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ABSTRACT 
 
 

Predator Induced Defenses in Prey with Diverse Predators. (December 2005) 

Mark Isaac Garza, B.S., The University of Texas at San Antonio 

Chair of Advisory Committee:  Dr. Thomas J. DeWitt 

 

 Phenotypic plasticity is an environmentally based change in phenotype and can be 

adaptive. Often, the change in an organism’s phenotype is induced by the presence of a 

predator and serves as a defense against that predator. Defensive phenotypes are induced 

in freshwater physid snails in response to both crayfish and molluscivorous fish. 

Alternative morphologies are produced depending on which of these two predators snails 

are raised with, thus protecting them from each of these predators’ unique mode of 

predation. Snails and other mollusks have been shown to produce thicker, differently 

shaped shells when found with predators relative to those found without predators. This 

production of thicker, differently shaped shells offers better protection against predators 

because of increased predator resistance. 

The first study in this thesis explores costs and limits to plasticity using the snail-

fish-crayfish system. I exposed juvenile physid snails (using a family structure) to either 

early or late shifts in predation regimes to assess whether developmental flexibility is 

equally possible early and late in development. Physid snails were observed to produce 

alternative defensive morphologies when raised in the presence of each of the two 

predators. All families responded similarly to the environment in which they were raised. 

Morphology was found to be heritable, but plasticity itself was not heritable. Morphology 
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was found to become less flexible as snails progressed along their respective 

developmental pathways.   

In the second study, I raised physid snails with and without shell-crushing sunfish 

and examined the differences in shell thickness, shell mass, shell size and shell 

microstructural properties between the two treatment groups. Shells of snails raised with 

predators were found to be larger, thicker and more massive than those raised without 

predators, but differences in microstructure were found to be insignificant. I conclude that 

the observed shell thickening is accomplished by the snails’ depositing more of the same 

material into their shells and not by producing a more complex shell composition. 
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CHAPTER I 
 

INTRODUCTION 
 

Temporal and/or spatial heterogeneity within biotic and abiotic environments can 

directly affect organisms. Nearly every aspect of the environment can vary. Abiotic 

variation of the environment includes temperature, day-length, precipitation and chemical 

concentrations while biotic variation include prey abundance, predator abundance and 

interspecific competition. These types of changes can profoundly affect the success of an 

organism, especially if an organism cannot cope with fluctuations in the environment. 

However, many organisms have flexible phenotypes, which may allow them to optimize 

fitness according to environmental variation. 

Phenotypic plasticity is generally defined as an environmentally based change in 

phenotype (Bradshaw 1965, Schlichting and Pigliucci 1998, Agrawal 2001). This change 

in phenotype can stand as a change in an individual’s chemistry, physiology, 

development, morphology, or behavior (DeWitt and Scheiner 2004). Having a flexible 

phenotype is important to an organism’s ability to maintain relatively high fitness in a 

variable environment (Schlichting 1986, Stearns 1989, West-Eberhard 1989, Scheiner 

1993). Identification and response to abiotic or biotic signals are essential to all types of 

plasticity and it is only through such identification that plasticity can take place. 

Expression of a particular phenotype to these signals is often adaptive because of 

improved matching of the phenotype to its surrounding environment (Levins 1968, 

Moran 1992, Via 1993, Gotthard and Nylin 1995). Many observed cases of adaptive  

_______________ 
This thesis follows the style and format of Ecology. 
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phenotypic plasticity involve inducible defenses in which the phenotype of prey is  

induced by the presence of a predator, in turn protecting the prey from that predator 

(Lively 1986, Dodson 1989, Harvell and Padilla 1990, Van Buskirk and Schmidt 2000, 

Relyea 2001, DeWitt and Langerhans 2003).   

So, the benefits of such adaptive responses are widely known and have been 

thoroughly documented, but the focus of attention has more recently turned to exploring 

the existing types of constraints that work on plasticity, meaning, plasticity does not 

always result in a perfect solution, as illustrated, if only weakly, in recent empirical 

studies (Weinig and Delph 2001, Langerhans and DeWitt 2002, Relyea 2002).  

Constraints on plasticity are generally discussed in terms of costs and limits 

(DeWitt 1998). Costs of plasticity are seen when there is a reduction in fitness by plastic 

genotypes expressing a given phenotype relative to genotypes that are fixed for that same 

phenotype (DeWitt et al. 1998). For example, there may be a maintenance cost associated 

with a plastic genotype, being that there can be sensory and regulatory mechanisms 

associated with phenotype production which incurs high energetic costs. Limits of 

plasticity are found when a plastic genotype does not produce a trait mean as near the 

optimum as can fixed development (DeWitt et al. 1998). A type of limit may involve 

information reliability, for example, when a maladaptive phenotype results because of 

imperfect cues received in the environment or, correctly responding phenotypically to 

environmental cues, but then finding that the environment changes (For a complete 

review of potential costs and limits of phenotypic plasticity, see DeWitt et al. 1998). 

In this thesis, I build upon instances of adaptive predator induced morphologies 

which have been observed in several species of mollusks. The first instance involves the 
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shell shape produced by the physid snail (Physella virgata) when raised with predators 

that attack snails using contrasting attack modes. When reared with crayfish, physid 

snails develop a shell that is elongate in shape (DeWitt 1998). Production of an elongate 

shell results in both an occluded aperture and an elongate spire. Because crayfish and 

other decapods extract the edible snail body via shell-entry, an occluded aperture hinders 

a successful attack (Vermeij 1979, Appleton and Palmer 1988, DeWitt et al. 2000, Krist 

2002). At the same the elongate spire time may allow for the snail to retract further into 

the shell (Vermeij 1982). Shell-crushing sunfish (Lauder 1983, Huckins 1997), on the 

other hand, induce a more rotund shape of the physid snail’s overall shell shape (DeWitt 

1998), a shape of shell that has been shown to increase its crush resistance (DeWitt et al. 

2000).  

The second instance of adaptive predator induced plasticity I expand upon in this 

thesis involves the production of thicker shells by aquatic snails in response to certain 

molluscivores (Vermeij 1976, Palmer 1979). A thicker shell may obviously benefit the 

snail because it better protects from attacks by shell-crushing predators (Seeley 1986, 

Trussell 1996, West and Cohen 1996, Trussell 2000). 

The first study in this thesis explores constraints to developmental flexibility of 

predator induced shell shape. Juvenile physid snail siblings were exposed to early or late 

shifts in predation regime to assess whether or not developmental flexibility is possible 

early or late in development, with the trait of focus being overall shell shape.  

In the second study, physid snail siblings are raised with or without a shell- 

crushing species of sunfish and differences in shell shape, mass, thickness and 

microstructure are examined. Peering into shell microstructure using advanced 
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nanoindentation techniques is new to the field and what is most unique about this study. 

What I aim to answer is whether snails produce overall thicker and more massive shells 

and, if so, whether this thickening is accomplished by layering materials differently 

within the protein matrix, or, by simply depositing an increased amount of the same 

material. 
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CHAPTER II 
 
 

ECOLOGICAL CONSTRAINTS ON THE EVOLUTION OF PHENOTYPIC  
 

PLASTICITY 
 
 
Introduction 

Phenotypic plasticity is the ability of an organism to produce different phenotypes 

in response to distinct environmental cues (Stearns 1989, Schlichting and Pigliucci 1998). 

It can be an adaptive strategy in variable or changing environments because of improved 

phenotype-environment matching (Bradshaw 1965, Levins 1968, Moran 1992). This 

adaptive matching of phenotype with environment should therefore allow organisms to 

exploit and tolerate a broader range of environments than would be possible with a fixed 

phenotype (Schlichting 1986, Scheiner 1993, Schlichting and Pigliucci 1998, Windig et 

al. 2004). While the benefits of such adaptive plastic responses have been amply 

documented, constraints on developmental plasticity have been given much less attention.  

In general, constraints on plasticity consist of costs or limits (DeWitt 1998). Costs 

arise when a phenotypically plastic organism exhibits lower fitness while producing the 

same mean trait value as a developmentally fixed organism. Limits on plasticity are seen 

when plastic development does not produce a trait mean as near the optimum as can fixed 

development (DeWitt et al. 1998). Costs and limits have been given much theoretical 

attention, but only a modest amount of work has tested for costs (Weinig and Delph 

2001, Relyea 2002) and few studies have addressed other constraints.  

Weinig and Delph (2001) showed that plastic stem elongation responses of the 

annual weed velvetleaf (Abutilon theophrasti) take place at the cost of diminished 
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plasticity later in life. Because selection favors an increase in stem elongation in certain 

environments at both early and late life stages (Weinig 2000), a reduction in plasticity 

later in life may be a significant constraint on the evolution of phenotypic plasticity. 

Langerhans and DeWitt (2002) demonstrated that physid snails develop rotund shells 

when reared with either molluscivorous or non-molluscivorous sunfish species. The 

rotund shape, which increases resistance to shell-crushing fishes, makes snails more 

vulnerable to shell-entry predators to such invertebrates as insects, leeches, and crayfish. 

Since the invertebrate predators are ubiquitous in all snail habitats, and perhaps are more 

common in the absence of fishes, snails that alter morphology to become more rotund in 

the absence of true molluscivorous fishes make an adaptive error. Such a costly mistake 

with no obvious benefit may be a major constraint on the evolution of adaptive plasticity.  

Although we know that phenotypic plasticity is adaptive for physid snails when 

expressed to appropriate predators, and have identified several of its potential costs and 

limits, we still know very little about the limits of developmental flexibility. For example, 

if the environment changed late in life, would individuals still be able to respond with 

adaptive developmental shifts? In the present study, I exposed freshwater snails (Physella 

virgata) to either early or late shifts in predation regimes to assess whether 

developmental flexibility is equally possible early or late in development. Physid snail 

predation regimes were switched at two points during the developmental period. 

Subsequent phenotypes were compared for different switches against each other and 

against controls that are reared in entirely one predation regime. I measured phenotypic 

responses (overall shell shape) of Physa during ontogeny at three exposure intervals. 

Specifically, I aimed to determine whether recent development is constrained by past 
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development, a question for which shell morphology is an apt trait as shells are 

simultaneous records of recent and past development.  

 

Study system 

Freshwater snails of the family Physidae have a wide distribution and are native 

to many regions of the world. They exhibit continuous growth, the form of which 

depends mainly upon the prevailing predation regime. Predation on these snails 

commonly occurs through two general modes; either by shell-crushing or by way of 

shell-entry. The redear sunfish (Lepomis microlophus) is a prime example of a shell-

crushing predator. Having a modified pharyngeal arches with a specialized musculature, 

this sunfish species is able to maintain a mainly molluscivorous diet (Lauder 1983, 

Huckins 1997). Crayfish represent a class of shell-entry predators that tend to attack by 

reaching into to the shell’s aperture and extracting the snail body tissue (Alexander and 

Covich 1991, DeWitt et al. 1999). To reduce success of such predation tactics, physid 

snails exhibit different morphologies when raised in the presence of these alternative 

predators, becoming more elongate in shape when raised with crayfish and more rotund 

when raised with molluscivorous sunfish (DeWitt 1998). Because molluscivorous sunfish 

are shell crushers, they are deterred by rotund shell shape because shells of this shape are 

more difficult to crush (DeWitt et al. 1999). In contrast, crayfish are shell-entry predators 

that are deterred by elongate shell morphology, being that these shells have narrow 

apertures that are difficult to reach into (Vermeij 1979, Appleton and Palmer 1988, 

DeWitt et al. 1999). Thus, the induced morphological responses of physid snails to two 

predator types have significant adaptive benefits.  
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 Since shell morphological responses to the two predator types is opposite, this is 

an ideal system in which to challenge snails with environmental switches, to assess their 

ability to respond based on age and history.  

 

Methods 

Snail rearing 

Approximately 125 Physella virgata were collected from a Krenek Tap pond 

located in Central Park, College Station, Texas, USA. This pond was chosen as my 

collection site because it is inhabited by both crayfish and redear sunfish. The wild-

caught snails were brought to our laboratory, treated with Maracyn (0.8 mg · 1-1) for two 

days in group culture and fed ad libitum with ground Wardley’s brand spirulina flakes. 

After antibiotic treatment, the 50 largest snails were chosen and placed individually into 

300 ml Dixie brand plastic cups containing an RO water/trace elements solution 

(1ml/15L) (Seachem Fresh Trace). I chose the largest snails as they had the greatest 

potential for generating egg masses large enough to yield the number of hatchlings 

required for my experimental design. Water was changed three times weekly by pouring 

away the unclean water and replacing with fresh water. Replacement water consisted of 

reverse osmosed water prepared with Seachem Fresh Trace trace elements (1ml/15L). 

Snails were fed by adding ground spirulina flakes ad libitum (approximately 0.1 mg) to 

each cup after each water change.  

Within one week several egg masses were generated. Those egg masses 

containing at least 24 potential hatchlings were kept in their respective cups. Small egg 

masses found in the cups were removed using a wooden spatula and discarded. After 
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hatching, water changes were continued on the same schedule as before, but instead 

approximately 90% of the water from each rearing cup was removed. This was 

accomplished by withdrawing water by means of a syringe having a small section of 

tubing attached to its end. The section of tubing was replaced for each water change of 

each cup to prevent any possible contamination from one cup to another. Use of a syringe 

was performed in order to prevent any loss of hatchlings had the water been poured out as 

had been done prior to hatching. A total of fifteen individuals were determined to have 

produced at least 24 hatchlings; thus, I had 15 full-sib families. One hatchling from each 

family was placed into its designated starting treatment using a small paintbrush 10-14 

days later as described below. 

  

Experimental design 

F1 snails were raised in using a 2 × 3 factorial design: snails were started in either 

fish or crayfish environments and experienced either of three switching treatments (no 

switch, early switch to an alternative predation regime; or late switch). Thus for the six 

treatments, the sequence of predation treatments for the three successive periods during 

development was: CCC, CCF, CFF, FFF, FFC, FCC, where CCF indicates a switch from 

crayfish to fish at the later date (Fig. 1). Twenty-four 57-liter aquaria were established (4 

aquaria per treatment) and all tanks were systematically arranged to prevent bias. 

Crayfish (Procambarus clarkii; 70-85 mm measured from the rostrum dorsally to the 

telson) were collected from drainage ditches at the Texas A&M University Riverside 

Campus, College Station, TX; redear sunfish (Lepomis microlophus; 70-85 mm TL) were 

obtained from an area bait supplier. Crayfish and redear sunfish were placed in 
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Fig. 1.  Tank arrangement showing the sequence of snail predation treatments for the 

three successive periods of development. Predation treatment sequences are CCC, CCF, 

CFF, FFF, FFC, FCC, where CCF indicates a switch from crayfish to fish at the later 

date. 

 

 

 

 

 

 

 

 

 

 

 

Fish block Crayfish block Fish block Crayfish block
none late early none late early none late early none late early
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CCC CCF CFF FFF FFC FCC CCC CCF CFF FFF FFC FCC

none late early none late early none late early none late early
Crayfish block Fish block Crayfish block Fish block
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their appropriate aquaria at least two months prior to adding snail hatchlings. These 

predators were placed below a plastic grid in their designated tanks and snails were 

placed individually into cages above the grid (Fig. 2). Each snail-rearing cage was made 

of 300 ml plastic cups having two (35×38 mm) mesh windows (mesh size = 0.10 mm). 

These windows allowed water from the tank to flow freely through each rearing cage. 

This system prohibited contact between snails and predators while still allowing snails to 

detect chemical and pressure wave cues of the predators.  

At six weeks the snails were switched to their next tank which may or may not 

have contained a different predator than previously, depending on the treatment assigned. 

At twelve weeks the snails were switched to their final tank/predator regime. Both 

crayfish and redear sunfish were fed half of a live redworm three times per week. A pinch 

of ground spirulina was fed to snails on the same day as crayfish and fish were fed. To 

prevent possible splashing or aerosol transfer of water from a tank of one predator regime 

to a tank of a different regime, transparent plexiglass walls extending 30 cm above the 

aquarium rims separated tanks of unlike predator environment. Seachem Trace Elements 

(1ml/3.8L) was added to each tank weekly. Tank water was filtered and circulated using 

Whisper II fiber floss filters with no activated carbon. Carbon was not used so that 

necessary volatiles from the predators needed to induce developmental changes in the 

snails were not removed from the water. Twenty percent water changes were performed 

every six weeks in addition to filtration to maintain high water quality.  
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Fig. 2.  Diagram of an individual treatment tank. Depending on the type of treatment 

tank, either a single crayfish or redear sunfish was found below the platform. 
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Morphometrics 

Images of snail shells were captured at the end of six, twelve and eighteen weeks 

of rearing in their designated predator regimes with a video imaging system and 

measured using MorphoSys (V. 1.29) morphometric software. Because images of live 

snails were taken, snails were first encouraged to retreat into their shells by gently 

pushing at their bodies with a twisted corner of a Kimwipe napkin. Snails were placed 

aperture down and allowed to rest naturally on a level platform below a video camera. 

Snail positions could thus be standardized before images were captured.  

For each snail, shell outlines and twelve landmarks were digitized (Fig. 3). 

Landmarks were digitized at the shell apex (LM 3), on sutures connecting the current and 

previous two whorls (LM 1, 2, 4, and 5), at the farthest point of the shell relative to the 

coiling axis (LM 6), and at the lower insertion of the aperture (LM 7). The remaining five 

points found along the apertural region were treated as semilandmarks and were located 

by projecting at 30° angles from a point existing halfway between landmarks 1 and 7. 

Each of these five semilandmarks (LM 8 – 12) was confined to “slide” between adjacent 

points along the apertural curve (Bookstein 1991). Because this curve contains no 

biologically meaningful points, the sliding landmark method minimizes the bending 

energies associated with these less informative points. The semilandmarks are slid along 

the outline until they best conform to the positions of the matching points found along the 

same curved outline of the reference snail specimen. 

Geometric morphometric methods (Rohlf and Marcus 1993) were used to 

generate detailed information on shell shape. Raw landmark coordinates were aligned by  
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Fig. 3.  Landmarks used in geometric morphometric analysis. Landmarks 1 through 7 

represent true landmarks. Landmarks 8 through 12 were treated as semilandmarks and 

were located by projecting 30° angles onto the apertural curve from a point midway 

between landmarks 1 and 7. 
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generalized least-squares superimposition from which partial warps and uniform 

components were calculated using tpsRelw (Rohlf 2004). Such methods are more 

powerful than traditional methods because information about spatial covariation between 

landmarks is retained, thus allowing the geometry of shape variation to be conserved 

throughout the analysis (Rohlf and Marcus 1993).  

 

Analysis 

Shape data were analyzed separately for six, twelve and eighteen week time 

points using multivariate ANCOVA (MANCOVA). Shape parameters (i.e. n = 20 partial 

warps) from twelve digitized points were tested for variation attributable to treatments, 

family effects, gene by environment effects, tank effects nested within treatments, and 

centroid size (covariate). Because interactions between the covariate and main effects 

were found to be nonsignificant, they were removed from the model.  

Heritability estimates of the first three major axes of genetic variation were 

calculated using a combination of a multiple group ANOVA and the intraclass correlation 

coefficient. In ANOVA, each canonical axis served as the dependent variable with family 

as the independent variable. The variance component among families, s2
a, is equal to: 

MSamong – MSwithin / no.  

N-ought is the harmonic mean number of sibs per family and is equal to: 

n0 = (1 / (a – 1)) (Σni – (Σni
2 / Σni)) 

The error variance component (s2
e ) is equal to the error mean square (MSwithin). The 

intraclass correlation coefficient (t) is equal to: s2
a / s2

a + s2
e. Division of t by the degree 

of relatedness within sibling groups (r) gives the heritability estimate, h2 = t / r (Falconer 
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and Mackay 1996). Because I used a full-sibling system, r is equal to 0.5. All statistical 

analyses were conducted using JMP software (Version 4.04, SAS Institute Inc., Cary, 

NC).   

 

Results 

Effect at six weeks 

After six weeks only two classes of predator exposure existed for snails in this 

study—either they were raised with crayfish or fish (C, F). These data were used to 

establish some background information such as the nature and degree of plasticity, the 

heritability of shell shape, and the nature of heritability in plasticity (i.e. gene by 

environment interaction variance). My analysis demonstrated that there were clear 

differences in overall shell shape (F20, 280 = 18.37; P <0.0001) between treatments. Snails 

exposed to crayfish were more elongate in shape and snails exposed to redear were more 

rotund in shape. The predator regime canonical axis explained 56.7% of phenotypic 

variation. To visualize the effect of treatment on shape variation after six weeks of 

exposure, I used TpsRegr (Rohlf 1998) to produce thin-plate spline transformation grids 

to illustrate shape change along canonical axes of the MANCOVA results (Fig 4).  

To be sure that canonical axis representation did not distort the true shape variation 

(DeWitt and Papadopoulos, unpublished data), I additionally conducted the standard 

MANCOVA using procrustes coordinates (slid and aligned specimens) in place of partial 

warps. This analysis provides least squares means for the conformations in alternative 

groups. These alternative conformations were plotted with Morpheus et al. morphometric 

software (Slice 1998) using thin-plate splines for visualization (Fig. 5). 
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Fig. 4.  Thin-plate-spline transformations of redear sunfish (left) and crayfish (right) 

induced morphologies. Visualizations were produced using tpsRegr (Rohlf 1998) and 

depict observed range. 
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Fig. 5. Transformation between least squares means landmark conformations from a 

MANCOVA using procrustes coordinates. Image on left pane represents those raised 

with sunfish, image on right pane represents those raised with crayfish. 
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I also found a significant effect of family on shape (approx. F280, 3264.4 = 2.00; P < 

0.0001). Gene by environment interaction (Family × Treatment) was not evident (approx. 

F280, 3264.4 = 1.06; P = 0.24). In other words, all families responded similarly to the 

treatment to which they were exposed (i.e., all families were similarly plastic, although 

family means averaging across treatments differed; DeWitt and Scheiner 2004) (Table 1). 

To visualize the reaction norms produced by each family in the analysis, 

treatment canonical scores were averaged within each environment for each family using 

the six week data only. These trait means were then graphed to express reaction norms 

for each family in each environment (Fig. 6). These graphs show the sloped but parallel 

reaction norms expected when genetic and environmental main effects are significant but 

the interaction is not (DeWitt and Scheiner 2004). Because a full-sib family system was 

used, I sought to identify the major axis of genetic variation. That is, I wanted to examine 

the major manner in which families differed from one another in overall shape. Using the 

same method I used to visualize the effect of treatment on shape, the first two major 

canonical axes for family from the MANCOVA were visualized using TpsRegr (Fig. 7 

and Fig. 8). I found that the first two major axes of genetic variation looked much like the 

major axis of variation found for the effect of the predator treatment on shape. 

Heritability of the first major axis of genetic variation was estimated to be 0.247. 

Estimates of heritability of canonical axes two and three were found to be 0.397 and 

0.234, respectively. The higher heritability of canonical axis two compared to that of the 

first axis was unexpected. By definition between group variance is greatest for axis 1, so 

this result implies there must be lesser within-group variance for canonical axis 2 scores. 

 
 



 20

Table 1.  MANCOVA results for morphological variation at six weeks.  
 

Effects F df P
Treatment 18.37 20, 280 < 0.0001
Family 2.00 280, 3264.4 < 0.0001
Tank (Treatment) 2.04 440, 4225.8 < 0.0001
Family × Treatment 1.06 280, 3264.4 0.25
Centroid size 8.04 20, 280 < 0.0001  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 21

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-1.5 -1 -0.5 0 0.5 1 1.5

 

Fig. 6.  Reaction norms of genetic variation for the effect of treatment on shape at six 

weeks. Each family’s mean is connected with a line to indicate their particular reaction 

norm across environments. 
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Fig. 7.  Visualization of first major (canonical) axis of genetic variation (i.e. variation  
 
between families) at six weeks (observed range). 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23

 

Fig. 8.  Visualization of second major (canonical) axis of genetic variation (i.e. variation 

between families) at six weeks (observed range). 
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The total number of snails used in the analysis at six weeks was 352 (crayfish = 176, 

sunfish =176). 

  

Effect at twelve weeks 

For shape data at twelve weeks, I had snails available from the four treatment 

groups (CC, CF, FF, FC). I examined canonical axes separating these groups and 

concluded that canonical axis 1 clearly discriminated between treatments experienced in 

the first six weeks of exposure, accounting for 50.8% of total phenotypic variation. 

Examination of canonical axis 2 discriminated between the effect of treatment exposure 

during the second six weeks, explaining 44% of the residual variation (22% of total 

variation) (Fig. 9). During this second six week interval snails continued to change shape, 

but the magnitude of change in shape was not as large as that seen in the first six week 

interval. The total number of snails used in the analysis at twelve weeks was 330 (CC = 

103, CF = 57, FC = 57, FF = 113). 

 

Effect at eighteen weeks 

Snails measured at 18 weeks experienced any of six environmental conditions 

(CCC, CFF, CCF, FFF, FCC, FFC). From the MANCOVA on shape at eighteen weeks, 

the first canonical axis discriminated groups by predator experienced in the first six 

weeks of exposure, the second canonical axis discriminated groups by predator 

experienced during the second six weeks of exposure, but the third canonical axis did not  

discriminate between treatments (Fig. 10). Failure of this canonical axis to discriminate 

between treatments at week eighteen suggests that there was no significant change in 



 25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Group separation by canonical axes after twelve weeks of exposure. 
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Fig. 10.  Group separation by canonical axes after eighteen weeks of exposure. 
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shape during the final six weeks of predator exposure. The total number of snails used in 

the analysis at eighteen weeks was 308 (CCC = 42, FFF = 55, FFC = 53, CCF = 52, FCC 

= 54, CFF = 52).  

 

Discussion 

In this study I found that P. virgata produced different morphologies when raised 

in the presence of alternative predators. Morphology was also found to be heritable, 

however plasticity itself was not heritable (no genotype × environment interaction). 

Visualization of the first two major axes of genetic variation looked nearly identical to 

the major axis of variation of treatment on shape. I also found that morphology was less 

flexible later in life. 

Production of an elongate morphology in the presence of crayfish and a rotund 

morphology in the presence of fish represents adaptive phenotypic plasticity which 

reduces successful predation by each respective predator (DeWitt et al. 1999). Elongation 

of the shell not only results in a more occluded aperture, but this shape may provide an 

area inside the shell into which the snail can further retreat (Vermeij 1982, DeWitt et al. 

1999, Krist 2002). This keeps shell-entry predators such as the crayfish from easily 

accessing the snail body tissue. A rotund shell has been shown to increase crush 

resistance, thus increasing handling time and rejection rates by durophagous (shell-

crushing) predators such as the redear sunfish (DeWitt et al. 1999). For a candid 

visualization of the effect of treatment on shell morphology, I determined which snails at 

the study’s end had the most extreme predator regime canonical scores and compared 

their photographs. Figure 11 shows these two individual snails’ photographs alongside 
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one another. The image on the left is of the snail with the most extreme positive 

canonical score (0.2417) and experienced a CCC treatment throughout ontogeny. The 

snail image on the right had the most extreme negative score (-0.2902) and experienced a 

FFF treatment.  

Morphology was found to be heritable, but plasticity per se was not heritable. 

Thus parallel reaction norms describe plasticity in shell shape (i.e., no gene by 

environment interaction; Fig. 6). This result would be expected where the relative risk of 

predation by either predator type were variable between generations, or even within 

generations if the variation were coarse enough that environmental changes could be 

tracked with developmental responses (DeWitt and Scheiner 2004). If environmental 

variation were entirely between populations one would expect isolated populations to 

evolve either fixed or rotund morphology with no developmental flexibility. Yet to the 

extent that occurs, with a little population mixing one would find that the genetic axis of 

variation would stretch broadly between the two morphs. This would create the situation 

where the genetic and plastic axes of variation are parallel in phenotype space. Such was 

the case in the present data—genetic and plastic axes of variation were highly similar, 

suggesting that parallelism of variation at multiple levels of the biological hierarchy 

(genetic, developmental, perhaps species level variation) may be the typical result of 

divergent natural selection. This is a new topic in evolutionary biology that requires 

greatly more theoretical and empirical attention (DeWitt, personal communication). For 

present purposes I just note here the trend toward parallelism. 
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Fig. 11.  Photographs of phenotypic extremes induced by predators in this study. The two 

individuals with the highest and lowest canonical scores for the predator effect axis at six 

weeks were selected for this visual comparison. 
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Visualization of each of the first two major axes of genetic variation in TpsRegr 

showed an effect that was nearly identical to the major axis of variation I found for the 

effect of the treatment on shape. That the two major axes of genetic variation look much 

like the effect of predator on shape indicates that this shape axis is important for meting 

out adaptive solutions for environmental variation occurring on multiple temporal or 

spatial scales. The second major axis of genetic variation (which is actually more 

heritable that the first), looks almost identical in all respects (thin-plate spline 

transformations) to the effect of predator on shape (rotund vs. elongate). 

The ability for P. virgata to respond to predation with adaptive morphological 

shifts during ontogeny has previously been shown (DeWitt 1998, DeWitt and Langerhans 

2003), but in this experiment I sought to explore constraints on such plasticity. In 

particular I wanted to know whether the environmental regime in one ontogenetic period 

affected the response to present shifts in environment. I found that the ability to respond 

to an environmental shift decays with increasing age, but that response per se is not 

constrained by the environment in the earlier stages. Since there was so little response to 

the environment in late ontogeny it should be no surprise that I could not detect an altered 

nature of response based on earlier environments. After six weeks of predator exposure, 

snails exhibited extreme change in shape, namely, elongate shell morphology for those 

exposed to crayfish and a rotund morphology for those exposed to the shell-crushing 

redear sunfish. During weeks six to twelve, snails continued to change shape but the 

magnitude of the effect was markedly reduced. During the final six weeks of 

development (weeks twelve to eighteen), snails exhibited no detectable change in shape 

despite use of extremely sensitive methods. So, the ability for such change to occur is 
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reduced as the snails proceed along a developmental trajectory. Such fixing of 

development after a certain period of exposure (terminating flexibility) represents a major 

constraint on the evolution of phenotypic plasticity.  

The aim of my study was to explore the developmental flexibility of an organism 

that has become a good model system for plasticity work. In this study physid snails 

experienced one type of ontogenetic constraint (that due to age) but not the other for 

which I tested (plasticity early in life constraining potential later in life). These results 

contrast with that of Weinig and Delph (2001). In annual herbs with modular growth, 

stem elongation is an adaptive response to foliar shading (detected as a shift in the red:far 

red wavelength ratio). When shade from competing plants is sensed, they elongate their 

stem to top their light competitors. In Abutilon theophrasti, plasticity expressed early in 

ontogeny reduced the capacity for response later in life, suggesting a potentially serious 

constraint on the evolution of phenotypic plasticity. Such constraints limit the value of 

plasticity relative to fixed development. In the physid system there is still an obvious 

constraint on the utility of plasticity: developmental shifts that should be adaptive even 

late in life are apparently not possible (or possible only to a very limited degree). This 

constraint on adult morphology is likely to be less important in nature than 

developmental flexibility earlier on, because the risk and fitness consequences of 

mortality are much greater for young individuals. Old snails do not change much, but 

there is less imperative to do so. 
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CHAPTER III 
 
 

STRUCTURAL ASPECTS OF PREDATOR INDUCED SHELLS 
 
 
Introduction 

Phenotypically plastic organisms exhibit alternative phenotypes when exposed to 

different environmental conditions (Bradshaw 1965, Stearns 1989, Schlichting and 

Pigliucci 1998). Under many circumstances phenotypic plasticity serves an adaptive role, 

maximizing fitness of individuals in variable environments (Schlichting 1986, Newman 

1992, Scheiner 1993, Dudley and Schmitt 1995, Schlichting and Pigliucci 1998). To give 

an example, several tadpole species alter morphology and produce bright tail colors when 

raised in the presence of predators such as fish and dragonfly larvae (Van Buskirk and 

Relyea 1998, Relyea 2001, Teplitsky et al. 2003). A deep and colorful tail serves an 

adaptive role in that invertebrate predators are more likely to strike at this attractive lure 

and keep otherwise lethal strikes away from the tadpole’s delicate body (Smith and Van 

Buskirk 1995). Reduced body size and increased tail dimensions can increase burst 

swimming speed (Dayton et al. 2005) and help avoid strikes by predators (Johnson, Burt 

and DeWitt, unpublished data). Physid snails live in stochastic environments and use 

phenotypic plasticity to mitigate natural selection. A classic example of an induced 

defense serving an adaptive role is seen among many species of gastropods. Shell 

thickness of aquatic snails (Vermeij 1976, Palmer 1979) has been shown to increase 

when raised or found in the presence of water-borne molluscivores. One reason why a 

thicker shell may develop is to offer snails better protection against predators, being that 

a thicker shell is more difficult to crush with a crab’s claw (Seeley 1986, Trussell 1996, 
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Trussell 2000) or a fish’s jaw (Trussell 1996, West and Cohen 1996). Shell shape has 

also been shown to be influenced by water-borne predation cues. Snails of the family 

Physidae exhibit a shape that is more rotund when reared in the presence of many sunfish 

species (Langerhans and DeWitt 2002). It is thought that the production of this shape in 

sunfish environments is adaptive because it increases crush resistance (DeWitt et al. 

2000), crushing being the mode which molluscivorous sunfish employ to devour snails 

(Lauder 1983, Huckins 1997).  

My study focuses on predator-induced morphological defenses in a freshwater 

snail of the family Physidae. The aim of my study is three-fold: I first look at differences 

in shell thickness and shell mass of the freshwater snail (Physella virgata) when raised in 

the presence of the molluscivorous redear sunfish (Lepomis microlophus) versus being 

raised in an environment lacking predators. Second, I examine differences in shell shape 

between snails raised with and without redear sunfish. Lastly, I explore differences in 

shell microstructure between snails raised in these two treatments, from the perspective 

that an increased shell thickness of snails raised with predators can either be due to an 

increase in crystal layering within the protein matrix of the shell or that, alternately, there 

are no differences in crystal layering, but that a greater amount of the same material is 

deposited into their shells. 

 

Methods 

Snail collecting and rearing 

Freshwater snails (Physella virgata) were collected from Krenek Tap pond 

located in College Station, Texas, USA (30°36΄N, 96°17΄W). Snails were taken to our 
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laboratory and treated with Maracyn (0.8 mg · 1-1) for two days in group culture. During 

treatment, snails were fed Wardley’s brand spirulina flakes ad libitum. Spirulina flakes 

were first ground into powder-form using mortar and pestle. Following treatment with 

antibiotics, the fifty largest snails of those collected were singly assigned to 300 ml 

plastic cups containing an RO water/trace elements solution (1ml/15L) (Seachem Fresh 

Trace). I selected the largest snails as they would be those most likely to produce egg 

masses large enough to yield an adequate number of hatchlings required for this 

experiment. Water changes were performed three times per week. Fouled water was 

poured away and cups were replenished with fresh water containing added trace 

elements. After each water change, snails were fed with approximately 0.5 mg of ground 

spirulina flakes.  

Several egg masses were noticed within one week. Cups with egg masses 

containing 12 or more potential hatchlings were kept and parents were removed. In some 

of these cups I found egg masses having too few potential hatchlings. These smaller egg 

masses were removed with a wooden spatula and discarded. After hatchlings emerged, 

water changes were continued as before, but instead approximately 90% of the water 

from each rearing cup was removed using a syringe. The syringe had a small section of 

tubing attached to its end and this section of tubing was replaced for each water change of 

each cup to prevent any possible contamination from one cup to another. Use of a syringe 

prevented any loss of hatchlings that may have occurred had the spent water been poured 

from the cups. Eighteen individuals produced clutches of ≥ 12 hatchlings. For each of the 

eighteen families, 12 hatchlings were randomly selected and individually assigned to one 

of the 12 rearing tanks for which treatments were assigned as described below. 
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Experimental design 

  F1 snail hatchlings were introduced into predator and no predator treatments. 

Twelve 76-liter aquaria (six containing predators, six containing no predators) were 

established and systematically arranged to prevent bias. In predator tanks, a single redear 

sunfish (Lepomis microlophus) was placed below a plastic grid in treatment tanks to 

allow flow-through of fish chemical cues while preventing any physical contact between 

fish and snails. This species of sunfish was chosen because of it being known as a 

voracious molluscivore. Tanks containing no predators were set up identically, the only 

difference being that no predators were introduced into the aquaria. Snails were placed 

individually into cages above the grid in each tank. Each rearing cage was made of 300 

ml plastic cups having two (35×38 mm) mesh windows (mesh size = 0.10 mm) which 

provided for unrestricted exchange of tank water with the inside of each cage (Fig. 12); 

this system ensured that cues from the surrounding environment were being received by 

the snails.  

Twelve hatchlings from each of the eighteen families were split into the 

treatments such that one individual from each family was represented in each tank. 

Redear sunfish (Lepomis microlophus) were purchased from a local supplier. The sunfish 

were placed in their appropriate aquaria at least two months prior to adding snail 

hatchlings.  
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Fig. 12.  Diagram of an individual treatment tank (with predator). Tanks without 

predators were identical except that nothing was placed below the platform on which 

snail rearing cages rest.  
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The sunfish were fed commercial pellets three times per week. Snails were fed a pinch of 

ground spirulina flakes on the same day the sunfish were fed. Extreme care was taken to 

prevent water in aquaria containing predators from mixing with aquaria containing 

sunfish and vice versa during feeding or when topping off aquaria as necessary due to  

water evaporation. Epsom salt was added to each aquarium (0.087g · L-1) to ensure that 

the snails had an adequate calcium source during development. Twenty percent water 

changes were performed twice during the experiment (every 4 weeks) in order to 

maintain high water quality.  

 

Shell thickness and mass 

Snails were removed after 67 days (approximately three months) of rearing in 

their respective treatments. The live snails were transferred to Falcon brand 24-well 

tissue culture plates, as this method was found to be ideal for easy labeling, tracking and 

containment of individual snails. The snail-containing plates were then placed in a freezer 

for 24 h and then set out at room temperature and defrosted until ice crystals were no 

longer visible (as in Vaughn et al. 1993). Snails were individually blotted with a 

Kimwipe brand tissue, returned to culture plates, then placed into a drying oven and dried 

at 60°C for 24 h (as in Vaughn et al. 1993). The dried snail body tissue was found to be 

negligible in total snail mass; therefore all snail bodies were removed from their shells 

using forceps. Shell weights were taken using a digital laboratory balance accurate to 0.1 

g. The total number of shells which weights were measured was 177 (89 predator, 88 no 

predator). After weighing, shell images were then captured for morphometric analysis as 

described in the next section.  
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In measuring shell thickness, I made sure to be consistent in the area of the shell 

that was to be measured. I chose to measure thickness at the top portion of the shell’s 

final whorl, adjacent to the snail’s aperture. I first removed the shell’s spire with a razor 

blade and then picked away the apertural lip using tweezers in order to expose the shell’s 

final whorl. The portion of the shell chosen for measurement was then affixed with epoxy 

to a zinc-plated steel plumbing washer. The washers (with snail fragments fixed in 

epoxy) were placed atop modeling clay in order to position the fragment such that a 

direct view of each shell’s cross-section could be achieved. Snail thickness measurements 

were determined at 600 × magnification using a Hirox 3-D Microscope equipped with 

measurement software. Because of the shells’ brittle nature, several were destroyed 

during the epoxy-fixing process. Thus the final number of shells on which thickness was 

measured was 160 (86 predator, 74 no predator). 

 

Morphometrics 

After weighing, shell images were captured using a video imaging system. Shells 

were placed aperture down on a stage below a video camera such that perimeter of the 

aperture was flush with the stage. The total number of shells’ images captured was 164 

(84 predator, 80 no predator). Morphometric software (MorphoSys Version 1.29) was 

used to digitize twelve landmarks along each shell’s contour. For each snail, shell 

outlines and twelve landmarks were digitized (Fig 13). Landmarks were digitized at the 

shell apex (LM 3), on sutures connecting the current and previous two whorls (LM 1, 2, 

4, and 5), at the farthest point of the shell relative to the coiling axis (LM 6), and at the 

lower insertion of the aperture (LM 7). The remaining five points found along the  
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Fig. 13.  Landmarks used in the shape analysis. Landmarks 1-7 were digitized manually. 

Landmarks 8-12 were digitized by projection from the midpoint of chord 1-7 every 30 

degrees to the shell margin. These latter points were treated as sliding semilandmarks 

following Bookstein 1991. 
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apertural region were treated as semilandmarks and were located by projecting at 30° 

angles from a point existing halfway between landmarks 1 and 7. Because these 

semilandmarks (LM 8-12) occur along a curve lacking any truly significant points, they 

were allowed to “slide” between adjacent points (Bookstein 1991). This method 

acknowledges the difference between true landmarks and semilandmarks and by design 

minimizes the bending energy associated with semilandmarks while conserving 

information about the shape of the curve.    

For all specimens, raw landmark coordinates were aligned by generalized least-

squares superimposition and used to calculate uniform and partial warps using tpsRelw 

(Rohlf 2004). In contrast to traditional linear-distance methods, such geometric 

morphometric methods (Rohlf and Marcus 1993) are much more powerful because 

spatial covariation between landmarks is retained. Differences in shape are thus 

conserved throughout the analysis and can be reconstructed using thin-plate splines for 

visualization (Rohlf and Marcus 1993). 

 

Nanomechanical properties 

I examined shell microstructure of snails raised in both treatments using a 

Hysitron Nanoindenter (Triboscope, Hysitron, Inc.). Nanoindentation techniques have 

been used extensively to measure the nanonmechanical properties of hard thin films. 

Such techniques are used to gather information about the hardness and elastic modulus of 

thin films and coatings. For biological materials, nanoindentation experiments have been 

performed to examine the behavior of materials such as bone and tooth enamel (Kinney 

et al. 1996, Zysset et al. 1999). For the purposes of this experiment, I used the same 
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technique to explore shell microstructural differences between snails raised between 

treatments (i.e., sunfish predators versus no predators). On the same epoxy imbedded 

shell fragments I used to measure shell thickness, the Nanoindenter was used to gather 

high-sensitivity force and displacement measurements. Because the shell fragments were 

imbedded into the epoxy with their outer layer (periostracum) down, indentations were 

made on the inside portion of the shell that is in contact with the snail body tissue. Due to 

budgetary and time constraints, I chose to analyze only a subset of the total number of 

shells available.  

Twelve shells from each predator and no predator treatments were analyzed (all 

from different tanks and different families). Shells were examined using a nanoindentater 

tip with a 90° cube-corner diamond tip of nominal radius of curvature of 30 nm. Four 

indentations per shell were performed using a trapezoidal loading curve. Indentations 

were performed for a maximum load of 9000 µN at a constant loading/unloading rate of 

450 µN/s. Data for only ten shells of each treatment were available for analysis due to 

instrument error. 

  

Analysis 

To compare shell size between treatments, shell mass (log transformed) and 

centroid size were treated jointly using a MANOVA and were tested for effects due to 

treatment, tank nested in treatment, family, and the effect of gene by environment. 

Because I had two measures of size (log weight and centroid size) these were combined 

using principal components analysis. Principal component 1 was used as my measure for 

size and was used as the controlling factor in comparing shell thickness between 
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treatments. This comparison was accomplished using an ANOVA, testing for effects due 

to treatment, tank nested in treatment, family and the interaction of genotype by 

environment. Statistical analyses of mass, thickness and centroid size data were 

conducted using JMP software (Version 4.04, SAS Institute Inc., Cary, NC).    

For shape analysis, I performed multivariate ANCOVA (MANCOVA) on 

geometric morphometric data. Shape parameters (i.e. n = 20 partial warps) from twelve 

digitized points were tested for variation attributable to treatments, family effects, gene 

by environment effects, tank effects nested within treatments, and centroid size as a 

covariate. Interactions between the covariate and main effects were tested, found to be 

nonsignificant and were removed from the model. Shape data for snails from one 

predator tank and from one no predator tank were left out of the analysis (twelve snails 

total) due to high mortality, stunted growth and overall poor health of snails found in 

these two tanks. Statistical analyses of shape data were conducted using JMP software 

(Version 4.04, SAS Institute Inc., Cary, NC). 

To analyze shell nanomechanical properties, I first obtained the average loading 

slope by linear regression of the nanoindentation load-displacement curves. I took the 

average slope to be the best estimate of hardness which I term Hbest. However, often the 

curves displayed a tendency to increase in a stepwise fashion, indicating inhomogeneous 

layers of shell material. To characterize the magnitude of this stepping, I performed a 

quadratic regression and measured the deviation between this function and the actual 

curve (Fig. 14). A high step naturally creates a large deviation from this function and this 

degree of mismatch is captured readily as 1 – R2 from the regression. I termed this value 

I, for inhomogeneity of the loading curve. Measures of material stiffness and  
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Fig. 14.  Example load profile for a shell during nanoindentation. Load increases as the 

indenter tip penetrates the shell material. The relevant part of the curve for calculating 

XYZ is given in fuscia above. Shown in blue overlay upon the fuscia line is the linear 

regression of these points used to calculate X. The difference in R2 between the (blue) 

linear regression and the (fuscia) quadratic regression was taken as I, a measure of 

inhomogeneity of the shell material over the depth of the indentation. 
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effective hardness of the material were also obtained by the test instrument. Stiffness (S) 

is the slope of the initial unloading portion of the load-displacement curve (i.e. load / 

displacement) and is a measure of the overall material stiffness. Effective hardness (Heff) 

is the value of the maximum displacement used for the data analysis. Values of Hbest, I, S 

and Heff for each of four indentations were averaged for each individual; between-

treatment mean differences for these values were tested using a two-tailed Mann-Whitney 

U-test and was conducted using SPSS Version 13.0 (SPSS Inc., Chicago, IL).  

 

Results      

Snails raised in the presence of predators had both thicker (LSM no predator = 

21.3µ, SE = 0.85, LSM predator = 28.4µ, SE = 0.75) and more massive (LSM no 

predator = 9.1 mg, SE = 0.45, LSM predator = 14.2 mg, SE = 0.68) shells than those 

raised without predators (Fig. 15, Fig. 16). This represents a 33 percent greater thickness 

and a 56 percent greater mass of those snails raised in a molluscivorous sunfish 

environment compared to those raised in a predator-free environment. Additionally, 

centroid size of snails was found to be greater when raised with predators (LSM no 

predator = 8.99, SE = 0.11, LSM predator = 9.99 mg, SE = 0.10) representing an 11 

percent increase in overall shell size compared to those raised without predators (Fig. 17).  

Shell shape was influenced by both environmental and genetic effects (F20, 88 = 

4.38; P < 0.0001; Table 2). Predator treatment was the strongest determinant of shell 

shape. Those snails reared with sunfish exhibited a shape that was more rotund than 

snails reared without predators. The treatment canonical axis explained 49.7% of 

phenotypic variation. I used TpsRegr (Rohlf 1998) to produce thin-plate spline  
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Fig. 15.  Predator treatment effect on shell thickness. 
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Fig. 16.  Predator treatment effect on shell mass. 
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Fig. 17.  Predator treatment effect on shell size. 
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Table 2. MANCOVA results for shell shape variation. 
 

Effects F df P
Treatment 4.35 20, 88 < 0.0001
Family 1.41 340, 1196 < 0.0001
Tank (Treatment) 1.58 160, 671.5 < 0.0001
Family × Treatment 0.95 340, 1196 0.73
Centroid size 1.56 20, 88 0.08
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Fig. 18.  Predator induced shell shape visualized by TpsRegr visualization using 

canonical scores from the predator effect in the MANCOVA on partial warps. Image on 

left pane represents those raised without sunfish, image on right pane represents those 

raised with sunfish. 
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transformation grids to illustrate shape change along canonical axes of the MANCOVA 

results (Fig. 18). I also performed the standard MANCOVA using slid and aligned 

specimens (procrustes coordinates) in place of partial warps in order to be certain that my 

original canonical axis representation did not distort true shape variation. Canonical 

spaces can become distorted if patterned variation exists in the data error matrix (DeWitt 

and Papadopoulos, unpublished data). The procrustes analysis provides least squares 

means for the conformations in alternative groups. These alternative conformations were 

plotted with Morpheus et al. (Slice 1998) morphometric software using thin-plate splines 

for visualization (Fig. 19).  

Shell shape variation was also attributable to a genetic component (i.e. the family 

effect; approx. F340, 1196 = 1.41; P < 0.0001), but there was no evidence for gene by 

environment interaction (Family × Treatment; approx. F340, 1196 = 0.95; P = 0.73). In other 

words, all families responded similarly to the treatment to which they were exposed 

(exhibited similar plasticity) (Table 2). 

Nanomechanical analysis of shells showed no significant microstructural 

differences between shells of snails raised in no-predator and predator environments 

(Table 3). 

 

Discussion 

Physid snails responded to predation cues of a shell-crushing sunfish by altering 

their shape, overall size, shell thickness and mass. Contrary to what I had expected, I 

found no between-treatment differences in shell microstructure. 
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Fig. 19.  Predator induced shell shape visualized by transformation between least squares 

means landmark conformations from a MANCOVA using procrustes coordinates. Image 

on left pane represents those raised without sunfish, image on right pane represents those 

raised with sunfish. 
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Table 3. Mann-Whitney U results for comparison of nanoindentation data between 

predator and no-predator shells. 

Z-value P-value
Inhomogeneity (1 - Rsquare) -0.093 0.354
Stiffness (S) -1.457 0.145
Effective hardness (Heff) -0.751 0.453
Hardness best estimate (Hbest) -0.044 0.965  
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The phenotypically plastic responses I observed are likely to offer at least three 

adaptive benefits. First, production of a more rotund shape can increase the likelihood of 

rejection (DeWitt et al. 2000). Secondly, increasing shell thickness has been shown to 

increase the force required by a shell-crushing predator to ‘crack’ a shell (Vermeij 1993). 

Lastly, the additional increase in overall size further may offer an advantage by deterring 

gape-limited sunfish. These developmental responses likely work together to give the 

snail greater protection from successful predation by shell-crushing sunfish, thus 

increasing their chance of survival. 

In my examination of shell microstructure, I was interested in identifying any 

differences in between-treatment crystal layering. The outer covering of shells in 

freshwater snails is known as the periostracum and protects the shell from chemical 

dissolution and physical erosion. The underlying shell layers are laid into an organic 

matrix by the snail’s mantle as calcium carbonate crystals (aragonite). I chose to measure 

the portion of the shell that is in contact with the mantle to avoid any interference that the 

periostracum may have given had I chosen to measure top-down, so to speak. Although 

shell thickness was greater overall for those snails raised with sunfish, this thickness was 

increased by depositing more of the same material into the shell and not by altering the 

manner in which aragonite was layered.  

The nanoindentation approach I used in this research to my knowledge has not 

been applied before in ecological studies. Yet the potential for uncovering microstructural 

differences in the material properties of organismal phenotypes is potentially great. In the 

present case I found no shell microstructure differences when snails were reared with 

shell-crushing redear sunfish versus rearing in the absence of predators. The differences I 
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found all pointed to developing shells that were larger, thicker and more difficult to crush 

when predators were present. Although I had expected that shells may layer crystals 

differently in their shells, I found none. The only innovations I uncovered regarding shell 

defenses against predation involved the amount of material (shell thickness and size) and 

the gross conformation of the material (shell shape). 
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CHAPTER IV 

SUMMARY 

 Many organisms respond to their environment with adaptive developmental shifts. 

In the case of the physid snail, morphology and structure can be profoundly influenced by 

the presence of particular predators. These phenotypes are adaptive in that in each case 

fitness is enhanced by improved phenotype-environment matching. In this thesis, I 

illustrate morphological responses of physid snails to the presence of different predation 

regimes (sunfish, crayfish and no predator).  

 The experiment discussed in Chapter II illustrates how physid snails produce 

different morphologies in the presence of different predators (redear sunfish vs. crayfish). 

Because I used a family structure, after six weeks of exposure I was able to illustrate 

reaction norms for each family across the two environments, determine heritability 

estimates of shell shape, show that morphology was heritable, and show major axes of 

genetic variation. Monitoring shape change throughout development in changing 

predation regimes allowed me to discover that the ability for snails to change shape is 

reduced as development progresses. 

 In Chapter III, I explored not only differences in shape between snails raised with 

and without predators, but I also looked at differences in shell thickness, mass, overall 

size and microstructure. Snails raised with predators developed a defensive shell shape 

and also produced thicker, larger, more massive shells. These morphological responses 

likely work together to reduce mortality by shell-crushing predators. Although shell 

thickness, mass and size differed between treatments, I found no differences in shell 
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microstructure. This is taken to mean that snails raised with predators increase shell 

thickness by adding more of the same material to the shell. 

 This body of work, taken with previous studies, suggests a remarkable degree of 

developmental flexibility on the part of prey exposed to diverse predators in nature. 

Physid snail responses to predators are many and varied, though I did find limits to how 

developmentally flexible snails can be. The complexity and breadth of induced responses 

in physid snails suggests that equally broad and complex adaptations may be common for 

other organisms. Only by including such complexity in our analysis of adaptations are we 

likely to fully understand the nature of adaptation. 
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