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ABSTRACT

Interplay Between Promoter Occupancy and Chromatin Remodeling Requirements in

Transactivation of the S. cerevisiae PHO5 Gene.

(December 2004)

Archana Dhasarathy, B.Sc, University of Madras, India;

M.Sc, University of Madras, India

Chair of Advisory Committee:  Dr. Michael P. Kladde

In higher eukaryotes, DNA is packaged with histones and other proteins into

chromatin. While this is important in the control of unwanted gene expression,

chromatin also serves as a barrier to many vital functions in the cell. Therefore, cells

have evolved many different types of chromatin remodeling enzymes to contend with

this inhibitory structure and enable gene expression and other functions. The

Saccharomyces cerevisiae PHO5 gene is triggered in response to phosphate starvation.

In this study, I evaluate the chromatin remodeling requirements of this gene with respect

to the multisubunit complexes SWI/SNF and SAGA. I show, for the first time, physical

recruitment of SWI/SNF to the PHO5 promoter. I also demonstrate the role of promoter

occupancy in influencing requirements for chromatin remodeling enzymes. Further, I

describe various interactions between these two complexes at the PHO5 promoter. This

study presents evidence for the first instance of excess recruitment of an ATP-dependent

remodeler potentially compensating for the lack of a histone acetyltransferase.
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“The important thing in science is not so much to obtain new facts as to discover new

ways of thinking about them.”

-Sir William Bragg,

Nobel Prize winner in Physics, 1915
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CHAPTER I

INTRODUCTION

SCOPE

The primary scope of this dissertation is to explore the function of chromatin

remodeling enzymes in transcriptional regulation using the PHO5 gene from the budding

yeast Saccharomyces cerevisiae as a model system. I present evidence for a major role of

promoter occupancy in dictating requirements for chromatin remodeling activities in

transcriptional activation of PHO5 . Next, I discuss a possible explanation for the

‘functional redundancy’ of chromatin remodeling complexes SAGA and SWI/SNF.

The first part of the introduction provides background information on the field of

chromatin structure and its role in repressing gene expression. I then discuss the salient

features of many chromatin-remodeling enzymes that are recruited to effect

transcriptional activation. The last part introduces the S. cerevisiae repressible acid

phosphatase gene PHO5 model system for the study of transcriptional regulation.

SIGNIFICANCE

The delicate threads of DNA that encode the ‘blueprint of life’ are carefully

organized in the eukaryotic cell into a complex with histone and other proteins, called

chromatin (Figure 1-1). While this solves the problem of packaging a 2 m-long stretch of

DNA into a 5 mm nucleus, it is also a hindrance to many important biological processes

in the cell.

This dissertation follows the style and format of Cell.
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Hence, eukaryotes have evolved a variety of chromatin remodeling enzyme complexes

that contend with this barrier to make DNA more accessible. Remodeling enzymes are

highly conserved from yeast to humans. These multisubunit remodeling machines are

recruited to specific regions in the genome by transactivator proteins that bind site-

specifically to DNA and activate transcription and other biological processes.

Figure 1-1. X-ray structure of the nucleosome core particle at 2.8Å resolution.

Ribbon diagram of the crystal structure of 146 bp of DNA wrapped around the histone core
octamer to form the nucleosome core particle (Luger et al., 1997). Random coils protruding from
the nucleosome represent the N-terminal tails of histones.

Aberrations in chromatin modifying and remodeling proteins can cause improper

gene expression leading to diseases like cancer. In fact, a number of translocation events

in cancer result from the fusion of genes encoding chromatin-remodeling complexes. For
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instance, a type of acute leukemia involves the chromosomal translocation of genes

coding for the human mixed lineage leukemia (MLL) and the CREB-binding protein

(CBP) (Cairns, 2001). Also, truncations or deletions of the human Snf5/IniI component

of human SWI/SNF are linked to malignant tumor formation (Versteege et al., 1998).

Understanding the fundamental processes of chromatin remodeling at a basic level in

yeast will help further studies in higher eukaryotes including humans. This dissertation

will focus on the primary question of what dictates requirements for chromatin

remodelers, with particular emphasis on the role of promoter occupancy.

CHROMATIN REMODELING: A MEANS TO AN END

The fundamental repeating unit of eukaryotic chromosomes, the nucleosome, is

comprised of an octamer of histones (a dimer each of histone H3 and H4, surrounded by

H2A and H2B dimers on the periphery) wrapped by 1.65 turns or 145-147 bp of a left-

handed superhelix of DNA (Luger et al., 1997). This packaging of DNA serves not only

to constrain the DNA within the confines of the nucleus, but also allows a broad range of

changes in structure related to many biological processes like DNA replication, repair,

gene expression and silencing. Transactivators bind to nucleosomes with greatly

decreased affinity, especially at internal locations removed from the point of DNA

exit/entry on the histone octamer surface (Pina et al., 1990; Owen-Hughes and Workman,

1994; Vettese-Dadey et al., 1994; Xu et al., 1998). At the yeast PHO5 promoter, access

of Pho4 to one of its DNA binding sites, UASp2, is blocked by virtue of its location at the

center of a nucleosome (Venter et al., 1994). Thus, these studies indicate that

nucleosomes can interfere with access of activators to their cognate binding sites.
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How does the transcriptional machinery gain access to DNA? The term “chromatin

remodeling” has been used to describe changes in nucleosomal structure as judged by

increased accessibility to nucleases like DNase I or micrococcal nuclease (MNase),

which demonstrated alterations in basic repeats of DNA. Eukaryotic cells bring about

these structural changes by employing several highly conserved multisubunit, high-

molecular weight complexes. These complexes, designated coactivators or remodelers,

comprise two general classes. The first class utilizes the energy derived from ATP

hydrolysis to disrupt nucleosomes (Jones and Kadonaga, 2000; Wolffe and Guschin,

2000), mostly by causing superhelical torsion in DNA. The second class consists of those

complexes that post-translationally modify histones (Strahl and Allis, 2000) by

acetylation, phosphorylation, methylation, ubiquitylation, sumoylation or ribosylation.

ATP-DEPENDENT CHROMATIN-REMODELING MACHINES

There are four main types of the first class of remodelers (Table 1-1), i.e. the

Swi2/Snf2 subfamily, based on their adenosine triphosphatase (ATPase) domains:

ATPases of the Swi2 group (SWI/SNF and RSC) contain bromodomains; ISWI-like

ATPases (ACF, CHRAC, NURF, RSF) exhibit SANT and SLIDE motifs (putative DNA-

binding domains); a split ATPase domain characterizes INO80.com and related enzyme

complexes; and CHD-type enzymes, such as Mi-2, contain chromodomains (which

interact with various chromatin components) and PHD fingers (a zinc finger-like motif).

These four groups can also be distinguished by their biochemical properties and

mechanisms of nucleosome remodeling (Langst and Becker, 2004). Swi2 ATPase activity

is mainly stimulated by free DNA, whereas the CHD ATPase Mi-2 needs the presence of
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nucleosomal (but not free) DNA to be induced to activity. ISWI hydrolyses ATP

significantly in the presence of free DNA but is maximally stimulated by nucleosomes.

Unlike Swi2 or Mi-2, ISWI requires the presence of the 20 amino acid- N-terminal ‘tail’

domain of histone H4 for full stimulation (Clapier et al., 2001; Hamiche et al., 2001;

Clapier et al., 2002).

Table 1-1. Types of ATP-dependent chromatin remodeling complexes.

Type of ATPase Substrate Domain(s)

Swi2

(e.g. SWI/SNF, RSC)

Mainly free DNA Bromodomains

ISWI-like (e.g. ACF,
CHRAC, NURF,
RSC)

Free DNA, but maximal
s t i m u l a t i o n  b y
nucleosomal DNA

SANT and SLIDE domains

CHD-type (e.g. Mi-
2/NuRD)

Nucleosomal (but not
free) DNA

Chromodomains and PHD fingers

I n o 8 0  ( e . g .
INO80.com)

Free/ nucleosomal DNA Split ATPase domain, TELY and
GTIE motifs

The members of the SWI/SNF complex were identified in screens for growth on

sucrose (hence the term, Sucrose non-fermenters), while a second screen identified

several genes involved in repression of the yeast HO gene, involved in mating-type

switching (Switching-defective) (Winston and Carlson, 1992). Subsequently, this

complex has been purified biochemically from many sources (Cairns et al., 1994;

Peterson et al., 1994). The yeast SWI/SNF complex is known to contain 11 subunits.

Using tyrosine iodination, Peterson and colleagues recently determined the relative

stoichiometry of SWI/SNF subunits (Smith et al., 2003). While one copy each of 6 of the

11 subunits (Swi2, Swi1, Snf5, Swp73, Arp7 and Arp9) exists in the complex, the other
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five are present in multiple copies (two copies of Swi3, Swp82, Snf6 and Snf11, as well

as three copies of Swp29). Thus, SWI/SNF is predicted to have an apparent molecular

mass of only 1.15 MDa (Smith et al., 2003)in contrast to the ~1.8 MDa predicted earlier.

INO80.com is another ATP-dependent remodeler that has been implicated in the

activation of many genes. It is comprised of 12 known subunits, including actin (Act1)

and the actin-related proteins Arp4, Arp5 and Arp8. Apart from the ATPase subunit,

Ino80, it also contains the essential Rvb1 and Rvb2 proteins, which are related to the

bacterial RuvB9 Holliday junction DNA helicase (Shen et al., 2000).

How do ATP-dependent remodelers work? While many models like ‘twisting’ and

‘looping’ have been invoked to explain catalyzed nucleosome mobility and sliding, one

group (Havas et al., 2000) showed that ATP-dependent remodeling enzymes are able to

generate negative superhelical torsion in DNA and chromatin. It has also been suggested

that nucleosomes can be completely displaced from their template DNA by ATP-

dependent remodeling enzymes (Lorch et al., 1999). The most current model suggested

by Cairns and colleagues is the DNA pumping/translocation model (more similar to bulge

migration) (personal communication).

The bromodomain of the Swi2/Snf2 ATPases can bind acetylated lysine residues

(Shen et al., 2000) in histone N-terminal tails in vitro (Dhalluin et al., 1999; Jacobson et

al., 2000; Owen et al., 2000) and is required for the stable anchoring of SWI/SNF

(Hassan et al., 2001b; Hassan et al., 2002) to chromatin templates in vitro. Two other

subunits, Swi3 and Snf5/Ini1 (Phelan et al., 1999; Geng et al., 2001) have also been

shown to be important for remodeling activity of the SWI/SNF complex. Snf5 and Swi1

have been implicated in activator interactions as well (Prochasson et al., 2003). Besides
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transcription, ATP-dependent remodeling machines have been implicated in DNA

replication (Collins et al., 2002), repair and the maintenance of genome integrity (Hara

and Sancar, 2002; Nilsen et al., 2002; Gaillard et al., 2003). SWI/SNF has also been

shown to be involved in repression of genes (Sudarsanam et al., 2000; Martens and

Winston, 2002) and in silencing at the telomeres and ribosomal DNA (Dror and Winston,

2004).

HISTONE-MODIFYING COMPLEXES

Histones undergo a vast number of post-translational modifications, including

acetylation and methylation of lysines and arginines, phosphorylation of serines and

threonines, ubiquitylation and sumoylation of lysines, as well as ADP-ribosylation

(Peterson and Laniel, 2004). The biological significance of a number of these

modifications has been studied in great detail, and many more examples of modifications

have been identified by mass spectrometry in mammalian core histones (Zhang et al.,

2003). Among this group of coactivators, one main class called histone acetyltransferases

(HATs) can acetylate core histones and specific lysines in the N-terminal tails of

nucleosomal as well as free histones (Grant et al., 1997; Eberharter et al., 1999). Four

distinct multiprotein assemblies exist in yeast: Ada, NuA3, NuA4, and SAGA. The fact

that several regulatory proteins like Gcn5, PCAF, p300 and CBP (Brown et al., 2000)  all

possess intrinsic histone acetyltransferase (HAT) activity suggested a role for histone

acetylation in transcriptional activation. Gcn5 in particular has been extensively studied

and has been shown to play a role in transcription (Gregory et al., 1998b; Kuo and Allis,

1998; Wang et al., 1998; Krebs et al., 1999; Syntichaki et al., 2000). It is the yeast
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homolog of the first nuclear histone acetyltransferase to be identified from Tetrahymena

(Brownell and Allis, 1995; Brownell et al., 1996). It is part of the SAGA complex (Spt-

Ada-Gcn5 acetyltransferase), which is ~1.8 MDa in size and is composed of at least 14

subunits (Brown et al., 2000).

Figure 1-2.  Equilibrium between acetylation and deacetylation.

Acetylation of histone tails by HATs neutralizes the charge conferred by the lysine residues and
loosens the contact between DNA and histone tails. This change is reversible, and is
accomplished by means of histone deacetylases (HDACs).

Apart from Gcn5, there are three main classes of SAGA components: the Ada

proteins (Ada1, Ada2, Ada3 and Ada5/Spt20); the Spt proteins (Spt3, Spt7, Spt8 and

Spt20/Ada5) and finally, a subset of TBP-associated factors (TAFs) (TAFII20/17,

TAFII25/23, TAFII60, TAFII68/61 and TAFII90) (Brown et al., 2000). Ada1 (Sterner et

al., 1999), Spt7 (Gansheroff et al., 1995; Wu et al., 2004) and Spt20 (Roberts and
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Winston, 1996; Wu et al., 2004) are vital to the integrity of the SAGA complex, while

Spt3 and Spt8 are important in TBP interactions (Eisenmann et al., 1992; Eisenmann et

al., 1994). SAGA also contains the protein Tra1 (Grant et al., 1998), which is thought to

interact with transcription activators, thus enabling recruitment to genomic loci (Brown et

al., 2001).

How does acetylation help remodel chromatin? It has been suggested that

acetylation by the p300 HAT helps to transfer a H2A/H2B dimer to a histone chaperone,

thus altering nucleosome structure (Ito et al., 2000). Further, in the absence of activator,

histone acetylation stabilizes binding of SWI/SNF in vitro (Hassan et al., 2001b). Histone

acetylation also interferes with higher-order folding (Tse et al., 1998), thus enhancing

transcriptional activation. Further, histone acetylation neutralizes the positive charge on

the histone tails (Figure 1-2), thus decreasing their affinity for DNA (Hong et al., 1993).

Many silencing proteins like Sir2, Sir4 and Tup1 have also been shown to bind to

hypoacetylated histone tails (reviewed in Kuo and Allis, 1998).

Another HAT complex, NuA4 (nucleosomal acetyltransferase histone H4) contains

Esa1, the only known essential HAT in yeast (Smith et al., 1998) and Tra1 (Allard et al.,

1999), which has been shown to interact with activators and thus facilitate HAT

recruitment (Brown et al., 2001). Recent work by Côté and colleagues showed the

existence of a smaller version of NuA4, the “piccolo NuA4 complex” (Boudreault et al.,

2003) comprising just 3 (Esa1, Epl1, and Yng2 ) of the 13 stably associated proteins of

NuA4. Of the known HATs, only the SAGA and NuA4 complexes, which preferentially

acetylate histones H3 and H4, respectively, have been implicated in the regulation of

transcriptional initiation.
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ACTIVATOR-DEPENDENT RECRUITMENT OF REMODELERS

The classic “chicken and egg” story of whether global acetylation occurred before

or after activator binding stood unresolved for a long time. Recent evidence indicates that

the activation domains of the “acidic” class of activators can interact directly and

specifically with a subset of purified chromatin remodelers; SWI/SNF, NuA4, and

SAGA, as well as the Srb/mediator subcomplex of the RNA polymerase II holoenzyme

(Figure 1-3), but not with the Ada or NuA3 complexes (Peterson and Logie, 2000; Fry

and Peterson, 2001).

Figure 1-3. Recruitment theory of transcriptional activation.

Site-specific DNA-binding activators recruit chromatin remodeling complexes that modify
histones or histone acetyltransferases (HATs) like SAGA and ATP-dependent chromatin
remodeling machines (e.g. SWI/SNF) as well as the RNAP II holoenzyme in order to activate
gene expression.
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This interaction is sensitive to point mutations in the activation domain that

eliminate activation function in vivo, and it appears functionally important because it

leads to stimulation of transcription from chromatin templates in vitro (Utley et al., 1998;

Ikeda et al., 1999). The current model, therefore, is that chromatin remodelers (which do

not bind DNA appreciably on their own) act subsequent to activator binding (Ryan et al.,

1998). Support for this model is found in recent studies, including our own,

demonstrating that activators are able to bind their promoters in vivo in the absence of

Swi2/Snf2, Gcn5, or Esa1, apparently recruiting these chromatin remodelers to the

promoters upon which they act (reviewed in Fry and Peterson, 2001).

VARIABILITY IN REQUIREMENT FOR REMODELERS

Although a lot of light has been shed on the mechanism of recruitment of

coactivators to promoters, the intriguing question of why promoters vary in their

requirements for chromatin remodelers is essentially unanswered. Our lack of

understanding of what delineates coactivator dependencies of a promoter is underscored

if we consider the expression of the PHO5 and PHO8 genes, which code for acid and

alkaline phosphatase, respectively. Despite being regulated by the same signaling

pathway and the same transcriptional activator Pho4 (Figure 1-4) (Lenburg and O'Shea,

1996; Oshima, 1997), these genes show different dependencies for chromatin-remodeling

coactivators.

The PHO8 promoter demonstrates an absolute requirement for Gcn5 and Swi2 both

under submaximal and maximally inducing conditions (Gregory et al., 1998b). However,

both Gcn5 and Swi2 are dispensable as far as transcription at PHO5 is concerned;
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Figure 1-4. The PHO pathway.

In the yeast S. cerevisiae, the same signal transduction cascade regulates the repressible
phosphatase genes PHO5 and PHO8. The transactivator Pho4 is phosphorylated by the
cyclin/cyclin-dependent kinase (CDK) pair Pho80-Pho85 and localized to the cytoplasm
thus repressing PHO genes under conditions of high concentrations of extracellular
phosphate (Pi). When yeast cells are starved for Pi, the cyclin/CDK pair is inhibited by
Pho81 leading to Pho4 nuclear localization and PHO gene activation.

(Gaudreau et al., 1997; Gregory et al., 1998b; Haswell and O'Shea, 1999) although the

deletion of GCN5 or histone tails affects chromatin remodeling thus delaying PHO5

induction (Barbaric et al., 2001). Ino80 has been shown to be required for full activation

of PHO5 and SWI/SNF has been implicated either by itself or in association with Htz1,

the histone H2A variant (Santisteban et al., 2000; Steger et al., 2003). These results

evoke the interesting question: Why do promoters under control of the same signal

transduction pathways and the same transcriptional activators exhibit such strikingly

disparate requirements for coactivators?
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Possible reasons include, a) specificity of activators with respect to recruitment of

chromatin remodeling complexes and b) promoter architecture. With respect to

specificity of activators, some poly-glutamine activators exhibit a binding preference for

NuA4  (Nourani et al., 2004) but not for SWI/SNF (Neely et al., 1999; Yudkovsky et al.,

1999). On the other hand, acidic activators interact with most remodeling activities

including NuA4, SAGA and SWI/SNF (reviewed in Fry and Peterson, 2001; Hassan et

al., 2001a).

Recent findings provide some clues to help us answer this fundamental question.

Expression of PHO5, while independent of SWI/SNF or SAGA under fully activating

conditions, becomes highly dependent on these remodelers when the promoters are

weakened by mutations in the DNA-binding sites for the activators (Burns and Peterson,

1997b).  Further, the insertion of additional activator binding sites in a promoter, or

overexpression of transcriptional activators, suppresses chromatin-remodeling defects

(Laurent and Carlson, 1992; Gregory et al., 1998b).  Additionally, maximum activation

of PHO5 requires the presence of the DNA-binding protein Pho2 (Barbaric et al., 1998),

which binds cooperatively with Pho4, while Pho2 does not influence PHO8 significantly

(Oshima, 1997; Münsterkötter et al., 2000).

Another set of genes, GAL1-10 and GAL7, express the proteins needed to utilize

galactose (Johnston, 1987). In the poised or repressed state, the GAL genes are inactive

by virtue of positioned nucleosomes that are placed over the TATA (GAL1-10, GAL7) as

well as the major GAL1 transcriptional start site. Galactose-stimulated induction causes

Gal4-dependent nucleosome disruption and activation. Note that unlike Pho4, Gal4 is

bound upstream of the GAL genes in a variety of non-glucose carbon sources without
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causing chromatin remodeling, due to its association with the repressor protein Gal80

(Nogi et al., 1984; Giniger et al., 1985), which interacts directly with and inhibits the

activation domain of Gal4 (Lue et al., 1987; Wu et al., 1996). Another important

consideration is that unlike PHO5, all four UASg sites are accessible at GAL1, being

located in a hypersensitive region. Expression from GAL1 occurs at almost wild-type

levels in swi2/snf2, gcn5 or ada mutants (Marcus et al., 1994; Burns and Peterson, 1997a;

Gaudreau et al., 1997). However, it is interesting to note that transcription is decreased in

a swi2D strain containing a truncated version of the GAL1 promoter containing only two

low-affinity Gal4 binding sites (Marcus et al., 1994; Burns and Peterson, 1997a;

Gaudreau et al., 1997). This SWI/SNF dependence was overcome by placing the low-

affinity sites in a nucleosome-free region or replacing them with high-affinity sites

(Burns and Peterson, 1997a).

Further, it was shown that while cells lacking either SWI2 or GCN5 did not differ

much from wild type with respect to GAL1 activity, cells where both coactivators were

inactivated showed a much greater defect in transcription (Biggar and Crabtree, 1999).

This suggested that Gal4 recruited both coactivators. Further, the differences in SWI/SNF

dependence between the full-length and truncated promoters can be explained if, at the

full-length promoter, Gal4 recruits more remodelers. On the other hand, at the truncated

promoter with only two binding sites, the recruitment capabilities of Gal4 are impaired.

This could explain why the truncated promoter is defective in transcriptional activation if

either of the complexes is deleted (Biggar and Crabtree, 1999). Further support for these

studies comes from a series of elegant experiments (Tanaka, 1996) showing that

promoter occupancy could be modulated by changing a) the number of promoter binding
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sites of an activator and/ or cooperative binding with another activator and b) the number

of activation domains of an activator.

Thus, from these observations, we came up with a model whereby levels of

activator binding to a promoter (i.e. fractional occupancy) would influence its

requirements for chromatin remodeling. This premise raises key questions regarding

chromatin-remodeling dependency. First, are individual chromatin remodelers needed

throughout the time course of activation, or are they needed only at early time points,

when promoter occupancy is low due to decreased factor concentration? Secondly, does

enhanced promoter occupancy suppress the requirement for chromatin remodeling

coactivators?  The answers to each of the above considerations are critically important for

understanding how activator binding translates to the coactivator dependence of various

promoters, and forms the basis for the series of experiments described herewith.

 THE PHENOMENON OF FUNCTIONAL REDUNDANCY

SWI/SNF and SAGA are both involved in the expression of a number of promoters

(Pollard and Peterson, 1997). While deletions of the catalytic subunits of one or the other

complex does not affect the expression of many genes, combined deletions of major

SWI/SNF and SAGA subunits is lethal (Roberts and Winston, 1997; Sterner et al., 1999;

Sudarsanam et al., 1999). It was also demonstrated that inactivation of SWI/SNF in gcn5

or ada mutants caused loss of gene expression at many loci (Biggar and Crabtree, 1999).

This suggests that there is some degree of redundancy between them, although they may

have different mechanismss by which they activate transcription.

There has also been a lot of evidence to suggest the interdependence of SWI/SNF
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and SAGA remodeling complexes in transcription. For instance, at the yeast HO

promoter, ordered recruitment of first SWI/SNF and then SAGA was observed (Cosma et

al., 1999; Krebs et al., 1999) in mitosis, suggesting that SWI/SNF was needed to allow

HATs access to chromatin. On the other hand, HATs can acetylate nucleosomal arrays

and effect transcription without prior addition of SWI/SNF (Utley et al., 1998; Ikeda et

al., 1999). At the IFN-b promoter, the activator NF-kB recruits Gcn5 prior to SWI/SNF

(Agalioti et al., 2000). However, it is interesting to note that SWI/SNF binding does not

require prior acetylation if multiple NF-kB binding sites are present, suggesting that

increased occupancy of the activator can stably recruit sufficient levels of SWI/SNF to

activate transcription. Bromodomains, which are found in many chromatin remodeling

complexes are thought to bind to acetylated lysine residues (Dhalluin et al., 1999;

Ornaghi et al., 1999; Hudson et al., 2000; Jacobson et al., 2000; Owen et al., 2000). The

bromodomain found in Gcn5 is not required in vivo for Gcn5-mediated histone

acetylation but was shown to be indispensable for Swi2-dependent nucleosome

remodeling and subsequent transcriptional activation. The Gcn5 bromodomain has also

been shown to stabilize SWI/SNF association at a reporter gene in vivo (Syntichaki et al.,

2000).

The observation that SWI/SNF and SAGA are so different in their composition and

yet behave in a redundant manner genetically calls for some speculation. Are they

‘redundant’ because they both serve a common goal: that of remodeling chromatin to

allow transcription? If so, a simple hypothesis follows that if one complex is not available

to the cell, then more of the other might possibly be recruited in order that levels of gene

expression remain constant. If they are involved in competing for the same activator
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surface, then loss of one complex should result in increased recruitment of the other. On

the other hand, if they are interdependent (i.e. one is needed for the other to associate

with the promoter), it is hard to see how they could be redundant unless a large amount of

the complex is recruited in the absence of the other. Thus, a lot remains to be understood

with regard to how these two complexes interact functionally.

PHO5 AS A MODEL GENE

The yeast S. cerevisiae responds to variations in inorganic phosphate (Pi) levels in

its environment by inducing around 22 genes which all work to scavenge Pi (Ogawa et

al., 2000). This complex set of structural genes, encoding among others acid and alkaline

phosphatases, constitutes the PHO system. Most of the acid phosphatases are secreted to

the periplasmic space and require an acidic pH optimum for activity, including PHO3,

PHO5, PHO11 and PHO12. The enzymatic activity of these acid phosphatases can be

measured quantitatively using 4-paranitrophenyl phosphate in a standard phosphatase

assay and qualitatively on a plate with a-naphthyl-phosphate. The PHO5 gene product

accounts for more than 90% of this activity. The alkaline phosphatase PHO8 is localized

to the vacuole and is active at an alkaline pH optimum (Vogel and Hinnen, 1990). Both

PHO5 and PHO8 have been well studied, and while regulated by the same signal

transduction pathway and by a similar set of genes, their expressed activity levels are

quite different. PHO8 expression is about 10-times weaker than PHO5 (Münsterkötter et

al., 2000). Thanks to the incisive analysis of PHO5 by many groups, it remains an ideal

model for the study of transcriptional activation and chromatin remodeling.
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PHO5 has two main transcriptional activators, Pho4 and Pho2, while Pho4 alone

effects PHO8 activation (Barbaric et al., 1992). The bHLH protein Pho4 binds

cooperatively with Pho2, a homeodomain protein, to its two main binding sites, UASp1

and UASp2.

Figure 1-5. Phosphorylation of Pho4 regulates its nucleo-cytoplasmic localization.

The Pho80-Pho85 cyclin/cyclin-dependent kinase regulates Pho4 nuclear import by
phosphorylation. This causes Pho4 to be exported from the nucleus via the Msn5 nuclear exporter
and its import via Pse1/Kap121 is inhibited. In activating conditions, Pho81 inactivates Pho80-
Pho85 thus allowing for constitutive nuclear import. Reproduced with permission from
Christopher D. Carvin.
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In conditions of high Pi, the PHO cluster is repressed due to phosphorylation of

Pho4 by the cyclin/cyclin-dependent kinase pair Pho80-Pho85 (Kaffman et al., 1994).

Although Pho4 is constitutively expressed (Lemire et al., 1985; Yoshida et al., 1989a),

the phosphorylation of five residues serves to hinder transcription by Pho4 in several

ways (Figure 1-5). First, it increases interaction with Msn5, the sole Pho4 nuclear

exporter (Kaffman et al., 1998a; Komeili and O'Shea, 1999). Secondly, it prevents

interaction with Pse1, the nuclear importer for Pho4 (Kaffman et al., 1998b; Komeili and

O'Shea, 1999). Finally, phosphorylation prevents Pho4 interaction with Pho2 (Komeili

and O'Shea, 1999), which is a homeodomain factor needed for cooperative binding of

Pho4 to the PHO5 promoter (Barbaric et al., 1996; Barbaric et al., 1998; Komeili and

O'Shea, 1999).

Upon Pi starvation, the cyclin-dependent kinase inhibitor Pho81 inactivates

Pho80-Pho85, thus allowing Pho4 entry into the nucleus and full activation of PHO5

(Schneider et al., 1994). It is important to note that Pho4 regulates PHO81 expression

(Yoshida et al., 1989b; Creasy et al., 1993). This provides a positive feedback loop

during PHO activation. Both the PHO5 and PHO8 promoter structures have been well

characterized by the Hörz group (Almer and Hörz, 1986; Almer et al., 1986; Barbaric et

al., 1992). Under repressive conditions of growth in high Pi, the PHO5 promoter is

organized into a series of five positioned nucleosomes (Figure 1-6) that constrain their

TATA elements, and thereby block promoter association of the basal transcription

complex TFIID (Bergman and Kramer, 1983; Almer et al., 1986; Fascher et al., 1990;

Barbaric et al., 1992). Pho2 binding sites flank UASp1 and UASp2, the two Pho4 binding

sites. UASp1 is contained in a hypersensitive site, which is accessible in high Pi (Almer
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and Hörz, 1986; Fascher et al., 1990; Carvin et al., 2003a; Carvin et al., 2003b). UASp2

and the TATA box are located in nucleosome -2 and –1 respectively, and are inaccessible

in repressed conditions. However, recent work suggests that UASp2 is accessible to Pho4

in repressed conditions as well (Adkins et al., 2004). Depletion of yeast nucleosomes in

vivo leads to derepression of PHO5 transcription even in the presence of Pi (Han and

Grunstein, 1988; Han et al., 1988; Gregory et al., 1999a; Wyrick et al., 1999).

Figure 1-6. Nucleosome transitions on PHO5 activation.

In high Pi conditions, the PHO5 promoter is constrained by five positioned nucleosomes, which
block binding of trans-activators to UASp2 and the TATA box. Upon activation in low
phosphate, four nucleosomes are remodeled. Work from our lab indicates remodeling of
nucleosome –5 as well.

Thus, chromatin remodeling is required for full activation, as well as for

recruitment of the transcription machinery. However, it occurs prior to and independent
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of transcription, since mutation of the TATA box hinders transcription, but does not

prevent chromatin remodeling (Fascher et al., 1993). Previous work had identified

remodeling of four nucleosomes upon Pi starvation; however work in our laboratory has

shown that a fifth nucleosome is remodeled as well (unpublished data).

What are the chromatin-remodeling requirements at PHO5 and PHO8? While full

levels of PHO5 activation have been shown to be independent of SWI/SNF and SAGA,

PHO8 expression is strictly dependent on both of these remodelers (Gregory et al.,

1999b). The INO80.com ATP-dependent remodeling complex and the NuA4 HAT

complex have also been implicated in PHO5 activation (Steger et al., 2003; Nourani et

al., 2004). The Asf1 histone chaperone has been recently shown to be needed for PHO5

transactivation, but its loss apparently does not interfere with Pho4 binding to UASp2

(Adkins et al., 2004). Recent work from our lab showed that the histone

methyltransferase Set1 negatively regulated PHO5 expression (Carvin and Kladde,

2004), contrary to prior work that histone methylation is mainly associated with

transcriptionally active chromatin. The Bdf1 protein has been shown to affect the kinetics

of PHO5 expression. While it does not appear to be essential for full activation of PHO5,

a strict requirement for Bdf1 is imposed by a decrease in TATA accessibility. This

possibly arises due to the interaction of TFIID-bound Bdf1 with acetylated histone tails

(Martinez-Campa et al., 2004). The mitotic activation of PHO5 is also dependent on

Swi2 and Gcn5 (Neef and Kladde, 2003). Thus, there is interplay of multifarious factors

at the PHO5 promoter enabling rapid activation.

In conclusion, the PHO system is an ideal system for the study of transcriptional

regulation and chromatin structure. In this dissertation, I present evidence that the
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coactivators Gcn5 and Swi2/Snf2 are needed for full activation when lower levels of

Pho4 are present at the PHO5 promoter.  Thus, at greater levels of binding, there is a

decreased requirement for one or the other of these remodelers. I also demonstrate for the

first time at a yeast locus, the recruitment of a histone acetyltransferase (Gcn5) prior to an

ATP-dependent remodeler (Swi2). This is also the first demonstration of the physical

presence of Swi2 at the yeast PHO5 promoter.

I also demonstrate that Pho4 binding at the PHO5 promoter is delayed in both

gcn5D and swi2D cells with respect to wild type.  This delay in Pho4 binding at the

promoter demonstrates for the first time a mechanistic basis for the kinetic delay in

PHO5 induction described previously (Barbaric et al., 2001; Neef and Kladde, 2003).

Swi2 and Gcn5 have been shown to be partially redundant. In a yeast strain lacking

Gcn5, we unexpectedly find recruitment of twice as much Swi2. This is the first evidence

for an ATP-dependent remodeler potentially compensating for the lack of a histone

acetyltransferase subunit to help achieve wild type levels of gene expression. The

increased recruitment of Swi2 only occurs at increased levels of promoter-bound Pho4,

hence the “delay” in activation in a strain deleted for GCN5. On the other hand, we can

detect no difference in Gcn5 recruitment in a swi2D strain relative to wild type. The

decreased amount of promoter-bound Pho4 might be responsible for this lower Gcn5

recruitment. Further, we find that there is very little SWI/SNF at the PHO5 promoter in

an spt20D strain. The highly reduced activity (about one third of wild type activity) of an

spt20D strain compared to a wild type strain suggests that Pho4 occupancy is also

decreased in this strain. I discuss several possible models to account for interplay of the

SWI/SNF and SAGA remodeling complexes at the PHO5 promoter.
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CHAPTER II

PROMOTER OCCUPANCY IS A MAJOR DETERMINANT OF CHROMATIN-

REMODELING ENZYME REQUIREMENTS

OVERVIEW

Chromatin creates transcriptional barriers that are overcome by coactivator

activities such as the histone acetyltransferase Gcn5 and the chromatin remodeler

SWI/SNF. The factors defining the differential requirements for chromatin remodeling

activities in the transcription of various promoters remain elusive. Here, we show that

transactivation of Saccharomyces cerevisiae PHO5, which does not require Gcn5 or

SWI/SNF under fully inducing conditions, is highly dependent on both coactivators at

reduced nuclear concentrations of Pho4 and thus lower levels of promoter-bound Pho4

transactivator. Conversely, physiological increases in Pho4 nuclear concentration and

binding at PHO5 suppress the need for both Gcn5 and SWI/SNF, suggesting that

coactivator redundancy is established at high binding site occupancy. Consistent with

this, using chromatin immunoprecipitation, we demonstrate that Gcn5 and SWI/SNF are

recruited directly to PHO5 and other strongly transcribed promoters, including GAL1-10,

RPL19B, RPS22B, PYK1, and EFT2, which are thought to be independent of either

coactivator. These results show that: a) binding site occupancy plays a crucial role in

defining the extent to which transcription requires individual chromatin remodeling

enzymes; b) Gcn5 and SWI/SNF associate with many more genomic targets than

previously appreciated; and c) Gcn5 can be temporally recruited before SWI/SNF to

yeast promoters.
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INTRODUCTION

The incorporation of regulatory elements into nucleosomes interferes with their

function by obstructing their accessibility to trans-acting factors (Owen-Hughes and

Workman, 1994). Several highly conserved multisubunit complexes, termed coactivators

or chromatin remodelers, act in concert with site-specific activators to help the

transcriptional apparatus contend with chromatin structure (Narlikar et al., 2002). One

class of coactivators contains an ATPase subunit (e.g. Swi2/Snf2 of SWI/SNF) that uses

the energy derived from ATP hydrolysis to disrupt histone-DNA interactions (Vignali et

al., 2000; Lusser and Kadonaga, 2003). A second class of coactivators post-

translationally modifies specific amino acid residues of the basic core histone proteins,

e.g. acetylates lysines in the histone amino termini (Howe et al., 1999). The SAGA (Spt-

Ada-Gcn5 acetyltransferase) and NuA4 ( nucleosomal acetyltransferase histone H 4)

complexes, which primarily acetylate histones H3 and H4 via their respective catalytic

subunits Gcn5 and Esa1 (Brownell et al., 1996; Grant et al., 1997; Smith et al., 1998),

regulate transcriptional initiation (Howe et al., 1999; Jenuwein and Allis, 2001). Gcn5

and SWI/SNF are partially redundant, performing independent but overlapping functions

during transcriptional activation (Pollard and Peterson, 1997; Roberts and Winston, 1997;

Ryan et al., 1998; Biggar and Crabtree, 1999; Sudarsanam et al., 1999; Wallberg et al.,

2000; Stafford and Morse, 2001).

Although distinct programs of recruitment of chromatin remodelers and other

multiprotein complexes have been reported for various promoters (Cosma et al., 1999;

Agalioti et al., 2000; Soutoglou and Talianidis, 2002), common themes have emerged.

Each transcriptional program is generally initiated by one or more site-specific activator
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proteins that access metazoan enhancers or upstream activating sequences (UASs) in

yeast. Activation domains then mediate the high-affinity interaction and hence temporal

‘recruitment’ of specific chromatin modifiers and remodelers, which do not bind DNA

with specificity (Fry and Peterson, 2001; Hassan et al., 2001a). At the yeast H O

promoter, for example, SWI/SNF is directly recruited prior to SAGA (Cosma et al.,

1999). In contrast, the opposite order with HAT complexes being recruited before

SWI/SNF has been shown at various promoters in human cells (Neely et al., 2002);

however, this order has only been inferred in yeast at the PHO8 promoter (Reinke et al.,

2001). Histone acetylation by either the SAGA or NuA4 complexes can enhance the

retention of specific coactivator complexes via their bromodomain modules (Syntichaki

et al., 2000; Hassan et al., 2001a; Hassan et al., 2001b). Ultimately, changes in chromatin

structure or remodeling facilitate assembly of the transcription preinitiation complex

(PIC) onto the core promoter (Kingston and Narlikar, 1999; Agalioti et al., 2000;

Lomvardas and Thanos, 2002).

Although much is known about how coactivators are recruited, why promoters

vary in their requirements for chromatin modifiers and remodelers is unresolved. Given

the central role of the activation domain in coactivator recruitment, it seems likely that

various activator subclasses would exhibit distinct coactivator specificities. Indeed,

activators with glutamine-rich activation domains, for example, interact directly with

purified yeast NuA4 (Nourani et al., 2004) but not with SWI/SNF (Neely et al., 1999;

Yudkovsky et al., 1999). Acidic activators, however, have been shown to interact with a

similar subset of chromatin-associated activities, including yeast NuA4, SAGA, and

SWI/SNF as well as their human counterparts (Fry and Peterson, 2001; Hassan et al.,
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2001a). Thus, at least in vitro, acidic activators do not appear to show distinct interaction

preferences among this subset of coactivators. This is consistent with in vivo studies

suggesting that a variety of natural and chimeric activators are able to recruit overlapping

sets of coactivators (Pollard and Peterson, 1998; Ryan et al., 1998; Biggar and Crabtree,

1999; Sudarsanam et al., 1999; Wallberg et al., 2000; Stafford and Morse, 2001; Cheng et

al., 2002).

A few recent studies suggest that promoter architecture, the relative location of cis-

regulatory sequences with respect to nucleosomes, orchestrates a specific coactivator

recruitment program and hence requirements for individual coactivator complexes (Ryan

et al., 1998; Ryan et al., 2000; Stafford and Morse, 2001; Lomvardas and Thanos, 2002).

Thus, in some cases, promoters with a nucleosomal TATA (yeast SUC2 and PHO8,

human IFN-b) require Gcn5 and SWI/SNF for activation (Hirschhorn et al., 1992;

Gregory et al., 1999b; Agalioti et al., 2000). This dependence is alleviated at other

promoters where TATA is either naturally accessible or is exposed artificially (Ryan et

al., 2000; Stafford and Morse, 2001; Lomvardas and Thanos, 2002). However, the well-

studied GAL1 and PHO5 promoters at which TATA is occluded by nucleosomes, require

neither SWI/SNF nor Gcn5 under fully activating conditions (Peterson and Herskowitz,

1992; Gaudreau et al., 1997; Gregory et al., 1998b; Dudley et al., 1999; Bhaumik and

Green, 2001; Neef and Kladde, 2003). Interestingly, a prerequisite for both SWI/SNF and

Gcn5 is imposed on GAL1 and PHO5 activation in mitosis (Krebs et al., 2000; Neef and

Kladde, 2003), possibly because the chromatin architecture is condensed. However, many

promoters have an absolute requirement for these coactivators in interphase, indicating

that additional factors must play a role in determining a promoter’s need for specific
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chromatin modifiers and remodelers.

While PHO5 induction does not require these coactivators in strict genetic terms,

we and others have shown that both Gcn5 and SWI/SNF are needed to achieve full rates

of initial promoter activation (Barbaric et al., 2001; Barbaric et al., 2003; Neef and

Kladde, 2003). Further, under fully activating conditions of Pi starvation, PHO5

expression depends on Gcn5 when the promoter is weakened by mutations in either of the

two UASs (Gregory et al., 1998a). Lastly, basal expression of PHO5 in high-Pi medium,

which is due in part to low levels of Pho4 transactivator binding (Carvin et al., 2003a), is

highly dependent upon Gcn5 and SWI/SNF (Neef and Kladde, 2003). These observations

are consistent with the hypothesis that PHO5 promoter activity requires these remodelers

when low levels of activator are associated with the promoter.

Testing this hypothesis, here we show that PHO5 transactivation is strongly

reduced in the absence of either Gcn5 or SWI/SNF at low levels of UAS-bound Pho4. By

contrast, the requirement for either remodeler is alleviated when Pho4 binding site

occupancy is increased, suggesting that functional redundancy is established at promoters

with robust activator interactions. Thus, we also find significant recruitment of Gcn5 and

SWI/SNF to several promoters known to exhibit strong activator binding and

transcription at which they are currently thought not to function. These results define a

critical role for promoter occupancy in determining the extent to which transactivation

depends on specific chromatin modifiers and remodelers. Moreover, our data suggest that

Gcn5 and SWI/SNF have many genomic targets and support a model in which high levels

of promoter-bound activator drive the genetic redundancy that is observed between

various coactivators.
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MATERIALS AND METHODS

Yeast media, growth conditions, and rAPase activity assays

Defined, Pi-free medium (pH 5.5) was prepared as described (Neef and Kladde,

2003), except that it was supplemented with complete synthetic mix (CSM, Bio101). All

starter cultures were grown in this medium with KH2PO4 (Pi) added back to 13.4 mM.

For time courses, cells were washed and transferred to activating medium without Pi. For

dose responses, cells were washed with defined, Pi-free medium with CSM and

transferred for 12 h to the same medium containing the indicated concentrations of Pi and

KCl to bring the potassium ion concentration to 13.4 mM. rAPase activity was assayed as

previously described (Neef and Kladde, 2003).

For the doxycycline dose response study, the strains MRY3260 (wild type) and

MRY3348 (swi2D) were grown in defined CSM-LYS medium (Bio101) and reseeded in

the same medium the next day. These strains contain the Pho4SA1234PA6 constitutively

nuclear variant of Pho4 (Komeili and O'Shea, 1999), expressed under the tetO7 promoter

and activated by a variant of the tet-on system (Belli et al., 1998). Thus we are able to

vary PHO5 expression by simply varying the doxycycline concentration in the medium.

The strains were split into 8X 50ml conical tubes (15ml of culture each) and the

appropriate concentrations of doxycycline were added to each tube. The cultures were

subsequently aliquoted into 2 tubes of 5ml each.  50% ethanol carrier was added to the

tube with the 0 mg/ml doxycycline concentration. The cultures were grown for a period of

14 h and harvested for the rAPase assay as before.
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Localization of Pho4 by GFP fluorescence

For GFP studies, the strains DNY2049, DNY2232 and MRY2985 (containing Pho4

tagged with GFP) were grown in medium with 13.4, 0.2, or 0 mM Pi for 12 h. Cells

(1 mL) were sonicated, washed with 1X phosphate-buffered saline (PBS) and fixed with

70% ethanol for 20 min. Cells were washed again with 1X PBS, resuspended in 10 mL of

1 mg/mL DAPI, and incubated at room temperature for 12 min. The cells were then

washed with PBS and 2 mL were placed on a slide for viewing with a Zeiss Axiovert 135

with a 100x Plan-Apochromat oil-immersion objective (Carl Zeiss MicroImaging). 

Representative cell images were collected using Zeiss Axiovision version 3.1.

ChIP analysis

Cultures (50 mL) were grown at 30°C with shaking for the indicated times and then

were fixed at room temperature for 15 min by adding formaldehyde to a 1% final

concentration. Cross-linking was quenched by addition of glycine to a final concentration

of 125 mM and incubating for 5 min at RT. Cells were centrifuged at 3300Xg for 5 min

at 4oC and washed twice with ice-cold Tris-buffered saline (20 mM Tris-HCl, pH 7.5,

150 mM NaCl), resuspended in 0.5 mL ice-cold lysis buffer [50 mM HEPES-KOH, pH

7.5, 140 mM NaCl, 1% Triton-X 100, 0.1% deoxycholate, protease inhibitor cocktail

(Roche 1 836 153), and 1 mM PMSF]. One mL of ice-cold, acid-washed glass beads

(425-600 mm) were then added for lysing cells in a mini-bead beater 8 (Biospec Products)

with two 1-min pulses at maximum speed separated by 5 min on ice. The supernatants

were recovered after centrifugation at 1500 X g for 3 min and then sonicated with a

Virsonic 100 sonicator (3X 25 sec at setting 4). Prior to IP, sonication efficiency and
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chromatin yield were assessed by incubating 30 mL of sonicated whole cell lysate at 65°C

overnight to reverse cross-links. DNA was then treated with proteinase K, purified by

Wizard PCR preps resin (Promega), eluted in 0.1X TE, and analyzed for concentration as

well as shearing to approximately 500 bp.

Each IP reaction (500 µL) contained equal amounts of fixed, sheared chromatin,

1M NaCl, and 2 µL of A-14 anti-myc rabbit polyclonal antibody (200 mg/mL; Santa Cruz

Biotechnology), and was incubated overnight at 4ºC. The next day, protein A sepharose

beads were washed with PBS and lysis buffer as required, and 40 µL of the washed

protein A bead slurry was added to the IP reaction and incubated on a nutator for 1 hr at

4ºC. The pellets were washed to remove non-specifically adsorbed proteins and DNA

with: 1 mL lysis buffer twice; 1 mL lysis buffer plus 0.5 M NaClf; 1 mL wash buffer; and

twice with 1 mL TE. DNA-protein complexes were eluted in elution buffer, TES (50 mM

Tris-HCl, pH 8.0, 10 mM EDTA, 1% SDS) by incubating twice at 65°C for 10 min.

Cross-links of the immunoselected DNA-protein complexes were reversed and the DNA

purified as described above. Analysis of immunoselected DNA fragments was performed

by PCR of the indicated regions by radiolabeling for 25 cycles of amplification in

reactions containing: 0.2 µL of [a32P]-dCTP (10 mCi/mL); 0.2 mMf dATP, dGTP, and

dTTP; and 0.1mMf dCTP. Radiolabeled PCR products were electrophoresed on a 4%

nondenaturing polyacrylamide gel at 150 V for 3 h, and visualized by a Storm 860

phosphorimager (Molecular Dynamics), and quantified by ImageQuant software. For

PHO5 sequences, a single primer pair [(ADO236; CATGTAAGCGGACGTC; –456 to

–441 relative to the PHO5 ATG translation start) and (LFO740; GCCTTGCCAAGTAA-

GGTGAC; –173 to –154)] was used to amplify the endogenous UASs of the PHO5
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promoter as well as a negative control PHO5 promoter region (pho5 DUASs) by

quantitative, competitive PCR.  This negative control contains PHO5 sequences from

–1537 to +9 with two 50-bp deletions (encompassing UASp1 and UASp2 from -401 to

-352 and -258 to -209, respectively), and was integrated either by gene replacement of

(strains ADY2459 and ADY2461) or loop in at (strains ADY2695, ADY2701,

ADY2719, ADY2727, ADY2915, ADY2921, and ADY2923) the CAN1 locus (Carvin et

al. 2003). Likewise, LFO644 (GGAAATGTAAAGAGCCCC; –547 to –530) and

LFO645 (TTGAAGGTTTGTGGGG; –270 to –255) were used to simultaneously amplify

the endogenous UASG region of the GAL1-10 promoter and a negative control GAL1-10

promoter. This negative control comprises the entire GAL1-10 intergenic region (–698 to

+36 relative to the GAL1 ATG) with a deletion of all four Gal4 sites (UASG, –453 to

–336), which was integrated by loop in at CAN1. Primers used for amplification of

various yeast promoters (PYK1, RPL19B, RPS22B, and EFT2) were previously described

(Reid et al., 2000).

Western blotting

Western blots were performed using standard techniques. Wild-type (MRY3049),

gcn5D (MRY3055) and swi2D (MRY3053) yeast strains containing FLAG-tagged Pho4,

along with an untagged strain (ADY3035), were grown in 100mL of medium with or

without Pi to an OD600 of ~1 and centrifuged at 3300 X g for 5 min at 4°C. The cell pellet

was washed with 1 mL ice-cold 50 mM Tris-HCl (pH 8.0), resuspended in 500 µL of ice-

cold lysis buffer, and lysed by vortexing twice for 1 min (30 sec on ice) after addition of

ice-cold 0.3 g glass beads (425-600 mm). Cell debris was pelleted by centrifugation at
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5000 X g for 5 min at 4°C and the supernatant transferred to a new tube. Total protein

was quantified using the BCA assay kit (Pierce) and 70 mg protein was analyzed per lane

on a 10% SDS-PAGE (37.5:1 acrylamide:bis-acrylamide) gel. After transfer to PVDF

membrane (Amersham Pharmacia), the blot was incubated overnight with rabbit anti-

FLAG antibody (Sigma, F-742) and then with HRP conjugated anti-rabbit IgG

(Amersham Pharmacia). Protein was detected with the ECL PLUS kit (Amersham

Pharmacia) and visualized using a Storm 860 phosphorimager. The blot was re-probed

with mouse monoclonal anti-yeast Pgk1 (3-phosphoglycerate kinase) antibody

(Molecular Probes, 22C5-D8) followed by HRP-conjugated anti-mouse IgG.

RESULTS

SWI/SNF physically associates with the PHO5 promoter upon transactivation prior to

Gcn5

Promoters differ vastly in their requirements for SWI/SNF and Gcn5 (Holstege et

al., 1998; Biggar and Crabtree, 1999; Sudarsanam et al., 2000). With respect to PHO5,

prior reports have shown that, after extended times under fully activating conditions (Pi

starvation), there is no major effect on PHO5 transcription in either swi2D or gcn5D

strains (Gaudreau et al., 1997; Gregory et al., 1998b; Barbaric et al., 2001; Barbaric et al.,

2003; Neef and Kladde, 2003). However, the kinetics of PHO5 induction is strongly

dependent on Gcn5 and SWI/SNF (Barbaric et al., 2001; Barbaric et al., 2003; Neef and

Kladde, 2003). Ada2 has been shown to be recruited to the PHO5 promoter by Pho4 as a

component of SAGA (Barbaric et al., 2003), however, direct recruitment of SWI/SNF has

not been demonstrated.
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We performed chromatin immunoprecipitation (ChIP) experiments on 13myc-

tagged strains (Table 2-1) to assay for Swi2 and Gcn5 association at PHO5. ChIP

analysis of the PHO5 UAS region (Figure 2-1A) was performed at various times after

shifting the cells to medium that lacks Pi. The two strains were assayed internally for

repressible acid phosphatase (rAPase) activity and exhibit similar induction profiles

(Figure 2-1B). Since these strains are also deleted for PHO3, coding for constitutive acid

phosphatase, the measured activities essentially reflect PHO5 expression (Komeili and

O'Shea, 1999; Neef and Kladde, 2003). The immunoprecipitated DNA was analyzed by

quantitative, competitive PCR (Figure 2-1C, left panel). As can be seen in Figure 2-1C

(right), both SWI/SNF and Gcn5 are enriched over time at the endogenous PHO5

promoter compared to the internal negative control locus, pho5 DUASs, lacking both

UASp1 and UASp2. Similar Pi-starvation dependent enrichments for these coactivators

compared to another negative control region in the WHI4 ORF are also observed (data

not shown). While Gcn5 is significantly enriched at the promoter at about 4 h Pi

starvation, SWI/SNF is not recruited until later. This is the first demonstration of the

physical presence of Gcn5 and Swi2 (or any SWI/SNF subunit) at PHO5. Since Ada2

was previously shown to associate with the PHO5 promoter as a part of SAGA (Barbaric

et al., 2003), it is likely that Gcn5 association is also occurring via SAGA. Recruitment of

Gcn5 before SWI/SNF agrees with what was shown previously by ChIP at the human

interferon-b (IFN-b) promoter (Agalioti et al., 2000), but is opposite of that at the yeast

HO promoter (Cosma et al., 1999; Krebs et al., 1999). Further, the two complexes do not

achieve maximal binding until about 12 h after Pi deprivation.
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Table 2-1.  S. cerevisiae strains used in this study.

Strain Genotype a, b

ADY2459 MATa leu2D0 lys2D0  ura3D0 pho3D::R GCN5-13myc-kanMX4 can1D::pho5pro

DUASs-LEU2

ADY2461 MATa leu2D0 lys2D0  ura3D0 pho3D::R SWI2-13myc-kanMX4 can1D::pho5pro

DUASs-LEU2

ADY2695 M A T a  leu2D0 lys2D0  ura3D0 pho3D ::R 3myc-PHO4 swi2D::kanMX4
CAN1:pho5pro DUASs-LEU2

ADY2701 MATa leu2D0 lys2D0 ura3D0 pho3D::R CAN1:pho5pro DUASs-LEU2

ADY2719 M A T a  leu2D0 lys2D0  ura3D0 pho3D ::R 3myc-PHO4 gcn5D::kanMX4
CAN1:pho5pro DUASs-LEU2

ADY2727 MATa leu2D0 lys2D0  ura3D0 pho3D::R 3myc-PHO4 CAN1:pho5pro DUASs-
LEU2

ADY2915 MATa leu2D0 lys2D0 ura3D0 pho3D::R CAN1:gal1-10pro DUASG-LEU2

ADY2921 MATa leu2D0 lys2D0  ura3D0 pho3D::R GCN5-13myc-kanMX4 CAN1:gal1-
10pro DUASG-LEU2

ADY2923 MATa leu2D0 lys2D0 ura3D0 pho3D::R SWI2-13myc-kanMX4 CAN1:gal1-10pro

DUASG-LEU2

ADY3035 MATa leu2D0 lys2D0 ura3D0 pho3D::R [pRS426 GPDpro-PHO4-URA3]

DNY2049 MATa leu2D0 lys2D0  ura3D0 pho3D::R pho4D::kanMX4 bar1D::R-URA3-R
can1D::PHO4-GFP-K. lactis LEU2

DNY2232 MATa leu2D0 lys2D0  ura3D0 pho3D::R pho4D::kanMX4 bar1D::R-URA3-R
gcn5D::kanMX4 can1D::PHO4-GFP-K. lactis LEU2

MRY2985 MATa leu2D0 lys2D0 ura3D0 pho3D::R swi2D::kanMX4 [pRS316 PHO4-GFP-
URA3]

MRY3049 MATa leu2D0 lys2D0 ura3D0 pho3D::R [pRS416 TEF1pro-FLAG-PHO4-URA3]

MRY3053 MATa leu2D0 lys2D0  ura3D0 pho3D::R swi2D::kanMX4 [pRS416 TEF1pro-
FLAG-PHO4-URA3]

MRY3055 MATa leu2D0 lys2D0  ura3D0 pho3D::R gcn5D::kanMX4 [pRS416 TEF1pro-
FLAG-PHO4-URA3]

MRY3260 MATa leu2D0 lys2D0 ura3D0 pho3D::R KL-URA3:tetO7 
pro PHO4SA1234PA6 

ho ::
new superactivator

MRY3348 MATa leu2D0 lys2D0  ura3D0 pho3D::R swi2D::kanMX4 KL-URA3:tetO7 
pro

PHO4SA1234PA6 ho :: new superactivator

a The superscript ‘pro’ indicates promoter.
b R is a Zygosaccharomyces rouxii recombinase site that remains after intramolecular
recombination (Roca et al., 1992).
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Figure 2-1. SWI/SNF associates with the PHO5 promoter subsequent to Gcn5 recruitment.

(A) The PHO5 promoter. Filled circles, UASp1 and UASp2; filled square, TATA element; large
open circles, positioned nucleosomes _5 to +1(Almer and Hörz, 1986). (B) Time course of PHO5
activation following transfer from high- to no-Pi medium. Swi2-13myc (ADY2459) and Gcn5-
13myc (ADY2461) cells were harvested at the indicated times and assayed for rAPase activity.
(C) Internal aliquots of cells from the Swi2- and Gcn5-13myc cultures assayed in B  were
subjected to ChIP analysis (see Materials and methods) at the indicated times of induction. DNA
immunoselected with anti-myc antibody from formaldehyde cross-linked chromatin (all lanes
except lane 1) was analyzed for the presence of PHO5 and negative control (pho5 DUASs)
sequences by quantitative, competitive PCR as depicted in the panel at left. The negative control
promoter has deletions of both UASp1 and UASp2 (filled circles) and thus is unable to bind Pho4
(Carvin et al., 2003). A wild-type strain (ADY2701) was starved of Pi for 24 h and carried in
parallel through all steps to serve as an untagged (no tag) specificity control. Non-
immunoselected DNA (input, lane 1) was obtained from the 24-h culture of Gcn5-13myc cells
following cross-linking and was diluted 1:500 for PCR amplification. The ramp indicates
inclusion of twice as much immunoselected DNA in the PCR amplification and demonstrates
linearity. The ratio of PHO5 to negative control (pho5 DUASs) product indicates the relative
enrichment of each coactivator at the promoter.

This correlates with the time when gcn5D and swi2D cells reach wild-type levels

of PHO5 activation, i.e. when the kinetic delay in activation is completed (Barbaric et al.,
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2001; Barbaric et al., 2003; Neef and Kladde, 2003).

Maximal association of Pho4 at PHO5 requires many hours following Pi starvation

Since Pho4, the principal PHO transcriptional activator, recruits chromatin

remodeling complexes via its acidic activation domain (Neely et al., 2002; Barbaric et al.,

2003), we examined the time course of Pho4 binding at the PHO5 promoter following Pi

starvation. A 3myc-Pho4 strain was used that is not defective in PHO5 activation kinetics

compared to the wild type. The time course of rAPase activity induced in no-Pi medium is

shown in Figure 2-2A. In Figure 2-2B, ChIP analysis of internal aliquots of cells revealed

that Pho4 binding is not detected before Pi starvation, and is maximal at about 12-14 h

after withdrawing Pi. These results demonstrate that, in accord with the recruitment

paradigm, Pho4 binding increases over time and precedes the recruitment of Gcn5 and

Swi2. However, as transport of Pho4 from the nucleus to cytoplasm is complete by 1 h at

very low or no Pi (Kaffman et al., 1998b; Barbaric et al., 2001), it is surprising that 12-14

h are required for Pho4 binding to peak at the PHO5 promoter.

PHO5 activation requires chromatin remodelers at low levels of Pho4 binding site

occupancy

Increased association of Pho4 with the PHO5 promoter during activation is likely

due in part to further occupancy of the low-affinity UASp1 as Pho4 accumulates in the

nucleus. Additional interaction of Pho4 with the high-affinity UASp2, which is essential

for PHO5 activation (Venter et al., 1994), is believed to require disruption of nucleosome

-2 (Svaren and Hörz, 1997). In support of this, the absence of the activity of various

remodeling enzymes leads to modest (SWI/SNF, INO80.com)(Steger et al., 2003) or
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severe (NuA4) (Nourani et al., 2004) decreases in Pho4 binding and promoter induction.

In contrast, recent evidence suggests that Pho4 interacts with UASp2 in the absence of

remodeled chromatin (Terrell et al., 2002; Adkins et al., 2004).

Figure 2-2.  Pho4 binding at PHO5 increases for many hours after Pi starvation.

After shifting strain ADY2727 (3myc-Pho4) from high- to no-Pi medium, cells were internally
assayed at the indicated times for (A) rAPase activity and (B) 3myc-Pho4 binding by ChIP
analysis. The first two lanes contain non-immunoselected (input) samples, whereas
immunoselected DNA was assayed in all other lanes. Quantitative, competitive PCR
amplification of the endogenous PHO5 and negative control (pho5 DUASs) promoters was
performed as in Figure 2-1C. The PCR amplifications in the first and last lanes contained 2-fold
less input DNA (taken from the 24-h culture and diluted 1:500) or immunoselected DNA.

Our ChIP results, showing that recruitment of Pho4, Gcn5, and Swi2 all peak at
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around 12 h after PHO5  induction, are most consistent with a model in which

nucleosome -2 is disrupted over time to enable access of Pho4. Moreover, we

hypothesized that the combined action of distinct classes of coactivator complexes might

be required to achieve full induction at lower amounts of Pho4 site occupancy when, on

average, only UASp1 rather than UASp2 is occupied. Conversely, high-level association

of Pho4 and hence recruitment of coactivators might suppress the need for a particular

chromatin-associated complex.

To test this hypothesis, we regulated the nuclear concentration of Pho4 to effect

varying steady-state levels of UAS occupancy at the PHO5 promoter in wild type, gcn5D

and swi2D cells. The nucleo-cytoplasmic distribution of Pho4 is controlled through its

phosphorylation by the Pho80-Pho85 cyclin-CDK (O'Neill et al., 1996; Kaffman et al.,

1998a; Kaffman et al., 1998b; Komeili and O'Shea, 1999). Under conditions of high Pi

availability, phosphorylation blocks nuclear import and promotes nuclear export, leading

to cytoplasmic localization of Pho4. When Pi is limiting, PHO4 expression is not affected

(Legrain et al., 1986), Pho80-Pho85 activity is inhibited and unphosphorylated Pho4

accumulates in the nucleus. Thus, the most physiologically relevant way to regulate

nuclear levels of Pho4 is to grow cells in the presence of various concentrations of Pi

(Toh-e et al., 1973), leading to varying degrees of Pho80-Pho85 activity and

redistribution of Pho4 between the nucleus and cytoplasm. We first tested and found that

the nuclear level of Pho4-GFP increased in a graded manner across the population of

cells at successively lower concentrations of Pi (Figure 2-3). This confirms previous

results (Springer et al., 2003), ruling out the alternative scenario of an all-or-none binary
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Figure 2-3.  Pho4 nuclear concentration increases in a graded manner with the severity of Pi

deprivation in the absence or presence of Gcn5 and SWI/SNF.

Wild-type (WT; DNY2049), gcn5D (DNY2232) and swi2D (MRY2985) strains were grown for
12 h in defined minimal medium containing either 13.4 mM (left), 0.2 mM (middle), or 0 mM
(right) Pi. Cells were washed with PBS and either stained with DAPI to visualize nuclear DNA or
visualized directly for Pho4-GFP fluorescence. Note the similar levels of fluorescence in WT,
gcn5D and swi2D cells and the increasing nuclear focus of Pho4-GFP as the Pi concentration
decreases from left to right.
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Figure 2-4.  PHO5 activation is markedly dependent on Gcn5 and SWI/SNF at low nuclear
concentrations of Pho4 and decreased binding site occupancy.

Wild-type (WT, ADY2727), gcn5D (ADY2719) and swi2D (ADY2695) strains containing 3myc-
Pho4 were grown 12 h in medium with the indicated concentrations of Pi and were internally
assayed for (A, C) rAPase activity and (B, D) 3myc-Pho4 binding by ChIP. In the ChIP analyses,
the first lane contains non-immunoselected 0 mM-Pi sample (input), whereas immunoselected
DNA was assayed in all other lanes. Quantitative, competitive PCR amplification of the
endogenous PHO5 and negative control (pho5 DUASs) promoters was done as in Figure 2-1C.
The ramp in B indicates the addition of 2-fold more immunoselected 0 mM-Pi sample to the PCR
amplification. The untagged (no tag) specificity control was a wild-type strain (ADY2701) that
was starved of Pi for 12 h, and carried in parallel through all experimental steps. Identical results
were obtained when cells were grown for 16 h at the same concentrations of Pi, demonstrating
that the concentration of Pi in the medium was not significantly altered.

response where the fraction of cells with nuclear-localized Pho4 increases as the

concentration of Pi is decreased. Loss of Gcn5 and SWI/SNF could indirectly lead to a

shift in the PHO5 response to Pi deprivation by affecting Pho4 protein levels. This
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seemed unlikely, however, as there were no apparent differences in fluorescent intensity

of Pho4-GFP between wild type, gcn5D and swi2D strains (Figure 2-3). Furthermore,

levels of rAPase activity are the same in wild type versus coactivator mutant cells at

0.01 mM and 0 mM Pi (Figure 2-4A, C). Nevertheless, we directly determined by

western blotting that levels of a fully active FLAG-tagged version of Pho4 are unaffected

in wild type, gcn5D and swi2D strains in medium containing or lacking Pi (Figure 2-5).

We conclude that the degree of Pho4 binding site occupancy at PHO5 is a crucial

determinant of the promoter’s need for the chromatin remodelers Gcn5 and SWI/SNF in

activation; ranging from essentially complete dependence to independence at low and

high levels of promoter occupancy, respectively.

Figure 2-5.  Deletion of GCN5 or SWI2/SNF2 does not affect Pho4 protein levels.

Wild-type (WT; MRY3049), gcn5D (MRY3055) and swi2D  (MRY3053) strains expressing
FLAG-PHO4 or a strain expressing untagged (no tag) PHO4 (ADY3035) were grown for 12 h in
the presence (+) or absence (–) of Pi before whole cell extracts were isolated. Equivalent amounts
of total protein were analyzed by immunoblotting and probing with anti-FLAG antibody (top).
The blot was reprobed with monoclonal anti-yeast Pgk1 antibody (bottom) to provide a loading
control.

Moreover, Gcn5 and SWI/SNF are required for maximal association of Pho4 with the
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PHO5 promoter at intermediate concentrations of Pi. This likely reflects the necessity for

Gcn5 and SWI/SNF activity in exposing the high-affinity UASp2 in nucleosome -2 (see

Summary and conclusions).

Doxycycline-regulated expression of a Pho4 variant also demonstrates a requirement for

chromatin remodelers

While our experiments thus far indicated a clear dependence on chromatin-

remodeling coactivators at low levels of Pho4 binding, there were concerns that

differential rates of phosphate depletion might cause variation between experiments and

from strain to strain. Further, positive feedback regulation on PHO81, an upstream

repressor of PHO80/PHO85, might produce indirect effects on PHO5 regulation (Ogawa

et al., 1995).  To circumvent these concerns, we developed a system in which PHO5

expression is tightly regulated by the ectopic ligand doxycycline, in yeast (Figure 2-6)

(Belli et al., 1998) and is no longer under Pi control. In brief, this ‘tet-on’ system consists

of the yeast repressor Ssn6 fused to the wild-type tet repressor (tetR) from E.coli that

binds to seven tetO sites (tetO7) in the absence of doxycycline, thus minimizing basal

expression. In the same cell, a fusion protein between the potent transactivation domain,

VP16, and a tetR variant (tetR’), binds the tetO7 operators in the presence of the

antibiotic. Both tet fusions are constitutively expressed and the tetO7 promoter replaces

the endogenous PHO4 promoter. This promoter has been reported to express graded

concentrations of several factors uniformly across all cells in a population (Kringstein et

al., 1998; Rossi et al., 2000; Becskei et al., 2001).

This tetO7 promoter was used to drive expression of the constitutively nuclear Pho4
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variant, Pho4SA2134PA6 (Komeili and O'Shea, 1999), which has serine to alanine changes at

SP sites 1-4 and a proline to alanine change at SP6. These changes prevent

phosphorylation of the variant by Pho80-Pho85 in high phosphate medium, and hence its

usual export to the cytoplasm. This variant is fully functional for PHO5 activation

(Komeili and O'Shea, 1999), and hence it is expected to elicit full chromatin remodeling.

Figure 2-6.  A doxycycline-regulated Pho4 variant demonstrates Swi2 dependence in PHO5
activation.

(A) Pho4SA1234PA6, a constitutively nuclear variant of Pho4 {Komeili, 1999 #267}, is expressed
under the tetO7 promoter at the endogenous PHO4 locus and activated by a variant of the dual tet-
on system {Belli, 1998 #227}. (B) The strains MRY3260 (wild type) and MRY3348 (swi2D)
containing the variant mentioned in (A) were grown in defined CSM-LYS medium (Bio101) and
reseeded in the same medium the next day, and the indicated concentrations of doxycycline were
added to each tube. Ethanol carrier (50%) was added to the tube with the 0 mg/ml doxycycline
concentration. The cultures were grown for a period of 14 h and harvested for the rAPase assay as
before.

The strains MRY3260 (wild type) and MRY3348 (swi2D) were grown in defined

CSM-LYS medium (Bio101) and reseeded in the same medium the next day. These
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strains contain the Pho4SA1234PA6 constitutively nuclear variant of Pho4 (Komeili and

O'Shea, 1999), expressed under a modified tetO7 promoter system (Figure 2-6A

and)(Belli et al., 1998). Thus we are able to vary PHO5 expression by simply varying the

doxycycline concentration in the medium. As seen in Figure 2-6B, while the wild-type

strain requires merely 0.05mg/ml of doxycycline to activate reasonable levels of PHO5,

the swi2D strain requires ten times that amount (0.5mg/ml) before it can approach wild-

type levels at the same concentration. This demonstrates that the increased dependence

on remodelers that we see in no-Pi media for swi2D strains also applies for a system that

is ectopically regulated.

Gcn5 and SWI/SNF associate with additional strongly transcribed promoters

Previous microarray studies suggested that deletion of GCN5 or SWI2/SNF2 affects

the transcript levels of less than 5% of yeast genes (Holstege et al., 1998; Sudarsanam et

al., 2000). However, we have shown that both Gcn5 and SWI/SNF associate with the

PHO5 promoter under conditions of high transactivator binding when neither remodeler

is required for transcriptional activity. Thus, we hypothesized that Gcn5 and SWI/SNF

are also recruited to other highly transcribed promoters that do not require their activities

for transcription. The GAL1-10 promoter, for example, has an upstream regulatory region

(UASG) that contains four binding sites (two high and two low affinity) for the strong

acidic activator Gal4. Although Gal4 is not an abundant activator protein, high-level

occupancy of UASG occurs due to DNA-binding cooperativity (Giniger et al., 1985).

Previous studies have shown that Gal4 recruits Gcn5 as a component of the SAGA

complex to the GAL1-10 UASG (Bhaumik and Green, 2001; Larschan and Winston,
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2001), but physical association of SWI/SNF has not been demonstrated. Deletion of

genes coding for Gcn5 or SWI/SNF subunits only modestly affect GAL1 expression

(Peterson and Herskowitz, 1992; Dudley et al., 1999; Sudarsanam and Winston, 2000;

Bhaumik and Green, 2001).

As above, we performed ChIP in strains expressing Swi2-13myc and Gcn5-13myc

that, in addition to the normal genomic GAL1-10 locus, also contain a negative control

locus, gal1-10 DUASG. This control comprises the entire GAL1-10 promoter with UASG

(all four Gal4 sites) deleted. Figure 2-7A demonstrates that both SWI/SNF and Gcn5 are

recruited to the endogenous GAL1-10 UASG in galactose medium when the promoter is

transcriptionally active, but not in repressive glucose medium. Strong recruitment of both

coactivators lends further support to work suggesting that Gcn5 and SWI/SNF perform

partially redundant functions at the GAL1 promoter (Roberts and Winston, 1997; Pollard

and Peterson, 1998; Biggar and Crabtree, 1999). Moreover, GAL1 expression becomes

strongly dependent on Gcn5 and SWI/SNF after deleting the two high-affinity Gal4 sites

of UASG (Marcus et al., 1994; Burns and Peterson, 1997b; Gaudreau et al., 1997),

consistent with our working model that high levels of activator binding establish

functional redundancy.

We further hypothesized that promoters regulated by the abundant general

regulatory factors Abf1 and Rap1, which thus strongly associate at target genes (Morse,

2000), would thus recruit significant levels of multiple coactivators. In doing so, our

model predicts that functional redundancy might be established whereby the need for a

single, specific remodeling activity is alleviated. Strong Abf1 and Rap1 targets include

the RNA pol II-transcribed promoters of genes coding for ribosomal proteins, additional
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aspects of protein synthesis and glycolytic enzymes (Reid et al., 2000; Lieb et al., 2001).

Rap1 target genes are generally transcribed at extremely high rates during growth in rich

medium, averaging 45 mRNAs per hour as compared to 7 mRNAs per hour for all yeast

genes, accounting for an estimated 37% of total RNA pol II-derived transcripts (Holstege

et al., 1998).

To test this hypothesis, we used ChIP analysis to assay for the association of Gcn5

and SWI/SNF at representative Rap1 targets for which transcript levels are unaffected in

gcn5D  or swi2D strains (Holstege et al., 1998; Sudarsanam et al., 2000), including

RPL19B (ribosomal protein), EFT2 (protein synthesis), and PYK1 (glycolysis). As

predicted, each of these Rap1 target genes shows significant association with Gcn5 and

SWI/SNF relative to the gal1-10 DUASG negative control. Both coactivators are also

recruited to the RPS22B promoter, which is a target for Abf1 but not Rap1 (Reid et al.,

2000; Lieb et al., 2001). This is consistent with studies showing that the activation

domains of Abf1 and Rap1 are interchangeable and that both factors can function with

non-ribosomal gene core promoters (Buchman and Kornberg, 1990; Goncalves et al.,

1996; Cheng et al., 2002). Thus, we conclude that Gcn5 and SWI/SNF associate with a

variety of heavily transcribed promoters. Interestingly, at any given locus in Figure 2-7

(also at PHO5; Figure 2-1), the levels of enrichment of Gcn5 and SWI/SNF relative to

the negative control are similar; suggesting that activator binding level determines their

recruitment frequency. As cross-linking or immunoprecipitation efficiency may be

different for these coactivators, these data indicate that similar relative levels of both are

recruited, not necessarily the same absolute levels.
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Figure 2-7.  SWI/SNF and Gcn5 are recruited to strongly transcribed promoters that do not
require them for transcription.

Gcn5-13myc (ADY2921) and Swi2-13myc (ADY2923) strains were grown in parallel with an
untagged strain (ADY2915). Cells were initially grown in YPD, washed and resuspended in
either YPD or YPG medium for another 6 h. Non-immunoselected (lane 1, input) and
immunoselected (all other lanes) DNA was analyzed by PCR using primers for the (A) GAL1-10,
(B) RPL19B, (C) RPS22B, (D ) PYK1 and (D) EFT2 promoters as well as a negative control,
mutated promoter (gal1 DUASs). In A, quantitative, competitive PCR analysis of GAL1 using a
single PCR primer pair amplifying both GAL1 and the control locus was performed as for PHO5
in Figure 2-1C. In B-C, analysis of only the YPD-grown, Gcn5-13myc and Swi2-13myc samples
is shown and the experimental and gal1DUASs loci were assayed in the same PCR amplification
by including a second pair of primers. For simplicity, the low-level signal at the endogenous
GAL1 locus is not presented in B-C.
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DISCUSSION

        We find that the extent to which PHO5 induction requires activity of the Gcn5 HAT

and SWI/SNF remodeler is strongly related to the nuclear concentration of the acidic

activator Pho4 and thus levels of promoter-bound transactivator. Consistent with this,

maximal Pho4 binding at the PHO5 promoter requires ~12 h of Pi deprivation (Figure 2-

2), corresponding well with the kinetic delay in PHO5 activation exhibited by single gcn5

and swi2/snf2 mutants (Barbaric et al., 2001; Barbaric et al., 2003; Neef and Kladde,

2003). This suggests that each remodeling enzyme is primarily needed when Pho4

binding is limiting. Indeed, PHO5 activation is markedly dependent on both Gcn5 and

SWI/SNF at low steady-state promoter occupancy (Figure 2-4). Conversely, high nuclear

levels of Pho4 lead to marked increases in Pho4 binding and promoter activation in the

absence of either Gcn5 or SWI/SNF. Our data suggest, therefore, that the necessity for a

specific remodeler can be circumvented by driving promoter occupancy, establishing

functional redundancy through increased recruitment of coactivators that normally

associate with the promoter. In support of this model, Gcn5 and SWI/SNF are strongly

recruited to PHO5 when Pho4 occupancy is high and to representative promoters that are

robustly occupied by the abundant transactivators Abf1 and Rap1 (Figure 2-7).

Association of Pho4 with PHO5 UASp2 requires chromatin modifiers and remodelers

When yeast cells are deprived of Pi, Pho4 is imported into the nucleus and

activates genes within the PHO cluster (Lenburg and O'Shea, 1996). At the PHO5

promoter, Pho4 is first thought to bind cooperatively with the non-acidic activator Pho2

at the accessible, low affinity UASp1 (CACGTT), and then at the high-affinity UASp2
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(CACGTG), located in nucleosome -2 in the repressed promoter (Svaren and Hörz,

1997). The absolute correlation of PHO5 induction with chromatin disruption has led to

the widely accepted view that binding of Pho4 to UASp2 requires remodeling of

nucleosome -2. Consistent with this view, several chromatin modifiers and remodelers

are recruited to PHO5, including SAGA (Figure 2-1; (Barbaric et al., 2003), NuA4

(Nourani et al., 2004), INO80.com (Steger et al., 2003), and SWI/SNF (Figure 2-1). This

is the first demonstration that SWI/SNF is brought directly to the activated PHO5

promoter and, moreover, is preceded by association of Gcn5, likely in SAGA (Figure 2-

1). Recruitment of HATs prior to SWI/SNF also occurs in human cells (Neely et al.,

2002). Importantly, our data demonstrate that, in yeast, Gcn5 and SWI/SNF can be

recruited in the opposite order of that observed at mitotically-induced genes (Cosma et

al., 1999; Krebs et al., 2000).

Our results provide further evidence that efficient association of Pho4 with

UASp2 requires chromatin remodeling. The resolution of ChIP analysis precludes

assignment of the relative amounts of Pho4 bound to UASp1 vs. UASp2, as they are only

103 bp apart. However, the increase in Pho4 binding is initially modest and then

increases dramatically due to cooperative binding (Figure 2-4). These results are clearly

consistent with initial, limited Pho4 binding at the low affinity UASp1 followed by a

large cooperative increase in binding upon exposure of the high-affinity UASp2, as we

observed previously (Carvin et al., 2003a). Furthermore, in the absence of Esa1 HAT

activity, PHO5 chromatin remodeling and activation under Pi-free conditions is severely

deficient and Pho4 binding achieves only about 10% of wild-type levels (Nourani et al.,

2004). The need for Esa1 can be overcome by Pho4 overexpression. By contrast, we and
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others find that the loss of Gcn5 HAT or SWI/SNF remodeler activity can be fully

suppressed by wild-type levels of Pho4 expression (Gaudreau et al., 1997; Gregory et al.,

1998b; Barbaric et al., 2001; Barbaric et al., 2003; Neef and Kladde, 2003). These results

suggest a greater need for acetylation by Esa1 in NuA4 than by Gcn5 in SAGA for PHO5

induction in medium lacking Pi (Nourani et al., 2004). However, a striking finding of our

work is that, even in the presence of a wild-type copy of ESA1, PHO5 induction requires

Gcn5 and SWI/SNF at intermediate Pi concentrations (0.25-0.2 mM; Figure 2-4). Thus,

we find that in the absence of efficient chromatin remodeling, increased activator

concentration is again required to achieve high levels of activator binding.

High activator binding site occupancy confers functional redundancy for coactivator

complexes

Yeast genes have been classified into three major groups with respect to their

need for Gcn5 and SWI/SNF; those requiring both, either, or neither activity, suggesting

that the remodelers have overlapping but independent functions (Holstege et al., 1998;

Biggar and Crabtree, 1999; Sudarsanam and Winston, 2000). Taken together, our results

with the PHO5 system support a model for these differential dependencies whereby the

time-averaged level of activator binding, or promoter occupancy, dictates the probability

that sufficient coactivators are recruited to effect chromatin remodeling and

transcriptional induction. We propose that when UASp1 is primarily occupied (rather

than UASp2) at intermediate Pi concentrations, the activities of SAGA and SWI/SNF,

and perhaps INO80.com (Steger et al., 2003) and NuA4 (Nourani et al., 2004), are

prerequisites for PHO5 promoter induction. Thus, Gcn5 and SWI/SNF function is
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required at low levels of activator binding, which probably reflects conditions of Pi

depletion in natural environments that are not devoid of Pi.

Increasing the nuclear level of Pho4 at successively lower concentrations of Pi

(Figure 2-3) provides an effective means to mount a response of the appropriate

magnitude (Figure 2-4). Under extreme conditions of no Pi, a robust level of activator

binding drives recruitment of multiple remodeling activities by simple chemical

principles, ensuring chromatin disruption and transcription. In good agreement with this

model, we have observed a strong correlation between the extent of promoter occupancy

and chromatin disruption using a galactose-regulated allele of PHO4 (our unpublished

data). Moreover, loss of Gcn5 and SWI/SNF activity delay chromatin remodeling and

activation of PHO5 following Pi starvation (Barbaric et al., 2001; Barbaric et al., 2003;

Neef and Kladde, 2003). However, at higher levels of Pho4 binding, sufficient amounts

of chromatin modifiers and remodelers are recruited to suppress the need for a specific

activity (i.e. the transcriptional defects of single gcn5 and swi/snf mutants are not

observed). In such cases, Gcn5 and SWI/SNF appear to be fully redundant.

We also utilized an ectopic system to complement the results we observed in Pi -

depleted medium. To avoid concerns like positive feedback regulation of PHO81

potentially producing effects on PHO5 regulation, and possible differential rates of

intracellular Pi depletion, we used a modified doxycycline-regulatable tet-on system.  As

seen in Figure 2-6B, while the wild-type strain requires merely 0.05mg/ml of doxycycline

to activate reasonable levels of PHO5, the swi2D strain requires ten times that amount

(0.5mg/ml) before it can approach wild-type levels at the same concentration. This

demonstrates that the increased dependence on remodelers that we see in no-Pi media for
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swi2D strains also applies for a system that is ectopically regulated. We observed similar

results for a gcn5D strain (data not shown).

Possible global roles for coactivators

We show substantial recruitment of Gcn5 and Swi2/Snf2 to GAL1, genes involved

in protein synthesis (RPL19B, RPS22B, and EFT2), and a glycolytic promoter (PYK1)

(Figure 2-7), supporting the view that these coactivators have widespread roles in

transcription (Biggar and Crabtree, 1999). Recruitment occurs despite observations that

transcript levels of each of these genes are unaffected in gcn5 or swi2/snf2 mutants

(Holstege et al., 1998; Sudarsanam et al., 2000). Esa1 is also recruited to PHO5 (Nourani

et al., 2004) and ribosomal promoters (Reid et al., 2004). It was previously inferred that

the abundant ribosomal promoter activators Abf1 and Rap1 could recruit SAGA to

natural and foreign core promoters (Cheng et al., 2002). Our finding that Gcn5 directly

associates with RPL19B and RPS22B is consistent with this conclusion and shows that

SWI/SNF is directly recruited as well.

Why might chromatin modifiers and remodelers be recruited to such strongly

transcribed promoters? Robust recruitment and retention of coactivators may ensure that

an active chromatin configuration is established at critical promoters following deposition

of nascent chromatin in S phase. Alternatively, increasing evidence suggests that

chromatin remodelers are continuously required because there is a rapid, dynamic

equilibrium between active and repressive chromatin structures (Biggar and Crabtree,

1999; Sudarsanam et al., 1999; Boeger et al., 2003). Intriguingly, Gcn5 and SWI/SNF are

both enriched to similar levels at each promoter that we analyzed (Figs. 2-1 and 2-7).
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This strongly suggests that, in line with our working model, the ‘recruitment potential’ of

bound upstream activator(s) determines the quantity of complexes that are recruited to a

given promoter. Furthermore, by our model, changes in activator concentration, activator

DNA-binding domain/binding site affinity, and binding cooperativity are all expected to

modulate the transcriptional requirements for individual chromatin modifiers and

remodelers at various promoters. Additionally, weakening an activation domain renders

reporters with either nucleosomal or non-nucleosomal TATA elements more dependent

on activation by Gcn5 and SWI/SNF (Stafford and Morse, 2001), presumably due to a

decreased ability to recruit coactivators. We propose that each of these factors must be

evaluated to fully delimit the coactivator requirements of a given promoter.
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CHAPTER III

INTERACTIONS BETWEEN CHROMATIN REMODELING COMPLEXES

SAGA AND SWI/SNF AT THE BUDDING YEAST PHO5 PROMOTER

OVERVIEW

Previous studies have suggested the partial functional redundancy of the Gcn5

and Swi2 subunits of the chromatin remodelers SAGA and SWI/SNF, respectively. In

fact, at PHO5, it has been observed that deleting either SWI2 or GCN5 still allows wild-

type levels of activation after several hours of Pi starvation. While at early times of

induction both Swi2 and Gcn5 are required for PHO5 activation, they are not needed at

later times. Here, we demonstrate that Pho4 binding at the PHO5 promoter is delayed in

both gcn5D and swi2D cells with respect to wild type. While in the gcn5D strains, Pho4

levels at the promoter approach that of wild type at later times of Pi starvation, binding is

more impaired in swi2D strains. This delay in Pho4 binding at the promoter demonstrates

for the first time a mechanistic basis for the kinetic delay in PHO5 induction described

previously (Barbaric et al., 2001; Neef and Kladde, 2003).

We also find an increased level of SWI/SNF recruitment in a gcn5D strain, at later

times of Pi starvation. This is the first demonstration of an excess of a recruited ATP-

dependent remodeler possibly compensating for the lack of a HAT subunit. On the other

hand, in a swi2D strain, there is no significant increase in the level of Gcn5 association at

the promoter, possibly due to decreased Pho4 binding. Further, there is very little

SWI/SNF recruitment in an spt20D strain, which contains only a partially formed SAGA

complex. This suggests possible physical interactions of SWI/SNF with the SAGA
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complex, although recent evidence indicates that SWI/SNF is recruited independently of

SAGA (Natarajan et al., 1999). On the other hand, the decreased activity of an spt20D

strain might simply be due to low Pho4 binding at the PHO5 promoter, leading to

reduced recruitment of SWI/SNF. This would demonstrate a role for promoter occupancy

in defining physical and/or functional interactions of coactivator complexes at promoters.

In this chapter, I discuss the various interactions and possible interpretations of our data.

INTRODUCTION

Eukaryotic organisms establish programs of gene control by means of chromatin,

the complex of DNA with histones and other proteins that serves as a barrier to many

biological functions (Owen-Hughes and Workman, 1994). Chromatin is not static in

nature, but is a highly dynamic structure, compacting and unfolding in the cell in

response to external signals. The multisubunit complexes SWI/SNF and SAGA facilitate

transcription by remodeling the structure of chromatin, thus enabling access of

transactivators and the basal transcriptional machinery to DNA (Lee et al., 1993; Juan et

al., 1994; Vettese-Dadey et al., 1996). While SAGA effects disruption of higher-order

chromatin structure by acetylation of lysine residues of histone tails (Tse et al., 1998),

SWI/SNF performs the same task by utilizing the energy derived from ATP-hydrolysis to

generate superhelical torsion in DNA (Havas et al., 2000). It has been observed that

SAGA and SWI/SNF target many common genes for activation of transcription (Pollard

and Peterson, 1997). Evidence for the partial functional redundancy of SWI/SNF and

SAGA came from observations that deletion of many SAGA subunits is lethal in

combination with those of SWI/SNF components (Roberts and Winston, 1997; Sterner et
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al., 1999). Further, conditional inactivation of the ATPase subunit of SWI/SNF in a

gcn5D strain causes loss of expression of many genes, demonstrating that they act in

independent but partially redundant pathways (Biggar and Crabtree, 1999). A

mechanistic interpretation of this data is rendered difficult, as the loss of both Gcn5 and

Swi2 function is synthetically lethal in most genetic backgrounds.

Several studies have demonstrated the interdependence of SWI/SNF and SAGA.

At the yeast HO promoter, for instance, SWI/SNF is recruited prior to SAGA (Cosma et

al., 1999; Krebs et al., 2000). However, evidence from other labs indicated that HATs can

acetylate nucleosomal arrays and effect transcription without prior SWI/SNF recruitment

(Utley et al., 1998; Ikeda et al., 1999). Further, several groups observed the opposite

phenomenon, i.e. acetylation of histones prior to SWI/SNF recruitment. Our own studies

(see Chapter II, Figure 2-1) showed that, at the yeast PHO5 promoter, there is substantial

recruitment of Gcn5 prior to SWI/SNF. Recent work demonstrated that the activator NF-

kB is the first to arrive at the interferon-b (IFN-b) promoter, ~2 h post-infection. The

GCN5/PCAF HAT complex is recruited next (3 h post-infection), while SWI/SNF does

not arrive at the promoter until about 6 h after infection (Agalioti et al., 2000). It is of

interest to note that SWI/SNF recruitment proceeds without histone acetylation if

multiple copies of NF-kB binding sites are available at the promoter (Agalioti et al.,

2000), suggesting a role for increased factor levels, i.e. promoter occupancy, in

facilitating recruitment. This could also mean that activators with high affinity for

SWI/SNF would bypass the need for histone acetylation by achieving sufficient

recruitment of SWI/SNF. The yeast activator Gcn4 has been shown interact specifically

with SWI/SNF, independently of SAGA and mediator (Natarajan et al., 1999). It is
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interesting to note that higher GST–Gcn4p concentrations were needed for specific

binding of SWI/SNF subunits in yeast extracts than were needed for binding of SAGA or

SRB/mediator subunits.  This could imply one of two possibilities; a) the activator Gcn4

has a higher affinity for SAGA and mediator than for SWI/SNF, or b) that the levels of

SAGA in the cell are higher on average compared to SWI/SNF.

The yeast PHO5 promoter has been studied extensively to dissect the relationship

between chromatin remodeling and transcriptional activators. While early studies

revealed that deletion of SWI2 and GCN5 had little or no effect on full activation of

PHO5 (Gaudreau et al., 1997; Gregory et al., 1998b; Barbaric et al., 2001; Barbaric et al.,

2003; Neef and Kladde, 2003), it was later found that gcn5D strains show a delay in

induction (Barbaric et al., 2001; Neef and Kladde, 2003) as do swi2D strains (Neef and

Kladde, 2003). Deletion of ADA2 had the same effect as deletion of GCN5 on PHO5

expression. However, loss of other SAGA subunits, most significantly Spt20 and Spt7,

were found to decrease PHO5 expression, and to a lesser extent, Spt3 (Barbaric et al.,

2003). Studies presented in Chapter II have revealed the importance of promoter

occupancy in determining requirements for chromatin-remodeling complexes at PHO5.

We also showed that both the Gcn5 and Swi2/Snf2 subunits are recruited to PHO5

subsequent to activator binding in a Pi-starvation dependent manner (compare Figure 2 -1

to 2-2). At initial points in Pi starvation, there is less promoter occupancy of Pho4, the

main PHO5 transactivator. However, at later times, Pho4 levels at the promoter approach

wild-type levels in the mutant gcn5D but not swi2D strains, although the level of Pho4 is

unaffected by loss of either coactivator (Figure 2-5). The intriguing question of why

PHO5 activation in a gcn5D or swi2D strain attains wild-type levels after many hours of
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Pi starvation still remains. While there have been many reports suggesting partial

functional redundancy of SWI/SNF and SAGA, the effects of deleting either GCN5 or

SWI2 on the recruitment of SWI/SNF and SAGA have not been investigated. We tested

how deletion of SAGA subunit Gcn5 affected recruitment of SWI/SNF. We show here

that in a gcn5D strain, there is twice as much SWI/SNF recruited to the PHO5 promoter

compared to a wild-type strain after prolonged Pi starvation. On the other hand, Gcn5

recruitment to the PHO5 promoter is unaffected in a swi2D strain.  Further, we show that

this increased SWI/SNF recruitment is barely detectable in strains lacking the Spt20

subunit of SAGA. Deletion of GCN5 does not result in loss of the entire SAGA complex

(Sterner et al., 1999; Wu et al., 2004), but loss of SPT20 leads to a severe reduction in the

number of SAGA subunits, although partial complexes still assemble (Wu et al., 2004).

However, these partial complexes do not contain Gcn5, the main HAT subunit; Tra1,

which interacts with activators (Grant et al., 1998); or Spt3, which is needed for TBP-

interaction (Eisenmann et al., 1992; Roberts and Winston, 1997; Sterner et al., 1999; Lee

et al., 2000). This lack of SWI/SNF binding could be merely due to decreased Pho4

binding at the promoter, since rAPase activity does not achieve wild type levels.

 Thus, although SWI/SNF and SAGA have been shown to be partially redundant,

this is the first instance where enhanced recruitment of an ATP-dependent remodeler

potentially compensates for the lack of a HAT subunit. Our data are noteworthy because

SWI/SNF does not appear to require the presence of Gcn5 to bind at later points in the

time course of phosphate starvation, Gcn5 is needed earlier, when activator levels are low

at the promoter. This correlates well with earlier studies that showed SWI/SNF

recruitment occurred independent of Gcn5 provided there was sufficient activator present
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(Natarajan et al., 1999; Agalioti et al., 2000; Dilworth et al., 2000). We also find that in

swi2D strains, the level of Gcn5 recruitment is unchanged relative to wild-type cells.

However, the rAPase activity approaches wild-type levels after many hours of Pi

starvation. The lower levels of Pho4 binding in swi2D strains compared to gcn5D strains

might explain why there is no increase in Gcn5 recruitment. Our finding that Pho4

binding is delayed at the PHO5 promoter in gcn5D and swi2D cells relative to wild type

demonstrated the mechanistic basis for the kinetic delay in activation observed

previously.

MATERIALS AND METHODS

Yeast media, growth conditions, and rAPase activity assays

Defined, Pi-free medium (pH 5.5) was prepared as described (Neef and Kladde,

2003), except that it was supplemented with complete synthetic mix (CSM, Bio101). All

starter cultures were grown in this medium with KH2PO4 (Pi) added back to 13.4 mM.

For time courses, cells were washed and transferred to activating medium without Pi.

rAPase activity was assayed as previously described (Neef and Kladde, 2003).

ChIP analysis

All yeast strains used in this study are listed in Table 3-1. ChIP was performed as

described in Chapter II. Cultures (50 mL) were grown at 30°C with shaking for the

indicated times and then were fixed at room temperature for 15 min by adding

formaldehyde to a 1% final concentration. Cross-linking was quenched by addition of

glycine to a final concentration of 125 mM and incubating for 5 min at room temperature.
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Table 3-1.  S. cerevisiae strains.

Strain Genotype a, b

MRY3207 MATa leu2D0 lys2D0 ura3D0 pho3D::R gcn5D::kanMX4  SWI2-13myc-kanMX4
can1D::pho5pro DUASs-LEU2

MRY3223 MATa leu2D0 lys2D0 ura3D0 pho3D::R SWI2-13myc-kanMX4 can1D::pho5pro

DUASs-LEU2

ADY2695 MATa leu2D0 lys2D0 ura3D0 pho3D::R 3myc-PHO4 swi2D::kanMX4
CAN1:pho5pro DUASs-LEU2

ADY2700 MATa leu2D0 lys2D0 ura3D0 pho3D::R 3myc-PHO4 CAN1:pho5pro DUASs-LEU2

ADY2701 MATa leu2D0 lys2D0 ura3D0 pho3D::R CAN1:pho5pro DUASs-LEU2

ADY2719 MATa leu2D0 lys2D0 ura3D0 pho3D::R 3myc-PHO4 gcn5D::kanMX4
CAN1:pho5pro DUASs-LEU2

ADY2727 MATa leu2D0 lys2D0 ura3D0 pho3D::R 3myc-PHO4 CAN1:pho5pro DUASs-LEU2

MRY3219 MATa leu2D0 lys2D0 ura3D0 pho3D::R SWI2-13myc-kanMX4 can1D::pho5pro

DUASs-LEU2

ADY3384 MATa leu2D0 lys2D0 ura3D0 pho3D::R SWI2-13myc-kanMX4 can1D::pho5pro

DUASs-LEU2 spt20::R-URA3-R

ADY3398 MATa leu2D0 lys2D0 ura3D0 pho3D::R GCN5-13myc-kanMX4 CAN1:pho5pro

DUASs-LEU2

ADY3399 MATa leu2D0 lys2D0 ura3D0 pho3D::R swi2D::kanMX4  GCN5-13myc-kanMX4
CAN1:pho5pro DUASs-LEU2

a The superscript ‘pro’ indicates promoter.
b R is a Zygosaccharomyces rouxii recombinase site that remains after intramolecular
recombination (Roca et al., 1992).

Radiolabeled PCR products were electrophoresed on a 5% nondenaturing polyacrylamide

gel at 5 W for 3 h, and visualized by a Storm 860 phosphorimager (Molecular

Dynamics), and quantified by ImageQuant software. For PHO5 sequences, a single

primer pair [(ADO236; CATGTAAGCGGACGTC; –456 to –441 relative to the PHO5

ATG translation start) and (LFO740; GCCTTGCCAAGTAA-GGTGAC; –173 to –154)]

was used to amplify the endogenous UASs of the PHO5 promoter as well as a negative

control PHO5 promoter region (pho5 DUASs) by quantitative, competitive PCR. This

negative control contains PHO5 sequences from –1537 to +9 with two 50-bp deletions



61

(encompassing UASp1 and UASp2 from -401 to -352 and -258 to -209, respectively),

and was integrated either by gene replacement of (strains MRY3207 and MRY3223) or

loop in at (strains ADY2695, ADY2701, ADY2719, ADY2727, ADY2915, ADY2921,

and ADY2923) the CAN1 locus (Carvin et al., 2003a). To quantitate binding at the

promoter, the ratio of the PHO5 promoter PCR product to that of the control band was

determined.

RESULTS

Pho4 association at the PHO5 promoter is delayed in gcn5D strains

Many eukaryotic genes have differential requirements for the chromatin-

remodeling complexes SWI/SNF and SAGA (Holstege et al., 1998; Biggar and Crabtree,

1999; Sudarsanam et al., 2000). The induction of the Saccharomyces cerevisiae PHO5

gene approaches wild-type levels in either swi2D or gcn5D strains (Gaudreau et al., 1997;

Gregory et al., 1998b; Barbaric et al., 2001; Barbaric et al., 2003; Neef and Kladde,

2003). However, the kinetics of PHO5 induction are strongly dependent on Gcn5 and

SWI/SNF (Barbaric et al., 2001; Barbaric et al., 2003; Neef and Kladde, 2003). We have

also shown that levels of Pho4 at the promoter influence requirements for these

remodelers (see Chapter II). To evaluate the reason for the kinetic delay in PHO5

induction in these mutant strains, we determined levels of Pho4 binding at the PHO5

UASs at various times following starvation for Pi. Wild-type and gcn5D  strains

containing 3myc-tagged Pho4 were initially grown in CSM +Pi medium and then

transferred to CSM no-Pi medium. Aliquots of cells were periodically removed and

assayed for repressible acid phosphatase (rAPase) activity as previously described (Neef
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and Kladde, 2003) and for ChIP analysis of 3myc-Pho4 binding using the A-14 anti-myc

antibody.

The rAPase activities reveal that at early times of induction, activation of the

PHO5 promoter is delayed in the gcn5D strain compared to the wild type (Figure 3-1A)

as previously reported (Barbaric et al., 2001; Barbaric et al., 2003; Neef and Kladde,

2003). As seen in Figure 3-1 B and C, Pho4 is observed at the promoter within 2 h of Pi

starvation in the wild-type cells but is detectable only around 4 h in the mutant gcn5D

strain. It also takes longer to achieve near wild-type levels of Pho4 binding at the

promoter.

Pho4 association at the PHO5 promoter is delayed in swi2D strains and does not equal

wild-type levels

Strains deleted for SWI2 coding for the ATPase subunit of the SWI/SNF complex

also exhibit a kinetic delay in PHO5 induction with respect to wild-type cells (Neef and

Kladde, 2003). We wanted to assess whether a similar delay in Pho4 binding occurred in

swi2D relative to wild-type cells. As seen for the gcn5D strain, the rAPase activity

revealed that there was a delay in PHO5 induction in the swi2D strain compared to the

wild type. ChIP analysis at the PHO5 promoter of internal aliquots of cells used in Figure

3-2A revealed that Pho4 binding is delayed in swi2D strains with respect to the wild-type

cells, requiring nearly 6 h for significant Pho4 binding to be detected. It is noteworthy

that the swi2D strain fails to achieve wild-type levels of binding, even after several hours

of Pi starvation, levels of bound Pho4 are well below that of wild type. This is very

different from what is seen with the gcn5D strain, and indicates a greater role for
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Figure 3-1. Pho4 binding at the PHO5 promoter is delayed in a gcn5D strain.

(A ) Time course of PHO5 activation following transfer from high- to no-Pi medium. WT
(ADY2727) and gcn5D (ADY2719) cells were harvested at the indicated times and assayed for
rAPase activity. (B) Internal aliquots of cells from the WT and gcn5D cultures assayed in A were
subjected to ChIP analysis (see Materials and methods) at the indicated times of induction. DNA
immunoselected with anti-myc antibody against 3myc-tagged Pho4 from formaldehyde cross-
linked chromatin (all lanes except lane 1) was analyzed for the presence of PHO5 and negative
control (pho5 DUASs) sequences by quantitative, competitive PCR. The negative control
promoter has deletions of both UASp1 and UASp2 and thus is unable to bind Pho4 (Carvin et al.,
2003). A wild-type strain (ADY2701) was starved of Pi for 18 h and carried in parallel through all
steps to serve as an untagged (no tag) specificity control. Non-immunoselected DNA (input, lane
1) was obtained from the 18-h culture of WT 3myc-Pho4 cells following cross-linking and was
diluted 1:200 for PCR amplification. The ramp indicates inclusion of half as much
immunoselected DNA in the PCR amplification and demonstrates linearity. (C) Relative amounts
of bound Pho4 as determined by ratios of the PHO5 promoter PCR product to that of the pho5
DUASs.



64

Figure 3-2. Pho4 binding at the PHO5 promoter is delayed in a swi2D strain and does not
achieve wild-type levels of binding.

(A) Time course of PHO5  activation following transfer from high- to no-Pi medium. WT
(ADY2727) and swi2D (ADY2695) cells were harvested at the indicated times and assayed for
rAPase activity. (B) Internal aliquots of cells from the WT and swi2D cultures assayed in A were
subjected to ChIP analysis (see Materials and methods) at the indicated times of induction. DNA
immunoselected with anti-myc antibody against 3myc-tagged Pho4 from formaldehyde cross-
linked chromatin (all lanes except lane 1) was analyzed for the presence of PHO5 and negative
control (pho5 DUASs) sequences by quantitative, competitive PCR as in Figure 3-1. A wild-type
strain (ADY2701) was starved of Pi for 18 h and carried in parallel through all steps to serve as an
untagged (no tag) specificity control. Non-immunoselected DNA (input, lane 1) was obtained
from the 18-h culture of WT 3myc-Pho4 cells following cross-linking and was diluted 1:200 for
PCR amplification. The ramp indicates inclusion of twice as much immunoselected DNA in the
PCR amplification and demonstrates linearity. (C ) Relative amounts of bound Pho4 as
determined by ratios of the PHO5 promoter PCR product to that of the pho5 DUASs.
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SWI/SNF in facilitating chromatin remodeling and activator binding at the PHO5

promoter.

Increased amounts of SWI/SNF recruitment in a gcn5D strain after many hours of Pi

starvation

Although the mutant strains swi2D and gcn5D are delayed in PHO5 activation,

they achieve wild-type levels of rAPase activity at later points in the time course

(Barbaric et al., 2001; Neef and Kladde, 2003). Given the evidence for partial functional

redundancy of SWI/SNF and SAGA complexes, we tested whether more SWI/SNF is

recruited in a gcn5D strain to the PHO5 promoter, thus bypassing the need for histone

acetylation by SAGA. The strains MRY42 (GCN5 SWI2-13myc) and MRY26 (gcn5D

SWI2-13myc) were grown in CSM high-Pi medium and then washed and transferred to

CSM no-Pi medium. Aliquots of cells were removed at various times to assay for rAPase

activity and for SWI/SNF recruitment by ChIP analysis. As seen before (Figure 3-1 A;

(Barbaric et al., 2001; Neef and Kladde, 2003), we find that at early times in Pi starvation

there is less rAPase activity in the gcn5D strain compared to the wild-type strain (Figure

3-3A). Also, at early times of Pi starvation there is less Swi2 associated at the PHO5

promoter in the gcn5D strain compared to the wild-type strain (Figure 3-3B).

However, strikingly, at later time points, we see that there is almost twice as much Swi2

recruitment in the gcn5D strain compared to the wild-type strain (Figure 3-3C). This

seemed indicative of two things: one, that Swi2 does not require the presence of Gcn5

inorder to be recruited to the PHO5 promoter, provided that sufficient levels of Pho4

associate at the promoter at later times of induction (Figure 3-1 B and C). Secondly, the
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Figure 3-3. Increased recruitment of SWI/SNF in a gcn5D strain after many hours of Pi

starvation.

(A) Time course of PHO5  activation following transfer from high- to no-Pi medium. WT
(MRY3223) and gcn5D (MRY3207) cells were harvested at the indicated times and assayed for
rAPase activity. (B) Internal aliquots of cells from the WT and swi2D cultures assayed in A were
subjected to ChIP analysis (see Materials and methods) at the indicated times of induction. DNA
immunoselected with anti-myc antibody against Swi2-13myc from formaldehyde cross-linked
chromatin (all lanes except lane 1) was analyzed for the presence of PHO5 and negative control
(pho5 DUASs) sequences by quantitative, competitive PCR as in Figure 3-1. A wild-type strain
(ADY2701) was starved of Pi for 18 h and carried in parallel through all steps to serve as an
untagged (no tag) specificity control. Non-immunoselected DNA (input, lane 1) was obtained
from the 20 h culture of WT  cells following cross-linking and was diluted 1:200 for PCR
amplification. The ramp indicates inclusion of twice as much immunoselected DNA in the PCR
amplification and demonstrates linearity. (C) The ratio of PHO5 to negative control (pho5
DUASs) product indicates the relative enrichment of each coactivator at the promoter.
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increased recruitment of Swi2 in a gcn5D strain suggests a competition between

SWI/SNF and SAGA for the Pho4 activator surface.

Loss of Swi2 binding at the PHO5 promoter in an spt20D strain

While deletion of Gcn5 does not cause any major perturbation to SAGA, deletion of

Spt20 results in the formation of a partial complex that lacks many of the major subunits,

including Tra1, Gcn5 and Spt3 (Wu et al., 2004). The activation domains of many acidic

activators have been shown to interact with Tra1 (Brown et al., 2001). Therefore, such a

partially formed SAGA complex is not expected to be recruited to the PHO5 promoter in

spt20D strains. In gcn5D cells, SAGA might potentially serve as a competitor for Swi2 to

some extent. We reasoned that if SAGA were truly competing with SWI/SNF, then

deletion of Spt20 should result in increased recruitment of Swi2 to the PHO5 promoter as

well. Hence we performed rAPase and ChIP assays in both wild-type and spt20D strains

to detect Swi2-13myc association at the PHO5 promoter. Surprisingly, we observed that

in an spt20D strain, there is very low to undetectable amounts of Swi2 even after 14 h of

Pi starvation (Figure 3-4). The wild type, in contrast, was enriched for the presence of

SWI/SNF. Given that the rAPase levels are also low in an spt20D strain, it is quite

possible that there is less Pho4 binding, which would account for the absence of Swi2 at

the PHO5 promoter. However, this remains to be tested. There is also the possibility of

less Pho4 protein levels in the spt20D strains.

Gcn5 recruitment at the PHO5 promoter is unaffected in a swi2D strain
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While swi2D strains have lower levels of Pho4 binding compared to wild-type

strains (Figure 3-2 B and C), their ability to induce PHO5 appears to be unaffected once a

threshold level of activator binding is achieved. To discern the reason for the increase in

rAPase activity after many hours of Pi starvation, we tested whether there is improved

recruitment of Gcn5 in swi2D strains compared to the wild type, which might bypass the

necessity for an active SWI/SNF complex. After growth in CSM no-Pi medium for a

period of 20 h, we assayed wild-type and swi2D cells for rAPase activity. ChIP was

performed as before from internal aliquots utilizing the A-14 anti-myc antibody against

Gcn5-13myc. The rAPase activity is fairly unchanged in both strains, and we also find

that Gcn5 was recruited to similar levels in both strains. This begs the question by what

means are wild-type levels of rAPase activity achieved in a swi2D strain, if not increased

recruitment of Gcn5? It is possible that there is increased recruitment of the other ATP-

dependent remodeler known to be recruited to PHO5, INO80.com (Steger et al., 2003).

Alternatively, at high concentrations of promoter-bound Pho4, there might be sufficient

recruitment of the basal transcriptional machinery that might be sufficient to disrupt

chromatin structure and allow wild-type levels of expression as suggested previously

(Gaudreau et al., 1997).
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Figure 3-4. Loss of SWI/SNF binding at the PHO5 promoter in an spt20D strain

 (A) PHO5 activation in high- and no-P i medium. WT (MRY3219) and spt20D (ADY3384) cells
were harvested after 18 h of growth in high- and no-Pi medium and assayed for rAPase activity.
(B) Internal aliquots of cells from the WT and spt20D cultures assayed in A were subjected to
ChIP analysis (see Materials and methods). DNA immunoselected with anti-myc antibody against
Swi2-13myc from formaldehyde cross-linked chromatin (all lanes except lane 1) was analyzed
for the presence of PHO5  and negative control (pho5 DUASs) sequences by quantitative,
competitive PCR as in Figure 3-1. A wild-type strain (ADY2701) was starved of Pi for 18 h and
carried in parallel through all steps to serve as an untagged (no tag) specificity control. Non-
immunoselected DNA (input, lane 1) was obtained from the 18 h culture of WT cells grown in +Pi

medium following cross-linking and was diluted 1:200 for PCR amplification. The ramp indicates
inclusion of twice as much immunoselected DNA in the PCR amplification and demonstrates
linearity.
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DISCUSSION

In this study, we aim to further define the interplay between the chromatin-

remodeling complexes SWI/SNF and SAGA at the PHO5  promoter. While both

complexes have been shown to be physically present at the PHO5 promoter (Barbaric et

al., 2003), deletion of one or the other subunits seemed not to have drastic effects on

PHO5 activation at high activator levels at the promoter (see Chapter II). An interesting

question is how the cell compensates for the lack of one or the other subunit. While the

presence of other chromatin-remodeling complexes has been demonstrated at PHO5

(Steger et al., 2003; Nourani et al., 2004), we asked whether the lack of Gcn5 was

compensated for by increased recruitment of Swi2. This hypothesis was based on the

evidence from many labs that Swi2 and Gcn5 are functionally redundant (Biggar and

Crabtree, 1999; Sudarsanam et al., 1999), although they are mechanistically different in

their mode of action. We find that at early times of activation in a gcn5D strain (when

Pho4 levels at the promoter are low), Swi2 recruitment is barely detected at the PHO5

promoter (Figure 3-3). However, at later times of Pi starvation, when there is increased

Pho4 binding at the promoter, SWI/SNF recruitment does not require Gcn5 activity. We

also find that there is twice as much Swi2 recruited in a gcn5D strain compared to the

wild type at later times of activation. This is suggestive of a competition between SAGA

and SWI/SNF for interaction with the activator surface. On the other hand, deletion of

SPT20 (which eliminates many subunits from SAGA) leads to diminished SWI/SNF

recruitment to PHO5 even after several hours of starvation for Pi  (Figure 3-4). This might

be due to decreased Pho4 binding, but that remains to be tested. We also find that there is

no change in Gcn5 recruitment to the PHO5 promoter in a swi2D strain relative to the
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wild type (Figure 3-5). Possibly, swi2D strains achieve wild-type levels of PHO5 activity

by recruitment of the INO80 complex, another ATP-dependent chromatin remodeler, or

by some other means.

Pho4 binding at the PHO5 promoter is delayed in swi2D and gcn5D strains

 At the yeast PHO5 promoter, multiple complexes function together to effect

nucleosome remodeling leading to gene expression in conditions of low Pi. Following the

initial binding of the activators Pho4 and Pho2, a number of chromatin remodeling

machines are recruited to the PHO5 promoter, including SAGA, SWI/SNF, INO80.com

and NuA4. Of these complexes, the effects of both SWI/SNF and SAGA on PHO5 have

been widely studied. Both GCN5 (Barbaric et al., 2001; Neef and Kladde, 2003) and

SWI2 (Neef and Kladde, 2003) deletions influence the kinetics of induction and

remodeling of PHO5 at early times of activation, although they have little to no effect on

full levels of activation at later times.

Of the two, Gcn5 is the first to be recruited to the PHO5 promoter, while Swi2 is

detected soon afterward (Figure 2-1). The reason for the kinetic delay in PHO5 activation

in swi2D or gcn5D strains is consistent with our observation that there is less Pho4 at the

promoter during early times of Pi starvation (Figures 3-1 and 3-2). Of the two Pho4

binding sites at the PHO5 promoter, one lies in the middle of nucleosome –2. Thus, only

at sufficient activator concentrations would recruitment of chromatin remodelers be high

enough that chromatin remodeling would expose the Pho4 binding site in nucleosome –2.

Hence this data fits very well with our current knowledge of PHO5  promoter

architecture. An interesting observation is that while the levels of Pho4 at the promoter in
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Figure 3-5.  Gcn5 recruitment to the PHO5 promoter is unchanged in a swi2D strain.

(A) PHO5 activation in high- and no-Pi medium. WT (MRY3219) and spt20D (ADY3384) cells
were harvested after 18 h of growth in high- and no-Pi medium and assayed for rAPase activity.
(B) Internal aliquots of cells from the WT and spt20D cultures assayed in A were subjected to
ChIP analysis (see Materials and methods). DNA immunoselected with anti-myc antibody against
Swi2-13myc from formaldehyde cross-linked chromatin (all lanes except lane 1) was analyzed
for the presence of PHO5  and negative control (pho5 DUASs) sequences by quantitative,
competitive PCR as in Figure 3-1. A wild-type strain (ADY2701) was starved of Pi for 18 h and
carried in parallel through all steps to serve as an untagged (no tag) specificity control. Non-
immunoselected DNA (input, lane 1) was obtained from the 18-h culture of WT cells grown in
+Pi medium following cross-linking and was diluted 1:200 for PCR amplification. The ramp
indicates inclusion of twice as much immunoselected DNA in the PCR amplification and
demonstrates linearity.
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 the gcn5D strains approximate wild-type levels (although delayed), the swi2D strains

exhibit a much lower level of binding, even after several hours of Pi starvation.

The question then remains, how do the gcn5D and swi2D strains compensate for

the loss of the other subunit? Is the delay merely due to delayed activator binding due to

the absence of one out of the four remodelers that are known to be recruited, or is there

an alternative explanation? We sought to answer this question by determining SWI/SNF

recruitment in a gcn5D strain.

Increased recruitment of SWI/SNF at the PHO5 promoter in a gcn5D strain

When we observe SWI/SNF recruitment for several hours after Pi starvation in

wild-type and gcn5D cells, we find that there is twice as much recruitment of the ATP-

dependent remodeler in a gcn5D strain. This additional recruitment potentially bypasses

the need for Gcn5. This is the first demonstration of an ATP-dependent remodeler

potentially compensating for the lack of a HAT complex. It is however worthwhile to

determine whether there is truly a decrease in acetylation at the PHO5 promoter, or

whether there is additional recruitment of other HATs, for instance NuA4, which has

already been shown to be recruited to PHO5 (Nourani et al., 2004).

How can an ATP-dependent remodeler compensate for the loss of a HAT

subunit? SWI/SNF has also been shown to function at many of the genes at which SAGA

plays an important role (Pollard and Peterson, 1997). It has been demonstrated that

deletion of many SWI/SNF subunits are lethal in combination with those of SAGA or the

mediator complex (Roberts and Winston, 1997). Further, they are also lethal in

combination with TATA-binding protein (TBP) mutants as well as the architectural
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transcription factors Nhp6a and Nhp6b (Yu et al., 2000; Biswas et al., 2004). Previous

work has demonstrated that SWI/SNF and SAGA both interact with TBP and the

transcriptional machinery. SWI/SNF stimulates TBP and TFIIA binding to a nucleosomal

TATA site in vitro (Imbalzano et al., 1994), while histone acetylation has been shown to

facilitate TBP binding (Biswas et al., 2004). Perhaps SWI/SNF compensates for the lack

of acetylation by increased TBP recruitment.

Is the increased SWI/SNF recruitment truly compensating for the lack of Gcn5?

Unfortunately, the synthetic lethality of swi2D gcn5D strains precludes the simplest way

to test this. A potential way to test this hypothesis would be to utilize partial loss-of-

function mutants of SWI/SNF subunits, which do not impair the ATPase function, but

only the recruitment. The increased recruitment of SWI/SNF in a gcn5D strain is

suggestive of a competition between SWI/SNF and SAGA for interaction with the

activator surface. However, prior work indicates that they are recruited independently of

each other (Natarajan et al., 1999). Also, Gcn5 is recruited prior to Swi2 at PHO5 (Figure

2-1).  Interactions of SWI/SNF with Gcn4 in vitro were observed at higher GST–Gcn4

concentrations than were needed for SAGA binding (Natarajan et al., 1999). This

suggests that: a) some proteins have higher affinity for SAGA than for SWI/SNF, or,

alternatively, b) the levels of SAGA in the cell are higher as compared to SWI/SNF. If

there were truly a competition between SWI/SNF and SAGA for interaction with the

activator surface, we reasoned that in an spt20D strain, which contains only a partially

formed SAGA complex (Wu et al., 2004), we should see a further increase in SWI/SNF

recruitment.
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SWI/SNF recruitment is undetectable in an spt20D strain

In a gcn5D strain, the integrity of the rest of the SAGA complex is still maintained

(Wu et al., 2004). Hence, in this strain, SWI/SNF is still in somewhat of a competition

with SAGA, since subunits in the complex like Tra1 can still interact with the activator.

If there is competition between Swi2 and Gcn5, then in an spt20D strain, which results in

a partial, but more minimal SAGA complex than a gcn5D strain (Wu et al., 2004), there

should be much more SWI/SNF recruitment. To our surprise, we saw quite the contrary:

less SWI/SNF was recruited to the PHO5 promoter; being barely discernible by ChIP.

This suggests that SWI/SNF needs some subunit in SAGA, but not Gcn5, in order to

stably associate with the PHO5 promoter. An alternative explanation is that there might

be less association of Pho4 with the promoter, which might explain the inability to recruit

as much SWI/SNF, however this remains to be determined.

How is SWI/SNF targeted to promoters? It has been shown that SWI/SNF can

bind non-specifically to DNA and nucleosomes (Quinn et al., 1996; Côté et al., 1998),

and specifically through interactions with activators such as VP16, Gcn4, Hap4, Gal4,

Pho4 and Swi5 (Neely et al., 1999; Yudkovsky et al., 1999; Neely et al., 2002). Of the

various subunits of the SWI/SNF complex, three have been shown to be involved in

interactions with acidic activation domains: Tra1, the largest subunit that is found in both

SAGA and NuA4 (Brown et al., 2001); Snf5, through its N-terminal domain; and Swi1

by virtue of its second quarter (Prochasson et al., 2003). It was found that deletion of the

activator-interacting domains of these subunits left SWI/SNF ATPase function intact but

impaired its recruitment. Individual deletions of each activator-interacting domain did not

yield a swi- phenotype, i.e. they did not display any major phenotypic changes such as
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growth deficiencies on media lacking inositol or raffinose or containing sulfometuron

methyl, which inhibits amino acid biosynthesis. However, deletion of both domains

resulted in rather strong SWI/SNF phenotypes (Prochasson et al., 2003). Hence we can

make a prediction that if SAGA is in direct competition with SWI/SNF for activator

interaction surfaces, then in a gcn5D strain, mutations in either of these subunits should

now reduce the association of SWI/SNF with the activator. It will be informative to test

this model and determine the extent to which the single and double deletions affect PHO5

activation. In other words, does partial impairment of SWI/SNF recruitment decrease the

ability to bypass the loss of Gcn5? This will demonstrate that the additional recruitment

of SWI/SNF in a gcn5D strain is required for activation of PHO5 after prolonged Pi

starvation.

Bromodomains are found in many chromatin remodeling complexes and have

been implicated in binding to acetylated lysine residues (Dhalluin et al., 1999; Ornaghi et

al., 1999; Hudson et al., 2000; Jacobson et al., 2000; Owen et al., 2000). The

bromodomain found in Gcn5 was shown to be essential for Swi2-dependent nucleosome

remodeling and transcriptional activation. The Gcn5 bromodomain has also been shown

to stabilize SWI/SNF interaction at the promoter of an artificial gene in vivo (Syntichaki

et al., 2000). It is worth investigating what role the Gcn5 bromodomain plays in

SWI/SNF recruitment to the PHO5 promoter.
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CHAPTER IV

SUMMARY AND CONCLUSIONS

FACTORS DICTATING CHROMATIN-REMODELING REQUIREMENTS

Studies over the years have proposed various means by which cells regulate

expression of their genes. In the past, the various processes from transcription to the

formation of a polypeptide were traditionally viewed as subsequent steps in a linear

pathway. All that has changed, and today we find an increasing amount of evidence for

the inter-dependence of several biological events. While genetic studies link together

proteins that function in pathways, biochemical data reveal physical evidence of protein-

protein interactions. Thus, the formerly ‘linear’ path from gene to protein has several

stages that are interconnected and this allows a finer degree of control at many steps

along the route (Orphanides and Reinberg, 2002).

Chromatin is a key player in gene expression, mainly because it functions at the

starting point.  Once thought of as merely a neat solution to the packaging problem, it is

now recognized as much more of a dynamic structure, playing a role in many vital

cellular processes. Not all chromatin is created equal, and depending on the placement of

eukaryotic genes in euchromatic or heterochromatic regions, they will be

transcriptionally active, or not (Richards and Elgin, 2002). Even within the euchromatic

regions, based on where the factor-binding sites are situated, the gene may or may not

show increased dependence on chromatin-remodeling complexes. An intriguing question

is that while activators have been shown to bind prior to recruitment of chromatin-
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remodelers (Utley et al., 1998; Ikeda et al., 1999), how do the activators bind to DNA to

begin with?  The answer lies in two facets of transactivator binding.

First, the sequence that an activator recognizes might be in an exposed region of

DNA, i.e. the UASp1 Pho4-binding site, to which the activator can bind since it is non-

nucleosomal.  Factors like the glucocorticoid receptor that bind only to a short DNA

sequence, and only to one side of the double helix (in the major groove) can recognize

their sequence even on placement in a nucleosome (reviewed in Urnov and Wolffe,

2001). Other activators like nuclear factor 1(NF1) bind to a longer DNA sequence and

completely surround the double helix, thus requiring more assistance with unraveling

chromatin (reviewed in Urnov and Wolffe, 2001). Our experiments in Chapter II

demonstrate that levels of factor binding influence the requirements for chromatin-

remodeling coactivators. Further, changes in activator concentration, activator DNA-

binding domain/binding site affinity, and binding cooperativity are all expected to

modulate the transcriptional requirements for individual chromatin modifiers and

remodelers at various promoters. An interesting thought is that promoters of genes that

need to be highly transcribed potentially have several strong activator binding sites, thus

facilitating rapid expression. This is borne out by our evidence in Chapter II that shows

strong SWI/SNF and SAGA recruitment to ribosomal and glycolytic pathway promoters

(Figure 2-7).

A COMPETITION MODEL TO EXPLAIN FUNCTIONAL REDUNDANCY

A vast array of interactions exists at the PHO5 promoter (Figure 4-1). First, there

is competition for the UASp2 site between the nucleosome and Pho4/Pho2. Nucleosomes
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are thought to alternate between a stable conformation and an intermediate, unstable form

(Anderson et al., 2002; Li and Widom, 2004). Thus, activator-binding sites are constantly

being exposed and protected, and a competition exists between a nucleosome and an

activator for specific sites in DNA. Secondly, SWI/SNF and SAGA also collaborate to

compete off the nucleosome. Chromatin remodelers appear to be of greater importance

when activator-binding sites are nucleosomal. Therefore, at a promoter like PHO5, which

recruits no less than four different remodeling complexes, activation (or at least the rate

of activation) is affected if even one is absent.

One can thus envision the possibility of there being increased recruitment of one

or the other complex in such a scenario, in order to achieve full rates of activation. Indeed

this seems to be the case in a gcn5D strain, when at later time points of Pi starvation,

increased recruitment of SWI/SNF (Figure 3-3) is observed. At early points, however,

when activator binding is low, there seems to be less SWI/SNF recruitment compared to

the wild-type cells. On the other hand, there does not seem to be any increased levels of

Gcn5 in a swi2D strain relative to wild-type cells. One possibility is that this is due to less

Pho4 binding at the promoter in swi2D cells. Also, we find that Gcn5 is recruited prior to

Swi2 at PHO5, suggesting that perhaps Pho4 has greater affinity for SAGA compared to

Swi2. This is clearly a possibility, as seen for Gcn4 in vitro (Natarajan et al., 1999). We

cannot, however, rule out the possibility that there might simply be less SWI/SNF

compared to SAGA in the cell. It would be of great interest to determine whether, in the

absence of Gcn5, there is a) any change in acetylation at the PHO5 promoter and b)

increased recruitment of NuA4, the H4 HAT. Similarly, in the absence of Swi2, there is
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little to no change in Gcn5 recruitment, but perhaps there is instead increased recruitment

of other ATP-dependent remodeling complexes like INO80.com.

Figure 4-1. Multiple interactions exist at the PHO5 promoter.

Upon Pi starvation, the principal PHO5 activator, Pho4, is in competition with the nucleosome to
bind at its UAS sites. SAGA and SWI/SNF collaborate to contend with the nucleosome, but also
compete for interactions with the activator. Interactions between SAGA and SWI/SNF are
unknown as yet. TFIID is recruited through interactions of TBP with Spt3 and other SAGA
subunits.

Past work has demonstrated that acetylation of nucleosome templates by SAGA

or NuA4 stabilizes SWI/SNF binding in vitro to nucleosomes after activator dissociation,

and that acetylation is needed for stable SWI/SNF binding (Hassan et al., 2001b).
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Further, Gcn5 activity stabilizes SWI/SNF binding to promoters in vivo (Syntichaki et al.,

2000). The retinoic acid receptor/ retinoid X receptors (RAR/ RXR) are stimulated by

ligands to bind to their target sites upstream of many RA-responsive genes. Using a

chromatin template-based transcription system in vitro, it was demonstrated that effective

transactivation by RAR/RXR required acetylation prior to hSWI/SNF in vitro (Dilworth

et al., 2000). Transcriptional stimulation by the p300 HAT is also synergistic with

hSWI/SNF activity. Interestingly, in the absence of histone acetylation hSWI/SNF does

not effect ATP-dependent remodeling, unless it is added much before HeLa nuclear

extracts, which are known to contain a number of activators (Dilworth et al., 2000). Thus,

SWI/SNF can stimulate transcription from chromatin templates without acetylation,

presumably it just requires the presence of high levels of activator binding (Neely et al.,

1999; Agalioti et al., 2000). In complexes lacking Gcn5, although the SAGA complex is

recruited to promoters by the principal activator-interacting subunit Tra1, due to the

absence of the Gcn5 bromodomain, the complex probably does not associate with the

promoter as well.

 At the yeast HO gene, SWI/SNF is recruited before SAGA (Cosma et al., 1999) .

The association of TBP with the promoter induces DNA bending of ~30 to 80 degrees,

causes distortion and unwinding of the DNA, which has been correlated with

transcriptional activation (Wu et al., 2001). Interestingly, TBP binding is needed for

nucleosome remodeling by SWI/SNF on an artificial PHO5 promoter with a Gcn4

binding site placed between the two positioned nucleosomes (Lomvardas and Thanos,

2002). The converse, i.e. association of increased levels of SAGA containing Gcn5 with

the promoter in the absence of SWI/SNF was clearly a possibility: many labs have

demonstrated an order of recruitment where SAGA associates with the promoter much
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before SWI/SNF (Agalioti et al., 2000). However, the level of Gcn5 recruitment remains

the same in the swi2D strain, implying that the absence of SWI/SNF is compensated for

perhaps by the presence of other remodeling complexes, INO80.com and NuA4.

Alternatively, there is sufficient Pho4 that allows adequate recruitment of the

transcriptional machinery and HMG group proteins like Nhp6a and Nhp6b to allow wild-

type levels of activation. Other possibilities such as increased post-transcriptional levels

of Pho4 might also play a role in achieving similar levels of PHO5 expression.

To discern whether Gcn5 and Swi2 are truly functionally redundant, we will

utilize partial loss of function mutants of Swi2 in conjunction with a gcn5D strain to test

whether activity of PHO5 is affected. Also, both Snf1 and Snf5 mutants are not that

deleterious to the cell individually, but in combination they exhibit a synthetic phenotype

(Prochasson et al., 2003). It will be of interest to see what effect they have on PHO5

activity in a gcn5D strain. Another question would be whether this more SWI/SNF is

recruited at other promoters in a gcn5D  strain. If so, it would indicate a global

phenomenon of redundancy, especially since SWI/SNF and SAGA have many common

targets (Pollard and Peterson, 1997). If not, then perhaps it only occurs at promoters like

PHO5, which has nucleosomal activator-binding sites.

How is PHO5 transcription effected? In summary, we see that Pi starvation leads

to recruitment of Pho4 and Pho2, followed by SAGA and then SWI/SNF. These

complexes, and perhaps NuA4 and INO80.com as well, collaborate to prevent the

nucleosomes from returning to their ‘stable’ conformation and thus occluding Pho4

occupancy. This is validated by the observation that there is a delay in Pho4 binding to

the promoter in gcn5D and swi2D strains. The evidence that there is twice as much
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SWI/SNF recruited in a gcn5D  strain, but not in an spt20D strain can perhaps be

explained by the hypothesis that SAGA competes with SWI/SNF for binding to the

activator surface. However, in the gcn5D strain, the rest of the SAGA complex still

collaborates with SWI/SNF in competing with the nucleosome. A simpler explanation

stems from the observation that there is less rAPase activity in an spt20D strain. This is

suggestive of less Pho4 promoter occupancy, which could explain the decreased amounts

of SWI/SNF recruitment.

TBP recruitment and assembly of the basal transcriptional machinery has been

shown to be sufficient for chromatin remodeling and transcriptional activation of PHO5,

and chromatin remodeling was observed even in a strain deleted for SWI2 (Gaudreau et

al., 1997). TBP recruitment is potentially diminished in an spt20D strain since Spt3 and

Spt8 are no longer part of the complex, which would explain the decreased PHO5

expression in these strains (Wu et al., 2004). The other alternative is that there are

interactions between SWI/SNF and some other subunit in the SAGA complex that

enables better association with the promoter. However, prior work has suggested that

SWI/SNF is recruited independently by activators, and does not associate with at least the

SRB/mediator complex in vitro (Natarajan et al., 1999). Future experiments will be

needed to provide more insight into the interplay of all these various complexes in

expression of PHO5.
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