner, 2000).  These caspases cleave other caspases to 

initiate or maintain caspase activity.  The second group of caspases are effector caspases, 

such caspases 3, 6, and 7, which are responsible for carrying out degradation of the cell 

(Slee, et al., 1999; Earnshaw, et al., 1999; Hengartner, 2000).  Their targets are 

cytoplasmic and nuclear proteins, including the activation of DNases responsible for 

breaking DNA into fragments and additional effector and initiator caspases to maintain 

their activity (Earnshaw, et al., 1999).  Some caspases such as caspases 8 and 12, when 

active, are able to cleave and activate effector caspase 3 directly (Vercammen, et al., 

1998; Ashkenazi and Dixit, 1998; Hitomi, et al., 2004).  Other initiator caspases form a 

protein complex which then activates an effector caspase.  For example, caspase 9, 

forms a protein complex with Apaf-1 and the mitochondrial protein cytochrome C, 

activating caspase 9 which in turn activates caspases 3 and 7 (Li, et al., 1997; Slee, et al., 

1999).  Initiator caspases also play a dual role in effector caspase activation.  For 

example, in addition to direct activation of caspase 3, caspase 8 is also able to activate 

the BH3 protein, Bid, triggering mitochondrial release of cytochrome C and subsequent 

caspase 3 activation (Luo, et al., 1998). 

 Cell survival or apoptotic death is the result of an intricate balance of anti- and 

pro-apoptotic signaling pathways.  The complexity of mitochondrial signaling and 

caspase signaling are indicative of the safeguards used by the cell to precisely control 

when and where the apoptotic program of cell death is activated.  While apoptosis is an 
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essential process for normal neurodevelopment, it may also be triggered in response to 

an insult to the cell in neurodegenerative diseases. 

 

Macroautophagy 

 Macroautophagy is part of a normal cellular system of autophagy responsible for 

lysosomal mediated removal of unwanted or damaged proteins and organelles, allowing 

recycling of their basic components (Bursch, 2001; Klionsky, 2005).  Chaperone-

mediated autophagy uses chaperone proteins and receptors to directly transport proteins 

into lysosomes for degradation (Klionsky, 2005).  Microautophagy sequesters cytoplasm 

(proteins and organelles) by invagination of the lysosomal membrane (Klionsky, 2005).  

Macroautophagy involves the formation of double membrane vesicles derived from 

either the smooth ER or Golgi apparatus that sequester portions of the cytoplasm 

(proteins and organelles), called an autophagosome (Bursch, 2001; Klionsky, 2005).  

The autophagosome fuses with a lysosome delivering an inner vesicle or autophagic 

body to the lysosome that is subsequently degraded by lysosomal proteases (Bursch, 

2001; Klionsky, 2005).  Macroautophagy normally occurs at low levels as part of the 

routine turn over of cellular components (Shintani and Klionsky, 2004).  However, it can 

also be induced to higher levels that cause cell death by certain environmental changes 

in development and differentiation for tissue remodeling or disease states such as cancer, 

neurodegeneration, and infection (Shintani and Klionsky, 2004). 

 The induction of macroautophagy can be mediated through two mechanisms.  

One uses class III phosphoinositide-3 kinase (PI3-K) activity to trigger macroautophagy.  
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Class III PI3-K and macroautophagic membrane dynamics are partly regulated by the 

Bcl-2 interacting protein, beclin-1(Blommaart, et al., 1997; Petiot, et al., 2000; Kihara, et 

al., 2001a; Kihara, et al., 2001b).  The second mechanism involves inhibition of 

autophagy in response to growth factor stimulation such as insulin-like growth factors 

and neurotrophins.  In this mechanism class, I PI3-K through phosphtidylinositol 3,4 

diphosphate and 3,4,5 triphosphate, activates phosphoinositide-dependent kinase 1 and 

Akt (protein kinase B) (Arico, et al., 2001; Melendez, et al., 2003).  Akt subsequently 

activates Tor (Target for rapamycin), preventing macroautophagy by inhibiting an Atg 

gene product activator of macroautophagy (Blommaart, et al., 1995; Noda and Ohsumi, 

1998; Kamada, et al., 2000).  The intricacies of the class I PI3-K signaling allow 

homeostatic levels of macroautophagy for normal recycling of cell components, yet 

induction of macroautophagic cell death upon events such as growth factor withdrawal. 

 Like some apoptotic pathways, macroautophagy often causes cell death 

independent of caspase activation or in the absence of caspase proteases (Bursch, 2001; 

Florez-McClure, et al., 2004).  However, it has also been shown to interact with and 

activate portions of the apoptotic cell death pathway (Chi, et al., 1999; Kitanaka and 

Kuchino, 1999).  Macroautophagy is able to activate caspases downstream of 

macroautophagic induction, where cell death cannot be prevented by the inhibition of 

caspase activity (Xue, et al., 1999).  In other circumstances, macroautophagy can be 

dependent on caspase activity in order to cause cell death (Canu, et al., 2005).  And, 

while macroautophagy and apoptosis can occur independent of one and other, they can 
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also be found to work together either in the same tissue or within the same cells in order 

to execute cell death (Bursch, 2001; Klionsky, 2005). 

 

NEURONAL CALCIUM SIGNALING  

Overview of calcium signaling 

  Calcium (Ca2+) signaling is a diverse intracellular signaling system that regulates 

many different cellular processes and functions.  In neurons these include 

neurotransmitter release, excitability, neurite outgrowth, synaptogenesis, activity 

dependent gene expression, differentiation, plasticity, cell death and survival (Pietrobon, 

2002).  Ca2+ concentration gradients between various cellular compartments are 

particularly important for these neuronal functions.  Extracellular Ca2+  concentrations 

are high, about 1mM, compared to those inside the cells (Berridge, et al., 2000).  

Intracellular Ca2+ concentrations can be divided between the cytosolic compartment and 

Ca2+ storage sites such as the endoplasmic reticulum (ER).  Resting intracellular Ca2+ 

concentrations are low, about 100nM, but rise to about 1µM during calcium signaling 

events (Berridge, et al., 2000; Bootman, et al., 2001).  Within the ER, Ca2+ 

concentrations are in the 100µM range (Berridge, et al., 2000; Bootman, et al., 2001).  

Several proteins, including Ca2+ exchangers, Ca2+ transporters, voltage-gated calcium 

channels (VGCC), ligand-gated calcium channels, store-operated calcium channels and 

calcium binding proteins work in concert to maintain the Ca2+ concentrations and 

gradients that are essential for normal Ca2+ signaling (Berridge, et al., 2000; Bootman, et 

al., 2001). 
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 During depolarization of a neuron, sodium (Na+) channels open allowing Na+ 

influx and depolarization of the plasma membrane (Koester and Siegelbaum, 2000).  

This depolarization activates and opens VGCC allowing Ca2+ to move down its 

concentration gradient from the extracellular space into the neuron.  Following 

depolarization, voltage-gated potassium (K+) channels open, K+ exits the cell 

repolarizing the membrane and closing the VGCC (Koester and Siegelbaum, 2000).  In 

addition, during synaptic transmission, ligand-gated calcium channels, such as the N-

methyl-D-aspartate (NMDA) receptor, open a cation channel permeable to Ca2+ in 

response to neurotransmitter binding (Kandel and Siegelbaum, 2000).  The Ca2+ influx 

associated with these events is able to trigger numerous signaling events.  The diverse 

roles of Ca2+ signaling are regulated by the amplitude, frequency and duration of Ca2+ 

influx.   

 Following Ca2+ influx, rapid calcium buffering is accomplished mainly through 

calcium binding proteins (Thayer, et al., 2002).  Many of these proteins share a common 

Ca2+ binding motif, called the EF-hand (Bastianelli, 2003).  In addition to buffering the 

influx of Ca2+, these calcium binding proteins are key components of several second 

messenger signaling pathways and control diverse cellular functions (Berridge, et al., 

2000).  Key calcium binding proteins in the mouse cerebellum are listed in Table I-4.  

Ca2+ influx and a particular calcium signal can be further modulated by Ca2+ induced 

Ca2+ release (CICR).  Two ligand-gated calcium channels on the ER, inositol 

triphosphate (IP3) receptors and ryanodine receptors, are primarily responsible for CICR 

(Berridge, et al., 2000; Ashby and Tepikin, 2001).  Ca2+ dependent activation of these 
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receptors trigger calcium release from the ER.  Depending on the number of receptors 

activated, the nature of the calcium signal is altered.  For example, if only a few 

receptors are activated, a small amount of Ca2+ is released called a “blip” or “quark” 

(Berridge, et al., 2000).  When several receptors are activated, more Ca2+ is release 

producing “puffs”, “sparks” or “spirals” (Berridge, et al., 2000).  When enough receptors 

are activated that the subsequent Ca2+ release is able to activate additional receptors, an 

intracellular calcium wave and CICR is triggered (Berridge, et al., 2000).  These 

variations in calcium signaling are able to establish either microdomains of specific 

calcium signaling or more global, cell-wide changes (Blackstone and Sheng, 2002). 

 

Table I-4:  Distribution of key calcium binding proteins in the adult mouse cerebellum. 

  
Purkinje Cells 

 
Granule cells 

 
Golgi cells 

Basket & 
Stellate cells 

Calmodulin ++ + ? + 
Calbindin +++ – ++ – 

Parvalbumin ++ – +/– +++ 
Calretinin +/– +++ + +/– 

+ is present in small amounts, ++ is present in moderate amounts, and +++ is present in 
large amounts.  – indicates protein is not present, +/– may be present in extremely small 
amounts, and ? indicates presence or absence is unknown (Bastianelli, 2003). 
 
 
 
 Neurons also employ numerous mechanisms to return cytosolic Ca2+ 

concentrations to resting levels and further regulate the nature of a Ca2+ signal.  Plasma 

membrane Na+/ Ca2+ exchangers are Ca2+ ATPase pumps that remove Ca2+ from the 

cytosol, returning it to the extracellular space (Berridge, et al., 2000; Thayer, et al., 

2002).  Sarco-endoplasmic reticulum Ca2+ ATPases pump cytosolic Ca2+ into the ER 



 

 

24

(Berridge, et al., 2000; Thayer, et al., 2002).  Additionally, if the ER Ca2+ concentrations 

drop sufficiently, store-operated calcium channels are activated, which transport Ca2+ 

from the extracellular space into the ER further replenishing Ca2+ ER stores (Berridge, et 

al., 2000; Thayer, et al., 2002).  Ca2+ also enters the mitochondria through a uniporter, 

which transports Ca2+ down a charge (pH) gradient into the mitochondrial matrix (Ichas 

and Mazat, 1998; Duchen, 1999).  After the initial influx of Ca2+ into the mitochondria, a 

mitochondrial Na+/ Ca2+ exchanger slowly returns Ca2+ to the cytosol, reestablishing the 

mitochondrial matrix pH (Ichas and Mazat, 1998; Duchen, 1999).  Mitochondrial Ca2+ 

influx can trigger a temporary opening of the permeability transition pore, also returning 

Ca2+ to the cytosol (Ichas and Mazat, 1998; Duchen, 1999).  These mitochondrial events 

have several important roles.  They are able to modulate ATP synthesis, as well as local 

or microdomain Ca2+ signals in addition to protecting the cell from excessive, potentially 

lethal levels of cytosolic Ca2+ (Blackstone and Sheng, 2002).  Ca2+ influx and efflux 

mechanisms together with calcium binding proteins create an intricate signaling 

mechanism to regulate functions as diverse as cell proliferation, differentiation, 

neurotransmission, and cell death or survival. 

 

Voltage-gated calcium channels 

 Voltage-gated calcium channels (VGCC) mediate Ca2+ entry into a cell in 

response to membrane depolarization, transducing an electrical signal into a chemical 

one (Catterall, 2000).  VGCCs are a multisubunit structure consisting of a pore forming 

subunit (α1) and auxiliary subunits β, γ, and α2δ, which modulate the biophysical 
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properties of the pore subunit (Westenbroek, et al., 1995; Koester and Siegelbaum, 

2000).  There are at least 10 genes for the pore forming subunit that encode five current 

types of VGCCs (Catterall, 2000; Pietrobon, 2002).  The genes are summarized in Table 

I-5.  The current types of VGCCs include the high voltage activated channels N-, R-, 

P/Q- and L-types and the low voltage activated channel, T-type.  The high voltage 

activated channels are differentiated by their sensitivity to specific inhibitors (Koester 

and Siegelbaum, 2000; Catterall, 2000).   N-type channels are sensitive to ω-conotoxin, 

P/Q-type channels to ω-agatoxin and L-type channels to dihydropyridine, while R-type 

channels are resistant to these inhibitors.  There are eight genes that encode γ subunits, 

four for β subunits and three for α2δ subunits.  In addition, both pore and auxiliary 

subunit genes have multiple splice variants, as well as differential expression in various 

neuronal populations and differential localization within a neuron.  This allows for an 

enormous diversity of function and specificity of signaling throughout the nervous 

system. 
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Table I-5: Voltage-gated calcium channel pore forming subunit genes. 

Ca2+ 
channel 

α1 
subunit 

Current 
type 

Primary 
location 

 
Primary function 

Cav1.1 α1S L Skeletal muscle 

 
Initiate contraction, calcium 
homeostasis, gene regulation 
 

Cav1.2 α1C 
L 
 

Cardiac muscle 
Endocrine cells 
Neurons 

Initiate contraction 
Initiate hormone secretion 
Gene expression 
 

Cav1.3 α1D L 
 

Endocrine cells 
Neurons 

Initiate hormone secretion 
Gene expression 
 

Cav1.4 α1F L 
 

Retina Tonic neurotransmitter release 
 

Cav2.1 α1A P/Q 
 

Nerve terminals 
Nerve dendrites 

Neurotransmitter release 
Ca2+ transients 
 

Cav2.2 α1B N 
 

Nerve terminals 
Nerve dendrites 

Neurotransmitter release 
Ca2+ transients 
 

Cav2.3 α1E R 

Nerve soma 
Nerve terminals 
Nerve dendrites 

Ca2+ dependent action potential 
Neurotransmitter release 
Ca2+ transients 
 

Cav3.1 α1G T 

Cardiac muscle 
Skeletal muscle 
Neurons 

Control repetitive firing patterns 
Control repetitive firing patterns 
Control repetitive firing patterns 
 

Cav3.2 α1H T 
Cardiac muscle 
Neurons 

Control repetitive firing patterns 
Control repetitive firing patterns 
 

Cav3.3 α1I T Neurons Control repetitive firing patterns 
(Catterall, 2000; Pietrobon, 2002) 
 
 
 

Pore forming subunits of VGCCs share a common structure (Figures I-4 and I-5) 

(Westenbroek, et al., 1995; Catterall, 2000; Pietrobon, 2002).  Each α1 subunit is 
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composed of four domains and cytoplasmic amino (N) terminal and carboxy (C) 

terminal tails.  Each domain is composed of six transmembrane segments.  The fourth 

transmembrane segment in each domain acts as the voltage sensor for the channel.  The 

extracellular loop connecting transmembrane segments five and six of each domain fold 

into the membrane close to the mouth of the pore and acts as the ion selectivity filter.  In 

addition to the auxiliary subunits, the pore forming subunit is modulated by 

phosphorylation (Li, et al., 2005), Ca2+ and calmodulin (a calcium binding protein) 

binding and synaptic vesicle proteins (Lee, et al., 1999).  P/Q-, N- and R-type channels 

can also be regulated by G proteins (Herlitze, et al., 1996; Zhou, et al., 2003). 

 
 

Figure I-4: Detailed structure of α1 subunit of voltage-gated calcium channels.  Roman 
numerals indicate domains.  NH2 represents the N-terminus of the α1 protein and COOH 
represent the C-terminus.  P is the P-loop of each domain.  * indicates the voltage 
sensing transmembrane segment. (Westenbroek, et al., 1995; Catterall, 2000; Pietrobon, 
2002) 

COOH 

Extracellular Space 

Cytosol 

NH2 

* * **
I II III IV 

P P P P
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Figure I-5: Representation of folded α1 subunit of a voltage-gated calcium channel 
within the membrane. Roman numerals indicate domains.  N represents the N-terminus 
of the α1 protein and C represents the C-terminus. (Westenbroek, et al., 1995; Catterall, 
2000; Pietrobon, 2002) 
 
 

Mutations in P/Q-type voltage-gated calcium channels 

 P/Q-type VGCCs are highly expressed in the dentate gyrus and CA fields of the 

hippocampus, the cerebellar cortex, pontine nucleus, olfactory bulb and cerebral cortex 

layers II and VI (Stea, et al., 1994).  Moderate levels are also found in the striatum, 

hypothalamus, substania nigra, red nucleus, lateral reticular nucleus and inferior olive 

(Stea, et al., 1994).  While N-, L-, and R-type channels can be found in the cerebellum, 

the majority of VGCCs in the cerebellum are P/Q-type VGCCs (Westenbroek, et al., 

1995).     P/Q-type VGCCs are most prominently expressed by Purkinje cells, are found 

throughout the dendritic arbor and at the cell body(Westenbroek, et al., 1995).  These 
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channels are expressed to a lesser extent by cerebellar granule cells (Westenbroek, et al., 

1995).   In addition, molecular layer interneurons express P/Q-type VGCC at their 

presynaptic terminals on cerebellar Purkinje cells(Westenbroek, et al., 1995). 

 Calcium ion channel mutations are responsible for several inherited neurological 

disorders.  Mutations in the α1A or pore forming subunit of P/Q-type VGCC’s have been 

linked to several human disorders including familial hemiplegic migraine (FHM), 

episodic ataxia type 2 (EA-2) and spinocerebellar ataxia type 6 (SCA-6) (Ophoff, et al., 

1996; Klockgether and Evert, 1998; Ducros, et al., 1999; Pietrobon, 2002).  FHM is 

associated with 12 different mutations in the α1A gene that cause migraine accompanied 

by intermittent weakness or paralysis (Ophoff, et al., 1996; Klockgether and Evert, 1998; 

Pietrobon, 2002).  These mutations are found in various domains in the voltage sensor, 

P-loop and in transmembrane segments five and six (Pietrobon, 2002).  Approximately 

half of the FHM mutations cause a slowly progressive cerebellar ataxia and atrophy 

(Ducros, et al., 1999).  The most common mutation for FHM with progressive cerebellar 

atrophy is T666M in the P-loop of domain II of the α1A subunit (Pietrobon, 2002).  EA-2 

has been linked to 15 different mutations in the α1A gene.  Most of these mutations 

disrupt the open reading frame resulting in either truncation, intron inclusion or exon 

skipping of the α1A subunit (Ophoff, et al., 1996; Klockgether and Evert, 1998; 

Pietrobon, 2002).  These changes cause episodes of ataxia that may be progressive and 

cerebellar atrophy localized to the anterior vermis (Klockgether and Evert, 1998; 

Pietrobon, 2002).  SCA-6 is caused by polyglutamine repeats in the carboxy-terminus of 

the α1A subunit that result in a slowly progressive cerebellar ataxia with marked 
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cerebellar atrophy (Pietrobon, 2002).  SCA-6 cerebellar atrophy is concentrated in the 

anterior cerebellar vermis and includes a severe loss of cerebellar Purkinje cells and 

granule cells (Pietrobon, 2002). 

There are several mutations of the α1A gene found in mice in which the 

phenotype or clinical signs closely resemble those in humans and have therefore been 

used as animal models to investigate the cellular and molecular consequences of α1A 

mutations in FHM, EA-2 and SCA-6 (Fletcher, et al., 1996).  Naturally occurring 

mutations include leaner, tottering, rocker, Nagoya rolling, and possibly pogo (Hyun, et 

al., 2001; Zwingman, et al., 2001).  A genetic knockout of the α1A gene (P/Q null) has 

also been created (Jun, et al., 1999).   

The leaner mouse (tgla or Cacna1atg-la) has a nucleotide substitution at an intron-

exon junction causing an aberrant splicing event in the carboxy tail resulting in a severe 

cerebellar ataxia with a loss of both granule cells and Purkinje cells that is more severe 

in the rostral cerebellum (Fletcher, et al., 1996).  The tottering (tg or Cacna1atg) mouse 

mutation results in an amino acid substitution (leucine for proline) in the P-loop of 

domain II of the α1A protein, which is located about 20 amino acids away from T666M 

mutation of FHM (Fletcher, et al., 1996; Ducros, et al., 1999; Pietrobon, 2002).  The 

tottering phenotype is characterized by an intermittent dyskinesia and a mild to moderate 

cerebellar ataxia without a significant loss of cerebellar neurons (Green and Sidman, 

1962; Isaacs and Abbott, 1992; Klionsky, 2005).  The rocker (tgrkr or Cacna1arkr) 

mutation results in an amino acid substitution (lysine for threonine) in the P-loop of 

domain III (Zwingman, et al., 2001).  The rocker phenotype is also characterized by a 
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mild to moderate cerebellar ataxia without a loss of cerebellar neurons (Zwingman, et 

al., 2001).  The Nagoya rolling (tgrol or Cacnalatg-rol) mouse mutation is a glycine for 

arginine substitution in the voltage sensor of domain III (Oda, 1981).  The rolling mouse 

phenotype is a moderate to severe ataxia with a minor loss of granule cells in the rostral 

cerebellum (Suh, et al., 2002).  The pogo (pogo/pogo) mouse mutation has been mapped 

to an area of chromosome 8 that includes the α1A gene (Hyun, et al., 2001).  Even though 

the mapped area also includes a chloride channel, phenotypically the pogo mouse 

resembles other P/Q-type VGCC mutations.  The phenotype of the pogo mouse includes 

a severe cerebellar ataxia, intermittent dyskinesia, and a loss of cerebellar Purkinje cells 

concentrated in the rostral vermis (Jeong, et al., 2000).  The P/Q knockout or null mouse 

(Cacna1aFctm1) most closely resembles the leaner mouse and its phenotype includes a 

severe cerebellar ataxia a loss of cerebellar granule cells and Purkinje cells (Jun, et al., 

1999; Fletcher, et al., 2001).  See Table I-6 for a summary and comparison of mouse 

P/Q-type VGCC mutations. 
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Mutations in the α1A gene in both humans and mice share many features.  

Phenotypically, these mutations cause a cerebellar ataxia that is variable in severity.  A 

common feature in many of these mutations is cerebellar atrophy with loss of cerebellar 

neurons.  In addition to ataxia, both human and mouse mutations frequently produce an 

intermittent movement disorder and mice often exhibit absence seizures.  The variability 

in various features of each mutation in the mouse mirrors the variability observed with 

the human mutations of FHM, EA-2 and SCA-6.  Studies that investigate the nature of 

each mouse mutation as well as those that compare and contrast differences between 

them will provide key insights to our understanding of the diverse nature of these human 

disorders and the functions of P/Q-type VGCCs. 

 

THE LEANER MOUSE 

The leaner mouse (tgla/tgla or Cacna1atg-la) carries a naturally occurring 

autosomal recessive mutation.  The leaner mouse was named for its motor dysfunction, 

which caused the mouse to “lean” against a wall to prevent it from falling while walking 

(Sidman, et al., 1965).  Two independent studies demonstrated that the leaner mutation 

localized to the α1A gene on mouse chromosome 8 (Fletcher, et al., 1996; Doyle, et al., 

1997).  The α1A gene encodes the pore forming subunit of P/Q-type VGCCs 

(Westenbroek, et al., 1995; Gillard, et al., 1997; Dove, et al., 1998; Wakamori, et al., 

1998; Lorenzon, et al., 1998).  The leaner mutation is the result of a base substitution of 

guanine by adenine at the 5′ end of an intron at the carboxy terminal end of the α1A gene 

(Fletcher, et al., 1996; Doyle, et al., 1997).  The mutation alters intron – exon splicing at 
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this location, producing one of two products, an intron inclusion or exon skipped 

(truncated) α1A protein at the carboxy-terminus (Fletcher, et al., 1996; Doyle, et al., 

1997). 

Severe cerebellar ataxia is the most notable phenotype of the leaner mouse.  

Ataxia first becomes apparent at P10 and becomes progressively worse until stabilizing 

at about P40 to P50 (Sidman, et al., 1965).  During postnatal development leaner mice 

experience a reduced survivability, with death occurring in about three-quarters of the 

mice by P21 due to their inability to move about their environment (Sidman, et al., 1965; 

Meier, et al., 2000).  However, when special care is given to support leaner mice through 

this critical period, they have a normal life expectancy (Abbott and Jacobowitz, 1999; 

Lau, et al., 2004).   

Leaner mice also exhibit absence seizures and an intermittent dyskinesia 

(Sidman, et al., 1965; Levitt, 1988; Hess and Wilson, 1991).  Generalized absence 

seizures begin as early as P14 and are similar to those in the tottering mouse, consisting 

of 6 – 7Hz spike wave discharges at a rate of 40 to 60 bursts an hour (Noebels, 1984; 

Klionsky, 2005).  The intermittent dyskinesia, referred to most appropriately as 

paroxysmal dyskinesia since it is a sudden burst of involuntary activity that disrupts 

voluntary motion, has also been termed an intermittent movement disorder, focal motor 

seizures or myoclonus (Green and Sidman, 1962; Levitt, 1988; Hess and Wilson, 1991; 

Rhyu, et al., 1999).  While this disorder is most prominent in tottering mutant mouse, the 

leaner mouse experiences it transiently, subsiding by P50. 
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In spite of the mutation, mRNA and protein expression of the leaner α1A subunit 

is not altered (Wakamori, et al., 1998; Lau, et al., 1998). The leaner mutation does alter 

the function of P/Q-type VGCCs.    The main effect of the mutation is a 60% decrease in 

Ca2+ currents, beginning as early as P7 – 9, just prior to the onset of ataxia (Dove, et al., 

1998; Lorenzon, et al., 1998; Wakamori, et al., 1998).  Voltage dependent gating, mean 

channel open time and Ca2+ conductance through the channel are unaffected (Dove, et 

al., 1998; Lorenzon, et al., 1998; Wakamori, et al., 1998).  The leaner mutation causes a 

threefold lower probability of channel opening, reducing the frequency of opening and 

thus the amount of Ca2+ able to enter the cell following depolarization (Dove, et al., 

1998; Lorenzon, et al., 1998; Wakamori, et al., 1998).   

The C-terminal cytoplasmic tail of the α1A subunit, which is altered by the leaner 

mutation, includes regulatory sites which are important in modulating P/Q-type VGCC 

properties (Catterall, 2000).  These regulatory sites include interaction and modulation of 

P/Q-type VGCC function by G-protein coupled receptor Gβγ subunits (Hille, 1994; 

Herlitze, et al., 1996; Qin, et al., 1997; Ikeda and Dunlap, 1999) and a site for Ca2+-

calmodulin binding (Lee, et al., 1999).  Gβγ subunits modulate gating properties while 

Ca2+-calmodulin enhances P/Q-type channel recovery from inactivation, facilitating Ca2+ 

entry.  The leaner mutation likely alters these or other regulatory functions such as 

phosphorylation sites in the C-terminal tail, to modify P/Q-type Ca2+ current. 

Many cellular functions are regulated by Ca2+, and in the CNS, VGCCs are the 

primary source of Ca2+ influx for Ca2+ signaling (Catterall, 2000; Berridge, et al., 2000; 

Bootman, et al., 2001).  Since the leaner mutation dramatically alters P/Q-type Ca2+ 
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current, it also has a profound effect on various Ca2+ dependent cell signaling systems.  

For example, one important function of P/Q-type VGCCs is the presynaptic release of 

neurotransmitters.  In the leaner cerebral cortex it has been demonstrated that glutamate 

neurotransmitter release is impaired (Ayata, et al., 2000; Qian and Noebels, 2001).   P/Q-

type VGCCs are prominently expressed in the cerebellum and thus have a significant 

role in the nature of Ca2+ signaling in cerebellar neurons.  Leaner cerebellar Purkinje 

cells are able to maintain normal resting cytosolic concentrations of Ca2+ (Dove, et al., 

2000; Murchison, et al., 2002).  This is primarily achieved through compensatory 

mechanisms that reduce leaner Ca2+ buffering capacity.  The leaner cerebellar Purkinje 

cell has reduced ER buffering as well as a decrease in the calcium binding proteins, 

parvalbumin and calbindin (Dove, et al., 2000).  However, CICR remains intact in the 

leaner ER, suggesting the ER itself is not dysfunctional, but rather that Ca2+ 

concentrations are maintained closer to the functional capacity of the ER, reducing its 

ability to buffer additional Ca2+ (Murchison, et al., 2002).  Thus, despite diminished Ca2+ 

entry, leaner cerebellar Purkinje cells are able to maintain Ca2+ transient amplitudes for a 

given stimulation (Dove, et al., 2000).  Similar events also may be true for cerebellar 

granule cells since they show a decrease in their primary calcium binding protein, 

calretinin (Nahm, et al., 2002).  In contrast to leaner Purkinje cells, leaner granule cells 

have decreased resting Ca2+ concentration (Lau, 1999).  In addition, T-type VGCCs are 

increased in leaner cerebellar Purkinje cells and decreased in leaner granule cells (Nahm, 

et al., 2005).  The differences between leaner Purkinje cells and granule cells, likely 
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represent different adaptive or compensatory processes within each cell type attempting 

to preserve cell function in presence of reduced Ca2+ currents. 

These changes in calcium signaling in the leaner cerebellum have numerous 

down stream effects.  Besides changes in T-type VGCC expression, there are many 

genes, whose expressions are dependent on Ca2+, and calcium signaling pathways, which 

are altered in the leaner cerebellum (Austin, et al., 1992; Nahm, 2002).  One example is 

that of tyrosine hydroxylase (TH) expression in cerebellar Purkinje cells.  TH, which 

converts tyrosine to L-DOPA, is the rate limiting enzyme in the synthesis of the 

neurotransmitter dopamine.  TH is transiently expressed in cerebellar Purkinje cells 

between the third and fifth postnatal weeks (Hess and Wilson, 1991; Austin, et al., 

1992).  However, in leaner cerebellar Purkinje cells, TH expression persists into 

adulthood (Hess and Wilson, 1991; Austin, et al., 1992).  Studies in the tottering mouse 

have shown that this aberrant TH expression is regulated by Purkinje cell excitability 

and L-type VGCCs, which are upregulated in the tottering cerebellum in response to 

decreased P/Q-type Ca2+ currents (Fureman, et al., 1999; Fureman, et al., 2003).   

Other changes in the leaner cerebellum include decreased numbers of cerebellar 

granule cell parallel fiber – Purkinje cell dendritic spine synapses as well as increased 

numbers of multiple synaptic contacts per parallel fiber varicosity in the leaner 

cerebellum (Rhyu, et al., 1999).  Leaner Purkinje cells also have ectopic dendritic spines 

and abnormal axonal swellings or torpedoes (Rhyu, et al., 1999). However, the most 

notable phenotype and consequence of altered calcium signaling in the leaner cerebellum 

is neurodegeneration.  Even though the overall cytoarchitecture of the cerebellum is 
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maintained, leaner cerebellar granule cells, Purkinje cells and Golgi cells die during 

postnatal development (Herrup and Wilczynski, 1982).  Leaner cerebellar granule cells 

begin to die at P10 – 12 and peak granule cell death occurs at P20 (Herrup and 

Wilczynski, 1982; Lau, et al., 2004).  Leaner cerebellar granule cell death remains 

noticeable until about P40, becoming infrequent by 4 months of age (Herrup and 

Wilczynski, 1982).  Leaner cerebellar granules cells die via an apoptotic cell death 

process that includes activation of caspase 3 (Lau, et al., 2004).  While it has been 

demonstrated that leaner cerebellar Purkinje cells die, it has been more difficult to 

determine both the precise timing and cellular mechanism of Purkinje cell death (Herrup 

and Wilczynski, 1982; Heckroth and Abbott, 1994).   Herrup and Wilczynki’s 1982 

study found that dying leaner Purkinje cells were not reliably identifiable, so they used 

counts of surviving Purkinje cells to determine the timing of Purkinje cell death.  Their 

study found that Purkinje cells begin dying after P26, with approximately half of the 

Purkinje cells lost by P60 and death continuing at lower levels until at least 1 year of age 

(Herrup and Wilczynski, 1982).  Additional studies demonstrated that leaner cerebellar 

Purkinje cell death occurred in distinct parasagittal zones (Heckroth and Abbott, 1994).  

Further investigation showed that the parasagittal zones of surviving leaner Purkinje 

cells co-localized with zebrin II and aberrant, persistent expression of tyrosine 

hydroxylase zones (Hess and Wilson, 1991; Abbott, et al., 1996).   However, it is not 

clear what impact the parasagittal zonation of the cerebellum or the aberrant TH 

expression has on Purkinje cell death and survival.  While leaner cerebellar Purkinje cell 
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death does not appear to be a necrotic process, the specific mechanism of leaner Purkinje 

cell death remains uncertain. 

 

OBJECTIVE OF THIS DISSERTATION 

The objective of this dissertation was to increase our understanding of the key 

signaling factors resulting from decreased P/Q-type VGCC Ca2+ currents that direct 

leaner cerebellar Purkinje cell death.  The long term goal of this research endeavor is to 

understand the process of cerebellar atrophy that plays such a significant role in human 

diseases such as familial hemiplegic migraine (FHM), episodic ataxia type 2 (EA-2) and 

spinocerebellar ataxia type 6 (SCA-6). 

Gene expression studies have demonstrated that there several potential cell death 

signaling pathways that may be important in directing leaner Purkinje cell death (Nahm, 

2002).  The central hypothesis of this dissertation is that leaner cerebellar Purkinje cell 

death is mediated through activation of a caspase cascade.  To evaluate this hypothesis, 

this dissertation investigated two specific aims: 

1) Establish the temporospatial pattern of leaner cerebellar Purkinje cell death, and 

2) Determine the role of caspase 3 activation in leaner cerebellar Purkinje cell death. 

The objective of Specific Aim 1 (Chapter II) was to specifically determine the 

pattern of leaner Purkinje cell death.  The first part of Specific Aim 1 confirmed the 

validity of the relative new cell death stain, Fluoro-Jade, in labeling dying leaner 

cerebellar neurons.  The second part of Specific Aim 1 utilized Fluoro-Jade to determine 

the precise timing and pattern of leaner Purkinje cell death. 
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Changes in Ca2+ buffering suggest mitochondria are potentially stressed, which 

could result in the release of mitochondrial factors and trigger either caspase dependent 

or caspase independent programmed cell death (Dove, et al., 2000; Murchison, et al., 

2002).  Furthermore, apoptotic gene array data suggest there are changes in Bcl-2 family 

gene expression, namely an increase in Bad and Bak, which could cause Purkinje cells to 

be more susceptible to programmed cell death (Nahm, 2002).  Gene array data however, 

also indicate there is an increase in cathepsin D, a lysosomal protease, suggesting the 

possibility of a lysosomal role in either direct caspase activation or macroautophagy 

(Nahm, 2002).  Macroautophagy is able to trigger cell death through either activation of 

caspase 3 or by caspase independent means.  The cell death signal pathways suggested 

by these studies indicate that determining the role of caspases is a key question that must 

be answered in order to elucidate the mechanism of leaner cerebellar Purkinje cell death.   

In Specific Aim 2, the hypothesis that caspase 3 is specifically activated and 

essential to leaner cerebellar Purkinje cell death was tested.  The first part of Specific 

Aim 2 (Chapter III) evaluated the pattern of caspase 3 activation in comparison to that of 

leaner cerebellar Purkinje cell death and the dependence of leaner Purkinje cell death on 

caspase 3 activation.  The second part of Specific Aim 2 (Chapter IV) investigated 

potential mechanisms of caspase 3 activation. 
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CHAPTER II 

FLUORO-JADE IDENTIFICATION OF CEREBELLAR GRANULE 

CELL AND PURKINJE CELL DEATH IN THE α1A CALCIUM ION 

CHANNEL MUTANT MOUSE, LEANER* 

 
 

SUMMARY 

Cell death is a critical component of normal nervous system development, too 

little or too much results in abnormal development and function of the nervous system.  

The leaner mouse exhibits excessive, abnormal cerebellar granule cell and Purkinje cell 

death during postnatal development, which is a consequence of a mutated calcium ion 

channel subunit, α1A.  Previous studies have shown that leaner cerebellar Purkinje cells 

die in a specific pattern that appears to be influenced by functional and anatomical 

boundaries of the cerebellum.  However, the mechanism of Purkinje cell death and the 

specific timing of the spatial pattern of cell death remain unclear.  By double labeling 

both leaner and wild type cerebella with Fluoro-Jade and TUNEL or Fluoro-Jade and 

tyrosine hydroxylase immunohistochemistry we demonstrated that the relatively new 

stain, Fluoro-Jade, will label neurons that are dying secondary to a genetic mutation.  

Then, by staining leaner and wild type cerebella between postnatal days 20 to 80 with 

Fluoro-Jade, we were able to show that Purkinje cell death begins at approximately  

_____________ 
*Adapted with permission from “Fluoro-Jade identification of cerebellar granule cell and Purkinje cell 
death in the α1A calcium ion channel mutant mouse, leaner” by Frank, TC, Nunley, MC, Sons, HD, 
Ramon, R, and Abbott, LC, 2003.  Neuroscience 118: 667-80.  Copyright 2003 by Elsevier Ltd. 
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postnatal day (P) 25, peaks in the vermis about P40 and in the hemispheres at P50 and 

persists at a low level at P80.  In addition, we showed that there is a significant 

difference in the amount of cerebellar Purkinje cell death between rostral and caudal 

divisions of the leaner cerebellum, and that there is little to no Purkinje cell death in the 

wild type cerebellum at the ages we examined. 

 This is the first report of the use of Fluoro-Jade to identify dying neurons in a 

genetic model for neuronal cell death.  By using Fluoro-Jade, we have specifically 

defined the temporospatial pattern of postnatal Purkinje cell death in the leaner mouse.  

This information can be used to gain insight into the dynamic mechanisms controlling 

Purkinje cell death in the leaner cerebellum.  

 

INTRODUCTION 

 Many studies now demonstrate that factors determining which cells will die and 

when are not simple, direct mechanisms.  Instead, a large number of proteins and 

signaling molecules from several cell signaling pathways are involved in complex 

interactions, which influence the balance between cell survival and cell death (Raff, 

1998; Sastry and Rao, 2000; Yuan and Yankner, 2000).  Not only is the presence or 

absence of trophic factors involved, but other pro- and anti-apoptotic factors have key 

determining roles (Giehl, et al., 2001; Krajewska, et al., 2002).  Many pro- and anti-

apoptotic factors are modulated by calcium signaling or calcium homeostatic changes 

(Berridge, et al., 2000).  The leaner mouse has both altered calcium signaling and 

homeostasis which result in its specific temporospatial pattern of abnormal postnatal 
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Purkinje cell death in the cerebellum (Herrup and Wilczynski, 1982; Heckroth and 

Abbott, 1994; Dove, et al., 1998; Dove, et al., 2000). Thus, studies into the mechanisms 

of cerebellar Purkinje cell death and survival in the leaner mouse may provide key 

information about the complex interactions of calcium signaling, anatomical and 

functional determinants, and gene or protein expression variability that lead to cell death 

in some neurons, but not others.  

Both leaner cerebellar granule cells and Purkinje cells die during postnatal 

development (Herrup and Wilczynski, 1982).  However, unlike leaner granule cells, 

definitively determining the timing of Purkinje cell death has been more difficult 

(Herrup and Wilczynski, 1982; Heckroth and Abbott, 1994).  Herrup and Wilczynski 

(1982) found it difficult to consistently identify dying leaner cerebellar Purkinje cells 

and instead evaluated surviving Purkinje cells at a variety of ages in order to establish a 

temporal pattern of cell death.  This has provided an excellent framework to study the 

various aspects of the neurologic disorders exhibited by leaner mice.  But now, as 

research focuses on uncovering the molecular mechanisms that direct and modulate the 

events that we see morphologically and phenotypically, a more detailed study of the 

temporal pattern of cerebellar Purkinje cell death is needed. 

 Fluoro-Jade is an anionic fluorescent dye that was introduced in 1997 to label 

degenerating neurons (Schmued, et al., 1997).  Since its introduction, it has been used to 

identify dying neurons in a variety of situations including toxic insults (Freyaldenhoven, 

et al., 1997; Bowyer, et al., 1998; Hopkins, et al., 2000; Bishop and Robinson, 2001), 

traumatic injuries (Allen, et al., 2000; Zwienenberg, et al., 2001), ischemia models 



 

 

44

(Kokaia, et al., 1998; Pennypacker, et al., 2000; Larsson, et al., 2001), seizure models 

(Poirier, et al., 2000; Kubova, et al., 2001), cell culture systems (Noraberg, et al., 1999; 

Kristensen, et al., 1999; Savaskan, et al., 2000), and recently in a transmissible 

spongiform encephalopathy infection (Ye, et al., 2001).  But, Fluoro-Jade has yet to be 

tested in a genetic model of neuronal cell death. 

 The goals of this study are two fold.  Since Fluoro-Jade is untested in a genetic 

model of neuronal cell death, the first objective was to validate the use of Fluoro-Jade in 

identifying known populations of dying cerebellar granule cells and Purkinje cells in the 

leaner cerebellum.  The second, subsequent objective of this study was then to use 

Fluoro-Jade to more precisely define the temporospatial pattern of Purkinje cell death in 

the leaner mouse.  With the information gained from this study, more detailed studies 

into the molecular mechanisms and interactions that produce the specific pattern of 

Purkinje cell death in the leaner cerebellum can be conducted.   

 

EXPERIMENTAL PROCEDURES 

Animals 

 Wild type and homozygous leaner mice on the C57BL/6J background between 

postnatal days (P) 20 to 80 were used.  The mice were bred and housed at the Laboratory 

Animal Research and Resource facility at Texas A&M University.  They were kept at a 

constant room temperature (70 - 72°C), exposed to a 12-hour light/dark cycle, and given 

access to food and water ad libitum.   All mice were weaned between P30 and 40.  All 

experimental procedures were carried out in accordance with National Institute of Health 
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Guide for Care and Use of Laboratory Animals (NIH publication No. 85-23, revised, 

1996).  Minimal numbers of animals necessary for each experiment were used. 

 Male and female heterozygous leaner mice were bred to produce homozygous 

offspring.  Starting at P20, homozygous leaner mice could easily be distinguished from 

their heterozygous littermates by their ataxic phenotype.  Homozygous leaner pups often 

die at P18 – 25 due to their severe ataxia, epileptiform seizures, and paroxysmal 

dyskinesia, which limit their ability to move about the cage.  Therefore, homozygous 

leaner mice were kept alive by fostering newborn pups to lactating Swiss White Webster 

female mice, which are better able to nurture the pups, as they reach the critical age of 

P18 – 25.  In addition, moistened rodent chow was placed in their cages, beginning at 

2.5 weeks of age and changed daily.  Leaner mice were weaned at P40, but the diet of 

dry rodent chow and water ad libitum, continued to be supplemented with moistened 

rodent chow. 

   

Tissue collection 

 All mice were anesthetized intraperitoneally with 150 mg/kg ketamine and 15 

mg/kg xylazine.  Once anesthetized, the mice were perfused intracardially with 50 mL of 

Tyrode’s Saline, followed by 500 mL of 4% paraformaldehyde in 0.12 M phosphate 

buffer (pH 7.4).  For the Fluoro-Jade and TUNEL experiment, the brains were collected 

and embedded in paraffin.  Sequential sagittal sections, 5 µm thick, were cut on an A/O 

microtome and mounted on plus coated ultraslick slides (VWR, West Chester, PA, 

USA).  For the Fluoro-Jade and tyrosine hydroxylase experiment and the Fluoro-Jade 
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staining for the leaner Purkinje cell death pattern experiment, the brains were collected, 

cryoprotected in 20% sucrose in 0.1M phosphate buffered saline, frozen with powdered 

dry ice and stored at -70°C until sectioning on a cryostat.  Throughout these experiments 

the rostral cerebellum is defined as lobules I through V, and the caudal cerebellum was 

defined as lobules VI through X. 

 

Fluoro-Jade and TUNEL double labeling 

 Seven leaner mice, three males and four females, at P20 were used.  Three to five 

slides, with three to four sections per slide, from the vermis of each cerebellum were 

double labeled with terminal deoxynucleotide transferase mediated, deoxyuridine 

triphosphate nick end labeling (TUNEL) and Fluoro-Jade.  The slides were 

deparaffinized in a graded series of xylenes and ethanols.  They were then TUNEL 

stained with the Apop-Tag kit (Intergen, Purchase, NY, USA) following the Intergen 

protocol for peroxidase staining of paraffin embedded tissues.  The stain was developed 

with 0.024% 3,3 diaminobenzidine (Sigma, St. Louis, MO, USA) in 0.006% hydrogen 

peroxide and 0.05 M Tris-HCl buffer (pH 7.6) for five minutes.  The reaction was 

stopped by three brief washes in 0.05 M Tris-HCl buffer (pH 7.6).  Instead of 

counterstaining, the slides were taken directly into the Fluoro-Jade staining procedure. 

 Following TUNEL, the slides were rinsed in three, one minute washes in 

deionized water.  The slides were then stained with Fluoro-Jade using a protocol 

previously described with  the initial steps of drying the sections and 100% and 70% 

ethanol washes being omitted (Schmued, et al., 1997).  The slides were instead, taken 
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directly into the 0.06% potassium permanganate solution for 15 minutes, washed in 

deionized water, and incubated in 0.001% Fluoro-Jade (Histochem, Jefferson, AR, USA) 

in 0.1% acetic acid for 30 minutes.  Once staining was complete, the slides were washed 

in three, one minute rinses of deionized water, thoroughly dried with a hot air gun, 

immersed in xylene and coverslipped using DPX mounting media (EMS, Fort 

Washington, PA, USA).  Sections of testes were included with each staining as a 

positive control for both TUNEL and Fluoro-Jade staining.  Negative controls for 

TUNEL were also run by the omission of TdT enzyme from the TUNEL staining 

procedure.  As a technical note, the double labeling procedure appears to decrease the 

durability and permanence of the diaminobenzadine reaction over the course of several 

months. 

 The slides were evaluated under bright field and fluorescence (fluorescein filter) 

microscopy.  Digital images using a Zeiss Axioplot 2 Research Microscope and a 3-chip 

Hamamatsu video camera were captured from a rostral and a caudal region from sections 

on two different slides for each animal.  The same field of view was captured with bright 

field illumination, for TUNEL staining, and fluorescein fluorescence illumination, for 

Fluoro-Jade staining, by alternating the light source without moving the stage.  Images 

were alternately captured as pairs of images with either the TUNEL image first or the 

Fluoro-Jade image first, for a total of four image pairs for each light source per 

individual.  The images were used to count positive cerebellar granule cells for each 

stain and determine which granule cells were labeled for both TUNEL and Fluoro-Jade.  

Two independent counts of the same images were completed and averaged.  Two types 
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of comparisons were of interest in this experiment.  The first was the evaluation overlap 

of TUNEL and Fluoro-Jade staining of granule cells for each individual.  Specifically, 

were there significantly more double labeled granule cells than for either stain alone?  

This was evaluated using Fisher’s protected least significant difference (Fisher’s LSD) 

test at α = 0.05.  The second type of comparison was that of the stains over the entire 

population of leaner cerebellar granule cells.  In other words, was there a significant 

difference between the populations of leaner cerebellar granule cells positive for one 

stain compared the granule cells positive for the other stain.  For this comparison, counts 

were normalized as a percentage of total positive cells per image and an analysis of 

variance (ANOVA) was used to test for differences between individuals (a between 

factor) for each stain (a within factor) at α = 0.05.  However, even if the ANOVA 

analysis indicates a significant difference between the two stains, the variance 

calculation does not account for a random number of positive granule cells being 

counted in each image.  Leslie Kish’s formula for variance of unequal clusters (Kish, 

1965), which accounts for this type of grouping is given below, and a z test were also 

used to more adequately evaluate and compare TUNEL and Fluoro-Jade staining granule 

cell populations at α = 0.05 for significance.   

Kish’s Equation: 
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Where y = total number of y (cells per stain), x = total number or n, a = primary number 

of sampling units (individuals, 7), and f = sampling fraction (0).   
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Fluoro-Jade staining and tyrosine hydroxylase immunohistochemistry 

 Three leaner mice at P30 and three mice at P50 (males and females included in 

both groups) were selected and used based on preliminary staining trials, which showed 

numerous Fluoro-Jade positive Purkinje cells at these ages.  When stained separately 

both tyrosine hydroxylase (TH) immunopositive Purkinje cells and Fluoro-Jade positive 

Purkinje cells could be identified, and as indicated in a previous study (Freyaldenhoven, 

et al., 1997) when double labeling was attempted, no Fluoro-Jade positive Purkinje cells 

could be detected.  We expected to see little to no overlap between Fluoro-Jade staining 

and TH immunopositive Purkinje cells since Fluoro-Jade should label dying Purkinje 

cells while surviving Purkinje cells express TH.  But upon evaluation of the double 

labeled sections, it appeared that TH immunopositive Purkinje cells failed pick up even 

the background level of Fluoro-Jade fluorescence (data not shown).  This caused some 

concern that the immunostaining protocol might interfere with the ability of Fluoro-Jade 

to label dying cells under these conditions.  In order to eliminate this potential problem, 

we utilized the parasagittal banding or zoned pattern of TH immunoreactivity in the 

leaner cerebellum, and compared serially paired coronal and frontal cerebellar sections, 

staining one slide for TH immunoreactivity and an adjacent slide for Fluoro-Jade.  This 

allowed us to evaluate immediately adjacent sections for each stain.  Based on the 

established staining pattern, a region of TH immunoreactivity in one section could be 

assumed to carry over into the adjacent section.  For two individuals in each age group, 

25 µm coronal sections of the cerebellum were cut on a cryostat as serial pairs and 

mounted on 0.3% gelatin-coated slides.  Sets of paired slides evenly distributed from 
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rostral to caudal regions of the cerebellum of each individual were stained and evaluated.  

For the third individual in each age group, 25 µm frontal sections of the cerebellum were 

cut as serial pairs and mounted on 0.3% gelatin-coated slides. Paired slides, evenly 

distributed from dorsal to ventral positions within the cerebellum, were stained and 

evaluated.  In each pair, one slide was stained with Fluoro-Jade, while the other was 

stained for tyrosine hydroxylase (TH) immunohistochemistry. 

 For TH immunohistochemistry, a standard protocol was used (Abbott and 

Jacobowitz, 1995).  Briefly, slide mounted sections were permeablized in 0.3% Triton X 

– 100 for one hour and endogenous peroxidases were quenched with five minute 

incubation in 3.0% hydrogen peroxide in 0.1M phosphate buffered saline.  The sections 

were blocked in 5.0% normal goat serum and incubated overnight at 4°C in rabbit 

polyclonal TH antibody (Protos Biotech Corporation, New York, NY, USA or 

Chemicon international, Temecula, CA, USA) at a 1:2,500 dilution.  The sections were 

incubated in biotinylated goat anti-rabbit (Vector Laboratories, Burlingame, CA, USA) 

at a 1:400 dilution followed by peroxidase-labeled streptavidin (Kirkegaard & Perry 

Laboratories, Gaithersburg, MD, USA) at a 1:5,000 dilution, each for two hours at room 

temperature.  The immunohistochemical reaction was developed with 0.024% 3,3 

diaminobenzidine in 0.006% hydrogen peroxide and 0.05M Tris-HCl buffer (pH 7.6) for 

20 minutes either with or without nickel intensification.  The reaction was stopped by 

three brief washes in 0.05M Tris-HCl buffer (pH 7.6).  The slides were thoroughly dried 

with a hot air gun, immersed in two changes of xylene, and coverslipped with DPX 

mounting media. 
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 For Fluoro-Jade labeling, the appropriate paired slides to the tyrosine 

hydroxylase stained slides were stained following a previously described protocol with a 

slight modification (Schmued, et al., 1997).  Frozen, slide mounted sections were 

thawed, dried in an oven at 54°C for two hours, and cooled to room temperature before 

staining.  Then, as per the protocol described by Schmued, et al. (1997), the slides were 

washed in 100% ethanol, then 70% ethanol followed by deionized water; incubated in 

0.06% potassium permanganate for 15 minutes, rinsed in deionized water then incubated 

in 0.001% Fluoro-Jade in 0.1% acetic acid for 30 minutes.  The slides were rinsed in 

three, one minute washes of deionized water, thoroughly dried with a hot air gun, 

immersed in two changes of xylene, and coverslipped with DPX mounting media.  Two 

slides with 25 µm testes sections were included with each staining as a positive staining 

control. 

 In order to evaluate the slides for overlapping regions of positively labeled 

cerebellar Purkinje cells, digital images were captured and compared.  In the coronal 

sections, six evenly distributed (rostral to caudal) image pairs were captured per 

individual.  In the frontal sections, two sets (one rostral and one caudal) of six evenly 

distributed (dorsal to ventral) image pairs were captured per individual.   Half the image 

pairs per individual were captured by finding an area of tyrosine hydroxylase positive 

Purkinje cells under bright field microscopy and capturing the image without knowing 

the results of Fluoro-Jade staining in the adjacent sections.  Then in an immediately 

adjacent Fluoro-Jade stained section, under fluorescence microscopy, the same specific 

area was identified, and its image was captured.  The other half of the image pairs per 
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individual were captured in the opposite fashion, i.e. Fluoro-Jade positive Purkinje cells 

were identified and captured first, followed by images of tyrosine hydroxylase stained 

sections.  The images were then compared for overlapping zones of Fluoro-Jade and 

tyrosine hydroxylase staining. 

 

Fluoro-Jade staining for cerebellar Purkinje cell death pattern 

 The following ages were tested:  postnatal days (P) 20, 25, 30, 40, 50, 60, 70, and 

80.  At P20, P30, P60, P70, and P80, four leaner and four wild type mice, two males, 

two females of each genotype were used.  Based on the initial data,  a Power Analysis at 

α = 0.05 indicated an n = 6 would help clarify peaks in the data over the time course 

evaluated.  At P25, P40, and P50, six leaner (three males, three females) and four wild 

type mice (two males, two females) were used.  For each individual the entire 

cerebellum was cut on a cryostat as 25 µm sequential, sagittal sections.  Every other 

slide from each individual was stained with Fluoro-Jade.  To control for staining 

variability, the individuals were placed into staining groups containing one male and one 

female of each genotype at the same age per group.  Testes sections were included as a 

positive staining control.  The staining procedure was the same as that described in the 

Fluoro-Jade Staining and Tyrosine Hydroxylase Immunohistochemistry section except 

that after thawing, the slides were dried in a 54°C oven for three and a half to four hours 

and then cooled to room temperature before proceeding with the staining. 

 Prior to cutting the frozen brains, slides for individual mice were placed in their 

staining groups and given an identification number that lacked any indication of 
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genotype or gender.  In this way, the remainder of the experiment was carried out blind 

to these factors.  To evaluate cerebellar Purkinje cell death, the number of Fluoro-Jade 

positive Purkinje cells in each stained section was counted.  When counting each 

individual, hemispheres were differentiated from vermis by the medial lack of the 

cerebellar peduncles to indicate a vermal section.  In addition, the counts for the vermis 

were further divided into rostral (lobules I – V) and caudal (lobules VI – X) regions.  

Two independent counts were carried out for each individual using the following 

criteria:  1) only Purkinje cell bodies were counted, 2) the same cell body was not 

counted more than once (i.e. adjacent sections), 3) Purkinje cell dendrites alone were not 

counted.  Total cerebellar counts for the two independent counters were averaged.  

Purkinje cell death comparisons included wild type (control) and leaner cerebella as well 

as anatomic locations (whole vermis, pooled hemispheres, rostral vermis and caudal 

vermis). 

Since the data for P25 individuals was examined strictly for identification of 

initiation of Purkinje cell death, it was excluded from the following analyses in order 

simplify statistical calculations. ANOVA was used to test for differences based on 

gender, genotype, anatomic location, and age with significance indicated by p < 0.05.  

Trend analysis was used to compare time course data with significance indicated by p < 

0.0007, for an α = 0.05.  Tukey’s Honest Significant Difference (HSD) posthoc test was 

used to evaluate peaks with each time course examined at α = 0.05 for significance. 
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RESULTS 
 
Fluoro-Jade and TUNEL double labeling 

In order to evaluate the use of Fluoro-Jade in the leaner mouse, whose genetic 

mutation results in neuronal death, we examined the staining of cerebellar granule cells, 

since this population of cells has been well studied.  We utilized the known peak of 

leaner cerebellar granule cell death, P20, which was previously established by evaluating 

fragmented DNA associated with apoptosis using TUNEL labeling, comparing granule 

cell death indicated by TUNEL to that indicated by Fluoro-Jade (Herrup and Wilczynski, 

1982; Lau, et al., 2004).  Cerebellar sections from P20 leaner mice were double labeled 

with TUNEL and Fluoro-Jade.  Figure II-1A and II-1B show a representative pair of 

captured images of double labeled sections.  From 7 individuals, a total of 796 cerebellar 

granule cells were evaluated.  Figure II-2 shows the average number of positive granule 

cells per individual for each stain.  While some granule cells were positive only for 

Fluoro-Jade (17.5%) and others were positive only for TUNEL (29.5%), there were 

significantly more double-labeled (53%) granule cells (Fisher’s protected Least 

Significant Difference:  ANOVA F2,21 = 14.2, p  <  0.05, Fischer’s LSD p  <  0.05).  
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Figure II-1: Representative images of TUNEL and Fluoro-Jade labeling.  A 
representative image pair of the granule cell layer from TUNEL (A) and Fluoro-Jade (B) 
double labeling is shown.  A and B are the same field of view captured under different 
light sources, bright field for TUNEL (A) and FITC fluorescence for Fluoro-Jade (B).  
Scale bar in A indicates 20 µm.  Black arrows indicate cerebellar granule cells positive 
for both stains.  White arrow indicates granule cell positive for only one stain, TUNEL.  
Images were adjusted for brightness and contrast using Adobe Photoshop 5.0.   
 

 

Of the 796 granule cells positive for at least one of the two stains, 82.5% were 

positive for TUNEL and 69.5% were positive for Fluoro-Jade.  ANOVA analysis 

indicated no significant difference between individuals and no significant interaction 

between individuals and stain, but there was a significant effect of stain (F1,6 = 64.38, p < 

0.05).  Since it was necessary to change the light source to view double-labeled cells, it 

was not possible to count a predetermined number of cells in any one individual or field 

of view without biasing the data toward one stain or the other.  Hence, in the images 

captured, all the positive cells were counted for each stain, meaning that in any given 

pair of images the total number of granule cells counted was a random number.  Since 

there was no significant effect due to the individuals and no interaction between the 
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individuals and the staining procedure we grouped the individuals into a single data set 

of cerebellar granule cells rather than the individuals, with n = 796 for an alternate, more 

adequate comparison of the stains.  Leslie Kish’s formula for variance (indicated in the 

methods section), which accounts for this type of clustering of individuals and data, was 

used in a z test analysis of the TUNEL and Fluoro-Jade populations of granule 

cells(Kish, 1965).  The z test indicated that there is a significant difference (z = -4.79, p 

< 0.01) between the TUNEL positive and the Fluoro-Jade positive populations of 

granule cells. 
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Figure II-2: Comparison of TUNEL and Fluoro-Jade double labeling in leaner cerebellar 
granule cells.  Double labeling of TUNEL and Fluoro-Jade positive cerebellar granule 
cells from seven P20 leaner mice.  For each category, TUNEL, Fluoro-Jade or Both 
(double labeled), the results per individual were averaged.  The error bars represent 
standard error of the mean.  Double labeled granule cells were significantly different 
from either Fluoro-Jade only labeling or TUNEL only labeling (indicated by an asterisk, 
*), but Fluoro-Jade only granule cells were not significantly different from TUNEL only 
granule cells. 
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Fluoro-Jade staining and tyrosine hydroxylase immunohistochemistry 

 In order to further test the use of Fluoro-Jade in identifying dying leaner neurons, 

and to specifically evaluate its use on dying cerebellar Purkinje cells, we utilized 

previously established patterns of Purkinje cell survival and death in these mice.  

Specifically, it has been shown, that surviving leaner cerebellar Purkinje cells 

abnormally express tyrosine hydroxylase (TH) in an rostrocaudal striped or mediolateral 

zoned pattern (Hess and Wilson, 1991; Austin, et al., 1992; Abbott, et al., 1996), and 

Purkinje cell death also occurs in a rostrocaudal striped pattern (Heckroth and Abbott, 

1994).  Figure II-3 shows two representative staining image pairs.  48 pairs of images 

(12 coronal and 12 frontal for each age group) were compared and results are shown in 

Table II-1.  We found only one area where a single Fluoro-Jade positive Purkinje cell 

appeared to be located in an area of TH immunoreactivity. 
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Figure II-3: Representative images of tyrosine hydroxylase and Fluoro-jade labeling.  A 
- D are representative images of serially paired sections stained for tyrosine hydroxylase 
(A and B) and Fluoro-Jade (C and D) from a P30 leaner cerebellum.  A and C are images 
where tyrosine hydroxylase positive Purkinje cells were found first.  B and D are images 
where Fluoro-Jade positive Purkinje cells were found first.  The double headed arrows in 
A and D indicate regions of positive Purkinje cells, which correspond to the regions 
lacking positive staining Purkinje cells indicated with double headed arrows in B and C.  
The arrowheads in C indicate Fluoro-jade positive Purkinje cell dendrites, located next 
to but not overlapping with tyrosine hydroxylase immunoreactivity.  Scale bar in B 
indicates 100 µm for A - D.  Images were adjusted for brightness and contrast using 
Adobe Photoshop 5.0. 
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Table II-1: Comparison of overlapping regions of tyrosine hydroxylase (TH) 
immunohistochemistry and Fluoro-Jade staining.  
 

Overlap Age and section type 

 P30, 
coronal 

P50, 
coronal 

P30, 
frontal 

P50, 
frontal 

No regions 11 12 12 12 
One region 1 0 0 0 
More than one region 0 0 0 0 

 
 

Fluoro-Jade staining for cerebellar Purkinje cell death pattern 

  Based on cerebellar Purkinje cell survival in the leaner mouse, Purkinje cell 

death has been estimated to begin after P26, peak at P40 and a continued slow loss of 

Purkinje cells through at least one year of age with most of the Purkinje cell death 

occurring between P40 and P68 (Herrup and Wilczynski, 1982).  In order to more 

clearly define the Purkinje cell death pattern in leaner mice, we evaluated the following 

age groups: P20, P30, P40, P50, P60, P70, and P80, so that the time frame evaluated 

would begin prior to the initiation of Purkinje cell death and include the most robust 

period of Purkinje cell death.  Figure II-4 shows representative pictures of Fluoro-Jade 

staining from key time points.  Once the initial data were evaluated, an age group at P25 

was added in order to clarify the timing of initiation of Purkinje cell death.  ANOVA 

analysis indicated that while gender was not significant, genotype (F1,69 = 170.23, p < 

0.05), anatomic location (F4,69 = 23.89, p < 0.05) within the cerebellum and age (F6,69 = 

16.04, p < 0.05) were significant. 
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Figure II-4: Representative images from key time points in leaner cerebellar Purkinje cell death.  Representative 
images of Fluoro-Jade staining in wild type (A) and leaner (B – F) cerebella.  A) shows lobule III (rostral) from a wild 
type cerebellum at P40.  M indicates molecular layer, PC indicates Purkinje cell layer, g indicates granule cell layer, 
Wm indicates white matter tracts and DCN indicates deep cerebellar nuclei.  No positive staining is observed in the 
wild type cerebellum shown.  B) shows lobule I/II (rostral) from a leaner cerebellum at P20.  No positive Purkinje 
cells can be seen, but the arrow indicates numerous positive granule cells.  The inset in B in a higher magnification 
image of the granule cell layer, the arrowheads indicate Fluoro-Jade positive granule cells.  White arrowheads in C – F 
indicate positive Purkinje cells, and the orange arrows in E and F indicate white matter staining.  C and D are taken 
from P40 leaner cerebella.  C) shows lobule III (rostral), and D) shows lobules VIII and IX (caudal).  Many fewer 
positive Purkinje cells were seen in the caudal lobules (VI – X) compared to the rostral lobules (I – V).  Inset in C is a 
higher magnification image of a Fluoro-Jade positive Purkinje cell.  The cell body in the Purkinje cell layer and the 
dendritic tree in the molecular layer are clearly visible.  E) shows lobules III and VI/V (rostral) from a leaner 
cerebellum at P50.  Fewer positive Purkinje cells were seen compared to P40, but white matter staining is quite 
prominent.  F) shows lobules I/II and III (rostral) from a leaner cerebellum at P80.  Numbers of positive Purkinje cells 
as well as white matter and deep cerebellar nuclei staining declined compared to earlier ages (P40 to P70).  Scale bar 
in A indicates 100 µm for all images except insets in B and C.  Scale bar in inset in B indicates 40 µm and the bar in 
inset in C indicates 50 µm.  Images were adjusted for brightness and contrast using Adobe photoshop 5.0.  
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A comparison of Fluoro-Jade staining of cerebellar Purkinje cells in wild type 

and leaner cerebella is shown in Figure II-5A.  Throughout the ages tested, wild type 

cerebella exhibited few Fluoro-Jade positive Purkinje cells.  At P20 there were also no 

Fluoro-Jade positive Purkinje cells in the leaner cerebella, however, as expected and 

shown in Figure II-4B, large numbers of Fluoro-Jade positive granule cells could be 

detected.  At P25, Purkinje cell death became evident in the leaner cerebellum.  It is 

noteworthy that within this group, one leaner cerebellum had an estimated total of only 2 

Fluoro-Jade positive Purkinje cells.  This was followed by a rapid increase in Fluoro-

Jade positive Purkinje cells until P40, then a steady decline, which continued past P80.  

In addition, white matter staining was detected beginning at P40 (Figure II-4C), 

becoming much more intense at P50 (Figures II-4E, II-6A and II-6B) and decreasing but 

still evident at P80 (Figure II-4F).  Fluoro-Jade staining of axon fibers within the deep 

cerebellar nuclei was also detected between P50 and P80 (Figure II-6C and II-6D), but 

not in the inferior olivary nucleus (not shown).  Trend analysis for comparison of wild 

type and leaner Purkinje cell death as determined by Fluoro-Jade staining indicates 

significant differences at P30, P40, P50, and P60 (F1,69 = 17.02, 132.25, 82.43, and 23.81 

respectively with  p < 0.0007 in all cases).  In order to facilitate the statistical analysis 

calculations, the P25 age group was excluded.  Since the number of Fluoro-Jade positive 

Purkinje cells at P25 were less than those at P80 while its variance was similar, it is 

unlikely that significance could have been detected in this group.  Tukey’s HSD 

indicated a peak at or between P40 and P50. 
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Within the leaner cerebellum, the cerebellar vermis and pooled hemispheres had 

distinctly different patterns of Purkinje cell death (Figure II-5B).  The leaner cerebellar 

hemispheres exhibited a slower increase in Purkinje cell death, with a broader peak and 

slower decline when compared to the leaner vermis.  Trend analysis indicated that the 

leaner vermis and pooled hemispheres were significantly different from each other at 

P50 (F1,69 = 40.64, p < 0.0007).  Trend analysis also indicated that the leaner vermis was 

only different from the wild type vermis at P40 (F1,69 = 27.12, p < 0.0007), while the 

leaner hemispheres were significantly different from wild type hemispheres at P40 (F1,69 

= 39.56, p < 0.0007), P50  (F1,69 = 54.51, p < 0.0007), and P60 (F1,69 = 14.85, p < 

0.0007).  Tukey’s HSD indicated a significant peak in Purkinje cell death as revealed by 

Fluoro-Jade staining at P30 and P40 in the leaner cerebellar vermis, and at P40 and P50 

in the pooled hemispheres. 

In addition, as shown in Figure II-5C, there is a distinct pattern of Purkinje cell 

death between the rostral (lobules I – V) and caudal (lobules VI – X) divisions of the 

leaner cerebellar vermis.  Most of the Purkinje cell death in the leaner cerebellar vermis 

occurred rostrally, with only a low, steady level of Purkinje cell loss in the caudal 

lobules.  Trend analysis indicated a significant difference at P40 between the leaner 

rostral and caudal cerebellar vermis (F1,69 = 16.88, p < 0.0007) and leaner and wild type 

rostral cerebellar vermis (F1,69 = 19.72, p < 0.0007).  Tukey’s HSD indicated a 

significant peak in Fluoro-Jade positive Purkinje cells in the leaner rostral cerebellar 

vermis at P40.  In the leaner caudal cerebellar vermis, there is no significant difference 

when compared to wild type cerebella and no significant peak in Purkinje cell death. 
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Figure II-5: Quantitative evaluation of the Purkinje cell death pattern in the leaner 
cerebellum.  Quantitative comparisons between leaner and wild type cerebella (A), 
between leaner vermis and pooled leaner hemispheres (B) and between rostral and 
caudal divisions of the leaner cerebellar vermis (C) over the time course P20 – P80.  All 
age groups contain four leaner and four wild type mice except P25, P40 and P50, which 
contained six leaner mice and four wild type mice.  For each individual the numbers of 
positive cerebellar Purkinje cells for half the cerebellum or region were used to estimate 
a total for the whole cerebellum or region, and the individuals for each age and genotype 
were averaged.  Error bars represent the standard error of the mean.  A) Comparison of 
whole cerebellum between wild type (black bars) and leaner mice (gray bars).  Both wild 
type and leaner cerebella at P20 and the wild type cerebella at P40 have an average of 
zero.  Wild type cerebella at P25, P30, and P70 had an average number of positive 
Purkinje cells of less than one.  The wild type cerebella at P50 had an average positive 
Purkinje cell total of one, while wild type cerebella at P60 and P80 had an average of 
1.5.  The single asterisk (*) indicates significant differences in trend analysis, comparing 
the wild type Purkinje cell death trend to the leaner trend.  The double asterisks (**) 
indicate significant peaks in leaner Purkinje cell death as indicated by Tukey’s HSD.  B) 
Comparison of vermis (gray bars) and pooled left and right hemispheres (black bars) in 
the leaner cerebellum.  The single asterisk (*) indicates a significant difference in trend 
analysis comparing the leaner vermis and leaner hemispheres.  The double asterisks (**) 
indicate significant peak in the leaner vermis and the triple asterisks (***) indicates 
significant peak in the leaner hemispheres as revealed by Tukey’s HSD with each group.  
C) Comparison of rostral (lobules I – V, gray bars) and caudal (lobules VI – X, black 
bars) divisions of the leaner cerebellar vermis.  The single asterisk (*) indicates a 
significant difference in trend analysis comparing the Purkinje cell death between the 
rostral and caudal leaner vermis.  The double asterisks (**) indicate a significant peak in 
leaner Purkinje cell death in the rostral leaner vermis as revealed by Tukey’s HSD.  For 
all trend analyses in A – C, significance was indicated by p < 0.0007 as calculated for an 
α = 0.05, and for the Tukey’s HSD comparisons for determination of peaks in A - C, 
significance was calculated at α = 0.05. 
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Figure II-6: Representative images of Fluoro-Jade staining in leaner white matter and 
deep cerebellar nuclei.  Representative images of Fluoro-Jade staining of white matter 
and deep cerebellar nuclei at P50 in the leaner cerebellum.  M indicates molecular layer, 
PC indicates Purkinje cell layer, g indicates granule cell layer, Wm indicates white 
matter tracts and DCN indicates deep cerebellar nuclei.  A and B are images showing 
Fluoro-Jade positive white matter staining.  B is a higher magnification image with some 
positive axons indicated by the arrows.   C and D are images showing Fluoro-Jade 
positive staining in the deep cerebellar nuclei.  D is a higher magnification image 
showing positive staining fibers surrounding unstained neurons, arrowheads indicate the 
deep cerebellar neurons. The scale bar in A indicates 50 µm for A and C, while the bar 
in B indicates 40 µm for B and D.  Images were adjusted for brightness and contrast 
using Adobe photoshop 5.0. 
 
 

DISCUSSION 

 Since its introduction in 1997, Fluoro-Jade has been used in a growing number of 

studies to identify or monitor neuronal cell death.  These studies have focused primarily 
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on toxicity studies, cell culture systems or ischemia studies in the central nervous system 

(Noraberg, et al., 1999; Larsson, et al., 2001; Bishop and Robinson, 2001).  The benefit 

of Fluoro-Jade is its nonspecific nature, identifying dying neurons regardless of the 

mechanism of cell death (Schmued, et al., 1997).  It is this property of Fluoro-Jade that 

prompted its use in studies of the leaner mouse cerebellum.   

Cerebellar granule cells that die secondary to expression of the leaner mutation 

are readily identified as typical apoptotic cells, by both morphology via cresyl violet 

staining (Herrup and Wilczynski, 1982) and fragmented DNA via TUNEL (Fletcher, et 

al., 1996; Lau, et al., 2004).  Both of these methods have been used to establish the 

pattern of cerebellar granule cell death in the leaner mouse (Herrup and Wilczynski, 

1982; Lau, et al., 2004).  In addition, several studies clearly show that cerebellar 

Purkinje cells die during postnatal development in the leaner mouse (Herrup and 

Wilczynski, 1982; Heckroth and Abbott, 1994).  Zebrin II staining (Hawkes and Herrup, 

1995; Abbott, et al., 1996), aberrant tyrosine hydroxylase staining (Hess and Wilson, 

1991; Austin, et al., 1992; Abbott, et al., 1996), and the known rostrocaudal (Herrup and 

Wilczynski, 1982) and mediolateral (Heckroth and Abbott, 1994) patterning of Purkinje 

cell death in the leaner mouse, indicate that it is a complex pattern with several factors 

involved in determining cell fate.  A key, prerequisite step in determining the mechanism 

of leaner cerebellar Purkinje cell death is detailed knowledge of when and where 

Purkinje cells are dying.  However, consistently and reliably identifying dying leaner 

cerebellar Purkinje cells has been difficult.   The most detailed study on the timing of 

Purkinje cell death in the leaner mouse evaluated Purkinje cell survival and extrapolated 
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information concerning Purkinje cell death (Herrup and Wilczynski, 1982).  Since 

Fluoro-Jade labels dying neurons in a way that is apparently nonspecific for the 

mechanism of cell death, it provides the opportunity to increase our knowledge about the 

timing of Purkinje cell death in the leaner mouse. 

 

Fluoro-Jade identification of dying leaner cerebellar neurons 

 Since Fluoro-Jade had yet to be tested in a genetic model of cell death, our first 

objective was to evaluate Fluoro-Jade’s ability to label neurons that were dying due to 

the leaner mutation.  This was evaluated in cerebellar granule cells at their peak time of 

cell death (P20) by double labeling cerebellar sections with TUNEL and Fluoro-Jade, 

and in leaner cerebellar Purkinje cells based on their known pattern of survival and 

death. 

We observed a significant number of dying cerebellar granule cells that were 

positive for both TUNEL and Fluoro-Jade, indicating that Fluoro-Jade will identify 

dying leaner granule cells.  However, our results also showed that there was a significant 

difference between the populations of cerebellar granule cells, which were positive for 

one of the two stains.  A likely explanation is that, since apoptosis is an orderly process 

by which a cell shuts down its functions in a sequential order, it takes time for the entire 

event to be completed (Raff, 1998; Sastry and Rao, 2000).  TUNEL specifically 

identifies fragmented DNA associated with the end of the process of apoptosis (Raff, 

1998; Sastry and Rao, 2000).  While it has yet to be determined what compound or 

molecule Fluoro-Jade is labeling within neurons, it is not unreasonable to predict that it 
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is working at an earlier stage in the process of cell death than fragmentation of DNA.  In 

addition, given the chemical nature of Fluoro-Jade, it has been postulated to bind basic 

compound such as biogenic polyamines (aminopropyl-butanediamine or spermidine, 

diaminobutane or putrescine, and diaminopentane or cadaverine), which are only 

produced in significantly increased amounts during cell death (Schmued and Hopkins, 

2000).   

 The rostrocaudal striped pattern of leaner Purkinje cell survival and death is 

revealed by aberrant tyrosine hydroxylase (TH) expression in surviving leaner Purkinje 

cells (Hess and Wilson, 1991; Heckroth and Abbott, 1994; Abbott, et al., 1996).  We 

used this pattern of TH expression to compare the pattern of Fluoro-Jade stained leaner 

Purkinje cells to that of surviving leaner Purkinje cells.  Serially stained sections for 

tyrosine hydroxylase immunoreactivity or Fluoro-Jade showed almost no overlap (only 

one incidence in our data) between these two populations of Purkinje cells in the leaner 

cerebellum.  A plausible explanation for the one region of overlap we did detect can be 

found in data presented for the wild type cerebella throughout the ages examined in this 

study.  In some wild type cerebella, an occasional, apparently random dying Purkinje 

cell was detected with Fluoro-Jade.  An occasional random dying Purkinje cell could 

also occur in the leaner cerebellum.  If this were the case, these occasional random dying 

Purkinje cells in the leaner cerebellum would not necessarily follow the predicted pattern 

of cell death for the leaner cerebellum.  Furthermore, it is clear from the wild type 

cerebella that there is no substantial normal developmental Purkinje cell death at the 

ages examined, making the difference between leaner and wild type cerebella striking, 
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both qualitatively and quantitatively.  These results, when combined and viewed in light 

of previous studies, strongly support that Fluoro-Jade is indeed labeling dying leaner 

cerebellar Purkinje cells.  Additionally, the granule cell data presented support that 

Fluoro-Jade also reliably identifies dying leaner cerebellar granule cells.  Thus, leaner 

cerebellar granule cells and Purkinje cells, two types of neurons, which are dying as a 

result of a genetic mutation that profoundly affects the leaner mouse cerebellum can both 

be detected by Fluoro-Jade staining. 

 

Leaner cerebellar Purkinje cell death pattern 

 Herrup and Wilczynski’s (1982) study has provided the most detailed 

information about the timing of Purkinje cell death in the leaner cerebellum.  While they 

noted substantial loss of cerebellar Purkinje cells that was greater rostrally than caudally, 

they were unable to confidently identify dying Purkinje cells throughout the ages of 

animals they examined (Herrup and Wilczynski, 1982).  In order to provide a 

quantitative analysis, they evaluated surviving Purkinje cells that were compared to wild 

type cerebella.   While no difference was seen at P26, they observed a peak in Purkinje 

cell death at P40 and a slow decline in Purkinje cell numbers through P359 (Herrup and 

Wilczynski, 1982).  In addition, a later study demonstrated an additional complexity to 

cerebellar Purkinje cell loss in the leaner cerebellum in that Purkinje cells were lost from 

alternating sagittal zones (Heckroth and Abbott, 1994).  By using Fluoro-Jade staining in 

the postnatal period between P20 and P80, this study clarifies several details in the 

developmental Purkinje cell death pattern in the leaner mouse. 
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 Initiation of cerebellar Purkinje cell death in the leaner mouse, based on the 

results presented here is at or just prior to P25.  This is earlier than reported by Herrup 

and Wliczynski (1982).  They showed no difference between wild type and leaner 

cerebellar Purkinje cell death at P26.  However, when one considers the methods 

employed in the two studies, it seems likely that the sensitivity of Fluoro-Jade in 

identifying dying Purkinje cells compared to the estimation of numbers of dying 

Purkinje cells from a count of surviving cells is greater, and thus allowed us to detect the 

increase in leaner Purkinje cell death with more precision.  Data presented here confirm 

a peak in cerebellar Purkinje cell death at approximately P40 to P50 and a continued 

slow loss of Purkinje cells up to P80, which was the oldest age included in this study.  

While dying leaner cerebellar Purkinje cells were detected beginning at P25, axonal 

staining in the white matter of the cerebellum is not detected until P40.  This staining 

could easily be followed into the deep cerebellar nuclei, beginning at P50, but none was 

detected in the inferior olivary nucleus at the ages examined.  This strongly suggests that 

the majority of staining seen in the white matter was due to the axons of dying cerebellar 

Purkinje cells and not staining of climbing fiber afferents.  However, contribution of 

dying climbing fibers to the white matter staining cannot be ruled out.  Previous work 

has shown a minimal (Zanjani, et al., 2004), but patterned loss of neurons in the leaner 

inferior olive(Heckroth and Abbott, 1994), most likely due to a loss of their efferent 

targets.  Given the delay seen between the beginning of Purkinje cell death and the 

appearance of white matter staining, the age range tested in this study may not be 
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sufficient to unequivocally identify degenerating climbing fibers and neuronal loss in the 

leaner inferior olive. 

 As expected, there are more complexities to the leaner Purkinje cell death pattern 

than initially seen when evaluating the pattern for the whole cerebellum.  Not only is 

there a parasagittal pattern, demonstrated here by TH and Fluoro-Jade double labeling 

study as well as previous studies (Heckroth and Abbott, 1994; Abbott, et al., 1996), there 

are also patterns specific to the rostral and caudal divisions of the cerebellum as well as 

the cerebellar vermis and hemispheres.  When compared to the wild type cerebellar 

vermis, the leaner cerebellar vermis only differs significantly at P40 and has a peak of 

Purkinje cell death between P30 and P40, while the pooled leaner hemispheres differ 

significantly between P40 to P60 and have a peak between P40 and P50.  In addition, the 

leaner cerebellar vermis differs significantly from the pooled leaner cerebellar 

hemispheres at P50.  When the cerebellar vermis is further divided into rostral and 

caudal subdivisions, the expected rostrocaudal division in leaner Purkinje cell death 

becomes clear.  Purkinje cell death in the leaner rostral cerebellar vermis is significantly 

different from both the wild type and the leaner caudal cerebellar vermis at P40.  In 

addition, the peak of leaner Purkinje cell death in the rostral vermis is narrowed to P40, 

compared to the range of P30 to P40 identified for the whole leaner vermis.  In contrast, 

there was no significant peak in Purkinje cell death observed for the caudal leaner 

cerebellar vermis.  While there is a notable trend towards more Purkinje cell death in the 

caudal leaner cerebellar vermis, it did not reach a level of significance for this study.  

This is probably due to individual variability rather than a real lack of difference 
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between wild type and leaner mice.  In any case, it strengthens the argument that the 

pattern for leaner cerebellar Purkinje cell death is different in the rostral vermis when 

compared to the caudal vermis. 

 The pattern of cerebellar Purkinje cell death in the leaner mouse is indeed 

complex.  As indicated by several previous studies, the cerebellum is comprised of 

several different compartments including the gross anatomical divisions, vermis, 

hemispheres, and flocculonodular lobes, as well as rostral and caudal compartments and 

mediolateral or parasagittal zones (Herrup and Kuemerle, 1997; Ozol, et al., 1999).  

These compartments are not only functionally distinct, they also represent barriers in 

developmental cell origin or migration and gene or protein expression (Herrup and 

Kuemerle, 1997).  The mutated P/Q type voltage gated calcium ion channel subunit, α1A, 

found in the adult leaner mouse, is uniformly expressed throughout the cerebellum at the 

same levels as those seen in wild type cerebella (Lau, et al., 1998).  However, it is clear 

from this study and previous studies, that the same is not true for the consequences of 

this mutation.   

 The factors that determine death or survival for leaner cerebellar Purkinje cells 

are either components or consequences of the division of the various normal 

compartments of the cerebellum.  Certainly, those cerebellar Purkinje cells that die in the 

leaner cerebellum either as a consequence of their location, synaptic afferents or 

efferents, or general molecular function are either less able to compensate for the 

alterations caused by the calcium ion channel mutation or simply respond differently 

from their counterparts in different compartments of the cerebellum to the same 
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circumstances.  The dynamics of cerebellar structure and function are critical aspects of 

our understanding of not only normal development and function of the cerebellum, but 

also our understanding of the various disease states that affect its function.  Now that we 

have a better understanding of the timing of Purkinje cell death in the various 

compartments of the cerebellum, further investigation into the mechanisms of cerebellar 

Purkinje cell death in the leaner mouse is likely to provide new key insights into general 

functions of the cerebellum and the complex interactions of neural circuitry and 

determinant factors in neuronal cell death and survival. 
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CHAPTER III 

PURKINJE CELL DEATH IN THE α1A CALCIUM ION CHANNEL 

MUTANT MOUSE, LEANER, IS PARTIALLY DEPENDENT ON 

CASPASE 3 ACTIVATION 

 

SUMMARY 

 The leaner mouse carries a mutation (tgla/tgla or cacna1atg-la) in the α1A subunit of 

P/Q-type voltage-gated calcium channels.  One consequence of this mutation is a 

specific temporospatial loss of leaner cerebellar Purkinje cells that begins at postnatal 

day (P) 25 and peaks at P40 to P50.  The molecular mechanism of this neuronal cell 

death remains unclear.  Caspase protease cascades often have key roles in the major 

signaling pathways that direct neuronal cell death.  We evaluated caspase 3 activation 

prior to the onset of leaner Purkinje cell death at P20 and at the peak of cell death P40 

and P50.  Prior to the onset of leaner Purkinje cell death there was no activation of 

caspase 3.  However at the peak of leaner Purkinje cell death there was significant 

activation of caspase 3, which was confirmed with an activity assay.  Using organotypic 

cerebellar cultures, we demonstrated that leaner Purkinje cell are significantly rescued 

by caspase 3 inhibition, they were still significantly decreased compared to wild type 

Purkinje cells.  These studies demonstrated that while caspase activity and caspase 

cascades do have a key role in leaner Purkinje cell death, they may be acting in 

conjunction with other cell death signaling pathways or that blockade of caspase 3 

increases cell death by caspase independent mechanisms. 
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INTRODUCTION 

Neuronal cell death has key roles in both normal nervous system development 

and in the pathology of various neurodegenerative diseases.  Neurologic disorders such 

as familial hemiplegic migraine (FHM), episodic ataxia type 2 (EA-2) and 

spinocerebellar ataxia type include a loss of cerebellar neurons as part of their pathology 

(Pietrobon, 2002).  The leaner mouse (tgla or cacna1atg-la), like FHM, EA-2 and SCA-6, 

carries a mutation in the α1A or pore forming subunit of P/Q-type voltage-gated calcium 

ion channels that results in a specific loss of cerebellar neurons and has been used as a 

model to aid our understanding of these disorders (Herrup and Wilczynski, 1982; 

Fletcher, et al., 1996). 

In the leaner mouse the P/Q-type voltage gated calcium channel mutation results 

in decreased calcium currents and altered calcium homeostasis of the affected neurons 

(Dove, et al., 2000; Murchison, et al., 2002).  One consequence is an abnormal loss of 

granule cell and Purkinje cell neurons in the leaner cerebellum (Herrup and Wilczynski, 

1982).  Leaner cerebellar granule cells have been shown to die via an apoptotic pathway 

involving caspase 3 activation, nuclear condensation and DNA fragmentation (Lau, et 

al., 2004).  The mechanism of leaner Purkinje cell death, however, still remains unclear.  

Ca2+ is a universal signaling molecule able to alter a wide variety of cellular processes 

including gene transcription, modulation of protein and enzyme functions and signaling 

at the mitochondria and the endoplasmic reticulum (Berridge, et al., 2000; Bootman, et 

al., 2001).  In addition, previous gene array data in the leaner cerebellum and Purkinje 

cells have implicated several potential pathways in the mechanism of leaner Purkinje 
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cell death.  There are increases in pro-cell death proteins Bad and Bak, which may 

increase mitochondrial sensitivity to apoptotic signals (Nahm, 2002).  There is also an 

increase in the lysosomal enzyme, cathepsin D (Nahm, 2002).  Lysosomes and 

lysosomal enzymes have been linked to cell death through direct activation of caspase 3 

as well as macroautophagic mechanisms of cell death (Bursch, 2001; Hishita, et al., 

2001; Wang and Klionsky, 2003; Klionsky, 2005).  Alternately, calcium homeostasis 

and buffering is also disrupted in leaner cerebellar Purkinje cells (Dove, et al., 2000; 

Murchison, et al., 2002).  Since mitochondria play an important role in buffering Ca2+, 

these changes may place additional stresses mitochondria which result in cell death 

(Ichas and Mazat, 1998).   

Mitochondria, macroautophagic mechanisms, and some receptor mediated 

mechanisms are able to trigger programmed cell death through the use of caspase 

cascades (Yuan, et al., 2003).  Caspases are proteases synthesized as inactive zymogens 

which are cleaved and activated in many cell death pathways in order to carry out the 

breakdown of cellular components (Earnshaw, et al., 1999).  Caspases can be divided 

into two main groups: initiator caspases and effector caspases.  Initiator caspases, such 

as caspases 8, 9 and 12, are activated by various cellular signaling pathways to start a 

caspase cascade.  Effector caspases, such as caspases 3, 6, and 7, are activated by 

upstream, initiator caspases to execute the breakdown of cellular components.   

However, both mitochondria and macroautophagic mechanisms are also able to 

trigger programmed cell death independent of caspase activation (Susin, et al., 1999; 

Joza, et al., 2001; Bursch, 2001; Florez-McClure, et al., 2004).   In order to elucidate the 
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mechanism of leaner cerebellar Purkinje cell death the role of caspases must be 

determined.  Since caspase 3 is an effector caspase common to multiple cascade 

pathways, it can be used as general marker for presence of caspase proteases in 

programmed cell death.  Our objective was to evaluate the role of caspase 3 activation in 

leaner cerebellar Purkinje cell death.  The hypothesis that caspase 3 was specifically 

activated in dying leaner cerebellar Purkinje cells and its activation played a critical role 

in leaner Purkinje cell death was tested.  

 

EXPERIMENTAL PROCEDURES 

Animals 

 Wild type and homozygous leaner mice (tgla/tgla or Cacna1atg-la), on the 

C57BL/6J background at P10, P20, P40 and P50 were used.  Animal handling and 

breeding procedures are described in Chapter II.  All experimental procedures were 

carried out in accordance with National Institute of Health Guide for Care and Use of 

Laboratory Animals (NIH publication No. 85-23, revised, 1996).  The minimum 

numbers of animals necessary for each experiment were used. 

 It was necessary in some experiments to determine the genotype of mutant mice 

prior to the onset of ataxia (P10).  In order to distinguish genotypes of pre-ataxic pups, 

heterozygous mice leaner mice were also heterozygous for the dominant mutation 

oligosyndactyly.  The gene for oligosyndactyly is closely linked to the tg locus resulting 

in very few crossover events (Isaacs and Abbott, 1992).  Heterozygous oligosyndactyly 

causes a fusion of digits, while homozygous oligosyndactyly results in embryonic death.  
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Therefore, the presence or absence of fused digits on newborn pups allowed us to 

distinguish between homozygous leaner pups (normal number of digits) and 

heterozygous pups (fused digits).  Starting at P20, homozygous leaner mice could easily 

be distinguished from their heterozygous littermates by their ataxic phenotype.   

 

Tissue collection 

 For paraformaldehyde fixed and frozen brain tissue, mice were anesthetized 

intraperitoneally with 150 mg/kg ketamine and 15 mg/kg xylazine.  Once anesthetized, 

the mice were perfused intracardially with 50 mL of Tyrode’s Saline, followed by 400 to 

500 mL of 4% paraformaldehyde in 0.12 M phosphate buffer (pH 7.4).  The brains were 

removed from the skull, cryoprotected in 20% sucrose in 0.1M phosphate buffered 

saline, frozen with powdered dry ice and stored at -70°C until sectioning on a cryostat.  

Frozen cerebella were sectioned at 25 µm.  For the experiments using fixed, frozen 

brains, the rostral cerebellum was defined as lobules I through V, and the caudal 

cerebellum was defined as lobules VI through X.  

 For cultured cerebellar slices, P10 mice were anesthetized with isoflurane and 

exsanguinated by cutting the heart.  The brains were then removed using sterile surgical 

technique (Miranda, et al., 1996; McAlhany, et al., 1997; Cheema, et al., 2000) and the 

cerebella were sectioned coronally at 350 µm in ice cold dissection media containing 

36mM glucose, 10mM MgCl2⋅6H2O in Gey’s balanced salt solution (Sigma-Aldrich, St. 

Louis, MO, USA) on an Electron Microscopy Sciences (EMS) tissue slicer (OTS-4000, 

Hatfield, PA, USA).  The whole cerebellum of each mouse was sectioned and cultured.  
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The cerebella were placed on Millicell organotypic inserts (PICM ORG 50, Millipore, 

Bedford, MA, USA) in sterile six well plates (Falcon, BD Biosciences, Franklin Lakes, 

NJ, USA).  Culture media containing 50% Basal Media Eagle with Earle salts (Gibco, 

Carlsbad, CA, USA), 22.5% Hank’s balanced salts (Gibco, Carlsbad, CA, USA), 25% 

heat inactivated horse serum (Sigma-Aldrich, St. Louis, MO, USA), 36mM glucose 

(Sigma), 1 mM glutamine (Sigma) and 50 µg/mL vitamin C (Sigma) was changed every 

3 days for the duration of the culture.  Slices were kept in a humid incubator at 37°C and 

5% CO2 for 31 days, the equivalent of approximately P40 in vivo. 

 For acute cerebellar slices, mice at P40 were anesthetized with isoflurane and 

decapitated.  The brains were aseptically removed and the cerebella were coronally 

sectioned at 150 µm in ice cold dissection feed on an EMS tissue slicer. 

 

Immunohistochemistry 

 Immunohistochemistry (IHC) was performed using a standard protocol described 

in Chapter II (Abbott and Jacobowitz, 1995).  Cultured sections, however, were 

permeablized in 0.3% Triton X – 100 for 15 minutes instead of an hour and the 

quenching of endogenous peroxides was omitted.   

 Activated caspase 3 IHC used an affinity purified polyclonal rabbit antibody 

specific for the p17 cleavage product of caspase 3 at a 1:25,000 dilution (R&D Systems, 

Minneapolis, MN, USA).  Tyrosine hydroxylase (TH) IHC used an affinity purified 

rabbit polyclonal antibody at a 1:2,500 dilution (Chemicon International, Temecula, CA, 

USA).  Calbindin IHC used an affinity purified polyclonal rabbit antibody at 1:4,000 
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dilution (Chemicon International, Temecula, CA, USA).  Neuronal nuclei (Neu N) IHC 

used a monoclonal mouse antibody at 1:2,000 dilution (Chemicon international, 

Temecula, CA, USA).  For Neu N IHC blocking was done with horse serum and the 

secondary antibody was rat absorbed biotinylated horse antimouse (Vector, Burlingame, 

CA, USA). 

 

Caspase 3 activity assay 

 Caspase 3 activity assay was performed using a carboxyfluorescein detection kit 

for live cells (Biocarta, San Diego, CA, USA).  The carboxyfluorescein labeled caspase 

3 inhibitor (FAM-DEVD-FMK, provided in kit) was mixed with dimethylsulfoxide 

(DMSO, Sigma-Aldrich, St. Louis, MO, USA) for a 150X stock solution, aliquoted and 

stored at -20°C.  Working solution was made fresh for each use by diluting 4.0 µL 150X 

FAM-DEVD-FMK in 40.0 µL of autoclaved 0.1M phosphate buffered saline, then 

mixed with 1.5 mL dissection feed (acute slices) or culture feed (cultured slices) for a 

final dilution of 1:385.  Acute cerebellar cultured cerebellar slices from each cerebellum 

were divided into two groups: negative control and FAM-DEVD-FMK treated. 

Acute slices were incubated in depression slides with 200 µL of dissection media 

(negative control slices) or 200 µL working FAM-DEVD-FMK (treated slices) for one 

hour in a humid incubator at 37°C, 5% CO2.  Incubation was stopped with two, 10 

minute washes in 1X wash buffer (provided in kit).  Slices were fixed overnight at 4°C 

(fixative provided in kit).  Slices were mounted on 0.3% gelatin coated slides and 

coverslipped with vectashield (Vector, Burlingame, CA, USA).  Cerebellar slices were 
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tested and imaged in pairs of one wild type and one leaner mouse each.  Slices were 

imaged, maintaining constant exposure for controls and treated slices within each 

cerebellar pair on a Zeiss Axioplan 2 research microscope (Plan-APOCHROMAT 10X, 

0.45 numerical aperture objective) and a Zeiss color Axiocam HRC digitial camera 

(acquisition software Axiovision 4.2).  FAM-DEVD-FMK fluorescence intensity was 

determined by calculating an integrated density value (IDV) using Alpha Innotech 

AlphaEase 3.1 software for each mouse, subtracting background fluorescence (negative 

control) from FAM-DEVD-FMK treated fluorescence of cerebellar Purkinje cell bodies.  

A minimum of three treated and two control slices were analyzed per cerebellum with 10 

Purkinje cell bodies analyzed per slice.  

Four cultured cerebellar slices from each cerebellum were evaluated: two 

negative controls and two FAM-DEVD-FMK treated.  Slices were incubated with 1.0 

mL of culture feed (negative control) or FAM-DEVD-FMK diluted in culture feed 

(treated) for one hour in a humid incubator at 37°C, 5% CO2.  Incubation was stopped 

with two, 10 minute washes in 1X wash buffer (provided in kit).  Cultured slices were 

imaged as described for acute cerebellar slices, maintaining constant exposure for 

controls and treated slices from each cerebellum.  A minimum of three treated and two 

control images were analyzed per cerebellum with 10 Purkinje cell bodies analyzed per 

slice.  Following imaging, cultured slices were fixed in 4% paraformaldehyde in 0.12 M 

phosphate buffer (pH 7.4) overnight in the refrigerator, then washed in 0.1 M phosphate 

buffered saline.  Fixed culture slices were further analyzed by immunohistochemistry. 
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Activation of caspase 3 

 Three age groups were examined:  P20, prior to leaner Purkinje cell death and 

P40 and P50, at the peak of leaner Purkinje cell death.  Six leaner and six wild type 

animals were examined at each age.  Paraformaldehyde fixed frozen cerebella were 

collected and sectioned at 25 µm in serial pairs.  Half the cerebellum of each animal, one 

slide from each serial pair, was immunostained for the cleaved or activated form of 

caspase 3 and the positive Purkinje cell bodies in each stained section were counted.  A 

Genotypes within all age groups were compared using a 2-way analysis of variance 

(ANOVA) at significance level α = 0.05.  Following a significant ANOVA, differences 

between genotypes at each age group were the compared using a linear contrast analysis 

with significance indicated by p ≤ 0.01 for an experiment wise α = 0.05.  The pattern of 

activation of caspase 3 in Purkinje cells was qualitatively compared to the Purkinje cell 

death pattern indicated by Fluoro-Jade at P20, P40 and P50, determined in Chapter II. 

Leaner cerebellar Purkinje cells die in distinct rostrocaudal stripes or zones 

(Heckroth and Abbott, 1994).  Surviving leaner Purkinje cells aberrantly express TH 

(Austin, et al., 1992; Heckroth and Abbott, 1994; Abbott, et al., 1996).  We determined 

whether activated caspase 3 immunopositive leaner cerebellar Purkinje cells were 

restricted to dying or surviving zones of Purkinje cells using serial 

immunohistochemistry for TH and activated caspase 3.  Paraformaldehyde fixed frozen 

cerebella were collected from four leaner mice (two males and 2 females).  Cerebella 

were sectioned at 25 µm into serial pairs.  Since the rostrocaudal zones of leaner 

Purkinje cell survival can be viewed in either coronal or frontal planes, two cerebella 
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were sectioned coronally and two were sectioned frontally.  Eight pairs of slides evenly 

distributed throughout the cerebellum were evaluated with one slide in each pair 

immunostained for activated caspase 3 and the other for TH.  All activated caspase 

immunopositive Purkinje cells were identified and imaged.  An immediately adjacent 

TH immunostained section was then imaged to determine if the positive Purkinje cell 

was in a TH positive (surviving Purkinje cell) zone or a TH negative (dying Purkinje 

cell) zone. 

Immunohistochemistry for the activated form of caspase 3 indicates the cleavage 

process required for caspase proteolytic activity.  To confirm that caspase cleavage was 

associated with caspase proteolytic activity, a caspase 3 specific activity assay was used.  

Acute cerebellar slices were collected from four age matched wild type and leaner pairs 

at P40 and assayed for caspase 3 activity.  A one-tail paired t test at α = 0.05 was used to 

statistically determine if leaner cerebellar Purkinje cells had more caspase 3 activity than 

wild type. 

 

Leaner Purkinje cell death dependence on caspase 3 activity 

 In vitro inhibition of caspase 3 was used to evaluate the dependence of leaner 

cerebellar Purkinje cell death on caspase activity.  Nine wild type and nine leaner 

cerebella were cultured.  Three cerebella from each genotype were maintained in culture 

for 31 days, to obtain the approximate in vivo age of P40.  These cultures were 

paraformaldehyde fixed then immunostained for either calbindin or Neu N to evaluate 

cerebellar morphology.  Based on this preliminary data, a Power Analysis at α = 0.05 
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indicated an n = 6 would be necessary to evaluate differences between wild type and 

leaner cerebella.  Six cerebellar cultures of each genotype were allowed to stabilize for 

11 days, equivalent to approximately P20 in vivo.  Beginning at this age, which is prior 

to the onset of leaner Purkinje cell death, slices were incubated with or without a caspase 

3 specific inhibitor, z-DEVD-FMK (R&D Systems, Minneapolis, MN, USA).  The 

caspase 3 inhibitor was added to the culture feed at 50 µM.  Cultures were maintained 

with or without the caspase 3 inhibitor for an additional 20 days, equivalent to the peak 

of leaner Purkinje cell death, P40.  Cultured slices were assayed for caspase 3 activity to 

confirm successful inhibition of caspase activity, then paraformaldehyde fixed.  The 

entire cerebellum from each mouse was immunostained for calbindin.  Immunopositive 

Purkinje cell bodies were counted in each section blind to individual animal, genotype 

and treatment group.  Caspase activity assay data were collected on an individual basis 

rather than as paired groups.  Since this introduced the possibility of some variation in 

labeling due to differences in staining on different days, the statistical evaluation of 

caspase inhibition was therefore limited to and analyzed nonparametrically using 

Kruskal-Wallis test at α = 0.05.  A 2-way ANOVA at α = 0.05 and Tukey's HSD posthoc 

test were used to statistically determine the differences in Purkinje cell survival between 

genotypes and in response to caspase 3 inhibition. 
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RESULTS 

Activation of caspase 3 corresponds with leaner Purkinje cell death 

 Caspase 3 is synthesized in an inactive form which must be cleaved in order to 

become proteolytically active (Earnshaw, et al., 1999; Hengartner, 2000).  We used 

immunohistochemistry for activated caspase 3, which specifically recognizes the cleaved 

form of caspase 3, to determine if caspase 3 was specifically activated in dying leaner 

Purkinje cells.  Representative examples of activated caspase 3 immunostaining are 

shown in Figure III-1 A and B.  Counts of immunopositive cerebellar Purkinje cell 

bodies are shown in Figure III-2.  The ANOVA indicated a significant activation of 

caspase 3 in leaner Purkinje cells (F1,31 = 48.73, p < 0.05)  that is age dependent (F2,31 = 

30.65, p < 0.05).  At P20, prior to the onset of leaner Purkinje cell death, there was no 

activation of caspase 3 for either wild type or leaner Purkinje cells.  However, at the 

peak of leaner Purkinje cell death, P40 and P50, activated caspase 3 Purkinje cells were 

significantly increased in leaner compared to wild type cerebella (For P40: t10 = 6.83, p 

< 0.01 and for P50: t10 =  –8.58, p < 0.01). 

The spatial pattern of caspase 3 activation in leaner cerebellar Purkinje cell at 

P40 and P50 was compared to that of cell death as determined by Fluoro-Jade labeling in 

Chapter II.  Figure III-3 shows that the regional distribution of activated caspase 3 

immunopositive leaner Purkinje cells mirrors that of cell death.  A notable difference is 

seen in the magnitude of numbers of positive cells (see Figures III-2 and III-3).  Many 

more positive Fluoro-Jade Purkinje cells were identified than activated caspase 3 

positive Purkinje cells. 
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Figure III-1: Representative images of activated caspase 3 immunohistochemistry at 
P40.  A is wild type and B is leaner.  M is molecular layer, PC is Purkinje cell layer, g is 
granule cell layer and Wm is white matter.  Arrows indicate immunopositive Purkinje 
cells.  Scale bar in B is 100 µm. 
 
 
 

To determine if leaner activated caspase 3 positive Purkinje cells were restricted 

to dying leaner Purkinje cells, serially paired coronal and frontal cerebellar sections were 

immunostained for activated caspase 3 or TH.  TH immunostained sections were used to 

define parasagittal regions of surviving verses dying leaner Purkinje cells.  Activated 

caspase 3 positive leaner Purkinje cells were identified and evaluated in reference to 

regions of TH labeling to determine if it was in a dying or surviving Purkinje cell 

parasagittal zone.  Representative images of immunolabeling are shown in Figure III-4.  

With the exception of one Purkinje cell in each orientation, coronal and frontal, 

immunopositive activated caspase 3 positive Purkinje cells were restricted to the dying 

population of leaner Purkinje cells (Table III-1). 
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Figure III-2: Quantitative evaluation of activation of caspase 3 in cerebellar Purkinje cell bodies compared to Fluoro-Jade 
labeled cell death in the whole cerebellum.  Positive Purkinje cell bodies were counted in half the cerebellum to estimate total 
numbers of stained Purkinje cells per cerebellum.  * represent statistically significant differences between wild type and leaner 
cerebella at each age group.  Error bars are standard error of the mean. 
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Figure III-3: Regional comparison of leaner caspase 3 activation to leaner cerebellar Purkinje cell death. 
The distribution of positive Purkinje cell bodies for each stain (activated caspase 3 or Fluoro-Jade) are 
compared by anatomical cerebellar region at P40 and P50.  Error bars represent standard error of the mean.
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Figure III-4: Representative images of tyrosine hydroxylase (TH) and activated caspase 
3 serial immunohistochemistry of leaner cerebella at P40.  A is TH immunostaining and 
B is activated caspase 3 immunostaining.  Arrow head indicates activated caspase 3 
positive Purkinje cell (B) and its location within a TH negative or dying leaner Purkinje 
cell zone (A).  M is molecular layer, PC is Purkinje cell layer, and g is granule cell layer.  
Scale bar in B is 100 µm. 
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Table III-1:  Localization of activated caspase 3 positive leaner Purkinje cells relative to 
dying Purkinje cell zones. 
 
 Orientation (2 cerebella each) Leaner Purkinje cell zone 

 Surviving (TH positive) Dying (TH negative) 
Coronal  1 20 
Frontal 1 24 

 
 
 

In addition to proteolytic cleavage of caspase 3, enzymatic activity of caspase 3 

was confirmed with an activity assay for caspase 3 in acute slices from wild type and 

leaner cerebella at the peak of cell death and caspase 3 activation, P40.  The activity 

assay used a fluorescently labeled caspase 3 specific substrate that irreversibly binds in 

active site of proteolytically active caspase 3.  Representative images of activity assays 

are shown in Figure III-5.  Densitometry analysis of the fluorescent intensity of Purkinje 

cell bodies (Figure III-6), indicated there was significantly more caspase 3 activity in 

leaner cerebellar Purkinje cells than wild type Purkinje cells (t3 =  –2.92, p < 0.05) 
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Figure III-5: Representative images of caspase 3 activity assay in acute cerebellar slices 
at P40.  A and B are wild type slices from the same individual incubated with (FAM-
DEVD-FMK) or without (negative control) fluorescently tagged irreversible caspase 3 
inhibitor.  C and D are leaner slices from the same individual incubated with or without 
the caspase 3 inhibitor.  A and C are negative control slices.  B and D are caspase 3 
inhibitor treated slices.  Arrows in D indicate labeled Purkinje cells.  M is molecular 
layer, PC is Purkinje cell layer, and g is granule cell layer.  Scale bar in D is 100 µm. 
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Figure III-6: Caspase 3 is active in leaner cerebellar Purkinje cells at P40.  Fluorescence 
intensity of Purkinje cell bodies was determine by calculating an integrated density value 
(IDV) for fluorescence of FAM-DEVD-FMK treated slices and subtracting background 
or negative control fluorescence using Alpha Innotech software (corrected IDV).  * 
indicates significant increase in leaner Purkinje caspase 3 activity.  Error bars represent 
standard error of the mean. 
 

Leaner Purkinje cell death partially dependent on caspase 3 activity 

 In vitro organotypic cerebellar cultures were used to determine the dependence of 

leaner cerebellar Purkinje cell death on caspase 3 activity.  Cultures were established at 

P10 and maintained for 31 days until the peak of leaner Purkinje cell death and caspase 3 

activation, equivalent of approximately P40 in vivo.  Cerebellar morphology was 

evaluated with immunohistochemistry for Neu N and calbindin (Figure III-7).  Calbindin 
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is a calcium binding protein found specifically in cerebellar Purkinje cells, while Neu N 

identifies the nuclei of neurons in the cerebellum excluding Purkinje cells.  Together 

these demonstrate that basic cerebellar architecture in both leaner and wild type 

cerebella are maintained throughout the culture period. 

 Wild type and leaner organotypic cerebellar slices were placed in culture and 

allowed to stabilize for 10 days.  Beginning on day 11, cultures were either incubated 

with or without a caspase 3 specific inhibitor (z-DEVD-FMK) until the approximate 

peak of leaner Purkinje cell death, an additional 20 days.  This allowed cell death due to 

culture set up procedures to occur, and allowed caspase inhibition to begin prior to the 

onset of leaner Purkinje cell death.  Sufficient inhibition of caspase 3 during the culture 

was confirmed using the caspase 3 activity assay (Figures III-8 and III-9).   

Densitometry analysis revealed, that as observed with in vivo acute cerebellar slices, 

caspase 3 activity was increased in leaner cerebellar Purkinje cells and this increase was 

prevented by caspase inhibition (H3 = 7.42  0.05 < p < 0.1).  While there is a noticeable 

decrease in fluorescence of caspase 3 inhibitor treated slices, it was not significantly 

different from wild type, untreated slices.   
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Figure III-7: Typical cerebellar morphology is maintained in long term organotypic 
cerebellar cultures.    After 31 days in culture, slices were immunolabeled for neuronal 
nuclei (Neu N) to detect neurons excluding cerebellar Purkinje cells (A, C and E) or 
calbindin to detect Purkinje cells (B, D and F).  A and B are paraformaldehyde fixed 
tissue positive controls.  B and D are wild type cerebellar cultures.  E and F are leaner 
cerebellar cultures.  M is molecular layer, PC is Purkinje cell layer, g is granule cell 
layer.  Scale bars in A and B are 100 µm. 
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Figure III-8: Representative images of caspase activity assay in cerebellar slice cultures 
with and without caspase 3 inhibition.  Cultured cerebellar slices were incubated with (B 
and D) or without (A and C) a caspase 3 specific inhibitor (z-DEVD-FMK at 50µM).   A 
and B are wild type cerebellar slices.  C and D are leaner cerebellar slices.  M is 
molecular layer, PC is Purkinje cell layer and g is granule cell layer.  Arrows in C 
indicated Purkinje cells with high amounts of caspase 3 activity.  Scale bar in D is 100 
µM. 
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Figure III-9: Caspase 3 is active in cultured leaner cerebellar Purkinje cells and blocked 
by caspase 3 inhibition.  Fluorescent intensity of Purkinje cell bodies was determine by 
calculating an integrated density value (IDV) for fluorescence of FAM-DEVD-FMK 
treated slices and subtracting background or negative control fluorescence using Alpha 
Innotech software (corrected IDV).  * indicates significant increase in leaner Purkinje 
caspase 3 activity in untreated leaner Purkinje cells.  Error bars represent standard error 
of the mean. 
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Following the activity assay, cerebellar culture were paraformaldehyde fixed and 

immunostained for calbindin.   Calbindin positive Purkinje cell bodies were counted to 

evaluate Purkinje cell survival and are shown in Figure III-10.  ANOVA analysis 

revealed a significant effect of both genotype (F1,18 = 15.92, p < 0.05) and inhibition 

(F1,18 = 11.27, p < 0.05).  As expected from in vivo studies approximately half of 

cerebellar Purkinje cells were lost in the leaner cerebella compared to wild type cerebella 

in the absence of caspase 3 inhibitor (Tukey’s HSD, p < 0.05).  Inhibition of caspase 3 

resulted in a significant increase in leaner Purkinje cells compared to leaner cerebella 

without inhibitor (Tukey’s HSD, p < 0.05).  In spite of caspase 3 inhibition, the number 

of leaner Purkinje cells was still decreased compared to wild type Purkinje cell counts in 

the presence of inhibitor (Tukey’s HSD, p < 0.1).  However, there was no significant 

difference between wild type cerebella without inhibitor and leaner cerebella with 

caspase 3 inhibition.  While there was a tendency for an increase in Purkinje cell in wild 

type cerebella treated with the caspase 3 inhibitor, there was no significant difference in 

Purkinje cell survival in wild type cerebella either with or without caspase inhibitor. 
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Figure III-10: Partial rescue of leaner cerebellar Purkinje cells in the presence of caspase 
3 inhibition.  Cultured cerebellar slices were treated with (C3 inhibition) or without 
(control) a caspase 3 specific inhibitor (z-DEVD-FMK).  Purkinje cell survival was 
assessed using calbindin immunohistochemistry and counting positive Purkinje cell 
bodies.  * indicates significant a difference between wild type and leaner cerebellar 
within the treatment group.  ** indicates a significant increase in leaner Purkinje cells 
with C3 inhibition compared to untreated leaner controls.  Error bars represent standard 
error of the mean.   

 
 

DISCUSSION 

 This study has shown that caspase 3 is specifically cleaved and enzymatically 

active in leaner, but not wild type cerebellar Purkinje cells.  Immunohistochemistry also 

showed that caspase 3 was activated in a pattern consistent with leaner Purkinje cell 

death.  Furthermore, this activation of caspase 3 was restricted to dying parasagittal 

zones of leaner Purkinje cells.  However, there were notably fewer activated caspase 3 

positive Purkinje cells than dying Purkinje cells indicated by Fluoro-Jade. 
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 While it is uncertain what Fluoro-Jade recognizes in dying neurons, it 

presumptively has a broad window of labeling activity during the process of cell death 

(Schmued and Hopkins, 2000).  It is possible, since activation of caspase 3 is a specific 

point in the process of programmed cell death, that it is limited to a narrower window 

and would therefore identify fewer cells than Fluoro-Jade at any given time point. 

 Alternately, while caspase 3 is activated in at least some dying leaner Purkinje 

cells, it may not represent the only driving force or determining factor directing leaner 

Purkinje cell death.  Inhibition of caspase 3 in cultured cerebellar slices supports this 

possibility since it was able to rescue a significant number of leaner Purkinje cells, but it 

was unable to completely prevent leaner Purkinje cell death.  Another possibility is that 

cellular dysfunction of dying leaner Purkinje cells was so severe that blockade of cell 

death signaling pathway leads to activation of alternate pathways, which although at a 

decrease rate, continue to carry out the cell death program.  Evidence for both 

possibilities exist in other cell death model systems.  Knockouts (genetic deletion) of 

caspases does not prevent developmental normal programmed cell death during normal 

development of the brainstem and spinal cord (Oppenheim, et al., 2001).  Oppenheim’s 

study (2001) indicates that caspase independent mechanisms of programmed cell death 

exist and at least in some cases may be a cell preferred means of cell death.  Studies of 

macroautophagic cell death have shown that while caspases activate macroautophagy in 

some circumstances (Canu, et al., 2005), in others they work downstream of 

macroautophagic induction where blockade of caspase activity does not prevent cell 

death (Xue, et al., 1999).  In addition, the release of some mitochondrial proteins, such 
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as apoptosis inducing factor (AIF), are able to activate and use caspase cascades in 

executing cell death, yet caspase inhibition does not prevent DNA fragmentation or cell 

death associated with AIF release (Susin, et al., 1999; Joza, et al., 2001; Klein, et al., 

2002). 

 The results of this study support the hypothesis that caspase 3 is specifically 

activated in dying leaner cerebellar Purkinje cells.  The significant rescue of leaner 

cerebellar Purkinje cell by inhibition of caspase 3 indicates that caspases are an 

important factor in signaling leaner Purkinje cell death.  However, caspase inhibition did 

not prevent all of the leaner Purkinje cell death, since there was still a significant 

decrease in Purkinje cell survival compared to wild type Purkinje cell counts.  These 

results suggest the possibility that leaner cerebellar Purkinje cell death either uses, or in 

the face of caspase blockade, is capable of activating alternate cell death signaling 

pathways, which function independent of caspase activity. 
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CHAPTER IV  

EVALUATION OF MACROAUTOPHAGY AND MITOCHONDRIA 

IN P/Q-TYPE VOLTAGE-GATED CALCIUM CHANNEL MUTANT 

MOUSE, LEANER 

 

SUMMARY 

 The leaner mouse (tgla/tgla or cacna1atg-la) carries a mutation in the α1A subunit of 

P/Q type voltage gated calcium channels.  The mutation causes reduced Ca2+ entry into 

the cell and altered calcium homeostasis.  One effect of the leaner mutation is an 

abnormal loss of cerebellar granule cells and Purkinje cells.  While granule cells utilize a 

classic apoptotic pathway, the mechanism of leaner Purkinje cell death remains unclear.  

In Chapter III we demonstrated that caspase 3 is specifically activated in dying leaner 

Purkinje cells and the Purkinje cell death is at least partially dependent on the actions of 

caspase 3.  In this study we have investigated macroautophagy and mitochondrial 

triggers of caspase activation.  Monodansylcadaverine, which specifically labels 

autophagic vesicles, indicated there was significant increase in macroautophagy in leaner 

cerebellar Purkinje cells compared to wild type.  There was also a significant decrease in 

mitochondrial membrane potential in leaner Purkinje cells compared to wild type.  

However, the loss of mitochondrial membrane potential did not lead to a corresponding 

release of cytochrome C.  These finding suggests that macroautophagy may have a key 

role in leaner Purkinje cell death, which could activate caspase 3.  While these findings 

do not support a mitochondrial-cytochrome C mediated activation of caspase 3 or leaner 
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Purkinje cell death, it does not rule out the possibility of other mitochondrial proteins 

contributing to either caspase 3 activation or caspase independent cell death.  

 

INTRODUCTION 

 In Chapter III is was shown that caspase 3 was specifically activated in dying 

Purkinje cells and had a role in directing leaner cerebellar Purkinje cell death.  Caspase 3 

is an effector caspase responsible for proteolytic cleavage of cellular proteins during 

programmed cell death (Earnshaw, et al., 1999; Hengartner, 2000).  There are numerous 

signaling pathways which are able to activate caspase 3. 

Macroautophagy is able to utilize caspase activity during the process of 

programmed cell death (Xue, et al., 1999; Canu, et al., 2005).  However, the inhibition of 

caspase activity in these circumstances often does not prevent programmed cell death 

(Xue, et al., 1999).  Activated caspase 3 is also able to trigger macroautophagic cell 

death in a manner that can be sensitive to caspase inhibition (Canu, et al., 2005).  

Lysosomal proteases are associated with macroautophagy since the autophagosome must 

fuse with lysosomes in order to degrade its contents (Bursch, 2001; Klionsky, 2005).  

Increases in lysosomal proteases occur with some instances of macroautophagic cell 

death (Bursch, 2001; Klionsky, 2005).  In addition, lysosomal proteases are able to 

cleave and activate caspase 3 with out triggering macroautophagic cell death (Stoka, et 

al., 2001; Hishita, et al., 2001).  Gene array studies in the leaner mouse indicate that the 

lysosomal protease, cathepsin D, is increased (Nahm, 2002).  The initial description of 

dying leaner cerebellar Purkinje cells includes many of hallmarks of macroautophagic 
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cell death: pyknotic nuclei were not detected, nuclear and cytoplasmic membranes 

become less distinct rather that blebbing or rupturing, and “the entire cell gives the 

impression of simply dissolving” (Herrup and Wilczynski, 1982).  These findings 

suggest that caspase 3 activation may either be triggering macroautophagy or that 

macroautophagy with subsequent caspase 3 activation is responsible for leaner Purkinje 

cell death. 

 Caspase 3 can also be activated through mitochondrial mechanisms.  The release 

of mitochondrial proteins such as cytochrome C and second mitochondrial activator or 

caspase (SMAC) both function through activation of caspase 3.  Cytochrome C forms an 

apoptosome complex with caspase 9 and apoptosis associated factor (Apaf) 1, which 

then activates caspase 9 (Li, et al., 1997; Slee, et al., 1999).  Once activated, caspase 9 

then cleaves and activates caspases 3 and 7 (Li, et al., 1997; Slee, et al., 1999).    

Alternately SMAC acts by blocking the action of inhibitor of apoptosis protein (IAP) 

(Du, et al., 2000).  IAPs sequester caspase 3, preventing its activation (Du, et al., 2000).  

Blocking IAP action increases the amount of caspase 3 available for activation during a 

given cell death signal.   Gene array data indicate that Bcl-2 family pro-apoptotic 

proteins Bad and Bak are increased in the leaner cerebellum (Nahm, 2002).  Other 

studies have shown that calcium homeostasis is disrupted in leaner Purkinje cells in a 

manner that likely places heavier burdens on mitochondria to buffer excess cytosolic 

Ca2+ (Dove, et al., 2000; Murchison, et al., 2002).  Both increases in Bcl-2 family pro-

apoptotic proteins and excessive Ca2+ have been shown to cause programmed cell death 

through the release of mitochondrial proteins (Ichas and Mazat, 1998; Berridge, et al., 
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2000; Cory and Adams, 2002).  These studies suggest that mitochondrial signaling may 

be an additional or alternate means of caspase 3 activation responsible for leaner 

Purkinje cell death. 

 The objective of this study was to investigate some of the potential triggers of 

caspase 3 activation.  We evaluated the potential role of macroautophagy in leaner 

cerebellar Purkinje cells by assessing the production of autophagic vesicles.  We also 

evaluated mitochondria in Purkinje cells to assess the likelihood of mitochondrial protein 

release in leaner mice. 

  

EXPERIMENTAL PROCEDURES 

Animals 

 Wild type and homozygous leaner mice (tgla/tgla or Cacna1atg-la), on the 

C57BL/6J background at P20, P40 and P50 were used.  Animal breeding and handling 

procedures are described in Chapter II.  All experimental procedures were carried out in 

accordance with National Institute of Health Guide for Care and Use of Laboratory 

Animals (NIH publication No. 85-23, revised, 1996).  Minimal numbers of animals 

necessary for each experiment were used. 

  

Tissue collection 

For paraformaldehyde fixed and frozen brain tissue, mice were anesthetized 

intraperitoneally with 150 mg/kg ketamine and 15 mg/kg xylazine.  Once anesthetized, 

the mice were perfused intracardially with 50 mL of Tyrode’s Saline, followed by 400 to 
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500 mL of 4% paraformaldehyde in 0.12 M phosphate buffer (pH 7.4).  The brains were 

collected, cryoprotected in 20% sucrose in 0.1M phosphate buffered saline, frozen with 

powdered dry ice and stored at -70°C until sectioned on a cryostat.  Frozen cerebella 

were sectioned at 25 µm.  For the experiments using fixed, frozen brains, the rostral 

cerebellum was defined as lobules I through V, and the caudal cerebellum was defined 

as lobules VI through X.  

 For acute cerebellar slices, mice at P40 were anesthetized with isoflurane and 

decapitated.  The brains were aseptically removed and the cerebella were coronally 

sectioned at 150 µm in ice cold dissection feed containing 36mM glucose, 10mM 

MgCl2⋅6H2O in Gey’s balanced salt solution (Sigma-Aldrich, St. Louis, MO, USA) on 

an Electron Microscopy Sciences (EMS) tissue slicer (OTS-4000, Hatfield, PA, USA).   

 

Monodansylcadaverine  

Acute cerebellar slices were collected from four age matched wild type and 

leaner pairs at P40 and assayed for macroautophagic vesicles.  Recent studies have 

shown that monodansylcadaverine (MDC) specifically localizes to macroautophagic 

vesicles and has been used as a marker to evaluate the numbers of these vesicles 

produced during macroautophagic mediated programmed cell death (Biederbick, et al., 

1995; Munafo and Colombo, 2001).  Monodansylcadaverine (Sigma-Aldrich, St. Louis, 

MO, USA) was mixed with dissection feed for a working concentration of 25 µM and 

prewarmed in a 37°C water bath.  Slices from each cerebellum were divided into two 

groups: negative control (feed without MDC) and MDC treated.  Slices were incubated 
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in control or 25 µM MDC media for 30 minutes at 37°C, 5% CO2 humid incubator.  

Incubation was terminated with two, 10 minutes washes in dissection feed at 37°C, 5% 

CO2.  Slices were fixed in 4% paraformaldehyde in 0.12 M phosphate buffer (pH 7.4) 

for 24 – 48 hours, washed in 0.1 M phosphate buffered saline, mounted on plain glass 

slides and coverslipped with anti-fade mounting medium (Molecular Probes, Eugene, 

OR, USA).  Slices were imaged using a DAPI Filter (MDC excitation 340-380 nm, 

emission 508 nm) on a Zeiss Axioplan 2 research microscope (Plan-NEOFLUAR 16X, 

0.50 numerical aperture oil objective) and a Zeiss color Axiocam HRC digitial camera 

(acquisition software Axiovision 4.2).  The same exposure was maintained for controls 

and treated slices within each cerebellar pair.  MDC fluorescence intensity was 

determined by calculating an integrated density value (IDV) using Alpha Innotech 

AlphaEase 3.1 software for each mouse, by subtracting background fluorescence 

(negative control) from MDC treated fluorescence of cerebellar Purkinje cell bodies 

using.  A minimum of three treated and two control slices were imaged.  A one-tail 

paired t test at α = 0.05 was used to statistically determine if leaner cerebellar Purkinje 

cells had increased MDC uptake compared to wild type. 

 

Mitochondrial membrane potential 

 Acute cerebellar slices were collected from four age matched wild type and 

leaner pairs at P40 and assayed for mitochondrial membrane potential (∆Ψm).  

MitoTracker Red CM-H2XRos (Molecular Probes, Eugene, OR, USA) was used to 

measure ∆Ψm.  Mitochondrial uptake of MitoTracker Red is dependent on the ∆Ψm, with 
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decreased fluorescence of MitoTracker Red associated with decreased ∆Ψm.  The 

product instructions for labeling adherent cells was adapted for labeling acute cerebellar 

slices. 50 µg of MitoTracker Red was dissolved in 100 µL of sterile DMSO (Sigma-

Aldrich, St. Louis, MO, USA) for a 10 mM concentration.  MitoTracker Red was then 

diluted to a working concentration of 25 nM in dissection feed.  Slices from each 

cerebella were divided into two groups: negative control (feed without MitoTracker Red) 

and MitoTracker Red treated.  Slices were incubated in control or 25 nM MitoTracker 

Red media for 30 minutes at 37°C, 5% CO2 humid incubator.  Incubation was terminated 

with two, 10 minutes washes in dissection feed at 37°C, 5% CO2.  Slices were fixed in 

4% paraformaldehyde in 0.12 M phosphate buffer (pH 7.4) for 24 – 48 hours, washed in 

0.1 M phosphate buffered saline, mounted on plain glass slides and coverslipped with 

anti-fade mounting medium (Molecular Probes, Eugene, OR, USA).  Slices were imaged 

on a Zeiss Axioplan 2 research microscope (Plan-APOCHROMAT 10X, 0.45 numerical 

aperture objective) and a Zeiss color Axiocam HRC digitial camera (acquisition software 

Axiovision 4.2) using a Texas Red Filter (MitoTracker Red excitation 579 nm, emission 

599 nm) and maintaining exposure for controls and treated slices within each cerebellar 

pair.  MitoTracker Red fluorescent intensity was determined by calculating an integrated 

density value (IDV) using Alpha Innotech AlphaEase 3.1 software for each mouse, 

subtracting background fluorescence (negative control) from MitoTracker Red treated 

fluorescence of cerebellar Purkinje cell bodies.  A minimum of three treated and two 

control sections with at least 10 Purkinje bodies per image were evaluated for each 
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cerebellum.  A one-tail paired t test at α = 0.05 was used to statistically determine if 

leaner cerebellar Purkinje cells had lower ∆Ψm than wild type Purkinje cell bodies. 

 

Cytochrome C immunohistochemistry 

 Immunohistochemistry (IHC) was performed as described in Chapter II (Abbott 

and Jacobowitz, 1995).  Cytochrome C IHC used an affinity purified monoclonal mouse 

antibody at 1:4,000 dilution (BD PharMingen, San Diego, CA, USA).  For Cytochrome 

C IHC blocking was done with horse serum and the secondary antibody was rat 

absorbed biotinylated horse antimouse (Vector, Burlingame, CA, USA).   

 Four leaner and four wild type mice were used in each age group P20, P40 and 

P50.  Whole cerebella were serially sectioned in a sagittal orientation.  Every fifth 

section was immunostained for cytochrome C.  Purkinje cell bodies in each stained 

section were evaluated blinded to genotype for cytochrome C localization.  

Mitochondrial cytochrome C produced a punctate staining pattern while cytosolic 

cytochrome C produces diffuse staining throughout the cell body.  2-way ANOVA was 

used to evaluate differences due to genotype and age. 

 

RESULTS 

Macroautophagy 

 Monodansylcadaverine (MDC) is specifically sequestered in autophagic vesicles.  

Previous studies have demonstrated its localization to autophagic vesicles through 

electron microscopy (Biederbick, et al., 1995; Munafo and Colombo, 2001).  In addition, 
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it has been shown that MDC is not incorporated into nonautophagic vesicles or 

lysosomes (Biederbick, et al., 1995).  Increased MDC uptake is associated with increase 

numbers of autophagic vesicles produced during macroautophagy (Biederbick, et al., 

1995).  Representative images of MDC labeling in acute cerebellar slices are shown in 

Figure IV-1.  Densitometry of MDC fluorescence of cerebellar Purkinje cell bodies is 

shown in Figure IV-2.  There was a significant increase in MDC uptake in leaner 

cerebellar Purkinje cell bodies (t3 = 4.01, p = 0.01). 

 

 

Figure IV-1: Representative images of monodansylcadaverine (MDC) labeling in acute 
cerebellar slices at P40.  A is a wild type cerebellar slice.  B is a leaner cerebellar slice.   
Arrows indicate Purkinje cell bodies.  M is molecular layer and g is granule cell layer.  
Scale bar in B is 50 µm.  
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Figure IV-2: Monodansylcadaverine (MDC) labeling is increased in leaner cerebellar 
Purkinje cells at P40.  Fluorescent intensity of Purkinje cell bodies was determine by 
calculating an integrated density value (IDV) for fluorescence of MDC in treated slices 
and subtracting background or negative control fluorescence using Alpha Innotech 
software (corrected IDV).  Error bars are standard error of the mean.  * indicates a 
significant increase in MDC staining in leaner Purkinje cell bodies compared to wild 
type. 
 
 
 
Mitochondrial mediated activation of cell death 

 A common feature of mitochondrial mediated programmed cell death is a loss of 

mitochondrial membrane potential associated with the induction of the mitochondrial 

permeability transition pore or pore formation associated with oligomerization of Bcl-2 

proteins Bax or Bak.  MitoTracker Red CM-H2XRos is a plasma membrane permeable, 

mitochondrial selective probe that is concentrated by actively respiring mitochondria and 

retained within the mitochondria following fixation (Deshmukh, et al., 2000; 
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Strahlendorf, et al., 2003).  This mitochondrial probe was used to assess the 

mitochondrial membrane potential in leaner and wild type cerebellar Purkinje cell bodies 

from acute cerebellar slices (Figure IV-3).  Densitometry analysis of fluorescent 

intensity of cerebellar Purkinje cell bodies is shown in Figure IV-4.  There was a 

significant decrease in MitoTracker Red staining in leaner cerebellar Purkinje cell bodies 

compared to wild type Purkinje cell bodies (t3 = 2.89, p < 0.05), indicating a decrease in 

mitochondrial membrane potential in leaner cerebellar Purkinje cells compared to wild 

type Purkinje cells. 

 

 

Figure IV-3: Representative images of MitoTracker Red staining of acute cerebellar 
slices at P40.  Wild type (A) and leaner (B) acute cerebellar slices at P40 are labeled 
with MitoTracker Red.  M is molecular layer and g is granule cell layer.  Arrows 
indicate Purkinje cell bodies.  Scale bar in B is 50 µm. 
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Figure IV-4: MitoTracker Red staining is decreased in leaner cerebellar Purkinje cell 
bodies at P40.  Fluorescent intensity of Purkinje cell bodies was determine by 
calculating an integrated density value (IDV) for fluorescence of MitoTracker Red in 
treated slices and subtracting background or negative control fluorescence using Alpha 
Innotech software (corrected IDV).  Error bars are standard error of the mean.  * 
indicates a significant decrease in leaner Purkinje cell bodies compared to wild type. 
 
 
 
 Loss of mitochondrial membrane potential in mitochondrial mediated 

programmed cell death leads to a release of mitochondrial proteins, which then activate 

downstream cell death signaling pathways (Green and Reed, 1998; Green, 2005).  

Cytochrome C is a mitochondrial protein normally involved in oxidative 

phosphorylation, which is often released during apoptotic cell death (Liu, et al., 1996; 

Hao, et al., 2005).  Following an appropriate signal, the mitochondria are able to release 

cytochrome C and subsequently trigger caspase 3 activation to induce programmed cell 

death.  We used immunohistochemistry for cytochrome C at P20, P40 and P50 to 
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determine if the loss of mitochondrial membrane potential in leaner cerebellar Purkinje 

cells seen at P40 was associated with cytosolic cytochrome C release in a pattern 

consistent with caspase 3 activation and Purkinje cell death.   

Cytosolic cytochrome C was defined as diffuse staining of cerebellar Purkinje 

cell bodies, while mitochondrial cytochrome C staining was restricted to a punctate 

pattern (Figure IV-5).  Estimated numbers cerebellar Purkinje cells per whole 

cerebellum with cytosolic cytochrome C in comparison to activation of caspase 3 are 

shown in Figure IV-6.  While cytosolic cytochrome C can be detected, cytochrome C 

release was not significantly different between wild type and leaner in cerebellar 

Purkinje cells.  Furthermore, it did not correspond with the pattern of leaner Purkinje cell 

death or caspase 3 activation (Figure IV-7).  The estimated numbers of leaner cerebellar 

Purkinje cells with cytosolic cytochrome C release were much lower than those observed 

for both Fluoro-Jade labeled cell death and for caspase 3 activation.  In addition, at P20, 

prior to the onset of leaner Purkinje cell death and caspase 3 activation, several leaner 

Purkinje cells were observed with distinct cytosolic cytochrome C staining patterns.  

This age group also had more Purkinje cells with cytosolic cytochrome C staining 

pattern than were found at P40 and P50, which are the peak times of leaner Purkinje cell 

death and caspase 3 activation.  It should also be noted that cytosolic cytochrome C 

release was not detected in two leaner cerebella and was found in less than an estimated 

10 Purkinje cells in another two leaner cerebella at P50, which is one of the peak ages of 

Purkinje cell death.  And lastly, it should be also be noted that in the leaner cerebella 

examined at P40, the peak of both caspase 3 activation and Purkinje cell death, one 
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leaner cerebellum had an estimated total of only 10 Purkinje cells with cytosolic 

cytochrome C detected. 

 

 
 
Figure IV-5: Representative examples of punctate verses diffuse staining for cytochrome 
C.  Wild type (A) and leaner (B) cerebella at P40 immunostained for cytochrome C.  
Arrows indicate Purkinje cell body and dendrites.  Staining in A is punctate indicating 
containment within mitochondria, while staining in B is diffuse indicating cytosolic 
release.  M is molecular layer.  Scale bar in A is 25 µm. 
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Figure IV-6: Quantitative evaluation of cytochrome C cytosolic release in cerebellar Purkinje cell bodies compared to 
activation of caspase 3 in the whole cerebellum.  Positive Purkinje cell bodies were counted and estimated numbers per whole 
cerebellum were determined.  * represents statistically significant differences.  Error bars are standard error of the mean. 
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Figure IV-7: Regional comparison of leaner cytosolic release of cytochrome C to 
activated caspase 3 and Fluoro-Jade labeled cell death at P40.  Estimated total numbers 
of positive Purkinje cell bodies per cerebellum for each stain by anatomical cerebellar 
region.   
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DISCUSSION 

 These results demonstrate that both mitochondrial mediated and macroautophagy 

mediated mechanisms could be responsible for leaner cerebellar Purkinje cell death and 

caspase 3 activation.  The increase in MDC staining in leaner cerebellar Purkinje cells 

indicated a marked increase in autophagosome production, which is a hallmark of 

macroautophagic cell death.  Alternately, the loss of ∆Ψm indicated that it is also 

possible that mitochondrial proteins responsible for activating programmed cell death 

could be released into the cytosol.   

 Morphologic descriptions of dying leaner Purkinje cells are more closely 

associated with macroautophagic cell death pathways than apoptotic pathways.  Dying 

leaner Purkinje cells lack overt DNA fragmentation, pyknotic nuclei, cytoplasmic 

condensation and membrane blebbing typical of apoptosis (Herrup and Wilczynski, 

1982).  They instead lose cytoplasmic density, typical of macroautophagy (Herrup and 

Wilczynski, 1982).  MDC is highly specific for labeling autophagosomes and it is 

excluded from lysosomes and other vesicles (Biederbick, et al., 1995; Munafo and 

Colombo, 2001).  Its increase in leaner cerebellar Purkinje cells strongly supports the 

activation or induction of macroautophagy during leaner cerebellar Purkinje cell death. 

 A loss of ∆Ψm is indicative of opening of the permeability transition pore or 

oligomerization and pore formation induced by Bax or Bak, which can lead to cytosolic 

release of mitochondrial proteins and subsequent cell death (Desagher, et al., 1999; 

Eskes, et al., 2000; Letai, et al., 2002).  The loss of ∆Ψm observed in leaner cerebellar 

Purkinje cells must be considered carefully.  The method of analysis was densitometry 
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of whole Purkinje cell bodies.  If macroautophagy is indeed the primary mechanism of 

leaner Purkinje cell death, then it is possible that mitochondrial numbers are decreased in 

leaner Purkinje cells compared to wild type Purkinje cells (Bursch, 2001).  This could 

confound the measurement of ∆Ψm, with our result actually reflecting a loss of 

mitochondria rather than a loss of ∆Ψm within mitochondria.  Alternately, because of the 

profound changes in Ca2+ homeostasis and buffering the loss of ∆Ψm may reflect a lower 

resting membrane potential rather than pore opening or pore formation with a release of 

mitochondrial proteins (Duchen, 1999; Dove, et al., 2000; Murchison, et al., 2002).  

Both of these possibilities are supported by the cytochrome C IHC analysis which 

showed cytochrome C release in a pattern inconsistent with leaner cerebellar Purkinje 

cell death and not significantly different from wild type. 

 However, mitochondria are capable of being selective in protein release.  It has 

been show that SMAC can be released without cytochrome C, resulting in caspase 3 

activation (Deng, et al., 2003).  Apoptosis inducing factor (AIF) can be also be 

specifically released from mitochondria (Wang, et al., 2004).  AIF’s primary function is 

to translocate to the nucleus and activate endonucleases (Yuan, et al., 2003).  However, 

secondary and downstream of these events, AIF is also able to activate caspase 3 to 

perpetuate the programmed cell death cycle (Susin, et al., 1999; Joza, et al., 2001; Klein, 

et al., 2002).  So, the possibility of mitochondrial proteins other than cytochrome C 

contributing to leaner cell death cannot be ruled out. 

 This study demonstrates that cytosolic release of the mitochondrial protein 

cytochrome C does not have a significant role in direct leaner Purkinje cell death.  This 
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study does however, support the hypothesis that macroautophagy is activated leaner 

Purkinje cells.  While we have shown a decrease in mitochondrial membrane potential in 

leaner cerebellar Purkinje cells, the significance of this finding remains to be 

determined. 
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CHAPTER V 

CONCLUSIONS 

 

SUMMARY AND CONCLUSIONS 

 The leaner mouse is a neurologic mutant mouse that carries a mutation in the 

pore forming (α1A) subunit of P/Q-type voltage-gated calcium channels (Fletcher, et al., 

1996; Doyle, et al., 1997).  Phenotypically the leaner mouse exhibits a severe cerebellar 

ataxia, absence seizures and paroxysmal dyskinesia (Sidman, et al., 1965).  Because 

P/Q-type VGCCs are highly expressed in the cerebellum (Stea, et al., 1994), many of the 

behavioral and morphological abnormalities due to the leaner mutation are also 

concentrated in the cerebellum or are associated with cerebellar function.  The primary 

effect of the leaner mutation of P/Q-type calcium channels is decreased calcium current 

(Dove, et al., 1998; Lorenzon, et al., 1998; Wakamori, et al., 1998).  In cerebellar 

Purkinje cells this is accompanied by compensatory responses including decreased 

concentrations of calcium binding proteins and altered calcium buffering at the ER and 

mitochondria that allow leaner Purkinje cells to maintain normal resting Ca2+ 

concentration (Dove, et al., 2000; Murchison, et al., 2002).  However, because of these 

changes, upon depolarization and activation of P/Q-type VGCCs, the nature of Ca2+ 

signaling is altered due to a lack of Ca2+ buffering capacity.  Changes in Ca2+ signaling 

affect many additional cellular functions, the most notable of which is patterned 

neurodegeneration of cerebellar Purkinje cells. 
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 Cerebellar neurodegeneration is a common feature in human mutations of the 

P/Q-type VGCC, including Familial hemiplegic migraine, episodic ataxia type 2 and 

spinocerebellar ataxia type 6 (Pietrobon, 2002).   Cerebellar atrophy in these human 

diseases occurs in a pattern that is similar to that of the leaner mouse, making the leaner 

mouse an important model to investigate the causes of neurodegeneration secondary to 

P/Q-type VGCC mutations (Pietrobon, 2002).  In addition to helping us understand the 

functions of P/Q-type VGCCs in these diseases, the leaner mouse is also an important 

model for investigating the functions of compartmentalization in the cerebellum (Herrup 

and Kuemerle, 1997).  The leaner mutation is uniformly expressed throughout the 

cerebellum (Wakamori, et al., 1998; Lau, et al., 1998).  However, Purkinje cell death is 

restricted to known parasagittal divisions of the cerebellum (Heckroth and Abbott, 

1994).  As we begin to understand the complex signaling mechanisms involved in 

directing leaner Purkinje cell death the nature of the fundamental difference between 

surviving and dying leaner Purkinje cells will also be elucidated.  This will provide input 

to a variety of cerebellar disorders, regardless of cause, that result in patterned 

neurodegeneration or dysfunction. 

 This dissertation focused on identifying which of the main components of cell 

death signal pathways were activated in leaner cerebellar Purkinje cells.  In order to 

accomplish this, we expanded on previous work by Herrup and Wilczynski (1982) by 

more precisely defining the timing of leaner cerebellar Purkinje cell death (Chapter II).  

We then used this information to investigate potential cell death signaling pathways.  

Previous studies of the leaner cerebellum suggested multiple cell signaling pathways, 
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which could lead to programmed cell death.  The second part of this dissertation was to 

investigate the fundamental question of the role of caspase proteases in leaner cerebellar 

Purkinje cell death (Chapter III).  This was followed up by investigating two potential 

activators of caspase activity; mitochondrial signaling and macroautophagy (Chapter 

IV).  The results are summarized in Figure V-1. 

Figure V-1: Possible mechanism(s) of leaner cerebellar Purkinje cell death.  Circle 
indicates possible mechanism.  Filled circle indicated confirmed mechanism. Crossed 
circle indicates rejected mechanism.  C is caspase, Cyt C is cytochrome C, and ∆Ca2+ is 
change in Ca2+ due to the leaner mutation. 
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Using the mechanism-independent cell death stain Fluoro-Jade, we determined 

that leaner cerebellar Purkinje cell death was initiated at approximately P25 and peaked 

between P40 and P50.  In addition it was shown that Purkinje cell death occurred earlier 

in the vermis than the hemispheres.  Focusing on key time points, we investigated the 

activation of caspase 3.  Our results showed that prior to leaner Purkinje cell death (P20) 

there was no activation of caspase 3, while at the peak of Purkinje cell death there was 

significant caspase 3 activation.  Further examination showed this activation of caspase 3 

was restricted to dying leaner Purkinje cell parasagittal zones, and that inhibition of 

caspase 3 could rescue a significant number of leaner cerebellar Purkinje cells.  These 

finding suggest that while caspases are activated in leaner Purkinje cell death either they 

are working in conjunction with alternate cell death signaling pathways or their blockade 

results in cell death that uses other pathways. 

Macroautophagy has been shown to utilize caspases in signaling programmed 

cell death and it is able to function independent of caspases (Xue, et al., 1999; Canu, et 

al., 2005).  Using the autophagic vesicle specific marker, monodansylcadaverine (MDC), 

to assess macroautophagy induction we showed that there was a significant increase in 

autophagic vesicles in leaner cerebellar Purkinje cells.  We also investigated 

mitochondrial membrane potential (∆Ψm), since the loss of ∆Ψm is a hallmark event 

preceding the cytosolic release of mitochondrial proteins which can subsequently trigger 

cell death.  While our data demonstrated a significant decrease in ∆Ψm in leaner Purkinje 

cells, this did not correspond with cytosolic release of cytochrome C. 
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FUTURE DIRECTIONS 

 There are several questions about the main cell death signaling pathways 

directing leaner cerebellar Purkinje cell death that remain to be answered.  While the 

activation of caspase 3 indicates that caspases are involved in leaner Purkinje cell death, 

it is still unclear how caspase 3 was activated.  Caspase 3 has several potential activators 

not investigated in this study.  These include proteins such as lysosomal proteases 

(Hishita, et al., 2001), the mitochondrial protein SMAC (Deng, et al., 2003), and the ER 

associated caspase, caspase 12, which can be activated by changes in ER Ca2+ load 

(Hitomi, et al., 2004).  Furthermore, since caspase 3 inhibition failed to completely 

prevent leaner Purkinje cell death, caspase independent means of cell death should also 

be considered.  Caspase independent pathways, such as cytosolic release of the 

mitochondrial protein AIF may be acting in conjunction with caspase mediated pathways 

or may be triggered in response to caspase blockade (Susin, et al., 1999; Joza, et al., 

2001; Wang, et al., 2004). 

 We presented evidence of macroautophagy mediated programmed cell death in 

leaner Purkinje cells.  This evidence should be corroborated with electron microscopic 

identification of autophagosomes in leaner cerebellar Purkinje cells.  Once confirmed, 

future work can investigate the dependence of leaner Purkinje cell death on 

macroautophagy and how it relates to the activation of caspase 3 in dying leaner 

Purkinje cells. 

 Our studies also indicated a decrease in mitochondrial membrane potential at the 

peak of leaner Purkinje cell death and caspase activation, but which did not correspond 
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with cytosolic release of cytochrome C.  There are several possibilities which should be 

investigated to clarify this finding.  Macroautophagy is associated with a decrease in the 

number of mitochondria.  And, if macroautophagy is activated in leaner Purkinje cells, it 

is possible that the decreased ∆Ψm actually reflects decreased numbers of normal 

mitochondria.  It is also possible that the decreased ∆Ψm represents a decreased resting 

membrane potential related to altered Ca2+ buffering rather than a loss of ∆Ψm associated 

with mitochondrial protein release.  Because of these possibilities, it will be important to 

reassess ∆Ψm, either in the light of mitochondrial numbers or at the level of individual 

mitochondria.  And lastly, even though there was not significant release of cytochrome C 

at the time of peak activation of leaner Purkinje cell death and caspase 3 activation, it 

does not rule out the release of other mitochondrial proteins, such as SMAC or AIF 

which may be contributing to leaner Purkinje cell death. 

 As research in this area progresses we will elucidate the mechanisms of leaner 

Purkinje cell death, understanding what is being triggered and how.  We will then be 

able to apply that knowledge to investigate potential therapies aimed at preserving 

neuronal survival and cerebellar function.  
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