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ABSTRACT

Global Existence of Reaction-Diffusion Equations

over Multiple Domains. (December 2004)

John Maurice-Car Ryan, B.A., University of South Florida;

M.S., University of Florida;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Jay Walton

Systems of semilinear parabolic differential equations arise in the modelling

of many chemical and biological systems. We consider m component systems of the

form

ut = D∆u+ f(t, x, u)

∂uk/∂η = 0 k = 1, ...m

where u(t, x) = (uk(t, x))
m
k=1 is an unknown vector valued function and each u0k

is

zero outside Ωσ(k), D = diag(dk) is an m × m positive definite diagonal matrix,

f : R×Rn ×Rm → Rm, u0 is a componentwise nonnegative function, and each Ωi is

a bounded domain in Rn where ∂Ωi is a C2+α manifold such that Ωi lies locally on

one side of ∂Ωi and has unit outward normal η. Most physical processes give rise to

systems for which f = (fk) is locally Lipschitz in u uniformly for (x, t) ∈ Ω × [0, T ]

and f(·, ·, ·) ∈ L∞(Ω× [0, T )×U) for bounded U and the initial data u0 is continuous

and nonnegative on Ω.

The primary results of this dissertation are three-fold. The work began with a

proof of the well posedness for the system . Then we obtained a global existence result

if f is polynomially bounded, quaipositive and satisfies a linearly intermediate sums
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condition. Finally, we show that systems of reaction-diffusion equations with large

diffusion coefficients exist globally with relatively weak assumptions on the vector

field f .
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CHAPTER I

INTRODUCTION

Systems of semilinear parabolic differential equations arise in the modelling of many

chemical and biological systems [6, 9]. In this setting, the systems are often referred

to as reaction-diffusion systems, and in their simplest form they can be written as


ut = D∆u+ f(u) t > 0, x ∈ Ω

∂uk/∂η = 0 t > 0, x ∈ ∂Ω k = 1, ...m

uk(0, ·) = u0k(·) t = 0, x ∈ Ω

(1.1)

where u(t, x) = (uk(t, x))
m
k=1 is an unknown vector valued function, D = diag(dk) is

an m ×m positive definite diagonal matrix, f : Rm → Rm, u0 is a componentwise

nonnegative function, and Ω is a bounded domain in Rn where ∂Ω is a C2+α manifold

such that Ω lies locally on one side of ∂Ω and has unit outward normal η. Most

physical processes give rise to systems for which f = (fk) is locally Lipschitz and

the initial data u0 is continuous on Ω. These conditions guarantee the following well

known result [12, 26].

Theorem 1.1 There exists a Tmax ∈ (0,∞] such that (1.1) has a unique, classical,

noncontinuable solution on [0, Tmax)× Ω. Furthermore, if Tmax <∞, then

lim
t→T−

max

‖u(t, ·)‖∞,Ω = ∞ (1.2)

The journal model is Journal of Differential Equations.
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A consequence of this result is that solutions of (1.1) are guaranteed to exist

globally (i.e. for all t > 0) provided that they do not blow up in the sup-norm in

finite time. Over the past twenty-five years a great deal of research has been directed

towards answering questions of global existence and large time behavior of solutions

to (1.1) [4, 7, 13, 15, 16, 17, 22, 24]. Of course, the results which have been obtained

are a consequence of the hypotheses that have been placed on the systems.

Two of the most fundamental assumptions associated with (1.1) are preservation

of positivity and conservation or reduction of total mass. Both of these assumptions

can be translated into very simple mathematical terms.

Definition 1.2 A function f : Rm → Rm is said to be quasipositive if and only if for

all k = 1, ..., m

fk(v) ≥ 0 for all v ∈ Rm
+ with vk = 0 (1.3)

Solutions of system (1.1) will be componentwise nonnegative for all choices of

nonnegative initial data if f is quasipositive. This can be seen by considering the

system (1.1) with f(u) replaced by f(u+)


ut = D∆u+ f(u+) t > 0, x ∈ Ω

∂uk

∂η
= 0 t > 0, x ∈ ∂Ω k = 1, ..., m

uk(0, ·) = u0k
t = 0, x ∈ Ω

(1.4)

where u+ = max{u, 0} and u− = −min{u, 0}. f(u+) is locally Lipschitz since f is

locally Lipschitz. Theorem 1.1 guarantees there exists a unique solution of (1.4).

Multiplying the kth component equation of (1.4) by u−k and integrating over (0, t)×Ω

we obtain
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t∫
0

∫
Ω

u−k
∂

∂t
(uk)dxdt =

t∫
0

∫
Ω

dku
−
k ∆ukdxdt+

t∫
0

∫
Ω

u−k fk(u
+)dxdt

Note that

(uk)t = −(u−k )t and ∆uk = −∆u−k whenever u−k > 0.

Making this substitution and integrating the equation above by parts yields

−1
2

∫
Ω
(u−k )2dx = dk

t∫
0

∫
Ω

∣∣∣∇u−k ∣∣∣2 dxdt+
t∫
0

∫
Ω
u−k fk(u

+)dxdt

Also,

u−k fk(u
+) =


0

≥ 0

if u ≥ 0

if u ≤ 0

since fk is quasipositive.

This gives

−1
2

∫
Ω
(u−k )2dx ≥ dk

t∫
0

∫
Ω

∣∣∣∇u−k ∣∣∣2 dxdt
implying u−k = 0. As a result, u = u+, and u solves (1.1). Therefore, by uniqueness

the solution to (1.1) is componentwise nonnegative.

It is a simple matter to determine an assumption that leads to conservation or

reduction of total mass. The total mass of the system at time t is given by

m∑
k=1

∫
Ω

uk(t, x)dx (1.5)

Consequently, we can state mathematically that total mass does not increase by

requiring
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∫
Ω

m∑
k=1

uk(t, x)dx ≤
∫
Ω

m∑
k=1

uk(0, x)dx for all t ≥ 0 (1.6)

We can see how this condition effects (1.1) by integrating the k-th component of u

over (0, t)× Ω. This yields

∫
Ω

uk(t, x)dx−
∫
Ω

uk(0, x)dx =

t∫
0

∫
Ω

dk∆uk(s, x)dxds+

t∫
0

∫
Ω

fk(s, x)dxds (1.7)

Integration by parts and the boundary conditions in (1.1) imply

t∫
0

∫
Ω

dk∆uk(s, x)dxds = 0 (1.8)

Substituting this information above and summing over k yields

∫
Ω

m∑
k=1

uk(t, x)dx =
∫
Ω

m∑
k=1

uk(0, x)dx+

t∫
0

∫
Ω

m∑
k=1

fk(u(s, x))dxds (1.9)

Consequently, we can only expect (1.6) to hold for all choices of initial data if

m∑
k=1

fk(v) ≤ 0 ∀v ∈ Rm
+ (1.10)

This motivates the following well known definition [5, 7, 15, 16, 17, 18, 20, 21].

Definition 1.3 A function f is said to be balanced if there exist constants ck > 0,

such that
m∑

k=1

ckfk(v) ≤ 0 ∀v ∈ Rm
+ . (1.11)

If the diffusion coefficients di are all equal, and f is quasipositive and balanced,

then solutions to (1.1) exist globally. We can see this as follows. First, u is componen-
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twise nonnegative since f is quasipositive. Setting w =
∑m

k=1 ckuk, and incorporating

(1.1) and (1.11) implies


wt ≤ d∆w 0 < t < Tmax, x ∈ Ω

∂w/∂η = 0 t > 0, x ∈ ∂Ω
w = w0 t = 0, x ∈ Ω

(1.12)

where w0 =
∑m

k=1 cku0k
and d = dk for all k. The maximum principle gives us

‖w(t, ·)‖∞,Ω ≤ ‖w0‖∞ for all 0 < t < Tmax. Consequently, u(t, x) is uniformly

bounded, and from Theorem 1.1 we have Tmax = ∞.

The quasipositivity assumption is made to guarantee that solutions that begin

in Rm
+ remain in Rm

+ . A more general assumption is that of an invariant region. The

idea is to find a set I in the state space from which solutions can not escape.

Definition 1.4 A set I ⊆ Rm is invariant with respect to the system (1.1) iff u(t, x) ∈
I for all t ∈ [0, Tmax), x ∈ Ω whenever u0 ∈ C(Ω, I).

Definition 1.5 f does not point out of I iff for every u ∈ ∂I and η ∈ Rm normal

to I at u we have η · f(u) ≤ 0.

The general condition [3] demands that all outer normals of an invariant region

are left eigenvectors of the diffusion matrix, as shown below.

Suppose I is an invariant region. Choose v0 to be on the boundary of I. Let ψ

be the outward normal of I at v0. We will show that ψ must be a left eigenvector of

D. By way of contradiction, suppose ψ is not a left eigenvector. First pick a vector ξ

such that ψ · ξ < 0 and ψ · (Dξ) > 0. We are able to find ξ because D is symmetric
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positive definite and ψ is not a left eigenvector of D. Choose λ such that

λψ · (Dξ) + ψ · f(v0) > 0.

Let û(x) = v0 + 1
2
λ | x |2 ξ. We know that there exists δ > 0 such that û(x) ∈ I

if |x| < δ. let u0(x) be a smooth function contained in I such that u0(x) = û(x) if

|x| < δ. Let u be the solution to (1.1) where u0(x) is our initial data.

ψ · ut = ψ ·D∆u+ ψ · f(u)

(ψ · u)t = ψ ·D(λξ) + ψ · f(u)

ψ · ut|t=0 = (ψu)t|t=0 = λψ ·D(ξ) + ψf(v0) > 0

by choice of λ. Therefore, v is pointing out of I. Which contradicts I being an

invariant region. Hence ψ must be a left eigenvector of D.

One consequence of the result above is that if the diffusion coefficients are all

distinct then the only invariant regions, I, are m-hypercubes whose ”sides” are parallel

to the coordinate hyperplanes such that f does not point out of I.

Definition 1.6 Let I be invariant with respect to (1.1). A function H : I → [0,∞)

is a convex seperable Lyapunov function for (1.1) iff H is a convex function that has a

unique zero and can be written in the form H(u) = Σhi(u) for nonnegative functions

hi ∈ C2 and ∇uH(u) · f(u) ≤ 0 for every u ∈ I.

If the diffusion coefficients are all equal, and (1.1) has an invariant region I and

a convex seperable Lyapunov function, then solutions to (1.1) exist globally. We can

see this as follows.
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Let H be the convex seperable Lyapunov function and z be the zero of H .

Note: h′′i (x) ≥ 0 for every x ∈ I and ∇H(x) 6= 0 if x 6= z.

Consider the case of equal diffusion coefficients. Then

ut = D∆u+ f(u) = dI∆u+ f(u)

for some d > 0. Also

d

dt
H(u) = ∇uH(u) · ut

and

∆xH(u) = ∇x · ∇uH(u)∇xu = ∆uH(u) | ∇xu |2 +∇uH(u) ·∆xu

Therefore,

d

dt
H(u)−d∆xH(u) = ∇uH(u)·ut−d∇uH(u)·∆xu−d∆uH(u) | ∇xu |2≤ ∇H(u)·f(u)

Thus

d

dt
H(u) ≤ d∆xH(u) + ∆H(u) · f(u)

So, if

∇uH(u) · f(u) ≤ 0,

then

d

dt
H(u) ≤ d∆xH(u)

∂

∂η
H(u) = ∇H(u) · ∂u

∂η
= 0.

So, by the maximum principle, H(u) is bounded.

An additional assumption that follows from the physical properties of many

models is that
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|f(v)| is bounded above by a polynomial (1.13)

In the case where the diffusion coefficients are distinct, an example of Pierre and

Schmidt [24] shows that (1.3), (1.11) and (1.13) are not enough to guarantee global

existence of solutions.

For the past twenty-five years many authors have struggled with this global ex-

istence question. Alikakos [1] worked on systems with n = 2, homogeneous Neumann

boundary conditions (1.1), and f having the form

f1(u) = −u1g(u2)

f2(u) = u1g(u2)
(1.14)

with g nonnegative and polynomially bounded. Notice that f satisfies both with (1.3)

and (1.11) with c1 = c2 = 1. This system was originally proposed by Martin, and in

[14], Hollis, Martin and Pierre analyzed this system and others of the form (1.1) under

assumptions (1.3), (1.11) and (1.13) with m = 2, and proved global existence in any

spatial dimension provided that an a priori L∞ bound is available for one component.

Morgan [20, 21] extended these results to handle arbitrary m component systems of

the form (1.1) under conditions (1.3), (1.11) and (1.13) along with an intermediate

sums condition.

Kanel’ [17, 18] obtained some results on related problems without the intermedi-

ate sums condition by placing stricter requirements on the polynomial bounds on the

components of f . He has shown that solutions of (1.1) with Ω = Rn exist globally

provided that in addition to (1.3) and (1.11), each fk is at most quadratic if n ≥ 2

and at most cubic if n = 1. Kanel’ also obtained the last result for cubic fk’s and
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n = 1 on the bounded domain Ω = (0, L) with uk satisfying homogeneous Neumann

conditions at the endpoints.

Redheffer, Redlinger and Walter [25] showed that in the case of equal diffusion

coefficients, the existence of a convex Lyapunov function V guarantees global existence

for solutions to (1.1). Moreover, if V is strictly convex, then the omega limit set of

(1.1) is the same as the omega limit set of the associated system of ordinary differential

equations given by

u′ = f(u).

Conway, Hoff and Smoller [4] showed that if (1.1) admits a bounded invariant

region and the diffusion coefficients are sufficiently large then

∥∥∥u(t, ·)− u(t)
∥∥∥∞,Ω

→ 0 (exponentially) as t→∞ (1.15)

where

u(t) =
1

|Ω|
∫
Ω

u(t, x)dx (1.16)

Hale [10] showed that if K ⊂ Rn is a compact attractor for the ordinary differ-

ential equation

v′(t) = f(v(t)) (1.17)

and the diffusion coefficients are sufficiently large then K is a compact attractor for

(1.1). These results were also obtained by Cupps [5] for systems of the form (1.1) using

only the assumptions (1.3) and (1.11). This is remarkable given that assumptions (1.3)

and (1.11) do not guarantee the existence of bounded invariant regions or compact

attractors for (1.1).
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The focus of this research is to examine the effect of assumptions of the form (1.3)

and (1.11) on global existence of solutions to reaction-diffusion systems on multiple

domains.

Problems of this type can arise in the modelling of biological systems, and are

only recently being studied as mathematical models. For example, one such system

which is analyzed by Fitzgibbon, Langlais and Morgan [6] models the interaction of

two hosts and a vector population.

We will consider a reation-diffusion system on noncoincident spatial domains to

help motivate the types of systems studied in this dissertation. One type of model

studied is the so-called ”criss-cross” model. Criss-Cross models have been put forth

to describe the transmission of vector hosts such as malaria. Typically these models

assume two independent populations, each of which are subdividedd into three sub-

classes: susceptible, Si for i = 1 or 2, infectives, Ii for i = 1 or 2 and removed, Ri

for i = 1 or 2. Susceptibles are individuals capable of contracting the disease, and

the infectives are individuals infected with the disease and capable of transmitting

it. The removed class are those individuals that have either died or gained perma-

nent immunity from the disease. Basically the disease is transmitted by infectives of

one population interacting with the susceptibles of the other population producing

infectives of the first population. If there is no loss of immunity or resurrection the

removed classes do not affect the dynamics of the process and are not considered.



11

The following system of differential equations describes a basic process:

dS1/dt = −k1S1I2

dS2/dt = −k2S2I1

dI1/dt = k1S1I2 − λ1I1

dI2/dt = k2S2I1 − λ2I2

(1.18)

In a more complex setting [6], a disease is transmitted in a criss-cross fashion

from one host through a vector to another host. It is assumed that the disease is

benign for one host and lethal to the other. This dynamic can be described by the

following set of ordinary differential equations:

 φt = −k1φβ + λ1ψ

ψt = k1φβ − λ1ψ

 host 1

 αt = −k2αψ − k3αv + λ2β

βt = k2αψ + k3αv − λ2β

 vector

 vt = −k4vβ

wt = k4vβ − λ3w

 host 2

(1.19)

with positive constants ki and λj. Here the host where the disease is benign is given

by the first set of equations with φ representing the susceptibles and ψ representing

the infectives. Because the disease is considered benign, the recovery rate is a con-

stant λ1 > 0 with no mortality. The third set of equations describes the circulation

of the disease through the second host. In this case the disease can be fatal if there

is no recovery term. Essentially, this is an SIR model with incidence term k4vβ. The

susceptible vector and infective vector populations are represented by α and β respec-
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tively. Basically, this system is a coupling of two SIS models with an SIR model. Such

models can be used to describe the epidemiological dynamics of encephalitis whereby

the disease is transferred between avian and human populations via mosquitos.

Now consider a spatially distributed population. The dispersion of the population

is modeled by Fickian diffusion. In this model there are three populations confined

to seperate habitats which overlap. The possibility of physically separated habitats

for the vulnerable and resistant hosts are allowed, each of which intersects with the

domain of the vector.

 φt = d1∆φ− k1(x)φβ + λ1ψ

ψt = d2∆ψ + k1(x)φβ − λ1ψ
for x ∈ Ω1, t > 0

 host 1

 αt = d3∆α− k2(x)αψ − k3(x)αv + λ2β

βt = d4∆β + k2(x)αψ + k3(x)αv − λ2β
for x ∈ Ω2, t > 0

 vector

 vt = d5∆v − k4(x)vβ

wt = d6∆w + k4(x)vβ − λ3w
for x ∈ Ω3, t > 0

 host 2

(1.20)

Here k1, k2, k3 and k4 are nonnegative functions, and λ1, λ2 and λ3 are positive

constants. Furthermore, the supports of k1 and k2 are contained in the intersection of

Ω1 and Ω2, the supports of k3 and k4 are contained in the intersection of Ω2 and Ω3.

Finally, the values di and λj are positive constants for i = 1, 2, ..., 6 and j = 1, 2, 3.

We impose homogeneous Neumann boundary conditions on each domain Ω1,Ω2, and

Ω3.
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∂φ/∂η = ∂ψ/∂η = 0 forx ∈ ∂Ω1, t > 0

∂α/∂η = ∂β/∂η = 0 forx ∈ ∂Ω2, t > 0

∂v/∂η = ∂w/∂η = 0 forx ∈ ∂Ω3, t > 0

(1.21)

and specify continuous nonnegative initial data.

φ(x, 0) = φ0(x), ψ(x, 0) = ψ0(x) for every x ∈ Ω1

α(x, 0) = α0(x), β(x, 0) = β0(x) for everyx ∈ Ω2

v(x, 0) = v0(x), w(x, 0) = w0(x) for everyx ∈ Ω3

(1.22)

Variants of the quasipositivity and balancing assumptions occur on each com-

ponent domain. The quasipositivity is obvious, and the balancing holds on each

component domain. For Ω1 the vector field −k1(x)φβ + λ1ψ

+k1(x)φβ − λ1ψ

 (1.23)

has components that clearly sum to zero. Similarly, on Ω2 the vector field −k2(x)αψ − k3(x)αv + λ2β

k2(x)αψ + k3(x)αv − λ2β

 (1.24)

also sums to zero. The same mechanism can be seen on Ω3 since the function −k4(x)vβ

k4(x)vβ − λ3w

 (1.25)

has components that sum to less than zero.

The system described above is an example of the type of systems that will be the

focus of this dissertation. Consider domains Ω1,Ω2,...,Ωm where each Ωk is a bounded

C2+α manifold such that Ωk lies locally on one side of ∂Ωk and has unit outward
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normal η. Each domain Ωk will have nk species.

Notationally each species is associated with the appropriate domain by parti-

tioning the set {1, 2, ..., s} into k disjoint sets, O1, O2, ..., Ok, where i ∈ Oj can

be interpreted as meaning the ith species is defined on Ωj . Define the mapping

σ : {1, 2, ..., s} → {1, 2, ..., m} via i ∈ Oσ(i). The kth species dynamics is governed

by the following system:


(uk)t = dk∆uk + fk(t, x, u) x ∈ Ωσ(k), t > 0

∂uk

∂η
= 0 x ∈ ∂Ωσ(k)

uk(0, x) = 0 x /∈ Ωσ(k)

(1.26)

where fk(t, x, u) = 0 if x /∈ Ωσ(k), uk(0, x) is continuous and nonnegative.

The quasipositivity and balancing assumptions given in (1.3) and (1.11) do not

give rise to bounded invariant regions or compact attractors for (1.1), let alone (1.26).

As a result, the results in [4, 10, 25] do not apply. However, it seems possible to

use these assumptions and apply the methods in [20] to obtain both L1 (Ω) and

L2 ((0, T )× Ω) bounds on the unknowns. We will use this to prove two results. First,

we will show a result analogous to Theorem 1 for the system we are solving. Next,

we will show that if the initial data is sufficiently small then the system (1.26) has a

global solution which is uniformly bounded. This result is an extension of the results

in [16]. Then we show that solutions to (1.26) exist globally provided the diffusion

coefficients are sufficiently large. This analysis is an extension of the techniques

employed in [5], and the result extends the results in [4, 5, 10].

The material in this dissertation is organized in the following manner. Conven-

tions on notation and statements of main results are given in Chapter II. Chapter
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III contains statements of fundamental results that will be used in proving the main

theorems. Chapter IV contains he proofs of the theorems stated in Chapter II, while

Chapter V contains some applications and suggestions for further research.
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CHAPTER II

NOTATION AND BASIC RESULTS

A. Notation

Let 1 ≤ p ≤ ∞ and suppose Ω is a bounded domain of Rn. Lp(Ω, Rn) will denote the

Banach space of measurable functions with norm given by

‖f‖p,Ω =

(
m∑

i=1

∫
Ω
|fi(x)|p dx

)1/p

for 1 ≤ p <∞

and

‖f‖∞,Ω =
n∑

i=1

|fi(x)|∞,Ω

where

|fi(x)|∞,Ω = inf{K : |fi(x)| ≤ K for almost every x ∈ Ω}.

All derivatives are understood to be in the distributional sense. Dα denotes

∂α1
1 ∂α2

2 ...∂αn
n where ∂i = ∂/∂xi and α = (α1, ..., αn) is a multi-index, |α| = n∑

i=1
αi.

For p ≥ 1 and k > 0,

W k(Ω) = {f : Ω → R : Dαf exists for all α,with |α| ≤ k}.

W k
p (Ω) = {f ∈W k(Ω) : Dαf ∈ Lp(Ω) for all α,with |α| ≤ k}.

W k
p (Ω) is equipped with the norm

‖f‖(k)
p,Ω = (

∫
Ω

∑
|α|≤k

|Dαf |p dx)1/p.

Hk(Ω) will be used to denote W k
2 (Ω).

For real numbers τ and t with 0 ≤ τ < t, Q(τ,t) will denote the cylinder (τ, t)× Ω.
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W 1,2
p (Q(τ,t)) will denote the Banach space of elements f in Lp(Q(τ,t)) having weak

derivatives ∂r
t ∂

s
xf, with r ≤ 1 and s ≤ 2 lying in Lp(Q(τ,t)). This space is equipped

with the norm

‖f‖(1,2)
p,Q(τ,t)

= (

t∫
τ

∫
Ω

∑
r≤1s≤2

|∂r
t ∂

s
xf |p dx)1/p.

Ωi will denote a bounded domain in Rn that lies locally on one side of its C2+α

boundary ∂Ωi. Ωi will denote the closure of Ωi and |Ωi| is the measure of Ωi. The

gradient and Laplacian operators will be represented by ∇ and ∆ respectively. χi

will denote the characteristic function on Ωi. Finally, Rm
+ will denote the nonnegative

orthant of Rm.

B. Main Results

The primary focus of this dissertation is the reaction-diffusion system described below.

Consider the domains Ω1,Ω2,...,Ωm. We define Ω = ∪m
i=1Ωi. Each domain Ωk will

have nk species. Notationally each species is associated with the appropriate domain

by partitioning the set {1, 2, ..., s} into m disjoint sets, O1, O2, ..., Om, where i ∈ Oj

can be interpreted as meaning the ith species is defined on Ωj .

Define the mapping σ : {1, 2, ..., s} → {1, 2, ..., m} via i ∈ Oσ(i).


ut = D∆u+ f(t, x, u) t > 0, x ∈ Ω

∂uk/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

uk(0, ·) = u0k(·) t = 0, x ∈ Ω k = 1, ...m

(2.1)

where u(t, x) = (uk(t, x))
m
k=1 is an unknown vector valued function and each u0k

is

zero outside Ωσ(k), D = diag(dk) is an m × m positive definite diagonal matrix,

f : R×Rn ×Rm → Rm, u0 is a componentwise nonnegative function, and each Ωi is

a bounded domain in Rn where ∂Ωi is a C2+α manifold such that Ωi lies locally on
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one side of ∂Ωi and has unit outward normal η. Most physical processes give rise to

systems for which f = (fk) is locally Lipschitz in u uniformly for (x, t) ∈ Ω×[0, T ] and

f(·, ·, ·) ∈ L∞(Ω× [0, T )×U) for bounded U and the initial data u0 is continuous and

nonnegative on Ω. We make these assumptions on f and u0 throughout the remainder

of this work.

In some of our results we will assume there exists a z ∈ I such that

f(·, ·, z) = 0 (2.2)

Definition 2.1 A set I ⊆ Rm is invariant with respect to the system (2.1) iff u(t, x) ∈
I for all t ∈ [0, Tmax), x ∈ Ω whenever u0 ∈ C(Ω, I).

Before we state our results, we introduce a truncated system associated with

(2.1). To this end let r > max{‖u0‖∞,Ω , |z| , 1}. and define Φr ∈ C∞(Rm, [0, 1]) via

Φr(u) =


1,

0,

u ∈ Br(0)

u /∈ B2r(0)

where
∣∣∣∂Φr(u)

ui

∣∣∣ ≤ 2 for all i = 1, ..., m. Let f̂i(t, x, u) = Φr(u)fi(t, x, u) and consider

the so-called truncated system given by


ut = D∆u+ f̂(t, x, u) t > 0, x ∈ Ω

∂uk/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ..., m

uk(0, ·) = u0k
(·) t = 0, x ∈ Ω

(2.3)

Definition 2.2 Suppose I ⊆ Rm is invaariant with respect to (2.1). A function

H : I → [0,∞) is a convex seperable Lyapunov function for (2.1) iff H is a convex
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function that has a unique zero and can be written in the form H(u) = Σhi(u) for

nonnegative functions hi ∈ C2 and ∇uH(u) · f(u) ≤ 0 for every u ∈ I.

Remark: The case I = Rm
+ and H(u) = Σciui corresponds to f being balanced.

Our first result is an extension of Theorem (1.1) to the setting of (2.1).

Theorem 2.3 There exists a Tmax ∈ (0,∞] such that (2.1) has a unique noncon-

tinuable solution on [0, Tmax)× Ω. Furthermore, if Tmax <∞, then

lim
t→T−

max

‖u(t, ·)‖∞,Ω = ∞ (2.4)

We continue our development by introducing a variant of the linear intermediate

sums condition from Chapter I to the setting of (2.1).

Definition 2.4 We say that the reaction-diffusion system satisfies the linear in-

termediate sums condition if for every k (associated with domain Ωk) there exists

Mk, Nk ≥ 0 and a lower triangular matrix A(k) such that a
(k)
ii > 0, a

(k)
nk ,i > 0, and∑nk

j=1 aioj
fioj

(x, t, u) ≤Mk
∑

j∈Ok
uj +Nk for each i and ank,j > 0 for every u ∈ Rm

+ .

This extension allows us to generalize some of the results in [20, 21].

Theorem 2.5 Suppose that f is quasipositive and satisfies the linear intermediate

sums condition and satisfies (1.13). Then the solution of (2.1) is nonnegative and

exists globally.

We are now in a position to extend some results of [5].
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Theorem 2.6 Suppose f satisfies (1.3) and (2.2). Let M > 0 and suppose there ex-

ists R,LM such that if r ≥ R, ‖u0 − z‖∞,Ω ≤M and u solves (2.3) then ‖u(t, ·)− z‖1,Ω ≤
LM . Then there exists constants dM , KM > 0 so that if di ≥ dM for all i, then the

solution u of (2.1) exists globally and

‖u(t, ·)− z‖∞,Ω ≤ KM ∀t ≥ 0.

Moreover, if LM → 0 as ‖u0 − z‖∞,Ω → 0 and the initial data is sufficiently

close to z then no additional assumptions on the size of the diffusion coefficients are

necessary to guarantee the solution u of (2.1) exists globally and

‖u(t, ·)− z‖∞,Ω ≤ KM ∀t ≥ 0.

At first glance, the result above might seem untractable. However, the following

result is an immediate consequence.

Theorem 2.7 Suppose that f , D and u0 are as in Theorem 2.6 and f is also balanced.

If the diffusion coefficients di are sufficiently large, then the solution of (2.1) exists

globally and is uniformly bounded. Also, if the initial data is sufficiently close to

the equilibrium point z then no additional assumptions on the size of the diffusion

coefficients are necessary.

Theorem 2.8 Suppose there exists an invariant region I and convex separable Lya-

punov function associated with (2.1), and f satisfies (2.2). Further suppose that D

and u0 are as in Theorem 2.6 and u0 ∈ I. If the diffusion coefficients di are suffi-

ciently large or u0 is sufficiently close to the equilibrium point z, then the solution to

(2.1) exists globally and is uniformly bouded.
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Theorem 2.9 Suppose that D and u0 are as in Theorem 2.6 and f ∈ C1(Rm
+ , R

m) is

balanced and quasipositive. If the dis are sufficiently large, then the solution of (2.1)

exists globally, is uniformly bounded and

‖uk(t, ·)− uk(t)‖∞,Ωσ(k)
→ 0 as t→∞ for every k.

where

uk(t) = 1

|Ωσ(k)|
∫

Ωσ(k)

uk(t, x)dx.
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CHAPTER III

PRELIMINARIES

A. Fundamental Results

We will need the following fractional-Sobolev embedding theorem of Amann [2].

Theorem 3.1 If 0 ≤ s′ ≤ s ≤ 2 and 1 < p, q <∞ then W s
p (Ω) embeds continuously

into W s′
q (Ω) whenever 1/p ≥ 1/q and s− n/p ≥ s′ − n/q.

The following regularity estimate by Ladyzenskaja et al. [19] will be crucial in

obtaining several estimates.

Theorem 3.2 Suppose 1 < q < ∞, τ < t < T, θ ∈ Lq(Q(τ,T )), φ0 ∈ W 2−2/q
q (Ω) and

φ solves the scalar equation
φt = d∆φ+ θ t ∈ (τ, T ), x ∈ Ω

∂φ
∂η

= 0 t ∈ (τ, T ), x ∈ Ω

φ = φ0 t = τ, x ∈ Ω

(3.1)

Then there exists C(q, d,Ω, T − τ) > 0 such that

‖φ‖(1,2)
q,Q(τ,T )

≤ C(q, d,Ω, T − τ)(‖θ‖q,Q(τ,T )
+ ‖φ0‖2−2/q

q,Ω ).

Theorem 3.3 (Shauder’s fixed point theorem) If A is a closed, bounded and convex

subset of a normed linear space X and T : X → X is a compact, continuous function

such that T (A) ⊆ A then there exists a u ∈ A such that Tu = u.
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Theorem 3.4 (Gronwall’s inequality) Let

u : [a, b] → [0,∞)

v : [a, b] → R

be continuous functions and let C be a constant. Then if

v(t) ≤ C +

t∫
a

v(s)u(s)ds (3.2)

for t ∈ [a, b], it follows that

v(t) ≤ C exp(

t∫
a

u(s)ds) (3.3)

for t ∈ [a, b].

We will also need a result from semigroup theory.

Definition 3.5 Let X be a Banach space. A one parameter family of bounded linear

operators {T (t)}t≥0 from X into X is a strongly continuous semigroup of contractions

on X if

i. T (t+ s) = T (t)T (s) ∀t, s ∈ R+

ii. T (0) = I

iii. T (·)f ∈ C(R+, X) ∀ f ∈ X
iv. ‖T (t)‖ ≤ 1 ∀t ∈ R+

Theorem 3.6 The operator d∆ subject to homogeneous Neumann boundary condi-

tions generates a strongly continuous semigroup of contractions on C(Ω).
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B. Preliminary Estimates

Many of the following estimates can be found in [2, 5, 14, 19, 23, 28]. These results

are somewhat obscure and consequently are included.

Lemma 3.7 Let {S(t)}t≥0 be the semigroup generated by d∆ subject to homogeneous

Neumann boundary conditions on Lp(Ω) with 1 ≤ p <∞. Then there exist constants

M, δ > 0 so that

‖PS(t)w‖p,Ω ≤ Me−δt ‖w‖p,Ω

for w ∈ Lp(Ω), where

PΨ = Ψ− 1
|Ω|
∫
Ω

Ψ for Ψ ∈ Lp(Ω).

Proof:

PS(t)φ = S(t)φ− 1
|Ω|
∫
Ω
S(t)φ = S(t)[φ− 1

|Ω|
∫
Ω
φ] = S(t)Pφ ∀φ ∈ Lp(Ω)

Setting v = PS(t)φ we see v satisfies

vt = d∆v

v(0) = Pφ

So {PS(t)}t≥0 is the semigroup generated by the restriction of d∆ to the subspace

{φ ∈ Lp(Ω) :
∫
Ω
φ = 0}. It follows that for any φ ∈ Lp(Ω),

‖PS(t)φ‖p,Ω = ‖P 2S(t)φ‖p,Ω = ‖PS(t)Pφ‖p,Ω

≤ M1e
−δt ‖Pφ‖p,Ω ≤Me−δt ‖φ‖p,Ω .

ut



25

Now consider the scalar equation
φt = d∆φ+ θ t ∈ (τ, T ), x ∈ Ω

∂φ
∂η

= 0 t ∈ (τ, T ), x ∈ ∂Ω
φ = 0 t = τ, x ∈ Ω

(3.4)

Applying Theorem 3.2 we have

Lemma 3.8 Suppose q > 1, θ ∈ Lq(Q(τ,T )) and that φ solves (3.4). Then there is a

constant C(q, d, (T − τ)) such that

‖φ‖q,Q(τ,T )
, ‖∆φ‖q,Q(τ,T )

≤ C(q, d, (T − τ)) ‖θ‖q,Q(τ,T )

Lemma 3.9 Under the assumptions of Lemma 3.8, there is a constant Ĉ(q, d) so

that

‖Pφ‖q,Q(τ,T )
, ‖∆φ‖q,Q(τ,T )

≤ Ĉ(q, d) ‖θ‖q,Q(τ,T )

Proof:

(Pφ)t = φt − 1
|Ω|
∫
Ω
φt

= d∆φ+ θ − 1
|Ω|
∫
Ω
(φt + θ)

= d∆φ+ θ − 1
|Ω|
∫
Ω
θ

= d∆(φ− 1
|Ω|
∫
Ω
φ) + θ − 1

|Ω|
∫
Ω
θ

= d∆Pφ+ Pθ

So Pφ solves 
Pφt = d∆Pφ+ Pθ t ∈ (τ, T ), x ∈ Ω

∂Pφ
∂η

= 0 t ∈ (τ, T ), x ∈ ∂Ω
Pφ = 0 t = τ, x ∈ Ω

(3.5)

By variation of parameters,
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φ(t, ·) =
T∫
τ
S(t− s)θ(s, ·)ds

we find

Pφ(t, ·) = φ(t, ·)− φ(t)

=
t∫

τ
S(t− s)θ(s, ·)ds− 1

|Ω|
∫
Ω

t∫
τ
S(t− s)θ(s, x)dsdx

=
t∫

τ
PS(t− s)θ(s, ·)ds.

This gives us

‖Pφ‖q
q,Q(τ,T )

=
T∫
τ

∫
Ω
|Pφ(t, x)|q dxdt

=
T∫
τ
‖Pφ(t, ·)‖q

q dt

=
T∫
τ

∥∥∥∥∥ t∫
τ
PS(t− s)θ(s, ·)ds

∥∥∥∥∥
q

q

dt

≤
T∫
τ
(

t∫
τ
‖PS(t− s)θ(s, ·)‖q ds)

qdt

≤
T∫
τ
(

t∫
τ
(Me−δ(t−s) ‖θ(s, ·)‖q)ds)

qdt

= M q
T∫
τ
(

t∫
τ
(e−δ(t−s) ‖θ(s, ·)‖q)ds)

qdt

Setting y(s) = ‖θ(s, ·)‖q and applying Holder’s inequality we see

t∫
τ
e−δ(t−s)y(s)ds ≤ (

t∫
τ
e−δ(t−s)y(s)qds)1/q(

t∫
τ
e−δ(t−s)ds)1/p

and this gives us

T∫
τ
(

t∫
τ
(e−δ(t−s)y(s)q)ds)

qdt ≤
T∫
τ
(

t∫
τ
e−δ(t−s)y(s)qds)(

t∫
τ
e−δ(t−s)ds)q/pdt

‖Pφ‖q
q,Q(τ,T )

≤M q
T∫
τ
(

t∫
τ
(e−δ(t−s)y(s)ds)qdt

≤M q
T∫
τ
(

t∫
τ
e−δ(t−s)y(s)qds)(

t∫
τ
e−δ(t−s)ds)q/pdt

= M qδ−q/p
T∫
τ
(

t∫
τ
e−δ(t−s)y(s)qds)dt = M qδ−q/p

T∫
τ
y(s)q

T∫
s
e−δ(t−s)dtds

≤M qδ−q/pδ−1 ‖θ‖q
q,Q(τ,T )

= M qδ−q ‖θ‖q
q,Q(τ,T )

.
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We are now in a position to get an estimate for ∆φ. Let φ and ∆φ be the solutions

of (3.4) and (3.5) , respectively. Define g ∈ C∞(R, [0, 1]) via

g(t) =


1 if t ∈ [−1, 1]

0 if t /∈ [−2, 2]

For t0 ≥ 2, set Ψ(t, x) = g(t− t0)Pφ(t, x). Ψ satisfies


Ψt = d∆Ψ + g(t− t0)Pθ + g′(t− t0)Pφ t > t0 − 2, x ∈ Ω

∂Ψ
∂η

= 0 t > t0 − 2, x ∈ ∂Ω
Ψ = 0 t = t0 − 2, x ∈ Ω

(3.6)

Setting C1(q, d) = C(q, d, 4) from Lemma 3.8 we have

‖∆Ψ‖q
q,(t0−2,t0+2)×Ω ≤ C1(q, d)

q(‖Pθ‖q,(t0−2,t0+2)×Ω + ‖g′‖∞ ‖Pφ‖q,(t0−2,t0+2)×Ω)q

and this gives us

‖∆Ψ‖q
q,(t0−2,t0+2)×Ω ≤ 2q−1C1(q, d)

q(‖Pθ‖q
q,(t0−2,t0+2)×Ω + ‖g′‖q

∞ ‖Pφ‖q
q,(t0−2,t0+2)×Ω)

By the construction of Ψ we have

‖∆φ‖q
q,(t0−1,t0+1)×Ω ≤ ‖∆Pφ‖q

q,(t0−1,t0+1)×Ω

= ‖∆Ψ‖q
q,(t0−1,t0+1)×Ω

≤ ‖∆Ψ‖q
q,(t0−2,t0+2)×Ω

so

‖∆φ‖q
q,(t0−1,t0+1)×Ω ≤ 2q−1C1(q, d)

q(‖Pθ‖q
q,(t0−2,t0+2)×Ω + ‖g′‖q

∞ ‖Pφ‖q
q,(t0−2,t0+2)×Ω)

We will now find a bound for Pθ in terms of θ.
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‖Pθ‖q
q,(t0−2,t0+2)×Ω =

t0+2∫
t0−2

∫
Ω

∣∣∣θ(t, x)− θ(t, ·)
∣∣∣q dxdt

≤
t0+2∫
t0−2

∫
Ω
(|θ(t, x)| + |Ω|−1 ∫

Ω
|θ(t, y)| dy)qdxdt

≤ 2q−1(‖θ‖q
q,(t0−2,t0+2)×Ω +

t0+2∫
t0−2

∫
Ω
(|Ω|−1 ∫

Ω
|θ(t, y)| dy)qdxdt)

= 2q−1(‖θ‖q
q,(t0−2,t0+2)×Ω + |Ω|1−q

t0+2∫
t0−2

(
∫
Ω
|θ(t, y)| dy)qdt)

From Holder’s inequality,

∫
Ω
|θ(t, y)| dy ≤ |Ω|1/p (

∫
Ω
|θ(t, y)|q dy)1/q

and thus

‖Pθ‖q
q,(t0−2,t0+2)×Ω ≤ 2q ‖θ‖q

q,(t0−2,t0+2)×Ω .

It then follows that

‖∆φ‖q
q,(t0−1,t0+1)×Ω ≤ 22q−1C1(q, d)

q(‖θ‖q
q,(t0−2,t0+2)×Ω + ‖g′‖q

∞ ‖Pφ‖q
q,(t0−2,t0+2)×Ω).

Applying these inequalities with t0 = 2, 4, ..., 2k, ... and summing over k, we obtain

‖∆φ‖q
q,(1,∞)×Ω

≤ 22q−1C1(q, d)
q(‖θ‖q

q,(0,2)×Ω + ‖g′‖q
∞ ‖Pφ‖q

q,(0,2)×Ω + 2 ‖θ‖q
q,(2,∞)×Ω + 2 ‖g′‖q

∞ ‖Pφ‖q
q,(2,∞)×Ω).

Appealing to Lemma 3.8 on the time interval (0,1) and noting that C(q, d, 1) can be

chosen so that C(q, d, 1) ≤ C(q, d) we have

‖∆φ‖q
q,(0,1)×Ω ≤ C1(q, d)

q ‖θ‖q
q,(0,1)×Ω ≤

22q−1C1(q, d)
q(‖θ‖q

q,(0,2)×Ω + ‖g′‖q
∞ ‖Pφ‖q

q,(0,2)×Ω)

and thus

‖∆φ‖q
q,(0,∞)×Ω ≤ 22qC1(q, d)

q(‖θ‖q
q,(0,∞)×Ω + ‖g′‖q

∞ ‖Pφ‖q
q,(0,∞)×Ω)
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By virtue of (3.6)

‖∆φ‖q
q,(0,∞)×Ω ≤ (22qC1(q, d)

q(1 + ‖g′‖q
∞M qδ−q))1/q ‖θ‖q,(0,∞)×Ω .

Applying this estimate with θ = 0 outside of (τ, T ) yields the required result. ut

Lemma 3.10 If d ≥ 1 and φ solves (3.4) , then there exists a constant, C(q), de-

pending only on q such that

‖Pφ‖q,(τ,T )×Ω , ‖∆φ‖q,(τ,T )×Ω ≤ C(q)
d
‖θ‖q,(τ,T )×Ω

and

‖φt‖q,(τ,T )×Ω ≤ C(q) ‖θ‖q,(τ,T )×Ω

Proof:

Define w(t, x) = φ( t
d
, x). Then w satisfies

wt = ∆w + 1
d
θ̂ t ∈ (dτ, dT ), x ∈ Ω

∂w
∂η

= 0 t ∈ (dτ, dT ), x ∈ ∂Ω
w = 0 t = dτ, x ∈ Ω

(3.7)

where θ̂(t, x) = θ( t
d
, x). From Lemma 3.9, there exists a C̃(q) so that

‖∆w‖q,(dτ,dT )×Ω ≤ C̃(q)
∥∥∥ 1

d
θ̂
∥∥∥

q,(dτ,dT )×Ω
.

This implies

dT∫
dτ

∫
Ω
|∆w(t, x)|q dxdt ≤

(
C̃(q)

d

)q dT∫
dτ

∫
Ω

∣∣∣θ̂(t, x)∣∣∣q dxdt
or equivalently

dT∫
dτ

∫
Ω
|∆φ(t/d, x)|q dxdt ≤

(
C̃(q)

d

)q dT∫
dτ

∫
Ω
|θ(t/d, x)|q dxdt.
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Making a change of variables gives us

d
dT∫
dτ

∫
Ω
|∆φ(s, x)|q dxds ≤ C̃(q)q

dq−1

dT∫
dτ

∫
Ω
|θ(s, x)|q dxds

and we have

dT∫
dτ

∫
Ω
|∆φ(s, x)|q dxds ≤

(
C̃(q)

d

)q dT∫
dτ

∫
Ω
|θ(s, x)|q dxds.

‖∆φ‖q,(τ,T )×Ω ≤ C̃(q)
d
‖θ‖q,(τ,T )×Ω

The same argument gives the estimate for Pφ. To obtain the estimate on the time

derivative, note that

‖φt‖q,(τ,T )×Ω = ‖d∆φ+ θ‖q,(τ,T )×Ω

≤ ‖d∆φ‖q,(τ,T )×Ω + ‖θ‖q,(τ,T )×Ω ≤ (C̃(q) + 1) ‖θ‖q,(τ,T )×Ω

Setting C(q) = C̃(q) + 1 gives the desired result. ut

We also need an estimate for the scalar equation


χt = d∆χ t ∈ (dτ, dT ), x ∈ Ω

∂χ
∂η

= 0 t ∈ (dτ, dT ), x ∈ ∂Ω
χ = χ̂ t = dτ, x ∈ Ω.

(3.8)

Lemma 3.11 Let d ≥ 1, q ∈ (1,∞) and χ̂ ∈ W 2−2/q
q (Ω). Suppose χ solves (3.8).

Then there exists a constant K(q) so that

‖Pχ‖q,(τ,T )×Ω , ‖∆χ‖q,(τ,T )×Ω , ‖χt‖q,(τ,T )×Ω ≤ K(q) ‖χ̂‖2−2/q
q,Ω .

Proof:

Define µ(t, x) = χ( t
d
, x). Then µ satisfies
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µt = ∆µ t ∈ (dτ, dT ), x ∈ Ω

∂µ
∂η

= 0 t ∈ (dτ, dT ), x ∈ ∂Ω
µ = χ̂ t = dτ, x ∈ Ω.

(3.9)

We assume without loss of generality that d is sufficiently large so that dT ≥ dτ + 1.

We know from Theorem 3.1 that there exists a constant C1(q), depending only on q

so that

‖µ‖(1,2)
q,(dτ,dτ+1)×Ω ≤ C1(q) ‖χ̂‖2−2/q

q,Ω (3.10)

Now let φ ∈ C1([dτ, dT ], [0, 1]) be such that

φ(t) =


0 t = dτ

1 t ≥ dτ + 1

Note that there exists an M > 0 so that

|φ′(t)| ≤M for all t ∈ [dτ, dT ].

Define v(t, x) = φ(t)µ(t, x) and w(t, x) = (1− φ(t))µ(t, x). Then v satisfies


vt = ∆v + φ′(t)µ t ∈ (dτ, dT ), x ∈ Ω

∂v
∂η

= 0 t ∈ (dτ, dT ), x ∈ ∂Ω
v = 0 t = dτ, x ∈ Ω.

(3.11)

and w satisfies


wt = ∆w − φ′(t)µ t ∈ (dτ, dτ + 1), x ∈ Ω

∂w
∂η

= 0 t ∈ (dτ, dτ + 1), x ∈ ∂Ω
w = χ̂ t = dτ, x ∈ Ω.

(3.12)

Moreover, note that
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i. µ = v + w for t ∈ [dτ, dτ + 1]

ii. µ = v for t ∈ [dτ, dT ]

iii.φ′ = 0 for t ∈ [dτ + 1, dT ].

By Lemma 3.10 , there exists a constant C2(q) so that

‖Pv‖q,(dτ,dT )×Ω , ‖vt‖q,(dτ,dT )×Ω , ‖∆v‖q,(dτ,dT )×Ω ≤ C2(q) ‖φ′µ‖q,(dτ,dT )×Ω

≤MC2(q) ‖µ‖q,(dτ,dτ+1)×Ω

Appealing to (3.10), we have

‖Pv‖q,(dτ,dT )×Ω , ‖vt‖q,(dτ,dT )×Ω , ‖∆v‖q,(dτ,dT )×Ω ≤ MC1(q)C2(q) ‖χ̂‖2−2/q
q,Ω

Again, by virtue of Theorem 3.1, there exists C3(q) so that

‖w‖(1,2)
q,(dτ,dT )×Ω ≤ C3(q)(‖φ′µ‖q,(dτ,dτ+1)×Ω + ‖χ̂‖2−2/q

q,Ω )

which implies

‖w‖(1,2)
q,(dτ,dT )×Ω ≤ C3(q)(MC1(q) + 1) ‖χ̂‖2−2/q

q,Ω

and hence

‖Pw‖(1,2)
q,(dτ,dτ+1)×Ω ≤ 2C3(q)(MC1(q) + 1) ‖χ̂‖2−2/q

q,Ω

It then follows that

‖∆v‖q,(dτ,dT )×Ω =

(
dτ+1∫
dτ

∫
Ω
|∆v + ∆w|q dxdt+

dT∫
dτ+1

∫
Ω
|∆v|q dxdt

)1/q

≤ ‖∆v + ∆w‖q,(dτ,dτ+1)×Ω + ‖∆v‖q,(dτ+1,dT )×Ω

≤ ‖∆w‖q,(dτ,dτ+1)×Ω + 2 ‖∆v‖q,(dτ,dT )×Ω

≤ (C3(q)(MC1(q) + 1) + 2MC1(q)C2(q)) ‖χ̂‖2−2/q
q,Ω
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Setting K(q) = 2C3(q)(MC1(q) + 1) + 2MC1(q)C2(q), we have

‖∆µ‖q,(dτ,dT )×Ω ≤ K(q) ‖χ̂‖2−2/q
q,Ω (3.13)

In terms of χ, this is equivalent to

(
dT∫
dτ

∫
Ω
|∆χ(t/d, x)|q dxdt

)1/q

≤ K(q) ‖χ̂‖2−2/q
q,Ω

and hence

‖∆χ‖q,(τ,T )×Ω ≤ K(q) ‖χ̂‖2−2/q
q,Ω (3.14)

since d ≥ 1. The same analysis provides the estimate for ‖Pχ‖q,(τ,T )×Ω and

‖χt‖q,(τ,T )×Ω . ut

We now provide some results regarding equivalent norms on some Sobolev spaces

on which we will be working.

Lemma 3.12 Let X = {u ∈W 2
p (Ω) : ∂u

∂η
= 0 on ∂Ω}. Then ‖∆u‖p,Ω +‖u‖p,Ω defines

a norm equivalent to the standard ‖·‖(2)
p,Ω norm on X.

Proof:

Clearly, there exists a C1 such that

‖∆u‖p,Ω + ‖u‖p,Ω ≤ C1 ‖u‖(2)
p,Ω for all u ∈ X. On the other hand, for u ∈ X

we have that u solves

−∆u + u = f x ∈ Ω

∂u
∂η

= 0 x ∈ ∂Ω

for some f ∈ Lp(Ω). From standard elliptic regularity results , we have
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‖u‖(2)
p,Ω ≤ C2 ‖f‖p,Ω = C2 ‖−∆u + u‖p,Ω ≤ C2(‖∆u‖p,Ω + ‖u‖p,Ω).

ut

Lemma 3.13 Let X = {u ∈W 2
p (Ω) : ∂u

∂η
= 0 on ∂Ω}. Then ‖∆u‖p,Ω +‖u‖1,Ω defines

a norm equivalent to the standard norm on X.

Proof:

By virtue of Lemma 3.12, it suffices to show that ‖∆u‖p,Ω + ‖u‖1,Ω gives a norm

equivalent to the norm defined therein. Clearly, since Ω is bounded, there exists a k1

so that

‖∆u‖p,Ω + ‖u‖1,Ω ≤ k1(‖∆u‖p,Ω + ‖u‖p,Ω). (3.15)

To obtain the inequality in the other direction, it suffices to show that there exists a

k2 such that

‖u‖p,Ω ≤ k2(‖∆u‖p,Ω + ‖u‖1,Ω)

Suppose by way of contradiction that this does not hold. Then there exists a sequence

{un}∞n=1 ⊂ X so that

‖u‖p,Ω > n(‖∆un‖p,Ω + ‖un‖1,Ω) for all n ∈ N.
Define a new sequence {vn}, by vn = un

‖un‖ and note that

1 = ‖vn‖p,Ω > n(‖∆vn‖p,Ω + ‖vn‖1,Ω) for all n ∈ N. Clearly this implies that

‖∆vn‖p,Ω , ‖vn‖1,Ω → 0 as n → ∞. In particular, {vn}∞n=1 is a bounded sequence in

X. Since W 2
p (Ω) is compactly imbedded in Lp(Ω) [2], there must be a subsequence

{vnj
} which converges in Lp(Ω). Let v ∈ Lp(Ω) be such that vnj

→ v. Then v satisfies

‖v‖p,Ω = 1 and ‖v‖p,Ω = 0, which is a contradiction. Therefore the result follows. ut
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Lemma 3.14 Let X̂ = {u ∈ W 1,2
p (Ω) : ∂u

∂η
= 0 on (τ, T ) × ∂Ω}. Then ‖ut‖p,Ω +

‖u‖p,Ω + ‖∆u‖p,Ω defines a norm equivalent to the standard norm on X̂.

Proof:

Easily, there exists a k1 so that

‖ut‖p,Ω + ‖u‖p,Ω + ‖∆u‖p,Ω ≤ k1 ‖u‖(1,2)
p,Ω .

In order to obtain the inequality in the other direction, fix t ∈ (τ, T ). Then

u(t, ·) ∈W 2
p (Ω) and satisfies ∂u

∂η
= 0 for x ∈ ∂Ω. Consequently, from Lemma 3.12, we

have

‖u(t, ·)‖(2)
p,Ω ≤ k2(‖∆u(t, ·)‖p,Ω + ‖u(t, ·)‖p,Ω)

with k2 independent of u. This yields

T∫
τ

∫
Ω

∑
|α|≤2

∣∣∣D(0,α)u
∣∣∣p dxdt ≤ k̂2

(
T∫
τ

∫
Ω
(|∆u|p + |u|p)dxdt

)

and it follows that

T∫
τ

∫
Ω
|ut|p dxdt+

T∫
τ

∫
Ω

∑
|α|≤2

∣∣∣D(0,α)u
∣∣∣p dxdt ≤ k̃2

(
T∫
τ

∫
Ω
(|∆u|p + |u|p + |ut|p)dxdt

)
.

Thus giving the desired result. ut

We close this chapter with some estimates that we will use directly in the proofs of

Theorems 2.6 and 2.9.

Lemma 3.15 Suppose that d ≥ 1 and that φ solves (3.1) with T − τ > 1/2. Then

there exists a t ∈ (τ, T ) and a constant C(q) depending only on q so that

‖∆φ(t, ·)‖q,Ω ≤ C(q)
(
‖θ‖q,(τ,T )×Ω + ‖φ0‖2−2/q

q,Ω

)
.
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Proof:

Note that φ = v + w, where v solves


vt = d∆v + θ t ∈ (τ, T ), x ∈ Ω

∂v
∂η

= 0 t ∈ (τ, T ), x ∈ ∂Ω
v = 0 t = τ, x ∈ Ω.

(3.16)

and w solves


wt = d∆w t ∈ (τ, T ), x ∈ Ω

∂w
∂η

= 0 t ∈ (τ, T ), x ∈ ∂Ω
w = φ0 t = τ, x ∈ Ω.

(3.17)

Lemmas 3.10 and 3.11 imply that

‖∆φ‖q,(τ,T )×Ω = ‖∆v + ∆w‖q,(τ,T )×Ω ≤ ‖∆v‖q,(τ,T )×Ω + ‖∆w‖q,(τ,T )×Ω

≤ C(q) ‖θ‖q,(τ,T )×Ω +K(q) ‖φ0‖2−2/q
q,Ω ≤ Ĉ(q)

(
‖θ‖q,(τ,T )×Ω + ‖φ0‖2−2/q

q,Ω

)
where Ĉ(q) = max{C(q), K(q)}. The Mean Value Theorem together with the fact

the T − τ > 1/2 implies that there exists a t ∈ (τ, T ) so that

‖∆φ(t, ·)‖q,Ω ≤ 2Ĉ(q)
(
‖θ‖q,(τ,T )×Ω + ‖φ0‖2−2/q

q,Ω

)
.

Setting C(q) = 2Ĉ(q) gives the desired result. ut

Lemma 3.16 Suppose that d ≥ 1 and that φ solves (3.1). Then there exists a con-

stant K(q) depending only on q so that

‖Pφ‖(1,2)
q,(τ,T )×Ω ≤ K(q)

(
‖θ‖q,(τ,T )×Ω + ‖φ0‖2−2/q

q,Ω

)
Proof:

Proceeding as in Lemma 3.15, we have that φ = v+w where v and w solve (3.9)

and (3.10), respectively. By virtue of Lemmas 3.10 and 3.11, we have
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‖Pφ‖q,(τ,T )×Ω = ‖Pv + Pw‖q,(τ,T )×Ω ≤ ‖Pv‖q,(τ,T )×Ω + ‖Pw‖q,(τ,T )×Ω

≤ C(q) ‖θ‖q,(τ,T )×Ω +K(q) ‖φ0‖2−2/q
q,Ω ≤ K1(q)(‖θ‖q,(τ,T )×Ω + ‖φ0‖2−2/q

q,Ω )

where K1(q) = max{C(q), K(q)}. Similarly, we obtain

‖∆φ‖q,(τ,T )×Ω , ‖φt‖q,(τ,T )×Ω ≤ K1(q)(‖θ‖q,(τ,T )×Ω + ‖φ0‖2−2/q
q,Ω ).

Noting that ∆φ = ∆(Pφ) and that ‖(Pφ)t‖q,(τ,T )×Ω ≤ 2 ‖φt‖q,(τ,T )×Ω , we have that

‖Pφt‖q,(τ,T )×Ω + ‖Pφ‖q,(τ,T )×Ω + ‖∆(Pφ)‖q,(τ,T )×Ω ≤ 4K1(q)(‖θ‖q,(τ,T )×Ω + ‖φ0‖2−2/q
q,Ω ).

From Lemma 3.14, there exists a c̃ so that

‖Pφ‖(1,2)
q,(τ,T )×Ω ≤ c̃

(
‖Pφt‖q,(τ,T )×Ω + ‖Pφ‖q,(τ,T )×Ω + ‖∆(Pφ)‖q,(τ,T )×Ω

)

and the result follows with K(q) = 4c̃K1(q). ut

We will also need the following standard algebraic estimate.

Lemma 3.17 Suppose that K,L, y ≥ 0 and 0 < ε < 1. If y ≤ K + Lyε, then

y < K
1−ε

+ L
1

1−ε .

Proof:

The result is clear if L = 0. Suppose L > 0, and for each K ≥ 0, define u(K)

to be the unique positive solution of u = K + Luε. Then y ≤ u(K) and u′(K) =

u(K)
(1−ε)u(K)+εK

< 1
1−ε

. Consequently,

y ≤ u(K)

< K
1−ε

+ u(0)

= K
1−ε

+ L
1

1−ε .
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ut

The following two lemmas will be used in the proof of Theorem 2.9. These proofs

are well known [4], but will be included for the sake of completeness.

Lemma 3.18 Let w ∈ H2(Ω) with ∂w
∂η

= 0 on ∂Ω. Then

‖∆w‖2
2,Ω ≥ λ1 ‖∇w‖2

2,Ω

where λ1 is the smallest positive eigenvalue of −∆ subject to Neumann boundary

conditions.

Proof:

Let {φk}∞k=0 be a complete set of orthonormal eigenfunctions in L2(Ω) of −∆

with homogeneous Neumann boundary conditions. Let {λk}∞k=0 be the corresponding

set of eigenvalues listed in increasing order. We can write w as

w =
∑∞

k=0wkφk

and hence

∆w =
∑∞

k=0−λkwkφk.

Using integration by parts, we have

‖∇w‖2
2,Ω =

∫
Ω
|∇w|2 dx =

∫
∂Ω
w ∂w

∂η
dσ − ∫

Ω
w∆wdx = − ∫

Ω
w∆wdx =

∑∞
k=1 λkw

2
k

It now follows that

‖∆w‖2
2,Ω =

∑∞
k=1 λ

2
kw

2
k ≥ λ1

∑∞
k=1 λkw

2
k ≥ λ1 ‖∇w‖2

2,Ω .

ut
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Lemma 3.19 Let w ∈ H2(Ω) with ∂w
∂η

= 0 on ∂Ω. Then

‖∇w‖2
2,Ω ≥ λ1 ‖w − w‖2

2,Ω

where w = |Ω|−1 ∫
Ω
wdx.

Proof:

Let {φk}∞k=0 be a complete set of orthonormal eigenfunctions in L2(Ω) of −∆

with homogeneous Neumann boundary conditions. Let {λk}∞k=0 be the corresponding

set of eigenvalues listed in increasing order. We can write w as

w =
∑∞

k=0wkφk

and hence

‖∇w‖ =
∑∞

k=0 λkw
2
k.

φ0 is a constant function associated with λ0. Hence it follows that

w = |Ω| .−1
∫
Ω
wdx = w0φ0

We now have that

w − w =
∑∞

k=1 λkwk

and

‖w − w‖2
2,Ω =

∑∞
k=1w

2
k.

It then follows that

‖∇w‖ =
∑∞

k=0 λkw
2
k ≥ λ1

∑∞
k=1w

2
k = λ1 ‖w − w‖2

2,Ω .

ut
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CHAPTER IV

MAIN RESULTS

A. Proof of Theorem 2.3

We begin by restating (2.1) for convenience as


ut = D∆u+ f(t, x, u) t > 0, x ∈ Ω

∂uk/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

uk(0, ·) = u0k(·) t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.1)

Recall the truncated system associated with (4.1). Let r > 0 and define Φr ∈
C∞(Rm, [0, 1]) via

Φr(u) =


1,

0,

u ∈ Br(0)

u /∈ B2r(0)
(4.2)

The truncated system is given by


ut = D∆u+ f̂(t, x, u) t > 0, x ∈ Ωσ(k) k = 1, ...m

∂uk/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

uk(0, ·) = u0k(·) t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.3)

where f̂k(t, x, u) = Φr(u)fk(t, x, u)

We establish that this system has at least one solution. To this end we recast

the system as a fixed point problem and apply Shauder’s fixed point theorem.

Define Tr,τ : C(Qτ ) → C(Qτ ) via Tr,τ (v) = u where u solves
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ut = D∆u+ f̂(t, x, v) t > 0, x ∈ Ω

∂uk/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

uk(0, ·) = u0k(·) t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.4)

We show that this mapping is well-defined. Note that v ∈ C(Ω, Rm) implies

there exists a constant Kr,τ > 0 such that
∣∣∣f̂(t, x, v)

∣∣∣ ≤ Kr,τ . This gives us that

f̂(t, x, v) ∈ Lp(Qτ ) for all 1 ≤ p <∞.

We get the existence of u ∈W 1,2
p (Qτ ) for all 1 ≤ p <∞ by [19]. Note that if p is

sufficiently largeW 1,2
p (Qτ ) imbeds compactly into C(Qτ ). Therefore, T (v)r,τ ∈ C(Qτ ),

and we have Tr,τ is well defined.

We will now show that Tr,τ is continuous. To this end, let z = Tr,τ (v)− Tr,τ (w)

for v, w ∈ C(Qτ ). Then z solves


(zk)t = dk∆zk + f̂k(t, x, v)− f̂k(t, x, w) t > 0, x ∈ Ωσ(k) k = 1, ...m

∂zk/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

zk(0, x) = 0 t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.5)

From [19] there exists a constant Lp,τ such that

‖zk‖W 1,2
p (Qτ ) ≤ Lp,τ

∥∥∥f̂k(·, ·, v)− f̂k(·, ·, w)
∥∥∥
p,Qτ

≤ amaxLp,τ ‖v − w‖p,Qτ
(4.6)

So,

‖zk‖W 1,2
p (Qτ ) ≤ amaxLp,τ

∥∥∥Ωσ(k)

∥∥∥1/p
τ 1/p ‖v − w‖∞,Qτ

(4.7)
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Applying the Sobolev embedding theorem for p large enough [19] there exists Cp,τ,Ω

such that

‖zk‖∞ ≤ Cp,τ,Ω ‖zk‖W 1,2
p (Qτ ) (4.8)

This gives us

‖Tr,τ (v)− Tr,τ (w)‖∞ = ‖zk‖∞ ≤ C̃ ‖v − w‖∞,Qτ
(4.9)

So, Tr,τ is continuous. Furthermore, the W 1,2
p (Qτ ) estimate for u and (4.6) imply

Tr,τ is compact. Finally, note that the truncation implies that [−2r, 2r]m = B2r is

an invariant m-rectange for (4.3). Therefore, Tr,τ : C(Qτ , B2r) → C(Qτ , B2r) and the

Shauder fixed point theorem gives us that there exists a u ∈ C(Qτ , B2r) such that

Tr,τ (u) = u.

We denote that solution u to (4.3) by u(r). Now choose r > ‖u0‖∞ . By continuity

there exists an εr > 0 such that ‖u(t, ·)‖∞ ≤ r for every t ∈ [0, εr]. Note that u(r)

solves (4.1) for [0, εr]. As a result, we have a local solution to (4.1).

We must now show that the solution to (4.1) on Qεr is unique. Suppose that

w ∈ C(Qτ , R
m) solves (4.1) on Qεr .

Let φ = u(r) − w and θ = f(·, ·, u(r))− f(·, ·, w). Then φ solves
(φk)t = dk∆φk + θ t > 0, x ∈ Ωσ(k) k = 1, ...m

∂φk/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

φk(0, x) = 0 t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.10)

Multiplying both sides by φk gives

φk(φk)t = dkφk∆φk + φkθk (4.11)
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Integrating both sides over Qτ,Ωσ(k)
gives

t∫
0

∫
Ωσ(k)

φk(φk)tdxdt =

t∫
0

∫
Ωσ(k)

dkφk∆φkdxdt+

t∫
0

∫
Ωσ(k)

φkθkdxdt (4.12)

As a result,

1

2

∫
Ωσ(k)

φ2
kdx = −dk

t∫
0

|∇φk|2 dt+

t∫
0

∫
Ωσ(k)

φkθkdxdt ≤ K̃

t∫
0

∫
Ωσ(k)

φ2
kdxdt (4.13)

Now define y = 1
2

∫
Ωσ(k)

φ2
kdx.

y ≤ 2K̃
t∫
0
ydt

So, Gronwall’s inequality gives us y = 0. Therefore, u(r) = w. So, to finish we define

εr = sup{ε |‖u(t, ·)‖∞ ≤ r for every t ∈ [0, ε]}

and let

Tmax = limr→∞ εr

The analysis above implies if Tmax <∞ then solution to (4.1) blows up in finite time.

B. Invariance of Rm
+

In the introduction we mentioned that if the fis are quasipositive, then Rm
+ is invariant

for (4.1). We demonstrate this below.

Consider the system (4.1) with f(t, x, u) replaced by f(t, x, u+)


ut = D∆u+ f(t, x, u+) t > 0, x ∈ Ω

∂uk

∂η
= 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ..., m

uk(0, ·) = u0k
t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.14)
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where u+ = max{u, 0}, u− = −min{u, 0} and f(t, x, u+) is continuous and is

locally Lipschitz in its third argument uniformly for bounded x and t. Theorem 2.3

guarantees there exists a unique solution of (4.14). Multiplying the kth component of

(4.14) and integrating over (0, t)× Ωσ(k) we obtain

t∫
0

∫
Ωσ(k)

u−k (uk)tdxdt =
t∫
0

∫
Ωσ(k)

dku
−
k ∆ukdxdt+

t∫
0

∫
Ωσ(k)

u−k fk(u
+)dxdt

Note that

(uk)t = −(u−k )t

and

∆uk = −∆u−k

whenever u−i > 0.

Integrating the equation above by parts yields

−1
2

∫
Ωσ(k)

(u−k )2dx = dk

t∫
0

∫
Ωσ(k)

∣∣∣∇u−k ∣∣∣2 dxdt+
t∫
0

∫
Ωσ(k)

u−k fk(u
+)dxdt

Since fk is quasipositive,

u−k fk(u
+) =


0

≥ 0

if u ≥ 0

if u < 0

This gives us

−1
2

∫
Ωσ(k)

(u−k )2dx ≥ dk

t∫
0

∫
Ωσ(k)

∣∣∣∇u−k ∣∣∣2 dxdt
Hence u−k = 0, the desired result.
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C. Proof of Theorem 2.5

We must first establish an a priori estimate for

nk∑
i=1

Tmax∫
0

uo
k(i)

(s, x)ds (4.15)

We have (ui)t = di4ui + fi(t, x, u). Multiplting both sides by ank,i and summing

we get

nk∑
i=1

ank,i(uo
k(i)

)t ≤ 4(
nk∑
i=1

ank,idiuo
k(i)

) +Mk(
nk∑
i=1

uo
k(i)

) +Nk (4.16)

Setting dmax = max{di} and integrating both sides we get

nk∑
i=1

ank,iuo
k(i)

(x, t) ≤ Nkt+

dmax4(
t∫
0

nk∑
i=1

ank,iuo
k(i)

(x, s)ds) +
nk∑
i=1

ank,iuo
k(i)

(x, 0) + M̃k(
t∫
0

nk∑
i=1

ank,iuo
k(i)

(x, s)ds)

where M̃k = Mk · { 1
ank,o

k(i)
di
}.

Define ϕ =
t∫
0

nk∑
i=1

ank,iuo
k(i)

(x, t) and we get

ϕt ≤ dmax4ϕ+ M̃kϕ+
nk∑
i=1

ank,iuo
k(i)

(x, 0) +Nkt (4.17)

Suppose that Ψ is a solution to
Ψ′(t) = MkΨ + ‖v0‖∞ +Nkt

Ψ(0) = 0.

We can see that Ψ is an upperbound for ϕ and

Ψ(t) = eMkt
t∫
0
e−Mks(‖v0‖∞ +Nks)ds.

Therefore, ϕ is bounded for all bounded t.
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Using the first row of a
(k)
ij we have that and applying the intermediate sums

condition we have

fo
k(i)

(x, t, u) ≤Mk

nk∑
i=1

uo
k(i)

+Nk (4.18)

Suppose that vk,1 solves



(vk,1)t = dk∆vk,1 +Mk

nk∑
i=1

uo
k(i)

+Nk − fo
k(1)

t > 0, x ∈ Ωσ(k)

∂vk,1/∂η = 0 t > 0, x ∈ ∂Ωσ(k)

vk,1(0, x) = 0 t = 0, x ∈ Ωσ(k)

(4.19)

Note: vk,1 ≥ 0

Consider vk,1 + uk,1 = wk,1



(wk,1)t = dk∆wk,1 +Mk

nk∑
i=1

uo
k(i)

+Nk t > 0, x ∈ Ωσ(k)

∂wk,1/∂η = 0 t > 0, x ∈ ∂Ωσ(k)

wk,1(0, x) = uk,1(0, x) t = 0, x ∈ Ωσ(k)

(4.20)

wk(t, x) = dk∆

t∫
0

wk + wk(0, x) +

t∫
0

(Mk

nk∑
i=1

uo
k(i)

(s, x) +Nk)ds (4.21)

Note:
t∫
0
(Mk

nk∑
i=1

uo
k(i)

(s, x) +Nk)ds is bounded for bounded t.

This implies there exists a constant L(dk, t, p) such that

‖(wk,1)t‖p,Qt
≤ L

∥∥∥∥∥∥wk,1(0, x) +

t∫
0

(Mk

nk∑
i=1

uo
k(i)

(s, x) +Nk)ds

∥∥∥∥∥∥
p,Qt

(4.22)

Thus ‖wk,1‖p,Qt
is bounded.

Since ‖uk,1‖p,Qt
≤ ‖wk,1‖p,Qt

we have that
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‖uk,1‖p,Qt
is bounded for every p ≥ 1.

Recall a
(k)
2,1fo

k(1)
(t, x, u) + a

(k)
2,2fo

k(2)
(t, x, u) ≤ Mk

nk∑
i=1

uo
k(i)

(s, x) +Nk

Suppose that vk,2 solves

(vk,2)t = dk∆vk,2 +Mk

nk∑
i=1

uo
k(i)

+Nk− a
(k)
2,1fo

k(1)
− a

(k)
2,2fo

k(2)
t > 0, x ∈ Ωσ(k)

∂vk,2/∂η = 0 t > 0, x ∈ ∂Ωσ(k)

vk,2(0, x) = 0 t = 0, x ∈ Ωσ(k)

Note: vk,2 ≥ 0

We have

(a
(k)
2,1uo

k(1)
(t, x, u) + a

(k)
2,2uo

k(2)
(t, x, u) + vk,2)t =

∆(do
k(1)
a

(k)
2,1uo

k(1)
+ do

k(2)
a

(k)
2,2uo

k(2)
+ do

k(2)
vk,2) +Mk

nk∑
i=1

uo
k(i)

(s, x) +Nk

Setting

T1 = Mk

nk∑
i=1

uo
k(i)

(s, x) +Nk (4.23)

T2 = a
(k)
2,1uo

k(1)
(0, x, u) + a

(k)
2,2uo

k(2)
(0, x, u) (4.24)

T3 = (a
(k)
2,1

do
k(1)

do
k(2)

− 1)uo
k(1)

(4.25)

we see that T1 and T2 are bounded and that T3 has an Lp(Qk,t) bound.

Choose φ =
t∫
0
(

do
k(1)

do
k(2)

a
(k)
2,1uo

k(1)
+ a

(k)
2,2uo

k(2)
+ vk,2). φ satisfies

φt = do
k(2)

∆φ+ T1 + T2 + T3. (4.26)

This gives us that
∥∥∥uo

k(2)

∥∥∥
p,Qk,t

is bounded for p ≥ 1.

Recall that
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(uok(i))t = dok(i)∆uok(i) + fok(i)(t, x, u) t > 0, x ∈ Ωσ(k)

∂uok(i)/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

uok(i)(0, ·) = uok(i)(·) t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.27)

and uok(i) ≤ ũok(i) where ũok(i) solves


(ũok(i))t = dok(i)∆ũok(i) + fok(i)(t, x, ũ) t > 0, x ∈ Ωσ(k)

∂ũok(i)/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

ũok(i)(0, ·) =
∥∥∥uok(i)(·)

∥∥∥∞ t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.28)

and ũok(i) = Φk,i + Ψk,i where Φk,i solves


(Φk,i)t = dok(i)∆Φk,i t > 0, x ∈ Ωσ(k)

∂Φk,i/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

Φk,i(0, ·) =
∥∥∥uok(i)(·)

∥∥∥∞ t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.29)

and Ψk,i solves


(Ψk,i)t = dok(i)∆Ψk,i + fok(i)(t, x, ũ) t > 0, x ∈ Ωσ(k)

∂Ψk,i/∂η = 0 t > 0, x ∈ ∂Ωσ(k) k = 1, ...m

Ψk,i(0, ·) = 0 t = 0, x ∈ Ωσ(k) k = 1, ...m

(4.30)

Note that the maximum principle imples that Φk,i is bounded by
∥∥∥uok(i)(·)

∥∥∥∞ .

Also, ‖Ψk,i‖W 1,2
p (Qσ(k),t)

≤ Const
∥∥∥fok(i)(t, x, ũ)

∥∥∥
p
.

If the fok(i) are polynomially bounded then we can conclude that ‖Ψk,i‖W 1,2
p (Qσ(k),t)

has a bound for every p. Applying the Sobolev embedding theorem gives us that

‖Ψk,i‖∞,Qσ(k),t
is bounded and the result follows.
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D. Proof of Theorem 2.6

We will begin by proving the result for n ≤ 3. Earlier we showed that Rm
+ is invariant.

Since B2r,∞(z)∩Rm
+ is invariant we know that (2.3) has a unique global solution. Let

dmin = min{dk} and a = 1/dmin. Define v(t, x) = u(at, x) − z where u solves (2.3).

Then v satisfies the system of equations given component-wise by


vkt = d̂k∆vk + af̃k(v) t > 0, x ∈ Ωσ(k)

∂vk

∂η
= 0 t > 0, x ∈ ∂Ωσ(k)

vk = u0k
t = 0, x ∈ Ωσ(k)

(4.31)

where d̂k = adk and f̃k(v) = f̂k(v + z).

We will show that v can be bounded in the sup-norm independent of r, and this

will apply to the solution of (4.1).

We multiply the kth component of (4.31) by vk and integrate over the space-time

cylinder Q(τ,T ) to obtain

T∫
τ

∫
Ωσ(k)

vkvktdxdt = d̂k

T∫
τ

∫
Ωσ(k)

vk∆vkdxdt+ a

T∫
τ

∫
Ωσ(k)

vkf̃k(v)dxdt.

Integration by parts gives

1
2
‖vk(T, ·)‖2

2,Ωσ(k)
− 1

2
‖vk(τ, ·)‖2

2,Ωσ(k)

≤ −d̂k

T∫
τ

∫
Ωσ(k)

|∇vk|2 dxdt+ a
T∫
τ

∫
Ωσ(k)

vkf̃k(v)dxdt

Since f̂k is Lipschitz with constant Lr on subdomain Ωσ(k) we have

d̂k

T∫
τ

∫
Ωσ(k)

|∇vk|2 dxdt

≤ 1
2
‖vk(τ, ·)‖2

2,Ωσ(k)
− 1

2
‖vk(T, ·)‖2

2,Ωσ(k)
+ aLr

T∫
τ

∫
Ωσ(k)

|vk|
m∑

k=1
|vk| dxdt

Applying the Mean Value Theorem we find for some t ∈ (τ, T )
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∫
Ωσ(k)

|∇vk(t, x)|2 dx ≤ (
1

2(T − τ)
+ aLr)LM ‖vk‖∞,R+×Ωσ(k)

. (4.32)

We can select an increasing sequence of time values {T1,i}∞i=1 satisfying

0 < T1,1 < 1

1
2
< ∆T1,i < 1 ∀i

so that

‖vk(T1,i, ·)‖(1)
2,Ωσ(k)

≤ (2 + aLr)
1/2L

1/2
M ‖vk‖1/2

∞,R+×Ωσ(k)

Taking vk(T1,i, ·) as initial data, we obtain a solution vk ∈W 1,2
2 (Q(T1,i,T1,i+1)).

From Lemma 3.15 we get a constant C1 independent of d̂k so that for some

t ∈ (T1,i, T1,i+1)

‖∆vk(t, ·)‖2,Ωσ(k)
≤ C1(

∥∥∥af̃k

∥∥∥
2,(T1,j ,T1,j+1)×Ωσ(k)

+ ‖vk(T1,i, ·)‖(1)
2,Ωσ(k)

).

Combining this with Lemma 3.12 we obtain

‖vk(t, ·)‖(2)
2,Ωσ(k)

≤ (C1 + 1)(1 + aLr + (2 + aLr)
1/2)L

1/2
M ‖vk‖1/2

∞,R+×Ωσ(k)

for some t ∈ (T1,i, T1,i+1). In particular, there exists a sequence {T ∗1,j}∞j=1 with T ∗1,2j−1 ∈
[T1,i, T1,i + 1/2] and T ∗1,2j ∈ [T1,i+1 − 1/2, T1,i+1] so that

∥∥∥vk(T
∗
1,j , ·)

∥∥∥(2)
2,Ωσ(k)

≤ (C1 + 1)(aLr + 1 + (2 + aLr)
1/2)L

1/2
M ‖vk‖1/2

∞,R+×Ωσ(k)

From Theorem 3.2, we know W 2
2 (Ω) imbeds continuously into W

2−2/q
2 (Ω) for

q = 2(n+2)
n

. Thus there exists a constant Ĉ so that

∥∥∥vk(T
∗
1,j , ·)

∥∥∥(2−2/q)

q,Ωσ(k)

≤ Ĉ
∥∥∥vk(T

∗
1,j , ·)

∥∥∥(2)
2,Ωσ(k)
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As a result, we can select a sequence of time values {T2,i}∞i=1 satisfying

T2,1 ≤ 2

1/2 < ∆T2,i < 1 ∀iεN

and a constant C2 so that

‖vk(T2,i, ·)‖(2−2/q)
q,Ωσ(k)

≤ C2(aLr + 1 + (2 + aLr)
1/2) ‖vk‖∞,R+×Ωσ(k)

Using vk(T2,i, ·) as initial data, we have from Lemma 3.16 a constant C3 independent

of dk so that

‖Pvk‖(1,2)
q,(T2,i,T2,i+1)Ωσ(k)

≤ C3(a
∥∥∥f̃k

∥∥∥
q,(T2,i,T2,i+1)×Ωσ(k)

+ ‖vk(T2,i, ·)‖(2−2/q)
q,Ωσ(k)

) (4.33)

Hence, there exists a constant C4 so that

‖Pvk‖(1,2)
q,(T2,i,T2,i+1)×Ωσ(k)

≤ C4(aLr ‖v‖(q−1)/q
∞,R+×Ωσ(k)

L
1/q
M + (aLr + 1 + (2 + aLr)

1/2)) ‖v‖1/2
∞,R+×Ωσ(k)

L
1/2
M )

and consequently

‖Pvk‖(1,2)
q,(T2,i,T2,i+1)×Ωσ(k)

≤ C4(2aLr + 1 + (2 + aLr)
1/2) ‖vk‖p

∞,R+×Ωσ(k)
L

1/2
M

where p = q−1
q

or 1
2

is chosen to maximize ‖v‖p
∞,R+×Ωσ(k)

. For n ≤ 3, we have

q = 2(n+2)
n

> n+2
2

and henceW 1,2
q (Q(T2,i,T2,i+1)) imbeds continuously into C(Q(T2,i,T2,i+1)).

Thus, there exists a constant C5 so that

‖Pvk‖∞,(T2,i,T2,i+1)×Ωσ(k)
≤ C5(2aLr + 1 + (2 + aLr)

1/2) ‖vk‖p
∞,R+×Ωσ(k)

L
1/2
M .

Since this holds for every k, we have
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‖vk‖∞,(T2,i,T2,i+1)×Ωσ(k)
≤ C5(2aLr + 1 + (2 + aLr)

1/2) ‖vk‖p
∞,R+×Ωσ(k)

L
1/2
M +

LM∣∣∣Ωσ(k)

∣∣∣ .
Because vk = 0 for x ∈ Ω

c
σ(k) we have

‖vk‖∞,(T2,i,T2,i+1)×Ω ≤ C5(2aLr + 1 + (2 + aLr)
1/2) ‖vk‖p

∞,R+×Ω L
1/2
M +

LM∣∣∣Ωσ(k)

∣∣∣ .
Summing over the components we find that

‖v‖∞,(T2,i,T2,i+1)×Ω ≤ mC5(2aLr + 1 + (2 + aLr)
1/2) ‖v‖p

∞,R+×Ω L
1/2
M +

m∑
k=1

LM∣∣∣Ωσ(k)

∣∣∣ .
Applying Lemma 3.17 to this inequality we arrive at

‖v‖∞,(T2,i,T2,i+1)×Ω ≤ (L
1/2
M mC5(2aLr + 1 + (2 + aLr)

1/2))
1

1−p +
1

1− p

m∑
k=1

LM∣∣∣Ωσ(k)

∣∣∣ .
We now have a bound for the supremum of v on the interval [T2,1,∞). In order

to complete the proof, we must find a bound for the supremum of v on the interval

[0, T2,1). From Theorem 3.6 that dk∆ generates a strongly continuous semigroup of

contractions {Tk(t)} on C(Ωσ(k)). By variation of parameters we have

vk(t, ·) = Tk(t)v0k
+

t∫
0

Tk(t− s)af̃k(v(s, ·))ds

and thus

‖vk(t, ·)‖∞,Ωσ(k)
= ‖v0k

‖∞,Ωσ(k)
+ aLr

t∫
0

‖v(s, ·)‖∞,Ωσ(k)
ds

Applying Gronwall’s inequality we find that

‖vk(t, ·)‖∞,Ωσ(k)
≤ ‖v0k

‖∞,Ωσ(k)
eaLrt

≤ ‖v0k
‖∞,Ωσ(k)

e2aLr
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Again, because vk = 0 for x ∈ Ω
c
σ(k) we have

‖vk(t, ·)‖∞,Ω ≤ ‖v0k
‖∞,Ωσ(k)

e2aLr

Summing over the components we find

‖v‖∞,R+×Ω ≤ m ‖v0‖∞,Ω e
2aLr (4.34)

From inequalities (4.33) and (4.34) we find

‖v‖∞,R+×Ω ≤ (4.35)

max{(L1/2
M mC5(2aLr + 1 + (2 + aLr)

1/2))
1

1−p +
1

1− p

m∑
k=1

LM∣∣∣Ωσ(k)

∣∣∣ , m ‖v0‖∞,Ω e
2aLr}

Select r so that

r ≥ max{(3mLMC5)
1

1−p +
1

1− p

m∑
k=1

LM∣∣∣Ωσ(k)

∣∣∣ , 2m ‖v0‖∞,Ω}

From (4.5) we can choose a small enough to force

‖v‖∞,R+×Ω ≤ max{(3mC5)
1

1−p +
1

1− p

m∑
k=1

LM∣∣∣Ωσ(k)

∣∣∣ , 2m ‖v0‖∞,Ω}.

This gives us that for sufficiently large diffusion

‖v(t, ·)‖∞,Ω ≤ KM ∀t ≥ 0

where KM = max{(3mC5)
1

1−p + 1
1−p

m∑
k=1

LM|Ωσ(k)| , 2m ‖v0‖∞,Ω}.
If LM → 0 as ‖u0 − ẑ‖∞,Ω → 0 then we can see that for a fixed r

max{(L1/2
M mC5(2aLr +1+(2+aLr)

1/2))
1

1−p + 1
1−p

m∑
k=1

LM|Ωσ(k)| , m ‖v0‖∞,Ω e
2aLr} can

be made arbitrarily small.

This gives us that if the initial data is sufficiently close to z then no additional
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assumptions on the size of the diffusion coefficients are necessary to guarantee the

solution u of (4.1) exists globally. This concludes the proof for n ≤ 3.

The primary estimate that relied on n ≤ 3 was (4.33). We will now establish

this estimate for n > 3 and the result will then follow for an arbitrary n.

In order to extend the result to an arbitrary dimension n, we claim the following:

For every j ∈ N, if qj =
(

n+2
n

)j
there exists

i. a sequence {Tj+1,i}∞i=1 such that

0 < Tj+1,1 < j + 1

1
2
< ∆Tj+1,i < 1

ii. a constant C(j), with 0 < C(j) < 1 and a function Kj+1 ∈ C(R+, R+)

independent of d̂σ(k),k and truncation such that

‖vk(Tj+1,i, ·)‖(2−2/qj)
qj

≤ Kj+1(aLr) ‖v‖C(j)
∞,R+×Ωσ(k)

(4.36)

We have that this holds for j = 1. We will now proceed by induction. Suppose

that this holds for j = l ≥ 1. We will now show that this is true for j + 1.

Since (4.36) holds for j = l, there exists a sequence {Tl+1,i}∞i=1 so that

‖vk(Tl+1,i, ·)‖(2−2/ql)
ql

≤ Kl+1(aLr) ‖v‖C(l)
∞,R+×Ωσ(k)

Taking vk(Tl+1,i, ·) as initial data, we obtain a solution vk ∈W 1,2
ql

(Q(Tl+1,i,Tl+1,i+1)).

By virtue of Lemma 3.14, there exists a constant C6 independent of d̂k so that for

some t ∈ (Tl+1,i, Tl+1,i+1)

‖∆vk(t, ·)‖ql,Ωσ(k)
≤ C6(a

∥∥∥f̃k

∥∥∥
ql,(T2,i,T2,i+1)×Ωσ(k)

+ ‖vk(Tl+1,i, ·)‖(2−2/ql)
ql,Ωσ(k)

).
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which gives us

‖∆vk(t, ·)‖ql,Ωσ(k)
≤ C6(aLr ‖v‖

ql−1

ql
∞,R+×Ωσ(k)

L
1/ql

M +Kl+1(aLr) ‖vk(Tl+1,i, ·)‖C(l)
ql,Ωσ(k)

).

Using this with Lemma 3.12 gives us that for some t ∈ (Tl+1,i, Tl+1,i+1)

‖vk(t, ·)‖(2)
ql,Ωσ(k)

≤ (C6+1)((aLr+1) ‖v‖
ql−1

ql
∞,R+×Ωσ(k)

L
1/ql

M +Kl+1(aLr) ‖vk(Tl+1,i, ·)‖C(l)
ql,Ωσ(k)

).

Again, we can find a sequence {T ∗l+1,i}∞i=1 with T ∗l+1,2j−1 ∈ [Tl+1,i, Tl+1,i + 1/2] and

T ∗l+1,2j ∈ [Tl+1,i+1 − 1/2, Tl+1,i+1] so that

∥∥∥vk(T
∗
1+1,i, ·)

∥∥∥(2)

ql,Ωσ(k)

≤ (C6+1)((aLr+1) ‖vk‖(ql−1)/ql

∞,R+×Ωσ(k)
L

1/ql

M +Kl+1(aLr) ‖vk‖K(l)
∞,R+×Ωσ(k)

).

Applying Theorem 3.1, we find that W 2
ql
(Ωσ(k)) imbeds into W

2−2/ql
ql+1 (Ωσ(k)). Thus

there exists C7 ∈ R so that

∥∥∥vk(T
∗
1+1,i, ·)

∥∥∥(2−2/ql+1)

ql+1,Ωσ(k)

≤ C7 ‖vk(Tl+1,i, ·)‖(2)
ql,Ωσ(k)

It now follows that∥∥∥vk(T
∗
1+1,i, ·)

∥∥∥(2−2/ql+1)

ql+1,Ωσ(k)

≤
C7(C6 + 1)((aLr + 1) ‖vk‖(ql−1)/ql

∞,R+×Ωσ(k)
L

1/ql

M +Kl+1(aLr) ‖vk‖K(l)
∞,R+×Ωσ(k)

)

and hence

∥∥∥vk(T
∗
1+1,i, ·)

∥∥∥(2−2/q)

q,Ωσ(k)

≤ Kl+2(aLr) ‖vk‖K(l+1)
∞,R+×Ωσ(k)

where Kl+2(x) = C7(C6 +1)((x+1)L
1/ql

M +Kl+1(x)) and C(l+1) = C(l) or (ql−1)/ql,

whichever maximizes ‖vk‖C(l+1)
∞,R+×Ωσ(k)

.

So, we can pick a sequence {Tl+2,i}∞i=1 with Tl+2,1 < l + 2 and 1
2
< ∆Tl+1,i < 1

with

‖vk(T1+2,i, ·)‖(2−2/ql+1)
ql+1,Ωσ(k)

≤ Kl+2(aLr) ‖vk‖K(l+1)
∞,R+×Ωσ(k)
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and our claim follows by induction.

Now, by choosing j sufficiently large so that qj >
n+2

2
and applying Lemma 3.16,

we find that there is a constant C9 independent of d̂k so that

‖Pvk‖(1,2)
qj ,(T2,i,T2,i+1)Ωσ(k)

≤ C9(a
∥∥∥f̃k

∥∥∥
qj ,(T2,i,T2,i+1)×Ωσ(k)

+ ‖vk(T2,i, ·)‖(2−2/qj )
qj ,Ωσ(k)

).

E. Proof of Theorem 2.7

Suppose that f satisfies conditions (1.3) and (1.10) and that u solves (2.3). Note that

these conditions together imply that f(x, 0) = 0 so that (2.2) holds with z = 0 and

uk ≥ 0 on its interval of existence. Suppose that 0 ≤ t < Tmax. Integrating over the

kth equation of (2.3) over Q(0,t) gives

∫
Ω

(uk(t, x)− uk(0, x))dx =

t∫
0

∫
Ω

f̂k(x, u)dxdt

Since f satisfies (1.10) and Φr ≥ 0, we have

m∑
k=1

ckf̂k(x, u) = Φr

m∑
k=1

ckfk(x, u) ≤ 0

Summing the components we find

Φr

m∑
k=1

ckfk(x, u) =
m∑

k=1

ck

∫
Ω

(uk(t, x)− uk(0, x))dx ≤ 0

This gives us

m∑
k=1

ck

∫
Ω

uk(t, x)dx ≤
m∑

k=1

ck

∫
Ω

uk(0, x)dx

It now follows that

∫
Ω

m∑
k=1

uk(t, x)dx ≤ max{ck}
min{ck}

∫
Ω

m∑
k=1

uk(0, x)dx
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and we have our L1 estimate of (2.3) independent of dk and r.

The result now follows from Theorem 2.6.

F. Proof of Theorem 2.8

Suppose that f satisfies condition (2.2) and there exists and invariant region I and a

convex seperable Lyapunov function associated with (2.1). Note that these conditions

together imply that the equilibrium point, z, for f is the zero of the convex seperable

Lyapunov function and uk ≥ 0 on its interval of existence.

Multplying the kth component of the truncated system by h
′
k(uk(x, t)), we obtain

h
′
k(uk)

∂uk

∂t
= h

′
k(uk)dk∆uk + h

′
k(uk)fk(uk) (4.37)

Note:

∆hk(uk) = h
′′
k(uk) |∇uk|2 + h

′
k(uk)∆uk (4.38)

So,

h
′
k(uk)

∂uk

∂t
= dkh

′
k(uk)∆uk − dkh

′′
k(uk) |∇uk|2 + h

′
k(uk)fk(uk) (4.39)

Suppose that z minimizes ‖H‖1,I . Without loss of generality assume ‖H(z)‖1,I = 0.

We have

−dkh
′′
k(uk) |∇uk|2 + h

′
k(uk)fk(uk) ≥ 0 (4.40)

It follows that

h
′
k(uk)fk(uk) ≥ 0 ∀u such that uk = zk (4.41)

We can write a related system

∂

∂t
(Q) = DQ+ r (4.42)
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where

rk = h
′
k(uk)fk(uk). (4.43)

Because r is quasipositive and balanced it follows that Q does not blow-up in finite

time. Applying the maximum principle we see that H(u) ≤ Q.

It now follows that u does not blow-up in finite time.

G. Proof of Theorem 2.9

This result is essentially the same as found in [4]. We will include the convergence of

uk(t, ·) to uk(t) in L2(Ωσ(k)).

Define

βk(t) =
1

2
‖∇uk(t, ·)‖2

2,Ωσ(k)

Then

β ′k(t) =
∫

Ωσ(k)

∇uk · ∇uktdx =
∫

Ωσ(k)

∇uk · ∇(D∆uk + f)dx

=
∫

Ωσ(k)

∆uk ·D∆ukdx+
∫

Ωσ(k)

∇uk · dfu∇ukdx

Setting M̂ to the maximum value of |df | over BKM
(0) we find

β ′k(t) ≤ −dmin

∫
Ω

|∆uk|2 dx+ M̂
∫

Ωσ(k)

|∇uk|2 dx

Applying Lemma 3.18 we find

β ′k(t) ≤ (−λ1dmin + M̂)
∫

Ωσ(k)

|∇uk|2 dx = (−λ1dmin + M̂)2βk(t)

Setting



59

σ = λ1dmin − M̂

and applying Gronwall’s inequality we obtain the following inequality

βk(t) ≤ βk(0)e−2σt

and we have

‖∇uk‖2,Ω2
σ(k)

≤ ‖∇uk0‖2
2,Ωσ(k)

e−2σt.

From Lemma 3.19 we find

‖uk − uk‖2
2,Ωσ(k)

≤ 1

λ1

‖∇uk0‖2
2,Ωσ(k)

e−2σt

So for dmin sufficiently large, we have that the k-th component of the solution u of

(2.1) converges exponentially to its spatial average in L2(Ωσ(k)). Also, we have

u′k(t) = 1

|Ωσ(k)|
∫

Ωσ(k)

ukt(t, x)dx

= 1

|Ωσ(k)|
∫

Ωσ(k)

D∆ukdx+ 1

|Ωσ(k)|
∫

Ωσ(k)

f(u)dx

Integrating by parts implies that u′k(t) satisfies

u′k(t) =
1∣∣∣Ωσ(k)

∣∣∣
∫

Ωσ(k)

fk(x, u)dx

For t > 0, we have

∣∣∣∣∣∣∣
1∣∣∣Ωσ(k)

∣∣∣
∫

Ωσ(k)

(fk(x, u)− f(x, uk))dx

∣∣∣∣∣∣∣ ≤
M̂∣∣∣Ωσ(k)

∣∣∣
∫

Ωσ(k)

|uk − uk| dx

≤ M̂∣∣∣Ωσ(k)

∣∣∣1/2

 ∫
Ωσ(k)

|uk − uk|2 dx


1/2
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≤ M̂∣∣∣Ωσ(k)

∣∣∣1/2

1

λ
1/2
1

‖∇uk0‖2,Ωσ(k)
e−σt

This gives us that

ukt = fk(u(t)) + εk(t). (4.44)

It follows from [4] that the asymptotic behaivor of (4.44) is determined by f.
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CHAPTER V

APPLICATIONS AND CONCLUSION

A. Applications

In Chapter I we introduced a reaction diffusion system that is used to model the be-

havior of a simple population. The population is assumed to be spatially distributed,

and the dispersion of the population is assumed to be modeled by Fickian diffusion.

In this model there are three populations confined to separate habitats Ω1, Ω2 and

Ω3 such that

Ω1 ∩ Ω2 6= ∅, Ω2 ∩ Ω3 6= ∅, Ω1 ∩ Ω3 = ∅ (5.1)

We model the habitats Ωi as bounded domains in R3 with smooth boundaries denoted

by ∂Ωi such that Ωi lies locally on one side of itself. The population is divided into

three groups, denoted by the host for a disease in Ω1, the vector population in Ω2,

and the host for the disease in Ω3. The populations in Ω1, Ω2 and Ω3 subdivide into

susceptibles and infectives. A susceptible host in Ω1 interacts with an infective vector

in Ω2 to become an infective host in Ω1. The interaction of an infective host in Ω1 with

a susceptible vector in Ω2 creates an infective vector in Ω2. Similarly, the interaction

of an infective vector in Ω2 with a susceptible host in Ω3 results in an infective host

in Ω3, and the interaction of an infective host from Ω3 with a susceptible vector from

Ω2 results in an infective vector from Ω3. The reasoning behind the use of the terms

“host” and “vector” stems from the assumption that the disease does not result in

any mortality for the vector group. In the model below, we also assume that the host

population in Ω1 is resistant to the disease, and as a result, in some sense it also acts

as a vector population. The host population in Ω3 is not resistant to the disease. One
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simple model of this interaction is given in the system below. φt = d1∆φ− k1(x)φβ + λ1ψ

ψt = d2∆ψ + k1(x)φβ − λ1ψ
for x ∈ Ω1, t > 0

 host 1

 αt = d3∆α− k2(x)αψ − k3(x)αv + λ2β

βt = d4∆β + k2(x)αψ + k3(x)αv − λ2β
for x ∈ Ω2, t > 0

 vector

 vt = d5∆v − k4(x)vβ

wt = d6∆w + k4(x)vβ − λ3w
for x ∈ Ω3, t > 0

 host 2

(5.2)

where k1, k2, k3 and k4 are nonnegative functions, and λ1, λ2 and λ3 are positive

constants. Furthermore, the supports of k1 and k2 are contained in the intersection

of Ω1 and Ω2, and the supports of k3 and k4 are contained in the intersection of

Ω2 and Ω3. Finally, the values di and λj are positive constants for i = 1, 2, ..., 6 and

j = 1, 2, 3. We augment the system above with homogeneous Neumann boundary

conditions on each domain Ω1,Ω2, and Ω3.

∂φ/∂η = ∂ψ/∂η = 0 for x ∈ ∂Ω1, t > 0

∂α/∂η = ∂β/∂η = 0 for x ∈ ∂Ω2, t > 0

∂v/∂η = ∂w/∂η = 0 for x ∈ ∂Ω3, t > 0

(5.3)

and specify continuous nonnegative initial data.

φ(x, 0) = φ0(x), ψ(x, 0) = ψ0(x) for x ∈ Ω1

α(x, 0) = α0(x), β(x, 0) = β0(x) for x ∈ Ω2

v(x, 0) = v0(x), w(x, 0) = w0(x) for x ∈ Ω3

(5.4)

The vector field associated with the system above is given by f = (fi) where f1 (x, φ, ψ, α, β, v, w)

f2 (x, φ, ψ, α, β, v, w)

 =

 −k1(x)φβ + λ1ψ

k1(x)φβ − λ1ψ

 (5.5)
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 f3 (x, φ, ψ, α, β, v, w)

f4 (x, φ, ψ, α, β, v, w)

 =

 −k2(x)αψ − k3(x)αv + λ2β

k2(x)αψ + k3(x)αv − λ2β

 (5.6)

 f5 (x, φ, ψ, α, β, v, w)

f6 (x, φ, ψ, α, β, v, w)

 =

 −k4(x)vβ

k4(x)vβ − λ3w

 (5.7)

It is a simple matter to verify that f is quasipositivity since for (φ, ψ, α, β, v, w) ∈ R6
+

we have

f1 (x, 0, ψ, α, β, v, w) = λ1ψ ≥ 0 (5.8)

f2 (x, φ, 0, α, β, v, w) = k1(x)φβ ≥ 0 (5.9)

f3 (x, φ, ψ, 0, β, v, w) = λ2β ≥ 0 (5.10)

f4 (x, φ, ψ, α, 0, v, w) = k2(x)αψ + k3(x)αv ≥ 0 (5.11)

f5 (x, φ, ψ, α, β, 0, w) = 0 (5.12)

f6 (x, φ, ψ, α, β, v, 0) = k4(x)vβ ≥ 0 (5.13)

As a result, from Theorem 2.3, the system above has a unique, componentwise-

nonnegative solution on its maximal interval of existence. Furthermore, the vector

field f is clearly polynomially bounded since

|fi (x, φ, ψ, α, β, v, w)| ≤ K
(
φ2 + ψ2 + α2 + β2 + v2 + w2 + 1

)
(5.14)

for an appropriate choice of K > 0. Finally, the vector field f satisfies the linear
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intermediate sums condition since

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 1 1



f (x, φ, ψ, α, β, v, w) ≤



λ1ψ

0

λ2β

0

0

0



(5.15)

for all x ∈ Ω1 ∪ Ω2 ∪ Ω3 and (φ, ψ, α, β, v, w) ∈ R6
+. Applying Theorem 2.5, we can

conclude that the unique componentwise-nonnegative solution to this system exists

globally.

In addition, we can apply Theorem 2.9 to find that if u = (φ, ψ, α, β, v, w) then

‖ui(t, .)− ui(t, .)‖∞,Ωσ(i)
→ 0 (5.16)

That is, there are no spatially dependent elements in the omega limit set for the

system.

The analysis applied to the system above can also be used to analyze more com-

plex population models. As a first extension, we consider populations on the habitats

above which interactive through a criss-cross mechanism. In this setting we compli-

cate the populations in each Ωi to include two distinct populations, each containing

susceptibles and infectives. To this end, we assume the two host populations in Ω1

are given by P1,1 = (α1, β1) and P1,2 = (α2, β2) where αi denotes a susceptible portion

of the population P1,i and βi denotes an infective portion of population P1,i. Simi-

larly, we assume the two vector populations in Ω2 are given by P2,1 = (φ1, ψ1) and

P2,2 = (φ2, ψ2) where φi denotes a susceptible portion of the population P2,i and ψi

denotes an infective portion of population P2,i. Finally, the two host populations in
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Ω3 are given by P3,1 = (v1, w1) and P3,2 = (v2, w2) where vi denotes a susceptible

portion of the population P3,i and wi denotes an infective portion of population P3,i.

The criss-cross nature of the system arises from the assumption that αi interacts with

ψj for i 6= j, βi interacts with φj for i 6= j, φi interacts with ωj for i 6= j, and ψi inter-

acts with wj for i 6= j. Of course, in each case, we assume that interactions between

susceptibles and infectives produce more infectives in the habitat of the susceptible.

A model can be given for this type of interaction as an extension of the model above

in the form

φ1t = d1∆φ1 − k1(x)φ1β2 + λ1ψ1

φ2t = d̃1∆φ2 − k̃1(x)φ2β1 + λ̃1ψ2

ψ1t = d2∆ψ1 + k1(x)φ1β2 − λ1ψ1

ψ2t = d̃2∆ψ2 + k̃1(x)φ2β1 − λ̃1ψ2

for x ∈ Ω1, t > 0


host 1



α1t = d3∆α1 − k2(x)α1ψ2 − k3(x)α1v2 + λ2β1

α2t = d̃3∆α2 − k̃2(x)α2ψ1 − k̃3(x)α2v1 + λ̃2β2

β1t = d4∆β1 + k2(x)α1ψ2 + k3(x)α1v2 − λ2β1

β2t = d̃4∆β2 + k̃2(x)α2ψ1 + k̃3(x)α2v1 − λ̃2β2

for x ∈ Ω2, t > 0


vector



v1t = d5∆v1 − k4(x)v1β2

v2t = d̃5∆v2 − k̃4(x)v2β1

w1t = d6∆w1 + k4(x)v1β2 − λ3w1

w2t = d̃6∆w2 + k̃4(x)v2β1 − λ̃3w2

for x ∈ Ω3, t > 0


host 2

(5.17)

where k1,k̃1, k2,k̃2, k3,k̃3, k4 and k̃4, are nonnegative functions, and λ1, λ̃1 ,λ2, λ̃2, λ3

and λ̃3 are positive constants. Furthermore, the supports of k1, k̃1, k1,and k̃2 are

contained in the intersection of Ω1 and Ω2, and the supports of k3, k̃3, k4,and k̃4

are contained in the intersection of Ω2 and Ω3. Finally, the values di, d̃i and λj are

positive constants for i = 1, 2, ..., 6 and j = 1, 2, 3. We augment the system above
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with homogeneous Neumann boundary conditions on each domain Ω1,Ω2, and Ω3.

∂φ1/∂η = ∂φ2/∂η = ∂ψ1/∂η = ∂ψ2/∂η = 0 for x ∈ ∂Ω1, t > 0

∂α1/∂η = ∂α2/∂η = ∂β1/∂η = ∂β2/∂η = 0 for x ∈ ∂Ω2, t > 0

∂v1/∂η = ∂v2/∂η = ∂w1/∂η = ∂w2/∂η = 0 for x ∈ ∂Ω3, t > 0

(5.18)

and specify continuous nonnegative initial data.

φ1(x, 0) = φ10(x), φ2(x, 0) = φ20(x) for x ∈ Ω1

ψ1(x, 0) = ψ10(x), ψ2(x, 0) = ψ20(x) for x ∈ Ω1

α1(x, 0) = α10(x), α2(x, 0) = α20(x), for x ∈ Ω2

β1(x, 0) = β10(x), β2(x, 0) = β20(x) for x ∈ Ω2

v1(x, 0) = v10(x), v2(x, 0) = v20(x) for x ∈ Ω3

w1(x, 0) = w10(x), w2(x, 0) = w20(x) for x ∈ Ω3

(5.19)

The analysis below verifies that this system can be analyzed in the same manner as

the previous one.

f1(x, 0, φ2, ψ1, ψ2, α1, α2, β1, β2, v1, v2, w1, w2) = λ1ψ1 ≥ 0 (5.20)

f2(x, φ1, 0, ψ1, ψ2, α1, α2, β1, β2, v1, v2, w1, w2) = λ̃1ψ2 ≥ 0 (5.21)

f3(x, φ1, φ2, 0, ψ2, α1, α2, β1, β2, v1, v2, w1, w2) = k1(x)φ1β2 ≥ 0 (5.22)

f4(x, φ1, φ2, ψ1, 0, α1, α2, β1, β2, v1, v2, w1, w2) = k̃1(x)φ2β1 ≥ 0 (5.23)

f5(x, φ1, φ2, ψ1, ψ2, 0, α2, β1, β2, v1, v2, w1, w2) = λ2β1 ≥ 0 (5.24)
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f6(x, φ1, φ2, ψ1, ψ2, α1, 0, β1, β2, v1, v2, w1, w2) = λ̃2β2 ≥ 0 (5.25)

f7(x, φ1, φ2, ψ1, ψ2, α1, α2, 0, β2, v1, v2, w1, w2) = k2(x)α1ψ2 + k3(x)α1v2 ≥ 0 (5.26)

f8(x, φ1, φ2, ψ1, ψ2, α1, α2, β1, 0, v1, v2, w1, w2) = k̃2(x)α2ψ1 + k̃3(x)α2v1 (5.27)

f9(x, φ1, φ2, ψ1, ψ2, α1, α2, β1, β2, 0, v2, w1, w2) ≥ 0 (5.28)

f10(x, φ1, φ2, ψ1, ψ2, α1, α2, β1, β2, v1, 0, w1, w2) ≥ 0 (5.29)

f11(x, φ1, φ2, ψ1, ψ2, α1, α2, β1, β2, v1, v2, 0, w2) = k4(x)v1β2 ≥ 0 (5.30)

f12(x, φ1, φ2, ψ1, ψ2, α1, α2, β1, β2, v1, v2, w1, 0) = k̃4(x)v2β1 ≥ 0 (5.31)

Finally, the vector field f satisfies the linear intermediate sums condition. Con-

sequently, more general criss-cross scenarios can also be analyzed in a similar fashion.

B. Conclusion

The primary results of this dissertation are three-fold. The work began with a well

posedness result (Theorem 2.3) for the system (2.1). Then we obtained an extension
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(Theorem 2.5) of the global existence result in Morgan [20]. Finally, we extended

the work of Cupps [5] pertaining to systems of reaction-diffusion equations with large

diffusion coefficients.

We intend to use these results in the future as a starting point to analyze more

complex population models. In addition, we intend to explore the possibility of

applying our results in other areas. For example, it should be possible to apply our

results to biological systems from cell biology. In this setting, it is not uncommon

for certain chemical species (due to molecular size) to pass freely through certain

membranes, and be restricted by others. As a result, the membrane walls of organelles

will serve as natural boundaries of domains of interaction of chemical species. Of

course, this leads to the question of whether the analysis in this dissertation can

be extended to systems which have moving boundaries, and growing domains (and

boundaries). This setting will also serve as the basis for future work.

Finally, we remark that it seems possible to obtain a better result than the global

existence result given in Theorem 2.5 via the assumption of quasipositivity and linear

intermediate sums. If in addition, we assume that the system is balanced, then we

can obtain a uniform L1 (Ωj) estimate for each component of our unknown.

We can see that both systems analyzed in this section are balanced since

∑
i

fi(t, x, u) ≤ 0 (5.32)

for each system.

Consequently, it does not seem unreasonable that the solutions to these systems

(as well as general systems satisfying these hypotheses) should be uniformly bounded

in the L∞ (Ωj) norm as well. In fact, our recent explorations indicate that these

results can be obtained as an extension of work in Morgan [21].
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