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ABSTRACT 
 

Real Time Perfusion and Oxygenation Monitoring in an Implantable Optical Sensor.  
 

(December 2004) 
 

Hariharan Subramanian, B.E., University of Madras 
 

Chair of Advisory Committee:    Dr. Gerard Coté 
 
 

 Simultaneous blood perfusion and oxygenation monitoring is crucial for patients 

undergoing a transplant procedure.  This becomes of great importance during the 

surgical recovery period of a transplant procedure when uncorrected loss of perfusion or 

reduction in oxygen saturation can result in patient death. Pulse oximeters are standard 

monitoring devices which are used to obtain the perfusion level and oxygen saturation 

using the optical absorption properties of hemoglobin.  However, in cases of varying 

perfusion due to hemorrhage, blood clot or acute blockage, the oxygenation results 

obtained from traditional pulse oximeters are erroneous due to a sudden drop in signal 

strength.  The long term goal of the project is to devise an implantable optical sensor 

which is able to perform better than the traditional pulse oximeters with changing 

perfusion and function as a local warning for sudden blood perfusion and oxygenation 

loss. 

In this work, an optical sensor based on a pulse oximeter with an additional 

source at 810nm wavelength has been developed for in situ monitoring of transplant 

organs.  An algorithm has been designed to separate perfusion and oxygenation signals 

from the composite signal obtained from the three source pulse oximetry-based sensor.  

The algorithm uses 810nm reference signals and an adaptive filtering routine to separate 
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the two signals which occur at the same frequency.  The algorithm is initially applied to 

model data and its effectiveness is further tested using in vitro and in vivo data sets to 

quantify its ability to separate the signals of interest. The entire process is done in real 

time in conjunction with the autocorrelation-based time domain technique.  This time 

domain technique uses digital filtering and autocorrelation to extract peak height 

information and generate an amplitude measurement and has shown to perform better 

than the traditional fast Fourier transform (FFT) for semi-periodic signals, such as those 

derived from heart monitoring.  In particular, in this paper it is shown that the two 

approaches produce comparable results for periodic in vitro perfusion signals. However, 

when used on semi periodic, simulated, perfusion signals and in vivo data generated 

from an optical perfusion sensor the autocorrelation approach clearly (Standard Error, 

SE = 0.03) outperforms the FFT-based analysis (Standard Error, SE = 0.62). 
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CHAPTER I 
 

INTRODUCTION 
 

In 2002, over 24,000 patients received transplanted organs such as liver, kidney, 

and intestines [1].  The Scientific Registry of Transplanted Recipients reported first year 

survival rates for single organ transplants that ranged from 77% for lung transplants to 

96% for pancreas transplants.  The rate of graft survival was also reported and showed to 

be on average 10% less than that of the patient survival after the first year [1].  The main 

reason for patient death is organ malfunction due to complications such as immune 

rejection [2].  However, one parameter of interest in the transplant procedure is a 

measure of local blood perfusion and oxygenation within the graft in the days following 

the transplant.  This is because, prolonged and untreated loss of blood perfusion due to 

acute rejection or mechanical failure (sutures) will result in loss of organ function and be 

hazardous to the transplant patient [3].  The week following transplant proves the most 

critical because of high immune response and healing within the organ.  Being able to 

measure the local blood perfusion within a transplanted organ continuously within this 

crucial period will allow physicians to diagnose organ failure earlier and potentially 

increase patient and graft survival after surgery [3].  Increasing graft survival will help to 

prevent multiple transplants (additional organs) and reduce the loss of donated organs 

and additional surgery.  This is important because the number of people on the national 

waiting list for all organs is significantly higher (>84,000) than the number of available  
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organs (~24,000) resulting in a constant demand for donated organs [1].  

In order to obtain the local blood perfusion information, an in vivo sensor to 

detect the blood perfusion and oxygenation following organ transplant is being 

developed by the Optical Biosensing Laboratory at Texas A&M University in 

collaboration with Oak Ridge National Laboratory and the University of Pittsburgh 

Medical School [4]. The sensor is based on a modified pulse-oximeter that can be 

implanted onto the transplant organ during the surgical procedure and remain in the body 

throughout the recovery period. The signal is proposed to be sent from the sensor to a 

desktop computer or medical readout device by a miniature telemetry system for further 

processing in order to obtain physiological information [3]. 

 
1.1 Real time analysis of blood perfusion and oxygenation 

The primary goal of the thesis is the design of a new time domain analysis 

package based on autocorrelation that is employed to obtain the perfusion and 

oxygenation signals in real time. Various signal processing techniques including the Fast 

Fourier transform (FFT), discrete cosine transform, and discrete wavelet have been used 

to process the pulse oximetry data [5], [6]. FFT and Discrete wavelet transforms average 

the signal obtained in the form of sinusoids and wavelets, respectively. These signal-

processing techniques have some limitations, notably small changes in blood perfusion 

over a small period of time (less than temporal resolution) cannot be observed. Hence a 

time-domain technique that is able to resolve small perfusion changes in real time would 

be ideal and enable better perfusion monitoring leading to improved post-operative care. 

A second and more noticeable drawback of the FFT based signal processing methods is 
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the tradeoff between frequency and time resolution [5]. Of specific interest is the 

inability of the FFT to discriminate between two frequencies that are very close together, 

as is commonly observed in the natural variability of the heart rate [6].  These frequency 

fluctuations cannot be resolved accurately meaning that the perfusion or oxygenation 

signal measured at a random frequency will be averaged resulting in inconsistent 

perfusion or oxygenation measurements for equal flow states of slightly differing pulse 

rates. These drawbacks have led us to investigate signal-processing techniques in the 

time domain rather than in the frequency domain, specifically autocorrelation. The time 

domain analysis package is designed to capture the semi-periodic blood flow signal in 

the presence of large background noise.   

This signal processing package uses digital filtering and autocorrelation to 

extract peak height information and generate an amplitude measurement. The 

autocorrelation based time domain technique (S.E=0.03) has shown to perform better 

than the FFT (S.E=0.62) for semi-periodic signals, such as those derived from heart 

monitoring.  In particular, in this work it is shown that the two approaches produce 

comparable results for periodic in vitro perfusion signals. However, when used on semi 

periodic, simulated, perfusion signals and in vivo data generated from an optical 

perfusion sensor the autocorrelation (S.E=0.006) approach clearly outperforms the FFT-

based analysis (S.E=0.128) [7].  

 
1.2 Separation of blood perfusion and oxygenation 

Traditionally pulse oximeters isolate an oxygenation value using a simple ratio 

between the two wavelengths of light assuming constant perfusion. However, in cases of 
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varying perfusion due to hemorrhage, blood clot or acute blockage, oxygenation results 

obtained from commercial pulse oximeters are erroneous due to sudden drop in signal 

strength. This becomes of great importance during the surgical recovery period of a 

transplant procedure when uncorrected loss of perfusion can result in patient death.  

The second goal of the thesis will be on the separation of the oxygenation signal 

from the composite pulse oximetry signal that required changes in the traditional 

hardware and introduction of a new signal processing algorithm based on adaptive 

filtering. In order to account for unpredictable perfusion changes, an additional source at 

810nm is used. At this wavelength, it is assumed that the total absorbance of the sample 

does not change due to oxygen saturation but only due to blood perfusion. The newly 

developed algorithm was tested using Monte Carlo simulated data to prove the 

effectiveness of the 810nm reference.  Following these tests, an in vitro model was 

generated that isolated the effects of perfusion and oxygenation allowing testing of the 

sensor on real tissues and whole blood.  The sensor accurately captured changes in 

oxygenation and perfusion using this setup with reliable consistency.  Using the serosal 

surface of the swine jejunum, in vivo data was taken to analyze the sensors response to 

fluctuating perfusion levels like that seen in hemorrhaging or failing transplants. Overall, 

it was shown that the addition of an adaptive filtering algorithm (S.E=0.06) to the 

existing processing package has improved the sensors stability and improved its overall 

accuracy than when used without any filtering (S.E=0.20) [8]. 
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CHAPTER II 

BACKGROUND 

The first section of this chapter covers the basic physiology of blood oxygen 

transport followed by a section on the measurement techniques which are currently 

being used to monitor blood perfusion and oxygenation. The third section details the 

history of pulse oximeters, the principle, application and the limitations of pulse 

oximetry technique.  The final section gives an overview of the autocorrelation based 

time domain approach and the separation of physiologic signals using adaptive filtering 

that is used in this research.  

 
2.1 Basic physiology 

Oxygen is essential for the proper functioning of each cell in the human body. 

The absence of oxygen for a prolonged period of time (hypoxia) will result in cell death 

and hence loss of organ or tissue functions [9]. Oxygen is delivered to different parts of 

the body by the blood stream with the help of red blood cells. Transport of oxygen is 

affected by different factors such as the availability of oxygen to the lungs, the ability of 

oxygen to pass the alveolar/capillary membrane, and the capacity of the blood to carry 

oxygen. Once oxygen is supplied to various parts of the body by the blood stream, the 

deoxygenated blood is brought back to the lungs through arterial capillaries where 

exchange of gases takes place. The blood rids itself of carbon-dioxide and receives 

oxygen in the lungs. The process of respiration provides a continuous supply of oxygen 
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to the lungs. The reoxygenated blood is then recirculated throughout the body with the 

help of circulatory system [9].   

 The most important feature that enables the blood to transport oxygen is the 

hemoglobin found within the red blood cells. A hemoglobin molecule consists of two 

parts namely the globin portion and a heme group. The globin portion is a protein made 

up of four highly folded polypeptide chains. The heme group is a non protein group 

containing four iron molecules, which in turn is bound to one of the polypetides. Each of 

the four iron molecules combine irreversibly with an oxygen molecule. Thus each 

hemoglobin molecule carries four oxygen molecules from the lungs to different parts of 

the body. Because of the presence of iron molecule, hemoglobin appears reddish in color 

when combined with oxygen and appears bluish when deoxygenated. Hence a fully 

oxygenated arterial blood is red in color while the deoxygenated venous blood is bluish 

[10].  Thus deoxygenated blood absorbs more red light than the oxygenated blood. Pulse 

oximeters takes advantage of this physiologic information to non-invasively detect the 

oxygen content in blood. 

Oxygen is carried in two ways throughout the body. It can be dissolved in the 

plasma of the blood and transported by the blood stream. This method constitutes a very 

small part of the oxygen supplied (~10%) to the cells but it does give the clinician an 

idea about the amount of oxygen passing through the alveolar/capillary membrane. The 

partial pressure of oxygen (pO2) measures the dissolved portion of oxygen in the blood. 

Another method of oxygen transport, oxygen saturation (SO2), is where oxygen binds to 

the hemoglobin molecule within the red blood cells [11]. The majority of oxygen is 
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carried by the hemoglobin molecules. Hence the measures of amount of blood supplied 

to the tissue by the capillaries (blood perfusion) as well as the oxygen carried in the 

blood (oxygen saturation) are two important indicators of a patient’s health. The primary 

goal of this project is to design an optical sensor that can simultaneously monitor the 

blood perfusion as well as the blood oxygen saturation in transplant organs.  

 
2.2 Current measurement techniques 

Different chemical and optical methods have been used to determine the oxygen 

content of the blood. Some of the chemical methods like the Van Slyke method, Mixing 

syringe method, Clark electrode and galvanic electrode find the partial pressure of 

oxygen (pO2) to determine the oxygen content of the blood [12], [13]. 

Spectrophotometers and CO-oximeters are some of the optical methods that are used to 

measure the oxygen saturation of the blood (SO2) [14]. Oximetry is a general term that 

refers to the optical measurement of oxyhemoglobin saturation of the blood. 

Spectrophotometry is the basis for all oximetry techniques [9]. It works on the principle 

that atoms of all molecules vibrate in a specific pattern that is unique for each substance. 

As the light is passed through a substance, the frequency of light similar to the vibration 

frequency of the substance is absorbed while all the other frequencies are transmitted or 

reflected. Spectrophotometers measure the intensity of light transmitted through a 

substance at a particular wavelength. Since oxyhemoglobin (HbO2) and deoxy-

hemoglobin (Hb) absorb light at certain wavelengths, the oxygen saturation can be 

obtained from the ratio between these hemoglobin species (expressed in percentage) [9].  
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The ability to detect capillary blood flow, known as blood perfusion, has many 

potential clinical applications. Blood perfusion is primarily used to detect sites of tumors 

and rejected transplanted organs [15]. Several modalities like radioactive tracers, 

ultrasound Doppler, laser Doppler and plethysmography techniques are primarily used to 

detect blood perfusion. Regional perfusion can also be monitored using serum creatinin 

levels and serum bilirubin levels in the blood [9]. Laser Doppler flowmeter (LDF) and 

Photo-plethysmography are the popular optical techniques of measuring blood perfusion 

in tissues.  LDF is a non-invasive technique capable of continuously measuring blood 

circulation. Laser light propagated into a tissue containing flowing blood is scattered 

differently causing a Doppler shift that is detected and representative of blood velocity.  

The main drawback of this technique is that it does not provide any information about 

oxygen saturation of the blood and cannot diagnose the health of the blood [16]. LDF 

has also shown success in measuring microvascular perfusion but remains too 

cumbersome to be used in vivo [6].   

  Photoplethysmography (PPG) provides a qualitative measure of the tissue blood 

volume increase or decrease. It works on the principle of pulse oximetry by measuring 

the light transmission through the tissue as a function of time during systole. PPG 

oscillates with the heart cycle period, due to the systolic increase in the tissue blood 

volume, resulting in a lower transmission of light [17]. Thus by measuring the amount of 

light reflected or transmitted back to the detector, the relative amount of blood present in 

the blood vessels can be obtained. The main drawback of this method is that it gives only 
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a relative measurement of the blood volumetric changes but not the exact amount of 

blood [17].  

 The sensor system involved in this project, to measure blood perfusion and 

oxygenation, is designed based on the principle of pulse oximetry. The following section 

describes the principles of pulse oximetry, the clinical applications and its limitations. 

 
2.3 Pulse oximeters 

 Pulse oximeters have been commercially available for more than 20 years and 

have become a standard monitoring device in hospital critical care units and surgical 

suites [9].  Unknown in the operating room before the 1980s, the pulse oximeters, whose 

operation requires no special training or new skills on the part of the user, has rapidly 

become a minimum standard of anesthetic care [18].  

 
2.3.1 History of pulse oximeters 

 The history of pulse oximeters dates back to the 1930s when Matthes built the 

first device that can continuously measure blood oxygen saturation in vivo by 

transilluminating the tissue. Two wavelengths of light at visible and infrared were used 

to track the changes in oxygenation similar to the modern day pulse oximeters. The first 

wavelength was sensitive to changes in oxygenation while the second wavelength at 

infrared was less sensitive and thus was primarily used to compensate for changes in 

tissue thickness, hemoglobin content and light intensity [18]. This instrument could 

follow the saturation trends but was difficult to calibrate. Squires et al. developed a 

similar instrument that can calibrate itself by compressing the tissue to remove blood 
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[19]. A similar calibration technique was later adopted in the first commercially 

marketed in vivo oximeters [18]. 

 The term ‘oximeter’ was first coined by Glen Millikan to describe a light weight 

device that he developed for aviation research [18]. In the 1940s Wood et al. developed 

a similar instrument that was used in the operating rooms to detect significant 

desaturations during routine anesthetics [20]. A paper published in Anesthesiology 

(1951) concluded that “on many occasions this instrument has detected anoxemia when 

observation of pulse, blood pressure, and color of the patients, and peripheral vascular 

tone have shown no abnormalities” [21]. The early in vivo oximeters were not widely 

accepted by clinicians because of their severe limitations. These were delicate 

instruments that required a technician for its operation and maintenance. Furthermore, it 

required calibration on each patient prior to its use.  

 In the 1970s Hewlett-Packard marketed their first self calibrating ear oximeters. 

The device used eight wavelengths of light to determine the hemoglobin saturation [22] 

and soon became a standard clinical and laboratory tool in pulmanory medicine. The 

size, cumbersome nature of the ear probes and the expense of the oximeters prevented its 

acceptance in operating rooms.  

 The first pulse oximeter was invented by Takuo Aoyagi in the mid 1970’s. He 

was developing a method of semi-noninvasively estimating the cardiac output by 

detecting the washout curve of dye injected into a peripheral vein as it perfused the ear. 

He noticed pulsation in the washout curves due to the arterial pulse in the ear. When 

subtracting these pulsations from the washout curve he discovered that the absorbance 
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ratio of the pulsation at the two wavelengths of red and infrared changed with arterial 

hemoglobin saturation.  The discovery soon led him to the creation of the first two 

wavelength pulse oximeters based on pulsatile light absorbances [18]. Aoyagi’s 

oximeters used filtered light sources and fiberoptic cables to transmit light between the 

instrument and ear sensor. This cumbersome design made it difficult to use in operating 

rooms. In the late 1970s Scott Wilbur of the Biox corporation designed an ear sensor that 

used light emitting diode and solid state photodetectors to develop a clinically accepted 

pulse oximeter. The fiberoptic cables of previous ear oximeters were replaced by a thin 

electrical cable. The accuracy of the pulse oximeters was also improved by incorporating 

digital microprocessors into the instrument. Further improvements in reliability and 

inexpensive cost made pulse oximeters a standard operating room monitor [18]. 

  Modern day pulse oximeter uses two different light sources at red and infrared 

wavelength to obtain oxygen saturation information.  These pulse oximeters use finger 

as the main probing area rather than the ear as was used in the previous pulse oximeter 

models. The light is supplied to the probing area using an electric probe and the data is 

processed in real time using online microprocessor present in the instrument.  This 

makes the pulse oximeters popularly used in emergency care of patients as the 

physicians can obtain heart rate and blood oxygenation information simultaneously in 

real time. 

 
2.3.2 Principles of pulse oximetry 

 Pulse oximeters are based on two important physical principles: 1) The presence 

of a pulsatile signal generated by the arterial blood, which is relatively independent of 
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non-pulsatile arterial blood, venous and capillary blood, and other tissues and 2) 

Oxyhemoglobin (HbO2) and reduced hemoglobin (Hb) have different absorption spectra.  

Traditional oximeters use two light emitting diodes that emit light at 660nm (red) and 

940nm (infrared) wavelengths. At these wavelengths both oxyhemoglobin and reduced 

hemoglobin have different absorption spectra (Fig. 1).  The ratio of absorbances at these 

two wavelengths are then used to estimate arterial blood oxygen saturation (Eqn. 1). The 

curves obtained from the absorbances are calibrated empirically against direct 

measurements of blood oxygen saturation in volunteers to arrive at a calibration 

algorithm that is then used to generate pulse oximeter’s estimate of arterial saturation. 

IR

red

Absorbance
AbsorbanceRRatio =,                             (1) 

 

                                  

Fig. 1.  Extinction coefficients of oxy and deoxy hemoglobin [23] 

 
 The operations of oximeters in general are based on the Beer-Lambert law, which 

relates the concentration of the solute to the intensity of light transmitted through a 

solution. 

    Iout = Iin exp [-(εCL)]   (2) 



 13

where Iout and Iin are the intensities of transmitted light and incident light respectively.  

ε is the extinction coefficient or absorptivity of the solute (a constant for a given solute at 

a specified wavelength), C is the concentration of the solute (hemoglobin) and L is the 

distance the light is transmitted through the liquid (path length). The extinction 

coefficient ε is a property of light absorption for a specific substance at a specified 

wavelength. The extinction coefficient can vary dramatically with the wavelength of 

light. The concentration C is measured in mmol L-1 and the extinction coefficient is 

expressed in L mmol-1 cm-1 [9].  Beer’s law is based on the property that the sum of the 

transmitted and absorbed light equals the incident light. This does not account for the 

reflection of the light at the surface of the medium or scattering of light in the medium.  

 Laboratory in vitro oximeters use this principle to measure the concentration of 

hemoglobin solution filled in a cuvette produced from lysed red blood cells [24] by 

measuring the intensity of light transmitted. Pulse oximeters estimate the arterial 

hemoglobin saturation by measuring the transmission of light at two wavelengths 

through a pulsatile vascular tissue bed. Pulse oximeters use living tissues such as ear or 

finger as the ‘cuvette’ containing hemoglobin, but the living tissues contain many light 

absorbers such as skin, soft tissue, venous and capillary blood other than the arterial 

hemoglobin to be estimated (Fig. 2). Early oximeters compressed the soft tissues to 

compensate for the additional tissue absorbance. The absorbance of bloodless tissue was 

used as a base line to estimate absorption from the arterial blood. Some oximeters also 

heated the tissue during measurement to render it hyperemic and thus obtaining an 

absorbance that is more dependent on the arterial blood. 
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Fig. 2.  Mode of operation of pulse oximetry 

 
 Pulse oximeters distinguish the absorbance of arterial blood and other absorbers 

in a novel way. The absorbance of arterial blood pulsations are similar to an ‘alternating 

current’ or simply an AC component while the absorbance from other tissue are always a 

constant termed as the DC component similar to a ‘DC current’. The AC component 

pulsations are caused by the systolic volume expansion of the arteriolar bed, which 

causes the increase in optical path length thus increasing the absorbance. Pulse oximetry 

is based on the assumption that the arterial blood is the only source of pulsatile 

absorbance while any other fluctuating light absorbers will act as a source of error.     

Fig. 3 shows the AC signals of red and IR signals at different oxygen saturation (0%, 

85% and 100%). The height of the AC signal varies between the red and IR signals due 

to the difference in absorption between the oxy and deoxy hemoglobin at red and IR 

wavelengths. 
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Fig. 3.  Red and infrared AC signals at different arterial oxygen saturation 

 
The ratio R in equation 1 can be rewritten as follows, 

IR

IR

red

red

DC
AC

DC
AC

RRatio =,     (3) 

The ratio R is uniquely related to the arterial hemoglobin saturation. Fig. 4 shows the 

theoretical calibration curve of the pulse oximeter obtained from Beer’s law.  
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Fig. 4.  Theoretical calibration curve of pulse oximeter 

 
The pulse oximeter saturation SpO2 can be empirically derived using the value of 

R given the empirical calibration curve relating SpO2 to R.  The oxygen saturation, S is 

written in terms of the ratio R as follows: 

Raaaa
RaaS

oror

rr

2211

21

)( −−−
−

=    (4) 

where ar1, and ar2 are the molar absorptivity of de-oxy hemoglobin at red and infrared 

wavelength, while ao1 and ao2 are the molar absorptivity of oxy hemoglobin at red and 

infrared wavelength. 

 
2.3.3 Clinical applications of pulse oximeters 

Modern pulse oximetry is a noninvasive, easy to use and accurate procedure to 

obtain valuable physiological information such as blood oxygen saturation, heart rate, 

and blood flow information. Pulse oximetry is commonly used when administering 
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anesthesia, during patient transport, for pediatric care and for veterinary medicine. Some 

of these applications require special add on equipment and/or special calibration of the 

pulse oximeter.  

  As an example during desaturation of the blood its use for anesthesia monitoring, 

Moller et al. observed that during this phase, arterial oxygen saturations decrease to 90% 

or less with a frequency of 25% in patients [25]. Pulse oximetry can thus detect this 

desaturation in real time indicating the need for increasing the mixture of oxygen given 

to the patients during surgery.  Use of pulse oximeters has also been reported in many 

surgical procedures like abdominal, thoracic and dental surgeries to monitor arterial 

desaturation occurring during surgery [26]. 

 Pulse oximeters have also been used to monitor tissue blood supply and organ 

viability. MacDonald et al. used pulse oximetry to monitor the intestinal blood flow in 

dogs and tested the intestinal viability after surgery [27]. When transferring tissues such 

as skin and muscle flaps, it is important to monitor the tissue for adequate supply of 

blood. Transferred muscle flaps have been monitored via pulse oximetry for 24 to 48 

hours to determine the chances of survival [28].  Lastly, specially designed pulse 

oximeters are being used in ambulances to monitor the vital conditions of patients and 

during child birth for fetal monitoring [29], [30]. 

 
 2.3.4 Limitations of pulse oximeters 

 Motion artifacts, skin pigmentation and low perfusion states are some sources of 

error that may lead to inaccurate readings in pulse oximetry [18]. Since pulse oximeters 

primarily employ two wavelengths they are used to distinguish two substances deoxy 
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hemoglobin and oxy hemoglobin. The oxygen saturation in blood is also affected by 

other types of hemoglobin such as carboxyhemoglobin (COHb) and methemoglobin 

(MetHb). Elevated levels of COHb overestimates the arterial oxygen saturation obtained 

from the pulse oximetry while elevated MetHb levels may also cause inaccurate 

oximetry readings. Hence four wavelengths might be required to distinguish different 

hemoglobin types that in turn will increase the complexity of the instrument [9].  

 Intravenous dyes such as methylene blue, indocyanine green and indigo carmine 

can give falsely low pulse oximetry readings. Motion artifacts continues to be a 

significant source of error and false alarms [31]. The movement of patients gives an 

incorrect plethysmograph reading that in turn affects the blood oxygenation ratio given 

by the pulse oximeter. Various methods have been employed to reject motion artifacts 

but have met with little success [32]. Low perfusion states such as vasoconstriction, 

hypothermia and low cardiac output also make it difficult for the sensor to distinguish 

between the background noise and true signal yielding incorrect oxygenation readings. 

  This thesis addresses some of these limitations of pulse oximetry that is quite 

critical for the design of the optical sensor for transplant organs. The signal processing 

package explained in this thesis is designed to measure the oxygen saturation of the 

blood at low perfusion states providing consistent oxygenation measurements in the 

presence of motion artifacts.   

 
2.4 Autocorrelation based signal processing algorithm 

Due to the inherent frequency resolution limitations associated with standard 

FFT analysis [6], and limitations in moving averaging due to motion artifact [5], an 
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autocorrelation-based signal-processing package was developed as described in this 

thesis to analyze perfusion data. The package is designed to capture semi-periodic blood 

flow signals in the presence of large background noise. 

Autocorrelation is a statistical technique that has been used as a noise-reduction 

algorithm in many physiological measurements, including LDF and pulse oximtery [33], 

[34].  Autocorrelation has been used with LDF to discriminate between the capillary and 

arterio-venular blood flow in skin perfusion measurements as well as to obtain cell 

perfusion signals from the brain cortex of anesthetized rats to distinguish fractal noise 

from motion in physiological data [34], [35].  A conventional pulse Doppler device and 

an autocorrelation-based signal processing technique has also been used for real time 

two-dimensional imaging of blood flow [36]. Autocorrelation has also been employed to 

compensate for eye movement in retinal speckle flowmetry studies and in speech 

processing to study neural activity (time delayed correlation) [37], [38].  A noise 

resistant algorithm to reconstruct a pulse oximetry derived signal was constructed by 

Coetzee et al. in order to obtain the heart rate and oxygenation information [39].  This 

was accomplished by generating a synthetic reference signal based on heart rate and 

using it to construct an idealized pulse signal. Another group showed the use of 

autocorrelation to measure heart rate from a ring sensor developed to obtain vital signs 

of the body [33]. In this method, autocorrelation was used to obtain the pulsatile signal 

from the non-periodic noisy data and its periodicity was then estimated to obtain the 

heart rate. 
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2.5 Separation of physiologic signals using adaptive filtering 

Extraction of a physiologic signal or elimination of noise from a composite 

signal poses a great challenge for biological signals. If a description of either the signal 

or noise portion is available, then adaptive noise canceling techniques can be used to 

remove either the noise or the actual signal portion from composite signal leaving the 

remaining portion for further analysis [40].  Adaptive filters have been successfully used 

with biological signals to extract noise from a composite signal [40], [41].  Diab et al. 

developed a signal processing apparatus to generate a primary or secondary reference 

signal to extract either the primary or secondary signal portion from the composite signal 

using correlation cancellers such as an adaptive noise canceller. Time sequenced 

adaptive filters (TSAF) were used by Thaler et al. to record the morphology of fetal 

electrocardiograms (FECG) [42]. TSAF use recordings from the abdomen and chest, to 

produce a measurement system which rejects the maternal ECG and enhances the FECG. 

This group reported a relatively noise free FECG waveform with minimal change of 

parameters. Sison et al. used an adaptive filtering technique to characterize motion 

artifacts in both pulse oximetry and ECG signals. They compared two different adaptive 

filtering techniques in order to study the effectiveness of the algorithm for noise removal 

[43], [44]. In most of these cases, the reference signal was obtained from an external 

source which was then used to extract pure signal using adaptive filters.  It was the 

intention of this group that the addition of the 810nm source would allow for use of an 

adaptive algorithm in eliminating the need for an external source.  
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In order to address the limitations of pulse oximetry at very low perfusion states 

this additional wavelength at 810nm has also been used to separate the oxygenation and 

perfusion signals. This point in the wavelength spectrum is known as the isosbestic point 

[45] (Fig. 2). By this change in the traditional hardware of pulse oximetry, the 

oxygenation signal could be measured under unpredictable perfusion changes.  Previous 

work by our group, Ibey et al. [46], has focused on evaluating the effectiveness of 

adding a third source centered at 810nm into the traditional pulse oximeter.  The 

hypothesis was that by adding a light emitting diode centered near the isosbestic point, a 

third independent measurement would be made that was relatively oxygen insensitive.  

This third wavelength would allow for the removal of motion artifact and perfusion 

signal from the composite signal.  It was shown using a Multi-Layer Monte Carlo model 

(MLMC) and in vitro blood flow phantom that a broadband diode centered at 810nm is 

only slightly affected by changes in blood oxygenation [46].  

In pulse oximetry, the use of non-traditional wavelengths has also been explored 

to evaluate the effect of other molecules in the blood. Hammer et al. had reported the use 

of three isosbestic points (522nm, 569nm and 586nm) to compensate the non-

hemoglobin absorption and scattering [47]. The three isosbestic points were used as 

reference spectra to obtain the oxygen saturation values from in vivo spectra measured at 

the ocular fundus. Buinevicius et al. had designed a three wavelength pulse oximeter to 

determine carboxy-hemoglobin (COHb) concentration.  They used an additional LED at 

810nm to determine the amount of COHb in blood and a method to calibrate the pulse 

oximeter for three wavelengths was also presented [48]. 
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CHAPTER III 
 

THEORY  
 

The first section this chapter explains the principle of autocorrelation which is 

used as a real time signal processing package to monitor perfusion and oxygenation 

signals in this research. The separation of physiological signals using an adaptive noise 

cancellation technique is explained in the second section.  The final section describes the 

Monte Carlo method of simulating photon transport in biological tissues to model the 

perfusion and oxygenation signals obtained at the detector end.  

 
3.1 Autocorrelation based time domain technique 
 

The autocorrelation-based signal processing package was developed to analyze 

the perfusion and oxygenation data in real time. The package captures semi-periodic 

blood flow signals in the presence of large background noise. Cross correlation is a 

common signal processing tool used to extract information related to the correlation of 

two signals. Autocorrelation is a special case of cross correlation where the correlation is 

performed between the same signals [49]. In general, the autocorrelation method would 

extract periodic signals buried in random non-periodic noise [33].  In our case it extracts 

the aperiodic information and assigns the rate of the signal as the size of the window to 

obtain amplitude information of the pulse oximetry signal. 

The cross correlation Rxy(l) of real signal sequences x(n) and y(n), having finite 

energy, is shown below in Eqn. 5. 

,)()()( ∑
∞

−∞=

−=
n

xy lnynxlR                where ,.........2,1,0 ±±=l    (5) 
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In the above equation, x and y represent the sequences being correlated and the index l 

represents the time shift or lag parameter. In the above case the sequence x(n) is 

unshifted while the sequence y(n) is shifted l units (left for l positive and right for l 

negative). Equivalently, x(n) may be shifted to right or left by l units with y(n) being 

unshifted.  

The autocorrelation is a special case, where x(n) and y(n) are the same signal 

sequence (Eqn. 6).  

,)()()( ∑
∞
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−=
n

xx lnxnxlR   where ,.........2,1,0 ±±=l   (6) 

  
Eqn. 7 and Eqn. 8 represent the cross correlation and autocorrelation for x(n) and y(n) as 

power signals. 
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Of specific importance in noise reduction is the fact that the autocorrelation of a 

repetitive signal with period K is also repetitive with period K (Eq. 8,). 

           x(n+K) = x(n)                 (9) 
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In some practical applications, correlation is used to identify repetitions in an 

observed signal that may be corrupted by random interference.  For example, let the 

signal arriving at the detector be represented by y(n) which can be represented as a 
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combination of the pulse oximetry signal x(n) and a non-periodic noise w(n) (Eqn. 11).  

The autocorrelation sequence of y(n) is shown in Eqn. 12. 

y(n) = x(n) + w(n)        (11) 
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If y(n) is a repetitive sequence with period N, the averages indicated in the above 

equation over the long finite interval are identical to the average over a single repetition 

(Eqn. 7).  Substituting y(n) from Eqn. 5 into Eqn. 13 yields Eqn. 14. This can be 

simplified into Eqn. 15, which represents the complete autocorrelation of the original 

signal. 
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Here x(n) is a repetitive signal and its autocorrelation sequence has the same 

repetition of the signal containing relatively large peaks (l= 0,K,2K….).  The cross 

correlation between the signal x(n) and non- repetitive noise w(n) is relatively small as 

both x(n) and w(n) are completely unrelated. The autocorrelation sequence of the random 

noise w(n) ( )(lRww ) will contain a peak at l=0,  but because of the random 

characteristics Rww(l) decays rapidly towards zero. Hence Rxx(l) is the only term 
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expected to have large peaks for l>0. Thus a repetitive signal x(n) buried in the random 

noise w(n) and its repetition rate can be identified using the autocorrelation function. 

Due to the presence of a finite data set of N samples, the amplitude of the peaks reduces 

as the shift l approaches N. Hence computing Ryy(l) was performed for l<N/2 where N is 

the total number of data points [49].    

 
3.2 Extraction of a signal using adaptive filtering 
 

Filtering techniques such as low pass, high pass and band pass filtering are 

commonly used if the signal and noise exist at different frequencies. Fixed single or 

multiple notch filters can also be used if the noise portion exists at fixed frequencies. In 

some biological signals, however, the signal and noise exist at the same frequency 

making conventional filtering techniques totally ineffective. Adaptive noise canceling 

works on the principle that a transfer function of a filter can be constantly changed to 

remove noise from a composite signal. By this technique a real physiologic signal can be 

extracted from a composite signal containing both noise and signal at the same 

frequency. Adaptive filtering requires a reference noise portion which is correlated only 

with the noise present in the composite signal. The reference need not be a 

representation of the signal, but must have a frequency spectrum similar to that of the 

noise portion of the composite signal.  

Conventional filters such as low pass, band pass or high pass filters are linear and 

time-invariant. These filters perform a constant set of linear operations on a data 

sequence to provide an output based on the coefficient values. Adaptive filters do not 

have this restriction of time invariance. The filter parameters such as bandwidth and 
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resonant frequency change with time. The coefficients of the adaptive filters vary with 

time as they are adjusted automatically by an adaptive algorithm. Thus adaptive filters 

can be applied in a wide range of areas where the exact filtering operation required is 

unknown or in areas where conventional filters cannot be used [50]. 

An adaptive filter consists of a digital filter employed to perform the desired 

signal processing and an adaptive algorithm for adjusting the coefficients of that filter 

[51].  Fig. 5 is the block diagram of an adaptive filter. x(n) is the signal input into the 

digital filter, and y(n) is the corresponding output.  The reference signal d(n) is extracted 

from the composite input signal x(n), and the error e(n) is calculated as the difference 

between d(n) and y(n). The coefficients of the digital filter are constantly adjusted by the 

adaptive algorithm to minimize the mean square value of e(n).  Thus the noise signal can 

be extracted from the composite signal if the reference noise signal is made available. 

The filter coefficients are updated so that the error is progressively minimized on a 

sample-by-sample basis [50]. 

The signal processing algorithm was designed such that the desired d(n) is the 

perfusion signal obtained at 810nm while x(n) is the input signal obtained from red or 

infrared source. The input signal contains both the perfusion signal as well as the 

oxygenation signal. 

x(n) = oxy(n) + perf(n)     (16) 

The adaptive filter extracts the perfusion signal perf(n) through output y(n) by 

iteratively minimizing the error between the primary (x(n)) and reference inputs (d(n)). 
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When convergence of the filter is achieved the filter output y(n) is the best estimate of 

the perfusion signal perf(n). 

 
 

 

Fig. 5.  Block diagram of adaptive filter 

 
The digital filter computes the output in a linear fashion.  Given a set of L filter 

coefficients, { 1,....,1,0),( −= Llnwl } and a data sequence, 

)}1()......1(),({ +−− Lnxnxnx , the output signal is computed with the filter coefficients 

),(nwl  which are time-varying and updated by the adaptive algorithm. 
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The output signal in Eqn. 17 can be expressed by a vector operation. The system output 

y(n) is compared with the reference signal d(n) which results in the difference (e(n)) 

signal (Eqn. 19): 

y(n)  = wT(n)x(n) =  xT(n)w(n)      (18) 
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e(n)  = d(n) – y(n) = d(n) - wT(n)x(n)      (19) 

 

The objective is to determine the weight vector so that the mean-square value of 

the error signal is minimized. This is done using a simple adaptive LMS algorithm, 

which does not require squaring, averaging, or differentiating [51]. The filter coefficients 

),(nwl  obtained from the LMS algorithm are computed in Eqn. 20, where µ is the step 

size of the filter.  In this paper the LMS adaptive filtering algorithm was designed with a 

step size of ‘µ=0.05’ and order N=32.  These values have been found to perform well in 

removing motion artifacts from pulse oximetry signals in previous publications [44]. 

w(n+1) = w(n) + µ x(n)e(n)        (20) 

As mentioned earlier, the signal obtained from the detector is the combination of 

both oxygenation (oxy(n)) and perfusion (perf(n)) signal.  Once the perfusion signal is 

extracted from the original signal using adaptive filtering, the oxygenation signal can be 

reconstructed as follows, 

x(n) = oxy(n) + perf(n)     (21) 

oxy(n) = x(n) -  perf(n)     (22) 

The reconstructed oxygenation signal is further processed to obtain oxygen 

saturation information. 

   
3.3 Multilayer Monte Carlo modeling of photon transport 

 Monte Carlo simulations have been widely used in Biomedical optics to simulate 

photon transport in tissues [52]. Lux et al. defined the Monte Carlo method as 

constructing a ‘stochastic model’ to determine the value of a physical quantity by 
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obtaining the expected value of a single or combination of random variables. Wilson and 

Adam first used the Monte Carlo technique in 1983 to model photon propagation 

through tissue [53]. Over the last twenty years the Monte Carlo simulations have gone 

through several improvements, the most popular being MCML (Monte Carlo – Multi 

Layer) by Wang et al. to simulate the photon transport in multiple layers [54]. The code 

was implemented in C programming language offering the advantage of portability in 

multiple computer platforms. The light transport in multi-layered structures can be 

visualized using Monte Carlo offering a simple and rigorous approach to measure 

multiple physical quantities simultaneously.  

 The technique involves launching a group of photons or photon packets into the 

medium whose absorption and scattering coefficients µa and µs respectively are specified 

by the user. The photons move a distance based on its mean free path and gets absorbed 

or scattered back based on the probability distribution function p(χ) obtained from the 

computer generated random variable ξ. 

Distance traveled by the photon, step size, is given as s = -ln (1- ξ)/µt where, µt is 

the total interaction coefficient which is the sum of the absorption and scattering 

coefficient. 

Absorption effects reduce the weight of the photon packet while the scattering 

effect changes the propagation direction of a photon packet. A moving spherical 

coordinate system involving the deflection angle θ and azimuthal angle ψ due to 

scattering are first sampled to obtain the direction change of the photon packet.  
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If W is the initial weight of the photon packet, then the fraction of photon weight 

∆W, absorbed can be calculated as,  

∆W = (µa/µt) W                    (23) 

The weight of the photon is then updated (W=W–∆W) and the propagation of 

photon is continued. In the case of scattering, the deflection angle θ (0<θ<π) and 

azimuthal angle (0< ψ<2π) are statistically sampled. The probability distribution of the 

cosine of the deflection angle, cos θ, is described by the scattering function originally 

proposed by Henyey – Greenstein [55] for galactic scattering. 

p(cosθ) = (1-g2) / (2(1+g2-2gcosθ)3/2)    (24) 

where, g is the anisotropy which is equal to <cosθ> and has a value between -1 and 1. 

Isotropic scattering and forward scattering are represented by the values of 0 and 1 

respectively. Typical values of g range between 0.3 and 0.98 in tissues [56] but in the 

visible spectrum the value of g is ~0.9.  The azimuthal angle is given by ψ = 2πξ. The 

new direction of photon is calculated based on the deflection and azimuthal angles.  

 A photon packet undergoes series of absorption and scattering events after which 

the photon packet is terminated using a technique called Russian roulette [57] giving the 

photon packets one chance in k of surviving with a weight of kW. If the photon does not 

survive the photon weight is reduced to zero and hence terminated or is assigned 

additional weight when it survives the Russian roulette. The physical quantities such as 

photon reflectance, transmittance and absorption are recorded during the Monte Carlo 

simulation. A more complex method is involved in obtaining the physical quantities 

from a medium involving multiple layers. Data about these optical quantities and layer 
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changes are acquired in a multiple coordinate system. The user provides the absorption 

and scattering coefficients, refractive indices and thickness for each layer. Since light is 

a static entity the properties of the source are not required for many biomedical 

applications involving imaging and therapeutics [58]. 

 A Multi layered Monte Carlo was designed by our group for multiple 

wavelengths to simulate photon transport in tissues to obtain the perfusion and 

oxygenation information. The simulation method adapted from an algorithm provided by 

McShane* is described in the materials and methods section. 

 

 

 

 

 

 

 

 

 

 

 

 

_______________ 
*  Private communication with Dr. Michael McShane, Assistant Professor,  Louisiana Tech University, 
2004
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     CHAPTER IV 
 

MATERIALS AND METHODS 

The first section of this chapter briefly describes the system design of the custom 

made sensor system. The second section explains the data simulation, in vitro and in vivo 

experimental setup used to verify the autocorrelation based time domain package. The 

final section covers the Monte Carlo data modeling and the experimental setup used in 

the real time separation of physiological signals using adaptive filtering.  The signal 

processing package created using adaptive filtering is also explained in the final section.  

 
4.1 Sensor system design 

The sensor has been designed to measure perfusion of an organ by emitting light 

into the organ and detecting the backscattered light intensity. The current sensor system 

is designed to deliver three different wavelengths of light (660nm, 810nm and 940nm) to 

an area of tissue containing vessels in which the blood perfusion measurement can be 

taken. It is made up of three main components. The custom sensor probe head consists of 

a custom 4-in-1 diode, of which three slots were filled, allowing for independently 

modulated light sources to reside within one chip and therefore be projected into the 

same sample volume through the same spherical glass lens. All three LEDs were 

modulated at different frequencies around 2kHz via a custom designed unit developed 

by Oakridge National Laboratories (ORNL). The system operates similar to an RF 

system that modulates each of the LED wavelengths by a different carrier and then 
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demodulates the output of the photodetector to remove each of the carriers leaving the 

biological signal of interest.  

At a distance of 3mm from the source diode is a glass coated silicon photodiode 

that measures 2mm square and is capable of detecting all three wavelengths 

simultaneously by frequency modulation. The probe head (Fig. 6) is tethered to a custom 

circuit box that consists of the diode power supply and frequency modulation circuitry as 

well as the signal collection circuitry. 

 

 

Fig. 6. Probe containing 3 different LEDs and a photodetector 

 
The collection circuitry is made up of a frequency demodulation circuit and a 

series of analog filters for each of the three sources. The analog outputs from the sensor 

interface electronics are input to National Instruments data acquisition card located in 

the notebook PC PCMCIA slot. A LABView® (National Instruments) data acquisition 

program was written to collect the data in real time. The instrument also provides extra 

analog input channels that can be digitized with the sensor data. This provides a 
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convenient interface for collecting time-correlated data from other laboratory 

instruments that can be used during perfusion tests such as Laser Doppler flow meter.  

The block diagram of the sensor drive and processing electronics is shown in  

Fig. 7, and the fabricated instrument is shown in Fig. 8. 

 
 

 

Fig. 7.  Block diagram of sensor drive and processing electronics [4] 
 

 
 

 

Fig. 8. Custom electronics for sensor interfacing and data collection [4] 
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4.2 Real time analysis of blood perfusion and oxygenation 

4.2.1 Data simulation 

A semi-periodic signal was generated that mimicked the perfusion and 

oxygenation signal commonly observed in the human body. The signal (Datasimul.m – 

Appendix A) was created by combining various sinusoids of different weights with a 

range of 2.95-3.05Hz using Matlab 5.3 (Mathworks, Inc). The central frequency was 

chosen randomly within this range and given a greater weighting. This frequency range 

was chosen because it is consistent with that observed in heart rate variability studies in 

pigs. The model data set was constructed using a sampling rate of 300Hz at a length of 

50 seconds.  High and low frequencies of random amplitudes were added to the model 

data set to simulate the affect of motion artifact and respiration.  The simulated data was 

created in the likeness of the in vivo clamping study and thus the amplitude was varied to 

represent the trend due to arterial clamping seen in the actual in vivo study. 

 
4.2.2 In vitro system 

A model for blood perfusion through an organ was created using an adjustable 

peristaltic perfusion system in which the output tube was surrounded by 2 millimeter-

thick chicken breast tissue that was perfused with a mixture of washed pooled bovine red 

blood cells with a buffer solution.  An adjustable gas flow system was constructed so 

that the experimenter could alter the hemoglobin saturation by pumping in a set ratio of 

oxygen and nitrogen with fixed 5% carbon dioxide into the blood.  The ratio between the 

gases was controlled so that certain sO2 levels could be reached and maintained. An 

adjustable peristaltic perfusion pump (MasterFlex L/S #7519-20, Cole-Parmer, IL), set at 
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4 Hz, pumped the gas treated bovine blood through the tissue-wrapped tube.  The sensor 

described in section 4.1 was placed onto the surrounding tissue and mounted to limit 

motion artifact. Fifty-second segments of data were recorded three times at 300 samples 

per second for six separate oxygenation levels. The blood was then tested using a 

radiometer (Radiometer ABL 700 Series) to measure the true saturation level and 

chemical properties (pH, pO2, sO2, MeHb and CoHb).  The in vitro data sets generated 

through the above procedure were analyzed using FFT and APAA methods similarly to 

the model data set. 

 
4.2.3 In vivo system   

A female swine (50-60 kg) was given ketamine (10mg/kg) and xylazine 

(1.5mg/kg) for anesthetic induction and intubated under an approved animal use 

protocol.  The pig was ventilated with 100% oxygen and anesthesia was maintained with 

inhalational isoflurane (1-4%).  A Paratrend7 monitor (Diametrics Medical, Inc, MN) 

was placed on the left carotid artery via catheterized to allow for continuous blood gas 

analysis.  Respiratory rate and tidal volume were adjusted to maintain PaC02 between 

40–45 mmHg. The right femoral artery was cannulated with a Millar pressure transducer 

and a femoral catheter was inserted for blood sampling (Fig. 9).  
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Fig. 9.  Setup for in vivo experiment 

 
A Swan Ganz catheter was placed via the left internal jugular vein for cardiac 

output and mixed venous blood measurements. A laparotomy was performed and the pig 

was allowed one hour for stabilization. The sensor described in section 4.1 was placed 

on the serosal surface of the proximal jejunum and a clamp was applied to the 

vasculature supplying that region. A baseline signal was acquired for 50 seconds, four 

times prior to clamping of the vasculature. The clamp was then adjusted to three separate 

stages and data was acquired for 50 seconds, four times, at each stage. Finally, the clamp 

was removed and reperfusion data was collected the same way. Following the procedure, 

the animal was euthanized with a saturated solution of intravenous KCl (10 ml/kg) after 

the depth of anesthesia was increased with 5% isoflurane.  The in vivo data set consisted 

of 20, 50-second data segments that represented the clamping procedure.  These data 

segments were analyzed using the FFT and APAA methods similarly to the model data 

set. 
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4.2.4 Signal processing 

An autocorrelation-based perfusion analysis algorithm (APAA) was developed 

(apaa.m – Appendix B). Since the in vivo data sets contained both low and high 

frequency noise due to motion and respiration (Fig. 10a), the first process in this 

algorithm included the design of a digital band pass filter that limited the raw data to the 

physiologic range of interest (1-5 Hz, Porcine) (Fig. 10b).  Secondly, autocorrelation 

was performed on the data segment resulting in a signal that contained peaks at intervals 

equal to the repetition rate of the original signal (Fig. 10c).  A peak finding algorithm 

was used to detect adjacent peaks and calculate the repetition rate of the signal.  From 

this repetition rate, the rate per minute (pulse rate) of the signal was obtained.  A moving 

window with the width set to the pulse rate was then used to pick the maximum and 

minimum points from the filtered signal (Fig. 10d).  The amplitude of the signal of 

interest was obtained by measuring the difference between the maximum and minimum 

points.  
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Fig. 10.  Sketch of autocorrelation based perfusion analysis algorithm. (a) in vivo 

perfusion signal (b) the filtered signal (c) autocorrelated signal and (d) the result of peak 
finding algorithm  

      

FFT and APAA processing methods were evaluated for all three data sets. Since 

the simulated data was created in the likeness of the in vivo clamping study, the 

amplitude was altered to represent the trend seen in the in vivo experiment.  Both FFT 

and APAA processing techniques were subjected to similar filtering techniques to 

remove high and low frequency oscillations.  The transient response of the digital band 

pass filter created an artifact in the first 2 seconds of the data that was not representative 

of the model, but rather the filter. To avoid error due to this response, the final data set 

was cropped to 48 seconds.  The entire 48-second data set was used for full-segment 

analysis and further split into six equal segments of 8-second length and twelve equal 
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segments of 4-second length for short-segment analysis. The amplitude of the filtered 

signal was isolated using both FFT and APAA analysis.  In order to obtain an AC 

amplitude for the FFT analysis, the spectral amplitude at the frequency of interest was 

divided by the number of data points in the signal.  The average amplitude and standard 

deviation were calculated for all three data set lengths for both the FFT and APAA 

techniques.  The APAA and FFT processing methods (Simultanalyse.m – Appendix C) 

were performed using Matlab 5.3 (Mathworks, Inc). 

 
4.3 Separation of blood perfusion and oxygenation 

4.3.1 Data simulation 

A data set was simulated to mimic the change seen due to oxygenation within a 

blood filled tissue.  To simplify the model the physiology was broken down into five 

layers mimicking the in vitro setup.  The first and last layers (2mm thick) were modeled 

using the optical properties of rat liver [59], similar to the tissue wrapped around the 

perfusion tube in the in vitro system. The second and fourth layers (2mm thick) were 

made non-scattering and non-absorbing and modeled as a slight increase in index of 

refraction as would be depicted in the in vitro clear plastic tube.  The third layer (4mm 

thick) in the model is the whole blood layer mimicking what was pulsed through the tube 

in the in vitro perfusion system.  It was assumed that the bulk of light absorption for the 

red and near-infrared regions in this layer was due to hemoglobin and therefore all 

absorptive values were based on the hemoglobin absorption spectrum.  Scattering and 

anisotropy values were extrapolated for the wavelength range of 600-1000 nanometers 
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from published literature [60].  Table 1 shows the optical properties used for the various 

layers over the wavelength range of 600-1000 nanometers. 

 
Table 1:  Summary of the range of optical properties used for the model 

 
Tissue Layer 

Index of 
Refraction(n) 

Absorption 
Coefficient 

(µa) 

Scattering 
Coefficient (µs) 

 
Anisotropy (g) 

Layer 1 & 5 1.4 0.5-6.5 cm-1 50-80 cm-1 0.92-0.97 
Layer 2 & 4 1.5 0 0 0 

Layer 3 1.4 2-46 cm-1 189-309 cm-1 0.98-0.99 
 

Using the five layer model, multi-layer Monte Carlo (MLMC) [54,8] photon 

tracing code was compiled for the wavelength range from 600-1000 nanometers every 

10 nanometers.  Weights were given to the original photon packets which correspond to 

the source spectrum.  The optical properties of the third layer were then altered by 

changing the absorption coefficients to mimic that seen with changing oxygenation.  

This was done 8 times to generate data that spanned 30 to 100% oxygen saturation of 

hemoglobin.  The recorded data for the model was a sum of the diffusely reflected light 

from 2 to 4 millimeters from the source to model the light as it would be collected by the 

detector.  The total intensity from each wavelength was grouped with other wavelengths 

from the same diode source and added to create three distinct files.  Lastly, for use in our 

signal processing package, the change in signal due to oxygenation was replicated (from 

30% to 100% back to 30%) at a frequency of 4Hz for a span of 50 seconds resulting in a 

sinusoidal signal of 1200 data point length.  To model a constant perfusion, a separate 

signal was generated with a frequency of 4Hz, amplitude of 1, and length of 1200 data 
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points.  The oxygenation signals were then weighted (5%) and added to the perfusion 

signals (95%) to generate a composite signal which was then used in analysis of the 

adaptive filter algorithm. (LMSadaptive.m – Appendix D).    

In order to validate the results provided by the in vitro experiments, the previous 

data simulation model was adapted to provide simulated data to compare to in vitro 

experimental data.  The oxygenation values derived from the model were used separately 

to weight 4Hz sinusoidal signals of amplitude 1, resulting in 8 signals for each 

wavelength whose overall amplitude changed relative to oxygenation level.  These 

signals were then recombined with unweighted 4Hz sinusoidal signals of the same 

frequency to simulate a constant perfusion.  The result of these additions was 8 

composite signals for each wavelength which modeled blood oxygenation change from 

30-100%. 

 
4.3.2 Data collection 

The in vitro experimental setup was similar to that used to test the autocorrelation 

package. In order to check the adaptive filtering technique at two different states of 

varying perfusion and varying oxygenation seen in the arteries two kinds of experiments 

were carried out. In the first set of experiments (in vitro-I) the oxygenation was lowered 

from 100% oxygen to 30% oxygen while the perfusion was kept constant. In the second 

set of experiments (in vitro-II) the perfusion of blood was increased to six different 

levels while the oxygen saturation of the blood was kept constant at approximately 98%. 

In vivo data was collected to determine the effectiveness of the adaptive filtering 

algorithm. The data was collected using the serosal surface of the swine jejunum 
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performed under an approved animal use protocol.  The procedure was the same as the   

in vivo experimental set up described for the autocorrelation package.  

 
4.3.3 Signal processing 

An adaptive filter was designed based on a Least Mean Square (LMS) adaptive 

algorithm (Separatesignal.m – Appendix E). The reference signal at 810nm was used as 

a reference to extract the perfusion from a composite signal. The measured red and 

infrared signals are used as an input to the digital adaptive filter to extract the 

corresponding perfusion signals. The extracted signal may have an intensity more or less 

than the measured signal. This depends on the intensity of the reference signal (810nm) 

used. With knowledge of the perfusion signal amplitude present in the red and infrared 

wavelength, the corrected oxygenation signal can be reconstructed by stretching or 

compressing the measured signal in accordance with the extracted perfusion signal.  

The adaptive filtering technique was employed to separate the composite signal 

into perfusion and oxygenation signals.  A real time algorithm using an autocorrelation 

technique [7] was used to obtain the peak to peak intensities of the extracted perfusion 

and oxygenation signals at different wavelengths.  Using the standard ratio described 

earlier the blood oxygenation value was then calculated and compared to the known 

blood oxygenation.  The entire signal processing package was designed using Matlab 5.3 

(Mathworks, Inc). 
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CHAPTER V 

RESULTS AND DISCUSSION 

The first section of this chapter presents the results of the autocorrelation based 

perfusion algorithm obtained from simulated, in vitro and in vivo data.  The final section 

describes, in detail, the results of the adaptive filtering package used in the separation of 

perfusion and oxygenation signals obtained from the in vitro model data, in vitro, and in 

vivo experiments.   

 
5.1 Real time analysis of blood perfusion and oxygenation 

5.1.1 Data simulation 

The FFT and APAA results for the simulated data are shown in Fig. 11a and   

Fig. 11b respectively. Twenty sets of simulation data were created in such a way that the 

amplitude of each group of four data sets was equal.  These groups had a decrease 

followed by an increase in amplitude to mimic the in vivo perfusion data. It can be seen 

that the FFT predicts a different amplitude for `4-second (S.E = 0.07) and 8-second (S.E 

= 0.128) data sets with a significant standard deviation between the segments (Fig. 11a).  

This demonstrates the main limitation of the FFT approach, namely the loss of frequency 

resolution for a limited number of samples. The APAA technique (Fig. 11b) predicts the 

amplitude much more accurately (S.E = 0.005) than the FFT (S.E =0.128) for the smaller 

data sets. Fig. 11b demonstrates that within any set of 3 that the mean amplitude 

obtained from the 4-second and 8-second data was equal with standard errors nearly 

equal to zero (S.E = 0.005).  
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Fig. 11a.  FFT results for simulated data in which perfusion signals mimic the in vivo 

data 

 
Fig. 11b.  APAA results for simulated data in which perfusion signals mimic the in vivo 

data 
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 Note that while the FFT signal in Fig. 11a varies for the 8 and 4sec data set, the 

APAA technique (Fig. 11b) is constant for the smaller data set since APAA adapts the 

window length according to the rate of the semi-periodic signal and unlike FFT does not 

suffer from the loss of frequency resolution for a limited number of samples. 

 
5.1.2 In vitro study 

The data from the in vitro experiment was also analyzed using both the FFT and 

APAA methods. Fig. 12 shows the raw data from the in vitro system containing a 4 

Hertz signal with noise generated by the peristaltic pump.  The autocorrelation signal 

obtained from the raw data is shown in Fig. 13.  FFT analysis was performed on the raw 

data and a very sharp peak was seen at 4 Hz (Fig. 14).  The oxygen saturation of the 

blood was changed from 4% to 100% by changing the gas ratio; the resulting 

oxygenation measurements from the Radiometer results are shown in Fig. 15.   
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Fig. 12.  Raw data from the in vitro system containing the 4Hz signal plus noise from the 
peristaltic pump 
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Fig. 13.  Autocorrelation signal of the raw in vitro data 
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Fig. 14.  FFT spectrum of the raw in vitro data 
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Fig. 15:  Oxygen saturation from Radiometer 

     

Both the FFT and APAA techniques were able to capture the change in 

absorption and showed only very slight differences in amplitude.  The standard deviation 

(S.D = 0.003) of both data sets was small and the means across the same oxygenation 

states were relatively constant.  Fig. 16a and Fig. 16b show that the 940nm source used 

in this sensor decreases in intensity with rising oxygenation, as predicted by the 

hemoglobin absorbance spectra [10].  The other two sources showed comparable results 

and were therefore not shown.  From this analysis it can be seen that little difference 

exists between the APAA technique and standard FFT analysis when the raw data is 

periodic.  
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Fig. 16a.  FFT results for in vitro data showing constant means across 8sec and 4sec 

split with same blood oxygenation states 
 

 
Fig. 16b.  APAA results for in vitro data showing constant means across 8sec and 4sec 

split with same blood oxygenation states  
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5.1.3 In vivo study 
 

The amplitude of the in vivo perfusion signal was calculated using both the FFT 

and APAA algorithms as shown in Fig. 17- Fig. 19 for each of three sensor sources.  The 

experimental protocol used a graduated clamping procedure to change the overall 

perfusion of the monitored organ.  This protocol differs from the in vitro data set in that 

the perfusion was changed rather than the oxygen saturation of the blood.  This however 

does not affect the analysis technique because both of these phenomena occur at the 

same frequency.  The notable difference is that the three sources will change in the same 

fashion under a perfusion change (volume dependent) whereas an oxygenation change 

will affect the sources differently as it is dependent on the hemoglobin absorption 

characteristics [10].    

 
Fig. 17a.  FFT results for in vivo data (660nm source) showing inconsistent means 

across 8sec and 4sec split with same blood perfusion states 
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Fig. 17b.  APAA results for in vivo data (660nm source) showing constant means across 

8sec and 4sec split with same blood perfusion states 
 
 

 
Fig. 18a.  FFT results for in vivo data (810nm source) showing inconsistent means 

across 8sec and 4sec split with same blood perfusion states 
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Fig. 18b.  APAA results for in vivo data (810nm source) showing constant means across 

8sec and 4sec split with same blood perfusion states 
 

 
Fig. 19a.  FFT results for in vivo data (940nm source) showing inconsistent means 

across 8sec and 4sec split with same blood perfusion states 
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Fig. 19b.  APAA results for in vivo data (940nm source) showing constant means across 

8sec and 4sec split with same blood perfusion states 
 
 

The APAA method showed the estimated amplitudes of the filtered 48-second 

data, the average of 8-second data, and the average of the 4-second data to be nearly 

equivalent per wavelength as depicted in the Fig. 17b, 18b, and 19b.  Variations in 

amplitude between the wavelengths are due to differences in penetration depth, sensor 

position, and differences in source output intensities.  The FFT analysis of the same data 

showed estimated peak amplitude fluctuations of the 48-second, 8-second, and 4-second 

segments to be greater than the APAA technique (Fig. 17a, 18a, and 19a).  It can be seen 

that the APAA technique is much more consistent over the three segment lengths 

showing less amplitude variation and a smaller standard deviation on average (Table 2).  

This difference can be attributed to the in vivo signal being semi-periodic. Semi-
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periodicity causes the FFT spectrum for the filtered 48-second signal (Fig. 20) to 

become broad with a large frequency distribution around the frequency of interest 

compared to the FFT spectrum of in vitro data (Fig. 14).  When the data is shortened 

from 48 to 8 seconds, a loss of resolution is depicted due to a limited sampling rate, 

which results in less accurate amplitude estimates. In order to counteract this effect the 

sampling rate needs to be increased but this would result in a slower and less efficient 

system.   

 

Fig. 20. An example of the FFT spectrum obtained. (a) using 48 seconds of data and (b) 
using spectra of 8-second data from the 660 nm signal of in vivo experiment 
 

Table 2:  Summary of the standard error calculated against un-split data 

Simulated data In vitro data In vivo data  

8-sec split 4-sec split 8-sec split 4-sec split 8-sec split 4-sec split 

FFT 0.070 0.128 0.0003 0.0003 0.417 0.616 

APAA 0.005 0.006 0.004 0.004 0.032 0.029 
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5.2 Separation of blood perfusion and oxygenation 

The adaptive filter package was originally tested using data derived from a 

layered Monte Carlo model.  The data derived from this model was based on the in vitro 

experimental setup, but designed to generate data as it would be seen in vivo.  In a 

perfused organ two competing phenomena will affect the light returning to the sensor 

probe; change in perfusion and change in hemoglobin saturation.  As blood enters the 

sampling volume it carries with it a slight increase in volume due to the pulse pressure 

and also a fresh amount of oxygenated hemoglobin for delivery to tissue.  In order to 

model the two competing phenomenon, values similar to what would be expected 

physiologically must be generated.  Using the described model, oxygenation values were 

generated that represent approximately what would be measured in a transplant organ 

with our sensor.  In order to form a composite signal, a simple sinusoidal signal was 

generated and added to the oxygenation signal.  This sinusoid modeled the increased 

volume that would be present in a pulsatile system (perfusion).  The two signals were 

added at a ratio of 95% perfusion to 5% oxygenation to mimic a highly perfused region 

of tissue.    
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Fig. 21.  Combined oxygenation and perfusion signal using Monte Carlo simulation.
  (a) 660nm (b) 810nm and (c) 940nm 

 
 

The composite signal is shown normalized in Fig. 21 for each of the three 

sources.  The adaptive filtering algorithm was used to generate perfusion and 

oxygenation signals for the 660nm and 940nm wavelengths from these composite 

signals.    The generated signals are shown in Fig. 22 as compared to the original 

independent signals derived from the Monte Carlo model.  The perfusion signals for the 

two wavelengths match very well due to their large weighting in the composite signal.  

The infrared (940nm) perfusion signal is shown in Fig. 22a.   
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Fig. 22.  Output signals from adaptive filter algorithm. (a) 940nm perfusion 
signal (b) 660nm oxygenation signal and (c) 940nm oxygenation signal 

 

Fig. 22b and Fig. 22c show the extracted signals due to oxygenation for both red 

(660nm) and infrared (940nm) wavelengths.  The solid lines depict the original pure 

signal and the dashed lines display the signal extracted through adaptive filtering.  It can 

be seen that the signals appear different in shape due to the repetitive construction of the 

Monte Carlo derived data points and smoothing effect of the adaptive filtering.  

However, the amplitude and frequency of the signals is equivalent with error between 

the two of 0.01% in frequency and 0.2% in amplitude proving that the adaptive 

algorithm was able to extract oxygenation derived signal adequately.  Also, it is 

important to note the phase between the red (660nm) and infrared (940nm) signals is 

shifted 180 degrees.  This change in phase shows that this processing method accurately 
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extracted the oxygenation signal because this phase difference is predicted from the 

hemoglobin absorption curve around the isosbestic point (810nm).   

 The in vitro experimental setup was created to measure the ability of the sensor 

to work in a more realistic setting containing motion artifacts and system noise.  As 

stated earlier the pump modulation frequency is seen as the heart pulse signal, but is 

independent of volume changes due to a rigid tube and also oxygenation due to lack of a 

chemical reaction within the sampling volume.  To change these parameters two things 

were done; the volume per pulse was changed via a larger bore pumping tube and the 

oxygenation was changed externally to a chosen level via gas interaction.   This means 

that data segments exist at a single set oxygenation or a single set perfusion level for an 

entire 50 second data set.  Therefore the resulting data consisted of multiple 50 second 

segments each of which being a constant perfusion value with a constant oxygenation 

state.  By combining these files into one large continuous data set, a composite signal 

can be formed which contains either a perfusion change or saturation change.   

The first in vitro data set was generated to show the sensor’s response to changes 

in oxygenation within whole blood.  Through the addition of ten files, 50 seconds in 

length, for each wavelength, a composite signal was made and the adaptive algorithm 

was performed.  Fig. 23 shows the extracted perfusion signal from the first model data.  

As expected, through the use of a constant perfusion signal, the extracted signal is nearly 

constant.  The extracted oxygenation signal as predicted by the Monte Carlo code versus 

oxygen saturation is shown in Fig. 24. 



 59

 

Fig. 23.  Perfusion signal extracted from first Monte Carlo model data.  As depicted the 
perfusion is pulled out as a constant even though oxygenation is varying 

 
 

 
Fig. 24.  Oxygenation signal extracted from first Monte Carlo model data.  As depicted 

the oxygenation varies while the perfusion is constant  
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Fig. 25 and Fig. 26 show the two outputs for the red (660nm) and infrared 

(940nm) wavelengths for perfusion and oxygen saturation.  What is seen is that 

perfusion was kept relatively constant by the rigid tube and the varying oxygenation 

from the gas exchanger caused changes in the signal.  Fig. 24 and Fig. 26 compare very 

well showing that not only is the sensor able to detect the change due to oxygenation, but 

also that the adaptive algorithm successfully separated perfusion and oxygenation 

signals.  Using the autocorrelation algorithm the oxygen saturation ratio was calculated 

and plotted against the known values (Fig. 27).  It is seen that with decreasing 

oxygenation the ratio goes up, agreeing well with what is reported in literature [11], [21]. 

This graph was generated from four independent experiments using the same procedure, 

showing that this data is very consistent with standard error less than 2%. 

 

 

Fig. 25.  Perfusion signal extracted from first in vitro experiment showing constant 
perfusion signal while the oxygenation is varying 
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Fig. 26.  Oxygenation signal extracted from first in vitro experiment showing varying 

oxygenation signal while the perfusion is constant 
 
 

 
Fig. 27.  Oxygenation ratio obtained from first in vitro experiment showing increasing 

oxygenation ratio with decreasing oxygen saturation  
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 The second in vitro data set was created to determine if the sensor could perform 

well with changing perfusion.  The experimental protocol consisted of increasing the 

bore size of the peristaltic tubing to cause a greater flow of fluid to pass through the 

sampling region per pulse.  Fig. 28 shows the results from the adaptive filtering 

algorithm.  This increase in flow appears as a rise in signal for the two wavelengths.  

This is due to an influx of absorbing material with each pulse that is greater depending 

on the pressure behind the fluid.  This would generate greater absorbance in all the 

sources and manifest itself as an increase in the AC signal measured due to a bigger 

difference between the two oscillating states (pulse and rest).  As expected, the perfusion 

signal changes in response to the increased flow.  Also of importance is that the 

oxygenation signals (Fig. 29) trace each other with no noticeable deviations.  This would 

translate into a ratio that is approximately the same across all data files.  As expected, 

using the autocorrelation procedure, the resultant change in oxygenation is 

approximately zero as shown in Fig. 30.   
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Fig. 28.  Perfusion signal extracted from second in vitro experiment showing increasing 

perfusion while the oxygenation is constant 
 
 

 
Fig. 29.  Oxygenation signal extracted from second in vitro experiment showing 

increasing oxygenation with constant ratio 
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Fig. 30.  Oxygenation ratio obtained from second in vitro experiment showing constant 

oxygenation ratio while the perfusion is varying 
 
 

 The last experimental setup was performed by placing the sensor on the surface 

of a swine intestine.  The mesentery arteries were then systematically clamped to induce 

a large perfusion change in the illuminated tissue.  The sensor recorded four, 50 second 

data segments for each of the 5 stages.  Fig. 31 and Fig. 32 show the extracted perfusion 

and oxygenation signals as seen after the adaptive filtering.  The noticeable drop seen in 

the signal for each of the first four stages is due to the clamping of the arteries and the 

drastic rise in the last stage is due to the hyperemic response of the tissue upon 

reperfusion.  The oxygenation signal (Fig. 33) shows a near constant oxygen saturation 

ratio until the point where all blood is cut off (File 13).  The total loss of perfusion 

manifests itself electronically as a complete loss of the main pulsatile frequency causing 

error in the adaptive filtering and autocorrelation algorithms. Upon reperfusion, 

however, the pulsatile nature of the signal returns and the system regains its prior oxygen 
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saturation consistency.  This experiment shows the ability of this sensor to perform both 

a perfusion measurement and calculate relative oxygen saturation values in low blood 

flow states, but clearly yields false results for oxygenation when there is no flow. 

 

 
Fig. 31.  Perfusion signal extracted from in vivo experiment showing decreasing 
perfusion state during clamp stage and increasing perfusion in reperfusion stage 

 
 

 
Fig. 32.  Oxygenation signal extracted from in vivo experiment showing decreasing 

oxygenation with a constant ratio between 660nm and 940nm source   
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Fig. 33.  Oxygenation ratio obtained from in vivo experiment showing constant 

oxygenation ratio with varying perfusion 
 
 

The adaptive filtering technique primarily separates the perfusion signal and 

oxygenation signal from the composite signal obtained by the detector. In traditional 

oximeters, the perfusion information is obtained in the form of a plethysmograph signal 

using a single wavelength. The oxygenation ratio thus obtained would be the 

combination of both the perfusion signal and the oxygenation information. This is 

critical in situations where the perfusion signal is widely fluctuating. The adaptive 

filtering technique proposed here can be used in these circumstances to separate the 

perfusion signal and obtain more robust oxygenation information. As shown in Fig. 34, 

the oxygenation ratio obtained without the adaptive filter is similar to that obtained by 

using adaptive filtering in the in vitro experiment.  This is the situation experienced in 

healthy patients (near constant perfusion). But in patients experiencing low blood 

perfusion the oxygenation ratio fluctuates thus yielding incorrect arterial oxygen 

saturation values. This situation is similar to the in vivo (Fig. 35) experiment where the 
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oxygenation ratio fluctuates more than those obtained using adaptive filtering.  Even 

though slight variation can be seen after adaptive filtering, the ratio obtained with the 

combined algorithm is more stable than autocorrelation alone.  

 

 
Fig. 34.  Plot of oxygen saturation vs ratio in the in vitro experiment showing increasing 

oxygenation ratio with decreasing oxygen saturation 
 
 

 
Fig. 35.  Plot of oxygen saturation vs ratio in the in vivo experiment showing more stable 

oxygenation ratio from adaptive filtering 
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Statistically, when comparing the standard deviation from the mean of the data 

sets (Table 3), the adaptive filtering and autocorrelation algorithm yields an error of 

0.088, which is roughly one half that of the autocorrelation alone (0.192).  If data points 

13-16 (previously explained to be erroneous due to no flow) are removed from the data 

set (Fig. 36) the error for the combined algorithm (0.056) still remains significantly 

lower than the autocorrelation algorithm (0.127).   

 

 
 
Fig. 36.  Oxygenation ratio from different analysis techniques showing stable oxygenation 

ratio compared to traditional analysis techniques 
 

 
Table 3:  Summary of the standard error of different analysis techniques 

 
Standard Error FFT technique Autocorrelation Autocorrelation 

+ Adaptive 
filtering 

Entire data set 
 

0.277752 0.192491 0.087645 

Without low 
perfusion states 

0.203736 0.127263 0.056408 
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CHAPTER VI 
 

CONCLUSIONS AND FUTURE WORK 
 

An autocorrelation based perfusion analysis algorithm has been developed to 

obtain the peak amplitude of both periodic and semi- periodic signals. It has been shown 

to work well for simulated, in vitro, and in vivo signals. The time domain technique that 

is currently being used to analyze pulse oximetry signals (weighted averaging) requires 

the knowledge of the repetition of the signal in order to obtain the amplitude. In the 

general case for biological signals with low signal-to-noise ratio, the repetition is 

obtained from a reference source, such as the heart rate using an electrocardiogram 

(ECG) or pressure sensor [9]. The APAA method was able to obtain the heart rate from 

the autocorrelation method without the need of external devices.  Also, the APAA has 

proven to be more consistent than a standard Fourier transform due to its ability to 

handle heart rate variability (semi-periodicity).  

The adaptive filtering technique has been used in the pulse oximetry data to 

separate the oxygenation and blood perfusion signal occurring simultaneously in the 

detector side by the introduction of a third source centered at the isosbestic point.  The 

ultimate goal of this work is to separate oxygenation saturation and perfusion signals in 

vivo with fluctuating and/or low perfusion states characteristic of organ transplant 

complications.  Using a simplified Monte Carlo model it was realized that the 810nm 

source functioned well to eliminate the perfusion artifact from the composite signal and 

allowed previously developed autocorrelation algorithms to work better.  This was 

confirmed using real biological tissue and whole blood in an in vitro setup where effects 
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due to saturation and perfusion could be analyzed independently.  Lastly, using a swine 

model, the ability of the new processing algorithm was analyzed with changing 

perfusion states.  The algorithm showed a repeatable and constant measurement for both 

perfusion and oxygenation with the exception of no flow in which case the oxygenation 

signal was not well predicted because of the lack of a signal.   

The LMS adaptive filter algorithm is favored in this project due to its simplicity 

and less computation time to separate the perfusion and oxygenation from biological 

signals.  On the contrary, the LMS algorithm has a relatively slow rate of convergence, 

making it incapable of improving the signal to noise ratio in rapidly varying 

environment. Although computationally complex, a recursive least square (RLS) 

adaptive noise reduction technique with rapid convergence could be attempted in future 

analysis. Future work should also focus on miniaturization of the sensor for implantation 

and incorporating the processing algorithms into the sensor for real time processing that 

will allow for continuous monitoring of patient perfusion and oxygenation saturation. 
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APPENDIX A 
 

MATLAB PROGRAM Datasimul.m 
 
 
% Datasimul.m 
clear all 
phi=0; 
f = [3.0 2.96 3.04 3.0 2.96 2.94 3.04 2.98 3.02 2.98]; 
f1 = 2.9; 
f2 = 3.1; 
f3 = 2.9; 
f4 = 3.1; 
Amp = [0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.7 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 
1.3 1.3 1.3 1.3]; 
omega1=2*pi*f1; 
omega2=2*pi*f2; 
omega3=2*pi*f3; 
omega4=2*pi*f4; 
sampfreq = 300; 
totallength = 50;     
timesplit = 5; 
 
for q=1:20 
        wininc = 0; 
    for i=1:(totallength/timesplit) 
        window = (1:timesplit*sampfreq)+wininc; 
        t1 = 0:1/sampfreq:(timesplit)-1/sampfreq; 
        omega(i)=2*pi*f(i); 
        x=Amp(q)*sin(omega(i).*t1+phi); 
        x1=0.04*sin(omega1.*t1+phi); 
        x2=0.02*sin(omega2.*t1+phi); 
        x3=0.06*sin(omega3.*t1+phi); 
        x4=0.08*sin(omega4.*t1+phi); 
        model(window) = x+x1+x2+x3+x4; 
        wininc = wininc+(timesplit*sampfreq); 
    end 
        Datasimul = model; 
end 
 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% END OF THE PROGRAM TO SIMULATE IN VITRO DATA 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX B 
 

MATLAB PROGRAM apaa.m 
 
 
%apaa.m 
clear all 
w = load(uigetfile('*.txt'));      
x = w(:,2);                        
har = x; 
%constructing a bandpass filter 
%-------------------------------- 
[b,a] = butter(4,[1.5 5]/150);     
x_filt = filter(b,a,x); 
 
%For detecting the frequency from FFT to verify the value obtained 
%------------------------------------------ 
x = x_filt(601:15000); 
z = x-mean(x);    
%------------------------------------------- 
 
leng_samp = length(z);  
sfreq_samp = 300;       
n_samp = (leng_samp/2); 
 
%autocorrelation of non periodic signal 
%------------------------------------------- 
[c_x,lags] = xcorr(z,n_samp,'coeff');  
lags_z = lags(n_samp+200:2*n_samp+1);  
c_z = c_x(n_samp+200:2*n_samp+1)+1;    
%-------------------------------------------- 
 
%-------------------------------------------- 
init = 1;   
count = 1;  
 
%To find the distance between two peaks in autocorrelation 
%-------------------------------------------- 
n_corr = length(c_z); 
for k = 1:n_corr-1 
    s(k+1) = (c_z(k+1)-c_z(init))^2;  
    if s(k+1)<s(k) 
        diff = c_z(k) - c_z(init);    
        if diff < 0 
            init = k;                 
            s(k+1) = (c_z(k+1)-c_z(init))^2;  
        elseif diff > 0.01 
            init = k;                        
            maxi(count) = lags_z(init);      
            corr_max(count) = c_z(init); 
            count = count+1;                 
            s(k+1) = (c_z(k+1)-c_z(init))^2; 
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        end 
    end 
end 
 
%---------------------------------------------- 
period = (maxi(2)-maxi(1))/sfreq_samp;       
freq = 1/period;                             
 
size_window = period*sfreq_samp;   
 
%Maximum and minimum points from raw signal 
%------------------------------------------------ 
index_x = 0;             
count = 1; 
while index_x < leng_samp-2*size_window 
    t_window = (1:size_window)+index_x;  
    max_x(count) = max(x(t_window));             
        for index = t_window 
            if x(index) == max_x(count) 
                index_x = index;  
                max_t(count) = index;   
            end 
        end 
        t_window = (1:size_window)+index_x; 
        min_x(count) = min(x(t_window));         
        for index = t_window 
            if x(index) == min_x(count) 
                index_x = index; 
                min_t(count) = index; 
            end 
        end 
         
        mag_signal(count) = max_x(count)-min_x(count); 
         
    count = count+1; 
end 
 
mean_mag = mean(mag_signal); 
mag_time = mean_mag/2; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% END OF THE CODE TO CALCULATE THE MAXIMA AND MINIMA POINTS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX C 
 

MATLAB PROGRAM Simultanalysel.m 
 
%Simultanalyse.m 
clear all 
w = load(uigetfile('*.txt'));      
x = w(:,2);                        
 
%constructing a bandpass filter 
%-------------------------------- 
[b,a] = butter(4,[1.5 5]/150);  
x_filt = filter(b,a,x); 
 
x_filt = x_filt(601:15000); 
 
z_filt = x_filt-mean(x_filt);  
leng_z = length(z_filt);       
leng_samp = leng_z/12; 
inc = 0; 
      for h = 1:12 
            z = z_filt((1:leng_samp)+inc); 
            sfreq_samp = 300;                                                         
            n_samp = (leng_samp/2);                   
 
            figure(h+10); 
            subplot(2,1,1); 
            plot(x); 
            xlabel('Time(sec)'); 
            ylabel('Amplitude'); 
 
%autocorrelation of non periodic signal 
%------------------------------------------- 
[c_x,lags] = xcorr(z,n_samp,'coeff');     
lags_z = lags(n_samp+200:2*n_samp+1);     
c_z = c_x(n_samp+200:2*n_samp+1)+1;       
subplot(2,1,2); 
plot(lags_z,c_z); 
xlabel('Lags'); 
ylabel('Normalized amplitude'); 
%-------------------------------------------- 
 
%-------------------------------------------- 
init = 1;   
count = 1;  
 
%To find the distance between two peaks in autocorrelation 
%-------------------------------------------- 
n_corr = length(c_z); 
for k = 1:n_corr-1 
    s(k+1) = (c_z(k+1)-c_z(init))^2;  
    if s(k+1)<s(k) 
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        diff = c_z(k) - c_z(init);    
        if diff < 0 
            init = k;                 
            s(k+1) = (c_z(k+1)-c_z(init))^2; 
        elseif diff > 0.01 
            init = k;                        
            maxi(count) = lags_z(init);      
            corr_max(count) = c_z(init); 
            count = count+1;                 
            s(k+1) = (c_z(k+1)-c_z(init))^2; 
        end 
    end 
end 
 
%---------------------------------------------- 
period = (maxi(2)-maxi(1))/sfreq_samp;       
 
freq(h) = 1/abs(period);                     
 
size_window = period*sfreq_samp;             
 
%Mamimum and minimum points from raw signal 
%------------------------------------------------ 
index_x = 0;   
count = 1; 
while index_x < leng_samp-3*size_window 
 
    t_window = (1:size_window)+index_x; 
    max_x(count) = max(x(t_window));             
        for index = t_window 
            if x(index) == max_x(count) 
                index_x = index;  
                max_t(count) = index;  
            end 
        end 
        t_window = (1:size_window)+index_x;   
        min_x(count) = min(x(t_window));         
        for index = t_window 
            if x(index) == min_x(count) 
                index_x = index; 
                min_t(count) = index; 
            end 
        end 
         
            mag_signal(count) = max_x(count)-min_x(count); 
         
   figure(h+20); 
   plot(x); 
   plot([max_t(count),min_t(count)],[max_x(count),min_x(count)],'bo');   
   hold on; 
   count = count+1; 
end 
 
            mean_mag = mean(mag_signal); 
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            mag_time(h) = mean_mag/2; 
            inc = inc+leng_samp; 
end 
 
            mag_mean = mean(mag_time); 
 
            mag_std = std(mag_time); 
 
             
%For detecting the frequency from FFT to verify the value obtained 
%------------------------------------------ 
 
z = z_filt; 
y = abs(fft(z));   
t = 1/48:1/48:14400/48;   
%------------------------------------------- 
   d = y(96:144); 
   g = max(d); 
   mag_fft = g/7200; 
   disp('FFT magnitude='); 
   disp(mag_fft); 
 
        leng_z = length(z); 
        leng_samp = leng_z/6; 
        inc = 0; 
        for h = 1:6 
            z_eight = z((1:leng_samp)+inc); 
            y_eight = abs(fft(z_eight)); 
            d_eight = y_eight(16:40); 
            g_eight = max(d_eight); 
            mag_ffteight(h) = g_eight/1200; 
            inc = inc+leng_samp; 
        end 
 
            mageight = mean(mag_ffteight) 
            stdeight = std(mag_ffteight) 
    
            leng_samptwl = leng_z/12; 
            inc = 0; 
        for h = 1:12 
            z_twl = z((1:leng_samptwl)+inc); 
            y_twl = abs(fft(z_twl)); 
            d_twl = y_twl(8:20); 
            g_twl = max(d_twl); 
            mag_ffttwl(h) = g_twl/600; 
            inc = inc+leng_samptwl; 
        end 
            magtwl = mean(mag_ffttwl) 
            stdtwl = std(mag_ffttwl) 
                
             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% END OF CODE TO CALCULATE THE MAXIMA AND MINIMA POINTS BY FFT AND APAA 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX D 
 

MATLAB PROGRAM LMSadaptive.m 
 
%LMSadaptive.m 
clear all; 
clf; 
 
load a660.txt -ascii 
load a810.txt -ascii 
load a940.txt -ascii 
load p660.txt -ascii 
load p810.txt -ascii 
load p940.txt -ascii 
%Y = input('Enter the frequency you want the perfusion and oxygenation 
signals to be at'); 
Y = 4; 
Time = 1/Y; 
Spacing = Time/6; 
Duration = 50/Spacing; 
%Red 660 
%Oxygenation 
g = 0; 
n = 0; 
for i = 1:12  
    if i < 7  
        absorb660(i) = a660(i); 
    else 
       j = (i-7)+(i-6);  
       absorb660(i) = a660(i-j); 
   end 
end 
for i = 1:Duration 
    j = 12*g; 
    absorb660a(i) = absorb660(i-j); 
    n = n+1; 
    if n == 12 
        g = g+1; 
        n=0; 
    end 
end 
%Perfusion 
g = 0; 
n = 0; 
for i = 1:12  
    if i < 7  
        perf660(i) = p660(i); 
    else 
       j = (i-7)+(i-6);  
       perf660(i) = p660(i-j); 
   end 
end 
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for i = 1:Duration 
    j = 12*g; 
    perf660a(i) = perf660(i-j); 
    n = n+1; 
    if n == 12 
        g = g+1; 
        n=0; 
    end 
end 
% Isobestic Point 
%Oxygenation 
g = 0; 
n = 0; 
for i = 1:12  
    if i < 7  
        absorb810(i) = a810(i); 
    else 
       j = (i-7)+(i-6);  
       absorb810(i) = a810(i-j); 
   end 
end 
for i = 1:Duration 
    j = 12*g; 
    absorb810a(i) = absorb810(i-j); 
    n = n+1; 
    if n == 12 
        g = g+1; 
        n=0; 
    end 
end 
%Perfusion 
g = 0; 
n = 0; 
for i = 1:12  
    if i < 7  
        perf810(i) = p810(i); 
    else 
       j = (i-7)+(i-6);  
       perf810(i) = p810(i-j); 
   end 
end 
for i = 1:Duration 
    j = 12*g; 
    perf810a(i) = perf810(i-j); 
    n = n+1; 
    if n == 12 
        g = g+1; 
        n=0; 
    end 
end 
%Infrared 940 
%Oxygenation 
g = 0; 
n = 0; 
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for i = 1:12  
    if i < 7  
        absorb940(i) = a940(i); 
    else 
       j = (i-7)+(i-6);  
       absorb940(i) = a940(i-j); 
   end 
end 
for i = 1:Duration 
    j = 12*g; 
    absorb940a(i) = absorb940(i-j); 
    n = n+1; 
    if n == 12 
        g = g+1; 
        n=0; 
    end 
end 
%Perfusion 
g = 0; 
n = 0; 
for i = 1:12  
    if i < 7  
        perf940(i) = p940(i); 
    else 
       j = (i-7)+(i-6);  
       perf940(i) = p940(i-j); 
   end 
end 
for i = 1:Duration 
    j = 12*g; 
    perf940a(i) = perf940(i-j); 
    n = n+1; 
    if n == 12 
        g = g+1; 
        n=0; 
    end 
end 
save ab660.txt absorb660a -ascii 
save ab810.txt absorb810a -ascii 
save ab940.txt absorb940a -ascii 
save pf660.txt perf660a -ascii 
save pf810.txt perf810a -ascii 
save pf940.txt perf940a -ascii 
for i = 1:1200 
    abs660a(i) = absorb660a(i)/absorb660a(1); 
    abs810a(i) = absorb810a(i)/absorb810a(1); 
    abs940a(i) = absorb940a(i)/absorb940a(1); 
    pe660a(i) = perf660a(i)/perf660a(1); 
    pe810a(i) = perf810a(i)/perf810a(1); 
    pe940a(i) = perf940a(i)/perf940a(1); 
end 
    j=0.5; 
    k=10; 
    compos660 = (j*abs660a)+(k*pe660a); 
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    compos810 = (j*abs810a)+(k*pe810a); 
    compos940 = (j*abs940a)+(k*pe940a); 
    compos660 = compos660-mean(compos660); 
    compos810 = compos810-mean(compos810); 
    compos940 = compos940-mean(compos940); 
    compos660 = compos660/max(compos660); 
    compos940 = compos940/max(compos940); 
    compos810 = compos810/max(compos810); 
 
    modoxy660=j*(abs660a-mean(abs660a)); 
    modoxy810=j*(abs810a-mean(abs810a)); 
    modoxy940=j*(abs940a-mean(abs940a)); 
    modpe660=k*(pe660a-mean(pe660a)); 
    modpe810=k*(pe810a-mean(pe810a)); 
    modpe940=k*(pe940a-mean(pe940a)); 
 
    w1=compos660; 
    w2=compos810; 
    w3=compos940; 
 
%********************************************************************** 
%Extracting perfusion signal of Red - using ANC LMS algorithm 
 reference = w2;      % 810 is the reference signal 
 primary = w1;        % 660 is the primary signal 
  
samp_length = length(primary); 
mu = 0.05; 
N = 32; 
window = samp_length/N; 
w_lms = zeros(1,N); 
output = zeros(1,N); 
width = 0; 
init = 0; 
for iteration = 1:window 
    primary_lms = primary ((1:N)+width); 
    reference_lms = reference ((1:N)+width); 
    w_lms(1) = init; 
    for i=1:N-1; 
            output(i) = reference_lms(i) - w_lms(i)*((primary_lms(i))); 
            w_lms(i+1) = w_lms(i) + mu*primary_lms(i)*output(i); 
    end 
    init = w_lms(i+1); 
    filt_coeff((1:N)+width) = w_lms;  
    w1_prf((1:N)+width) = primary_lms.*w_lms; 
    width = width + N; 
end; 
  
 %Extracting perfusion signal of IR - using ANC LMS algorithm 
reference = w2;      % 810 is the reference signal 
primary = w3;        % 940 is the primary signal 
  
samp_length = length(primary); 
mu = 0.05; 
N = 32; 
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window = samp_length/N; 
w_lms = zeros(1,N); 
output = zeros(1,N); 
width = 0; 
init = 0; 
for iteration = 1:window 
    primary_lms = primary ((1:N)+width); 
    reference_lms = reference ((1:N)+width); 
    w_lms(1) = init; 
    for i=1:N-1; 
            output(i) = reference_lms(i) - w_lms(i)*((primary_lms(i))); 
            w_lms(i+1) = w_lms(i) + mu*primary_lms(i)*output(i); 
    end 
    init = w_lms(i+1); 
    filt_coeff((1:N)+width) = w_lms;  
    w3_prf((1:N)+width) = primary_lms.*w_lms; 
    width = width + N; 
end; 
%Extracting perfusion signal of 810 - using ANC LMS algorithm 
reference = w2;      % 810 is the reference signal 
primary = w2;        % 810 is the primary signal 
 
samp_length = length(primary); 
mu = 0.05; 
N = 32; 
window = samp_length/N; 
w_lms = zeros(1,N); 
output = zeros(1,N); 
width = 0; 
init = 0; 
for iteration = 1:window 
    primary_lms = primary ((1:N)+width); 
    reference_lms = reference ((1:N)+width); 
    w_lms(1) = init; 
    for i=1:N-1; 
            output(i) = reference_lms(i) - w_lms(i)*((primary_lms(i))); 
            w_lms(i+1) = w_lms(i) + mu*primary_lms(i)*output(i); 
    end 
    init = w_lms(i+1); 
    filt_coeff((1:N)+width) = w_lms;  
    w2_prf((1:N)+width) = primary_lms.*w_lms; 
    width = width + N; 
end; 
         
w1_oxy = w1_prf+compos660; 
w3_oxy = compos940-w3_prf; 
 
  
%************************************************************ 
%END OF PROGRAM FOR DESIGNING ADAPTIVE FILTER 
%************************************************************ 
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APPENDIX E 
 

MATLAB PROGRAM Separatesignal.m 
 
 
%Separatesignal.m 
%load data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wave= [660 810 940]; 
pre = ['072903_1_SN201_Liver']; 
v= ['Vrms']; 
normal1=[];normal2=[];normal3=[];normal11=[];normal22=[];normal33=[]; 
normal_prf1=[];normal_prf2=[];normal_prf3=[]; 
t=1:1; 
for i = 1:1 
        temp=int2str(i); 
        name1=[pre temp '_' int2str(wave(1)) '.txt']; 
        name2=[pre temp '_' int2str(wave(2)) '.txt']; 
        name3=[pre temp '_' int2str(wave(3)) '.txt']; 
        name4=[pre temp '_' int2str(wave(1)) v '.txt']; 
        name5=[pre temp '_' int2str(wave(2)) v '.txt']; 
        name6=[pre temp '_' int2str(wave(3)) v '.txt']; 
         
        w1=load(name1); 
        w2=load(name2); 
        w3=load(name3); 
        wd1=load(name4); 
        wd2=load(name5); 
        wd3=load(name6); 
         
         
        w1=w1(:,2);m1=mean(w1); 
        w2=w2(:,2);m2=mean(w2); 
        w3=w3(:,2);m3=mean(w3); 
        wd1=wd1(:,2); 
        wd2=wd2(:,2); 
        wd3=wd3(:,2); 
        mwd1=mean(wd1); 
        mwd2=mean(wd2); 
        mwd3=mean(wd3); 
        mwd1=sqrt(2)*mean(wd1); 
        mwd2=sqrt(2)*mean(wd2); 
        mwd3=sqrt(2)*mean(wd3); 
         
         
        fw1=fft(w1); 
        fw2=fft(w2); 
        fw3=fft(w3); 
        
p1=abs(fw1(201))/7500;p2=abs(fw2(201))/7500;p3=abs(fw3(201))/7500; 
        normal1 = [normal1 mwd1]; 
        normal2 = [normal2 mwd2]; 
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        normal3 = [normal3 mwd3]; 
        normal11=[normal11 p1]; 
        normal22=[normal22 p2]; 
        normal33=[normal33 p3]; 
  
%********************************************************************** 
%Extracting perfusion signal of Red - using ANC LMS algorithm 
 
reference = w2;      % 810 is the reference signal 
primary = w1;        % 660 is the primary signal 
mu = 0.05; 
N = length(w1); 
w = zeros(1,N); 
output = zeros(1,N); 
for i=1:N-1; 
     output(i) = reference(i) - w(i)*((primary(i))); 
     w(i+1) = w(i) + mu*primary(i)*output(i); 
end 
w1_prf = primary.*w'; 
%Extracting perfusion signal of IR - using ANC LMS algorithm 
reference = w2;      % 810 is the reference signal 
primary = w3;        % 940 is the primary signal 
mu = 0.05; 
N = length(w3); 
w = zeros(1,N); 
output = zeros(1,N); 
for i=1:N-1; 
     output(i) = reference(i) - w(i)*((primary(i))); 
     w(i+1) = w(i) + mu*primary(i)*output(i); 
end 
w3_prf = primary.*w'; 
%Extracting perfusion signal of 810 - using ANC LMS algorithm 
reference = w2;      % 810 is the reference signal 
primary = w2;        % 810 is the primary signal 
mu = 0.05; 
N = length(w2); 
w = zeros(1,N); 
output = zeros(1,N); 
for i=1:N-1; 
     output(i) = reference(i) - w(i)*((primary(i))); 
     w(i+1) = w(i) + mu*primary(i)*output(i); 
end 
w2_prf = primary.*w'; 
 
%**********************************************************************  
        fw1_prf=fft(w1_prf); 
        fw2_prf=fft(w2_prf); 
        fw3_prf=fft(w3_prf); 
        p1_prf=abs(fw1_prf(201))/7500; 

  p2_prf=abs(fw2_prf(201))/7500; 
        p3_prf=abs(fw3_prf(201))/7500; 
         
        normal_prf1=[normal_prf1 p1_prf]; 
        normal_prf2=[normal_prf2 p2_prf]; 
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        normal_prf3=[normal_prf3 p3_prf]; 
  
 
  
 end 
  
         w1_oxy = w1+w1_prf; 
         w3_oxy = w3-w3_prf; 
  
         w1 = w1/max(w1); 
         w3 = w3/max(w3); 
         w1_prf = w1_prf/max(w1_prf); 
         w3_prf = w3_prf/max(w3_prf); 
         w1_oxy = w1_oxy/max(w1_oxy); 
         w3_oxy = w3_oxy/max(w3_oxy); 
  
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %END OF PROGRAM TO SEPARATE TWO SIGNALS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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