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ABSTRACT

Modelling and Control of Satellite Formations. (May 2003)

Veera Venkata Sesha Sai Vaddi, B.Tech., R. E. C. Calicut;

M.S., I. I. Sc Bangalore

Chair of Advisory Committee: Dr. Srinivas R. Vadali

Formation flying is a new paradigm in space mission design, aimed at replacing large

satellites with multiple small satellites. Some of the proposed benefits of formation

flying satellites are: (i) Reduced mission costs and (ii) Multi mission capabilities,

achieved through the reconfiguration of formations. This dissertation addresses the

problems of initiatialization, maintenance and reconfiguration of satellite formations

in Earth orbits. Achieving the objectives of maintenance and reconfiguration, with

the least amount of fuel is the key to the success of the mission. Therefore, under-

standing and utilizing the dynamics of relative motion, is of significant importance.

The simplest known model for the relative motion between two satellites is described

using the Hill-Clohessy-Wiltshire(HCW) equations. The HCW equations offer pe-

riodic solutions that are of particular interest to formation flying. However, these

solutions may not be realistic. In this dissertation, bounded relative orbit solutions

are obtained, for models, more sophisticated than that given by the HCW equations.

The effect of the nonlinear terms, eccentricity of the reference orbit, and the oblate

Earth perturbation, are analyzed in this dissertation, as a perturbation to the HCW

solutions. A methodology is presented to obtain initial conditions for formation es-

tablishment that leads to minimal maintenance effort.
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A controller is required to stabilize the desired relative orbit solutions in the presence

of disturbances and against initial condition errors. The tradeoff between stabil-

ity and fuel optimality has been analyzed for different controllers. An innovative

controller which drives the dynamics of relative motion to control-free natural so-

lutions by matching the periods of the two satellites has been developed under the

assumption of spherical Earth. A disturbance accommodating controller which sig-

nificantly brings down the fuel consumption has been designed and implemented on

a full fledged oblate Earth simulation. A formation rotation concept is introduced

and implemented to homogenize the fuel consumption among different satellites in a

formation.

To achieve the various mission objectives it is necessary for a formation to reconfigure

itself periodically. An analytical impulsive control scheme has been developed for this

purpose. This control scheme has the distinct advantage of not requiring extensive

online optimization and the cost incurred compares well with the cost incurred by

the optimal schemes.
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CHAPTER I

INTRODUCTION

Formation flying of satellites is an emerging technology for next generation space sys-

tems. The cost of launching a satellite depends on the size of the satellite. It becomes

prohibitively expensive to launch large satellites. Formation flying technology aims at

creating a “virtual satellite” by a network of co-orbiting small satellites. The virtual

satellite thus created, is expected to perform the functions of a large satellite at a

much lower cost. Another advantage of formation flying is achieving multi mission

capabilities, through the reconfiguration of the formation. Some of the applications of

formation flying satellites are space-based radar, ground-based terrestrial laser com-

munication system, Earth surveillance, remote sensing, stellar imaging, and astrom-

etry. Terrestrial Planet Finder(TPF), Laser Interferometer Space Antenna(LISA),

Stellar Imager, Planet Imager, TechSat-21, and Earth Observer-1 are some of the

proposed formation flying missions. We focus our attention on formations that con-

sist of a central chief satellite, surrounded by multiple deputy satellites. In some

formations a central chief satellite may not physically exist. However, an imaginary

chief satellite may be assumed, in order to provide a reference point for the formation.

The chief satellite could be in a heliocentric orbit, geocentric orbit or the L2 libration

point, depending on the application. In this dissertation, we addresses the issues of

establishment, maintenance and reconfiguration of formations in Earth orbits.

The relative orbit between the satellites dictates the shape of the formation. A

bounded relative orbit between the chief and the deputies is necessary for simulating

The journal model is AIAA Journal of Guidance, Control, and Dynamics.
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the functions of a monolithic satellite. Fuel is a scarce commodity on the spacecraft.

Therefore, it is desirable to spend minimum fuel for the purposes of maintenance and

reconfiguration of the formations. In the absence of disturbances, formations in nat-

urally occurring relative orbits need zero external controls for maintenance. Hence, a

naturally occurring bounded relative orbit is a judicious choice for the shape of a for-

mation. Such natural solutions are explored by modelling and studying the dynamics

of spacecraft relative motion.

Modelling the dynamics of relative motion for nearby spacecraft had been of interest

for the spacecraft rendezvous problem, as discussed in Refs.1 and 2. Models can be

developed with varying levels of sophistication. Drag, oblateness of the Earth and

solar radiation are significant perturbations to the two-body problem that may need

to be modelled depending on the parameters of a specific formation flying mission.

The aerodynamic characteristics of different satellites in a formation are expected to

be the same, hence, it is assumed that the differential drag will be negligible. In this

dissertation, the oblateness of the Earth is modelled by J2, the first harmonic in the

gravitational potential expansion.

Models for spacecraft relative motion can be developed using different choices of rela-

tive motion coordinates and reference frames. A geocentric inertial frame of reference

and a chief centered local vertical local horizontal (LVLH) frame are the two choices

of reference frames. Shown in Fig.(1.1) are the inertial and LVLH reference frames.

The motion along x, y, and z will also be referred to as radial, along-track, and out-

of-plane motion, respectively.
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Fig. 1.1: Reference frames

The choices for the coordinates are inertial Cartesian coordinates, LVLH Cartesian

coordinates and orbital elements. Each choice of coordinates offers certain advan-

tages as will be seen in this dissertation. Inertial Cartesian coordinates, X,Y, and

Z in Fig.(1.1), are preferable for oblate Earth simulations and are amenable to con-

version from orbital elements and vice-versa. LVLH Cartesian coordinates, x, y, and

z in Fig.(1.1), are the best choice for visualizing the relative orbits. Relative motion

models developed using LVLH Cartesian coordinates are also useful for designing

feedback controllers and formation flying reference trajectories. The choice of orbital

elements as coordinates offers useful insight into the design of bounded relative orbits

and their geometry. It is also easier to design impulsive control laws using orbital

element models.

1.1 Inertial Coordinates

The equations of motion of a satellite in inertial coordinates, under the influence of

gravitational effects is given below:
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r̈ = −φr (1.1)

where, r = [X Y Z]T , is the inertial position vector, φ, is the gravitational potential,

and φr, is its gradient. The gravitational potential and its gradient are :

φ = −µ
r

[

1− J2
2

(

Re

r

)2
(

3
Z2

r2
− 1

)]

(1.2)

φr =
µ

r3
r+

J2µR
2
e

2

[

6Z

r5
n̂+

(

3

r5
− 15Z2

r7

)

r

]

(1.3)

where r = ||r||, n̂ is the unit vector in the inertial Z direction, µ is the gravitational

constant, J2 represents the gravitational contribution from the oblate portion of the

Earth, and Re is the radius of the Earth.

As mentioned earlier, inertial coordinates are suitable for simulating the oblate Earth

perturbation. Furthermore, initial conditions obtained using orbital elements can be

transformed to initial conditions in inertial coordinate space. The relative motion

between two satellites can be simulated by integrating two sets of Eqn.(1.1), one

for the chief and one for the deputy. The inertial relative displacement and relative

velocity vectors, respectively, are defined as follows:

δ r = rd − rc (1.4)

δ v = vd − vc (1.5)

Herein, the subscript,“c” is used to denote the chief. Any variable connected with a

deputy is denoted by the subscript,“d”. The relative motion between the two satellites
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can be transformed to the LVLH frame as follows:

x =
δ rT rc
rc

(1.6)

y =
δ rT (Hc × rc)

|Hc × rc|
(1.7)

z =
δ rTHc

Hc

(1.8)

where, Hc = rc× vc is the angular momentum. The coordinates, x, y, and z are, re-

spectively, the LVLH Cartesian coordinates of relative motion. The relative velocities

in this frame are given below:

ẋ =
δ vTrc + δ rTvc

rc
− (δ rTrc)( r

T
c vc)

r3c
(1.9)

ẏ =
δ vT(Hc × rc) + δ rT(Ḣc × rc +Hc × vc)

|Hc × rc|
−

δ rT(Hc × rc)(Hc × rc)
T(Ḣc × rc +Hc × vc)

|Hc × rc|3
(1.10)

ż =
δ vTHc + δ rTḢc

Hc

− δ rTHc(H
T

c Ḣc)

H3
c

(1.11)

1.2 LVLH Coordinates

Relative orbits of interest for formation flying are described in a rotating frame of

reference attached to the chief satellite. Hence, it is desirable to write down the rel-

ative motion dynamics in this frame of reference. A brief survey of relative motion

models in LVLH coordinates and results thus obtained are given in this section.
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Kechichian3 has derived in LVLH Cartesian coordinates the most comprehensive set of

relative motion equations modelling drag and oblate Earth perturbations. Integrating

these equations is equivalent to integrating two sets of Eqn.(1.1), one set for the chief

and one for the deputy, with equivalent initial conditions. Kechichian’s equations

constitute a set of twelve nonlinear ordinary differential equations. On the other

hand, the Hill-Clohessy-Wiltshire (HCW) equations Eqs.(1.12) are the simplest set

of equations in LVLH coordinates. A derivation of the HCW equations is available in

Ref.4. They are obtained for a circular chief orbit by making the assumption of and

spherical Earth, and linearizing the differential gravity accelerations, and neglecting

all other perturbations to the two-body problem. The HCW equations constitute a

system of sixth-order constant coefficient linear ordinary differential equations.

ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0 (1.12)

z̈ + n2z = 0

where n =
√

µ
a3 the mean motion of the chief, and a is the semi-major axis of the

chief’s orbit.

The HCW equations admit bounded periodic solutions given by Eqs.(1.13-1.18) which

are suitable for formation flying missions. These solutions, referred to as HCW solu-

tions, are as follows:

x =
c1
2
sin(nt+ α0) (1.13)
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y = c1 cos(nt+ α0) + c3 (1.14)

z = c2 sin(nt+ β0) (1.15)

ẋ =
c1
2
n cos(nt+ α0) (1.16)

ẏ = −c1n sin(nt+ α0) (1.17)

ż = c2n cos(nt+ β0) (1.18)

where c1, c2, c3, α0 and β0 are constants that are determined by initial conditions.

These solutions are isolated periodic orbits in an otherwise unstable system. The

solutions are obtained by satisfying the following constraint on initial conditions:

ẏ0 + 2nx0 = 0 (1.19)

Initial conditions which satisfy Eqn.(1.19) will be referred to as HCW initial condi-

tions. The HCW initial conditions are obtained by substituting t = 0 in Eqs.(1.13-

1.18):

x0 =
c1
2
sinα0 (1.20)

y0 = c1 cosα0 + c3 (1.21)

z0 = c2 sin β0 (1.22)

ẋ0 =
c1
2
n cosα0 (1.23)

ẏ0 = −c1n sinα0 (1.24)

ż0 = c2n cos β0 (1.25)

Bounded relative orbits of various shapes and sizes can be obtained by choosing

arbitrary values for c1, c2, c3, α0 and β0. The relative orbit that is obtained by choosing

c1 = c2 = ρ, c3 = 0 and α0 = β0 is known as the projected circular orbit(PCO),
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because the relative orbit is circular when projected onto the local horizontal plane,

i.e., the y − z plane:

x =
ρ

2
sin(nt+ α0) (1.26)

y = ρ cos(nt+ α0) (1.27)

z = ρ sin(nt+ α0) (1.28)

Therefore,

y2 + z2 = ρ2 (1.29)

which represents a circle in the y−z plane with radius ρ. α0 characterizes the position

of the deputies along the circumference of the circle. ρ is a measure of the size of

the formation and will be referred to as disc size throughout this dissertation. The

PCO is an attractive option for formation flying. It can serve as an antenna for space

based radar.

There exists another circular orbit of interest for the choice of c1 = ρ, c2 =
√
3
2
ρ, c3 = 0

and α0 = β0. This results in a circle(section of a sphere through the center) in the

three dimensional space.

x =
ρ

2
sin(nt+ α0) (1.30)

y = ρ cos(nt+ α0) (1.31)

z =

√
3

2
ρ sin(nt+ α0) (1.32)

which results in

x2 + y2 + z2 = ρ2 (1.33)
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a circle in the three dimensional space. This relative orbit is known as the general

circular orbit(GCO). The GCO is also an useful option for formation flying and can

be used to simulate a large satellite with a circular geometry.

Choosing c1 = 0, c2 = 0 and c3 = d yields x = 0, y = d, z = 0 which results

in constant along-track separation. This is known as the leader follower configura-

tion(LFC) because, the deputies either lead or follow the chief by a constant distance

in the along-track direction. A long slender satellite can be simulated by the straight

line formation that results from the LFC.

The initial conditions corresponding to the projected circular orbit, general circular

orbit and the leader follower configuration will be referred to as PCO initial con-

ditions, GCO initial conditions and LFC initial conditions, respectively. It should

be noted that the projected circular orbit, general circular orbit and the leader fol-

lower configuration, are three particular cases of the HCW solutions resulting from

the PCO, GCO and LFC initial conditions respectively. As these particular solutions

are of special interest to formation flying, they are chosen for further analysis and

simulations in this dissertation.

The assumptions leading to the HCW equations are highly restrictive. Kechichian’s

equations, when integrated with HCW initial conditions, result in unbounded so-

lutions for large formations, and elliptic chief orbits. Therefore, it is necessary to

incorporate the effects of nonlinear differential gravity accelerations, eccentricity of

the chief orbit and J2 in the search for bounded relative orbit solutions. For the

sake of brevity, the above mentioned effects will be referred to as simply nonlinearity,

eccentricity and J2 respectively, for the rest of the dissertation. Unbounded solutions
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resulting from HCW initial conditions on models more realistic than HCW equations,

will be referred to as “the breakdown of HCW solutions” in this dissertation. We seek

to obtain bounded relative orbit solutions, that are close to HCW solutions, on more

realistic models. In that pursuit, a next level of sophistication to HCW equations

is obtained by modelling the effect of eccentricity. The resulting equations, while

retaining all other assumptions of the HCW equations, are given in Eqn.(1.34).

ẍ− 2θ̇ẏ − θ̈y − θ̇2x− 2
µ

rc3
x = 0

ÿ + 2θ̇ẋ+ θ̈x− θ̇2y +
µ

rc3
y = 0

z̈ +
µ

rc3
z = 0 (1.34)

r̈c = rcθ̇
2 − µ

r2c

θ̈ = −2ṙcθ̇

rc

where rc is the radius of the chief from the center of the earth and θ is the latitude

angle of the chief satellite.

Solutions to these equations are more realistic than the HCW equations. Several

researchers have addressed the problem of solving these equations using different

approaches in Refs. 5–7. However, bounded solutions were not investigated. A com-

prehensive compilation of all the work done in solving these equations is available in

Ref.8. Tschauner and Hempel9 derived simpler version of Eqs.(1.34) by using non-

dimensional relative motion coordinates and using true anomaly as the independent

variable. Carter10 derived an analytical solution to these equations in terms of ar-

bitrary constants. Inalhan et al.11 derived a criterion for bounded solutions using

Carter’s analytical solution. The integration constants have been further related to
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the relative motion initial conditions. Melton12 derived an approximate time-explicit,

series solution in powers of eccentricity, to Eqs.(1.34). Though it is the only solu-

tion explicit in time and initial conditions, it has the problem of unexplained secular

terms appearing in the radial direction. The effect of nonlinearities were studied in

Refs. 1,2,13,14. In this dissertation, we seek the following desirable features for rep-

resenting bounded relative orbit solutions, that are relevant to the formation flying

problem:

• The solution should be analytical and yield the desired accuracy.

• The solution should be time-explicit so that secular terms be easily identified.

Time-explicit solution also obviates the need to solving Kepler’s equation.

• The solution should be explicit in initial conditions. This helps choosing initial

conditions appropriate for a desired relative orbit.

• The solution should be in the actual LVLH Cartesian coordinates, instead of

non-dimensional coordinates.

Most of the earlier research, discussed in the previous paragraph, lacks one or more

of the above mentioned features.

Few researchers, other than Kechichian,3 have modelled the effect of J2 on relative

motion models using LVLH coordinates. Though Kechichian’s equations model the

all the relevant perturbations, exactly, they are very complicated and not amenable

to analysis. Schweighart and Sedwick15 developed a linearized J2 model. The model

consists of a set of constant coefficient, linear differential equations similar to HCW

equations. This model is restricted to low eccentricity orbits and is specific to cer-

tain set of initial conditions. Vadali et al.16 have also derived a modified set of Hill’s



12

equations using a mean, precessing, circular ghost orbit as a reference, in the pres-

ence of J2. Vadali’s model qualitatively captures the effect of J2 on the out-of-plane

dynamics, but the effect of J2 on the in-plane dynamics is not completely addressed.

A simplified set of equations modelling the effect of J2 for all initial conditions and

elliptic chief orbits, remains elusive, till date.

1.3 Orbital Elements

Formation flying problems can also be modelled using the orbital element differences

between two satellites. In this section, a brief description of orbital elements, orbital

element models, and a survey of previous results obtained using orbital elements, are

presented.

The classical set of orbital elements for a two body problem are semi-major axis(a),

eccentricity(e), inclination(i), longitude of ascending node(Ω), argument of perigee(ω)

and the mean anomaly(M). In the absence of J2, the first five of these elements are

constant and the mean anomaly varies linearly with time. Gauss’s equations model

the influence of external controls on orbital elements. These equations are given

below:

di

dt
=
r cos θ

h
uh (1.35)

dΩ

dt
=

rsinθ

h sin i
uh (1.36)

da

dt
=

2a2

h
(e sin fur +

p

r
ut) (1.37)
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de

dt
=

1

h
(p sin fur + [(p+ r) cos f + re]ut) (1.38)

dω

dt
=

1

he
[−p cos fur + (p+ r) sin fut]−

r sin θ cos i

h sin i
uh (1.39)

dM

dt
= n+

η

he
[(p cos f − 2re)ur − (p+ r) sin fut] (1.40)

where p = a(1− e2), is the semi-latus rectum, η =
√
1− e2, r = p

1+e cos f
, is the radius

of the spacecraft from the center of the earth, f is the true anomaly, h =
√
µp is

the angular momentum, ur, ut and uh are the external accelerations in the radial,

tangential, and out- of-plane directions, respectively. It can be clearly seen from the

above equations that the first five orbital elements are constant when ur = 0, ut = 0

and uh = 0.

The orbital elements are no longer constant in the presence of J2. J2 introduces

perturbation accelerations3 through ur, ut and uh. A new set of orbital elements can

be defined by averaging out the short and long period oscillations due to these per-

turbations. These elements are known as mean elements, in contrast to osculating

elements which contain the short and long period oscillations. The mean semi-major

axis, mean eccentricity, and mean inclination are constant. The other three mean

elements vary linearly with time, at rates that are functions of mean semi-major axis,

mean eccentricity and mean inclination only. The osculating elements are obtained

by converting the inertial position and velocity at each instant to orbital elements.

The mean elements are then extracted from them using Brouwer’s theory.17

In the absence of any perturbations, two satellites in Keplerian orbits, can have
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bounded relative motion only when they have the same period. The period of a

satellite depends only on the semi-major axis, hence it is essential that δa = 0. In

the presence of J2, this condition is no more valid. Schaub and Alfriend18 used mean

elements to derive conditions for J2 invariant orbits. The conditions are expressed

in terms of mean element differences. Hence, it is useful to map orbital element

differences to relative motion Cartesian coordinates, in a LVLH frame of reference.

Alfriend et al.19 used the geometry of the orbits to obtain the following transformation:

X = A(e)δe (1.41)

where X = [x y z ẋ ẏ ż] is the relative motion coordinate vector, e = [a θ i q1 q2 Ω] is

the orbital element vector, and q1 = e cosω, and q2 = e sinω. The following geometric

relations are found to be useful in deriving the above transformation:

x ≈ δR (1.42)

y ≈ Rc(δθ + δΩcos ic) (1.43)

z ≈ Rc(− cos θc sin icδΩ + sin icδi) (1.44)

where Rc is the radius of the chief satellite from the center of the earth, θc is the lati-

tude angle of the chief, ic is the inclination and Ω the longitude of the ascending node.

Gim and Alfriend20 obtained a state transition matrix solution to the linearized rela-

tive motion dynamics in the presence of J2, starting with the above transformation.

Alfriend et al.21 have characterized different relative orbits suitable for formation

flying, in terms of orbital element differences. Vadali22 has obtained an analytical

solution for relative motion of satellites by using a unit sphere for the description

of motion. The solution is written in terms of mean elements, and their differences
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using a geometric approach. The resulting solution is very accurate and can be used

for faster propagation of relative orbits, in contrast to numerical integration of the

exact differential equations.

1.4 Control

A control scheme is required to stabilize the formation in the presence of disturbances

and initial condition errors. Control algorithms are also necessary, for establishing

and reconfiguring formations. Continuous time control is more suitable for tracking

the desired relative orbits, that may or may not be natural solutions to the relative

motion dynamics. Continuous time control seeks to establish zero tracking errors

at all times. On the other hand impulsive control can only keep errors within a

threshold. Traditionally, impulsive control has been found to be more suitable for

orbit corrections, and is done on a periodic basis.

1.4.1 Continuous Control

Schaub and Alfriend23 developed feedback control laws using Cartesian coordinates as

well as orbital elements. Yedavalli and Sparks24 used a theoretical framework called

‘ultimate boundedness analysis of switched systems’. In their work they use HCW

equations and keep the errors bounded within a threshold ellipsoid. Starin et al.25

developed a LQR with no radial axis inputs. Simulations from their work show that

by not using radial thrusting the fuel consumption for maintenance can be reduced.

Mitchell and Richardson26 provide an active nonlinear controller which retains the

relative motion dynamics close to invariant manifolds defined through various system

Hamiltonians. The application of this work is restricted to circular orbit and spher-

ical Earth assumption scenarios. de Queiroz et al.27 developed a Lyapunov based
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nonlinear adaptive control law. The control law adapts for varying spacecraft masses,

disturbances and gravity forces. Nonlinearities and disturbances are explicitly can-

celled in their control law and the vital issue of optimality is not addressed. Naasz et

al.28 compare the performance of LQR and optimal controllers. Middour29 developed

a Kalman filter to estimate the initial conditions and mean motion parameters of

the HCW equations in order to compute the average along track separation and drift

between two neighboring satellites. Fumin and Krishnaprasad30 developed asymp-

totically stable control laws in the absence of J2, by defining a Lyapunov function in

the space of the angular momentum vector and the Laplace vector. In their work,

both the satellites in a formation are controlled and steady state dynamics is forced

to naturally occurring solutions that need zero steady-state external controls. Vadali

et al.31 have obtained control laws by projecting the relative motion on a unit sphere

and expressing the inter satellite range vector in terms of Euler parameters.

1.4.2 Impulsive Control

Orbital element models are more suitable for designing impulsive control laws. Gauss’s

equations can be used to relate the magnitude of the impulses to the corresponding

orbital element differences created. Schaub and Alfriend32 developed an analytical,

impulsive, feedback control law for establishing a desired set of mean element dif-

ferences. In this dissertation, an improved version of the same, will be developed,

for establishing and reconfiguring formations. Vadali et al.33 have also dealt with

impulsive orbit correction schemes in the presence of J2. A numerical approach is

used in their work, for solving the nonlinear optimization problem that results from

the maintenance problem. It should be noted that numerical optimization techniques

may not be suitable for online implementation, as they are not always guaranteed to



17

converge. Ahn and Spencer34 studied the optimal reconfiguration of a formation flying

satellite constellation following the failure of a constellation member, using impulsive

control. Again, numerical optimization techniques were used in their work. Tiller-

son et al.35 present fuel and time optimal control algorithms using linear and integer

programming techniques, for formation reconfiguration, using linearized equations of

relative motion dynamics. Since, the methodology is numerical in nature, not much

insight is obtained into the solution. It should be noted that all the impulsive control

laws discussed above, other than that of Tillerson et al., use Gauss’s equations for

designing the impulse components.

A globally optimal, analytical, impulsive control scheme, suitable for the purposes of

maintenance and reconfiguration, still remains to be developed.

1.5 Goals

The goals of this dissertation are to analyze the following issues of importance to

formation flying:

• Perturbations - In this dissertation we study the effect of the three most sig-

nificant perturbations to the solutions of the HCW equations. They are (i)

nonlinearity of the differential gravity terms (ii) eccentricity of the chief’s orbit

and (iii) oblateness of the Earth.

• Initiation - Naturally occurring relative motion trajectories are the most eco-

nomical ones to maintain. Initial conditions that result in bounded relative orbit

solutions, for more realistic models than the HCW equations, will be explored

in this dissertation.
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• Maintenance - The tradeoff between stability and optimality of different con-

tinuous time control laws is studied in the context of the formation flying main-

tenance problem.

• Reconfiguration - This dissertation seeks to develop analytical reconfiguration

schemes that are easy to implement and incur control costs that are close to the

corresponding costs incurred by the optimal solutions obtained by numerical

optimization.

Given below is a brief description of each chapter in this dissertation.

1.6 Nonlinearity and Eccentricity Perturbations

In this chapter, we first review various LVLH Cartesian coordinate models of relative

motion dynamics in the absence of J2. The effect of nonlinearity and eccentricity

on the HCW solutions is studied using perturbation methods. Initial conditions

that minimize the secular growth in the along-track direction, are obtained in LVLH

Cartesian coordinates. A time-explicit bounded relative orbit representation is also

obtained. LVLH Cartesian coordinates and models will be used for analysis and sim-

ulation throughout this chapter.

1.7 Linear and Nonlinear Controllers for Formation Flying

In this chapter, we analyze different control schemes for formation maintenance in

the absence of J2. LVLH coordinates and models will be used for analysis and simu-

lation throughout this chapter. The objective is to devise control strategies that can

stabilize large formations optimally. Three types of controllers will be studied in this
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chapter: (i) Lyapunov stabilized controller, (ii) LQR controllers, and (iii) Period-

matching controllers. The Lyapunov and LQR controllers are tracking controllers

that are designed to track a desired relative orbit. The period-matching controller

exploits the existence of naturally occurring bounded solutions to the relative motion

dynamics. Bounded relative orbits that require zero steady state controls can be gen-

erated using the period-matching controller.

1.8 J2, Modelling and Control

In this chapter we analyze the J2 perturbation. Relative orbits are modelled using

mean elements and the geometry of the orbits. Initial conditions that minimize the

secular growth in the along-track direction, are obtained using the geometric model.

An intelligent control concept that maintains equal, average fuel consumption for

each satellite, is presented. The concept is implemented using a novel, disturbance

accommodating control design process. Inertial coordinate models are used for nu-

merical simulations.

1.9 Formation Establishment and Reconfiguration

In this chapter we address the problems of optimal formation establishment and

reconfiguration. Formations are characterized in terms of orbital element element

differences. Gauss’s equations are used to design a sub-optimal, analytical, impulsive

control scheme for establishing the desired orbital element differences. The control

scheme is validated by simulations conducted using the inertial coordinate models.
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CHAPTER II

NONLINEARITY AND ECCENTRICITY PERTUBATIONS

2.1 Abstract

In this chapter we study the equations of relative motion dynamics in the absence of

J2. The Hill-Clohessy-Wiltshire equations describe the relative motion of a satellite

with respect to another in a circular reference orbit. Initial conditions that generate

periodic solutions to these equations have to be corrected in order to obtain bounded

solutions in the presence of nonlinearity of the differential gravitational acceleration

model and eccentricity of the reference orbit. The corrections to the initial condi-

tions due to quadratic terms in the differential gravitational acceleration for circular

reference orbits are established first by using a perturbation approach. These cor-

rections are related to the period matching constraint required for bounded relative

motion. Next, a solution and bounded relative orbit criterion are obtained for the lin-

earized problem, with the chief in an eccentric orbit. The two solutions obtained are

combined to produce an asymptotic solution for the quadratic, eccentricity problem.

The effects of nonlinearity and eccentricity on the relative orbits are characterized as

functions of their initial position in the formation.

2.2 Introduction

The problem of relative motion dynamics of satellites has been of interest since the

1960’s. Much of the work has been performed in the context of the rendezvous

problem. Accurate modeling of the relative motion dynamics for initial conditions

close to the target is important for the rendezvous problem. Formation flying re-

quires bounded relative motion. The solutions of interest are therefore restricted to
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a certain set of initial conditions that lead to bounded relative motion. The Hill-

Clohessy-Wiltshire (HCW) equations that model the relative motion dynamics under

the assumption of a circular reference orbit, spherical Earth, and linearized differential

gravitational acceleration, admit periodic solutions that are of interest for formation

flying . Nonlinearity of the differential gravitational acceleration, eccentricity of the

reference orbit, and the Earth’s oblateness are the three most important perturba-

tions that breakdown the periodic HCW solutions.

The developments in this chapter draw upon several previous studies. Melton12 de-

veloped a state transition matrix solution for the linearized relative motion dynamics

by incorporating the effect of eccentricity. Inalhan et al.11 obtained the condition for

bounded relative orbit solutions to the linearized problem with non-zero eccentricity.

Alfriend et al.19 used a geometric approach to map relative motion coordinates to

orbital element differences.

In this chapter, we first review various models of relative motion dynamics. Nonlinear-

ity and eccentricity are identified as the perturbations which breakdown the desired

HCW solutions. The effects of these perturbations are first studied independently.

Accordingly, in the next section we present a perturbation solution to the problem

with nonlinearity and without eccentricity. The perturbation solution is used to gen-

erate a correction to the HCW initial conditions. This correction is also related to

the period matching requirement for bounded relative motion between two satellites.

Next, we study the linear relative motion model in the presence of eccentricity of

the reference orbit. Conditions for bounded solutions developed in Ref.11 are used

to generate another correction to HCW initial conditions. Melton’s state transition

matrix solution is utilized to obtain a time-explicit representation to the bounded
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solutions of the linearized relative motion problem with eccentricity. A solution to

the same problem is also available in Ref.11 but as a function of true anomaly rather

than time. Melton’s state transition matrix involves a series expansion in powers of

the eccentricity. Hence, its accuracy is determined by the order of the highest power

retained in the series solution. Melton’s solution, derived until second order, has been

extended to third order. The solution obtained has been further tailored to repre-

sent bounded relative orbits. This process leads to another correction to the HCW

initial conditions. The two corrections obtained independently are finally combined

to produce bounded relative orbit solutions to the nonlinear problem with non-zero

eccentricity.

2.3 Relative Motion Dynamics

The relative motion dynamics for an eccentric reference orbit is modelled by the

following set of nonlinear differential equations:

ẍ− 2θ̇ẏ − θ̈y − θ̇2x = − µ(rc+x)

[(rc+x)2+y2+z2]
3

2

+ µ
r2
c

ÿ + 2θ̇ẋ+ θ̈x− θ̇2y = − µy

[(rc+x)2+y2+z2]
3

2

z̈ = − µz

[(rc+x)2+y2+z2]
3

2

r̈c = rcθ̇
2 − µ

r2
c

θ̈ = −2ṙcθ̇
rc

(2.1)

where x, y, z are the relative motion co-ordinates of the deputy w. r. t the chief

in the LVLH coordinate system, rc refers to the scalar radius of the chief from the

center of the Earth,θ refers to the latitude angle of the chief, andµ is the gravitational

parameter.
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The system of equations presented above involves ten states and the full-fledged effects

of both nonlinearity and eccentricity are accounted for. The effects of eccentricity of

the reference orbit that influences the relative motion dynamics of the deputy are cap-

tured by the augmented fourth order dynamics of the chief. This model is referred to

as the“true model” and the simulations conducted on this model are referred to as

the“complete nonlinear simulations”.

The relative motion equations for a circular reference orbit, which are also known as

HCW equations, are given below:

ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0

z̈ + n2z = 0

(2.2)

where n =
√

µ
a3

c
and ac is the semi-major axis of the chief.

While Eqs.(2.1) are closest to reality, Eqs.(2.2) are the most amenable to analysis.

But the HCW equations are based upon two approximations: (i) Linearization of

the differential gravitational acceleration and (ii) Assumption of a circular reference

orbit. These assumptions are found to be valid for small formations(ρ < 1km) and

values of eccentricity of the chief less than 1e− 5. But the desirable HCW solutions

are not realizable in the complete nonlinear simulations for large formations and for

higher eccentricity values of the chief’s orbit. Shown in Figures (2.1) and (2.2) are

the relative orbits obtained by integrating Eqs.(2.1) with the PCO initial conditions

for 20 orbits, for a formation size of 10km and an eccentricity value of e = 0.005.

The objective in this chapter is to study the effects of nonlinearity and eccentricity
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perturbations on the HCW equations and determine approximate solutions to the

complete nonlinear problem that are close to the HCW solutions. A primary require-

ment for such a solution is that it be bounded. Exciting those solutions that are

bounded and close to the HCW solutions, will be beneficial since natural force-free

solutions are the most economical to maintain. Every solution is characterized by

an initial condition. Therefore, we seek to find those initial conditions that lead to

bounded solutions, close to the HCW solutions.

A model that includes quadratic terms in the differential gravity field expansion is

shown below. This model, in terms of accuracy, lies between the true model and the

linear model (HCW equations).
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ẍ− 2θ̇ẏ − θ̈y − θ̇2x− 2µx
r3
c

=
(

3µ
a4

) [

y2

2
+ z2

2
− x2

]

ÿ + 2θ̇ẋ+ θ̈x− θ̇2y + µy
r3
c
=
(

3µ
a4

)

xy

z̈ + µz
r3
c
=
(

3µ
a4

)

xz

r̈c = rcθ̇
2 − µ

r2
c

θ̈ = −2ṙcθ̇
rc

(2.3)

The analytical results presented in this paper are based on the above model, but the

solutions are evaluated on the true model.

2.4 Nonlinearity Without Eccentricity

In this section, we study the effect of nonlinearity on relative motion dynamics for a

circular reference orbit. The governing differential equations are given below:

ẍ− 2nẏ − n2x = −µ(a+x)

[(a+x)2+y2+z2]
3

2

+ µ
a2

ÿ + 2nẋ+ n2x = −µy

[(a+x)2+y2+z2]
3

2

z̈ = −µz

[(a+x)2+y2+z2]
3

2

(2.4)

where a is the semi-major axis of the chief and n =
√

µ
a3 is the mean motion of the

chief. A Taylor’s series expansion of the RHS of Eqs.(2.4), retaining quadratic terms,

leads to the following model:

ẍ− 2nẏ − 3n2x =
(

3µ
a4

) [

y2

2
+ z2

2
− x2

]

ÿ + 2nẋ =
(

3µ
a4

)

xy

z̈ + n2z =
(

3µ
a4

)

xz

(2.5)

The above model can be considered as perturbed HCW equations with ε = 3µ
a4 , being

the perturbation parameter.
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Let xh, yh, and zhbe the solutions to the HCW equations, the unperturbed problem.

We assume the solution to Eqs.(2.5) to be of the following form:

x = xh + εxp ⇒ ẋ = ẋh + εẋp ⇒ ẍ = ẍh + εẍp

y = yh + εy1 ⇒ ẏ = ẏh + εẏp ⇒ ÿ = ÿh + εÿp

z = zh + εzp ⇒ ż = żh + εżp ⇒ z̈ = z̈h + εz̈p

(2.6)

The subscript h in the above equations refers to the solutions to the HCW equations

and the subscript p refers to the perturbation. The variables with the subscript p are

also referred to as the perturbation variables.

The HCW state vector and its initial value are represented as shown below:

Xh(t) = [xh(t) yh(t) zh(t) ẋh(t) ẏh(t) żh(t)]
T

Xh(0) = [xh(0) yh(0) zh(0) ẋh(0) ẏh(0) żh(0)]
T

(2.7)

The unperturbed solution, linear solution, as well as the HCW solution are completely

equivalent in the present context. We choose the HCW solution as shown in the

previous chapter as Xh(t):

xh(t) =
c1
2
sin(nt+ α0)

yh(t) = c1 cos(nt+ α0) + c3

zh(t) = c2 sin(nt+ β0)

ẋh(t) =
c1
2
n cos(nt+ α0)

ẏh(t) = −c1n sin(nt+ α0)

żh(t) = c2n cos(nt+ β0)

(2.8)

The corresponding HCW initial conditions are:
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xh(0) =
c1
2
sinα0

yh(0) = c1 cosα0 + c3

zh(0) = c2 sin β0

ẋh(0) =
c1
2
n cosα0

ẏh(0) = −c1n sinα0
żh(0) = c2n cos β0

(2.9)

The perturbation variables and their initial conditions are represented as shown in

Eqs.(2.10):

Xp(t) = [xp(t) yp(t) zp(t) ẋp(t) ẏp(t) żp(t)]
T

Xp(0) = [xp(0) yp(0) zp(0) ẋp(0) ẏp(0) żp(0)]
T

(2.10)

The initial conditions to the complete solution are

X(0) = Xh(0) + εXp(0) (2.11)

While the initial conditions for the HCW solution Xh(0), are predetermined, the

initial conditions on the perturbation variables Xp(0), are free to be chosen. The

objective in this section is to show that the initial conditions on the perturbation

variables can be chosen to prevent the breakdown of the total solution.

The following equations are obtained for the perturbation variables after substituting

Eqs.(2.6) into Eqs.(2.5) and equating the coefficient of ε on both sides:

ẍp − 2nẏp − 3n2xp =
y2

h
+z2

h
−2x2

h

2

ÿp + 2nẋp = xhyh

z̈p + n2zp = xhzh

(2.12)
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Substitution of Eqs.(2.8) into Eqs.(2.12) results in the following set of equations:

ẍp − 2nẏp − 3n2xp =
1
2
[c1 cos(nt+ α0) + c3]

2 + 1
2
c2
2 sin2(nt+ β0)− 1

4
c1
2 sin2(nt+ α0)

ÿp + 2nẋp =
1
2
c1 sin(nt+ α0)[c1 cos(nt+ α0) + c3]

z̈p + n2zp =
1
2
c1 sin(nt+ α0)c2 cos(nt+ β0)

(2.13)

The above equations can be written in the following form:

Ẋp = AhXp +Buh (2.14)

where,

Ah =


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


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
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3n2 0 0 2n 0 0
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0 0 0 0 0 −n2
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
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


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0 0 0
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0 1 0

0 0 1
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uh =

















1
2
[c1 cos(nt+ α0) + c3]

2 + 1
2
c2
2 sin2(nt+ β0)− 1

4
c1
2 sin2(nt+ α0)

1
2
c1 sin(nt+ α0)[c1 cos(nt+ α0) + c3]

1
2
c1 sin(nt+ α0)c2 cos(nt+ β0)

















(2.15)

Eqs.(2.14) are a set of linear constant coefficient non-homogeneous ordinary differen-

tial equations. The state transition matrix for the homogeneous solution is same as

the state transition matrix for the HCW equations, available in Ref.4:



29

Φh(t) =






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
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

























4− 3c 0 0 s
n

2
n
(1− c) 0

6(s− nt) 1 0 −2
n
(1− c) 4s−3nt

n
0

0 0 c 0 0 s
n

3ns 0 0 c 2s 0

−6n(1− c) 0 0 −2s 4c− 3 0

0 0 −ns 0 0 c


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c = cos(nt), s = sin(nt)

(2.16)

The general solution to Eqs.(2.14) can be written as:

Xp(t) = Φ(t)Xp(0) +

t
∫

0

Φ(t− τ)Bu(τ)dτ (2.17)

from which the following results for the scalar position components of Xp(t) can be

derived as shown below:

xp(t) = [4− 3 cosnt]xp(0) +
sinnt

n
ẋp(0) + 2

1− cosnt

n
ẏp(0) +

1

48n2

[6c1
2 + 24c3

2 + 12c2
2 − 2c1

2 cos(2nt+ 2α0)− 24c1c3 cos(nt+ α0) +

4c22 cos(2nt+ 2β0)− 6 cosntc1
2 − 24 cosntc3

2 − 12 cosntc2
2 − (2.18)

7c1
2 cos(nt− 2α0)− 3c1

2 cos(nt+ 2α0)− 24c1c3 cos(nt− α0) +

2c2
2 cos(nt− 2β0)− 6c2

2 cos(nt+ 2β0) + 12c1
2 cos 2α0 + 48c1c3 cos 2α0]

yp(t) = [6 sinnt− 6nt]xp(0) + yp(0)− 2
1− cosnt

n
ẋp(0) +

4 sinnt− 3nt

n
ẏp(0)−

1

48n2
[4c2

2 sin(2nt+ 2β0) + c1
2 sin(2nt+ 2α0)
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−24c1c3 sin(nt+ α0) + 12c1
2nt+ 48c3

2nt+

24c2
2nt+ 4c2

2 sin(nt− 2β0)− 6c1
2 sin(nt+ 2α0) (2.19)

−14c12 sin(nt− 2α0)− 12c2
2 sin(nt+ 2β0)− 48c1c3 sin(nt− α0)

+72c1c3nt cosα0 + 12c2
2 sin 2β0 − 24c1c3 sinα0 +

18ntc1
2 cos 2α0 − 12c1

2 sinnt− 48c3
2 sinnt− 24c2

2 sinnt− 9c1
2 sin 2α0]

zp(t) = cosntzp(0) +
sinnt

n
żp(0) + (2.20)

c1c2
24n2

[6 cos(α0 − β0) + 2 cos(2nt+ α0 + β0)

−3 cos(nt+ β0 − α0) + cos(nt− α0 − β0)

−3 cos(nt+ α0 + β0)− 3 cos(nt+ α0 − β0)]

It is clear from the above expressions that no choice of initial conditions will make

all the perturbation variables vanish. There are three types of terms in the above

expressions: (i) constant bias terms, (ii) secular terms, and (iii) harmonic terms. The

secular terms are of serious concern as they can cause unbounded departure of the

nonlinear solution from the HCW solutions. The secular terms only appear in the

along-track direction (y). Therefore, a weak criterion for zero secular growth for the

nonlinear problem is

[−6nxp(0)− 3ẏp(0)−
1

48n
(12c1

2 + 48c3
3 + 24c2

2 + 72c1c3 cosα0 + 18c1
2 cos 2α0)] = 0

(2.21)

The above is referred to as a weak criterion because it results from an approximate

solution (first order perturbation solution) to an approximate model (with quadratic

nonlinearities only) to the true nonlinear problem. The following arbitrary choice of
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perturbation variable initial conditions satisfy the above criterion:

xp(0) = 0 ẏp(0) = −
1

48n
(4c1

2 + 16c3
3 + 8c2

2 + 24c1c3 cosα0 + 6c1
2 cos 2α0) (2.22)

It should be noted that the above choice is just one of the infinite combinations

of xp(0) and ẏp(0)that satisfy the zero secular growth requirement. Therefore, the

desired set of initial conditions are [HCW initial conditions + ε(nonlinearity correction

on ẏ)]. These initial conditions will be referred to as the nonlinearity corrected HCW

initial conditions.

X(0) =
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




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2
n cosα0
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where

γ = − 1

48n
(12c1

2 + 48c3
3 + 24c2

2 + 72c1c3 cosα0 + 6c1
2 cos 2α0) (2.23)

The non-zero initial condition on ẏp, γ is a correction to the HCW initial condi-

tions, to accommodate the effect of quadratic nonlinear terms. This will be referred

to as the “Circular nonlinearity correction” in the rest of the chapter, because this

nonlinearity correction has been derived for circular chief orbits. This correction is

necessary to eliminate secular growth resulting from the quadratic nonlinear terms.

It should be noted that the initial conditions on the remaining perturbation variables
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could also be chosen appropriately to eliminate some of the biases and the harmonic

terms appearing in the xqp and zqp solutions. Shown in figures (2.3) and (2.4) are the

evolutions of the LFC and GCO initial conditions on Eqs.(2.4), for 20 orbits with and

without the nonlinearity correction. The solid lines represent the nonlinear simulation

results with the nonlinearity correction and the broken line represents the nonlinear

simulation without the nonlinearity correction. The figures amply demonstrate the

effect of the nonlinearity correction in suppressing the secular growth in the along

-track direction. Though the resulting relative orbits do not exactly conform to the

prescription of the HCW solutions, they do remain close to them.
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Fig. 2.3: Evolution of the leader fol-

lower configuration with and

without the nonlinearity cor-

rection
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Fig. 2.4: Evolution of the general cir-

cular orbit formation with

and without the nonlinearity

correction

For the projected circular orbit c1 = c2 = ρ, c3 = 0 and α0 = β0 hence the nonlinearity
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correction reduces to the following:

xp(0) = 0 ẏqp(0) = −
ρ2

48n
(12 + 6 cos 2α0) (2.24)

Hence, the desired perturbation state vector for the PCO initial conditions is

Xp(0) = [0 0 0 0
−ρ2
48n

(12 + 6 cos 2α0) 0]T (2.25)

The effectiveness of this correction is tested on Eqs.(2.4). The plots in Figures (2.5)

and (2.6) are the results of simulations conducted on Eqs.(2.4) with the parameters:

ac = 8000km, ρ = 10km, α0 = 0o, 90o, e = 0. Figures(2.5) and (2.6) respectively show

the deviations from the HCW projected circular orbit solutions, with and without the

non-linearity correction, for the α0 = 00deputy. It can be seen that the correction

brings down to almost zero, an otherwise secular growth of 260m/orbit.

Shown in Figures (2.7) and (2.8) are similar plots for the α0 = 900satellite.

The complete solution to the perturbed problem is

X(t) = Φ(t)X0(0) + εΦ(t)X1(0) + ε

t
∫

0

Φ(t− τ)Bu(τ)dτ (2.26)

The validity of the perturbation solution with the corrected initial conditions is shown

in Figures (2.9) and (2.10), for the 00 and the 900 satellites, respectively. The devia-

tions from the exact numerical results are bounded for both of the deputies. Figures

(2.5) and (2.7) show small but constant offsets from the Hill’s solutions in in the x

and z directions. The perturbation solution captures the bias term in the x direction

partially but it captures the bias term in the z direction very accurately, as can be

seen from the figures (2.9) and (2.10).
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2.4.1 Period Matching

In the absence of any disturbances and perturbations, two satellites in Keplerian or-

bits can have bounded relative motion, only when their periods match. This requires

the semi-major axes of both the satellites to be the same. The relative motion initial

conditions, along with the chief’s initial conditions, determine the orbital elements

of the deputy. In this section, we shall relate the nonlinearity correction to the pe-

riod matching requirement. The semi-major axis of the deputy is computed using

the initial conditions of the chief and the relative motion initial conditions, with and

without the correction. First, the relative motion initial conditions are transformed

from the LVLH frame to the inertial frame. The transformed quantities are added to

the inertial co-ordinates of the chief, to obtain the inertial co-ordinates of the deputy.
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tion, with corrected PCO ini-
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Then the semi-major axis of the deputy is obtained by converting the inertial co-

ordinates of the deputy to its orbital elements. It can be shown that a semi-major

axes difference of δa, results in approximately a secular drift of −3πδa/orbit. Shown

in Figures (2.11) and (2.12), are the secular drift predictions based on δa computa-

tion, with and without the circular nonlinearity correction, respectively. The secular

drift is plotted as a function of α0 of the deputy. Figure (2.11) shows the secular

growth predicted with PCO initial conditions, i.e., without the circular nonlinearity

correction. The secular growth prediction varies from a maximum of 265m/orbit for

the α0 = 00satellite, to a minimum of 85m/orbit for the α0 = 900deputy satellite. The

plots in figures (2.5) and (2.6) confirm these predictions, both qualitatively and quan-

titatively. Also, the circular nonlinearity correction term, which is a function of α0,

assumes a maximum value for α0 = 00, 1800and a minimum value for α0 = 900, 2700.
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The secular drifts shown in Fig.(2.12) with the nonlinearity corrected PCO initial con-

ditions, is much smaller than that of Fig.(2.11). It can be seen that the nonlinearity

correction enforces the period matching requirement. Matching the periods is of car-

dinal importance for bounded relative motion. HCW initial conditions do not result

in deputy orbits with the same semi-major axis as that of the chief. The nonlinearity

corrected HCW initial conditions result in orbits with much smaller δa. Hence, they

result in much smaller secular drifts. The secular growth resulting from the corrected

initial conditions, is not exactly zero because the correction is made considering terms

only up to first order and nonlinearities only up to quadratic terms.
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2.5 Linearized Dynamics with Eccentricity Effects

In the previous section, we studied the effect of nonlinearity in the absence of eccen-

tricity, using the HCW solutions. In this section, we study the effect of eccentricity

on the HCW solutions, in the absence of nonlinearity. The governing differential

equations are given in Eqs.(2.27). We will be primarily concerned with obtaining

a condition for bounded solutions of Eqs.(2.27) and its representation. A condition

for bounded relative orbit resulting from Eqs.(2.27), was derived by Inalhan11) et al.

and is given in Eq.(2.28). This results from a solution to Eqs.(2.27) in terms of non-

dimensional variables and with true anomaly as the independent variable. Different

researchers have obtained the solution to Eqs.(2.27) but only Melton12 provided a

time explicit solution to these equations. We adopt Melton’s state transition matrix

solution for representing the bounded relative orbit solution.
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ẍ− 2θ̇ẏ − θ̈y − θ̇2x− 2 µ
rc

3x = 0

ÿ + 2θ̇ẋ+ θ̈x− θ̇2y + µ
rc

3y = 0

z̈ + µ
rc

3 z = 0

r̈c = rcθ̇
2 − µ

r2
c

θ̈ = −2ṙcθ̇
rc

(2.27)

The bounded relative orbit condition when the chief is at the perigee at the initial

time is:

ẏ0
x0

= − n(2 + e)

(1 + e)
1

2 (1− e)
3

2

(2.28)

For e = 0, the above condition reduces to ẏ0 + 2nx0 = 0, which is the condition for

bounded relative orbit solutions to HCW equations. Therefore, the above criterion

can be used to derive a correction to the ẏ0 HCW initial condition which results in

bounded orbits close to the HCW solutions. The correction could alternatively be

derived for the x0 initial condition as well. The correction δ(e) for ẏ0, is computed as

follows:

ẏ0 = −c1n sinα0 + δ(e) (2.29)

We can solve for δ(e) by substituting the above equation into Eqn.(2.28) and taking

x0 =
c1
2
sinα0, as follows:

δ(e) = nc1 sinα0[1−
(2 + e)

2(1 + e)0.5(1− e)1.5
] (2.30)

The above correction to the ẏ HCW initial condition will be referred to as the lin-

earized eccentricity correction. This correction is a function of eccentricity and be-

comes zero for e = 0. A closer look at Eqn.(2.30) shows that the effect of eccentricity
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is maximum for the α0 = 900 deputy and zero for the α0 = 00 deputy. The cor-

rection has been found to result in perfectly bounded orbits from the integration of

Eqs.(2.27). Shown in figures (2.13) and (2.14) are the evolution of PCO and GCO

initial conditions on Eqs.(2.27), for 20 orbits, with and without the linearized ec-

centricity correction. The solid lines indicate the relative orbit obtained with the

corrected initial conditions and the broken line represents the relative orbit obtained

with the uncorrected initial conditions. In contrast to the circular nonlinearity cor-

rection, which is a first order correction, this is an exact correction required to obtain

bounded relative orbits from Eqs.(2.27).
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It should be noted that this bounded relative orbit criterion could also be derived

by using the geometric approach of Alfriend et al.19 The result derived is applicable

for all initial positions of the chief and is not restricted to that corresponding to the
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perigee.

2.5.1 Generalized Eccentricity Correction

In this section a generalized criterion will be developed which is valid for all posi-

tions of the chief. Alfriend et al.19 derived a mapping between the relative motion

co-ordinates and the linearized orbital elemental differences. Eqs.(2.27) also char-

acterize the linearized relative motion dynamics. Hence, it is expected that setting

the linearized semi-major axis difference to zero will result in bounded relative orbits

from Eqs.(2.27). The relationship between the linearized semi-major axis difference

and the relative motion coordinates is given by the following relation19

δa = A−111 x+ A−112 ẋ+ A−113 y + A−114 ẏ + A−115 z + A−116 ż (2.31)

where Aij are the elements of the geometric transformation matrix between the in-

cremental orbital element differences and the relative motion co-ordinates

A−111 = −Vtaθ̇

E
(1 +

rc
pc
), A−112 = −Vra

E
, A−113 =

Vraθ̇

E
, A−114 = −Vta

E
, A−115 = A−116 = 0

(2.32)

where Vt is the transverse velocity of the chief and Vr is the radial velocity, p is the

semi-latus rectum of the chief, and E is the energy of the chief.

Vt = rcθ̇ =
p

1 + e cos f

√

µ

p3
(1 + e cos f)2 =

√

µ

p
(1 + e cos f) (2.33)

where f is the true anomaly of the chief

Vr = ṙc = e

√

µ

p
sin f (2.34)
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θ̇ =

√

µ

p3
(1 + e cos f)2 (2.35)

rc =
p

1 + e cos f
(2.36)

Applying Eqn.(2.31) at time t = 0 we get the following constraint on initial conditions,

for zero linearized semi-major axis difference,

−Vt0 θ̇0(1 +
rc0
p
)x0 − Vr0ẋ0 + Vr0 θ̇0y0 − Vt0 ẏ0 = 0 (2.37)

⇒ −
√

µ
p
(1 + e cos f0)

√

µ
p3 (1 + e cos f0)

2(1 + 1
1+e cos f0

)x0 − e
√

µ
p
sin f0ẋ0

+e
√

µ
p
sin f0

√

µ
p3 (1 + e cos f0)

2y0 −
√

µ
p
(1 + e cos f0)ẏ0 = 0

(2.38)

⇒ −
√

µ
p3 (1 + e cos f0)

3(1 + 1
1+e cos f0

)x0 − e sin f0ẋ0+

e sin f0
√

µ
p3 (1 + e cos f0)

2y0 − (1 + e cos f0)ẏ0 = 0
(2.39)

Equation(2.39) is the generalized condition for zero secular growth from Eqns.(2.27)

It can be used for any initial position of the chief. It involves all the four relative

motion initial conditions, x0, ẋ0, y0, ẏ0, and f0, the initial true anomaly of the chief.

When the chief is at the perigee, f0 = 0. Substituting this result into the above

equation, we obtain the following:

−
√

µ

p3
(1 + e)3(

2 + e

1 + e
)x0 − (1 + e)ẏ0 = 0 (2.40)
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⇒ ẏ0
x0

= −
√

µ

p3
(1 + e)2(

2 + e

1 + e
) = − n

(1− e2)
3

2

(1 + e)2(2 + e)

(1 + e)
= −n (2 + e)

(1 + e)
1

2 (1− e)
3

2

(2.41)

It should be noted that Eqn.(2.41) is exactly same as Eqn.(2.28). The generalized

condition has been tested on Eqs.(2.27), for different initial conditions of the deputy

and different initial positions of the chief. HCW initial conditions are retained for

x0, ẋ0 and the y0. The ẏ0 initial condition is then computed to satisfy Eqn.(2.39) for

any given value of f0. Figures (2.15) and (2.16) show the relative orbits obtained by

making the generalized eccentricity correction. It should be noted that the eccentricity

correction results in bounded relative orbits that are close to the HCW solutions.

PCO initial conditions are used to generate the results in both the figures. It can be

seen that though the projected relative orbits are bounded, they are not circular. It

should also be noted that these solutions are obtained from the linearized equations

of relative motion(Eqn.(2.27)) and not the complete nonlinear simulation(Eqn.(2.1)).
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Fig. 2.15: Relative orbit obtained for

α0 = 30o, e = 0.1,

ρ = 10km and f0 = 45o
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Fig. 2.16: Relative orbit obtained for

α0 = 60o, e = 0.1,

ρ = 10km and f0 = 90o
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2.5.2 Time Explicit Solution

Melton12 reduced the system of tenth-order equations represented by Eqs.(2.27), to a

system of sixth order linear time varying equations, using the following series expan-

sions:

rc
a

= 1 +
e2

2
− e cosnt− e2

2
cos 2nt+ ... (2.42)

θ̇ =

√

(µa(1− e2))

a2
[1 + 2e cosnt+

5e2

2
cos 2nt+

5e2

2
+ ...] (2.43)

Therefore, the linearized dynamics with eccentricity, given by Eqs.(2.27), can be

written as follows:

Ẋ = A(t)X (2.44)

where A(t) = Ah + eA1e + e2A2e + .........

Melton also obtained a state transition matrix solution to Eqn.(2.27), as a series

expansion in e as shown below:

Φ = Φ0 + eΦ1 + e2Φ2 + ........... (2.45)

The accuracy of the solution depends on the value of e and the order of terms con-

sidered in the expansion. The solution as obtained by Melton, accounts for terms up

to e2. Therefore, for higher values of eccentricity, the solution obtained is not very

accurate. Also, Melton’s state transition matrix solution contains secular terms in the

x and y directions. The accuracy of the solution improves by computing the solution

until e3 terms. It is expected that as we go to higher orders, the secular terms cancel
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each other in the x direction and the secular terms in the y direction account for the

secular growth that results due to the violation of Eqn.(2.28). The solution along the

z direction is very accurate, even with terms only up to O(e2). Therefore, in order

to get a time-explicit representation for the bounded relative motion, obtained by

making the linearized eccentricity correction on HCW initial conditions, we drop all

the secular terms in x and y directions in Melton’s state transition matrix. Melton’s

state transition matrix solution captures the bias terms and higher order harmonics

very accurately. The solution, retaining just the constant and harmonic terms, is

given below:

xle(t) = [(4− 3cnt) + (−5cnt− 3c2nt+ 13− 5cnt)e+ (40− 40c2nt− 40cnt−

27c3nt− 24c2nt+ 152− 61cnt)e2/8 + (−33/4c3nt− 7c2nt− 55/4cnt− 4c4nt+

33)e3]x0 + [snt/n+ (−3snt+ s2nt+ snt)e/n+ (−4snt+ 8s2nt+ 9s3nt− 24s2nt

+9snt)e2/(8n) + (16s4nt+ 9snt+ 4s2nt− 27s3nt)e3/(12n)]ẋ0

+[(2snt− 4s2nt+ 7snt+ 4s2nt− 9snt)e2/4]y0 + [2(1− cnt)/n+

(8− 4cnt− 4c2nt)e/(2n) + (8− 5cnt− 4c2nt− 9c3nt)e2/(4n)−

(−24− 64c2nt+ 6cnt+ 18c3nt+ 64c4nt)e3/(24n)]ẏ0

(2.46)

yle(t) = [6snt+ (4snt+ 9s2nt+ 20snt)e/2 + (42snt+ 36s2nt+ 18s3nt)e2/4+

(9snt+ 23/4s2nt+ 9s3nt+ 5s4nt)e3]x0 + [1 + (1− cnt)e+

(3− 2cnt− c2nt)e2/2 + (−5/8cnt− 1/2c2nt− 3/8c3nt+ 3/2)e3]y0

+[−2/n(1− cnt) + (−4cnt+ 3c2nt+ 1)e/(2n) + (4− 2cnt− 8c2nt+ 6c3nt)e2/(4n)

+(−5c2nt+ 15cnt− 27c3nt+ 20c4nt− 3)e3/(12n)]ẋ0

+[4snt/n+ 3es2nt/n+ (−12snt+ 12s3nt)e2/(4n) + (−88s2nt+ 80s4nt)e3/(24n)]ẏ0

(2.47)
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zle(t) = [cnt+ (c2nt/2− 3/2 + cnt)e+ (5cnt+ 4c2nt+ 3c3nt− 12)e2/8]z0+

[snt/n+ (−2snt+ s2nt)e/(2n) + (−4snt+ 2s2nt+ 3s3nt− 6s2nt+ 3snt)e2/(8n)]ż0

(2.48)

where cjnt = cos(njt), sjnt = sin(njt) and the subscript le refers to linearized prob-

lem with eccentricity.

It should be noted that the above solution is valid only for the eccentricity corrected

initial conditions. The maximum error incurred between the above approximate so-

lution and the numerical integration of Eqs.(2.27) is found to be less than 0.3% of the

disc size, for an eccentricity of e = 0.1. It should also be noted that the solution is

valid only for the initial position of the chief being its perigee, i.e., the time of perigee

passage is zero.

2.5.3 Bias Correction

While the eccentricity corrected PCO initial conditions results in bounded orbits,

they do not result in relative orbits that are exactly circular in the y − z plane. It

can be seen from Eqs.(4.26) and (2.48) that there are significant bias terms in the y

and the z directions due to the eccentricity of the chief orbit. These terms offset the

relative orbit w.r.t the chief. The bias term along the y direction can be eliminated by

making a correction to the ẋ0 initial condition or the y0 initial condition. The following

corrected ẋ0 initial condition is obtained to cancel the bias term in y direction:

ẋ0 =
ρn

2
sinα0 + ρ e n cosα0

8e + 5

8 − 2e − 4e2
(2.49)

The above correction has been derived by isolating the bias terms in Eqn.(4.26). The
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bias is maximum for the α0 = 00deputy and minimum for the α0 = 900 deputy. Fig-

ure 6 demonstrates the benefit of the bias correction. The dotted line is the relative

orbit obtained by integrating Eqs.(2.27) with the eccentricity alone corrected initial

conditions. It can be seen that the orbit is bounded but not symmetric about the

chief. The solid line represents the relative orbit obtained with initial conditions cor-

rected for eccentricity as well as bias. It can be seen that the bias corrected relative

orbit is more symmetric about the origin.
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Fig. 2.17: Relative orbit obtained with

and without the bias correction

for the α0 = 0o deputy and

e = 0.1

The bias correction and the linearized eccentricity correction are independent of each

other. While the linearized eccentricity correction depends on x0 and ẏ0, the bias

correction depends on y0 and ẋ0. It should be noted that the eccentricity correction

and the bias correction to the relative motion initial conditions given in this section,

are for the initial location of the chief being its perigee. Also, the bias correction is
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specific to the PCO initial conditions.

2.6 Combining the Effects of Nonlinearity and Eccentricity

The previous section addressed the problem of eccentricity without nonlinearity. The

section prior to that addressed the problem of nonlinearity in the absence of eccentric-

ity. However, The main problem consists of both the effects acting together. Neither

of the corrections derived, by itself, produces bounded solutions from the complete

non-linear simulation for an eccentric reference orbit. In this section, we look at

the solution to the combined problem and derive the corresponding conditions for

bounded solutions. The approach is similar to the perturbation technique adopted

earlier, for the non-linear problem without eccentricity.

We have seen in the previous section that the linearized dynamics for an eccentric

reference orbit can be written as follows:

Ẋ = A(t)X (2.50)

where A(t) = Ah + eA1e + e2A2e + .........

Adding the quadratic nonlinearities as shown in Eqs.(2.3), results in the following

perturbed problem

Ẋ = A(t)X+ εf(X) (2.51)

where ε is the perturbation parameter and f(X) represents the quadratic nonlineari-

ties, terms on the RHS of Eqs.(2.3).
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The solution to the perturbed problem is assumed to be of the form,

X = Xle + εX1 (2.52)

where Xleis the solution to linearized problem with eccentricity given by Eqs.(2.50).

Substituting the above expression in the perturbed form of the linearized equations

with eccentricity, we get the following differential equations for the perturbation vari-

ables X1

Ẋ1 = A(t)X1 + εf(Xle) (2.53)

The solution to the linearized problem with eccentricity effects, for the eccentricity

corrected initial conditions, can be written as

Xle = Xle0
+ eXle1

+ e2Xle2
+ ............. (2.54)

Terms up to e3 in the Xle series expansion are given by Eqs.(2.46) - (2.48).

Xleforms the zeroth-order solution to Eqs.(2.51). It should be noted the first term

in the above series represents the HCW solution. The state transition matrix to the

linearized problem with eccentricity, can also be written as

Φ = Φ0 + eΦ1 + e2Φ2 + ........... (2.55)

Again, the first term in the above series is the same(Φ0 = Φh) as the state transition

matrix to HCW equations, given by Eqn.(4.24).

The forcing function in Eqn.(2.53) can be written as follows,
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f(Xle) = Bu

u = u0 + eu1 + e2u2 + ..........

u0 is the same as uh, given by Eqn.(2.15). Therefore, the above equation can be

written as :

u = uh + eu1 + e2u2 + .......... (2.56)

Substituting Eqn.(4.28) into Eqn.(2.53) we obtain

Ẋ1 = A(t)X1 + εBu (2.57)

The solution to this problem can be written as

X1(t) = Φ(t)X1(0) +
∫ t
0 Φ(t− τ)Bu(τ)dτ

and the overall solution is of the form

X(t) = Xle(t) + εΦ(t)X1(0) + ε
∫ t

0
Φ(t− τ)Bu(τ)dτ

= Xle(t)+εΦ(t)X1(0)+εΦ(t)
∫ t

0
[Φh(−τ) + eΦ1e(−τ) + ...]B[uh(τ) + eu1(τ) + ....]dτ

(2.58)

Xle(t) is a bounded solution and the terms appearing to the right of it in the above

expression, are a result of the nonlinear perturbation. There are two perturbations

in the above solution: (i) ε, the nonlinearity perturbation and (ii) e, the eccentricity

perturbation. The terms containing the product of these parameters can be neglected

for values of eccentricity less than 0.1. The solution retaining the significant terms
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can be written as follows:

X(t) = Xle(t) + εΦ(t)X1(0) + εΦ(t)
∫ t

0
Φ(−τ)Buh(τ)dτ (2.59)

It should be noted that the only perturbation terms remaining in the above expres-

sion, are the nonlinearity perturbations originating from the circular reference orbit

problem. Therefore, a first order solution to the nonlinear problem with eccentricity,

considering just the circular orbit nonlinearity effects is :

X(t) = Xle(t) + εXp(t) (2.60)

where Xp(t) is the same as given the circular orbit perturbation solution given by

Eqs.(2.18)-(2.20). Bounded solutions to X(t) require choosing another correction to

the eccentricity corrected initial conditions in order to eliminate secular growth from

the perturbation variables in Eqn.(2.60). This correction would be the same as the

nonlinearity correction for the circular reference orbit, since all the terms containing

the product of eccentricity and nonlinearity parameter have been neglected. There-

fore, two corrections to the Hill’s initial conditions to obtain bounded relative orbit

solutions for the nonlinear problem with non-zero eccentricity. The first correction is

the linearized eccentricity correction and the second term is the circular nonlinearity

correction. Both these corrections are made to the ẏ(0) initial condition. Combining

the two corrections, we obtain the following initial condition for ẏ(0) :

ẏ(0) = −c1n sinα0 + δ(e) + γ (2.61)

where γis the same as the circular orbit nonlinearity correction, given by Eqn.(2.23).
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2.7 Results

The following simulations demonstrate the effectiveness of the nonlinearity correc-

tion for the nonlinear eccentricity problem. It should be noted that the following

simulations are conducted on the complete nonlinear model given by Eqs.(2.1). The

initial conditions are the same as PCO initial conditions, on all the variables except

for ẏ(0) and ẋ(0). The initial condition ẋ(0) has been corrected, as per Eqn.(2.49),

to eliminate the bias in the ydirection. The plots in Figures (2.18) and (2.19), show

the relative orbits obtained with and without the circular nonlinearity correction on

ẏ(0). The broken lines in both the plots, are used to represent the relative orbits

obtained with just the linearized eccentricity correction and the solid line represents

the relative orbit obtained with the combined linearized eccentricity correction and

circular nonlinearity corrections. The semi-major axis of the chief in this example,

has been chosen to be 8000km and the disc size is 10km. The simulation is conducted

for 20 orbits.

The various plots in Figures (2.20) - (2.23) show the secular drift in the y direction

at the end of 20 orbits, w.r.t the disc size, for different satellites and different ec-

centricities, with and without the circular nonlinearity correction. The broken lines

correspond to the eccentricity alone corrected initial conditions and the solid lines are

for the initial conditions obtained by using the both the corrections. It can be seen

from the plots in Figures (2.18) - (2.23), that there still exists some secular growth in

the y direction. This is due to the nonlinearity effects from the higher order eccen-

tricity terms. For higher values of eccentricity, one has to take the higher powers of

eccentricity into account, in Eqn.(4.30) into consideration for the correction term.
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Fig. 2.18: Relative orbit with and

without the nonlinearity

correction for α0 = 0o and

e = 0.05
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Fig. 2.19: Relative orbit with and

without the nonlinearity

correction for α0 = 90o and

e = 0.05

2 4 6 8 10
0

10

20

30

40

50

60

Disc Size(km)

S
ec

ul
ar

 D
rif

t

Fig. 2.20: Secular drift along the y di-

rection as a percentage of

the disc size, with and with-

out the nonlinearity cor-

rection for α0 = 0o and

e = 0.005
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Fig. 2.21: Secular drift along the y di-

rection as a percentage of

the disc size, with and with-

out the nonlinearity cor-

rection for α0 = 0o and

e = 0.05
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Fig. 2.22: Secular drift along the y di-

rection as a percentage of

the disc size, with and with-

out the nonlinearity cor-

rection for α0 = 90o and

e = 0.005
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Fig. 2.23: Secular drift along the y di-

rection as a percentage of

the disc size, with and with-

out the nonlinearity cor-

rection for α0 = 90o and

e = 0.05
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CHAPTER III

LINEAR AND NONLINEAR CONTROL LAWS FOR FORMATION

FLYING

3.1 Abstract

In this chapter, we will analyze different control schemes for formation flying satel-

lites. The objective is to devise control strategies that can stabilize large formations

optimally. Three types of controllers are studied in this chapter:(i) Lyapunov sta-

bilized controller (ii) LQR controllers and (iii) Period matching controllers. The

Lyapunov controller offers global stability and zero steady-state tracking errors but

the associated control cost is very high. The LQR controllers guarantee only local

stability, but offer significant cost benefits. The period- matching controllers exploit

the existence of control-free natural solutions and force the dynamics to the nearest

period matched trajectory. The period matching control law is globally stable and

results in zero steady state controls.

3.2 Introduction

In the previous chapter we have seen that the equations of relative motion dynamics

between a chief satellite in a circular orbit and a deputy, can be written as follows:

ẍ− 2nẏ − n2x =
µ

a2
− µ(a+ x)

[(a+ x)2 + y2 + z2]
3

2

+ ux

ÿ + 2nẋ− n2y = − µy

[(a+ x)2 + y2 + z2]
3

2

+ uy (3.1)

z̈ = − µz

[(a+ x)2 + y2 + z2]
3

2

+ uz
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where a is the semi-major axis of the chief spacecraft, n =
√

µ
a3 is the mean motion

of the chief and ux, uy, and uz are the external controls.

We have also seen that the linearized version of the above equations can be written

as:

ẍ− 2nẏ − 3n2x = ux

ÿ + 2nẋ = uy (3.2)

z̈ + n2z = uz

In the previous chapter, nonlinearity corrections to HCW initial conditions were de-

rived to accommodate the quadratic nonlinear effects ignored by the HCW equations.

The relative motion dynamics is sensitive to initial condition errors and hence a con-

troller is required to stabilize the relative motion dynamics. In the following, different

controllers are analyzed to stabilize the projected circular orbit.

3.3 Lyapunov Controller

The exact nonlinear equations can be rewritten as follows:

Ẍ = F









X

Ẋ









+G(X) + u (3.3)

where X = [x y z]T , Ẋ = [ẋ ẏ ż]T and u = [ux uy uz]
T . F and G are given

below :
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F =

















3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0

















G(X) =



















µ
a2 − µ(a+x)

[(a+x)2+y2+z2]
3

2

− 2n2x

µy
a3 − µy

[(a+x)2+y2+z2]
3

2

µz
a3 − µz

[(a+x)2+y2+z2]
3

2



















(3.4)

The linearized version of the above equations that correspond to Eqn.(3.2) can simi-

larly be rewritten as:

Ẍ = F









X

Ẋ









(3.5)

The reference trajectory for the tracking problem is a natural solution to the above

equation. Hence, the model plant dynamics is taken as follows:

Ẍr = F









Xr

Ẋr









(3.6)

The error dynamics can be written as follows:

ë = Ẍ− Ẍr = F









X

Ẋ









+G(X)− F









Xr

Ẋr









+ u (3.7)

ë = F









e

ė









+G(X) + u (3.8)

where e = X−Xr. The above equations are obtained by subtracting Eqn.(3.6) from

Eqn.(3.3).

A Lyapunov function is chosen as follows:
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V =
n2

2
eTe+

1

2
ėT ė (3.9)

⇒ V̇ = n2ėTe+ ėT ë (3.10)

⇒ V̇ = ėT (n2e+ F









e

ė









+G(X) + u) (3.11)

It can be seen from the above equation that the following choice of the control law

will make the origin of error dynamics globally stable:

u = −F









e

ė









−G(X)− n2e− nė (3.12)

Since the error dynamics is stable, e, and ė are bounded and hence the control u, is

also bounded. The error dynamics for the above choice of the control law takes the

following form:

ë = −n2e− nė (3.13)

Equation (3.13) represents an asymptotically stable dynamical system. Hence, the

tracking errors are guaranteed to go to zero as t → ∞. Shown in figures (3.1) and

(3.2) are the projected circular orbits obtained by the Lyapunov controller. PCO

initial conditions are propagated for 20 orbits on the true nonlinear equations for a

disc size of 10km. The trajectories shown in figures (3.1) and (3.2) are exact circular

projected relative orbits.

Since the steady state errors go to zero, X goes to Xr, hence, the steady state controls
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Fig. 3.1: Projected circular orbit ob-

tained by the Lyapunov

controller for α0 = 0o

deputy
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Fig. 3.2: Projected circular orbit ob-

tained by the Lyapunov

controller for α0 = 90o

deputy

can be computed as :

u = −G(Xr) (3.14)

3.4 LQR Controllers

In the previous section we discussed Lyapunov controllers. Though the Lyapunov

controllers make the error dynamics globally stable, they have a very high control

cost associated with them because the nonlinearities are explicitly cancelled. In this

section we will be discussing LQR controllers for the same problem. The motivation

for using a LQR controller is to exercise some optimization options in the controller

design.

The equations of motion are again rewritten for this approach, this time in state space

form, as follows:
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Ẋ = AX+C(X) +Bu (3.15)

where,

X = [x y z ẋ ẏ ż]T (3.16)

A =









































0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0









































C(X) =











































0

0

0

µ
a2 − µ(a+x)

[(a+x)2+y2+z2]
3

2

− 2µx
a3

µy
a3 − µy

[(a+x)2+y2+z2]
3

2

µz
a3 − µz

[(a+x)2+y2+z2]
3

2











































(3.17)

B =









































0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1









































u =

















ux

uy

uz

















(3.18)

An LQR controller is designed by ignoring the nonlinear component C(X) in the

above equations. The gain thus designed is used for the tracking problem as well.

Therefore, a gain K is designed with a positive definite choice of Q and R, along with

A and B. These matrices Q and R are picked as follows:
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Q =









































0.1 0 0 0 0 0

0 1 0 0 0 0

0 0 0.1 0 0 0

0 0 0 1
n2 0 0

0 0 0 0 1
n2 0

0 0 0 0 0 1
n2









































R =

















w
n4 0 0

0 1
n4 0

0 0 1
n4

















(3.19)

where w is a weight on the radial thrusting. The control law implemented is of the

form :

u = −K(X−Xr) = −Ke (3.20)

Substituting the above expression for u in Eqn.(3.15) we obtain the following closed-

loop system:

Ẋ = (A−BK)X+C(X) +BKXr (3.21)

The stability of the above system is analyzed in two steps. First, we study the stability

of the origin of the nonlinear system given by

Ẋ = (A−BK)X+C(X) (3.22)

and then we study the effect of the forcing term BKXr.

(A − BK) is Hurwitz, i.e the linearized system is asymptotically stable. But the

nonlinear system given by Eqn.(3.22) is only guaranteed local stability. Hence, we

study the region of attraction of the nonlinear system and relate it to the LQR gain

K. The region of attraction is the set of initial conditions of Eqn.(3.21) that are

asymptotically stable w.r.t the origin. BKXr is the forcing term that results from
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tracking the reference trajectory. Since, the forcing term is bounded, the output of

Eqn.(3.21) will also be bounded for initial conditions and Xr that are within the

region of attraction. The stability criterion and the region of attraction are further

analyzed below.

The solution to Eqn.(3.21) can be written as follows :

X(t) = e(A−BK)tX0 +
∫ t

0
e(A−BK)(t−τ)(BKXr +C(X))dτ (3.23)

Taking the norm on both sides of the equation we obtain:

‖X(t)‖ ≤Me−λmaxt‖X0‖+
∫ t

0
Me−λmax(t−τ)(L1‖Xr‖+ L2‖X‖) (3.24)

where, M is the condition number of the eigen value matrix of A−BK, λmax is the

absolute value of the maximum of the real parts of the eigen-values of A − BK, L1

is a constant such that ‖BKXr‖ ≤ L1‖Xr‖ and L2 is the Lipschitz constant of the

nonlinear vector field associated with C(X).

Adding L1

L2
‖Xr‖ on both sides of the Eqn.(3.24) we obtain:

L1
L2
‖Xr‖+ ‖X‖ ≤

L1
L2
‖Xr‖+Me−λmaxt‖X0‖+

∫ t

0
Me−λmax(t−τ)L2(

L1
L2
‖Xr‖+ ‖X‖)dτ

(3.25)

Defining y(t) = L1

L2
(‖Xr(t)‖+ ‖X(t)‖), the above equation can be rewritten as:

y(t) ≤ C1 +
∫ t

0
L2Me−λmaxty(τ)dτ (3.26)

where C1 is the maximum value of L1

L2
‖Xr(t)‖+Me−λmaxt‖X0‖. C1 is a finite quantity

because ‖Xr‖ is bounded and λmax > 0. It can be shown by using Bellman-Gronwall



62

lemma36 that y(t) and hence x(t) is bounded, if the following inequality is satisfied :

L2M ≤ λmax (3.27)

Both M and λmax can be varied by varying the gain K, which in turn is varied by

varying the weight w in the R matrix, as given by Eqn.(3.19). Increasing the weight

w penalizes the control and results in lesser fuel consumption, which is characterized

by
∫ T
0 ‖u‖2dt. Increasing the weight too much results in saturation of the cost and

can even destabilize the nonlinear system. The value of M and λmax are found to

be relatively constant over the range of values of w in the range 103 − 105. M is

approximately equal to 1.14e4 and λmax is approximately 0.55e − 3 in the range of

interest. Therefore, the largest Lipschitz constant that satisfies Eqn.(3.27) for the

above values of M and λmax, is 0.48e− 7

L2 is the local Lipschitz constant computed in a region surrounding the origin. The

region S is chosen as follows:

−ρ
2
≤ x ≤ ρ

2
(3.28)

−ρ ≤ y ≤ ρ (3.29)

ρ ≤ z ≤ ρ (3.30)

It should be noted that the nonlinearity is a function of position states only. The

above region is of interest because the projected circular orbit reference trajectory

for a disc size ρ, lies within this region. Different estimates of the Lipschitz constant

can be obtained by adopting different computation procedures. One estimate of the

Lipschitz constant is the maximum value of the norm of the gradient of the vector
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field, in the region of interest. It is found that this leads to a very conservative esti-

mate of the Lipschitz constant for this problem. The other approach is to scan the

region of interest on a predefined grid of points and compute the ratio ‖C(X)‖
‖X‖ at these

points. The maximum value of these ratios can be taken as the Lipschitz constant.

By choosing a sufficiently small grid, the estimate thus obtained can be expected to

approach the true value of the Lipschitz constant. The above procedure has been used

to compute the Lipschitz constant in the region S. Clearly, the Lipschitz constant

thus computed depends on the size of region S around the origin, which is charac-

terized by ρ. Figure(3.3) gives the value of the Lipschitz constant thus computed for

different values of the disc size. The dotted line indicates the largest Lipschitz con-

stant that can be be accommodated by the LQR controller, for the range of w values

from 103− 105. It can be seen from figure(3.3) that a 150km disc size has a Lipschitz

constant around 0.48e−7, which is the limit for satisfying stability criterion given by

Eqn.(3.27). Therefore, the LQR controller is guaranteed to stabilize formations up

to a disc size of 150km.

Shown in figures (3.4) and (3.5), are the projected circular orbits obtained by the

LQR controller. All simulation parameters are chosen to be the same as their corre-

sponding values in the previous simulations. The weight w on radial thrusting has

been chosen to be 103.

The relative orbits obtained by the LQR controller in figures (3.4) and (3.5), compare

very well with the relative orbits obtained by the Lyapunov controller. We have also

seen that the LQR controller is capable of stabilizing formations with disc sizes as

large as 150km. The LQR controller guarantees bounded relative orbits, but the

steady state tracking errors are not guaranteed to go to zero. For large values of the
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Fig. 3.3: Lipschitz constant as a function of disc size

disc size, these errors result in an offset along the y direction, as seen in figures (3.6)

and (3.7). These figures were generated by propagating PCO initial conditions for 20

orbits, with a ρ = 150km and w = 103.

3.5 Period-Matching Controller

It is well known that relative motion between two Earth orbiting spacecraft will al-

ways be bounded if the period of the two spacecraft is the same. Period-matching

is equivalent to matching the energy of the two spacecraft. Energy-matching results

in bounded relative orbits that are natural and hence consume zero fuel in steady

state. The relative motion initial conditions determine the energy of the deputy,

given the initial conditions of the chief. There exist energy matched manifolds in

the state- space of relative motion dynamics, that result in bounded relative orbits.

However the PCO initial conditions and the HCW initial conditions in general do not

lie on these manifolds. This constitutes the reason for the breakdown of the HCW
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Fig. 3.5: Projected circular orbit ob-

tained by the LQR con-

troller for α0 = 90o deputy

solutions. The period matched initial conditions and the manifolds cannot be ana-

lytically solved for. However, the criterion for period matching can be written as a

constraint in terms of the relative motion co-ordinates. By stabilizing this constraint,

we can draw the trajectory originating from PCO initial conditions to the nearest

period matched trajectory. We now develop the constraint and the stabilizing control

law.

The energy expressions can be written as follows :

Ed =
vd
2

2
− µ

Rd

(3.31)

Ec = −
1

2a
(3.32)

where Ed and Ec define the energy of the deputy and chief spacecraft respectively,

vd defines the scalar absolute velocity of the deputy spacecraft, Rd defines its radius,
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Fig. 3.6: Projected circular orbit ob-

tained by the LQR con-

troller for α0 = 0o and

ρ = 150km
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Fig. 3.7: Projected circular orbit ob-

tained by the LQR con-

troller for α0 = 90o and

ρ = 150km

and a defines the semi-major axis of the chief spacecraft. Expressions for vd and Rd

can be written in relative motion co-ordinates as follows:

Vd = Vc + ω × r+ ṙ (3.33)

ω = nk̂ (3.34)

⇒ Vd = (ẋ− ny)̂i+ (ẏ + nx+ vc)̂j+ żk̂ (3.35)

⇒ vd
2 = (ẋ− ny)2 + (ẏ + nx+ vc)

2 + ż2 (3.36)

1

Rd

=
1

√

(a+ x)2 + y2 + z2
(3.37)

The energy expression for the deputy can now be written in terms of the relative
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motion co-ordinates as follows:

Ed =
(ẋ− ny)2 + (ẏ + nx+ vc)

2 + ż2

2
− µ
√

(a+ x)2 + y2 + z2
(3.38)

The differential energy Ed−Ec is denoted by δE . The energy matching requirement

can be attained by realizing the following constraint on the relative motion dynamics:

δĖ + kδE = 0 (3.39)

Therefore, given the semi-major axis of the chief, the control objective can be posed

as stabilizing the constraint defined by Eqn.(3.39), w.r.t Eqn.(3.3). Since the chief is

in a two-body orbit, its energy is constant. Hence, the derivative of the difference in

the energies of the two spacecraft can be written as:

δĖ = Ėd (3.40)

In the absence of external disturbances, Ėd also remains constant. External controls

are necessary to establish δE = 0, if it is initially not so. The term kδE in Eqn.(3.39)

establishes δE = 0 starting from δE 6= 0. There are three controls ux, uy and uz

and only one constraint. Therefore, two of the controls can be arbitrarily chosen to

be identically equal to zero. We choose ux = 0 and uz = 0. In the presence of the

control input uy, Ėd can be written as follows:

Ėd = (ẏ + nx+ vc)uy (3.41)

⇒ δĖ = (ẏ + nx+ vc)uy (3.42)

Substituting the above equation in Eqn.(3.39), we obtain:
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ẏuy + nxuy + vcuy = −kδE (3.43)

uy can be computed from the above equation as follows:

uy = k
[vc

2−vd
2

2
+ µ( 1

Rd
− 1

a
)]

ẏ + nx+ vc
(3.44)

The above controller draws the deputy spacecraft to the closest period-matched orbit.

The period matched solutions are natural to the relative motion dynamics and hence

need zero controls, once the period matching requirement is established. It should

also be noted that the above controller can be implemented by state feedback. The

period matched relative orbits are guaranteed to be bounded, they are not guaranteed

to be circular. But it is seen from Figures (3.8) and (3.9) that it is possible to generate

nearly circular relative orbits by starting close to the PCO initial conditions. Numer-

ical studies indicate that the period matching controller can result in near-circular

projected relative orbits for initial conditions that differ by 5% from the PCO initial

conditions, even for disc sizes as large as 100km. The plots were generated by inte-

grating PCO initial conditions for 20 orbits, with the period matching controller.

The period matching controller works on the premise that there exist period matched

initial conditions close to the PCO initial conditions which lead to bounded circular

relative orbits. As seen in the previous chapter, PCO initial conditions need a small

correction in order to generate bounded relative orbits that are near circular. The

period matching control law achieves exactly the same result. It transfers the PCO

initial conditions to the nearest period matched initial conditions.
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tained by the period match-

ing controller for α0 = 00,
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Fig. 3.9: Projected circular orbit ob-

tained by the period match-

ing controller for α0 = 900,

k = 0.001

3.6 Period Matching Controller for Elliptic Chief Orbits

The period matching controller can also be extended to the elliptic chief orbit prob-

lem. Even in the presence of the eccentricity of the chief orbit, period matching

results in bounded relative orbits. The energy expressions for the deputy and chief

are the same as Eqn.(3.31) and Eqn.(3.32).

The control objective remains the same, i.e., to stabilize Eqn.(3.39) but w.r.t a differ-

ent set of equations. The set of differential equations given by Eqn.(3.3) do not model

the eccentricity of the chief’s orbit. Therefore, we use the following set of equations

for the elliptic chief orbit problem:
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ẍ− 2θ̇ẏ − θ̈y − θ̇2x = − µ(rc + x)

[(rc + x)2 + y2 + z2]
3

2

+
µ

r2c
+ ux

ÿ + 2θ̇ẋ+ θ̈x− θ̇2y = − µy

[(rc + x)2 + y2 + z2]
3

2

+ uy

z̈ = − µz

[(rc + x)2 + y2 + z2]
3

2

+ uz (3.45)

r̈c = rcθ̇
2 − µ

r2c

θ̈ = −2ṙcθ̇

rc

where rc is the radius of the chief’s orbit and θ is its latitude angle.

The expression for the velocity of the deputy gets modified as follows :

Vd = Vc + ω × r+ ṙ (3.46)

For a circular orbit, Vc and ω are constant. Also, Vc is purely tangential. For

the eccentric chief orbit, neither Vc nor ω, is constant. Furthermore Vc has both

tangential and radial components, respectively, Vr and Vt. We can write Vd as :

⇒ Vd = (Vr + ẋ− ωy)̂i+ (Vt + ẏ + ωx)̂j+ żk̂ (3.47)

⇒ vd
2 = (Vr + ẋ− ωy)2 + (Vt + ẏ + ωx)2 + (ż)2 (3.48)

Following the procedure used in the previous section, we obtain the control uy to

stabilize Eqn.(3.39) w.r.t Eqn.(3.45).

uy = k
[vc

2−vd
2

2
+ µ( 1

Rd
− 1

Rc
)]

ẏ + ωx+ Vt

(3.49)

The period-matching controller can only result in relative orbits that are natural so-
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lutions to the family of zero differential energy solutions. It is still not known whether

exactly circular relative orbit solutions belong to this class of solutions even for a cir-

cular chief orbit. The relative orbits shwon in Figures (3.8) and (3.9), indicate, that

it is possible to generate period matched relative orbits that are almost circular. For

higher values of eccentricity, the resulting orbits will be bounded but not necessarily

circular. Shown in Figures (3.10) and (3.11), are the relative orbits obtained with-

out and with the period-matching controller, respectively for an eccentric chief orbit.

PCO initial conditions are propagated for five orbits, with an eccentricity of e = 0.2

and a = 16000km chosen for the reference orbit. In the presence of eccentricity, the

relative orbit breaks down as seen in Fig.(3.10). In contrast, the relative obtained

by the period matching controller in Fig.(3.11) is bounded, though not circular. Fur-

thermore, the steady state control, required to establish this orbit, is identically zero.
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Fig. 3.10: Relative orbit ob-

tained with PCO

initial conditions for

α0 = 45o, ρ = 1km, e = 0.2

without any controller
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Fig. 3.11: Relative orbit ob-

tained with PCO

initial conditions for

α0 = 45o, ρ = 1km, e = 0.2

with the period matching

controller for k = 0.1
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3.7 Results and Conclusions

Figures (3.1 - 3.2), (3.4 - 3.5), and (3.8 - 3.9) are the relative orbits obtained by

the Lyapunov, LQR and the period matching controllers, respectively, for a circular

orbit. The relative orbits obtained by all the three controllers, are almost identical

but the cost incurred by each controller is different. Tables 3.1 and 3.2 compare the

fuel consumed by the different controllers for a disc size of ρ = 10km and ρ = 100km,

respectively. A circular orbit of semi-major axis 7100km, is chosen to generate these

results. The following integral is used as a measure of the fuel consumption:

∫ t

0
||u||2dt (3.50)

||u||2 = ux
2 + uy

2 + uz
2 (3.51)

‘LYAP’ stands for the Lyapunov controller, ‘LQR’ stands for LQR controllers and

‘PMC’ stands for the period matching controller. The units for the fuel consumption

measure in tables 3.1 and 3.2 are m2/s3/yr.

Table 3.1 Fuel consumption by different controllers for ρ = 10km

LYAP LQR(w = 103) LQR(w = 104) LQR(w = 105) PMC(k = 0.001)

α0 = 0o 0.0191 0.00337 0.003387 0.003388 0.000037

α0 = 90o 0.0191 0.003216 0.0032288 0.00323 0.00004

It can be seen from the tables that the Lyapunov controller consumes the maximum

fuel and the period matching controller consumes minimum fuel. The Lyapunov con-

troller has a non-zero steady state control, given by u = −G(Xr), which results in

high control cost. The Lyapunov controller on the other hand is globally asymptoti-
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Table 3.2 Fuel consumption by different controllers for ρ = 100km

LYAP LQR(w = 103) LQR(w = 104) LQR(w = 105) PMC(k = 0.001)

α0 = 0o 190.93 34.196 34.331 34.345 0.372

α0 = 90o 190.93 32.61 32.74 32.75 0.039

cally stable controller and guarantees an exact projected circular orbit. The control

law for the LQR controller is u = −Ke. Since, the errors are only guaranteed to

be bounded, there exist non-zero steady state controls with the LQR controller as

well. These errors are very small and hence result in much smaller controls than the

Lyapunov controller. The LQR controller is guaranteed to be stable for formations

as large as 150km. For large formations, the relative orbit obtained by the LQR

controller is offset from the origin. The period matching controller tries to estab-

lish relative orbits that are natural to the relative motion dynamics. Therefore, the

steady state controls obtained using the period- matching controller, are identically

zero. Hence, the fuel consumed is also minimum for the period-matching controller.

However, it is necessary for the period matching controller to start with initial con-

ditions that only differ, at a maximum, by as much as 5% from the PCO initial

conditions, even for disc sizes up to 100km, to obtain near circular projected relative

orbits.



74

CHAPTER IV

J2, MODELLING AND CONTROL

4.1 Abstract

This chapter deals with the dynamics and control of the formation flying problem in

the presence of J2. A rate-matching condition is developed which prevents secular

growth in the along-track direction. The effect of J2 is modelled on the out-of-plane

motion using mean elements and a geometric approach. A new control concept is in-

troduced which not only minimizes the overall fuel consumption of the formation, but

also results in homogeneous fuel consumption by different satellites in the formation.

The concept is implemented using a disturbance accommodating controller.

4.2 Introduction

In the presence of J2, the standard orbital elements are not constant as they are with a

spherical earth. The J2 perturbation results in periodic oscillations as well as secular

growth in the orbital elements. A new set of orbital elements, called mean elements

can be defined using Brouwer’s theory. The mean elements are obtained by averaging

the effects of the short and long periodic oscillations that arise due to J2. Only the

secular effects of the J2 perturbation are retained. The resulting mean semi-major

axis, mean eccentricity and mean inclination of each satellite are constant. The mean

ascending node, mean argument of perigee and the mean mean anomaly vary linearly

with time. Their rates are constant and are functions of the mean semi-major axis,

mean eccentricity and mean inclination only.

Ω̇ = −1.5J2(
Re

p
)2n cos i (4.1)
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ω̇ = 0.75J2(
Re

p
)2n(5 cos2 i− 1) (4.2)

Ṁ = n+ 0.75J2(
Re

p
)2n(3 cos2 i− 1) (4.3)

The mean semi-major axis, mean eccentricity and mean inclination are constant for

both the chief and the deputy. Therefore, their differences are also constant.

δam = δam0
(4.4)

δem = δem0
(4.5)

δim = δim0
(4.6)

The differences of mean nodal angle, argument of perigee and mean anomaly, depend

on the mean values of the other three elements.

δΩm = δΩm0
+ (Ω̇d − Ω̇c)t = δΩm0

+∆Ω̇t (4.7)

δωm = δωm0
+ (ω̇d − ω̇c)t = δωm0

+∆ω̇t (4.8)

δMm = δMm0
+ (Ṁd − Ṁc)t = δMm0

+∆Ṁt (4.9)

The following relations have been derived in Ref.19 for the along-track separation and

the out -of-plane separation, using the geometry of orbits.

y

rc
≈ δθ + δΩcos ic = δω + δf + δΩcos ic (4.10)

z

rc
≈ δi sin θc − sin icδΩcos θc (4.11)
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where y is the along-track separation in the LVLH co-ordinate system, rc is the

radius of the chief satellite from the center of the Earth, and θ = ω + f , where ω is

the argument of perigee, f is the true anomaly, Ω is the angle of ascending node and

ic is the inclination of the chief. The relation between true and mean anomaly can

be approximated for low values of eccentricity of the chief as follows :

f ≈M + 2e sinM (4.12)

The following expression for δf can be derived from Eqn.(4.12):

δf ≈ δM + 2δe sinM + 2e cosMδM (4.13)

Substituting Eqn.(5.5) in Eqn.(5.2) we obtain the following:

y

rc
≈ (δω + δM + δΩcos ic) + 2δe sinMc + 2ec cosMcδM (4.14)

Equations (4.14) and (4.11) represent the linearized relationship between the relative

motion co-ordinates and the osculating orbital elements differences. As mentioned

earlier, J2 induces short and long period oscillations along with secular drifts in the

relative motion dynamics. However, it is the secular drift that is of primary concern to

formation flying. Hence, it is convenient to deal with mean relative motion variables

instead of the actual LVLH co-ordinates. These variables are obtained by transform-

ing the mean elements of the chief and deputy directly to inertial co-ordinates and

extracting the LVLH co-ordinates from them. Equations (4.14) and (4.11) for the

mean relative motion co-ordinates are approximated by using mean elements on the

right hand side of these two equations. Therefore the geometric relations for ym and

zm can be written as follows:
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ym
rc

= δωm + δMm + δΩm cos ic + 2δem sinMc + 2ec cosMcδMm (4.15)

zm
rc
≈ δim sin θc − sin icδΩm cos θc (4.16)

Substituting equations (4.7)-(4.9) in the above equations, we obtain the following

relations:

ym
rc

= (δωm0
+ δMm0

+ δΩm0
cos ic) + (∆ω̇m + δṀm + δΩ̇m cos ic)t+ ht (4.17)

where ht stands for harmonic terms.

zm
rc
≈ δim0

sin θc − sin icδΩm0
cos θc − sin ic∆Ω̇mt cos θc (4.18)

It can be seen from Eqn.(4.17), that there exists secular growth in the y direction,

unless the following condition is satisfied:

∆ω̇m + δṀm + δΩ̇m cos ic = 0 (4.19)

The above equation places a constraint between the mean semi-major axes, mean

eccentricities and mean inclinations of the chief and the deputy. A non-zero δam of

the order J2 is required for satisfying the above equation.

It can be seen from Eqn.(4.18) that there exists a secular growth in the z direction

also, for non-zero ∆Ω̇m.
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4.3 Determination of Initial Conditions

In the previous section, a condition for zero secular growth in the y direction was

developed. In this section we address the problem of finding the six initial mean ele-

ments of the deputy, given the mean elements of the chief. The desired mean elements

of the deputy should not only result in the HCW initial conditions, but should also

satisfy Eqn.(4.19). This poses seven constraints on choosing the six mean elements of

the deputy. These are six HCW initial conditions and the zero secular drift condition

along the y direction, given by Eqn.(4.19). Hence, it is necessary to drop one of the

constraints. HCW initial conditions do not satisfy Eqn.(4.19). Therefore, we drop

one of the HCW initial conditions to satisfy Eqn.(4.19). It was seen in Chapter I, that

the HCW initial condition on ẏ needs to be corrected, to eliminate secular growth

in the y direction. Therefore, we drop the HCW initial condition on ẏ, to satisfy

Eqn.(4.19). It should be noted that the five HCW initial conditions on x, y, z, ẋ, ż are

imposed using mean variables. The following set of mean elements are chosen for the

chief, for all the simulations in this chapter : [a e i Ω ω M ] = [7100 0.005 70o 0o 0o 0o].

A disc size of 0.5km was chosen for the relative orbit. The initial conditions of the

deputies are obtained by a iterative numerical process, while attempting to satisfy

the constraints. Shown in figures (4.1) and (4.2), are the relative orbits resulting from

such initial conditions, for the α0 = 0o, 90o, deputies respectively.

We have seen in the previous section that there exists a secular growth in the out-of-

plane direction also, for non-zero δΩ̇m. The differential mean nodal precession rate

δΩ̇m, depends on the difference of mean semi-major axis, mean eccentricity and mean

inclination. The differential nodal precession rate can be computed as follows:
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Fig. 4.1: Relative orbit obtained for

the α0 = 0o deputy
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Fig. 4.2: Relative orbit obtained for

the α0 = 90o deputy

δΩ̇m =
∂Ω̇m

∂a
δam +

∂Ω̇m

∂e
δem +

∂Ω̇m

∂i
δim (4.20)

δam is of the order of J2 hence its contribution to δΩ̇m would be of the order J2
2

and can be neglected. For values of eccentricity of the order of 1e − 3, ∂Ω̇m

∂e
is much

smaller than ∂Ω̇m

∂i
. Therefore computing δΩ̇m due to mean inclination difference alone,

we obtain the following expression :

δΩ̇m = 1.5J2

(

Re

ac

)2

nc sin ic δim (4.21)

δim is a constant and is dependent on the choice of mean initial conditions. A suitable

choice of δim can be made from Eqn.(4.18). The following choice are made for the

values of δim0
and δΩm0

:

δim0
=
ρ cosα0
ac

(4.22)

δΩm0
=
ρ sinα0
sin icac

(4.23)



80

Substituting the above relations into Eqn.(4.18), we obtain the following:

zm
rc

=
ρ

ac
sin(θc + α0) + sin ic cos θc∆Ω̇mt (4.24)

For near circular orbits the above equation is a perturbed version of the desired

HCW out-of-plane solution. The above solution gradually drifts away from the HCW

solution due to the effect of ∆Ω̇m. Combining equations (4.21), (4.22), and (4.24),

we can obtain the secular drift in the out-of-plane direction as a function of α0.

zm
rc

=
ρ

ac
sin(θc + α0) + 1.5J2nc sin

2 ic cos θc(
Re

ac
)2
ρ cosα0
ac

t (4.25)

It can be seen from the above equation that the secular growth is maximum for the

α0 = 0o deputy and minimum for the α0 = 90o deputy. This is also verified by figures

(4.1) and (4.2).

4.4 The Fuel Balancing Control Concept

In the previous section it was seen that the effect of J2 on the out-of-plane motion

depends on the initial phase angle, α0 of the deputy. In the second chapter the effects

of nonlinearity and eccentricity were also seen to be a function of α0. Therefore, it

is only expected that the controls required to maintain the projected circular orbit,

will be different for each deputy. The control effort and hence the fuel consumed

will be a function of the particular α0 value of the deputy. To enforce homogenous

fuel consumption among the different satellites, a dynamic phase shift is enforced. It

was also shown by Vadali et al.37 that rotating the formation reduces the overall fuel

consumption and reaches a minimum for a particular value of α̇.

Therfore, we replace α0 by α = α0 + α̇t in the HCW solutions to obtain a set of
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modified reference trajectories. It is emphasized that the modified reference trajectory

still results in circle in the y− zplane. The modified reference trajectory is given as :

xr =
ρ
2
sin(θc + α0 + α̇t)

yr = ρ cos(θc + α0 + α̇t)

zr = ρ sin(θc + α0 + α̇t)

ẋr = (n̄c + α̇)ρ
2
cos(θc + α0 + α̇t)

ẏr = −(n̄c + α̇)ρ sin(θc + α0 + α̇t)

żr = (n̄c + α̇)ρ cos(θc + α0 + α̇t)

(4.26)

where θc = n̄ct and the modified mean motion definition is n̄c = ω̇m + Ṁm.

4.5 Control System Design

In this section, we present the methodology of control system design to achieve the

desired tracking performance in the presence of disturbances and minimize the cost

for control. The dynamical system under consideration is nonlinear but the control

system design is based on the HCW equations. In designing control systems for space-

craft missions, closed-loop stability as well as the fuel optimality of the controller are

equally important. Therefore, the controller cannot be very aggressive and should

not respond to the disturbances that create short period oscillations. At the same

time, the controller should be capable of preventing any secular growth or long period

oscillations, which could distort the relative orbit beyond the tolerance bounds. To

attain the desired objectives, the principles of persistent disturbance accommodation

and rejection are utilized23. Higher frequencies than the orbit rate of the Chief are

present in the solution. Since the mean eccentricity of the Chief is nonzero, the rela-

tive orbit may not be centered with respect to the Chief. The controller should not

suppress these higher frequencies or treat the offsets along the x and z axes as errors,
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if fuel savings are to be achieved. However, the controller must reject the disturbance

along the z-axis with a frequency equal to the orbit rate. The desired objectives are

achieved using the LQR design approach.

First, we state that the modified reference solutions given by Eqs. (4.26), satisfy the

HCW equations, if nc is replaced by n̄c + α̇. However, as stated before, α̇ is small

compared to n̄c and is neglected in the control design process. The control design

model is written in the form given below:

∆ẋ = A∆x+Bu+ Γ (4.27)

where

∆x = [x− xr; ẋ− ẋr; y − yr; ẏ − ẏr; z − zr; ż − żr]
T

and Γ is the vector of disturbances whose magnitudes are unknown to the controller.

The quantities with subscripts “r” are the modified reference trajectory states. The

A and B matrices are obtained from the HCW equations, with nc replaced by n̄c.

Additional tuned filters of the form shown below are augmented to the model given in

Eq. (4.27), to eliminate selected frequencies and bias components from the controls:

ż0x = ux

z̈2x + (2n̄c)
2z2x = ux

z̈3x + (3n̄c)
2z2x = ux

(4.28)

z̈2y + (2n̄c)
2z2y = uy

z̈3y + (3n̄c)
2z3y = uy

(4.29)
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ż0z = uz

z̈2z + (2n̄c)
2z2z = uz

z̈3z + (3n̄c)
2z3z = uz

(4.30)

A bias filter is not added along the y-axis, since this channel cannot accommodate a

constant disturbance, as per the HCW equations.

The control weight matrix is chosen to be diagonal with the following entries: [1000,

1, 1]/n̄4c . This choice penalizes the radial component of thrust severely. It is well

known that radial thrusting for orbit corrections is quite inefficient. The state weight

matrix is also diagonal. The radial and out-of-plane position error weights are both

0.1, whereas the along-track position error weight is 1. The rate error weights are

selected as n̄−2c for each axis. All the filter state weights are set to 1.

The gain matrices for the in-plane and out-of-plane modes are designed separately

and then assembled into a block diagonal matrix. The feedback controls are gener-

ated from the tracking errors and the filter states, by using the assembled gain matrix.

The control acceleration components are first obtained in the LVLH coordinate sys-

tem. The inertial components of the acceleration required to perform the nonlinear

simulations are determined by coordinate transformations. Four satellites, uniformly

spaced along the circle are selected to test the control concept. Initial conditions

for different deputies are obtained using a iterative numerical procedure for different

values of α0.
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4.6 Results

A four-deputy formation has been simulated to verify the ideas of a filter based con-

troller and the effect of rotating the formation. Shown in Figures (4.3) and (4.4) are

the fuel consumption plots for different deputies, without and with formation rota-

tion, respectively. It can be seen from Fig.(4.3) that the α0 =
π
2
, 3π
2
deputies, consume

almost zero fuel and the α0 =
π
2
, 3π
2

deputies, consume maximum fuel. On the other

hand, the fuel plots in Fig.(4.4) show that the fuel consumption curves for different

deputies are nearly the same and show a symmetry with respect to the phase angle.

This results in homogeneous fuel consumption for the formation.
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Fig. 4.3: Fuel consumption among different deputies for α̇ = 0

Figures (4.5) and (4.6) illustrate the benefit of rotating the formation on the overall

cost of maintaining the formation. It can be clearly seen from both the Figures that

the overall cost attains a minimum at a non-zero value of α̇. Figure (4.5) shows the
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Fig. 4.4: Fuel consumption among different deputies for α̇ = −3e− 7rad/s

cost curve as a function of α̇ without using a filter in the controller and Fig.(4.6) is

for a controller with a filter. It can be seen that the filter reduces the cost by almost

two orders. Furthermore, the relative orbit with the filter based controller is almost

circular as shown in Fig.(4.7).
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Fig. 4.7: Relative orbits obtained with the filter based controller



88

CHAPTER V

FORMATION RECONFIGURATION

5.1 Abstract

In this chapter we analyze the formation reconfiguration problem. The desired for-

mations are characterized by the orbital elemental differences. Gauss’s variational

equations are used to compute impulses that establish the desired orbital elemental

differences. An analytical, sub-optimal solution is proposed that can be easily im-

plemented. The solution is also extended to the J2 problem. The cost incurred with

the analytical solution is found to be close to that incurred by the optimal solution

obtained by a numerical optimization procedure.

5.2 Introduction

To achieve the desired objectives of a formation flying mission, it is often necessary

for the formation to reconfigure itself. Shown in Fig.(5.1), is a schematic diagram

of the reconfiguration problem that will be addressed in this chapter. We focus our

attention on the formation that is circular when projected onto the local horizontal

frame. The reconfiguration objective is to resize the radius of the circular relative

orbit. Fig.(5.1) shows the initial(inner) and final(outer) relative orbit configurations.

A four-deputy formation is shown in the initial configuration. The four deputies need

to be transferred to four uniformly separated slots on the final relative orbit. Shown

for the final configuration are two different sets of slots, ones with an empty circle

and ones with dots at the centers at the circles. Though, the figure only shows two

such sets, it is obvious that there are infinite possibilities and it is desired to pick the

one with optimal features. The choice of the set is to be followed by assigning to each
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deputy on the initial configuration, a unique slot in the chosen set. Also, an optimal

control strategy is required to transfer the deputy from a given location on the initial

configuration, to any given location on the final configuration.

Fig. 5.1: Schematic diagram of the reconfiguration problem

Depending on the choice of pairing for each deputy on the initial configuration with a

unique slot in the final configuration, different deputies will consume different amounts

of fuel to transfer from their initial locations to the final locations. In this chapter, a

sub-optimal impulsive control scheme will be derived to transfer a deputy from a given

location on the initial configuration to any given location on the final configuration.

An optimal solution to the pairing of each deputy satellite with a location on the final

configuration can be derived using this control scheme. It is seen that this pairing

scheme not only minimizes the overall fuel consumption for the formation, but also

results in homogenous fuel consumption by each deputy.
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5.3 Characterization of Formations

In this section we characterize formations in terms of elemental differences of the

deputy w.r.t to the chief satellite, in the absence of J2. Near-circular chief orbits will

be assumed throughout this chapter. For bounded relative motion, it is essential that

the semi-major axes of both the satellites be the same, hence the desired semi-major

axis difference is zero.

δa = 0 (5.1)

Since, five of the orbital elements are constant for each satellite, the corresponding five

orbital element differences will also be constant for the relative motion. Equation(5.1)

also enforces δM = constant. Therefore, all the six orbital element differences are

constant.

The following relations have been derived in19 for the along track separation and the

out-of-plane separation, using the geometry of orbits.

y

rc
≈ δθ + δΩcos ic = δω + δf + δΩcos ic (5.2)

where y is the along track separation in the LVLH co-ordinate system, rc is the inertial

radius of the chief satellite and θ = ω+ f , ω is the argument of perigee, f is the true

anomaly, Ω is the angle of ascending node and ic is the inclination of the chief.

z

rc
≈ δi sin θc − sin icδΩcos θc (5.3)

Equations (5.2) and (5.3) represent the linearized relationship between the relative

motion co-ordinates and the orbital elements differences, but they are found very
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accurate for formations of the size of 1km. The relation between true and mean

anomaly can be approximated as follows for low values of eccentricity of the chief

f ≈M + 2e sinM (5.4)

The above equation also has a high accuracy for eccentricities less than 0.005 and

hence, is very useful in dealing with near circular orbits. The following expression for

δf can be derived from Eqn.(5.4):

δf ≈ δM + 2δe sinM + 2e cosMδM (5.5)

Substituting Eqn.(5.5) in Eqn.(5.2) we get the following:

y

rc
≈ (δω + δM + δΩcos ic) + 2δe sinMc + 2ec cosMcδM (5.6)

The above expression contains constant bias terms and periodic terms.

We seek to establish Hill’s periodic solutions of the following form

y

rc
=

ρ

ac
cos(θc + α0) =

ρ

ac
cos(ωc + fc + α0) (5.7)

z

rc
=

ρ

ac
sin(θc + α0) =

ρ

ac
sin θc cosα0 +

ρ

ac
cos θc sinα0 (5.8)

where ρ is referred to as the disc size, and it represents the radius of the projected cir-

cular orbit, α0 is the phase angle, which characterizes different deputies in a formation.

Substituting Eqn.(5.4) into Eqn.(5.7) we obtain the following result:
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y

rc
=

ρ

ac
cos(ωc + α0) cosMc −

ρ

ac
[sin(ωc + α0) + 2ec sin(Mc + ωc + α0)] sinMc (5.9)

Equation(5.6) represents an approximate relation for the evolution of the along-track

displacement, y. Equation(5.9) represents the desired periodic relative motion for the

along track motion. Comparing the coefficients of cosMc and sinMc in Eqn.(5.9) and

Eqn.(5.6), we obtain the following relations:

δe = − ρ

2ac
[sin(ωc + α0)− 2ec sin(Mc + ωc + α0)] (5.10)

δM =
ρ

2acec
cos(ωc + α0) (5.11)

δω + δM + δΩcos ic = 0 (5.12)

Similarly, comparing Eqn.(5.8) with Eqn.(5.3), we can solve for δi and δΩ as follows:

δi =
ρ

ac
cosα0 (5.13)

δΩ =
ρ

ac

sinα0
sin ic

(5.14)

We can also solve for δω from Eqn.(5.12), which enforces zero bias in the along-track

direction.

δω = −δM − δΩcos ic (5.15)

Table.(5.1) gives the six elemental differences that characterize the desired Hill’s pe-

riodic solution. Once established all the above differences are constant. They are

analogous to the six integration constants of Hill’s equations. The relative orbits
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Table 5.1 Orbital element differences as a function of disc size ρ and phase angle α0

δa 0

δe − ρ
2ac

[sin(ωc + α0)− 2ec sin(Mc + ωc + α0)]

δi ρ
ac
cosα0

δΩ ρ
ac

sinα0

sin ic

δω −δM − δΩcos ic

δM ρ
2acec

cos(ωc + α0)

obtained with the above choice of elemental differences are shown in figures (5.2) and

(5.3), for the α0 = 0o and the α0 = 90o deputies, respectively.
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Fig. 5.2: Relative orbit obtained with

α0 = 0o

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

y(km)

z(
km

)

Fig. 5.3: Relative orbit obtained with

α0 = 90o

5.4 Gauss’s Variational Equations

In the previous section, we prescribed a desired set of elemental differences to obtain

the projected circular orbit. In this section we analyze the utility of Gauss’s varia-
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tional equations in establishing the desired elemental differences, utilizing impulsive

thrust. Gauss’s variational equations can be written as follows:

di

dt
=
r cos θ

h
uh (5.16)

dΩ

dt
=

rsinθ

h sin i
uh (5.17)

da

dt
=

2a2

h
(e sin fur +

p

r
uθ) (5.18)

de

dt
=

1

h
(p sin fur + [(p+ r) cos f + re]uθ) (5.19)

dω

dt
=

1

he
[−p cos fur + (p+ r) sin fuθ]−

r sin θ cos i

h sin i
uh (5.20)

dM

dt
= n+

η

he
[(p cos f − 2re)ur − (p+ r) sin fuθ] (5.21)

where ur, ut and uh are the external accelerations in the radial, tangential and out of

plane directions, respectively. The first order elemental differences obtained by firing

the thrusters impulsively, are given as follows:

δi ≈ r cos θ

h
∆Vh (5.22)

δΩ ≈ rsinθ

h sin i
∆Vh (5.23)

δa ≈ 2a2

h
(e sin f∆Vr +

p

r
∆Vθ) (5.24)
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δe ≈ 1

h
(p sin f∆Vr + [(p+ r) cos f + re]∆Vθ) (5.25)

δω ≈ 1

he
[−p cos f∆Vr + (p+ r) sin f∆Vθ]−

r sin θ cos i

h sin i
∆Vh (5.26)

δM ≈ η

he
[(p cos f − 2re)∆Vr − (p+ r) sin f∆Vθ] (5.27)

where ∆Vr,∆Vt and ∆Vh are the magnitudes of the impulse components in the radial,

tangential and out of plane directions, respectively.

The above equations relate the components of the impulse to the corresponding ele-

mental differences created, for a single impulse. The equations offer four degrees of

freedom, they are: 1) the choice of the magnitudes of the three impulse components

and 2) the choice of the impulse location f . The projected circular orbit formation is

characterized by the six orbital element differences. Therefore, at least two impulses

are necessary to create these desired differences. Two impulses have six degrees of

freedom and the location of the impulses offer two extra degrees of freedom. The lo-

cations can be chosen to minimize the fuel consumption. The following assumptions

are found to be useful in determining these degrees of freedom.

Assumptions: 1. The out of plane cost constitutes a larger portion of the overall

cost. 2. Hence, the locations of the two impulses are to be based on minimizing the

out of plane cost.

The above assumptions are based on the results of certain numerical experiments and
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they stand validated by the optimization results. They are useful in determining a

structure to the optimal solution. The out-of-plane cost refers to the cost of creating

the desired inclination and the desired nodal differences, and the in-plane cost refers

to the cost of creating the remaining four elemental differences. The inclination and

the node are effected by the out-of-plane thrust alone. Also, the desired inclination

difference and the node difference can be obtained by one impulse, suitably located

at the following latitude angle:

θc = atan2(δΩ sin i, δi) (5.28)

The corresponding ∆Vh is computed as follows:

∆Vh =
h

r

√

δi2 + δΩ2 sin2 i (5.29)

The above scheme is optimal for creating a given δi and δΩ using a single impulse.

It can be shown that a k-impulse scheme can utmost perform as good as a single

impulse used at the appropriate location, θ = θc.

Let θ = θ1, θ2, ...θk be the latitude angle locations for the impulses ∆Vh1
,∆Vh2

, .....∆Vhk
,

respectively. The differences δi and δΩ created by such a sequence of impulses are

given by

δi =
r cos θ1

h
∆Vh1

+
r cos θ2

h
∆Vh2

+ ......+
r cos θk

h
∆Vhk

(5.30)

and

δΩ =
r sin θ1
h sin i

∆Vh1
+
r sin θ2
h sin i

∆Vh2
+ ......+

r sin θk
h sin i

∆Vhk
(5.31)

Since we are dealing with near-circular orbits, we hold r constant. By using the

triangle inequality, we obtain the following results :
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|δi| ≤ |r cos θ1
h

||∆Vh1
|+ |r cos θ2

h
||∆Vh2

|+ ......+ |r cos θk
h

||∆Vhk
| (5.32)

|δΩ| ≤ |r sin θ1
h sin i

||∆Vh1
|+ |r sin θ2

h sin i
||∆Vh2

|+ ......+ |r sin θk
h sin i

||∆Vhk
| (5.33)

The magnitude of ∆Vh for a single impulse at θ = θc, is given by

∆Vh =
h

r

√

δi2 + δΩ2 sin2 i (5.34)

Substituting equations (5.32) and (5.33) in Eqn.(5.34) we obtain the following rela-

tion:

∆Vh ≤
h

r
[(|r cos θ1

h
||∆Vh1

|+ |r cos θ2
h

||∆Vh2
|+ ......+ |r cos θk

h
||∆Vhk

|)2

+(|r sin θ1
h sin i

||∆Vh1
|+ |r sin θ2

h sin i
||∆Vh2

|+ ......+ |r sin θk
h sin i

||∆Vhk
|)2] 12 (5.35)

≤ [(cos2 θ1 + sin2 θ1)∆Vh1

2 + (cos2 θ2 + sin2 θ2)∆Vh2

2 + .....(cos2 θk + sin2 θk)∆Vhk

2 +

2
k
∑

l,m=1

(| cos θl|| cos θm|+ | sin θl|| sin θm|)|∆Vl||∆Vm|]
1

2(5.36)

The maximum value of (| cos θl|| cos θm|+ | sin θl|| sin θm|) is 1. Therefore,

|∆Vh| ≤ [∆Vh1

2 +∆V 2
h2

+ .....+∆Vhk

2 + 2
k
∑

l,m=1

|∆Vl||∆Vm|]
1

2 (5.37)

⇒ |∆Vh| ≤ |∆Vh1
|+ |∆Vh2

|+ .....+ |∆Vhk
| (5.38)
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which proves that a single impulse at θ = θc is the optimal ∆Vh to create the desired

δi and δΩ. But it should be noted that the optimal one impulse ∆Vh given by

Eqn.(5.29), also creates a δω given by

δω = −r sin θ cos i
h sin i

∆Vh = − cos iδΩ (5.39)

This δω must be corrected at a later time.

As per the second assumption, the optimal location of the two out-of-plane impulses

is to be decided based on the out-of- plane cost alone. But we have already proved

that a desired δi and δΩ, can be achieved optimally with one impulse alone, at

θ = θc. However, this can be split up into two impulses, achieving the same δi and

δΩ without any additional cost. The two locations are θ = θc and θ = θc + π, and

the corresponding ∆Vh1
and ∆Vh2

can be obtained as follows:

∆Vh1
=

1

2

h

r

√

δi2 + δΩ2 sin2 i (5.40)

∆Vh2
= −1

2

h

r

√

δi2 + δΩ2 sin2 i (5.41)

∆Vh2
has a negative sign because cos(θc+π) = − cos θc and sin(θc+π) = − sin θc. The

two-out-of plane impulses ∆Vh1
and ∆Vh2

, each create half of the desired corrections:

δi
2
and δΩ

2
with each impulse. Also, the total cost incurred is the same as that due to

a single impulse at θ = θc.

|∆Vh1
|+ |∆Vh2

| = h

r

√

δi2 + δΩ2 sin2 i (5.42)

Therefore, the choice of the two out of plane impulse components as well as the loca-

tions of the two impulses, is determined. There are still four degrees of freedom left,
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which are the two radial and two tangential components of the two impulses. These

degrees of freedom can be used to achieve the remaining four elemental differences.

δa =
2a2

h
(e sin f1∆Vr1 +

p

r1
∆Vθ1) +

2a2

h
(e sin f2∆Vr2 +

p

r2
∆Vθ2) (5.43)

δe =
1

h
(p sin f1∆Vr1 + [(p+ r1) cos f1 + r1e]∆Vθ1)

+
1

h
(p sin f2∆Vr2 + [(p+ r2) cos f2 + r2e]∆Vθ2) (5.44)

δω =
1

he
[−p cos f1∆Vr1 + (p+ r1) sin f1∆Vθ1 ]−

r1 sin θ1 cos i

h sin i
∆Vh1

+
1

he
[−p cos f2∆Vr2 + (p+ r2) sin f2∆Vθ2 ]−

r2 sin θ2 cos i

h sin i
∆Vh2

(5.45)

The effect of out of plane impulse components on δω has been computed earlier to

be − cos iδΩ. Therefore, we can rewrite the above equation as follows:

δω + cos iδΩ =
1

he
[−p cos f1∆Vr1 + (p+ r1) sin f1∆Vθ1 ]

+
1

he
[−p cos f2∆Vr2 + (p+ r2) sin f2∆Vθ2 ] (5.46)

δM = δn1(t2 − t1) +
η

he
[(p cos f1 − 2r1e)∆Vr1 − (p+ r1) sin f1∆Vθ1 ]

+
η

he
[(p cos f2 − 2r2e)∆Vr2 − (p+ r2) sin f2∆Vθ2 ] (5.47)

where δn1(t2 − t1) is the drift that occurs due to the change in the semi-major axis

that is created by the first impulse. The times t1 and t2 are, respectively, the times of

application of the first and second impulse. At the end of the second impulse, δa will
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be equal to zero and hence δn will also be equal to zero. Once, δn = 0 is established

δM remains a constant. δn1 can be related to the first impulse components as follows:

n =

√

µ

a3
(5.48)

δn1 = −
3n

2a
δa1 (5.49)

where δa1 is the semi-major axis difference that is created after the first impulse,

which can be written as

δa1 =
2a2

h
(e sin f1∆Vr1 +

p

r1
∆Vθ1) (5.50)

⇒ δn1 = −
3n

2a
[
2a2

h
(e sin f1∆Vr1 +

p

r1
∆Vθ1)] (5.51)

The impulse application times t1 and t2, are separated by one half period. Hence

t2− t1 = Tp

2
= π

n
where n is the mean motion and Tp, the time period of the satellite’s

orbit. Therefore, the drift due to the change in semi-major axis resulting form the

first impulse can be written as follows:

δn1(t2 − t1) = −
3n

2a
[
2a2

h
(e sin f1∆Vr1 +

p

r1
∆Vθ1)]

π

n
(5.52)

δn1(t2 − t1) = −
3πa

h
(e sin f1∆Vr1 +

p

r1
∆Vθ1) (5.53)

δM = −3πa

h
(e sin f1∆Vr1 +

p

r1
∆Vθ1)

+
η

he
[(p cos f1 − 2r1e)∆Vr1 − (p+ r1) sin f1∆Vθ1 ]

+
η

he
[(p cos f2 − 2r2e)∆Vr2 − (p+ r2) sin f2∆Vθ2 ] (5.54)
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δM = [
η

he
(p cos f1 − 2r1e)−

3πa

h
e sin f1]∆Vr1 − [

η

he
(p+ r1) sin f1 +

3πap

hr1
]∆Vθ1

+
η

he
[(p cos f2 − 2r2e)∆Vr2 − (p+ r2) sin f2∆Vθ2 ](5.55)

The above equations can be encapsulated in the following form:

δe = A∆V (5.56)

where δe = [δa δe δw + cos iδΩ δM ]T and ∆V = [∆Vr1 ∆Vt1 ∆Vr2∆Vt2 ]
T and the

matrix A is given as follows:

A(:, 1 : 2) =

















































2a2e
h

sin f1
2a2

h
(1 + e cos f1)

p sin f1

h
p
h
[2+e cos f1

1+e cos f1
cos f1 +

e
1+e cos f1

]

−p cos f1

he
p
he
[2+e cos f1

1+e cos f1
sin f1]

η
he
(p cos f1 − 2r1e)− 3πa

h
e sin f1 − η

he
(p+ r1) sin f1 − 3πap

hr1

















































(5.57)



102

A(:, 3 : 4) =

























































2a2e
h

sin f2
2a2

h
(1 + e cos f2)

p sin f2

h
p
h
[2+e cos f2

1+e cos f2

cos f2 +
e

1+e cos f2

]

−p cos f2

he
p
he
[2+e cos f2

1+e cos f2
sin f2]

η
he
(p cos f2 − 2r2e) − η

he
(p+ r2) sin f2

























































(5.58)

The ∆V vector can be obtained by inverting the A matrix.

∆V = A−1δe (5.59)

The total impulse magnitude ∆V for the two impulses is

∆V =
√

∆Vr1
2 +∆Vt1

2 +∆Vh1

2 +
√

∆Vr2
2 +∆Vt2

2 +∆Vh2

2 (5.60)

The two impulse scheme has been used to establish the elemental difference given

by equations (5.10), (5.11), (5.13), (5.14), (5.15) and (5.1), for a projected circular

orbit. Unlike the reconfiguration problem which involves a transfer from one orbit to

another, herein, we try to establish a single projected orbit. The relative orbits thus

established, with the two impulse scheme, are shown in figures (5.4) and (5.5), for

the α0 = 0o and the α0 = 90o deputies, respectively. The chief and the deputy are

initially coincident. Hence, the relative orbit starts from origin.

The location of the impulses can be calculated as follows:

θc = atan2(δΩ sin i, δi) (5.61)
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Fig. 5.4: Relative orbit established

with the two impulse solu-

tion for the α0 = 0o deputy
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Fig. 5.5: Relative orbit established

with the two impulse solu-

tion for the α0 = 90o deputy

Substituting δΩ and δi from equations (5.13) and (5.14) we obtain the following:

θc = atan2(
ρ sinα0
a sin i

sin i,
ρ cosα0

a
) = α0 (5.62)

⇒ fc = θc − ω = α0 − ω (5.63)

⇒ f1 = α0 − ω (5.64)

and

f2 = f1 + π = α0 − ω + π (5.65)

5.5 Reconfiguration

In the previous section we have developed a two-impulse scheme for optimally estab-

lishing the projected circular relative orbit, for different deputies in a formation. In

this section, we will study the reconfiguration problem, which involves resizing the
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radius of the projected circular orbit from ρi to ρf . The subscripts i and f , stand for

“initial” and “final” respectively. Let there be k satellites, evenly distributed on the

initial relative orbit, with phase angles starting at 0o and differing by 2π
k
. Therefore,

α0i
takes the following values:

α0i
= 0o,

2π

k
, 2

2π

k
, ...., (k − 1)

2π

k
(5.66)

α0f
can also assume different values as follows:

α0f
= φ, φ+

2π

k
, φ+ 2

2π

k
, ...., φ+ (k − 1)

2π

k
(5.67)

where φ is an additional optimization parameter. φ indicates the angle by which

the entire formation is to be rotated on the final relative orbit. The reconfiguration

problem involves two optimization problems:(i) The problem of optimally transferring

the satellite from a given location on the initial relative orbit to a given location on

the final relative orbit and (ii) The problem of deciding for each satellite on the initial

relative orbit, the optimal location on the final relative orbit. The first optimization

problem can be solved by the two impulse analytical solution derived in the previous

section. The desired elemental differences are given by equations (5.68) - (5.73).

Therefore, the two impulse analytical solution discussed in the previous section can

be used to establish them. The required elemental differences are:

δa = 0 (5.68)
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δe = − ρf
2a0

[sin(ω0+α0f
)−2e0 sin(M0+ω0+α0f

)]+
ρi
2a0

[sin(ω0+α0i
)−2e0 sin(M0+ω0+α0i

)]

(5.69)

δi =
ρf
a0

cosα0f
− ρi
a0

cosα0i
(5.70)

δΩ =
ρf
a0

sinα0f

sin i0
− ρi
a0

sinα0i

sin i0
(5.71)

δω = −δM − δΩcos i0 (5.72)

δM =
ρf

2a0e0
cos(ω0 + α0f

)− ρi
2a0e0

cos(ω0 + α0i
) (5.73)

where α0i
and α0f

are the phase angles of the deputy on the initial and final relative

orbits respectively.

Figures (5.6) and (5.7) show two examples of the reconfiguration problem, using the

analytical two -impulse scheme.

The optimal solution to the reconfiguration problem also involves determining φ and

pairing for each α0i
given by Eqn.(5.66) on the initial relative orbit, to an α0f

given

by Eqn.(5.67) on the final relative orbit, such that the overall fuel consumption is

minimized. Since there are k satellites in the initial relative orbit, k slots are required

in the final relative orbit, for a unique pairing. There is an infinite number of families

of evenly spaced slots, each characterized the parameter φ, as per Eqn.(5.67). The

overall fuel consumption is proportional to
∑k

l=1∆Vl. The cost associated with each
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Fig. 5.6: Reconfiguring the α0i
= 45o

deputy on the disc ρi = 1km

to the α0f
= 60o location on

the disc ρf = 2km with the

two impulse analytical solu-

tion
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Fig. 5.7: Reconfiguring the α0i
= 90o

deputy on the disc ρi = 1km

to the α0f
= 30o location on

the disc ρf = 2km with the

two impulse analytical solu-

tion

pair can be computed apriori, using the two-impulse analytical scheme. Figure (5.8)

shows the cost curves for a formation of six satellites.

It generates very useful insight into the solution of the pairing problem. The figure

shows the cost plots for transferring from different values of α0i
to different values

of α0f
. The minima for each α0i

curve occurs at a value of α0f
= α0i

. This clearly

demonstrates that there is no conflict for slots, i.e., each satellite has a unique target

slot of minimum fuel consumption. Pairing each individual satellite to its minimum

fuel slot also minimizes the overall fuel consumption. Therefore, the optimal pairing

assignment is α0i
= α0f

, which also implies that φ = 0. Figure (5.8) also shows

that the cost for each optimal pair is the same which results in a homogenous fuel

consumption for the reconfiguration. These two inferences can also be derived ana-
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Fig. 5.8: Cost for different pairs of α0i
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lytically based on the out of plane cost computation as follows:

∆Vh =
h

r

√

δi2 + δΩ2 sin2 i (5.74)

δi =
ρf cosα0f

a0
− ρi cosα0i

a0
(5.75)

δΩ =
ρf sinα0f

a0 sin i
− ρi sinα0i

a0 sin i
(5.76)

Therefore,

δi2 + δΩ2 sin2 i =
ρi
2 + ρf

2 − 2ρiρf cos(α0i
− α0f

)

a20
(5.77)

Clearly, the above expression attains its minimum value at α0i
= α0f

. Also, the

minimum value is given by
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∆Vh =
h|(ρf − ρi)|

ra0
(5.78)

It should be noted that the above expression is free of α0i
and α0f

. Hence different

satellites with different values of α0i
, consume the same fuel to reach their optimal tar-

get slots, α0f
= α0i

. Hence the homogeneous fuel consumption for different satellites

in the formation.

5.6 Extension to the J2 problem

In the previous sections we have studied the two impulse analytical scheme for es-

tablishing formations in the absence of J2. The scheme can be extended to establish

formations in the presence of J2 as well. However we first need to characterize the

formations in terms of orbital elemental differences. In the presence of J2, the stan-

dard orbital elements are no more constant. But a new set of orbital elements, called

mean elements, can be defined using Brouwer’s theory. The mean semi-major axis,

mean eccentricity and mean inclination of each satellite are constant. The mean as-

cending node, mean argument of perigee and the “mean” mean anomaly vary linearly

with time. Their rates are constant and functions of the mean semi-major axis, mean

eccentricity and mean inclination only.

Ω̇ = −1.5J2(
Re

p
)2n cos i (5.79)

ω̇ = 0.75J2(
Re

p
)2n(5 cos2 i− 1) (5.80)

Ṁ = n+ 0.75J2(
Re

p
)2n(3 cos2 i− 1) (5.81)
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We characterize the formations in terms of the mean element differences. For the rest

of the chapter all orbital elements will be assumed to be mean orbital elements. The

mean elemental differences for all the elements, except the semi-major axis, are the

same as those given by Eqns.(5.10) - (5.15). Matching the periods of the two satellites

is crucial for bounded relative orbits in the absence of J2. Hence, the semi-major axes

difference is desired to be zero. However, this does not hold in the presence of J2,

as the inertial orbits are not periodic anymore. A rate-matching condition can be

developed for the J2 problem, which minimizes the secular growth in the along track

direction. The rate matching condition is a condition for matching the mean angular

velocities of the chief and the deputy. It can be written as follows:

δω̇ + δṀ + δΩ̇ cos i = 0 (5.82)

Substituting Eqns.(5.79) - (5.81) into Eqn.(5.82) we obtain the following:

δa

a
= −J2

2
(
Re

a
)2
3η + 4

η4
[(1− 3 cos2 i)

eδe

η2
+ sin 2iδi] (5.83)

Therefore, the difference in the mean semi-major axis depends on the difference in

the mean inclination and mean eccentricity. The difference in mean eccentricity and

inclination are chosen according to Eqn.(5.10) and Eqn.(5.13), respectively, by sub-

stituting the mean orbital elements on the right hand side of the equations.

Now, we need a scheme to establish these desired mean element differences. Gauss’s

equations have been derived for osculating elements. But Schaub and Alfriend32

showed that the same equations can be used to approximately create mean element

differences as well, by using mean elements on the right hand side of those equations.

Therefore, we use the two-impulse analytical solution derived earlier with two modifi-
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cations: (i) We use mean elements on the right hand side of the equations and (ii) We

use the known mean drift rates of Ω, ω and M , to predictively correct for them. The

out of plane impulse components are computed according to Eqs.(5.40) and (5.41),

by using the following correction for δΩ:

δΩ = δΩdesired −∆Ω̇
Tp

2
(5.84)

where ∆Ω̇ = Ω̇deputy − Ω̇chief .

Similarly, the remaining four in-plane impulse components can be computed using

Eqn.(5.59) with a corrected version of the δe obtained as follows:

δe = [δadesired, δedesired, δwdesired + cos iδΩ−∆ω̇
Tp

2
, δMdesired −∆ṀJ2

Tp

2
]T (5.85)

where

∆ω̇ = ω̇deputy − ω̇chief (5.86)

ṀJ2
= 0.75J2(

Re

p
)2n(3 cos2 i− 1) (5.87)

∆ṀJ2
= ṀJ2deputy − ṀJ2chief (5.88)

Figures (5.9) and (5.10) show two examples of the reconfiguration problem using the

analytical two impulse scheme, in the presence of J2.

5.7 Optimality of the Analytical Solution

Hitherto we studied the application of the analytical two impulse solution to es-

tablish and reconfigure formations. Though the out of plane cost was shown to be

optimal, the optimality of the overall scheme has not been verified. In this section,
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Fig. 5.9: Reconfiguring the α0i
= 0o

deputy on the disc ρi = 1km

to the α0f
= 60o location on

the disc ρf = 2km with the

two impulse analytical solu-

tion, in the presence of J2
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Fig. 5.10: Reconfiguring the α0i
= 90o

deputy on the disc

ρi = 1km to the α0f
= 45o

location on the disc

ρf = 2km with the two

impulse analytical solution,

in the presence of J2

we compare the cost incurred with the analytical solution to the cost incurred by an

optimized two-impulse solution. A two-impulse solution is obtained by minimizing

the total ∆V . The optimization parameters are the six impulse components and the

two times of application. The constraints are set up to obtain the six desired orbital

element differences. The optimization was performed with a numerical software called

“NPOPT”. Figures (5.11) and (5.12) compare the costs incurred with the analytical

scheme and the optimized solution for the α0 = 0o satellite and the α0 = 90o satellite,

respectively. The analytical solution is given as an initial guess to the optimizer.

It could be seen from the Figures that optimal cost is close to that obtained using

the analytical solution. The optimal cost is slightly higher, because the optimizer

enforces the constraints to a higher accuracy. It should also be noted that the qual-
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itative dependence of the cost on α0f
, remains the same, i.e., the minimum cost for

the α0i
= 0o satellite is achieved at α0f

= 0o and similarly, for the α0i
= 90o satellite,

it is at α0f
= 90o. Therefore, irrespective of the choice of either of the two solutions

the choice of the target α0 remains the same. It should also be noted that the times

of the impulse application remained unchanged from their initial guesses. Therefore,

the assumption of basing the impulse locations on the out-of-plane cost alone, seems

to be justified. Also, the out-of-plane cost constitutes around 70% of the total cost

using the analytical solution or the optimal solution.
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Fig. 5.11: Cost comparison of the analytical solution and the optimal solution for the

α0 = 0o satellite
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Fig. 5.12: Cost comparison of the analytical solution and the optimal solution for the

α0 = 90o satellite
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CHAPTER VI

SUMMARY

This dissertation dealt at length, various approaches to modelling relative orbits be-

tween two satellites, relevant to enabling formation establishment, maintenance, and

reconfiguration. Differential equation models based on Newton’s laws and geometric

models based on orbital mechanics understanding, have been used extensively. HCW

equations and solutions have received lot of attention in the literature for address-

ing formation flying problems. In this dissertation, more sophisticated models were

developed and analyzed to obtain bounded relative orbit solutions that are more re-

alistic then the HCW solutions. A perturbation method approach has been used to

study the effect of quadratic nonlinearities on the breakdown of HCW solutions. The

approach lead to a small correction in the initial conditions to prevent the breakdown

of HCW solutions due to nonlinear effects. A geometric approach has been used to

derive a similar correction to initial conditions, to counter the breakdown, resulting

from the eccentricity of the chief orbit. The effect of the oblate Earth perturbation

on the secular growth in the along-track direction and the out-of-plane direction has

been modelled using mean elements. The analysis culminated in a methodology for

obtaining initial conditions for relative motion, that lead to bounded relative orbits.

Formation maintenance problem has been addressed by developing different con-

trollers that stabilize the formation in the presence of disturbances and initial con-

dition errors. A cost comparison was made between a standard Lyapunov controller

and a LQR controller. Results show that the LQR controller consumes lesser fuel

in tracking the desired trajectories, than the Lyapunov controller, which explicitly
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cancels the nonlinearities. It was analytically shown that the LQR controller has

a region of attraction of 150km around the chief satellite. An innovative controller

named period-matching controller has been developed in this dissertation. Unlike the

Lyapunov and LQR controllers, which track a given reference trajectory, the period

matching controller forces the relative motion dynamics to a certain desired mani-

folds. The controls required for maintaining the relative orbits on these manifolds is

zero. Though the period-matching controller does not guarantee the tracking of a par-

ticular relative orbit, it guarantees zero steady controls. A hybrid approach of using

the Lyapunov and period-matching controllers, has been proposed and implemented

to obtain the desired trajectories at zero steady state cost. A disturbance accommo-

dating controller has been proposed for preventing the controller from fighting short

and long period oscillations resulting from different perturbations. The controller has

been extensively tested on a sophisticated model, for satisfactory results.

An impulsive control scheme has been developed for establishing and reconfiguring

formations. Geometric models map the LVLH cartesian coordinates to orbital ele-

ment differences between the chief and the deputy satellite. This mapping has been

used to characterize the desired formations in terms of orbital element differences.

A sub-optimal control scheme has been proposed to establish the desired elemental

differences. Gauss’s equations have been used to design the necessary impulses. The

control scheme has been compared to a control scheme obtained through numerical

optimization. Results indicate that the structure of the optimal solution proposed re-

mains the same for the numerically obtained solutions as well. Also, the cost incurred

by the proposed control scheme is close to that incurred by the optimized solutions.



116

REFERENCES

[1] Anthony, M. L. and Sasaki, F. T., “Rendezvous Problem for Nearly Circular

Orbits,” AIAA Journal, Vol. 3, No. 9, September 1965, pp. 1666–1673.

[2] London, H. S., “Second Approximation to the Solution of Rendezvous Equa-

tions,” AIAA Journal, Vol. 1, No. 7, September 1965, pp. 1691–1693.

[3] Kechichian, J. A., “Motion in General Elliptical Orbit with Respect to a Dragging

and Precessing Coordinate Frame,” Journal of Astronautical Sciences, Vol. 46,

No. 1, 1998, pp. 25–46.

[4] Prussing, J. E. and Conway, B. A., Orbital Mechanics. Oxford University Press,

New York, 1996.

[5] deVries, J. P., “Elliptic Elements in Terms of Small Increments of Position and

Velocity Components,” AIAA Journal, Vol. 1, No. 11, September 1965, pp. 2626–

2629.

[6] Broucke, R. A., “A Solution to the Elliptic Rendezvous Problem with Time as the

Independent Variable,” Proceedings of the AAS/AIAA Space Flight Mechanics

Meeting, San Antonio, TX, January 2002.

[7] Yamanaka, K. and Ankersen, F., “New State Transition Matrix for Relative

Motion on an Arbitrary Elliptical Orbit,” AIAA, Journal of Guidance, Control

and Dynamics, Vol. 25, No. 1, January-February 2002, pp. 60–67.

[8] Carter, T. E., “State Transition Matrices for Terminal Rendezvous Studies : Brief

Survey and New Example,” AIAA, Journal of Guidance, Control and Dynamics,

Vol. 21, No. 1, January-February 1998, pp. 1468–155.



117

[9] Tschauner, J. and Hempel, P., “Rendezvous zu einem in elliptischer Bahn um-

laufenden Ziel,” Astronautica Acta, Vol. 11, 1965.

[10] Carter, T. E. and Humi, M., “Fuel-Optimal Rendezvous Near a Point in General

Keplerian Orbit,” AIAA, Journal of Guidance, Control and Dynamics, Vol. 10,

No. 6, November-December 1997.

[11] Inalhan, G., Tillerson, M., and How, J. P., “Relative Dynamics and Control of

Spacecraft Formations in Eccentric Orbits,” AIAA, Journal of Guidance, Control

and Dynamics, Vol. 25, No. 1, January 2002, pp. 48–59.

[12] Melton, R. G., “Time Explicit Representation of Relative Motion Between El-

liptical Orbits,” AIAA, Journal of Guidance, Control and Dynamics, Vol. 23,

No. 4, July-August 2000, pp. 604–610.

[13] Knollman, G. C. and Pyron, B. O., “Relative Trajectories of Objects Ejected

from a Near Satellite,” AIAA Journal, Vol. 1, No. 2, September 1965, pp. 1666–

1673.

[14] Karlgaard, C. D. and Lutze, F. H., “Second-Order Relative Motion Equa-

tions,” Proceedings of the 2001 Astrodynamics Specialist Conference, Quebec

City, Canada, July-Aug 2001.

[15] Schweighart, S. A. and Sedwick, R. J., “High Fidelity Linearized Model for

Satellite Formation Flight,” AIAA, Journal of Guidance, Control and Dynamics,

Vol. 25, No. 6, November-December 2002.

[16] Vadali, S. R., Alfriend, K. T., and Vaddi, S., “Hill’s Equations, Mean Orbital

Elements and Formation Flying of Satellites,” The Richard H. Battin Astrody-

namics Symposium, College Station, TX, AAS 00-258, March 2000.



118

[17] Brouwer, D., “Solution of the Problem of Arificial Satellite Theory Without

Drag,” The Astronomical Journal, No. 1274, 1959, pp. 378–397.

[18] Schaub, H. and Alfriend, K. T., “J2 Invariant Relative Orbits for Formation Fly-

ing,” International Journal of Celestial Mechanics and Dynamical Astronomy,

Vol. 79, 2001, pp. 77–95.

[19] Alfriend, K. T., Schaub, H., and Gim, D. W., “Gravitational Perturbations, Non-

linearity and Circular Orbit Assumption Effects on Formation Flying Control

Strategies,” Proceedings of the 23rd Annual AAS Guidance and Control Confer-

ence, Breckenridge, CO, AAS 00-012, February 2000.

[20] Gim, D. W. and Alfriend, K. T., “The State Transition Matrix of Relative Motion

for the Perturbed Non-Circular Reference Orbit,” Proceedings of the AAS/AIAA

Space Flight Mechanics Meeting, Santa Barbara, CA, AAS 01-222, February

2001.

[21] Alfriend, K. T., Gim, D. W., and Vadali, S. R., “The Characterization of For-

mation Flying Satellite Relative Motion Orbits,” Proceedings of the AAS/AIAA

Space Flight Mechanics Meeting, San Antonio, TX, AAS 02-143, January 2002.

[22] Vadali, S. R., “An Analytical Solution for Relative Motion of Satellites,” The

DCSSS Conference, Cranfield, UK, July 2002.

[23] Schaub, H. and Alfriend, K. T., “Hybrid Cartesian and Orbit Element Feedback

Law for Formation Flying Spacecraft,” AIAA, Journal of Guidance, Control and

Dynamics, Vol. 25, No.2, March-April 2002.

[24] Yedavalli, R. K. and Sparks, A., “Spacecraft Formation Flying Maneuvers Using

Linear Quadratic Regulation with No Radial Axis Inputs,” Proceedings of the



119

2001 AIAA Guidance, Navigation and Control Conference and Exhibit, Montreal,

Canada, August 2001.

[25] Starin, S. R., Yedavalli, R. K., and Sparks, A. G., “Spacecraft Formation Flying

Maneuvers Using Linear Quadratic Regulation with No Radial Axis Inputs,”

Proceedings of the 2001 AIAA Guidance, Navigation and Control Conference

and Exhibit, Montreal, Canada, August 2001.

[26] Mitchell, J. W. and Richardson, D. L., “Maintaining Periodic Trajectories with

the First-Order Nonlinear Hill’s Equations,” Proceedings of the 2001 Astrody-

namics Specialist Conference, Quebec City, Canada, July-August 2001.

[27] Queiroz, M. S.d., Kapila, V., and Yan, Q., “Adaptive Nonlinear Control of Mul-

tiple Spacecraft Formation Flying,” AIAA, Journal of Guidance, Control and

Dynamics, Vol. 23, No.3, May-June 2000.

[28] Naasz, B. J., Karlgaard, C. D., and Hall, C. D., “Application of Several Control

Techniques for the Ionospheric Observation Nanosatellite Formation,” Proceed-

ings of the 2002 AAS/AIAA Space Flight Mechanics Meeting, San Antonio, TX,

January 2002.

[29] Middour, J. W., “Along Track Formation Keeping for Satellites with Low Ec-

centricity,” Journal of Astronautical Sciences, Vol. 41, No. 1, January-March

1993.

[30] Zhang, F. and Krishnaprasad, P. S., “Formation Dynamics Under a Class of

Control Laws,” Proceedings of the American Control Conference, No. ACC02-

AIAA1052, Anchorage, AK, July-August 2002.

[31] Vadali, S. R. and Vaddi, S. S., “Large-Angle Kinematics for the Control of



120

Satellite Relative Motion,” AIAA Guigance, Navigation and Control Conference,

Monterey, CA, AAS 00-258, August 2002.

[32] Schaub, H. and Alfriend, K. T., “Impulsive Feedback Control to Establish Spe-

cific Mean Orbit Elements of Spacecraft Formations,” AIAA, Journal of Guid-

ance, Control and Dynamics, Vol. 24, No. 4, July-August 2001.

[33] Vadali, S. R., Schaub, H., and Alfriend, K. T., “Initial Conditions and Fuel

Optimal Control for Formation Flying of Satellites,” Proceedings of the 1999

AIAA GNC Conference, Portland, OR, July-August 1999.

[34] Ahn, Y. T. and Spencer, D. B., “Optimal Reconfiguration of a Formation Fly-

ing Satellite Constellation,” Proceedings of the 53 International Astronautical

Congress. The World Space Congress - 2002, October 2002.

[35] Tillerson, M., Inalhan, G., and How, J. P., “Co-ordination and Control of Dis-

tributed Spacecraft Systems Using Convex Optimization Techniques,” Interna-

tional Journal of Robust and Nonlinear Control, Vol. 12, 2002.

[36] Ioannou, P. A. and Sun, J., Robust Adaptive Control. PTR Prentice Hall, Upper

Saddle River, NJ, 1996.

[37] Vadali, S. R., Vaddi, S. S., and Alfriend, K. T., “An Intelligent Control Concept

for Formation Flying Satellites,” International Journal of Robust and Nonlinear

Control, No. 12, 2002, pp. 97–115.



121

VITA

Veera Venkata Sesha Sai Vaddi was born in Andhra Pradesh, India on August 20,

1974. He received his baccalaureate degree in mechanical engineering from Regional

Engineering College, Calicut, India in August 1996. He received his master’s degree

from the Indian Institute of Science, Bangalore, India also in mechanical engineering

in August, 1999. In the same month, he joined the aerospace engineering department

of Texas A&M University for his graduate studies. While at Texas A&M University,

he worked with Dr. Srinivas R. Vadali and Dr. Kyle T. Alfriend. His doctoral work

focussed on formation flying spacecraft.

He can be reached at 309 Ball Street, 2006, College Station, TX-77840 or by con-

tacting Dr. Srinivas R. Vadali, Department of Aerospace Engineering, Texas A&M

University, College Station, TX-77843.

This document was typed by Veera Venkata Sesha Sai Vaddi.


