

FEATURE IDENTIFICATION FRAMEWORK AND

APPLICATIONS (FIFA)

A Thesis

by

MICHAEL NEAL AUDENAERT

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2005

Major Subject: Computer Science

FEATURE IDENTIFICATION FRAMEWORK AND

APPLICATIONS (FIFA)

A Thesis

by

MICHAEL NEAL AUDENAERT

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Richard Furuta
Committee Members, John J. Leggett
 Eduardo Urbina
 Brian Imhoff
Head of Department, Valerie E. Taylor

December 2005

Major Subject: Computer Science

iii

ABSTRACT

Feature Identification Framework and Applications (FIFA). (December 2005)

Michael Neal Audenaert, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Richard Furuta

Large digital libraries typically contain large collections of heterogeneous resources

intended to be delivered to a variety of user communities. One key challenge for these

libraries is providing tight integration between resources both within a single collection

and across the several collections of the library with out requiring hand coding. One key

tool in doing this is elucidating the internal structure of the digital resources and using

that structure to form connections between the resources. The heterogeneous nature of

the collections and the diversity of the needs in the user communities complicates this

task. Accordingly, in this thesis, I describe an approach to implementing a feature

identification system to support digital collections that provides a general framework for

applications while allowing decisions about the details of document representation and

features identification to be deferred to domain specific implementations of that

framework. These deferred decisions include details of the semantics and syntax of

markup, the types of metadata to be attached to documents, the types of features to be

identified, the feature identification algorithms to be applied, and which features should

be indexed. This approach results in strong support for the general aspects of developing

a feature identification system allowing future work to focus on the details of applying

that system to the specific needs of individual collections and user communities.

iv

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Richard Furuta, and my committee

members, Dr. Leggett, Dr. Urbina, and Dr. Imhoff, for their guidance and support

throughout the course of the research. I would also like to thank Dr. Shipman for

graciously agreeing to sit in as a substitute for Dr. Leggett during my defense. Also,

many thanks to Unmil Karadkar for his many helpful comments about both my thesis

work and life in graduate school.

Research for this thesis as part of the Cervantes Project was funded by the

Cervantes Chair (University of Castilla-La Mancha), and the Grupo Santander.

v

TABLE OF CONTENTS

 ... Page

ABSTRACT ...iii

ACKNOWLEDGMENTS.. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES.. vi

INTRODUCTION... 1

BACKGROUND... 4

FRAMEWORK IMPLEMENTATION .. 7

Feature Identification Framework... 7
Document Model... 9
Feature Model ... 23
Indexing and Searching... 31

SLIWA COLLECTION APPLICATION... 34

Application Architecture ... 37
Extending the Application... 43

FUTURE WORK .. 49

Framework Enhancements .. 49
Applications .. 52
Tools.. 54
Bigger Questions ... 55

CONCLUSIONS... 56

REFERENCES.. 60

VITA ... 64

vi

LIST OF FIGURES

 Page

Figure 1: High-level components of a feature identification system................................ 2

Figure 2: Structural components of the feature identification framework........................ 8

Figure 3: The document model ... 10

Figure 4: A class diagram of the DocumentManager, Document and

DocumentCollection classes ... 15

Figure 5: The Segment interface and default implementation 19

Figure 6: Class diagram of the default segment factory implementation 22

Figure 7: The segment factory configuration interface – segments in a simple

document configuration... 24

Figure 8: The segment factory configuration interface – editing the <p> segment........ 24

Figure 9: The procedure used by the web-based feature editing tool 29

Figure 10: Editing a SliwaPersonFeature using the feature editor.................................... 30

Figure 11: Timeline browser ... 35

Figure 12: Browsing interface... 36

Figure 13: Resources page for a person showing a timeline display of the documents

referring to this person and a browsing interface for those documents........... 36

Figure 14: The architecture of the Sliwa application .. 37

Figure 15: Block diagram of the major components of the Sliwa application.................. 47

Figure 16: Block diagram of the extensions to the Sliwa application............................... 48

1

INTRODUCTION

As the Cervantes Project [51] has matured we have begun to shift our focus from

providing tools to present and analyze the writings of Cervantes [26][29][36] to

collecting and integrating resources that serve the research needs of scholars from a

variety of academic domains [3].1This includes the iconography project [52], the music

collection [38], and the Sliwa collection of historical documents [45]. This has raised

two key questions: First, how can we provide tight interlinkages between resources

developed by scholars in diverse fields without requiring extensive hand coding–an

unaffordably labor intensive process? Second, how can we provide tools that both allow

and promote sophisticated reading strategies that will help scholars best utilize these

unique resources?

One approach to addressing these questions is elucidating the internal structure of

documents in a collection. Once this internal structure is made explicit, it can serve as

the basis for establishing connections between documents and for providing information

visualizations, advanced search tools, and navigational links that more adequately meet

the needs of the communities using the collection. A first step toward this goal is

identifying key features within the documents. In the context of a mature digital library,

feature identification systems face the challenges of dealing with heterogeneous

document types and supporting the needs of a variety of user communities from both the

academic and public sectors [11].

In this thesis, I describe an approach to developing a feature identification system for the

Sliwa document collection–a collection of official records pertaining to Miguel de

Cervantes Saavedra (1547-1616) and his family originally assembled by Prof. Kris Sliwa

[45]. This collection contains descriptions, summaries, or transcriptions in Spanish of

nearly 1700 documents originally written from 1463 to 1681. Ultimately it is intended

that this work will be extended both to other collections within the Cervantes Project

This thesis follows the style of the International Journal of Digital Libraries

2

(CP) and to collections outside the CP such as the records of early Spanish expeditions

into Texas [24] and the narrative components of the Picasso Project [33]. Accordingly,

the system presented here provides a general framework that can be tailored to meet the

specific needs of individual collections and user communities.

To achieve this generality, the feature identification system developed as part of my

thesis is broken into three layers. As diagramed in Figure 1, the core of the system is a

"feature identification framework" (FIF). This framework provides a set of tools for

working with documents, identifying features within documents and building indices for

searching document collections based on the identified features. This framework

provides the major structural elements of the system, while deferring decisions about

how documents are to be represented and stored, what types of features and feature

identification algorithms are to be used, and how the collection is to be indexed to

“implementations” of the framework. Domain specific applications then use this

framework, along with the appropriate set of customized modules to implement

visualizations, navigational linking strategies, and searching and filtering tools.

This approach to developing a feature identification system opens a number of potential

research directions that offer trade-offs between pursuing depth in a particular area of the

Documents Features

Domain Specific Applications
(visualizations, navigational links, searching & filtering)

Feature
Identification
Framework

Deferred
Implementation

• Types
• Source
• Metadata
• Syntax & Semantics

• Types
• Algorithms

Index &
Searching

• Fields to be
Indexed

Figure 1: High-level components of a feature identification system

3

system (e.g., better natural language processing based feature identification and

disambiguation algorithms or a novel visualization to meet a challenging research need)

or breath across the system as a whole. I have taken a horizontal approach. The resulting

system provides an implementation of the core feature identification framework along

with a basic implementation of the document model and feature identification

components. This framework is applied to develop a web-based interface for the Sliwa

collection.

This work is presented with two main objectives. First, it describes a system which

fulfils a tangible need within the Cervantes Project–namely presenting the documents of

the Sliwa collection in a way that facilitates scholarly use. Second, by exploring the

needs of a general feature identification system, this work will serve as an example to

other digital libraries of how to integrate flexible feature identification strategies across

their collections.

4

BACKGROUND

When it comes to integrating documents in a collection and providing information to

support user interfaces, encoding document level metadata is the dominant strategy for

supplying the needed information. Numerous, well-established metadata standards exist

for digital librarians to choose from (Dublin Core [19], METS [31], MPEG-21 DIDL

[6][32] and MARC [30] to name a few of the more prominent standards). In many ways,

metadata is a digital analog to the notions of a card catalog in a physical environment.

One limitation of using metadata as the sole method for enhancing a collection is its

relatively coarse grained nature. In a physical library, where librarians are not free to

modify the contents of their collections to facilitate information finding tasks, the limited

granularity of the catalog cannot be helped. In a digital library, however, the contents of

the documents can be modified–reshaped to meet the needs of the tools that will use

them.

In a digital environment, explicitly identifying important features within the documents

themselves provides an important complimentary approach for enhancing cultural

archives. While this approach bears many similarities to traditional editorial practices, it

also raises unique challenges that humanities scholars have recently begun to address

[44][25][48]. Unlike traditional edited editions in physical libraries, the enhancements

made by digital editors can be made available for use by the tools and services provided

by the library. In addition to structural markup of pages such as line numbers and

speaker changes, identifying people, places, monetary units and morphological

structures have allowed humanists more complete access to the wealth of information

contained in cultural archives [16][17]. Once identified, this information can be used to

support georeferencing map based interfaces and timeline visualizations [13]. Advanced

linking and searching tools provide readers with powerful tools to find biographical,

historical and linguistic information to enhance their understanding of texts.

5

Assigning metadata is a notoriously resource intensive and time consuming process.

Consequently, a number of approaches have been explored to mitigate this cost

including tools to better support collection editors [4] and automatically assigning

metadata [39]. Editorial tasks are far more resource intensive and a number of

algorithms have been developed to assist in this process, many used in the context of

online news services.

Many of these algorithms solve problems that fall under the category of Named Entity

Recognition (NER). The named entity task was formally introduced as part of the

Message Understanding Conference/Competition, MUC6 [47] in which participants

were to identify seven types of entities (people, organizations, location, date, time,

money and percentages) in texts. The state of the art systems that participated in this and

the following MUC7 [8] conference were able to achieve extremely good results, often

with recall and precision rates higher than 90%.

Most NER systems make extensive use of large gazetteers such as the Getty Thesaurus

of Place Names [22] used extensively in [12]. These can be extremely expensive to build

and maintain and often represent a limiting factor in building NER systems. Krupke and

Hausman [27][28] have found that the quality of the names in a gazetteer is far more

important than the overall size, suggesting that smaller name lists more closely tailored

to the domain in which they are to be used might provide more cost effective alternatives

to general purpose gazetteers. To provide higher quality name lists, [46] uses manually

annotated training data to build corpus derived name lists and [35] presents a system that

uses rule-based grammars and statistical models in conjunction with relatively small

gazetteers to achieve good results on the texts in the MUC-7 competition. Recent work

has tended to emphasize statistical approaches, notably Hidden Markov Models (HMM)

[5] and semi-Markov models [9].

Whereas most NER systems attempt to identify patterns that hold for all documents in a

collection, [7] report on a system that attempts identify document specific heuristics that

better identify names in tables, lists and other visually structured data. While their

6

approach is limited to environments where there is considerable internal document

structure, they were able to achieve significantly higher recall than traditional methods

without a large drop in precision. Their results are particularly important in the context

of cultural archives given the fact that many significant documents contain structured

presentation similar to the structure they have found in web pages [12].

While state of the art NER systems have met with significant success, they are limited

by their focus on broadly defined categories (e.g. names, places, organizations and

products). [37] observes that in an information seeking context, the ability to ask much

more refined questions from multiple organizational perspectives is needed.

From this brief sketch of related work, a number of general principles for the design of a

general purpose feature identification system can be inferred. The system will need to be

able to handle multiple document formats and the metadata associated with those

documents. It will also need to provide support for many different types of feature

identification algorithms and facilitate editorial customizations of the name lists used to

support these algorithms. User communities will need tools tailored to closely support

their idiosyncratic information finding needs. These tools may be able to share feature

identification algorithms and indexing strategies, but will likely not overlap completely.

Hence, the system should be implanted to permit feature identification resources to be

shared, but applied flexibly to meet specific needs. Together, this calls for a strong

separation between the user-centric applications, document representation and feature

identification components of the system.

7

FRAMEWORK IMPLEMENTATION

The Feature Identification Framework (FIF) forms the core of my thesis work. This

framework provides the basic structures for supporting general feature identification that

can be customized and applied to meet the specific goals of a project or sub-project. The

FIF allows tasks common to all feature identification systems to be implemented in a

general fashion. Tasks that are specific to particular document collections or research

needs can then be implemented as extensions of this general framework. This allows

subject area and task specific development projects to focus more directly on meeting

the needs of end users while relying on the framework to provide the overall structure

and generic functionality needed in a feature identification system. This section presents

detailed descriptions of the components of the FIF and discusses the design decisions

that have motivated them.

Feature Identification Framework
Figure 2 diagrams the major structural components of the Feature Identification

Framework. Items in blue represent the document model, items in green represent the

feature identification model, items in yellow represent indexing and searching

components, and items in red represent external tools used by the framework.

Components whose names are italicized are abstract components whose implementations

are intended to be deferred to domain specific applications if the default implementation

is insufficient.

The Document Manager manages document persistence and named document

collections. The Document Collection component provides management for the

directory space in which collection information is stored and serves as an abstraction

layer on top of the Lucene search engine [1][23]. It supports indexing and searching two

general classes of information: the full text of documents and the features identified in

the documents. The Document Collection uses an Index Filter (wrapping a document) to

provide customized support for determining how a document should be processed for

8

indexing. Each document is composed of management metadata (containing both

information specific to a customized document implementation and general metadata

used by the Document Manager) and a content tree of Segment nodes. This tree structure

is suitable for representing XML documents and corresponds to the theoretical view of a

document as an Ordered Hierarchy of Content Objects. Every document has a Segment

Factory that can used to enforce constraints on the structure of the content tree. A

Feature Manager is responsible for the creation and persistence of named Feature Lists.

Each Feature List contains a number of Features and is responsible for the persistence of

those features. The Feature List works in cooperation with the Document component and

the individual Features to support feature identification and markup within a document.

The Index Filter may use multiple feature lists to support the identification of features to

be indexed. The details of this will depend on the details of custom index filter

implementations.

**

has sub-segments

Document

manages
*

*

filter
wrap

use

has

Document
Manager

Segment Document
Collection

Full Text
Index

<lucene>

Feature
Index

<lucene>

Index
Filter

managesmanages

own

*

* *

has*

uses

*

manages
& accesses

<search>

useSegment
Factory

Management
Metadata

has

Feature
Manager

Feature Feature
List

Figure 2: Structural components of the feature identification framework

9

Document Model
At the heart of any system for enhancing documents in a digital archive will be the set of

tools it provides for managing and representing those documents. The implementation of

the FIF document model has two primary goals. The first is to provide an

implementation of core functionality needed to represent documents, ensure their

persistence, provide an interface to searching mechanisms and facilitate the automatic

identification of features. The second is to “play well with others.” That is, it must be

flexible enough so that documents managed by other tools and digital libraries can be

ingested into the FIF with minimal effort and then used without adversely affecting the

other environments in which those documents are being used. The following guidelines

have helped shape the design of the document model:

1. Document types: XML is the dominant technology for storing digital resources–

and the technology that will be used to implement my thesis work–but it is by no

means the only one. The document model must be capable of supporting multiple

types of documents (e.g., XML, PDF, RTF, HTML, etc) without modifying the

APIs with which the rest of the system will interact.

2. Markup and encoding formats: Mature digital collections will contain

documents encoded using a variety of standards–both within a single collection

as well as between document collections in a single library. The document model

must allow implementations that provide support for arbitrary encoding formats.

The framework should provide support for explicitly specifying these formats

and testing documents to ensure their validity, especially to ensure that the

markup of identified features does not violate the document encoding standards.

3. Metadata standards: The document model must allow implementations to

attach metadata conforming to arbitrary metadata standards to documents.

4. Document persistence: The document model needs to provide mechanisms for

uniquely identifying and retrieving documents. In some cases, these documents

10

will be managed and stored by systems external to the FIF. In other cases, the

FIF will need to provide a persistence mechanism for storing these documents.

The document model should be robust enough to support both of these cases. In

addition to storing the documents themselves, the document model will need to

account for the storage of indices that will be built to support searching.

5. Services: In addition to the services provided by an used by the FIF, the

document model should allow extensions that implement services and

functionality specific to the types of documents being used and the needs of the

research contexts in which they are being used.

To meet these requirements, the document model has been designed as diagrammed in

Figure 3. The document manager supports the unique identification and retrieval of

documents and the management of named document collections. The document

collection module provides services for grouping individual documents and working

Document
Manager

Segment

Document
Collection

manages manages

owns

has sub-segments

*

* *

has*

Segment
Factory

Management
Metadata

has
owns

Document

Figure 3: The document model

11

with those collections. This includes interfacing with the search engine and providing

abstracted access to the file system for use in maintaining custom data specific to a

particular document collection. The document module provides the basic document level

services needed by the FIF and can be extended to provide customized support as needed

by applications of the framework. The document module also allows arbitrary

customizations to the metadata associated with each document. The document content is

provided by a hierarchical tree of segments whose structure can be controlled by a

segment factory. The remainder of this section describes each of these features of the

document model and how they may be extended in detail.

The document module wraps the segment-based content of the document to provide an

extensible interface. This interface is then used by the document manager to support the

unique identification and persistence of documents and by the feature identification sub-

system as the entry point for filtering documents. From the framework’s point of view, a

document is an instance of the abstract class,

edu.tamu.csdl.documents.Document. These instances can be decomposed

into three main parts: document management information, implementation information,

and the document contents. The document contents are implemented by the segment

model that will be discussed in detail below. Together, the document management

information and the implementation information comprise the management metadata

shown in Figure 3. The document manager uses the document management information

to support serialization and restoration of documents. Most notably, this information

specifies a unique document id and describes which concrete sub-class of the

Document class should be used to restore a document. The concrete sub-class

implementation uses the implementation information to store arbitrary configuration

information for its own use.

This implementation information is intended to support two primary uses. First, it allows

a document to utilize data sources external to the FIF. By default, a document serialized

and returns its contents in the XML document returned by the toXml() operation.

12

These contents are then stored by the document manager. Alternatively, to utilize an

external data source, a document implementation can specify the information needed to

identify the data store and retrieve its contents in the implementation information, and

return an empty XML tree as its contents. This allows the document manager to provide

a consistent approach to identifying and retrieving documents while deferring document

persistence details to individual implementations of the Document class. Second, it

provides a container that document can use to store implementation dependent metadata

that is stored separately from the contents of the document.

Sub-classes of the Document class must implement two operations for handling this

local configuration information. The first is getLocalConfig(config:

Element) which takes an org.w3c.dom.Element object and populates its XML

structure with any necessary configuration information and returns the Element object.

The second operation is initialize(config: Element). This also takes an

Element object, this time one which already contains the XML based configuration

information as generated by getLocalConfig(), and extracts the information from

this Element and configures the documents internal structures accordingly.

The Document class provides an operation, filter(filter: FeatureList),

that is used to initiate the feature identification process. This method should be

overridden by sub-classes to process the contents of the document and pass the

appropriate Segment objects to the filter() operation of the provided

FeatureList. By default, the document class passes the root content segment to the

FeatureList for filtering. This mechanism allows document implementations the

flexibility to filter only certain segments of a document (for example, the body, but not

the title or bibliographic information) or to provide different segments of the document

to different filters. The details of the filtering operation are discussed in more detail in

the section Feature Model.

13

Finally, the Document object maintains a SegmentFactory instance that governs

the construction of Segment instances and hence controls the hierarchical structure of

the document. Details of which SegmentFactory implementation to use and how to

configure it are deferred to specific implementations of the Document class.

The edu.tamu.csdl.documents.DocumentCollection class represents a

named collection of Document objects and provides a much simplified interface to the

underlying search engine. This will be discussed in more detail below in Indexing and

Searching. It is worth noting here that documents are not added directly to a document

collection, instead they must first be wrapped with an IndexFilter that will be used

to prepare the document for indexing. The DocumentCollection is also responsible

for maintaining space on the file system for the storage of the indices as well as space for

custom use by applications. The operation getCustomDirectory() will return a

File object for a directory that can be used by an application for the storage resources

related to this collection.

A full application using this framework will likely be based around multiple document

collections. For example, if the Cervantes Project were to use the framework throughout

the entire scope of the project there would likely be a collection used to store the texts

transcribed from the Princeps and other early facsimile editions, one collection for

bibliographies, one for the documents in the Sliwa collection, and perhaps several

associated with the music collection. Others would be added as our holdings expand.

Each of these different collections could then be filtered for different strategies and

indexed to meet different research requirements. This allows the individual the

framework to be tailored not just to the needs of the project as a whole, but also to the

needs of individual sub-projects. Applications of the framework are responsible for

determining what document collections are needed to most effectively represent the

contents that application is working with.

14

The edu.tamu.csdl.documents.DocumentManager class provides an API for

creating and managing document collections and for saving and retrieving documents.

Each document collection is given a unique name (by the application that creates it). The

DocumentManager allows applications to determine if a collection with a specified

name already exists (using the hasCollection(String) operation), to retrieve a

collection based on its name (using the getCollection(String) operation) and to

create a new collection (using the createCollection(String) operation). The

creation operation ensures that each collection name is unique. The manager also

provides an operation, getCollections() that returns a set containing the names of

all the collections that have been created.

The document manager also provides for the storage and retrieval of documents.

Specifically it provides operations to save a document (save(Document)) and to

retrieve a document based on its id (getDocument(Long)). Each document

implementation is required to obtain a unique document id from the document manager

by calling the getNextDocumentId() operation when an instance is first created.

This id is then used to by the manager to uniquely identify the document for storage and

retrieval purposes. The document manager uses the document management information

stored in serialized form of the document to determine which concrete implementation

of the Document class should be created when a document is restored and instantiates an

instance of the appropriate class using the Java reflection API. Figure 4 shows the

structure of the DocumentManager, Document, and DocumentCollection

classes including the methods relevant to the above discussion.

15

This content model for the FIF is designed to reflect the Ordered Hierarchy of Content

Objects (OHCO) perspective on document content, which, despite its limitations, reflects

the structure of XML, currently the dominant encoding strategy for textual resources

[20]. Conceptually, the content model for documents is comprised of segments that may

serve as content object, structural nodes in the hierarchy, or both. Each segment spans a

(possibly empty) sequence of the underlying text of the document. Arbitrary attribute-

value pairs may be assigned to a segment depending on the constraints enforced by the

segment factory governing a particular document.

Figure 4: A class diagram of the DocumentManager, Document and
DocumentCollection classes

16

The API for the content model is provided by the Segment interface. This interface is

intended to be implemented by applications as needed to support different document

types (e.g., RDF, PDF, XML) while providing a common interface to the feature

identification system. The Segment interface defines operations that support four major

groups of functionality: assigning and accessing attribute-value pairs, appending,

inserting and removing child segments, indexed based identification of sub-segments,

and creating and inserting sub-segments. The first two of these groups are relatively

straightforward. The second two are discussed in more detail below.

Each segment spans a (possibly empty) length of text. In addition to standard methods

for navigating a tree structure, the segment interface defines three methods for

navigating its hierarchical structure based on the underlying text. Each segment is aware

of and responsible for manipulating only the portion of the total text of the document

that it spans. Commands to manipulate the structure of the hierarchy (for example,

creating a sub-segment with that starts at a particular index and ends at another) will

often be initiated at a segment high in the hierarchy and passed to successively lower

segments until the command can be completed. At each step down the hierarchy, the

original indices specified in terms of the parent segment must be adjusted to reflect their

relative position of the sub-segment to which the command will be passed. To aid in this,

the Segment interface specifies a getRelativeIndex(int, Segment) whose

first parameter is the index into the segment on which the operation was called and

whose second parameter is a descendent of this segment. The operation returns the

specified index value relative to the descendent provided in the second parameter. The

second operation, getTextSegmentAt(int) in this group allows the terminal text

segment at the specified index (relative to the segment in which the operation was

called) to be retrieved. The third operation, getPathToSegmentAt(int), returns a

list of segments such that for any i > 0, list[i - 1] is the parent of list[i]

and list[0] is the segment on which the operation was invoked and list[size –

1] is the terminal segment at the specified index.

17

The second group of operations that warrants further discussion deals with inserting and

creating sub-segments. The createSubSegment(name, attributes,

start, end) operation should be implemented to create a sub-segment that begins

and ends at the specified indices. The sub-segment will have the specified name and be

assigned the attributes contained in the second parameter. Similarly, the

insertEmptySegment(name, attributes, index) operation creates a

segment with the specified name and attributes at the specified index position that

contains no textual content. Both of these operations leave the underlying text

unchanged. Implementations of the Segment interface can use the SegmentFactory

maintained by the document these segments are a member of to enforce the syntactical

structure of the hierarchy. If something prevents the construction or insertion of a new

segment (for example, if it cannot form a properly nested hierarchy or if it violates the

constraints imposed by a segment factory) these operations should throw a

SegmentException.

The framework provides a basic implementation of the content model that is

suitable for representing XML documents. This implementation consists of three classes,

the BasicSegment, TextSegment and EmptySegment, as shown in Figure 5.

The BasicSegment implements the Segment interface in a way that supports the

structural nodes of the hierarchy. Instances of BasicSegment do not directly contain

any textual content. Textual content must be contained within a TextSegment. This

class also directly implements the Segment interface. The TextSegment class does

not allow any attributes to be assigned or children to be added. It does, however, provide

non-trivial implementations of the createSubSegment() and

insertEmptySegment() operations that restructure a simple TextSegment into

an appropriate hierarchical Segment tree. The third class, EmptySegment, provides

an implementation for terminal segments which do not contain either text or children,

but have a named representation and may have attributes. Empty segments correspond to

the line break tags in the TEI standard and are a key strategy in implementing some of

18

the more advanced versions of the OHCO model, including those that view a document

as a set of concurrent or overlapping hierarchies [42].

A segment factory is used in close conjunction with the content model to abstract the

details of constructing new segments based on the context in which those segments will

be used and to enforce syntactic and semantic constraints on the content hierarchy. The

FIF provides an abstract class, edu.tamu.csdl.documents.SegmentFactory,

that defines the interface for a segment factory. The goal of this abstraction is to allow a

content model implementation to construct segment instances indirectly via the factory,

thus reducing the degree of coupling between implementations of the content model and

the tools that enforce constraints on the structure of that content model. This will allow a

single content model to use a variety of approaches to defining the document structures

that may be permitted for a particular type of document. This approach only partially

reduces the coupling between these two areas of the framework. It would not make

sense, for example, to use a SegmentFactory implementation that constructed PDF

based segments in a document whose root segment was XML based. How particular

SegmentFactory and content model implementations are paired is a decision that is

left to the applications using the framework. They do this by implementing a

Document that specifies a concrete implementation of the Segment interface to act as

its document root and a SegmentFactory to govern how the document tree is grown

from that root. A single SegmentFactory instance will govern all segments in a

given content tree.

19

Figure 5: The Segment interface and default implementation

20

The SegmentFactory class defines three abstract operations for constructing

segments and another three operations for checking the validity of content. The first

three parameters of the segment construction operation are identical. The first parameter

is the Document instance that the constructed segment will be a member of, the second

is the name of the segment to be constructed, and the third is a Map of the attributes to

be assigned to the segment. The final, optional, parameter specifies the content of the

constructed segment. If no parameter is provided, the constructed segment will have no

content. If a Segment instance is provided, that segment will be assigned as the only

sub-child of the created segment. If a List of segments is provided, each segment in the

list will be added as a child of the created segment, maintaining the same order as the

list. The concrete sub-classes of SegmentFactory should implement these operations

to examine the examine the information provided in these parameters together with any

configuration information and instantiate and configure an appropriate concrete

implementation of the Segment interface or throw a

SegmentConstructionException if no such instance can be created.

The remaining three methods are intended to be called by the content model to

determine if a particular modification to a content tree is valid. The

isValidChild(parent, child, pos) operation is used to determine if a

particular segment is a valid child for the provided parent at the specified index position

(relative to the parent). The isValidAttribute(segment, name, value)

operation is used to determine if a particular attribute name-value pair is valid for the

specified segment. The isChildRequired(parent, child) indicates whether

or not the specified child is required to be present for the parent segment to be valid. It

is important, for example, to check whether a parent requires a segment to be present

prior to removing it. If so, removing it would create an invalid tree (e.g., a header is

required to have a title and an author). While the construction operations enforce the

construction of segments with valid children, they do not check the context into which

the constructed segments will be placed. Instead, it is the responsibility of the operation

23

The name of the descriptor corresponds to the name of the Segment instances that it

governs. The ChildDescriptors describes: 1) the name of the child, 2) whether it is

required or optional, and 3) whether multiple children of this type are allowed. The

AttributeDescriptor specifies the name of the attribute and a regular expression

pattern that the value of that attribute must match. The SDSet class serves to aggregate a

set of SegmentDescriptors and provides XML serialization operations so that

configurations can be saved to and loaded from files. A web-based editing tool is

provided for this segment factory implementation, making it relatively easy to configure

the structural constraints to be imposed on XML based documents. This tool is shown in

Figure 7 and Figure 8.

Feature Model
The feature model provides the basic set of structures for analyzing the contents of a

document or document collection and identifying features within those documents.

Feature Manager

The FeatureManager class provides a façade controller for the feature model. It

allows for the creation and persistence of feature lists, when unique identification of

features is important, it provides utilities for assign unique identifiers to Feature

objects, and it supports the web-based tools by implementing the registration model for

Feature and FeatureWebPeer classes. It is implemented using the singleton

pattern, so there may be only one FeatureManager instantiated at any given time.

21

inserting the segment to call the validation operations of the segment factory to ensure

that newly created segments can be added at a given place in the content hierarchy.

The FIF provides a default implementation of the SegmentFactory (in the form of

the BasicSegmentFactory class) that supports relatively simple constraints on the

structure of a document. This implementation, shown in Figure 6, is configurable either

programmatically using the SDSet and SegmentDescriptor classes (both in the

edu.tamu.csdl.documents.impl package) or via a web-based interface.

Configuration information is be stored in XML documents.

The SegmentDescriptor class represents the description of a the structures allowed

for a single segment. Instances of this class describe what children and attributes are

allowed for segments of a given type. Each segment descriptor has the following

properties:

• a name (corresponding to the name of the Segment that it describes)

• a list of ChildDescriptors specifying which child segments are allowed

• a list of AttributeDescriptors specifying which attributes may be

attached

• a flag indicating whether text segments are allowed

• a flag indicating whether mixed textual and non-textual children are allowed

• a flag indicating whether or not the order of the children of the segment must

be in the same order as the ChildDescriptors in the list of children.

22

Figure 6: Class diagram of the default segment factory implementation

24

Figure 7: The segment factory configuration interface—segments in a simple document configuration

Figure 8: The segment factory configuration interface—editing the <p> segment

25

Features

The edu.tamu.csdl.features.Feature interface defines the API for classes

that identify features in documents. This interface is intended to be implemented by

applications extending the FIF in order to allow feature identification systems to craft

custom algorithms or to employ standard algorithms in a variety of environments.

Custom implementations can take advantage of specific knowledge about a set of

documents, implement a new, state of the art algorithm, or meet highly the specific

needs of a particular research project.

A Feature object embodies both an algorithm for identifying a particular type of

feature in a text string, and configuration information that provides more information

about the particular features that should be identified. This configuration information

may or may not be used directly by the feature identification algorithm. For example, a

feature class that identifies the names of people might have configuration information

that specifies the name of the person to be identified and also a short biographical

sketch–information that can be displayed to readers, but is not intended to be used in the

identification algorithm. Once identified in a text, a feature will be marked by creating a

Segment that spans the text at which the feature was identified. A Feature object

specifies the name (tagName) of the segment to be created and a set of attributes that

should be applied to that segment. As a rule of thumb, the name and attributes should

provide enough information so that the original object that identified the feature can be

restored and any relevant details about the identified feature can be retrieved.

The main functionality of the Feature interface is specified by the

Feature.match(text: String) method. This method should be implemented to

accept a text string and identify all instances of a feature within that text string. The

function returns a SortedMap whose keys are the Integer valued indices into the

text at which each identified feature was matched and whose values are instances of the

identified feature suitable for marking that feature in the underlying text. The Feature

objects returned in this Map must have three characteristics: their value property must

26

exactly match the surface form of the feature in the text String in which it was

identified, their attributes should specify any important information about the identified

feature that may be needed by an application, and finally, the tagName property should

specify the appropriate segment name for the identified feature. Since specific

implementations of the Feature interface will often rely on statistical algorithms,

gazetteers, or pattern matching, it is likely the case that this information will not be

“known” by the Feature object that identified a particular feature in a text. In this

case, the match() operation should construct a new, simple Feature object that is

specifically configured to represent this information. In most cases, the

BasicFeature provided as a default implementation of the Feature interface will be

sufficient for this task.

The BasicFeature class provides a default implementation of the Feature

interface and performs two main tasks. First is can be used as a base-class for more

sophisticated Feature implementations, providing a basic implementation supporting

the tagName, value, and attributes properties. Second, it can be used as a

simple Feature instance to represent the concrete features identified by more complex

feature identification algorithms. It provides simple matching for the exact string stored

in its value property.

Feature Lists

The FeatureList class provides the primary unit for grouping and working with

individual Feature objects. It is objects of this class that are passed to the

Document.filter() operation in order to initiate the feature identification process.

This class is also responsible for the persistence of the Feature objects it contains.

Note that this is not like the Document class where the DocumentManager rather than

the DocumentCollection is responsible for the persistence of Document objects.

While it is possible to create a sub-class of the FeatureList, this class is intended to

provide all of the core functionally needed for matching groups of features and sub-

27

classing should not be necessary. It provides a number of operations for maintaining the

list of features including operations to add and remove features and to retrieve features

based on their id or their place in the list. The most significant operations of the

FeatureList class are the filter() and the getIndices() operations. Both

operations take a Segment object and then attempt to find any features in the list that

match the text in that Segment. The filter operation returns a modified version of the

Segment that was passed to the operation. The returned Segment object will be

restructured so that all identified features have been appropriately marked within the

Segment. The getIndices() operation will identify all matching features within the list,

but, rather than marking those features within the Segment, will return a SortedMap

whose keys are the Integer valued indices into the text at which each identified

feature was matched and whose values are instances of the identified feature. This

operation is primarily intended to be used by the indexing and searching sub-system.

Displaying and Editing Features

The task of selecting which features to identify is critical to the success of a feature

identification system and depends heavily on expert knowledge of the subject area of a

particular document collection. While implementing sophisticated algorithms for feature

identification is beyond the ability of most “corpus editors,” skillfully selecting and

applying these algorithms to identify important features within a collection is a task best

performed by subject matter experts.

For example, within the Sliwa collection, certain phrases might indicate that a document

is of potential interest because it discusses legal, military, financial, familial, or literary

matters. A scholar familiar with the collection and with the relevant research questions

would be able to identify such phrases quickly, whereas I, lacking both the scholarly

background and knowledge of Spanish would find this difficult or impossible. Similarly,

automatic algorithms might be able to identify certain key information that could be

further refined by focused hand editing. For example, short biographical information

might be added by hand to key individuals in a list of automatically identified people.

28

Again, it is the “corpus editors” with extensive training in the subject domain who have

the expertise to prioritize the strategic areas to be enhanced by hand editing.

The underlying infrastructure to support these and other similar tasks is already present

in the design of the system. Implementations of the Feature interface can be provided

that would allow detailed information to be added–either automatically or by hand.

Features can be grouped into lists allowing features specific to a particular analytical

domain (e.g., music, finance, military) to be associated. Using these elements of the

underlying system, however, requires extensive programming experience, a rare luxury

for humanities projects. Consequently, I have developed a tool to make these elements of

the underlying system architecture accessible to domain experts–without requiring

extensive technical expertise. This web-based tool allows editors to create new lists, add

and remove features from lists, and edit the configurable elements of a feature (e.g., the

name, description, date of birth and death, and alternate names of a person). This tool

also assists in displaying information about features in a web environment.

This tool for displaying and editing features is based on the model-view-controller

(MVC) pattern. Figure 9 shows this MVC architecture and the steps involved in editing a

feature. The Feature objects implement the data model that is to be displayed to the

users, the view is provided by a set of JSP pages, and updates to the model are processed

by the FeatureControlAction class that serves as the controller.

One of the great strengths of the feature model is the degree of flexibility that is

supported for implementing the feature classes. This flexibility becomes a challenge

when trying to present and edit those features via a single, web-based interface. Since

the details of the Feature implementation are not known in advance, the view cannot

be connected directly to the model. Instead, an adapter class, the FeatureWebPeer, is

used. The FeatureWebPeer classes (or just peer classes) are designed to interface

with a single Feature instance and generate HTML fragments that can be used to

display a title, brief and long views of the contents, and form elements for editing the

29

modifiable contents of the Feature. The peer classes are also responsible for

processing the HTTP response generated when this form is submitted and updating the

underlying Feature as appropriate.

Having used an adapter class to mediate the connection between the view and the model

components, the next challenge is how the view will obtain instances of the appropriate

adapter classes. To support this task the FeatureManager implements a registration

model that allows information about concrete implementations of the Feature class to

be registered with the FeatureManager. This information includes a human readable

name and description for the class. More importantly, it allows a Feature

implementation to be paired with a FeatureWebPeer implementation that will be

used to adapt instances of that Feature class for web-based applications. A web-based

Feature
Editor

Feature
Control
Action

Feature
Web Peer

Feature

Response
Page

Feature
Manager

<<factory>>

<<model>><<adapter>>

<<controller>>

<<view>>

<<view>>

1. get peer

1.1. instantiates

3. http request

3.2 http response

2. get input form

3.1 process request : return code

2.1 read

3.1.1. write

Figure 9: The procedure used by the web-based feature editing tool

30

user interface is provided to support the feature registration process. Once a Feature

has been registered, the FeatureManager serves as a factory class that instantiates an

instance of the appropriate peer class given an instance of a registered Feature. While

not all Feature classes used by an application need to be registered, all such classes

that need to be made available via the web interfaces should have a peer class

implementation and be registered.

To edit a particular feature, then, the user first selects a feature to edit. This will bring

the user to the feature editor, a JSP generated page. This page first obtains an instance of

the appropriate peer class from the FeatureManager (step 1 in Figure 9). Having

obtained the peer, the feature editor queries it to obtain an HTML fragment containing

the contents of the input form to be used to edit the feature (step 2). In doing this, the

Figure 10: Editing a SliwaPersonFeature using the feature editor

31

peer reads the current state of the feature that it is representing and builds the HTML

fragment to reflect this (step 2.1). Figure10 shows the feature editor being used to edit a

Feature class designed to represent people in the Sliwa collection. The user then

makes any necessary edits to the feature and submits the form (step 3). This posts the

edits to a Feature Control Action that passes the request to the peer object (step 3.1). The

peer is then able to process the information in this request and update the underlying

feature object as appropriate (step 3.1.1). The peer returns a code that indicates to the

controller what response action should be taken, for example, to display the update

feature or continue editing. Based on this return code, the feature control action returns

an appropriate HTTP response object (step 3.2). A similar procedure is followed for

displaying a title for the feature or its contents. The primary difference is that step three,

submitting the HTTP request, is not needed.

Indexing and Searching
Once key features have been identified within a document, an application will need to be

able to index the document based on these features, as well as on the full text of the

document. The specific indexing needs will vary significantly between applications

making the task of indexing and searching one of the most open-ended aspects of the

framework. There are three main requirements: 1) provide a simple, easy to understand

API for searching document collections, 2) support extensions of its indexing scheme

that allow applications to specify the textual components and identified features that

should be included in the system indices, and 3) use an existing search engine.

Many robust and well-designed search engines have been build and made available in

the open source community. The FIF is designed to work in close conjunction with the

widely used Lucene search engine. Lucene creates and accesses its indices via

IndexWriter and IndexReader classes. When instances of these classes are

constructed, they are configured to write to or read from an index stored in a particular

directory. New documents can be added to the indices by creating an instance of the

Lucene Document class (which I will also refer to as a ‘document proxy’) and passing

32

it to the addDocument() operation of an IndexWriter. The document proxy

defines a set of fields that will be indexed and can subsequently be searched using an

IndexReader.

The DocumentCollection class provides a wrapper around the search engine that

abstracts many of the details of working with the Lucene search engine and provides a

few utility functions. As stated previously, a named document collection is responsible

for maintaining a reserved space on the file system for information pertaining to the

collection. Part of this file space is used to store two indices, one for the full text of the

documents in the collection, and one for the features identified in the documents.

As documents are added to the collection, they are not added directly, but rather must

first be wrapped in a class that implements the IndexFilter interface. The index

filter should be implemented by the application to read a particular document format,

process that document to identify any of the features that will be indexed, and construct

two document proxies, one for use in the full text index, the other for use in the feature

index. The details of how these document proxies are constructed is differed to the class

that implements the IndexFilter with the exception that document collection will

add a special field that allows retrieval of the document proxy based on the document id

assigned by the DocumentManager. The proxy for feature based indexing should be

built in such a way that each field contains a list of the ids of the features contained in

that document. For example, a document in which the names of people have been

identified, might have a feature index field called ‘people’ that contained the id values of

all the features representing people found in that document. The IndexFilter class defines

two operations to retrieve these proxies, getTextDocument() and

getFeatureDocument(). The interface also defines a third method,

getRootDocument(), that returns the FIF Document object that this particular

filter instance is processing.

33

Documents are indexed as they are added to a collection. Two methods are provided to

facilitate access to these indices. The first, search(query, field), searches for

the provided query string in the specified field. A ranked searching algorithm is used.

The second, search(keywordIds, field, requireAll), searches over the

feature index. It will look in the specified field for all documents containing the feature

ids provided in the keywordIds list. The requireAll parameter indicates whether

all of the ids in the provided list must be present in a document in order for the document

to match that search. This allows relatively simple, boolean queries. More complex

results may be obtained by using the union and intersection operations provided by the

HitList objects returned from multiple searches.

34

SLIWA COLLECTION APPLICATION

The second major task of my thesis work was to apply the framework to create a web-

based interface for a collection of 1700 historical documents assembled by Prof. Kris

Sliwa. This interface provides support for automatic link generation and information

visualizations based on people, places, and dates. It also supports the recognition of

monetary units and other quantized information (e.g., distances and weights). This

application is sufficient to meet the basic needs of automatically inter-linking the texts

and can be easily extended to meet future needs of the research community. In addition

to meeting tangible needs within the Cervantes Project, it serves as a test case for the

FIF and as a concrete example of how the framework is intended to be used.

This interface provides two primary points of access to the collection. The first is a

timeline interface. It provides a simple bar chart showing the distributions of the

documents over time. Selecting a bar takes the user to a more detailed view of the time

period. Once the chart displays documents as single years, clicking on the bar for a

single year brings up a display listing all documents from that year. Figure 11 shows this

interface as the mouse passes over the bar that spans the years 1583 – 1592. The second

point of entrance is a browsing interface, shown in Figure 12. A browsing interface is

provided for both the people and places identified within the collection. Next to the

name of each person or place, the number of documents is shown to give the reader a

heuristic for determining how interesting it might be to examine the documents for that

person or place more closely. Upon selecting a person to view, the reader is then taken to

a page that presents the resources available for that person–currently, this includes a list

of all documents in which the specified person has appeared and a bar graph of all

documents in which that individual has been found as shown in Figure 13.

35

Figure 11: Timeline browser

Figure 12: Browsing interface

36

Once the user has selected an individual document to view, through either the timeline or

browsing interface, that document is presented with two types of features identified and

highlighted. The first type is features used to automatically generate navigational linking

such as people and places. The second type includes features used to provide generic

information such as dates and monetary units.

The browsing and timeline interfaces serve as examples of the wide range of services

that can be built onto the underlying framework. Both of these interfaces are built on top

of the searching facilities provided by the FIF. The browsing interfaces allow a user to

select a feature to be searched for by presenting the contents of a feature list and then

displaying the results of a search for that feature. The timeline visualization searches for

documents by year, aggregating them into user-defined groups (e.g., each bar in Figure

11 shows the documents in a ten-year period). More complex interfaces are easily

imaginable and include filtering search results to perform more sophisticated document

queries, timeline visualizations based on event and topic detection, and geospatial

Figure 13: Resources page for a person showing a timeline display of the documents referring to this
person and a browsing interface for those documents

37

visualizations. New interfaces can be quickly added to the system as described later in

this section.

Application Architecture
The architecture of the application, shown in Figure 14, can be divided into three main

sections: an implementation of the document model (with supporting tools), an

implementation of the feature identification system (with supporting tools) and a JSP

and Struts based user interface. Additionally, a manager class provides a façade

controller to assist in working with the feature and document packages and to interface

with FIF. The web-based interface relies heavily on this manager class to provide users

with the ability to navigate the collection based on the identified features, to browse by

the people and places found in the collection and to interact with information

visualizations.

The Document Package

The document package provides three major services: 1) a parser that processes the

original document, converting the text only output of a word file into an XML

representation and importing it into the system, 2) an implementation of the Document

Manager

Features

Feature List Support

Peer Classes

Feature

Parser

Indexer

Document

Document

Lookup By Person

Search

Lookup By Place

Search
Results

Interface

Java
Server
Pages

(JSP & Struts)

Figure 14: The architecture of the Sliwa application

38

class tailored to represent these documents, and 3) an implementation of the

IndexFilter interface that specifies how these documents will be indexed.

The implementation of the Document class, SliwaDocument, supports the explicitly

encoded structure of the document. The textual representation of the document enables

relatively simple automatic routines to distinguish the textual content of documents from

their titles and citation information. This document provides operations to set the title

and citation information of a document and to append paragraphs to the document as

they are read from the original source file. This allows the parser to interact with

document objects in ways that closely reflect the semantics of the document’s structure.

The filter() operation implemented by the SliwaDocument takes advantage of

this structure by providing only the document body, not the header or citation

information, to be filtered by provided feature lists.

The Indexer class implements the IndexFilter interface and processes a

SliwaDocument for indexing. As mandated by the IndexFilter interface, it

returns Lucene Document objects suitable for full text and feature-based indexing.

Each of the Lucene documents returned by an indexer contains two un-indexed fields,

one containing the title of the document and one containing a summary (the first,

suitably long sentence) of the document. This allows the user interface to retrieve basic

summary information directly from the Lucene document returned by a search, thereby

eliminating the need to restore the full document from the file system until a user

chooses to read it. The procedure for establishing the full text index is straightforward–

the indexer simple adds a field that contains the text of document body (again, excluding

the title and citation information). For the feature-based indices, the Indexer creates

fields for identified people, places and dates. Both the people and places are identified

using the corresponding feature lists (discussed in more detail below). The titles of the

documents explicitly encode the date the document is thought to have been written.

Accordingly, the indexer extracts the date of the document from the title, rather than

attempting to identify dates within the body of the text.

39

The Feature Package

The algorithms for identifying features in documents are implemented within the feature

package, along with a set of tools for initializing, configuring and using those

algorithms. There are four major types of features involved in this package: person

names, place names, dates, and monetary units. Each is discussed below along with the

tools that support it.

Person and Place Names: Identifying the names of people and places is one of the most

clear requirements for supporting the Sliwa collection. Support for this task is

implemented by the PersonFeature and PlaceFeature classes. These classes are

intended to serve not simply as algorithms to identify names, but also as data objects that

maintain and store information about the people and places in the collection and that

make this information available to the rest of the application. Features representing

people contain information about a person’s first and last name, title, date of birth and

death, alternate forms of his name and a biographical description. Features representing

places contain information about the context (i.e., which of several places with that name

is this one) and a description of the place.

Instances of the people and places features are grouped into FeatureLists named

‘Names’ and ‘Places’ respectively. Initially, these lists are derived from an index to an

earlier version of the book from which these documents were derived. Manager classes

are provided to support the process of reading these files and for constructing and

subsequently retrieving the FeatureLists. While these hand-generated indices

provide a good starting point for building the lists, they contain notable omissions and do

not fully reflect the current state of the document collection. To allow editorial

enhancement of these lists, I have implemented peer classes for both of these features.

These peer classes work in conjunction with the web-based feature-editing tool

discussed in Displaying and Editing Features to allow an editor to update the data stored

in the feature (notably, this includes specifying alternate names for people, such as

40

“Miguel de Cervantes” for “Miguel de Cervantes Saavedra”) and to add new people and

places to the lists.

Both of these classes implement an identification algorithm that matches the name of the

person (including alternate forms) or place. They use a fuzzy matching scheme that

mitigates most of the effects of spelling variations present in the collection. Once a

feature has been identified in a document, a new instance of the BasicFeature class is

constructed to represent the identified feature. This new feature contains the exact text

sequence that was found in the document and has an id that corresponds to the id of the

person or place that was identified. This id will be assigned as an attribute of the

segment that is created to mark the identified name and can be used to retrieve the

feature that represents the identified person or place.

Dates and Monetary Units: Two feature classes are provided that rely heavily on

identifying numbers in the text; they are DateFeature and

MonetaryUnitFeature. The DateFeature class is used to identify dates that are

spelled out in the text of a document. The MonetaryUnitFeature class is a bit of a

misnomer. Originally intended to be used to identify units of money (reales, maravedis,

and ducados), it can be used to identify any quantifiable units including weights,

distances, sizes, volumes, etc. Unlike the name and place features, neither of these

classes is intended to specify concrete, retrievable, entities. Instances of the

MonetaryUnitFeature can be configured to specify what type of unit they should

identify. The DateFeature, on the other hand, takes no configuration parameters. It

simply matches dates in a document.

These two features rely heavily on the NumberParser class. This class serves two

main functions. First, it constructs a regular expression pattern that can be used to match

numbers spelled out in Spanish (e.g., trece mil doscientos y ocho). This pattern supports

the irregular spelling found in this collection. Second, given a string that was matched by

this pattern, it parses that string to determine its numerical value. In addition to

41

recognizing numbers that are spelled out in the text, this also recognizes Arabic

numerals. This pattern is then used by the date and monetary unit features to construct

more complex patterns that match their respective features in the text. Once matched,

they call the parser to identify the numerical values in the identified feature.

Once an instance of one these classes has identified a feature in the text, its behavior

becomes similar to the person and place name features. It constructs a BasicFeature

that specifies the exact text matched, and sets attributes that indicate either the day,

month, and year of a date or the quantity and unity of a monetary unit.

The Manager

The document and feature packages are connected by a façade controller, the Manager

class. This provides methods to execute the document parser and to construct the feature

lists from the provided indices. Once the documents are parsed from the source data, the

manager retrieve a list of the ids for the newly created documents, retrieves them from

the FIF document manager, creates a new document collection and adds each document

to that collection, first wrapping it with the indexer. While the indexer utilizes the

feature lists to identify names and people, the identified features are not marked in the

documents themselves. Those documents are stored just as they were extracted from the

source files. This will allow future applications to implement different feature

identification schemes using the same documents.

The manager class provides two methods for obtaining documents in the Sliwa

collection. One returns a Document object with the relevant features marked in this

document. Attempting to re-run the full feature identification process each time a

document was requested would be too time-consuming. To avoid this, the manager uses

the feature indices to retrieve the ids of the features that have already been identified in

this document (the getPeopleInDocument(docId) and

getPlacesInDocument(docId) operations accomplish this). These features are

added to a new temporary feature list along with the features needed to identify

42

monetary units and dates. The document is then filtered using this temporary feature list,

causing these features to be identified in the document. A second operation uses this

marked document object along with an XSL style sheet to produce an HTML encoded

representation of the document suitable for display by the interface.

The manager also provides a number of operations to execute search requests tailored to

the semantic content of this collection. These include searching for documents by year,

year and month, or year, month and day. It also includes searching for documents that

contain an identified person or place (based on the feature id of the person or place).

These search operations return instances of the HitList class. Most notably, the

HitList class provides operations to support the union and intersection of search

result sets, thus allowing complex filtering operations to be performed with the results

returned by these searches. For example, a list of all document in which Miguel de

Cervantes and Ruy Dias appear can be obtained by retrieving all documents for each

person and then calculating the intersection of these two sets of documents. Since the

documents themselves do not need to be retrieved from the file system, (the Lucene

document proxies are used) these operations are relatively quick. In addition to searching

for documents, the Manager class also provides two operations previously mentioned

that allow the application to retrieve the people and places that have been identified in a

given document. These relatively few operations provide a powerful mechanism for

working with the contents of a large collection.

The User Interface

The user interface described in the introduction to this section is implements as a set of

searches over the Sliwa collection. It is composed of a series of modules (Struts

Action classes) that call the manager class and manipulate documents. These include

modules to search the full text of the collection, and lookup documents containing

certain people or places. It also contains helper modules, such as the search results

module that can be used to manipulate search results. These modules are used by a

JSP/HTML based user interface. This design results in a highly modular interface

43

component that can be quickly understood by future developers and (relatively) easily

maintained or extended.

Extending the Application
The strength of this approach to designing the system, both the framework and the

application that uses the framework, is the flexibility it allows for extending applications

to meet new requirements. In this section I will describe how the system can be extended

using the Sliwa application as an example. In particular, I will focus on how new

research questions can be addressed and how new interfaces and collections can be

added as modular, interoperable components.

Addressing New Research Questions

Adding support for new research questions can be divided into three major tasks:

1) Analysis: How can this question be expressed in terms of features within a

document and subsequent operations on those features? This includes

determining what portions of a document constitute features, how those features

might be arranged into feature lists, and how those features should be processed,

indexed and presented to readers after they are identified within the text.

2) Design: How can these features be identified within a particular document

collection? This includes designing the architectural components needed to

effectively present the needed information to readers and the tools to query the

search engine.

3) Implementation: Implement the designed solution.

To illustrate this process, consider how the existing Sliwa collection might be extended

to meet two new research questions. First, what types of documents do Juan de

Cervantes and Miguel de Cervantes appear in together? Second, what happened in or

near Valladolid?

44

To answer the first question, it is first necessary to determine how document types can

be recognized. There are many sophisticated algorithms for document clustering or

classification, but, within the Sliwa collection there is a simple, feature based approach

that is likely to be sufficient. Key phrases could be identified that indicate that a

document falls under a particular category–for example, military records, legal

proceedings, commerce, birth certificates, etc. A subject area expert could quickly

identify both the types of documents that are of interest (presumably different experts

might be interested in different document types) and the phrases that indicate that a

particular document is of an instance of one of these types.

Now that the question has been restated in terms of a feature identification task, the next

step is to design a solution that will solve this question. In this case, the bulk of the

infrastructure is present in the Sliwa collection. A new feature implementation will be

needed to recognize phrases, but this can be implemented as a simplification of the place

feature. These features will then be grouped into feature lists that represent the document

types. This entire process of specifying which phrases should be matched and how those

phrases should be grouped into feature lists can be accomplished by subject experts

using the feature editor. Since these feature lists will be relatively small, the document

types can be identified when documents are retrieved, requiring no indexing. Otherwise,

if indexing the document types is desirable, the indexer for the collection will need to be

extended to accomplish for this and the collection will need to be re-indexed. The

manager component can then be extended to provide operations that will identify the

type of a single document, group search results by their document types, or filter search

results to include or exclude documents of a particular type. Once this is done, all that

remains to answer the original question is to design interface components that allow a

reader to retrieve documents which contain both Juan de Cervantes and Miguel de

Cervantes and then call the appropriate extensions of the manager to determine which

document types appear in the search results.

45

To begin to address the second question, we first notice that places are already identified

within the Sliwa collection. What remains is to determine how the physical locations of

places can be specified and how proximity to a particular place will be determined. Geo-

referenced digital libraries are relatively common and gazetteers are available to assist in

identifying the physical location of a place. This will require the place feature to be

extended to include information about the location of a place and the place identification

algorithm to provide disambiguation between different places with the same name (or

the same place with different names). Once this has been done, the next step is to

determine a heuristic for the notion of ‘nearness.’ This might be simply within a specific

radius of the city of Valladolid. Alternatively, this heuristic might consist of a more

complex analysis of the documents in the collection to determine a natural clustering of

documents roughly centered on Valladolid. Once location information has been added to

place features and a heuristic for ‘nearness’ has been selected and implemented, the user

interface needs to be extended to find all places that meet the criteria for being ‘near’

Valladolid and then retrieve the documents in which those places are mentioned.

Reflection on these two examples we can make a few observations about the process of

extending applications. First, applications can be extended in a modular fashion to

address specific research needs not originally envisioned when the application was

created. Using this framework, tools to answer these new questions can be added onto

existing applications in ways that enhances the functionality of both the new and old

tools. Second, these extensions are simple and non-destructive. They are simple in the

sense that designers and developers can focus on the details that most directly relate to

the problems to be solved rather than designing the tools for structuring the collection,

storing and retrieving documents, searching the collection, etc. They are non-destructive

in that the solutions required to answer these questions can be implemented without

modifying existing functionality. Feature markup is not stored with the documents (or,

more accurately, while it is possible to store feature markup with the document, this is

not necessary and in most cases it should not be done) so these new solutions need not

worry about interfering with existing applications or being interfered with by future

46

application. Finally, using the framework reduces rather than removes a humanities

project’s dependence on software developers. Software development is an expensive and

time consuming task and it is critical for humanities scholars to use their limited

resources in this area as efficiently as possible. This framework implements the overall

structure of a feature identification system, allowing developers to focus on designing

and implementing tools that meet highly specific needs while reusing general purpose

tools. With careful planning, many of the more straightforward tasks (such as identifying

the types of documents that are of interest to a particular scholar and the key phrases that

indicate the type of a documents) can be implemented so that most of the work can be

accomplished by humanities scholars with little or no technical training. Taken together,

these three factors allows new tools to be designed and developed rapidly in response to

the needs of readers and researchers.

Adding Interfaces and Collections

Digital libraries of any interesting size will have both many different document

collections and many user communities. Each of these user communities is likely to

come to the library with a variety interests and needs. Accordingly, a critical dimension

of extensibility for applications of the FIF is their ability to interact with multiple

collections and to be presented to readers via multiple interfaces. The current Sliwa

application can be divided into three main parts. First is the collection itself, including

the documents, custom features, and feature lists. The collection is created, maintained,

and manipulated by an application layer that implements the basic functionality needed

to support the research needs of the various user communities. Readers then interact with

a thin interface layer that translates their actions into commands to the application layer

and does some (minimal) processing of the results. This interface layer is implemented

as a web-based application. This is diagrammed in Figure 15.

To understand how this might be extended to account for multiple collections and

interfaces, consider, by way of example, how the Sliwa application might interact with

an implementation of the FIF for more elements of the Cervantes Project. A natural

47

addition to the current tools would be to integrate the biographies we make available on

our site with the primary source historical documents in the Sliwa collection. This would

This could be accomplished by creating a new collection, along with the appropriate

supporting tools. Since it is likely the features can be applied to both collections, the

primary extensions needed for the document collection is an implementation of the

document model that is sufficient for the much longer biographies. Once this is done, the

application and interface layers can be extended to provide support navigating between

the biographies and the primary historical documents that relate to them. At this point,

one could imagine a wide range of potential enhancements that could be implemented

(for example, event detection).

Adding and integrating a new collection, is only one aspect of extensibility. At the other

end, it might be desirable to add a new interface to a particular application. One such

possibility might be a windows based graphical user interface to this collection, perhaps

integrating it with the interactive timeline viewer (ItLv) [36]. Since the web-based

interface is implemented as a thin layer that access the main application implementation,

a GUI based interface could be added in a similar fashion, accessing the underlying

collections using the existing application implementation. Other interfaces could also be

applied to the same core application implementation in order to meet the needs of

specific user communities.

Finally, imagine that while this work was being conducted by one research group,

another group has implemented an FIF collection to study the interaction of Cervantes

and music. The web-based interface could then be extended to incorporate the results of

Web-Based
Interface

Sliwa
Collection

Domain Specific Tools

features, documents,
lists, parsers, management

Figure 15: Block diagram of the major components of the Sliwa application

48

this new tool into the presentation layer of the original application. Thus, the work of

multiple, independent development efforts can be quickly connected by extending the

interface components used to display the collections. The structure of this hypothetical

extension is diagrammed in Figure 16.

Windows
Application

Sliwa
Collection

Domain Specific Tools

features, documents,
lists, parsers, management

Music
Collection

Domain Specific Tools

features, documents,
lists, parsers, management

Biographies Web-Based
Interface

Figure 16: Block diagram of the extensions to the Sliwa application

49

FUTURE WORK

Since I have taken a horizontal approach to implementing a potentially very large and

very complex system, my thesis opens a wide range for future work. I have grouped this

work into four major categories: “Framework enhancements” deals with extensions of

and refinements to the current framework. “Applications” deals with specific

enhancements to the current Sliwa application as well as other potential applications of

the framework to projects already in progress within the Texas A&M Engineering

Extension Service (TEES) Center for the Study of Digital Libraries (CSDL). “Tools”

deals will generic applications and extensions of the framework to provide key resources

for use across applications. Finally, “bigger questions,” deals with some of the more

open-ended research projects that applications based to some extent on this framework

might be able to pursue.

Framework Enhancements
Document chunking and anchors: Currently, documents are treated as a single unit.

Custom implementations of the Document class may chose to which portions of a

document to pass to filters for feature identification and indexing filters may be built to

analyze the document structure and adapt accordingly, but from the system’s view the

internal structure of the document is opaque. It is well known, however, that this is

insufficient. Applications will need to link to arbitrary sections of the document. Full-

featured indexing will need to index sub-sections of the document as well as the whole.

How a document may be sub-divided into chunks is heavily dependent upon both the

type of document that needs to be “chunked” and the applications that the “chunking” is

intended to support.

To support these needs, the FIF needs to be extended to support arbitrary document

chunking. These chunking mechanisms should support the following objectives. First,

chunking operations should be separate from the document representation itself. A single

document may need to be chunked in different ways for different purposes. Therefore,

50

the chunking mechanism needs to be implemented in such a way that it can be applied to

an appropriate document type without that document needing to have any knowledge of

how it will be chunked. Chunking should be allowed at different levels of non-

hierarchical granularity. For example, a book-sized document might be chunked into

chapters, sections, and paragraphs. It could also be chunked into pages–which are likely

to overlap paragraph and section boundaries. Third, the chunking mechanism needs be

integrated into the indexing sub-system to allow indexers to take better advantage of the

structure of the documents they are indexing. Fourth and finally, both the chunks and

arbitrary document segments need to be persistently referencable. The searching and

indexing tools must be able to reference the chunks they are indexing and automatic link

generation tools will need to be able to reference arbitrary segments of the documents.

This represents a sizable amount of work and will have a wide-ranging structural impact

on the design and implementation of the framework, but initial investigations indicate

that it is a readily tractable task.

Second order feature matching: Features identification strategies that identify features

directly from the underlying text of a document can be described as first order features–

they make no use of the document structure, including previously identified features.

Second order feature matching, then, describes feature matching algorithms that do make

use of information about previously identified features or other elements of the

document structure. Currently, only first order feature mapping is supported.

Allowing second order feature mapping would offer two primary benefits. First, feature

identification algorithms could use information from previously identified features to

identify features more reliably and describe the feature’s details more fully. For

example, one possible feature might specify that the phrase ‘como yo’ followed by a

<person> segment indicates that the identified person is the creator of the document.

Second, more complex features could be built from simpler ones. For example, the

current approach to identifying numbers in the text utilizes a regular expression that is

over 18,000 characters long. If second order feature matching were available, individual

51

number words could be recognized with a series of much simpler patterns (most of less

than 50 characters). Sequences of these individual number words could then be

identified in a second pass to identify composite numbers such as twenty one thousand.

Multiple features at a single location: Currently, only one, non-overlapping feature can

be identified at any particular point in the text (though features could, potentially be

nested). In reality, multiple features can appear at a single position for a variety of

reasons. Multiple different features might match a single span of text, requiring

subsequent disambiguation–either by automatic means or by human readers. A single

span of text might legitimately match multiple features; a word might have a

corresponding entry in a dictionary, an encyclopedia and be a key term that points to

other documents in a collection. Each of these cases could result in features with

identical or overlapping spans of text. Currently, given the strict hierarchical nature of

the document model this is not supported. The current feature model supports a one to

one mapping between spans of text and feature. This is a convenient oversimplification,

that while sufficient for many purposes, mask the true complexity of feature

identification. Support for one to many (requiring disambiguation) and many to one

(requiring more complex displays and possibly non-hierarchical representations)

mappings is needed.

Better “hooking” mechanisms: One major application of a feature identification system

is to allow “hooks” between related portions of documents. Currently these hooks are

made available to applications that implement the framework, primarily by using the

identified key features to trigger custom developed searches. In the interest of promoting

interoperability, a key challenge is developing tools that make these hooks available

systems that are not based on the FIF. Similar work is currently being conducted as part

of the National Science Digital Library [18].

Searching feature lists: Feature lists can be exceedingly large–the rather modest list of

names in the Sliwa collection contains more than 1300 entries, too large to be easily

navigated by via a browsing interfaces. Accordingly, a mechanism for searching is

52

needed. While this is relatively straightforward, a solution similar to that employed by

the index filter or the web peer adapter is needed to handle the fact that the details of

feature implementations are not known in advance.

Applications

Sliwa

Enhancements to a particular collection or interface are always possible. A few of the

more interesting enhancements that could be added to the Sliwa collection are described

below.

HMM-based feature identification algorithms: The algorithms currently used to identify

names and places within documents are based on relatively simple pattern matching,

based on an index of known names in the collection that provides some fuzzy matching

capabilities to handle spelling irregularities. Current state of the art named-entity

recognition algorithms are available and could likely achieve much higher rates of

precision and recall. These algorithms could also support the identification of new

names, not currently found in the indices. Hidden Markov models or semi-Markov

models have yielded exceptional results and provide a well-studied place to start refining

the implementation of the system.

Key-phrase identification: Key phrase identification provides a relatively simple

approach with the potential to yield major enhancements. Key phrases targeted to

identify documents of a certain type can be readily identified within the text. A feature

implementation that would search for these phrases can be easily implemented and made

available to via the web-based feature-editing tool. Subject area experts could then use

this tool to construct lists of phrases that, where documents that match a phrase in a

particular list are likely to be of the same general type. For example, given lists that

represent military information, financial records, personal documents, and legal

proceedings, a reader might search for all documents that mention Miguel de Cervantes

53

and Cristóbal de Alcántara and quickly see in which types of documents these two

individuals appear together.

Better editorial tools: There is much room to explore the interaction of editors (either

official or editorial feedback provided by readers) and the automatic routines supported

by the collection. One possible question is how to provide editors with tools to identify

people not currently recognized by the system? Another direction would be to examine

what affordances could be provided for editing the collection, creating hand-crafted

linkages between document, creating trails of documents.

Documented biographies: One key problem with biographies is that readers of the

biography often have little access to the primary sources used to inform the biography.

One potential application of this tool for the Sliwa collection is to use the identified

features to provide hooks that allow readers to navigate between narrative biographies

and the documents in the collection. This offers the twin advantages of allowing readers

of a biography to “dig deeper” into the primary source material and situating the primary

source material within the perspective of various biographers.

Other Applications

One of the major claims I have made is that this framework is suitable to support a wide

range of collections and research agendas. A natural direction for future work is

applying the FIF in other context to create dense inter-document linking and to explore

other domains in which some of the general features of the document would be helpful.

A few potential projects are listed below.

Picasso: The Picasso Project, in addition to containing 7000 images, also contains

extensive textual descriptions of Picasso’s life and painting. The FIF could be applied to

this collection, again emphasizing the identification of key people and places within

these narratives, but also providing support for terms of interest in an art-history context.

One potential application is using the framework to identify segments that refer to a

painting and then replace the “painting segment” with an appropriate representation

54

when the document is requested. That representation could then be tailored to the

environment in which the document would be presented. For example, it could be

displayed as a link to the painting, a representation of the image, or a description of the

image in a popup window.

Expedition records: We have just begun to work with a collection of diaries and other

records that document early expeditions into Texas by Spanish conquistadors [24]. In

this collection, key tasks would include identifying geographical features, temporal

sequences and events recorded in the records. Once identified, these features could be

used to assist in determining the differences between multiple accounts of the same

expedition.

More of the Cervantes Project: A natural application would be to use the FIF as a tool to

provide inter-linkages between more of the collections within the Cervantes Project.

This could provide a key integrative strategy for the various resources maintained by the

project. Work is currently underway to use the framework to help integrate documents

from our music collection with the broader corpus of the project. Another important

project that could be undertaken in the near future would be integrating the biographies

we have access to with the historical documents. This would require investigating how

to identify topics and events, both within a single, large document and within the many,

smaller documents contained in the Sliwa collection.

Tools
The broader context in which the framework is intended to be used includes many

elements that for which general tools could be developed that would be applicable in a

wide variety of settings. One such tool would provide support for “headword”

documents. Documents such as dictionaries, encyclopedias, glossaries, indices, and

thesauri are structured around groupings identified by a headword that is then described

in more detail. These documents can serve as key resources for enhancing digital

archives. A tool that could be configured to recognize documents of this format and

automatically build feature lists based on the headwords in a document would have

55

applications in a wide range of projects. Since the sections in these documents are

providing detailed information specifically about the headword, this tool would be able

not only to develop valuable feature lists, but also to identify information specifically

intended to describe the features that it finds.

A second key tool is an implementation of the document model based on the TEI

encoding standards [49], along with tools to support a variety of metadata standards

more directly. The bulk of this work could be implemented with the classes currently

available simply by configuring the default segment factory. This configuration of the

structure of the content of the document model could then be further enhanced by

implementing and extension of the Document class to provide more support for the

structural elements of the TEI directly via its API.

Bigger Questions
The future work listed above is largely implementation work. While the challenges and

amount of work presented by these projects are significant and often complex, the

solutions are relatively straightforward extensions of the current FIF and applications of

it. They do, however, begin to touch on and offer directions to some broader research

questions. In particular, work along these lines will help give shape to understanding

how we can better identify the internal structure of documents and then use our

improved knowledge of that structure to facilitate research and enhance collections.

Another major line of research to pursue is the role of editors in enhancing collections.

How can we improve the effectiveness and efficiency of corpus editors in digital library

projects.

56

CONCLUSIONS

In this thesis, I have described an approach to implementing a feature identification

system to support digital collections that provides a general framework for applications

while allowing decisions about the details of document representation and features

identification to be deferred to domain specific implementations of that framework.

These deferred decisions include details of the semantics and syntax of markup, the

types of metadata to be attached to documents, the types of features to be identified, the

feature identification algorithms to be applied, and which features should be indexed.

This approach provides strong support for the general aspects of developing a feature

identification system allowing future work to focus on the details of applying that system

to the specific needs of individual collections and user communities.

The framework I have presented is extensible at five main points. Most important is the

feature identification. Custom implementations of the feature component will provide

the primary mechanism for applications using the FIF to control both what features are

identified in the documents and the algorithms to be employed in identifying them. This

allows arbitrary custom implementations of the feature component, providing that these

implementations adhere to a simple API. The second major extension point is the

indexing system. This component determines which features are indexed for use in

application and accordingly represents a major portion of the functionality of the system.

Third, the OHCO based document content model allows generic feature identification

algorithms to be provided across a open-ended range of underlying document types. The

basic XML-centric segment component provided by the framework can be extended or

replaced by implementations for alternative document formats such as RTF, PDF or

Postscript. Implementations for non-textual documents (e.g. audio or images) can also be

envisioned. Fourth, this content model is contained within a document component that

can be extended to provide operations that more closely match the domain in which they

will be used, to use custom data storage system or to tailor what portions of the

document are presented to the feature identification and indexing portions of the system.

57

TEI conformant documents, for example, can be implemented so that only the body

content (and not the header information) is passed to the feature identification system.

The indexing sub-system can then be tailored to take advantage of these customized

document components in order to leverage more detailed structural information. Fifth,

the syntactical structure of the document content model can be explicitly represented and

enforced by customized segment factories. This allows the syntactic (and by extension

semantic) constrains of the document model to be enforced in a context where custom

feature implementations may try to identify features that are not allowed by the content

model. The FIF includes a basic implementation of a segment factory that is suitable for

representing XML documents and provides a web based interface for specifying the

structure of those documents.

In order to meet a tangible need within the Cervantes Project and to demonstrate the

general applicability of the FIF, I have built a web-based interface for the Sliwa

collection of historical documents pertaining to Cervantes and his family members,

based on the FIF. This tool supports the identification of key features (person names,

places, dates, monetary units and numbers), automatic hyperlink generation, and

timeline visualizations based on these features. These documents form a critical resource

for Cervantes scholars, providing access to primary source material to help them

research topics including where he lived, his relationship with his father, sisters, and

daughter, his life as a soldier, his legal problems, and how much Cervantes received for

his works.

The framework presented here, along with its application to this collection, provides

scholars with sophisticated tools that can use the "unstructured" information contained in

these documents to support the visualization, navigation, and advanced searching

strategies they need to effectively pursue answers to these questions. In this context, the

feature identification system provides a key strategy for establishing connections

between resources in the collection since the historical records do not neatly fit within

the narrative and thematic structures of the Quixote [2]. Looking beyond the scope of the

58

Cervantes Project the strategy used here shows tremendous promise for facilitating the

types of collection enhancement needed by humanities archives. Efforts at enhancing

humanities collections can be broken into three major groups:

1. Huge collections such as the Making of America [50] [10], Gutenberg [41], and

Christian Classics Ethereal Library [40] that have minimal tagging, annotation

or commentary. These projects perform a crucial service by digitizing

tremendous amounts of information.

2. Smaller projects in which editors carefully work with each page and line

providing markup and metadata of extremely high quality and detail, mostly by

hand. These efforts closely parallel traditional approaches to editorial work in a

print environment. Projects in this group include the William Blake Archive [21],

the Canterbury Tales project [43] the Rossetti Archive [34], and, currently, the

Cervantes Project.

3. Middle ground projects which aim to develop collections with extensive tagging

and markup, yet which are too large for hand editing to be practical. Such

projects require new editorial roles that focus on customizing and skillfully

applying automated techniques [15]. The Perseus Project [14] exemplifies this

group.

My thesis work helps to bridge the gap between large, relatively unstructured collections

and smaller, hand-edited collections, allowing editors to rapidly develop and employ

customized tools to automatically enhance the collection while focusing the resources

available for hand-editing on those elements of the collection that cannot be processed

automatically or are important enough to warrant specific attention.

In implementing the system on which my thesis work is based, I have taken a horizontal

approach–pursuing breadth across the system as a whole rather than focusing on the

details of individual components. This approach offers three main benefits. First, it

meets a tangible need within the Cervantes Project to make the documents in the Sliwa

59

collection available to the scholarly community in a form that readily supports the types

of research they will need. Second, it provides a proof of concept that demonstrates the

major components of this approach to identifying and using the internal structure of

documents in a cultural archive. Third, it serves as a solid base that may be extended by

future research efforts.

60

REFERENCES

[1] Apache Software Foundation (2005) Lucene Web Site http://lucene.apache.org/
[accessed 9 Sept 2005]

[2] Audenaert N, Furuta R, Urbina E, Deng J, Monroy C, Sáenz R, Careaga E (2005).
Integrating collections at the Cervantes project. In: Proc. 5th ACM/IEEE-CS joint
conference on digital libraries, Denver, CO, pp 287-288

[3] Audenaert N, Furuta R, Urbina E, Deng J, Monroy C, Sáenz R, Careaga E (2005)
Integrating diverse research in a digital library focused on a single author. In: Proc.
9th European conference on research and advanced technology for digital libraries,
Vienna, Austria, pp 151-161

[4] Bainbridge D, Thompson J, Witten IH (2003). Assembling and enriching digital
library collections. In: Proc. 3th ACM/IEEE-CS joint conference on digital
libraries, Houston, TX, pp 323-334

[5] Bikel DM, Schwartz R, Weischedel RM (1999) An algorithm that learns what’s in
a name. Machine Learning, 34(1-3):211-231

[6] Burnett I, Van de Walle R, Hill K, Bormans J, Pereira F (2003) MPEG-21: goals
and achievements. IEEE Multimedia, 10(4):60-70

[7] Callan J, Mitamura T (2002) Knowledge-based extraction of named entities. In:
Proc. 11th international conference on information and knowledge management,
McLean, VA, pp 532-537

[8] Chinchor NA (1998) Overview of MUC-7/MET-2. In: Proc. 7th message
understanding conference (MUC-7), Fairfax, VA.
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.ht
ml.

[9] Cohen WW, Sarawagi S (2004) Exploiting dictionaries in named entity extraction:
combining semi-Markov extraction processes and data integration methods, In:
Proc. 2004 ACM SIGKDD international conference on knowledge discovery and
data mining, Seattle, WA, pp 89-98

[10] Cornell University (2005) Making of America http://moa.cit.cornell.edu/moa/
accessed 8 Sept 2005]

[11] Crane G (1998) The Perseus Project and beyond. D-Lib Magazine

[12] Crane G (2000) Designing documents to enhance the performance of digital
libraries: Time, space, people and a digital library of London. D-Lib Magazine
6(7/8)

[13] Crane, G (2004) Georeferencing in historical collections. D-Lib Magazine, 10(5).

61

[14] Crane G, ed. (2005) Perseus Project, Tufts University.
http://www.perseus.tufts.edu/. [accessed 9 Sept 2005]

[15] Crane G, Rydberg-Cox JA (2000) New technology and new roles: the need for
“corpus editors.” In Proc. 5th ACM conference on digital libraries, San Antonio,
TX, pp 252-253

[16] Crane G, Smith DA, Wulfman CE (2001) Building a hypertextual digital library in
the humanities: a case study on London. In: Proc. first ACM/IEEE-CS joint
conference on digital libraries, Roanoke, VA, pp 426-434

[17] Crane G, Wulfman C (2003) Towards a cultural heritage digital library. In: Proc.
3rd ACM/IEEE-CS joint conference on digital libraries, Houston, TX, pp 75-86

[18] Colati G, Crane G, Choudhury S, Szalay A, principal investigators (2005) The
Services for a Customizable Authority Linking Environment (SCALE) project
http://dca.tufts.edu/scale/. Accessed on Oct 19, 2005.

[19] Dekkers M, Baker T, directors (2005) The Dublic Core Metadata Initiative.
http://dublincore.org/ [accessed 9 Sept 2005]

[20] DeRose SJ, Durand DG, Mylonas E, Renear AH (1990) What is text, really? J of
Computing in Higher Education, 1(2):3-26

[21] Eaves M, Essick R, Viscomi J, eds. (2005) The William Blake Archive, The
Institute for Advanced Technology in the Humanities.
http://www.blakearchive.org/. Accessed on Sept 9, 2005.

[22] The J. Paul Getty Trust (2005) Getty Thesaurus of Geographic Names Online
http://www.getty.edu/research/conducting_research/vocabularies/tgn/ [accessed 9
Sept 2005]

[23] Hatcher E, Gospodnetic O. (2004) Lucene in Action. Manning, Greenwich, CT

[24] Imhoff B, ed. (2002) The diary of Juan Dominguez de Mendoza's expedition into
Texas (1683-1684): A critical edition of the Spanish text with facsimile
reproductions. William P. Clements Center for Southwest Studies, Southern
Methodist University, Dallas, TX

[25] Finneran RJ, ed. (1996) The Literary Text in the Digital Age. University of
Michigan Press, Ann Arbor, MI

[26] Furuta R., Kalasapur S, Kochumman R, Urbina E, Vivancos-Pérez R (2001) The
Cervantes Project: steps to a customizable and interlinked on-line electronic
variorum edition supporting scholarship. In: Proc. 5th European conference on
research and advanced technology for digital libraries, Darmstadt, Germany, pp
71-82

62

[27] Krupka GR, Hausman K (1998) Isoquest, Inc: Description of the NetOwl(TM)
extractor system as used for MUC-7. In: Proc. 7th message understanding
conference (MUC-7), Fairfax, VA
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_toc.ht
ml.

[28] Krupka GR (1995) Description of the SRA system as used for MUC-6. In: Proc 6th
Message Understanding Conference (MUC-6), Columbia, MD, pp 221-235

[29] Kochumman R, Monroy C, Furuta R, Goenka A, Urbina E, Melgoza E (2002)
Towards an electronic variorum edition of Cervantes' Don Quixote: visualizations
that support preparation. In: Proc. 2nd ACM/IEEE-CS joint conference on digital
libraries, Portland, OR, pp 199-200

[30] The Library of Congress (2005) MARC Standards. http://www.loc.gov/marc/
[accessed 9 Sept 2005]

[31] The Library of Congress (2005) Metadata Encoding and Transmission Standard
http://www.loc.gov/standards/mets/. [accessed Sept 9, 2005]

[32] MPEG-21, information technology, multimedia framework (2003) Part 2: digital
item declaration. ISO/IEC 21000-2:2003

[33] Mallen E, ed. (2005) The Picasso Project, Hispanic Studies Department, Texas
A&M University. http://www.tamu.edu/mocl/picasso/ [accessed 7 Feb 2005]

[34] McGann J, ed. (2003) The Rossetti Archive, The Institute for Advanced
Technologies in the Humanities, University of Virginia.
http://www.rossettiarchive.org/ [accessed 7 Feb 2005]

[35] Mikheev A, Moens M, Grover C (1999) Named entity recognition without
gazetteers, In Proc. of the 9th conference on European chapter of the association
for computational linguistics, Bergen, Norway, pp 1-8

[36] Monroy C, Kochumman R, Furuta R, Urbina E, Melgoza E, Goenka A (2002)
Visualization of variants in textual collations to analyze the evolution of literary
works in the Cervantes Project. In: Proc. 6th European conference on research and
advanced technology for digital libraries, London, UK, pp 638-653

[37] Pasça M (2004) Acquisition of categorized named entities for web search. In: Proc.
Conference on Information and Knowledge Management, Washington DC, pp
137-145

[38] Pastor JJ (2005) Música y literatura: la senda retórica. Hacia una nueva
consideración de la música en Cervantes. Doctoral dissertation. Universidad de
Castilla-La Mancha.

[39] Paynter GW (2005) Developing practical automatic metadata assignment and
evaluation tools for internet resources. In Proc. 5th ACM/IEEE-CS joint
conference on digital libraries, Denver, CO, pp 291-300

63

[40] Plantinga H, coord. (2005) Christian Classics Ethereal Library, Calvin College,
Grand Rapids, MI. http://www.ccel.org/ [accessed 8 September 2005]

[41] Project Gutenberg Literary Archive Foundation (2005) Project Gutenberg
http://www.gutenberg.org/. [accessed 9 Sept 2005]

[42] Ranear A, Mylonas E, Durand D (1996) Refining our notion of what text really is:
the problem of overlapping hierarchies. In: Research in Humanities Computing.
Nancy Ide and Susan Hockey, eds. Oxford University Press, p. 265

[43] Robinson P, ed. (2002) The Canterbury Tales Project, De Montfort University,
Leicester, England. http://www.cta.dmu.ac.uk/projects/ctp/. [accessed 25 May
2002]

[44] Shillingsburg PL (1996) Scholarly Editing in the Computer Age: Theory and
Practice. University of Michigan Press, Ann Arbor

[45] Sliwa K (2000) Documentos Cervantinos: Nueva recopilación; lista e índices. Peter
Lang, New York

[46] Stevenson M, Gaizauskas R. (2000) Using corpus-derived name lists for named
entity recognition. In: Proc 6th conference on applied natural language processing.
Seattle, WA, pp 290-295

[47] Sundheim B (1995) Overview of results of the MUC-6 evaluation. In: Proc. 6th
message understanding conference (MUC-6), Columbia, MD, pp 13-31

[48] Speerberg-McQueen CM, Burnard L, eds. (1994) Guidelines for electronic text
encoding and interchange. Text Encoding Initiative, Chicago and Oxford.

[49] The TEI Consortium http://www.tei-c.org/. Accessed on Sept 9, 2005.

[50] University of Michigan (2005) Making of America.
http://www.hti.umich.edu/m/moagrp/ [accessed 8 Sept 2005]

[51] Urbina E, ed. (2005) The Cervantes Project, Center for the Study of Digital
Libraries, Texas A&M University. http://csdl.tamu.edu/cervantes. [accessed 7 Feb
2005]

[52] Urbina E, Furuta R, Smith SE, Audenaert N, Deng J, Monroy C, (2006) Visual
knowledge: textual iconography of the Quixote, a hypertextual archive. In: Literary
and Linguistic Computing (forthcoming)

64

VITA

Name: Michael Neal Audenaert

Address:..................... Department of Computer Science, Mail Stop 3112, Texas A&M
University, College Station, TX, 77840

Email Address: neal@csdl.tamu.edu

Education:.................. B.S. Computer Science, Texas A&M University, 2001

 M.S. Computer Science, Texas A&M University, 2005

