
FAST INTERCONNECT OPTIMIZATION

A Dissertation

by

ZHUO LI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2005

Major Subject: Computer Engineering

FAST INTERCONNECT OPTIMIZATION

A Dissertation

by

ZHUO LI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Weiping Shi
Committee Members, M. Ray Mercer

Donald K. Friesen
Duncan M. (Hank) Walker

Head of Department, Chanan Singh

December 2005

Major Subject: Computer Engineering

iii

ABSTRACT

Fast Interconnect Optimization. (December 2005)

Zhuo Li, B.E., Xi’an JiaoTong University;

M.S., Xi’an JiaoTong University

Chair of Advisory Committee: Dr. Weiping Shi

As the continuous trend of Very Large Scale Integration (VLSI) circuits technol-

ogy scaling and frequency increases, delay optimization techniques for interconnect

are increasingly important for achieving timing closure of high performance designs.

For the gigahertz microprocessor and multi-million gate ASIC designs it is crucial to

have fast algorithms in the design automation tools for many classical problems in

the field to shorten time to market of the VLSI chip. This research presents algo-

rithmic techniques and constructive models for two such problems: (1) Fast buffer

insertion for delay optimization, (2) Wire sizing for delay optimization and variation

minimization on non-tree networks.

For the buffer insertion problem, this dissertation proposes several innovative

speedup techniques for different problem formulations and the realistic requirement.

For the basic buffer insertion problem, an O(n log2 n) optimal algorithm that runs

much faster than the previous classical van Ginneken’s O(n2) algorithm is proposed,

where n is the number of buffer positions. For modern design libraries that contain

hundreds of buffers, this research also proposes an optimal algorithm in O(bn2) time

for b buffer types, a significant improvement over the previous O(b2n2) algorithm

by Lillis, Cheng and Lin. For nets with small numbers of sinks and large numbers

of buffer positions, a simple O(mn) optimal algorithm is proposed, where m is the

number of sinks. For the buffer insertion with minimum cost problem, the problem is

iv

first proved to be NP-complete. Then several optimal and approximation techniques

are proposed to further speed up the buffer insertion algorithm with resource control

for big industrial designs.

For the wire sizing problem, we propose a systematic method to size the wires of

general non-tree RC networks. The new method can be used for delay optimization

and variation reduction.

v

To my grandparents, my parents and my wife

vi

ACKNOWLEDGMENTS

I wish to express my great thanks to my advisor Professor Weiping Shi. Professor

Shi introduced the world of VLSI design automation to me. I truly appreciate all his

moral and financial support. Professor Shi is a wonderful teacher and person to work

with. Professor Shi has shared his profound knowledge and professional manner of

conducting research. I am very thankful to him for all the time he devoted to scientific

discussions with me, as well as for his constant encouragement and friendship.

Many thanks to my dissertation committee members, Professor Donald Friesen,

Professor Ray Mercer, Professor Weiping Shi, and Professor Hank Walker. I appreci-

ate very much their invaluable assistance.

Many thanks to Professor Donald Friesen for introducing me to the algorithm

world, which provided a firm base for my research work. Many thanks to Profes-

sor Ray Mercer for an inspiring course on switch theory, which opened my eyes to

VLSI circuit designs and prepared me well to be confident in my research work, and

for valuable advice for my career choices. Many thanks to Professor Hank Walker

for invaluable guidance and comments on my research work on testing and for the

wonderful time I had while attending his courses on testing and CAD tool develop-

ment. Many thanks to Professor Jiang Hu for the help and comments on my work on

physical design and for the great courses on physical design, which introduced Van

Ginneken’s algorithm to me.

Many thanks to Dr. Charles Alpert of the IBM Austin Research Lab for being my

mentor during summers that I spend at the IBM Austin Research Lab. I appreciate

very much Dr. Alpert’s scientific support. Many thanks to Dr. Sani Nassif of the

IBM Austin Research Lab for being a great manager and for sharing his scientific and

industrial experiences with me. Also, I would like to thank all of the PLATO team

vii

for the wonderful time I had while staying at the IBM Austin Research Lab.

I would like to express my gratefulness to the Applied Materials Corporation for

awarding the Applied Materials Fellowship to me.

Special thanks to my friends and fellow graduate students. Thanks to Xiang Lu

for the great work on the fault models, simulation and timing analysis contributing to

our collaborative research, and for the experience on SPICE and CAD tools. Thanks

to Wangqi Qiu for the wonderful work on the testing contributing to our collaborative

research. Thanks to Chin Ngai Sze (Cliff) for his work on the approximation tech-

niques for buffer insertion contributing to part of this research. Thanks for Shu Yan

for many interesting discussions and wonderful cakes. Thanks to Zhili Zhang and

Yong Liu for their rich Unix and Linux experiences. Thanks to Cheng-Ta Chiang

for introducing me to Latex and many useful hints on that. Thanks to Zhijun Cai,

Frank Qiu, Haiyun You, Chuang He, Le Zou, Wentao Zhao for the making computer

engineering group a big family and a wonderful place to work. Thanks to Linli He

for making me always welcome at her home.

I wish to thank my grandparents for teaching me the great things that I will

enjoy throughout my life. I am very grateful to my parents for their encouragement,

support and truly believing in me.

Many thanks to my wife Ying Zhou. Without her support and belief in my work

I could not imagine this dissertation being accomplished.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Technology Trends and Background 1

B. Contribution . 5

II FAST BUFFER INSERTION FOR DELAY OPTIMIZATION . 8

A. Previous Work . 8

B. Delay Models and Problem Formulations 10

C. An O(n log2 n) Algorithm for Optimal Buffer Insertion ∗ . 16

1. Speedup Techniques 16

a. Predictive Pruning 17

b. Candidate Tree 19

c. Buffer Location and Type 23

d. Fast Redundancy Check 27

e. Fast Merge . 29

2. Algorithm . 33

a. Sink . 34

b. Buffer . 34

c. Wire . 35

d. Merge . 36

3. Analysis . 40

4. Multiple Buffer Types 44

5. Simulation . 45

D. An O(bn2) Algorithm for Optimal Buffer Insertion with

b Buffer Types . 49

1. New Algorithm . 49

2. Simulation . 57

3. Extension . 60

E. An O(mn) Algorithm for Optimal Buffer Insertion of

Nets with m Sinks . 61

1. Two-Pin Nets . 62

a. Convex Pruning 62

b. Best Candidates 64

c. Data Structure 67

ix

CHAPTER Page

d. Algorithm . 68

2. Multi-Pin Nets . 71

3. Buffer Cost Minimization for 2-Pin Net 72

4. Simulation . 73

5. Summary for Fast Algorithms for Max Slack Buffer

Insertion Algorithm 76

F. Complexity Analysis and Speedup Techniques for Op-

timal Buffer Insertion with Minimum Cost 76

1. Complexity Analysis 78

2. Algorithm . 81

3. Predictive Pruning . 85

a. General Idea . 85

b. Application to Buffer Cost Minimization 87

c. Experimental Results 87

4. High Degree Vertices 88

G. Approximation Techniques for Buffer Insertion with Min-

imum Cost . 90

1. Aggressive Predictive Pruning (APP) 93

2. Convex Pruning (CP) 95

3. Library Lookup (LL) 96

4. Experimental Results 98

III WIRE SIZING FOR NON-TREE NETWORKS 102

A. Previous Work . 102

B. Delay Models and Problem Formulations 104

C. Tree Decomposition . 106

D. Wire Sizing and Merging 114

E. Experimental Result . 119

1. Tree Decomposition Accuracy 119

2. Delay Reduction via Wire Sizing 120

3. Zero Skew via Wire Sizing for Clock Network 122

IV CONCLUSIONS AND FUTURE WORK 125

REFERENCES . 128

VITA . 138

x

LIST OF TABLES

TABLE Page

I Simulation results for a 20 mm two-pin net with one buffer type,

where n is the number of buffer positions. 46

II Simulation results for a 20 mm two-pin net with five buffer types,

where n is the number of buffer positions. 46

III Simulation results for industrial test cases with one buffer type,

where m is the number of sinks and n is the number of buffer positions. 47

IV Simulation results for industrial test cases with five buffer types,

where m is the number of sinks and n is the number of buffer positions. 48

V Simulation results for industrial test cases, where m is the number

of sinks (pins), n is the number of buffer positions, and b is the

library size. 58

VI Simulation results for a 2mm two-pin net, where n is the number

of buffer positions, and b is the library size. 74

VII Simulation results for industrial test cases, where m is the number

of sinks, n is the number of buffer positions, and b is the library size. 75

VIII Construction of sinks. 79

IX Construction of buffers. 80

X Simulation results for six buffer types with buffer cost constraints,

where m is the number of sinks, n is the number of buffer positions,

and W is the buffer cost. 89

XI Simulation results for six buffer types without buffer cost con-

straints, where m is the number of sinks and n is the number of

buffer positions. 90

XII Net information. 99

xi

TABLE Page

XIII Simulation results for ChipA-1K, ChipB-1K and ChipB-5K nets

on Full library consisting of 24 buffers. Baseline are the results

of the algorithm of Lillis, Cheng and Lin[1]. PP are results of

predictive pruning technique [2]. W is the number of buffers. 100

XIV Simulation results for ChipA-1K, ChipB-1K, ChipB-5k nets on

different libraries. The number after each library is the library

size. PP are results of predictive pruning technique [2]. W is the

number of buffers. 101

XV Normalized maximum delay (MD), maximum skew (MS), average

wire width (AW) and total area (TA) results for 3 clock networks

in [3]. LS represents the network built by [3], NEW represents

the network built by our method, and SPICE represents SPICE

simulation results of NEW . 122

XVI Nominal delay (ND), maximum skew variation (MSV), standard

deviation (SD) and total wire capacitances (WC) for tree, tree+link

[4] and clock network built by our method (New). 124

xii

LIST OF FIGURES

FIGURE Page

1 One 7-sink net extracted from an ASIC chip. Before buffer inser-

tion, the slack of the net is -13.9 ns. After 12 buffers inserted, the

slack becomes 1.0 ns. The delay improvement is 14.9 ns. 2

2 Percentage of block-level nets requiring buffers [5]. M3 and M6

represent nets on third and sixth metal layer in a six metal layer

technology. 3

3 Intrablock communication repeaters as a percentage of the total

cell count for the block. 4

4 An example of buffer insertion problem. 12

5 One candidate solution for Fig. 4. 12

6 T (v) consists of buffer position v and T (v1). 13

7 T (v) consists of wire (v, v1) and T (v1). 14

8 T (v) consists of T (v1) and T (v2). 15

9 If α1 B-dominates α2 at v1, β1 dominates β2 at v. 17

10 Candidate tree A(v1) of four candidates. Fields qa, ca and ra are

0 for all candidates. 20

11 Candidate tree A(v) of four candidates after the wire is added. 21

12 Update of candidate tree A(v) when some nodes are visited. 22

13 Four candidates with their buffer types and locations: α4 has no

buffer, α3 has one buffer at v3, α2 has one buffer at v2, and α1

consists of α3 and a buffer at v1 as shown in Fig. 10. 27

14 The candidate tree and expiration list before adding a wire. 29

xiii

FIGURE Page

15 After adding a wire with R = 2, C = 2, (400, 70) is redundant. . . . 30

16 Final candidate tree and expiration list. 30

17 Two candidate trees A(v1) (right) and A(v2). 31

18 List Z of candidates of T (v) whose Q is decided by T (v2). 32

19 Candidate tree A(v1) now stores candidates of T (v) whose Qs are

decided by T (v1). 32

20 Insert candidates in Z to the updated candidate tree and delete

redundancy. Final candidate tree. 32

21 Nodes u(βj), u(βj+1), . . . , u(βl) in candidate tree A(v1) form an interval. 38

22 (a) Nonredundant candidates N(v1) on (Q, C) plane. (b) Nonre-

dundant candidates M(v1) after convex pruning. 52

23 Comparison of normalized running time of our new O(bn2) time

algorithm and the O(b2n2) time algorithm [1]. Number of sinks is

1944 and number of buffer positions is 33133. 59

24 Comparison of normalized running time of our new O(bn2) time

algorithm and the O(b2n2) time algorithm [1]. Number of sinks is

1944 and number of buffer types is 32. 60

25 Construction used for reduction, where v1, . . . , vn are buffer posi-

tions and s1, . . . , sn are sinks. 79

26 Examples of data structure and pruning. 82

27 Example of the algorithm for merging left and right candidates to

obtain a single set of candidates for the branching point. Here,

the cost function is the number of buffers inserted. 84

28 Three ways to replace an out-degree 3 vertex (top left) by out-

degree 2 vertices. For an out-degree d vertex, there are 1 · 3 ·
5 · · · (2d− 3) ways. 91

29 The speed-up and solution sacrifice of APP in 1000 nets 94

xiv

FIGURE Page

30 Library Lookup example. B1 to B4 are non-inverting buffers.

I1 and I4 are inverting buffers. (a) van Ginneken style buffer

insertion. (b) Library Lookup. 97

31 Edge cutting. If 0 ≤ I(e) ≤ 0.5C(e), edge e = (vi, vj) is cut into

two edges (vi, vk1) and (vk2, vj), such that the Elmore delay for

every node in the entire circuit is unchanged. A is the part of the

circuit adjacent to vi, and B is the part of the circuit adjacent to

vj . Symbol ©↓ represents a current source. 107

32 Node splitting. If 0.5C(e) < I(e) ≤ 0.5C(e) + C(vj), node vj is

splitted to two nodes vj1 and vj2, such that the Elmore delay at

every node in the entire circuit is unchanged. A is the part of

the circuit adjacent to node vi, and B is the part of the circuit

adjacent to node vj . 108

33 Edge splitting. If I(e) > 0.5C(e) + C(vj), edge es = (vj, vk) is

splitted into two edges es1 = (vj1, vk) and es2 = (vj2, vk). A is the

part of the circuit adjacent to node vi. B is the part of the circuit

adjacent to node vj including edges e2, . . . , eq, es+1, . . . , ed. C is

the part of the circuit adjacent node vk. 110

34 Example of our algorithm applied to a non-tree topology. The

white node is source, black nodes are sinks, and grey nodes are

new sink nodes generated from splitting an edge. 115

35 SPICE delay for all sinks in original non-tree topology and de-

composed tree tree topology . 120

1

CHAPTER I

INTRODUCTION

A. Technology Trends and Background

As the continuous trend of Very Large Scale Integration (VLSI) circuits technology

scaling and frequency increasing, interconnect delay becomes a significant bottleneck

in system performances [6, 7]. This trend is a result of increased resistance of the inter-

connect when feature sizes enter the nano-meter era. From International Technology

Roadmap for Semiconductors (ITRS) projection, interconnect delay can contribute

to more than 50% of the delay when the feature size is beyond 180 nm. As a result,

delay optimization techniques for interconnect are increasingly important for achiev-

ing timing closure of high performance designs. It is quite popular to apply such

optimization techniques several times during the whole design cycle. Therefore, it is

crucial to have fast algorithms for many classical problems in the field to shorten the

time to market for the gigahertz microprocessors and multi-million gate Application

Specific Integrated Circuit (ASIC) chips. This requirement becomes more urgent as

design size gets larger and the technology scales further. Also, such fast algorithms

can even be used in the early design planning stages, such as floorplan evaluation and

physical prototyping. The propose of design planning is to provide accurate estimates

of design properties (i.e. area, delay, power) for the designers to quickly determine if

budgets have been exceeded or feed the results to the downstream tools as constraints.

Previous works on design planning such as [8] always use approximation techniques to

get closed-form solutions or low polynomial algorithms due to inefficiency of classical

algorithms or insufficient information. As the increasing need of accurate estimation

The journal model is IEEE Transactions on Automatic Control.

2

at the planning stages for designers, fast yet optimal algorithms are important.

Buffer insertion (also called repeater insertion, is a popular technique to reduce

the interconnect delay. The objective of the optimal buffer insertion problem is to find

where to insert buffers in the interconnect so that the timing requirements are met.

One example of buffer insertion is shown in Fig. 1, where the timing is dramatically

improved by buffer insertion.

0 2 4 6 8 10 12

x 10
6

0

2

4

6

8

10

12
x 10

6

Sink

Buffer

Source

x

y

Delay improvement
after buffer insertion:
14.9 ns

Fig. 1. One 7-sink net extracted from an ASIC chip. Before buffer insertion, the slack

of the net is -13.9 ns. After 12 buffers inserted, the slack becomes 1.0 ns. The

delay improvement is 14.9 ns.

Owing to the tremendous drop in VLSI feature size, a huge number of buffers

are needed for achieving timing objectives for interconnects. It is stated in a recent

3

study [5] that the number of block-level nets that need buffer insertion and the number

of buffers will rise dramatically. For example, 12% of block-level nets require buffer

insertion and the number of buffers (including clocked buffers) reaches about 15% of

the total cell count for intrablock communications for 65nm technology. At 32nm

technology nodes, these numbers become 29% and 70% respectively. The trend is

shown in Figs. 2 and 3. Although we are not sure whether the number of 70%

will finally be reached, hundreds of thousands of buffers can be found in today’s

ASICs. For example, Osler [9] presents an existing chip with 426 thousand buffers

which occupy 15% of the available area. From Figs. 2 and 3, the rate at which

the percentage of impacted nets is increasing and the rate at which the percentage

of buffers is increasing both start accelerating. Therefore, both the complexity and

importance of buffer insertion is increasing in an even faster pace.

0

5

10

15

20

25

30

35

90nm 65nm 45nm 32nm

Technology node

P
er

ce
n

ta
g

e

M3

M6

Fig. 2. Percentage of block-level nets requiring buffers [5]. M3 and M6 represent nets

on third and sixth metal layer in a six metal layer technology.

4

0

10

20

30

40

50

60

70

80

90nm 65nm 45nm 32nm

Technology node

P
er

ce
nt

ag
e

clocked buffers

buffers

total buffers

Fig. 3. Intrablock communication repeaters as a percentage of the total cell count for

the block.

The increasing number of buffers cause various design problems such as con-

gestion, space and power management. Despite those design problems, it is also a

challenge to insert them efficiently and automatically. Even a buffer insertion tool

that can process five nets a second requires around 7 hours to process one-hundred

thousand nets. An order of magnitude speedup in buffer insertion technologies could

enable this task to be accomplished in few minutes while it also enables more design

iterations and faster timing closure.

In addition to buffer insertion, wire sizing plays another important role in achiev-

ing desirable circuit performance when interconnect delay becomes dominant. Wide

wires are now widely used to reduce resistance on critical nets. It can also be tuned

to meet clock skew and electromigration targets. Most existing methods for inter-

connect wire sizing are designed for RC trees. With the increasing popularity of

5

the non-tree topology in clock networks and multiple link networks, wire sizing for

non-tree networks becomes an important problem.

B. Contribution

In this thesis, several innovative fast algorithms are proposed for the interconnect op-

timization. For the basic buffer insertion problem that maximize the required arrival

time, a new optimal algorithm that runs much faster than previous classical van Gin-

neken’s O(n2) algorithm is first proposed, where n is the number of buffer positions.

For 2-pin nets, the new algorithm time complexity is O(n logn) and space complexity

is O(n). For multi-pin nets, the time complexity is O(n log2 n) and space complexity

is O(n logn). The speedup is achieved by four novel techniques: predictive pruning,

candidate tree, fast redundancy check, and fast merging. Then, we propose an O(bn2)

optimal algorithm for b buffer types is proposed, which is an significant improvement

of previous O(b2n2) algorithm by Lillis, Cheng and Lin for modern design libraries

that generally contain hundreds of buffers. The reduction is achieved by the observa-

tion that the (Q, C) pairs of the candidates that generate the new candidates must

form a convex hull, where Q and C represents the slack and capacitance of each candi-

date respectively. Finally, considering in real applications the number of sinks is quite

small compared to the number of buffer positions, a simple O(mn) optimal algorithm

is proposed, where m is the number of sinks. All the algorithms are quite flexible to

be extended to buffer cost minimization and inverting buffer types. Since van Gin-

neken’s algorithm with multiple buffer types are used by most existing algorithms on

buffer insertion and buffer sizing, our new algorithms improve the performance of all

these algorithms.

Due to the buffer explosion crisis, the basic buffer insertion problem has been

6

modified to minimize buffer cost to become more practical. We first prove that this

problem is NP-complete. To improve the practical usage, however, several optimal

and approximation techniques are proposed to further speed up the buffer insertion

algorithms with cost minimization for big industrial designs. They are motivated from

our innovative algorithms for the basic buffer insertion problem. All these techniques

make super fast buffer insertion in real industry designs become possible and they

can be easily integrated with the current buffer insertion engine which considers slew,

noise and capacitance constraints. Consequently, we believe these techniques are

essential to embed in a physical synthesis buffer insertion system.

For the wire sizing problem, we propose a new systematic method to size the

wires of general non-tree RC networks. Our method consists of three steps: decom-

pose a non-tree RC network into a tree RC network such that the Elmore delay at

every sink remains unchanged; size wires of the tree; and merge the wires back to

the original non-tree network. All three steps can be implemented in low order poly-

nomial time. Using this method, we can optimized different objectives for non-tree

topologies, such as delay optimization w/o area or power constraints and skew varia-

tion reduction under process variations, with previous well-developed tree based wire

sizing techniques. For certain types of networks, such as the tree+link network [4],

our method gives the optimal solution, provided the tree wire sizing is optimal.

The remainder of this thesis is organized as follows. In Chapter II, we first

introduce the previous work on buffer insertion. Some preliminary definitions and

problem formulations are followed. For the maximizing required arrival time buffer

insertion problem, we present three new algorithms to speedup basic van Ginneken’s

algorithm, big buffer libraries, and small number of sinks respectively. Then the

NP-complete proof of the buffer insertion with minimum cost problem is presented

and several optimal and approximate speedup techniques are shown. Simulation

7

results are shown for each algorithm. In Chapter III, a new systematic wire sizing

approach for non-tree networks is described. Experiments are presented to verify

the effectiveness of the new method on delay optimization and variation reduction.

Finally, conclusions and some directions for future work are presented in Chapter IV.

8

CHAPTER II

FAST BUFFER INSERTION FOR DELAY OPTIMIZATION

This chapter presents efficient algorithms for fast buffer insertion for a given routing

tree. By utilizing efficient data structures and innovative ideas, we invented several

techniques to speed up the buffer insertion problem w/o cost minimization in orders

of magnitude.

A. Previous Work

In 1990, van Ginneken [10] proposed a buffer insertion algorithm that is now consid-

ered a classic. Given a fixed routing tree, the algorithm inserts buffers in a bottom-up

manner to optimize the worst slack to any sink under Elmore delay model [11]. The

algorithm has time and space complexity O(n2), where n is the number of potential

insertion points.

Several works have built upon van Ginneken’s algorithm. Lillis, Cheng and Lin [1]

extended van Ginneken’s algorithm to include multiple buffer types and wire sizing.

Alpert and Devgan [12] performed wire segmenting to find better buffer positions

for van Ginneken’s algorithm. Since van Ginneken’s algorithm is quadratic in the

size of buffer library, Alpert et al [13] studied how to reduce the size of the buffer

library to make the algorithm practical. A van Ginneken’s style algorithm for noise

optimization is shown in [14] and higher-order delay models are combined with van

Ginnken’s algorithm in [15]. Cocchini [16] extends van Ginnken’s algorithm to flip-

flop (clocked buffers) insertion.

Some researchers consider simultaneous routing tree construction and buffer

insertion, which is an NP-hard problem [17]. Early heuristics include Singh and

Sangiovanni-Vincentelli [18], and Lin and Marek-Sadowska [19]. Okamoto and Cong [20]

9

combined A-tree construction with van Ginneken’s algorithm. Kang et al [21] con-

structed a bounded delay tree, and then used van Ginneken’s algorithm to optimize

buffers. Zhou et al [22] combined the shortest path algorithm with buffer insertion to

find the routing path for two-pin net. Recently, Hassoun et al [23] extended the algo-

rithm in [22] to the clock domain routing, and Hrkic and Lillis [24, 25, 26] proposed

S-tree and SP-tree, which are buffer routed trees considering more constraints.

For buffer insertion on a two-pin net allowing continuous buffer positions, Dhar

and Franklin [27] proposed a closed form solution assuming continuous buffer sizes,

and Chu and Wong [28] proposed a convex quadratic programming approach with

given buffer sizes. However in real applications, buffer blockage is always a serious

restriction, which restricts the buffer location. Given the advent of System on Chip

(SoC) design and the trends towards large memory arrays, IP cores, and hierarchi-

cal design, an ever increasing percentage of the layout is covered by blocks in which

buffers cannot be inserted (though routes may cross over). Such information should

be considered as early as possible to reduce the design cycle. Therefore these algo-

rithms are often used in the very early stage of design planning when buffer blockage

information is not available. In addition, the discrete version of the buffer insertion

problem, which is studied by van Ginneken and us, is more difficult than the contin-

uous version of the problem. Moreover, the continuous methods can not be applied

to trees.

The performance of most of the above algorithms are limited by the quadratic

time complexity of van Ginneken’s algorithm, as pointed out by the researchers [12, 1].

For large nets, large number of segments or large buffer libraries, van Ginneken’s

algorithm becomes the bottleneck.

Furthermore, van Ginneken’s algorithm does not control buffering resources and

will insert as many buffers as needed to obtain the optimal slack. In practice, this

10

results in a significant over buffering whereby a few picoseconds of performance may

be squeezed out for several additional buffers. Also, one frequently wants to find the

cheapest solution that meets the timing target, not necessarily the optimal solution

in terms of minimal delay. In fact, van Ginneken [10] recognized this, writing, “In ad-

dition to the optimization of the timing, the number of buffers used can be optimized.

This is done by using triples of numbers rather than pairs for the options.” “Unfortu-

nately, this makes the algorithm no longer polynomial.” The pairs he referred to are

slack Q and capacitance C. Lillis, Cheng and Lin [1] presented an implementation

that adds a third element W to control resource utilization, but were unable to claim

a polynomial algorithm.

B. Delay Models and Problem Formulations

A net is given as a routing tree T = (V, E), where V = {s0}∪Vs∪Vn, and E ⊆ V ×V .

Vertex s0 is the source vertex and also the root of T , Vs is the set of sink vertices,

and Vn is the set of internal vertices. Each sink vertex s ∈ Vs is associated with

sink capacitance C(s) and required arrival time RAT (s). A target required arrival

time for source RAT (s0) is also given. A buffer library B contains different types of

buffers and its size is represented by b. For each buffer type Bi ∈ B, the intrinsic

delay is K(Bi), driving resistance is R(Bi), input capacitance is C(Bi), and buffer

cost . Without loss of generality, we assume the driver at source s0 is also in B. A

function f : Vn → 2B specifies the types of buffers allowed at each internal vertex.

Each buffer type bi also has a buffer cost weight W : B → [0,∞). Each edge e ∈ E

is associated with lumped resistance R(e) and capacitance C(e).

Following previous researchers [10, 1, 20, 22, 12], we use the Elmore delay for the

interconnect and the linear delay for buffers. For each edge e = (vi, vj), signals travel

11

from vi to vj . The Elmore delay of e is

D(e) = R(e)

(
C(e)

2
+ C(vj)

)
,

where C(vj) is the downstream capacitance at vj . For any buffer type Bi at vertex

vj , the buffer delay is

D(vj) = R(Bi) · C(vj) + K(Bi),

where C(vj) is the downstream capacitance at vj. When a buffer Bi is inserted, the

capacitance viewed from the upper stream is C(Bi).

For any vertex v ∈ V , let T (v) be the subtree downstream from v, and with v

being the root. Once we decide where to insert buffers in T (v), we have a candidate

α for T (v). The delay from v to sink s ∈ T (v) under α is

D(v, s, α) =
∑

e=(vi,vj)

(D(vi) + D(e)),

where the sum is over all edges e in the path from v to s. If vi is a buffer in α, then

D(vi) is the buffer delay. If vi is not a buffer in α, then D(vi) = 0. The slack of v

under α is

Q(v, α) = min
s∈T (v)

{RAT (s)−D(v, s, α)}.

The cost of α is the total cost of buffers used by α in T (v):

W (v, α) =
∑
Bi∈α

W (Bi).

Note that this cost function definition is quite flexible to represent buffer areas, dy-

namic and leakage powers or their combinations. The area or power of interconnect

edges can also be added.

12

Buffer Insertion Problem: Given routing tree T = (V, E), sink capacitance

C(s) and RAT (s) for each sink s, capacitance C(e) and resistance R(e) for each edge

e, possible buffer position f , and buffer library B, find a candidate α for T that

maximizes Q(s0, α).

Minimum Cost Buffer Insertion Problem: Given routing tree T = (V, E),

sink capacitance C(s) and RAT (s) for each sink s, capacitance C(e) and resistance

R(e) for each edge e, possible buffer position f , buffer library B, and buffer cost

function W , find a candidate α for T that satisfies Q(s0, α) ≥ RAT (s0) and the cost

W (s0, α) is minimum.

An example of maximum slack buffer insertion problem is shown in Fig. 4 and

one of its candidate solutions is shown in Fig. 5.

buffer
types

s0

s1
s2

s3

s4
source

possible buffer positions

sinks

Fig. 4. An example of buffer insertion problem.

s1
s2

s4

s0 s3

Fig. 5. One candidate solution for Fig. 4.

The effect of a candidate to the upstream is traditionally described by slack Q

13

and downstream capacitance C [10]. Define C(v, α) as the downstream capacitance

at node v under candidate α. For any two candidates α1 and α2 of T (v), we say α1

dominates α2, if Q(v, α1) ≥ Q(v, α2) and C(v, α1) ≤ C(v, α2). The set of nonredun-

dant candidates of T (v), which we denote as N(v), is the set of candidates such that

no candidate in N(v) dominates any other candidate in N(v), and every candidate of

T (v) is dominated by some candidates in N(v). Once we have N(s0), the candidate

that gives the maximum Q(s0, α) can be found easily.

Finally, we briefly review the three major operations in van Ginneken’s dynamic

programming algorithm.

Assume we have computed nonredundant candidates for T (v1), and now reach a

buffer position v, see Fig. 6. Wire (v, v1) has 0 resistance and capacitance. If we do

not insert a buffer at v, then every candidate for T (v1) is a candidate for T (v). If we

insert a buffer at v, then there will be a new candidate β:

Q(v, β) = max
α
{Q(v1, α)−R(b) · C(v1, α)−K(b)},

C(v, β) = C(b),

where max is taken over all nonredundant candidates α of T (v1). The new candidate

β may make other candidates redundant, or may be redundant itself. Using linked

list to store nonredundant candidates, van Ginneken’s algorithm takes O(n) time to

generate β, insert β into the list of nonredundant candidates, and delete redundancy.

T(v1)
v1v

Fig. 6. T (v) consists of buffer position v and T (v1).

Example II.1. Assume there are three nonredundant candidates α1, α2 and α3 for

14

T (v1) with their (Q, C) values being (200, 8), (300, 20), and (400, 70) respectively. As-

sume further a buffer with R(B) = 8, K(B) = 5 and C(B) = 3. The Q values of the

three candidates after inserting the buffer will be as follows:

α1 with buffer : 200− 8 · 8− 5 = 131,

α2 with buffer : 300− 8 · 20− 5 = 135,

α3 with buffer : 400− 8 · 70− 5 = −165.

Therefore, the best candidate to insert buffer is α2, and the (Q, C) value of the new

candidate β is (135, 3). Insert β into the original list of nonredundant candidates, we

have

(135, 3), (200, 8), (300, 20), (400, 70).

In this case, all candidates are nonredundant.

When a wire e = (v, v1) is added as shown in Fig. 7, every candidate α for T (v1)

becomes a candidate for T (v), where

Q(v, α) = Q(v1, α)−R(e)C(e)/2− R(e)C(v1, α),

C(v, α) = C(v1, α) + C(e).

Using linked list, it takes O(n) time to update candidates and check redundancy.

T(v1)
v1v

Fig. 7. T (v) consists of wire (v, v1) and T (v1).

Example II.2. Assume the (Q, C) values of nonredundant candidates for T (v1) are

(135, 3), (200, 8), (300, 20), (400, 70).

15

If we add a wire with R(e) = 2 and C(e) = 2, then these candidates become

(127, 5), (182, 10), (258, 22), (258, 72).

Clearly, the last candidate is redundant and should be deleted.

Finally, when two sub-trees are merged as shown in Fig. 8, things are more

complicated. Both edges (v, v1) and (v, v2) have zero resistance and capacitance. For

each candidate α1 in T (v1), we find the best candidate α2 in T (v2) to form a new

candidate β for T (v):

Q(v, β) = min{Q(v1, α1), Q(v2, α2)},

C(v, β) = C(v1, α1) + C(v2, α2).

Do the same for each candidate in T (v2). Then take the union of all candidates and

delete redundancy. Using linked list, the process takes O(n1 +n2) time, where n1 and

n2 are the number of nonredundant candidates for T (v1) and T (v2).

T(v1)
v1v

T(v2)

v2

Fig. 8. T (v) consists of T (v1) and T (v2).

Example II.3. Let the (Q, C) values of the nonredundant candidates for T (v1) be

(135, 3), (200, 8), (300, 20), (400, 70)

16

and the candidates for T (v2) be

(350, 10), (400, 20).

Then, the above process will produce the following candidates of T (v) whose Q is

determined by candidates in T (v2):

(350, 80), (400, 90),

and the following candidates of T (v) whose Q is determined by candidates in T (v1):

(135, 13), (200, 18), (300, 30), (400, 90).

After deleting redundancy, the set of nonredundant candidates for T (v) is

(135, 13), (200, 18), (300, 30), (350, 80), (400, 90).

C. An O(n log2 n) Algorithm for Optimal Buffer Insertion ∗

1. Speedup Techniques

To illustrate the main ideas, we assume for now there is only one non-inverting buffer

type B, and s0 is also driven by a buffer of type B. Extensions to multiple buffer

types are in Section 4.

∗ c©2005 IEEE. Part of this section is reprinted, with permission, from “A Fast
Algorithm for Optimal Buffer Insertion”, by W. Shi and Z. Li, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 6, pp.
879-891, June 2005.

17

a. Predictive Pruning

When we insert buffer B at v, we want to associate the buffer with a candidate α

that maximizes slack

P (v, α) = Q(v, α)− R(B) · C(v, α)−K(B),

among all candidates. However, such a candidate is not necessarily the candidate

with maximum Q as shown in Example II.1.

For any candidates α1 and α2 of T (v), we say α1 B-dominates α2 if P (v, α1) ≥

P (v, α2) and C(v, α1) ≤ C(v, α2).

Lemma II.4. If α1 B-dominates α2, then α2 is redundant.

Proof. The general situation is shown in Fig. 9, where α1 and α2 are candidates for

T (v1), β1 and β2 are candidates for T (v) and v is the first buffer upstream from

v1 in β’s. The only difference between β1 and β2 is that β1 contains α1 for T (v1)

while β2 contains α2 for T (v1). It is sufficient to show if α1 B-dominates α2, then

Q(v, β1) ≥ Q(v, β2).

v1v'
T(v1)v

v2 v3 ... vk

Fig. 9. If α1 B-dominates α2 at v1, β1 dominates β2 at v.

Using α1 instead of α2 will not increase delay from v to sinks in v2, . . . , vk. If Q

at v is determined by T (v1), let R(v′, v1) be the resistance of the wire(s) from v′ to

18

v1.

Q(v, β1)−Q(v, β2)

= Q(v1, α1)− (R(v′, v1) + R(B)) · C(v1, α1)

− (Q(v1, α2)− (R(v′, v1) + R(B)) · C(v1, α2))

= P (v1, α1)− P (v1, α2) + R(v′, v1)(C(v1, α2)− C(v1, α1))

≥ 0.

It is easy to see if α1 dominates α2, then α1 B-dominates α2. From now on,

we say a candidate is redundant if it is B-dominated by another candidate. We call

this predictive pruning since it prunes the future redundant solutions. The nonre-

dundant candidates after predictive pruning are in the same order as the traditional

nonredundant candidates under (Q, C) pruning, except that some candidates that

are nonredundant under (Q, C) are redundant under (P, C). It is easy to show that:

Lemma II.5. If α1 and α2 do not B-dominate one another, then P (v, α1) > P (v, α2)

if and only if Q(v, α1) > Q(v, α2).

Predictive pruning not only gives a better pruning criteria, but also allows us to

find the candidate that gives the maximum P in O(1) time. For the candidates in

Example II.1.

P (v1, α1) : 200− 8 · 8− 5 = 131,

P (v1, α2) : 300− 8 · 20− 5 = 135,

P (v1, α3) : 400− 8 · 70− 5 = −165.

19

Since the (P, C) values of the three candidates are

(131, 8), (135, 20), (−165, 70),

the last candidate α3 is redundant under predictive pruning and should be deleted.

So the remaining nonredundant candidates are α1 and α2, with their (P, C) values

(131, 8), (135, 20).

Therefore the best candidate to insert the buffer is α2.

Note that we assumed the source is driven by a buffer type of B. However,

Lemma II.4 and II.5 are true for any source with driving resistance greater than

R(B). In general, if the upstream resistance of every node is at least R, then we can

define a corresponding P and use it to prune.

b. Candidate Tree

We assume the readers are familiar with balanced binary search trees, such as red-

black trees [29]. Given a balanced binary search tree of k keys, the search, insertion

and deletion of any key can be done in O(log k) time. In practice, simple binary

search trees that do not re-balance work almost as well as balanced search trees.

We will use a balanced binary search tree A(v), which we call a candidate tree,

to efficiently store nonredundant candidates of T (v). Please do not confuse routing

tree T (v) with the candidate tree A(v). The former is a topology while the latter is

a data structure. For each candidate α of T (v), there is a corresponding node u(α)

in A(v). A(v) is organized in increasing C order and increasing Q order, and pruned

by (P, C). This is possible because the candidates in A(v) are nonredundant. For

each routing tree, we have a candidate tree to store the nonredundant candidates for

that routing tree. Since our dynamic programming algorithm is bottom up, initially

20

there will be many candidate trees, one for each sink. As the sinks and branches are

merged, the candidate trees are merged as explained later in the paper. Finally when

we merge all the branches, there is only one candidate tree.

When an edge e = (v, v1) is inserted, see Fig. 7, the values of Q and C of each

candidate αi for T (v1) must be updated. Van Ginneken spends linear time to update

each candidate, which is necessary for him since he stores Q and C explicitly.

The candidate tree is an implicit representation that allows O(log n) time inser-

tion of wires and buffers. In the candidate tree, C(v, α) and Q(v, α) are not explicitly

stored in the corresponding node u(α). Instead, the information is stored in the path

from u(α) to the root of A(v). Each node u(α) contains 5 fields: q, c, qa, ca and ra.

When qa, ca and ra are all 0, q and c give Q(v, α) and C(v, α), respectively. Fig. 10

is an example candidate tree where qa, ca and ra fields are all 0.

(300, 20)

(200, 8) (400, 70)

s0 v1v R(e)=2
C(e)=2

(135, 3)

Fig. 10. Candidate tree A(v1) of four candidates. Fields qa, ca and ra are 0 for all

candidates.

Assume qa = 0, ca = 0 and ra = 0 for the root. When edge e is added, the

following information is inserted to the fields of the root:

• ca = C(e), meaning that C of every candidate in the tree will be increased by

C(e),

• qa = −R(e)C(e)/2, meaning that Q of every candidate in the tree will be

21

decreased by R(e)C(e)/2, and

• ra = R(e), meaning that Q of every candidate α in the tree will be decreased

by R(e) · C(v, α), where C(v, α) is the value before adding edge e.

The implicit representation is used recursively on each node in the candidate tree.

The actual update of C and Q for each candidate will take place later, whenever that

candidate is visited. This delayed update can save a great amount of computation

time.

In general, let α be a candidate of T (v), u(α) be the node for α in A(v), u1 be

the root of A(v), and u1, u2, . . . , uk = u(α), be the path from the root to u(α). Then

C(v, α) = c(uk) +

k∑
i=1

ca(ui),

Q(v, α) = q(uk)−
k∑

i=1

ra(ui)

(
c(uk) +

k∑
j=i+1

ca(uj)

)
+

k∑
i=1

qa(ui). (2.1)

Fig. 11 shows the candidate tree after adding a wire (v, v1) in Fig. 10.

s0
R(e)=2
C(e)=2

(300, 20)
qa= −2, ra=2, ca=2

v1
v

(200, 8)

(135, 3)

(400, 70)

Fig. 11. Candidate tree A(v) of four candidates after the wire is added.

The following C code defines the data structure of each candidate tree node:

typedef struct A_node {

float q, c, qa , ca , ra;

22

struct TypeLoc *B, *Ba;//buffer type and location

char dirty; // whether to update

int size; // candidates in subtree

struct A_node *left , *right;

struct L_node *l;// to expiration list

char color; // for red-black tree

} A_node;

Although the definition of C and Q is recursive, the values can be computed in

O(1) time for each candidate, whenever each candidate is visited. The search of a

candidate tree is similar to the search of any binary search tree. The only difference

is that when a node is dirty, fields c and q will be updated to give the current value of

C and Q, and fields qa, ca and ra are propagated one level down to the children. The

delayed propagation is crucial to the reduction of the running time. The following C

code illustrates the update process. Function update(x) updates all fields of node x,

and propagates information to the children. It reflects how Eqn. (2.1) is evaluated.

Fig. 12 is an example showing how the candidate tree is updated when node

(200, 8) is visited.

(300,20)
qa= −2, ra=2,

ca=2

(200,8)

(a)

(400,70)

(258,22)

(182,10)(200,8)
qa= −2,
ra=2,
ca=2

(b) (c)

(135, 3)
(135, 3)

(400,70)
qa= −2,
ra=2,
ca=2

(258,22)

(400,70)
qa= −2,
ra=2,
ca=2(135,3)

qa= −2,
ra=2,
ca=2

Fig. 12. Update of candidate tree A(v) when some nodes are visited.

The following C code illustrates the search. Function search(x, y) searches a

candidate tree with node x being the root, for a node u(α) such that Q(v, α) = y.

23

void update(A_node *x) {

// propagate to left subtree

x->left ->qa = x->left ->qa + x->qa

- (x->ra)*(x->left ->ca);

x->left ->ca = x->left ->ca + x->ca;

x->left ->ra = x->left ->ra + x->ra;

x->left ->dirty = TRUE;

// propagate to right subtree

x->right ->qa = x->right ->qa + x->qa

- (x->ra)*(x->right ->ca);

x->right ->ca = x->right ->ca + x->ca;

x->right ->ra = x->right ->ra + x->ra;

x->right ->dirty = TRUE;

// update x

x->q = x->q + x->qa - x->ra*x->c;

x->c = x->c + x->ca;

x->ca = x->qa = x->ra = 0;

x->dirty = FALSE;

}

For simplicity, we illustrate a recursive version, though the implemented algorithm is

non-recursive [29].

Note that whenever a node is visited, the path from root to that node is “cleaned

up”, meaning that every node on this path is not dirty.

c. Buffer Location and Type

In the original van Ginneken’s algorithm [10], the (Q, C) lists are stored at each node

in the bottom-up phase. After the best slack is found, the buffer locations and types

for the best candidate are determined in the top-down phase by recomputing the

partial solutions. Therefore, van Ginneken’s algorithm uses O(n2) memory since each

(Q, C) list may take O(n) storage, and there are n such lists.

In our algorithm, we use the candidate trees to store buffer location and type

24

A_node *search(A_node *x, float y) {

if (x == NIL)

return NIL;

if (x->dirty == TRUE)

update(x);

if (x->q == y)

return x; // found

else if (x->q > y)

return search(x->left , y);

else

return search(x->right , y);

}

information in memory O(n) for 2-pin nets, and O(n log n) for multi-pin nets. This is

a significant reduction over the traditional van Ginneken’s algorithm that uses O(n2)

memory.

Similar to the fields of Q and C, the location and type are implicitly stored. For

each candidate α, the information is stored in the path from the root to u(α). In the

above definition of A_node, there are two pointers B and Ba of type TypeLoc, which

is defined as follows.

typedef struct TypeLoc {//buffer type and location

int Btype; // buffer type

int Bloc; // buffer location

int used; // number of times used

struct TypeLoc *left , *right;

} TypeLoc ;

Assume we create a new candidate β from candidate α and a new buffer Bi at

position vj . Let x point to the candidate tree node for β and y point to the candidate

tree node for α. Furthermore assume y->B contains the type and location of buffers in

α, and y->Ba is empty. Then the following process will create the type and location

information for β:

25

TypeLoc *p;

p = malloc(sizeof(TypeLoc));

p->Btype = Bi;

p->Bloc = vj;

p->left = y->B;

p->right = NULL;

x->B = p;

x->Ba = NULL;

p->used = 1;

y->B->used ++;

Since α may contain O(n) buffers, any explicit recording of the the types and

locations of these buffers will require O(n) memory. However in our algorithm, we

simply use one pointer x->B->left to share the buffer information from α, thereby

using only O(n) memory. The p->used field is to keep track how many candidates

point to p. When a candidate that references p is deleted, p->used will be decreased

by 1. When p->used equals 0, we delete p.

Now assume we create a new candidate β by merging candidates α1 and α2. Let

x point to candidate tree node for β and y1, y2 point to the candidate tree nodes

for α1 and α2 respectively. Then we do the following to store the buffer type and

locations of β:

TypeLoc *p;

p = malloc(sizeof(TypeLoc));

p->Btype = MERGE;

p->Bloc = NULL;

p->left = y1 ->B;

p->right = y2 ->B;

x->B = p;

x->Ba = NULL;

p->used = 1;

y1 ->B->used ++;

y2 ->B->used ++;

Field Ba is used for more complicated merging. Let x point to a node u(β) in

26

the candidate tree and assume x->Ba field is non-empty. Then every candidate in the

sub-tree with u(β) being the root is associated with the buffer types and locations of

x->Ba. The following C code illustrates additional work of update(x) to update the

buffer type and location. The omitted part was shown earlier.

void update(A_node *x) {

TypeLoc *p;

// propagate to left subtree

...

p = malloc(sizeof(TypeLoc));

p->left = x->Ba;

p->right = x->left ->Ba;

p->btype = MERGE;

x->Ba ->used ++;

x->left ->Ba ->used ++;

x->left ->Ba = p;

p->used = 1;

// propagate to right subtree

...

p = malloc(sizeof(TypeLoc));

p->left = x->Ba;

p->right = x->right ->Ba;

p->btype = MERGE;

x->Ba ->used ++;

x->right ->Ba ->used ++;

x->right ->Ba = p;

p->used = 1;

// update x

...

p = malloc(sizeof(TypeLoc));

p->left = x->Ba;

p->right = x->B;

p->Btype = MERGE;

x->Ba ->used ++;

x->B->used ++;

x->B = p;

p->used = 1;

x->Ba= NULL;

27

}

The following C code illustrates how the buffer assignment is retrieved. Function

report(y) prints the buffer type and location information of TypeLoc pointer y.

void report(TypeLoc *y) {

if (y == NULL)

return;

if (y->btype != MERGE)

printf("buffer type %d location %d\n", y->btype

, y->bloc);

report(y->left);

report(y->right);

}

Fig. 13 is an example showing how the buffer assignment are stored in the can-

didate tree.

a3=(300, 20)

a2=(200, 8) a4=(400, 70)

a1=(135, 3) Bloc=v2
Btype=1

Bloc=v3
Btype=1

Bloc=v1
Btype=1

B

B

left

B

children pointer
 pointer between candidate tree

and buffer assignment

Fig. 13. Four candidates with their buffer types and locations: α4 has no buffer, α3

has one buffer at v3, α2 has one buffer at v2, and α1 consists of α3 and a buffer

at v1 as shown in Fig. 10.

d. Fast Redundancy Check

For every A(v), we also maintain an expiration list L(v) to tell if a candidate in A(v)

is redundant under predictive pruning when a wire is added to v. Let A(v) contain

28

nonredundant candidates α1, . . . , αn in increasing C and Q order. The expiration list

L(v) contains l2, . . . , ln, where

li =
Q(v, αi)−Q(v, αi−1)

C(v, αi)− C(v, αi−1)
−R(B). (2.2)

Intuitively, li is the threshold such that with such a resistance added, αi is dominated

by αi−1.

Lemma II.6. Let α1 and α2 be two nonredundant candidates of T (v1), where Q(v1, α1) <

Q(v1, α2) and C(v1, α1) < C(v1, α2). Define l2 according to Eqn. (2.2). If we attach

an edge e = (v, v1) at T (v1), then α2 is B-dominated by α1 for T (v) if and only if

R(e) ≥ l2.

Proof. For i = 1 or 2,

P (v, αi) = Q(v, αi)−K(B)− R(B) · C(v, αi)

= Q(v1, αi)− R(e) · (C(v1, αi) + C(e)/2)

−K(B)− R(B) · (C(v1, αi) + C(e)).

Therefore,

P (v, α1)− P (v, α2) = Q(v1, α1)−Q(v1, α2)

+ (R(e) + R(B)) · (C(v1, α2)− C(v1, α1)).

Hence P (v, α1) ≥ P (v, α2) if and only if R(e) ≥ l2. On the other hand, we always

have

C(v, α2)− C(v, α1) = C(v1, α2)− C(v1, α1) > 0.

Therefore, α2 is B-dominated if and only if R(e) ≥ l2.

29

L(v) is also organized as a balanced search tree in increasing l order. The fol-

lowing C code defines the data structure for each expiration list node:

typedef struct L_node {

float l; // threshold

float la; // additional info

struct A_node *a; // to candidate tree

char dirty; // whether to update

struct L_node *left , *right;

} L_node;

Using balanced search trees or priority queues, finding the minimum li, insertion and

deletion of any li can be done in O(log n) time. Similar to the candidate tree, if a

node is dirty, la is added to l and propagated to la of the two children. Note the

cross reference with the candidate tree.

Figs. 14 to 16 are examples showing how the candidate tree and expiration list

change when a wire is added.

α3=(300,20)

α2=(200,8) α4=(400,70)

α1=(135,3)

candidate tree

l4=2

l3=8.3

expiration list

children pointer
pointer between candidate

tree and expiration list

l2=13

Fig. 14. The candidate tree and expiration list before adding a wire.

e. Fast Merge

The case for merge in Fig. 8 is more involved. Assume we have computed all nonre-

dundant candidates for T (v1) and T (v2), and stored the results in A(v1), L(v1), A(v2),

30

α3=(300,20)

α2=(200,8) α4=(400,70)

α1=(135,3)

candidate tree

l4=2

l3=8.3

expiration list

l2=13

add wire R=2, C=2

Fig. 15. After adding a wire with R = 2, C = 2, (400, 70) is redundant.

α3=(300,20)α1=(135,3)

candidate tree

l3=8.33
la= −2

l2=13

expiration list

add wire R=2, C=2

α2=(200,8)
qa= −2, ra=2, ca=2

Fig. 16. Final candidate tree and expiration list.

31

and L(v2) respectively. Now we want to merge T (v1) and T (v2) to form T (v). Let

the number of candidates in T (v1) and T (v2) be n1 and n2, and assume without loss

of generality n1 ≥ n2.

First, we generate nonredundant candidates of T (v) whose Q are decided by

T (v2). For each candidate αi in A(v2), we want to find a candidate βj in A(v1) such

that Q(v1, βj) ≥ Q(v2, αi), and C(v1, βj) is the minimum among all such βj ’s. This

can be done by n2 searches to A(v1) in total time O(n2 log n1). The result candidates

are stored in a list Z.

Then, we generate nonredundant candidates of T (v) whose Q are decided by

T (v1). We will turn candidate tree A(v1) to store these new candidates, using field

ca. For each candidate αi in A(v2), the candidates that can be combined with αi form

an interval in A(v1). The interval boundaries can be found through two searches of

A(v1), and updates can be made to the boundaries. The total time is also O(n2 log n1).

Finally, we insert list Z of size O(n2) into the modified candidate tree A(v1) of

size O(n1). We also check redundancy, and update expiration list. When we finish,

candidate tree A(v1) is A(v). The total time is O(n2 log n1).

Figs. 17 to 20 are an example of the fast merge process. For simplicity, fields qa,

ra, ca of all candidates are initially 0.

(400,20)

(350,10)

(300,20)

(400,70)(200,8)

(135,3) (250,14)

Fig. 17. Two candidate trees A(v1) (right) and A(v2).

32

(400,20)

(350,10)

(300,20)

(400,70)(200,8)

(135,3) (250,14)

(350,80)
(400,90)

Fig. 18. List Z of candidates of T (v) whose Q is decided by T (v2).

(400,20)

(350,10)

(300,30)

(400,90)(200,8)
ca=10

(135,3) (250,14)

(350,80)
(400,90)

Fig. 19. Candidate tree A(v1) now stores candidates of T (v) whose Qs are decided by

T (v1).

(350,80)

(300,30)

(400,90)(200,8)
ca=10

(135,3) (250,14)

Fig. 20. Insert candidates in Z to the updated candidate tree and delete redundancy.

Final candidate tree.

33

2. Algorithm

We will compute all nonredundant candidates N(s0) for the given tree T . Our al-

gorithm FBI (Fast Buffer Insertion) starts from the sinks, and builds nonredundant

candidates bottom-up.

Algorithm FBI(v)
Input: Routing tree T (v) with root v.
Output: Candidate tree A(v) that contains all nonredundant candidates of T (v).

if v is a sink then1

Create a candidate tree A(v) to store the only candidate of T (v);2

return A(v);3

else if T (v) consists of edge (v, v1) and T (v1) then4

A(v1)← FBI(v1);5

Modify A(v1) to include delay due to wire (v, v1);6

Delete redundancy;7

return the modified A(v1);8

else if T (v) consists of buffer position v and T (v1) then9

A(v1)← FBI(v1);10

Find candidate α in A(v1) that has max Q(v1, α);11

Form a new candidate and insert it into A(v1);12

Delete redundancy;13

return the modified A(v1);14

else15

T (v) = T (v1) ∪ T (v2);16

A(v1)← FBI(v1); A(v2)← FBI(v2);17

Assume without loss of generality |A(v1)| ≥ |A(v2)|;18

Z ← nonredundant candidates of T (v) whose Q are determined by T (v2);19

Compute nonredundant candidates of T (v) whose Q are determined by T (v1);20

Change A(v1) to store the resulting candidates;21

Insert Z into A(v1) and delete redundancy;22

return the modified A(v1);23

end24

We now explain the details.

34

a. Sink

If T is sink s, then we create a candidate tree A(s) that contains only one node. Let

x be the pointer point to the root, then the fields are set as follows:

x->c = C(s);

x->q = RAT(s);

x->qa = x->ca = x->ra = 0;

x->dirty = FALSE;

The expiration list L(si) is empty.

b. Buffer

Consider the case in Fig. 6, where f(v) = {B} and wire (v, v1) has zero resistance

and capacitance. Assume all n1 nonredundant candidates for T (v1) have been com-

puted and stored in candidate tree A(v1), and a corresponding expiration list L(v1)

is created.

If we do not add a buffer at v, then all nonredundant candidates for T (v1)

become nonredundant candidates for T (v). If we add a buffer at v, then there is a

new candidate β such that

Q(v, β) = max
1≤i≤n1

{Q(v1, αi)−R(B) · C(v1, αi)−K(B)},

and C(v, β) = C(B). From Lemma II.5, β can be found in O(1) time from A(v). Once

we form β, we search A(v1) for αi and αi+1 such that C(v, αi) ≤ C(v, β) ≤ C(v, αi+1).

Then check if β is b-dominated by αi, and if β B-dominates αi+1. If β is B-dominated

by αi, delete β. If β B-dominates αi+1, insert β into A(v1) in O(log n1) time and

delete αi+1, and check αi+2, etc. Each deletion can be done in O(log n1) time. We

will discuss time for deletion in Theorem II.8.

The insertion of β between αi and αi+1 will cause the following updates to L(v):

35

Delete old li+1, and insert two new l’s corresponding to αi, β and β, αi+1, respectively.

This can be done in O(log n1) time.

c. Wire

Consider the case in Fig. 7, where e = (v, v1) is a wire. Assume all n1 nonredundant

candidates for T (v1) have been computed and stored in candidate tree A(v1), and a

corresponding expiration list L(v1) is created.

Each candidate αi of T (v1) with wire e = (v, v1) is a new candidate βi for T (v).

We modify the root x of A(v1):

if (x->dirty == TRUE)

update(x);

x->ca = C(e);

x->qa = -R(e)*C(e)/2;

x->ra = R(e);

x->dirty = TRUE;

Now, all candidates for T (v1) become candidates for T (v). Call the new candidate

tree A(v).

However, we are not done yet. Wire e may make some β’s redundant. We

compare R(e) with the minimum li in L(v1). If R(e) ≥ li, according to Lemma II.6,

the corresponding candidate βi is redundant and should be deleted from A(v). Repeat

the process, until R(e) < li. Each deletion from A(v) and L(v1) takes O(logn1) time.

We will discuss the total deletion time in Theorem II.8.

From Eqn. (2.2), it can be seen that the addition of e decreases the value of all

li’s by R(e). Therefore we add −R(e) to the la field of the root of L(v1) in O(1) time.

The order of li’s in L(v1) does not change. This gives us the new expiration list L(v).

36

d. Merge

Assume we have computed all nonredundant candidates for T (v1) and T (v2), and

stored the results in A(v1), L(v1), A(v2), and L(v2) respectively. Now we want to

merge T (v1) and T (v2) to form T (v).

Let the number of candidates in A(v1) and A(v2) be n1 and n2 respectively.

Assume without loss of generality n1 ≥ n2, otherwise exchange A(v1) and A(v2).

Field size tells us in O(1) time which tree contains more candidates.

Step 1: Consider nonredundant candidates of T (v) whose Q are decided by T (v2).

We also include nonredundant candidates whose Q are decided by both T (v1) and

T (v2) simultaneously. For each candidate αi in A(v2), we want to find a candidate

βj in A(v1) such that Q(v1, βj) ≥ Q(v2, αi), and C(v1, βj) is the minimum among all

such βj ’s. In other words, we want to find index j:

j = min
1≤k≤n1

{k | βk ∈ A(v1), Q(v1, βk) ≥ Q(v2, αi)}.

Given αi, we can find the corresponding βj by searching A(v1). Together, αi ∪ βj is

a candidate of T (v) with slack Q(v2, αi) and capacitance C(v2, αi) + C(v1, βj).

To quickly generate all nonredundant candidates of T (v) whose Q’s are decided

by T (v2), we traverse every αi in A(v2) in increasing Q order, and search A(v1)

for the corresponding βj . The total time to traverse A(v2) is O(n2), and the total

time to search A(v1) is O(n2 log n1). The newly generated candidates are stored in

a temporary list Z in increasing Q order for Step 3. The size of Z is at most n2.

Expiration list L(v2) is freed.

Step 2: Now consider nonredundant candidates of T (v) whose Q are decided by

T (v1). For each candidate αi in A(v2), we want to find candidates βj , βj+1, . . . , βl in

37

A(v1) such that

j = min
1≤k≤n1

{k | βk ∈ A(v1), Q(v1, βk) > Q(v2, αi−1)},

l = max
1≤k≤n1

{k | βk ∈ A(v1), Q(v1, βk) < Q(v2, αi)}.

This can be done through two searches of A(v1) using Q(v2, αi−1) and Q(v2, αi).

If no such j and l are found, increment i by 1 and repeat. Otherwise, we form the

following l − j + 1 candidates of T (v):

αi ∪ βj : Q = Q(v1, βj), C = C(v1, βj) + C(v2, αi),

· · ·

αi ∪ βl : Q = Q(v1, βl), C = C(v1, βl) + C(v2, αi).

To store the newly generated candidates, we change the fields of nodes u(βj), . . . , u(βl)

in A(v1). Step by step, we will turn A(v1) into an candidate tree of T (v). However, we

cannot afford O(l− j) time to explicitly change the nodes. Instead, we change fields

ca. Fig. 21 illustrates the general situation of nodes u(βj), u(βj+1), . . . , u(βl). These

nodes form a continuous interval in A(v1). Let nca(βj , βl) be the nearest common

ancestor of u(βj) and u(βl). Let the left boundary be the set of candidates γ such

that u(γ) is on the path from u(βj) to nca(βj, βl) and Q(v1, γ) ≥ Q(v1, βj). In Fig. 21,

nodes with “L” are the left boundary. Let pointer x point to the node for αi. For

every left boundary node pointed by u in A(v1), not including nca(βj , βl), we make

the following changes:

// c values

u->c = u->c + x->c;

u->right ->ca = u->right ->ca + x->c;

u->right ->dirty = TRUE;

// buffer type and location

38

nca(βj , βl)

L

R

R

βj βlβj+1 βj+2 ...

L

L

Fig. 21. Nodes u(βj), u(βj+1), . . . , u(βl) in candidate tree A(v1) form an interval.

TypeLoc *p;

p = malloc(sizeof(TypeLoc));

p->left = u->B;

p->right = x->B;

p->Btype = MERGE;

u->B->used ++;

x->B->used ++;

u->B = p;

p->used = 1;

p = malloc(sizeof(TypeLoc));

p->left = u->right ->Ba;

p->right = x->B;

p->Btype = MERGE;

u->right ->Ba ->used ++;

x->B->used ++;

u->right ->Ba = p;

39

p->used = 1;

Similarly, let the right boundary be the set of candidates γ such that u(γ) is

on the path from u(βl) to nca(βj , βl) and Q(v1, γ) ≤ Q(v1, βl). In Fig. 21, nodes

with “R” are the right boundary. For every right boundary node u, not including

nca(βj , βl), we make the following changes:

// c values

u->c = u->c + x->c;

u->left ->ca = u->left ->ca + x->c;

u->left ->dirty = TRUE;

// buffer type and location

TypeLoc *p;

p = malloc(sizeof(TypeLoc));

p->left = u->B;

p->right = x->B;

p->Btype = MERGE;

u->B->used ++;

x->B->used ++;

u->B = p;

p->used = 1;

p = malloc(sizeof(TypeLoc));

p->left = u->left ->ba;

p->right = x->b;

p->btype = MERGE;

u->left ->ba ->used ++;

x->b->used ++;

u->left ->ba = p;

p->used = 1;

Finally for nca(βj , βl). Let it be pointed by u. We make the following changes:

// c value

u->c = u->c + x->c;

// buffer type and location

TypeLoc *p;

40

p = malloc(sizeof(TypeLoc));

p->left = u->B;

p->right = x->B;

p->Btype = MERGE;

u->B->used ++;

x->B->used ++;

u->B = p;

p->used = 1;

Among the newly generated candidates, no one dominates another. The total search

time for βj’s and βl’s is O(n2 log n1). It is easy to see all the nca’s can be found in

the same time. The total number of nodes in the left and right boundaries, for all

intervals, is at most the number of nodes visited. Therefore, the total time to update

fields c and ca for all intervals is O(n2 log n1). Expiration list L(v1) does not change.

Step 3: Insert list Z of size O(n2) generated in Step 1 into the candidate tree

A(v1) of size O(n1) obtained in Step 2. For each αi in Z, we search αj−1, αj in A(v1),

such that C(αj−1) < C(αi) < C(αj). Then check if αi is B-dominated by αj−1, and

if αi B-dominates αj. Delete redundancy if any, then insert αi into A(v1). When we

finish, candidate tree A(v1) is A(v).

Since there are O(n2) searches and O(n2) insertions, the total time for search

and insertion is O(n2 log n1).

The insertion of αi between αj−1 and αj will cause the following updates to L(v1):

Delete old lj , and insert two new l’s corresponding to αj−1, αi and αi, αj, respectively.

This can be done in O(n2 log n1) time.

3. Analysis

We first prove a fact we need later in the estimation of the time complexity.

Lemma II.7. For any node v, if T (v) contains n possible buffer positions, then there

are at most n + 1 nonredundant candidates for T (v).

41

Proof. By induction on n. When n = 0, the lemma is clearly true.

If v is a buffer position and v is connected to sub-tree T (v1) by an edge (v, v1),

and T (v1) contains n− 1 buffer positions. From the induction hypothesis, T (v1) has

at most n nonredundant candidates. Adding a buffer at v, we can get at most one

more nonredundant candidate.

If v is connected to sub-trees T (v1) and T (v2), where T (v1) and T (v2) contain

n1 and n2 buffer positions respectively, where n = n1 + n2. From the induction

hypothesis, T (v1) and T (v2) have at most n1 +1 and n2 +1 nonredundant candidates

respectively. The Q value of each candidate of T (v) is decided by T (v1) or by T (v2)

or by both. If the Q value of a candidate of T (v) is decided by an candidate of T (v1),

then there is at most one choice for the candidate of T (v2), and vice versa. The value

of maximum Q among all candidates in T (v1) and T (v2) can not appear in T (v).

Therefore, there are at most (n1 +1)+ (n2 +1)− 1 = n+1 nonredundant candidates

for T (v).

Theorem II.8. Algorithm FBI correctly finds all nonredundant candidates in worst

case time O(n log n) for two-pin nets, and O(n log2 n) for multi-pin nets, where n is

the number of buffer positions. The worst-case space complexity is O(n logn).

Proof. The correctness proof is similar to that of van Ginneken’s algorithm. From

Lemma II.4, using B-dominate to prune candidates will produce the same final result

as van Ginneken’s algorithm. Now consider the time complexity. Assume without

loss of generality, the number of edges is the same as the number of sinks m and the

number of buffer positions n. Otherwise, we can pre-process the routing tree in time

O(n + m) by shrinking any two edges (vi, vj) and (vj , vk), where vj is degree 2, into

one edge (vi, vk). Since each wire can be added in O(1) time, we will only consider

the time for inserting buffer and merging.

42

For two-pin nets, our algorithm has O(n log n) time complexity since adding a

buffer and wire only take O(log n) time. The space complexity is only O(n) since

both the candidate tree and the expiration list have only O(n) element, and the

buffer assignment storage is also size O(n) since we use the pointer structure shown

earlier to store the assignment and there is no merging operation.

Now consider the multi-pin nets, which need merging operation. Let T (n) be

the worst case time complexity of the algorithm on search and insertion operations

only, where n is the number of buffer positions. From Lemma II.7, there are at most

n+1 nonredundant candidates. Therefore, we have the following recurrence relation:

T (n) ≤

c if v is a sink,

T (n− 1) + c log n if v is a wire or

a buffer position,

max{T (n1) + T (n2)

+ cn2 log n1} if v is a branch,

where c is a constant, n1 and n2 are the number of buffer positions of T (v1) and T (v2)

respectively, and the maximum is taken over all n1, n2 such that n1 + n2 = n and

n > n1 ≥ n2 > 0. We prove by induction that

T (n) ≤ cn log2 n. (2.3)

43

Obviously T (0) = 0 ≤ c · 1 log2 1. Assume Eqn. (2.3) is true for all k < n, then

T (n) ≤ max{T (n1) + T (n2) + cn2 log n1}

≤ max{cn1 log2 n1 + cn2 log2 n2 + cn2 log n1}

< max{c log n(n1 log n + n2 log n2 + n2)}

≤ max{c log n(n1 log n + n2 log(2n2))}

≤ cn log2 n.

To show the total time for deletion is O(n log n), we use an argument known as

the amortization. Each deletion uses at most O(log n) time. From Lemma II.7 there

are at most n insertions, so there are at most n deletions.

The space complexity S(n) is bounded by O(n log n), due to the fact that the

number of nodes in the boundary in Fig. 21 is O(n2 log(n1/n2+1)) as shown in Brown

and Tarjan [30].

S(n) ≤

c if v is a sink,

S(n− 1) + c log n if v is a wire or

a buffer position,

max{S(n1) + S(n2)

+ cn2 log(n1/n2 + 1)} if v is a branch.

Using a similar induction, it can be shown the space complexity S(n) = O(n log n).

However, if we just compute the (C, Q) pairs instead of the buffer locations, then

the space complexity can be reduced to O(n) by omitting fields related to the buffer

locations.

44

4. Multiple Buffer Types

For multiple buffer types, the (P, C) pruning is defined for each type of buffer Bi:

Pi(v, α) = Q(v, α) − R(Bi) · C(v, α) − K(Bi). In other words, Pi(v, α) is the slack

before an imaginary buffer of type Bi at v. For any two candidates α1 and α2 of T (v),

we say α1 Bi-dominates α2 if Pi(v, α1) ≥ Pi(v, α2) and C(v, α1) ≤ C(v, α2). For each

buffer type Bi, there will be one candidates tree Ai(v) to store candidates of T (v)

that are nonredundant under (Pi, C) pruning. For each buffer type Bi, there is also

one expiration list Li(v) to tell if a candidate in Ai(v) will be redundant when a wire

is attached to v. The algorithm is similar to the algorithm for one buffer type. The

differences are explained as follows.

In the sink case, if T is sink sk, then for every buffer type Bi, we create a candidate

tree Ai(sk) that contains only one node and all Ai(sk) are same. All expiration lists

Li(sk) are empty.

In the wire case, let Ai(v) contain nonredundant candidates α1, . . . , αni
in in-

creasing C and Q order. The expiration list Li(v) contains li,2, . . . , li,ni
, where

li,j =
Q(v, αi,j)−Q(v, αi,j−1)

C(v, αi,j)− C(v, αi,j−1)
− R(Bi).

We need compare R(e) with the minimum li,j in Li(v).

In the buffer case, when v is a possible buffer position, then for each buffer

type Bi, we need to form a new candidate βi from Ai(v). For every βi, it should be

inserted to all nonredundant candidates trees and check the redundancy and update

the expiration list Li(v).

In the merge case, for each buffer type Bi, candidate trees Ai(v1) and Ai(v2) are

merged to form the new candidates tree Ai(v).

Now consider the time complexity. Each step of adding buffer we have to perform

45

b2 times as much work as the single buffer case since we have b candidate trees, and

the number of nonredundant candidates is O(bn). Therefore for 2-pin nets, the time

complexity is O(b2n log(bn)) = O(b2n log n). For multi-pin nets, the time complexity

is O(b2n log2(bn)) = O(b2n log2 n).

5. Simulation

Both van Ginneken’s algorithm and the new algorithm are implemented in C an

run on a Sun SPARC workstations with 400 MHz and 2 GB memory. The device

and interconnect parameters are based on TSMC 180 nm technology. Five different

buffer types are used from 1X to 16X. For 1X buffer, R(B)=2880 Ω, C(B)=1.5 fF ,

K(B)=36.4 ps. For other buffer types, R(B) and C(B) scale accordingly, and intrinsic

delay is identical for all buffers. The sink capacitances range from 2 fF to 41 fF .

The wire resistance is 0.076 Ω/µm and the wire capacitance is 0.118 fF/µm. The

implemented algorithms include buffer assignments. Table I shows for two-pin nets

with 20 mm long and one buffer type (16X), the new algorithm is 9 to 87 times faster

than van Ginneken’s algorithm and uses 1/22 to 1/250 of memory. Table II shows

for two-pin nets with five buffer types, the new algorithm is 10 times faster than van

Ginneken’s algorithm and uses 1/200 of memory. Table III shows for large industrial

circuits with one buffer type (16X), the new algorithm is 2 to 80 times faster than

van Ginneken’s algorithm and uses 1/4 to 1/500 of memory. Table IV shows for large

circuits with five buffer types, the new algorithm can be 16 times faster than van

Ginneken’s algorithm and uses 1/300 of memory.

In both cases, for multiple buffer type, when n is small, the new algorithm is

slower than van Ginneken’s algorithm due to multiple candidate trees overhead.

46

Table I. Simulation results for a 20 mm two-pin net with one buffer type, where n is

the number of buffer positions.

n Time (sec) Speed- Mem (MB) Reduc-

VG [10] New up VG [10] New tion

325 0.09 0.01 9 0.22 0.01 22

1297 1.6 0.06 26.7 3.29 0.05 65.8

5185 27.95 0.32 87.3 51.88 0.20 259.4

Table II. Simulation results for a 20 mm two-pin net with five buffer types, where n

is the number of buffer positions.

n Time (sec) Speed- Mem (MB) Reduc-

O(b2n2) [1] New up O(b2n2) [1] New tion

325 0.11 0.13 0.85 0.22 0.02 11

1297 1.97 0.64 3.08 3.29 0.07 47

5185 33.42 3.08 10.85 51.90 0.26 199.6

47

Table III. Simulation results for industrial test cases with one buffer type, where m is

the number of sinks and n is the number of buffer positions.

m n Time (sec) Speed- Mem (MB) Reduc-

VG [10] New up VG [10] New tion

336 0.02 0.01 2.0 0.08 0.02 4.0

337 2999 0.44 0.09 4.9 0.86 0.05 17.2

8364 3.17 0.26 12.2 5.02 0.10 50.2

13753 8.64 0.44 19.6 13.10 0.16 81.9

1943 0.30 0.09 3.3 0.78 0.06 13.0

1944 17538 7.07 0.55 12.9 12.18 0.12 101.5

48729 50.11 1.50 33.4 74.39 0.24 310.0

79925 140.42 2.55 55.1 189.50 0.35 541.4

2675 0.49 0.15 3.3 0.69 0.09 6.9

2676 23882 11.44 0.82 14.0 11.22 0.17 66.0

66327 81.31 2.30 35.4 68.79 0.33 208.5

108793 224.48 3.93 57.1 174.91 0.48 364.4

12051 2.45 0.61 4.0 1.54 0.34 4.5

12052 104128 58.07 3.21 18.1 18.33 0.47 39.0

288337 412.21 8.78 46.9 113.36 0.72 157.4

472591 1230.61 14.88 82.7 288.37 0.97 297.3

48

Table IV. Simulation results for industrial test cases with five buffer types, where m

is the number of sinks and n is the number of buffer positions.

m n Time (sec) Speed- Mem (MB) Reduc-

O(b2n2) [1] New up O(b2n2) [1] New tion

336 0.08 0.29 0.3 0.12 0.09 1.3

337 6178 5.11 3.68 1.4 4.58 0.36 12.7

12514 20.76 7.78 2.7 16.64 0.67 24.8

24727 84.51 16.22 5.2 60.95 1.24 49.2

1943 0.85 1.66 0.5 1.00 0.21 4.8

1944 36252 79.15 22.12 3.6 58.34 0.76 76.8

73679 336.98 48.02 7.0 218.57 1.39 157.2

145416 1701.97 101.49 16.8 811.10 2.62 309.6

2675 1.21 2.31 0.5 0.96 0.22 4.4

2676 49315 112.59 31.31 3.6 57.18 0.83 68.9

100172 490.21 67.50 7.3 214.51 1.54 139.3

197691 2346.00 141.71 16.6 794.51 2.88 275.9

12051 5.8 9.07 0.64 2.01 0.51 3.9

12052 214548 539.2 116.69 4.62 89.2 1.16 76.9

435402 2343.50 258.00 9.08 333.7 2.05 162.8

858805 13688.36 542.63 25.23 1240.29 3.7 335.2

49

D. An O(bn2) Algorithm for Optimal Buffer Insertion with b Buffer Types

Modern design libraries may contain hundreds of different buffers with different input

capacitances, driving resistances, intrinsic delays, power levels, etc. If every buffer

available for the given technology is allowed, it is stated in [13] that the current buffer

insertion algorithms could possibly take days or even weeks for large designs since all

these algorithms are quadratic in terms of b. Alpert et al [13] studied how to reduce

the size of the buffer library with a clustering algorithm. Though the buffer library

size is reduced, the solution quality is degraded accordingly.

In Section C, we have proposed an O(b2nlog2n) algorithm, though it is efficient

for nets with large number of buffer positions, it is still not fast enough from large

buffer libraries since the algorithm is still quadratic in terms of b as observed from

simulation results.

In this Section, we propose a new algorithm that performs optimal buffer inser-

tion with b buffer types in O(bn2) time. Our speedup is achieved by the observation

that the candidates that generate new buffered candidates must lie on the convex hull

of (Q, C).

1. New Algorithm

The previous best algorithm for multiple buffer types by Lillis, Cheng and Lin consists

of three major operations: 1) adding buffers at a buffer position in O(b2n) time, 2)

adding a wire in O(bn) time, and 3) merging two branches in O(bn1+bn2) time, where

n1 and n2 are the numbers of buffer positions in the two branches. As a result, their

algorithm has time complexity O(b2n2). Note that the bottleneck of their algorithm

is adding buffers. Their algorithm takes O(b2n) time to generate all new candidates

and O(b2n) time to insert nonredundant ones into the original list of nonredundant

50

candidates.

In this part, we show that the time complexity of the first operation, adding

buffers at a buffer position, can be reduced to O(bn), and thus our algorithm can

achieve total time complexity O(bn2).

Assume we have computed the set of nonredundant candidates N(v1) for T (v1),

and now reach a buffer position v, see Fig. 6. Wire (v, v1) has 0 resistance and

capacitance. Define Pi(α) as the slack if we add a buffer type Bi at v for any candidate

α in N(v1):

Pi(α) = Q(v1, α)−R(Bi) · C(v1, α)−K(Bi). (2.4)

If we do not insert any buffer at v, then every candidate for T (v1) is a candidate

for T (v). If we insert a buffer at v, then for every buffer type Bi, i = 1, 2, . . . , b, there

will be a new candidate βi:

Q(v, βi) = max
α∈N(v1)

{Pi(α)},

C(v, βi) = C(Bi).

Note that some of the new candidates βis could be redundant. Define the best can-

didate for Bi as the candidate αi ∈ N(v1) such that αi maximizes Pi(α) among all

candidates of N(v1). If there are multiple α’s that maximize Pi(α), the one with

minimum C(α) is chosen.

We show how to generate all βis in O(bn) time. Since all candidates discussed

in this Section are in N(v1), we will write Q(α) for Q(v1, α), and C(α) for C(v1, α).

Suppose buffers in the buffer library are sorted according to its driving resistance

R(Bi) in non-increasing order, R(B1) ≥ R(B2) ≥ · · · ≥ R(Bb). If some buffer types

are not allowed at v, we simply omit them without affecting the rest of the algorithm.

51

Lemma II.9. For any two buffer types Bi and Bj, where i > j, let their best candi-

dates be αi and αj, respectively. Then we must have C(αi) ≥ C(αj).

Proof. From the definition of αi, we have Pi(αi) ≥ Pi(αj) and Pj(αj) ≥ Pj(αi).

Consequently,

Q(αi)−Q(αj) ≥ R(Bi) · (C(αi)− C(αj)),

Q(αj)−Q(αi) ≥ R(Bj) · (C(αj)− C(αi)).

Therefore, (R(Bi)− R(Bj))(C(αi)− C(αj)) ≤ 0.

Since i > j, R(Bj) ≥ R(Bi). If R(Bj) > R(Bi), C(αi) ≥ C(αj). If R(Bj) =

R(Bi), then it is easy to get Pi(αi) = Pi(αj) and Pj(αj) = Pj(αi). From the definition,

when there are multiple α’s that maximize Pi(α), the one with minimum C(α) is

chosen. Thus αi and αj should be the same candidate, which means C(αi) = C(αj).

Lemma II.9 implies that the best candidates α1, . . . , αb for buffer types B1, . . . , Bb

are in increasing order of C. However, this is not enough for an O(bn2) time algo-

rithm. In the following, we define the concept of convex pruning, which can be used

to prune useless candidates that are not pruned by the traditional van Ginneken’s

algorithm.

Convex pruning: Let α1, α2 and α3 be three nonredundant candidates of T (v1)

such that C(α1) < C(α2) < C(α3). If

Q(α2)−Q(α1)

C(α2)− C(α1)
<

Q(α3)−Q(α2)

C(α3)− C(α2)
, (2.5)

then we prune candidate α2.

Convex pruning can be explained by Fig. 22. Consider Q as the Y -axis and C as

the X-axis. Then the set of nonredundant candidate N(v1) are a set of points in the

52

two-dimensional plane. Candidate α2 in the above definition is shown in Fig. 22(a),

and is pruned in Fig. 22(b). Call the candidates after convex pruning M(v1). It can

be seen that N(v1) is a monotonically increasing sequence, while M(v1) is a convex

hull.

C

Q

C1 C2C3

Q1

Q2

Q3

Pruned

(a)

C

Q

C1 C3 C4

Q1

Q3

Q4

(b)

C4

Q4

Fig. 22. (a) Nonredundant candidates N(v1) on (Q, C) plane. (b) Nonredundant

candidates M(v1) after convex pruning.

Function ConvexPruning performs convex pruning for any list of nonredundant

candidates sorted in increasing Q and C order. The following C code defines the

linked list data structure for the candidates:

typedef struct Candidate {

double Q, C;

struct Candidate *next , *prev; // double link list

} Candidate ;

Let the candidate with minimum C be α1. We add a dummy candidate (−∞, C(α1))

at the beginning of the list to simplify the algorithm. The list is pointed by header.

Function LeftTurn checks if a1, a2 and a3 form a left turn on the plane. It is the

same as the condition in Eqn. (2.5).

Lemma II.10. Given any set of k nonredundant candidates sorted in increasing Q

53

void ConvexPruning(Candidate *header) {

Candidate *a1 , *a2 , *a3;

a1 = header;

a2 = a1 ->next;

a3 = a2 ->next;

while (a3 != NULL) {

if (LeftTurn (a1 , a2 , a3)) {

// prune a2 and move backward

free(a2);

a1 ->next = a3;

a3 ->prev = a1;

a2 = a1;

a1 = a1 ->prev;

} else {

// move forward

a3 = a3 ->next;

a2 = a2 ->next;

a1 = a1 ->next;

}

}

}

and C order, function ConvexPruning performs convex pruning in O(k) time.

Proof. This procedure is known as Graham’s scan in computational geometry [31].

It finds the convex hull of a set of points in sorted order in linear time.

A simple proof is shown here. It is well known that a set of points form a convex

hull if and only if there are no consecutive α1, α2 and α3 that satisfy Eqn. (2.5).

Therefore, ConvexPruning is correct since it checks all consecutive candidates.

To analyze the time complexity, consider the number of forward and backward

moves. Each time ConvexPruning moves backward, it deletes a candidate. Therefore,

there can be at most k backward moves. The number of forward moves is the size of

54

the list plus the number of backward moves. Therefore the number of forward moves

is at most 2k. Hence the time complexity is O(k).

Lemma II.11. For any buffer type Bi ∈ B, its best candidate αi that maximizes

Pi(α) is not pruned by ConvexPruning.

Proof. Consider any candidate γ ∈ N(v1) with C(γ) > C(αi). According to the

definition of αi, we have Pi(αi) ≥ Pi(γ). Therefore,

Q(γ)−Q(αi) ≤ R(Bi) · (C(γ)− C(αi)),

Q(γ)−Q(αi)

C(γ)− C(αi)
≤ R(Bi).

Similarly for any candidate η ∈ N(v1) with C(η) < C(αi), we have

Q(αi)−Q(η) ≥ R(Bi) · (C(αi)− C(η)),

Q(αi)−Q(η)

C(αi)− C(η)
≥ R(Bi).

Therefore,

Q(αi)−Q(η)

C(αi)− C(η)
≥ Q(γ)−Q(αi)

C(γ)− C(αi)
,

where η is any candidates with C(η) < C(αi), and γ is any candidates with C(γ) >

C(αi). According to the definition of convex pruning, αi is not pruned.

Lemma II.12. Let the set of nonredundant candidates after ConvexPruning be M(v1)

and assume M(v1) are sorted in increasing Q and C order. Consider any three candi-

dates η, α, γ in M(v1), such that C(η) < C(α) < C(γ). For any buffer type Bi ∈ B,

if Pi(η) ≥ Pi(α), then Pi(η) ≥ Pi(γ); if Pi(γ) ≥ Pi(α), then Pi(γ) ≥ Pi(η).

Proof. From the definition of convex pruning, we have

Q(γ)−Q(α)

C(γ)− C(α)
≤ Q(α)−Q(η)

C(α)− C(η)
.

55

If Pi(η) ≥ Pi(α), then

Q(α)−Q(η)

C(α)− C(η)
≤ R(Bi),

Q(γ)−Q(α)

C(γ)− C(α)
≤ R(Bi),

Q(α)−R(Bi) · C(α) ≥ Q(γ)−R(Bi) · C(γ),

Pi(α) ≥ Pi(γ).

Therefore, Pi(η) ≥ Pi(γ). Similarly, if Pi(γ) ≥ Pi(α), then

Q(γ)−Q(α)

C(γ)− C(α)
≥ R(Bi),

Q(α)−Q(η)

C(α)− C(η)
≥ R(Bi),

Q(α)− R(Bi) · C(α) ≥ Q(η)−R(Bi) · C(η)

Pi(α) ≥ Pi(η).

Therefore, Pi(γ) ≥ Pi(η).

Lemma II.12 implies that for any buffer type Bi, if candidate α maximizes Pi(α)

among its previous and next consecutive candidates in M(v1), then α maximizes

Pi(α) among all candidates in M(v1).

Function NewCandidate identifies the best candidates αi from N(v1) and gen-

erates new candidates βi, for i = 1, . . . , b. Nonredundant candidates in N(v1) are

stored in increasing C order using a double link list pointed by header. Buffer types

are sorted in non-increasing driver resistance order and stored in array B. Function

P(i, a) computes Pi(α) as defined in Eqn. (2.4). Function Sort(beta) sorts β’s in

nondecreasing C order.

Theorem II.13. If v is a buffer position, wire (v, v1) is a wire with zero resistance

and capacitance, nonredundant candidates of N(v1) are stored in increasing Q and C

56

void Candidate *NewCandidate (Candidate *header ,

Candidate *beta) {

Candidate *a1 , *a2;

int i;

ConvexPruning(header);

a1 = header;

a2 = a1 ->next;

for (i = 1; i <= b; i ++) {

while (a2 != NULL) {

if (P(i, a1) < P(i, a2)) {

a1 = a1 ->next;

a2 = a1 ->next;

} else

break;

}

// generate new candidate

beta[i]->Q = P(i, a1);

beta[i]->C = B[i]->C;

}

Sort(beta);

}

order, then function NewCandidate generates all new candidates for N(v) in O(bn)

time.

Proof. Let the set of nonredundant candidates after ConvexPruning be M(v1). From

Lemma II.11, we know that all best candidates αi’s are in M(v1). From Lemma II.9

and Lemma II.12, starting from the first candidates in M(v1), function NewCandidate

can find all βi’s in the increasing order of i.

Now consider the time complexity. According to Lemma II.10, function ConvexPruning

takes O(bn) time. The for loop takes O(bn + b) = O(bn) time. To reduce the time

complexity for function Sort, we sort the entire buffer library according to input ca-

57

pacitance C(Bi) in O(b log b) time during pre-processing, and establish an order from

buffer index i to the order in C(Bi). Then each time function Sort is called, the new

candidates βi’s can be sorted in nondecreasing C order by using the index in O(b)

time.

Once we have all new candidates generated and sorted in increasing Q and C

order, it is easy to merge with nonredundant candidates in N(v1) to produce N(v).

The time it takes is linear in terms of the two lists: O(bn) + O(b) = O(bn). Since the

other two operations, adding a wire and merging, can both be done in time O(bn),

we have:

Theorem II.14. The optimal buffer insertion problem for b buffer types and n pos-

sible buffer positions can be computed in time O(bn2).

2. Simulation

Both the algorithm of Lillis, Cheng and Lin [1] and the new algorithm are implemented

in C and run on a Sun SPARC workstations with 400 MHz and 2 GB memory. The

device and interconnect parameters are based on TSMC 180 nm technology. We have

4 different buffer libraries, of size 8, 16, 32 and 64 respectively. The value of R(Bi)

is from 180 Ω to 11520 Ω, C(Bi) is from 0.36 fF to 23.4 fF , and K(Bi) is from 29

ps to 36.4 ps. The sink capacitances range from 2 fF to 41 fF . The wire resistance

is 0.076 Ω/µm and the wire capacitance is 0.118 fF/µm. Table V shows for large

industrial circuits, the new algorithm is up to 11 times faster than Lillis’ algorithm.

The memory usage is only 2% more due to the double linked list used by the new

algorithm.

Fig. 23 compares the time complexity of two algorithms for the net with 1944

sinks and 33133 buffer positions with respect to the size of buffer library b. In the

58

Table V. Simulation results for industrial test cases, where m is the number of sinks

(pins), n is the number of buffer positions, and b is the library size.

m n b CPU Time (sec) Speedup
New Lillis-Cheng-Li [1]

O(bn2) O(b2n2)
336 8 0.08 0.09 1.11

337 16 0.14 0.16 1.14
32 0.23 0.36 1.57
64 0.42 0.91 2.17

5647 8 1.54 2.15 1.40
16 2.11 4.55 2.16
32 2.81 9.99 3.56
64 4.05 22.52 5.56

10957 8 4.56 7.15 1.57
16 6.02 15.74 2.61
32 7.62 34.02 4.46
64 9.98 74.55 7.47

1943 8 0.93 0.90 0.97
1944 16 1.62 1.86 1.15

32 2.78 4.38 1.58
64 4.54 10.71 2.36

33133 8 22.96 38.19 1.66
16 31.97 90.08 2.82
32 40.83 209.82 5.14
64 50.42 457.22 9.07

64323 8 70.23 141.07 2.01
16 95.78 337.97 3.53
32 117.38 755.46 6.44
64 136.85 1596.61 11.67

2675 8 1.16 1.13 0.97
2676 16 2.07 2.38 1.15

32 3.83 5.78 1.51
64 6.18 14.15 2.30

45075 8 27.31 44.29 1.62
16 36.75 98.31 2.68
32 47.8 226.25 4.73
64 64.02 543.45 8.49

87475 8 82.67 163.87 1.98
16 108.16 372.22 3.44
32 134.83 835.04 6.19
64 164.08 1864.08 11.36

59

figure, the y axis is normalized to the running time of the case when the buffer library

size is 8. Though the worst case time complexity of Lillis’ algorithm is quadratic in

terms of b, it behaves more like a linear function of b, as observed in [13]. The time

complexity of our algorithm is also linear, but has a much smaller slope.

Fig. 24 compares the time complexity of the two algorithms for the net with 1944

sinks, with respect to the number of buffer positions n. The buffer library size is 32.

In the figure, the y axis is normalized to the running time of the case with 1943 buffer

positions. We can see that while Lillis’ and our algorithms both behave quadratically,

our algorithm shows much slower growing trend since the operation of adding buffers

becomes more dominant among three major operations when n increases.

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Buffer Library Size

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

O(bn2)
O(b2n2)

Fig. 23. Comparison of normalized running time of our new O(bn2) time algorithm

and the O(b2n2) time algorithm [1]. Number of sinks is 1944 and number of

buffer positions is 33133.

60

0 1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

140

160

180

Buffer Positions

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

O(bn2)
O(b2n2)

Fig. 24. Comparison of normalized running time of our new O(bn2) time algorithm

and the O(b2n2) time algorithm [1]. Number of sinks is 1944 and number of

buffer types is 32.

3. Extension

The algorithm described in Section 1 can be extended to improve the buffer cost

minimization algorithm by Lillis, Cheng and Lin [1]. They represent each candidate

as a tuple (Q, C, W), where W is the total buffer cost, and perform three operations

during dynamic programming: 1) adding buffers at a buffer position, 2) adding a

wire, and 3) merging two branches. In their algorithm, candidates are first grouped

according to W , and then for each value of W , stored in increasing order of (Q, C).

According the analysis in [1], the operation of adding buffers takes O(bN) time to

generate new candidates, where N is the number of nonredundant candidates.

We extend our algorithm to (Q, C, W) framework as follows. For each W , we

apply function NewCandidate on its list of (Q, C) candidates. With a similar analysis

61

as in Section 1, it is clear that the time to generate new candidates is reduced to

O(N). The time for other two operations is the same.

Our new algorithm can also be easily integrated with predictive pruning [32, 2],

and inverting buffer types [1].

E. An O(mn) Algorithm for Optimal Buffer Insertion of Nets with m Sinks

All previous buffer insertion algorithms do not utilize the fact that in real applications

most nets have small numbers of sinks and large number of buffer positions. As a

result, the running time of these algorithms is still not very fast, especially when other

constraints such as slew and cost are considered.

In this Section, we first propose a new algorithm that performs optimal buffer

insertion for 2-pin nets in time O(b2n). The speedup is achieved by an observation

that the best candidate to be associated with any buffer must lie on the convex hull

of the (Q, C) plane, a clever bookkeeping method and an innovative linked list that

allow O(1) time update for adding a wire or a candidate. The new data structure,

which is a simple implicit linked list, is much simpler than the candidate tree used

in [33] and the skip list used in [34]. We then extend the algorithm to m-pin nets

in time O(b2n + bmn). Experimental results show that our algorithm is faster than

previous best algorithms by an order of magnitude. Note that all previous research

assumed m and n are of the same order. But in fact, m is often much less than n.

Even if m > n, we can merge sinks in a branch that contains no buffer position,

without changing the problem. Therefore in this paper we assume m ≤ n.

62

1. Two-Pin Nets

In this part, we show how to compute optimal buffer insertion for 2-pin nets in O(b2n)

time. We use van Ginneken style dynamic programming paradigm, enhanced with

two techniques 1) convex pruning to find the best candidate and delete redundancy,

and 2) a simple implicit data structure to store and update (Q, C) values. Our data

structure is inspired by the candidate tree of Shi and Li [33], but much simpler.

a. Convex Pruning

The concept of convex pruning was first proposed by Li and Shi [35] and has been

explained in Section D:

Definition II.15. Let α1, α2 and α3 be three nonredundant candidates of T (v) such

that C(α1) < C(α2) < C(α3) and Q(α1) < Q(α2) < Q(α3). If

Q(α2)−Q(α1)

C(α2)− C(α1)
<

Q(α3)−Q(α2)

C(α3)− C(α2)
, (2.6)

then we call α2 non-convex, and prune it.

Convex pruning can be explained by Fig. 22. Consider Q as the Y -axis and C

as the X-axis. Then candidates are points in the two-dimensional plane. It is easy

to see that the set of nonredundant candidates N(v) is a monotonically increasing

sequence. Candidate α2 = (Q2, C2) in the above definition is shown in Fig. 22(a), and

is pruned in Fig. 22(b). The set of nonredundant candidates after convex pruning

M(v) is a convex hull.

Lemma II.16. For 2-pin nets, convex pruning preserves optimality.

Proof. Let α1, α2 and α3 be candidates of T (v) that satisfy the condition in the

definition. In a 2-pin net, every candidate will be connected to some wires, could be

63

empty, before reaches an upstream buffer or source. Let v′ be the upstream buffer

or source, D be the sum of the delay of wires from v′ to v and the delay of buffer or

source at v′ driving wires from v′ to v, and R be the sum of the resistance of wires

from v′ to v and the resistance of buffer or source at v′. Then

Q(v′, αi) = Q(v, αi)−R · C(v, αi)−D,

where i = 1, 2 or 3. Therefore when

R <
Q(v, α3)−Q(v, α2)

C(v, α3)− C(v, α2)
,

we have

Q(v′, α2) < Q(v, α3)− R · C(v, α3)−D

= Q(v′, α3).

On the other hand when

R ≥ Q(v, α3)−Q(v, α2)

C(v, α3)− C(v, α2)
,

condition (2.6) implies

R >
Q(v, α2)−Q(v, α1)

C(v, α2)− C(v, α1)
.

Therefore

Q(v′, α2) < Q(v, α1)− R · C(v, α1)−D

= Q(v′, α1).

This shows α2 always gives worse slack than α1 or α3 when the source or an upstream

buffer is reached. When a buffer is attached, the input capacitance of that buffer will

64

be reset C(αi). Therefore α2 is redundant.

We note that this lemma only applies to 2-pin nets. For multi-pin nets when the

upstream could be a merging vertex, nonredundant candidates that are pruned by

convex pruning could still be useful.

Convex pruning of a list of non-redundant candidates sorted in increasing (Q, C)

order can be performed in linear time [35]. Furthermore, when a new candidate is in-

serted to the list, we only need to check its neighbors to decide if any candidate should

be pruned under convex pruning. The time is O(1), amortized over all candidates.

b. Best Candidates

Assume we have computed the set of nonredundant candidates N(v) for T (v), and now

reach a buffer position v′, see Fig. 6. Wire (v′, v) has 0 resistance and capacitance.

Define Pi(α) as the slack if we add a buffer of type Bi at v′ for any candidate α:

Pi(α) = Q(v, α)−R(Bi) · C(v, α)−K(Bi). (2.7)

If we do not insert any buffer at v′, then every candidate for T (v) is a candidate

for T (v′). If we insert a buffer at v′, then for every buffer type Bi, i = 1, 2, . . . , b,

there will be a new candidate βi:

Q(v′, βi) = max
α∈N(v)

{Pi(α)},

C(v′, βi) = C(Bi).

Define the best candidate for Bi as the candidate α ∈ N(v) such that α maximizes

Pi(α) among all candidates in N(v). If there are multiple α’s that maximize Pi(α),

choose the one with minimum C.

The following lemma says that if we sort candidates in increasing Q and C order

65

from left to right, then as we add wires to the candidates, we always move to the left

to find the best candidates.

Lemma II.17. For any T (v), let nonredundant candidates after convex pruning be

α1, α2, . . . , αk, in increasing Q and C order. Now add wire e to each candidate αj

and denote it as αj + e. For any buffer type Bi, if αj gives the maximum Pi(αj) and

αk gives the maximum Pi(αk + e), then k ≤ j.

Proof. From the definition,

Pi(αj + e) = Q(v, αj + e)− R(Bi)C(v, α)− R(Bi)C(e)−K(Bi)

= Pi(αj)− R(e)C(αj)−R(e)C(e)/2− R(Bi)C(e).

Since Pi(αj + e) ≤ Pi(αk + e), we have

Pi(αj)−R(e)C(αj) ≤ Pi(αk)− R(e)C(αk),

which is equivalent to

Pi(αj)− Pi(αk) ≤ R(e)(C(αj)− C(αk)).

On the other hand, Pi(αj) ≥ Pi(αk) and R(e) > 0, therefore

C(αj)− C(αk) ≥ 0.

This implies k ≤ j.

The following lemma says the best candidate can be found by local search, if all

candidates are convex.

Lemma II.18. For any T (v), let nonredundant candidates after convex pruning be

α1, α2, . . . , αk, in increasing Q and C order. If Pi(αj−1) ≤ Pi(αj), Pi(αj) ≥ Pi(αj+1),

66

then αj is the best candidate for buffer type Bi and

Pi(α1) ≤ · · · ≤ Pi(αj−1) ≤ Pi(αj),

Pi(αj) ≥ Pi(αj+1) ≥ · · · ≥ Pi(αk).

Proof. From Pi(αj−1) ≤ Pi(αj), we have

Q(αj−1)−R(Bi)C(αj−1) ≤ Q(αj)− R(Bi)C(αj).

Therefore,

R(Bi) ≤
Q(αj)−Q(αj−1)

C(αj)− C(αj−1)
.

Since all candidates are convex, (2.6) is false. Hence

R(Bi) ≤
Q(αj−1)−Q(αj−2)

C(αj−1)− C(αj−2)
,

which implies Pi(αj−2) ≤ Pi(αj−1). Then, we can easily get

Pi(α1) ≤ · · · ≤ Pi(αj−1) ≤ Pi(αj).

The other direction is similar. From Pi(αj) ≥ Pi(αj+1), we have

Q(αj)−R(Bi)C(αj) ≥ Q(αj+1)−R(Bi)C(αj+1).

Therefore,

R(Bi) ≥
Q(αj+1)−Q(αj)

C(αj+1)− C(αj)
.

Since all candidates are convex, (2.6) is false. Hence

R(Bi) ≥
Q(αj+2)−Q(αj+1)

C(αj+2)− C(αj+1)
,

67

which implies Pi(αj+1) ≥ Pi(αj+2). We can also easily get

Pi(αj) ≥ Pi(αj+1) ≥ · · · ≥ Pi(αk).

Since Pi(αj) is the maximum Pi(α) among all candidates, αj is the best candi-

dates for buffer type Bi.

c. Data Structure

We store all nonredundant candidates of T (v) in a linked list L(v) of the following

data structure:

typedef struct Candidate {

double q, c;

Candidate *next , *prev;

} Candidate ;

We also have three global variables:

double Qa , Ca , Ra;

L(v) is organized in increasing C and Q order, and pruned by convex pruning.

The value of Q and C of each candidate α, pointed by a, are given by fields a->q and

a->c, as well as global variables Qa, Ca and Ra:

Q(α) = (a->q)− Qa− Ra · (a->c),

C(α) = (a->c) + Ca.

To facilitate the search for best candidates and the insertion of new candidates,

we have two arrays of pointers:

Candidate *best[b], *new[b];

where best[i] points to the most recent best candidate for Bi, and new[i] points

to the most recent new candidate for Bi.

68

d. Algorithm

When we reach an edge e with resistance e->R and capacitance e->C, we update Qa,

Ca and Qa to reflect the new values of Q and C of all candidate in L in O(1) time,

without actually touching any candidate:

void AddWire (e) {

Qa = Qa + e->R*e->C/2 + e->R*Ca;

Ca = Ca + e->C;

Ra = Ra + e->R;

}

This is similar to Shi and Li’s algorithm [33], but much simpler.

When we reach a buffer position, we may generate a new candidate for each

buffer type Bi. But first, we have to find the best candidate for Bi. This is done by

pointer best[i]:

void AddBuffer (i)

{

Candidate *a;

while (P(i, best[i]->prev) > P(i, best[i]))

best[i] = best[i]->prev;

...

Function P(i, ...) computes Pi of a candidate defined in (2.7). From Lemma II.17,

the best candidate is always to the left of where we found the best candidate last time.

From Lemma II.18, we can confirm the best candidate by local search. Therefore the

while loop can find the best candidate that gives the maximum Pi. Now form the

new candidate:

...

a = new Candidate ;

a->c = B[i]->C - Ca;

a->q = P(i, best[i]) + Qa + Ra*a->c;

...

69

It is easy to verify that the above transformation of q and c fields will make the

new candidate consistent with every other candidate in L(v). Now insert the new

candidate into L:

while (a->c < new[i]->c)

new[i] = new[i]->prev;

a->next = new[i]->next;

new[i]->next ->prev = a;

a->prev = new[i];

new[i]->next = a;

...

The location to insert new candidates also moves to the left in L, because the capac-

itances of all candidates increase when wires are added. Finally, we perform convex

pruning around the new candidate:

if (! Convex(a->prev , a, a->next)) {

a->prev ->next = a->next;

a->next ->prev = a->prev;

Delete(a);

return;

}

while (! Convex(a, a->next , a->next ->next)) {

a->next = a->next ->next;

a->next ->next ->prev = a;

Delete(a->next);

}

while (! Convex(a->prev ->prev , a->prev , a)) {

a->prev = a->prev ->prev;

a->prev ->prev ->next = a;

Delete(a->prev);

}

}

Function Convex(...) checks if the middle candidate is convex. Function Delete(...)

deletes a candidate, and moves best and new pointers to the right by one if the pointer

points to the candidate to be deleted. Now we describe the entire algorithm:

70

Algorithm 2-Pin
Input: Routing tree T (v1) consists of path v1, . . . , vn+1 where vn+1 is the

sink.

Output: Nonredundant candidates of T (v1) stored in linked list L.

Let Qa=0, Ca=0, Ra=0;1

Let L contain one candidate (Q, C), where Q = RAT (vn+1) and C = C(vn+1);2

Let all best and new pointers point to the only candidate in L;3

for i = n to 1 do4

AddWire(e), where e = (vi, vi+1);5

foreach buffer type Bj allowed at vi do6

AddBuffer(j);7

end8

end9

Theorem II.19. Algorithm 2-Pin finds the optimal buffer insertion of any 2-pin nets

in worst-case time O(b2n).

Proof. The only difference between our algorithm and previous algorithms, other than

speedup, is convex pruning. Lemma II.16 guarantees convex pruning does not lose

the optimality. Therefore our algorithm is correct.

Now consider the time complexity. The outer loop between lines 4 and 7 is

executed n times. The inner loop between lines 6 and 7 is executed b times. This

requires O(bn) time. In addition, the number of times that any pointers best[i] and

new[i] move equals the total number of candidates, which is bn. Since there are b

best pointers and b new pointers, the total time to move these pointers is O(b2n).

The total deletion time is the same as the number of candidates, which is O(bn).

Therefore, the overall time complexity of our algorithm is O(b2n).

71

Some properties can be used to speed up the implementation, but it does not

change the asymptotic time complexity. If buffers are sorted in decreasing driving

resistance R(B1) ≥ R(B2) ≥ · · · ≥ R(Bb), and let αi be the best candidate for Bi.

Then it is easy to see that C(α1) ≥ C(α2) ≥ · · · ≥ C(αb). This helps to reduce the

search time for best pointers. A similar order can be explored to reduce the search

time for new pointers.

2. Multi-Pin Nets

We now extend the 2-pin algorithm to multi-pin nets. In a multi-pin net, a candidate

for a 2-pin segment may be merged with a candidate of a different branch, before

associated with a buffer. In this case, optimal solution could come from a non-convex

candidate. Therefore we need all nonredundant candidates of every 2-pin segment,

not only the convex ones.

This is done by a subroutine 2PinSubroutine(...) for 2-pin segments. The

subroutine is similar to Algorithm 2-Pin, but in addition to list L(v), maintains a

second list A(v). A(v) contains ALL nonredundant candidates of T (v), including

non-convex ones. So A(v) is a superset of L(v). Best candidates are still found

through L, yet new candidates are inserted to both L and A. For any 2-pin segment

v1, v2, . . . , vk, the subroutine takes as input A(vk), prunes non-convex ones to get

L(vk), and computes each L(vi) and A(vi) as it moves to v1.

Theorem II.20. Algorithm M-Pin computes the optimal buffer insertion of an m-

pin net in time O(b2n + bmn).

Proof. We compute the same set of all nonredundant candidates as previous algo-

rithms. Therefore the algorithm is correct.

For all 2-pin segments, the total time is bounded by O(b2n). At each branch

72

Algorithm M-Pin
Input: Routing tree T (v) with root v.

Output: List A(v) that contains all nonredundate candidates of T (v).

if T (v) consists of path v to v1 where v1 is a branch vertex then1

Recursively compute A(v1) for T (v1);2

A(v) = 2PinSubroutine(A(v1));3

else4

T (v) consists of subtrees T (v1) and T (v2) ;5

Recursively compute A(v1) and A(v2);6

Merge A(v1) and A(v2) to form A(v);7

end8

return A(v);9

vertex, the time is O(bn). Therefore the total time is O(b2n + bmn).

Our new algorithm can be easily integrated with predictive pruning [2, 33], and

inverting buffer types [1].

3. Buffer Cost Minimization for 2-Pin Net

Now we consider the min-cost buffer insertion problem. Again we start with 2-

pin nets. Let integer ω be the maximum possible cost of any candidate, while the

minimum non-zero cost is scaled to 1. Lillis, Cheng and Lin’s algorithm performs

the following operations for 2-pin nets: At each buffer position, insert b · ω new

candidates. Since there are n buffer positions, the total number of nonredundant

candidates is O(bnω). Therefore, the time complexity of their algorithm is O(b2n2ω).

In this section, we reduce the time complexity to O(b2nω).

73

We use the same (Q, C, W) paradigm, where W is the total buffer cost. For each

T (v), candidates are stored in ω lists L1, L2, . . . , Lω. List Li contains candidates with

cost i. In each list, candidates are stored as (Q, C) pairs using implicit representation

described above, and pruned through convex pruning. The same global variables are

used: Qa, Ca and Ra.

When we reach each wire, we perform the same operation as before in O(1)

time. When we reach a buffer position, we perform the same operation for each list

Li: Form b new candidates with each buffer Bj and insert the new candidates into

list Li+W (Bj). We do not perform pruning across different lists. This gives the total

time as claimed.

4. Simulation

All algorithms, O(b2n2) [1], O(b2nlog2n) in Section C, O(bn2) in Section D and the

O(mn) algorithm introduced in this Section, are implemented in C and run on a

Sun SPARC workstations with 400 MHz clock and 2 GB memory. The device and

interconnect parameters are based on TSMC 180 nm technology. We have 4 different

buffer libraries, of size 1, 4, 8, and 16 respectively. The value of R(Bi) is from 180 Ω

to 2880 Ω, C(Bi) is from 1.46 fF to 23.4 fF , and K(Bi) is from 29 ps to 36.4 ps.

The sink capacitances range from 2 fF to 41 fF . The wire resistance is 0.076 Ω/µm

and the wire capacitance is 0.118 fF/µm.

Table VI shows for a 2mm long two-pin net with different possible buffer insertion

locations, the new algorithm is up to 20 times faster than previous best algorithms.

Table VII shows for large industrial multi-pin nets where m is as high as 337, the new

algorithm is still faster than previous best algorithms. All algorithms generate same

slacks.

The second set of experiments are for Min-Cost Buffer Insertion Problem. We

74

test our new algorithm on nets extracted from an industrial ASIC chip with 300k+

gates [36]. The gates have been placed and buffers are required to optimize timing.

This group consists 429 two pin nets among 1000 most time consuming nets from one

ASIC chip. Each net has tens to few hundreds of buffer positions with different metal

layers and vias. The buffer library consists of 24 buffers, in which 8 are non-inverting

buffers and 16 are inverting buffers. The range of driving resistance is from 120 Ω

to 945 Ω, and the input capacitance is from 6.27 fF to 121.56 fF . In this case, our

new algorithm is 10% faster than previous best optimal algorithm [2].

Table VI. Simulation results for a 2mm two-pin net, where n is the number of buffer

positions, and b is the library size.

CPU Time (sec)

n b New Section D Section C Lillis-Cheng-Lin [1]

O(b2n) O(bn2) O(b2n log n) O(b2n2)

1 0.001 0.03 0.01 0.02

404 4 0.01 0.04 0.11 0.04

8 0.02 0.04 0.41 0.08

16 0.04 0.06 1.64 0.14

1 0.01 0.80 0.10 0.51

2044 4 0.04 0.84 0.70 1.08

8 0.10 0.92 2.50 1.78

16 0.21 1.01 9.09 3.28

1 0.05 21.85 0.56 13.70

10404 4 0.23 23.01 4.33 28.11

8 0.49 23.26 16.18 46.71

16 1.10 23.75 59.64 83.97

75

Table VII. Simulation results for industrial test cases, where m is the number of sinks,

n is the number of buffer positions, and b is the library size.

CPU Time (sec)
m n b New Section D Section C Lillis-Cheng-Lin [1]

O(b2n + bmn) O(bn2) O(b2n log2 n) O(b2n2)
1 0.002 0.002 0.002 0.01

107 4 0.01 0.01 0.03 0.01
8 0.01 0.01 0.16 0.02
16 0.03 0.02 0.67 0.05
1 0.02 0.14 0.04 0.24

25 1337 4 0.11 0.44 0.48 1.06
8 0.20 0.60 2.06 1.95
16 0.33 0.78 8.62 3.32
1 0.05 0.50 0.08 0.75

2567 4 0.19 1.47 1.04 4.08
8 0.36 2.07 4.30 7.07
16 0.64 2.58 17.94 12.12
1 0.26 11.14 0.50 21.43

12407 4 1.00 32.73 6.22 100.31
8 1.76 46.05 25.54 200.61
16 3.26 56.33 104.87 334.92
1 0.03 0.02 0.02 0.02

336 4 0.06 0.04 0.04 0.05
8 0.12 0.08 0.75 0.09
16 0.20 0.14 3.23 0.19
1 0.22 0.41 0.17 0.89

337 5647 4 0.59 0.98 2.03 2.51
8 0.98 1.51 8.34 4.46
16 1.73 2.03 31.55 7.34
1 0.42 1.24 0.34 3.40

10957 4 1.16 2.95 4.10 9.29
8 1.93 4.44 16.88 16.03
16 3.26 5.85 64.59 26.96
1 2.13 25.67 1.96 83.03

53437 4 6.05 58.08 23.85 250.7
8 10.13 83.2 94.18 435.84
16 17.23 100.38 337.30 757.62

76

5. Summary for Fast Algorithms for Max Slack Buffer Insertion Algorithm

In Section C to E we have described three fast algorithms for optimal buffer insertion

for different cases. For nets with large number of sinks and buffer positions (over

2000 sinks and 5000 buffer positions) with small buffer library (in our experience,

less than 4 types of buffers due to its multiple candidate tree overhead), O(n log2 n)

algorithm gives the good performance. For medium nets with large buffer library that

general consists of 40 to 100 buffers, O(bn2) algorithm gives the best performance.

For most of nets with relative small number of sinks with medium buffer library,

O(mn) algorithm gives the best performance.

F. Complexity Analysis and Speedup Techniques for Optimal Buffer Insertion with

Minimum Cost

Van Ginneken’s algorithm does not control buffering resources while it only focuses on

obtaining the optimal slack. In practice, inserting 30 buffers to fix a slew constraint

or to meet a delay target when 3 buffers may suffice is not acceptable as it will

accelerate the buffer explosion crisis. Also, people frequently want to find the cheapest

solution that meets the timing target, not necessarily the optimal solution in terms

of maximum slack. Lillis, Cheng and Lin [1] presented an implementation based on

(Q, C, W) framework to control resource utilization.

In this section, we show that even if there is only one buffer type, the number

of non-redundant candidate solutions (Q, C, W) could be exponential in the number

of potential insertion positions. Therefore, any algorithm that explicitly computes

non-redundant candidates will have worst-case time complexity exponential. Fur-

thermore, we prove for arbitrary buffer cost functions, the problem of minimizing

buffering resources subject to timing constraints is NP-complete. On the other hand,

77

we show how to apply the predictive pruning technique to minimize the buffer cost.

Experiment results show that this technique can significantly speed up the running

time and reduce the memory usage.

At the last of this section, we address the problem of merging branches when

the number of child nodes is more than two. For these cases, previous work suggests

converting the tree into a binary tree by using zero length wires. However, the

mechanism for conversion can potentially yield different results. We show that one

can explore the entire solution space and still maintain a polynomial algorithm as

long as the maximum degree of a node is bounded by a constant

Before we start, let us brief review the (Q, C, W) framework. In van Ginneken’s

original algorithm, the effect of a candidate α to the upstream is described by the

(Q, C) pair, where Q = Q(v, α) is the slack at the current tree node v and C = C(v, α)

is the downstream capacitance. To constrain total resource usage, van Ginneken [10]

suggested to add cost W = W (v, α) to form tuple (Q, C, W), which is implemented

by Lillis, Cheng and Lin [1].

For any two candidates α1 and α2 of T (v), we say α1 dominates α2, if Q(v, α1) ≥

Q(v, α2), C(v, α1) ≤ C(v, α2) and W (v, α1) ≤ W (v, α2). The set of nonredundant

candidates of T (v), which we denote as N(v), is the set of candidates such that no

candidate in N(v) dominates any other candidate in N(v), and any candidate of T (v)

is dominated by some candidates in N(v).

78

1. Complexity Analysis

Lemma II.21. Consider a sub-tree T (v) consists of two branches T (v1) and T (v2).

Assume T (v1) has 2 non-redundant candidates

α1 = (∞, L, 0)

α2 = (∞, 0, 1).

Assume T (v2) has k non-redundant candidates

βi = (Qi, Ci, Wi), i = 1, 2, . . . , k,

where Qi > Qi+1, Wi ≥ Wi+1 for i = 1, 2, . . . , k − 1, and Ci < L for i = 1, 2, . . . , k.

Then T (v) has 2n non-redundant candidates γij, i = 1, 2, j = 1, 2, . . . , k, where

γ1i = (Qi, L + Ci, Wi), γ2i = (Qi, Ci, 1 + Wi),

for i = 1, 2, . . . , k. Furthermore, the 2n new candidates satisfy above three conditions.

Proof. We first check redundancy. Clearly, γi1 can not dominate γj1, since otherwise

βi would dominate βj . Similarly, γi2 can not dominate γj2. Furthermore, for any i,

γi1 can not dominate γj2 because L + Ci ≥ L > Cj. Finally, γi2 can not dominate γj1

since Qi > Qj implies Wi ≥Wj and hence 1 + Wi > Wj .

Theorem II.22. If the cost of each buffer is an arbitrary integer, then the minimum

cost buffer insertion problem is NP-complete.

Proof. The problem is clearly in NP. We now show a reduction from 2-1 partition, a

known NP-complete problem [37]:

Instance: Positive integers x1, x2, . . . , x2n. Let
∑2n

i=1 xi = 2N

79

Question: Is there an index set I that contains exactly one of 2i − 1

and 2i for 1 ≤ i ≤ n, such that
∑

i∈I xi = N?

�s0

...

�vn �sn

�v2 �s2

�v1 �s1

Fig. 25. Construction used for reduction, where v1, . . . , vn are buffer positions and

s1, . . . , sn are sinks.

Table VIII. Construction of sinks.

Sink si C(si) Q(si)

s1 Nn+2 Nn+1 + Nn+2

s2 Nn+1 Nn+1 + Nn+2

...
...

...

sn N3 Nn+1 + Nn+2

Given an instance of the 2-1 partition problem, we construct an instance of

the buffer insertion problem as shown in Fig. 25. There are n sinks and 2n buffer

types as shown in Tables VIII and IX. For source s0, the buffer driver resistance

R(s0) = Nn. All wires have zero resistance and capacitance. Clearly, every number

in the construction can be expressed in O(n log N) bits.

Now we claim there is a solution for the buffer insertion instance with Q(s0) ≥ 0

and total buffer cost at most

M = N +
n∑

i=1

N i

if and only if there is a solution for the 2-1 partition instance.

80

Table IX. Construction of buffers.

Buffer bi R(bi) C(bi) W (bi)

b1 1 x1 x2 + Nn

b2 1 x2 x1 + Nn

b3 N x3 x4 + Nn−1

b4 N x4 x3 + Nn−1

...
...

...
...

b2n−1 Nn−1 x2n−1 x2n + N

b2n Nn−1 x2n x2n−1 + N

First assume there is a solution for the buffer insertion problem. It is easy to see

that there must be a buffer at every vi, since otherwise R(s0) ·C(si) ≥ Nn+3 > Q(si)

for any i. Furthermore, v1 must use either buffer type b1 or b2, since otherwise

R(bi) · C(s1) ≥ Nn+3 > Q(s0). Since v1 must use either b1 or b2, v2 can not use b1 or

b2 anymore, since otherwise the total buffer cost will be at least 2Nn > M . Repeat

the argument for every i, we know the buffer types for vi can only be b2i−1 or b2i.

This way, the delay caused by buffers at vi is Nn+2, for all i = 1, 2, . . . , n.

Let I be the set of buffer indices that are inserted at v1, . . . , vn. Then

Q(s0) = min
1≤i≤n

{Q(si)−Nn+2} − R(b0) ·
∑
i∈I

C(bi)

= Nn+1 −Nn
∑
i∈I

xi,

W (s0) =
∑
i/∈I

xi +
n∑

i=1

N i.

Since we have both Q(s0) ≥ 0 and W (s0) ≤ M , we must have Q(s0) = 0 and

81

W (s0) = M , which is a solution to the 2-1 partition instance.

On the other hand, any solution to the 2-1 partition instance, we can assign

buffers according to the partition, and prove the solution satisfy the requirements.

Finally, we say a few words about the difference between NP-complete and NP-

hard [37]. Some literatures use NP-complete to describe a decision problem, and

NP-hard to describe an optimization problem. This difference is rather technical.

However, there is a fundamental difference that should be emphasized: The NP-

hard class includes problems that are NP-complete, PSPACE-complete, EXTIME-

complete, etc, all the way to undecidable [37]. Therefore, by saying a problem is

NP-complete, it also puts an upper bound on the complexity.

2. Algorithm

The algorithm of Lillis, Cheng and Lin [1] generates candidates in a bottom up manner

starting from the sinks. The candidate solutions at each node are organized as an

array of linked lists as shown in Fig. 26. The solutions in each list of the array have

the same buffer cost value W = 0, 1, 2, The polarity is handled by maintaining

two arrays of candidate solutions. In buffer insertion algorithm, a solution can be

pruned only if it is redundant, i.e., there exists another solution that is better in

slack, capacitance and buffer cost. More specifically, for two candidate solutions

α1 = (Q1, C1, W1) and α2 = (Q2, C2, W2), α2 dominates α1 if Q2 ≥ Q1, C2 ≤ C1

and W2 ≤ W1. In such case, we say α1 is redundant and has to be pruned. For

example, in Fig. 26(a), assume α4 = (1223ps, 11fF, 1) and α12 = (1074ps, 12fF, 3),

α12 is dominated by α4 and is then pruned. The data structure after pruning is shown

in Fig. 26(b). After pruning, every list with the same cost is a sorted in terms of Q

and C.

82

.
.
.

...

α1 α2

α3 α4 α5 α6

α7

cost=

0

1

2

3

4 ...

(1223,11,1)

(1074,12,3)

(1258,96,1)

α8 α9

α10 α11 α12 α13

(a) The basic data structure storing candidate so-

lutions

.
.
.

...

α1 α2

α3 α4 α5 α6

α7

cost=

0

1

2

3

4 ...

(1223,11,1) (1258,96,1)

α8 α9

α10 α11 α13

(b) After pruning

Fig. 26. Examples of data structure and pruning.

83

Here we assume that the cost function is the simple (yet practical) number of

buffers, i.e., W (bi) = 1, for all bi ∈ B. While total buffer area can be used, to the

first order, the number of buffers provides a reasonably good approximation for the

buffer resource utilization. This type of function is useful if one is using just one

buffer type or if one is at a stage in the design where area is not as significant as

the designer effort to make an ECO (Engineering Change Order) change. Also, it is

certainly a reasonable choice if all the buffers in the given library are fairly close in

size. Note that, the techniques presented in [1] and this thesis can be applied on any

buffer resources model, such as total buffer area or power.

Initially, each sink s has a single candidate α, whereby Q(s, α) = RAT (si),

C(s, α) = C(si), and W (s, α) = 0. There are three basic operations during the

bottom-up traversal as shown from Figs. 6 to 8.

1. Add a wire. As one propagates candidates from node v1 up to its parent

node v, one must incorporate the delay of wire (v, v1) into each candidate of

v1. The number of candidates does not increase (and may even decrease due to

pruning).

2. Add a buffer. At a node v, one may potentially consider adding buffers to

some subset of candidates at v1. The number of candidates will increase, but is

bounded by the number of different values of W that can possibly be generated.

3. Merge two sub-trees. For now, assume that every Steiner tree can trans-

formed into an equivalent binary tree by adding zero length wires. The merging

of sub-trees T (v1) and T (v2) when controlling resources is the most expensive

of the three operations. We discuss this process in further detail below.

After performing these operations as required, eventually the set of candidates

84

N(s0) at the source is identified. One can then explore the candidates in this set to

find the solution corresponding to the desired cost/slack tradeoff.

The third step of merging two branches can be problematic because the number

of candidate solutions can potentially explode. Consider the example in Fig. 27.

Candidates for T (v1)

W

3 �

2 � � �

1 � � �

0 �

Candidates for T (v2)

W

2 �

1 � �

0 �

Candidates for T (v)

W

5 �
�
�

�
�3, 2

4 � �
�
�

�
�

�
�

�
�2, 2 3, 1

3 � � �
�
�

�
�

�
�

�
�

�
�

�
�1, 2 2, 1 3, 0

2 � � �
�
�

�
�

�
�

�
�

�
�

�
�0, 2 1, 1 2, 0

1 � �
�
�

�
�

�
�

�
�0, 1 1, 0

0 �
�
�

�
�0, 0

Fig. 27. Example of the algorithm for merging left and right candidates to obtain a

single set of candidates for the branching point. Here, the cost function is the

number of buffers inserted.

The set of candidates is stored as an array, indexed by the cost W . New can-

didates are generated by exploring potential merges so that the new candidates are

generated in nondecreasing order of cost. For example, first the zero-buffer left can-

didates are merged with the zero-buffer right candidates. Then the zero-buffer left

candidates are merged with the one-buffer right candidates followed by the one-buffer

85

left candidates and the zero-buffer right candidates.

When each new candidate is generated, its capacitance and slack can be inserted

into a range-query tree [1] to allow for pruning based on just Q and C. The trick is

that by visiting all new candidates in nondecreasing order of cost, it is guaranteed

that each new candidate added to the range-query tree will be dominated in terms of

cost by the other candidates already in the tree. Then one only needs to determine

additional dominance in Q and C to see whether the candidate should be rejected.

This test can be done in time logarithmic in the size of the tree.

As one can see from Fig. 8, the number of candidates can potentially explode.

Let n1 and n2 be the number of candidates in the sub-trees T (v1) and T (v2), then

there can be n1 ·n2 possible candidates, this leads to a possibly exponential algorithm.

3. Predictive Pruning

a. General Idea

The concept of predictive pruning has been proposed in Section C. For now assume

there is only one buffer type B. When we compare candidates at v, it is insufficient

to only compare Q and C values at v. Instead, we want a candidate α that maximizes

slack

P (v, α) = Q(v, α)−K(B)− R(B) · C(v, α), (2.8)

among all candidates. However, such a candidate is not necessarily the candidate that

maximizes Q. It is because when a buffer is attached, some nonredundant candidates

might become redundant.

For any candidates α1 and α2 of T (v), we say α1 B-dominates α2 if P (v, α1) ≥

P (v, α2) and C(v, α1) ≤ C(v, α2). There are two important lemmas are shown in

86

Section C, Lemmas II.4 and II.5.

We can expand the above concept and lemmas considering the buffer cost. For

any candidates α1 and α2 of T (v), we say α1 B-dominates α2 if P (v, α1) ≥ P (v, α2),

C(v, α1) ≤ C(v, α2) and W (v, α1) ≤W (v, α2).

Lemma II.23. If α1 B-dominates α2, then α2 is redundant.

Proof. From Lemma II.4, we know that α2 is redundant in terms of (Q, C). Since

W (v, α1) ≤ W (v, α2), and for any cases of adding a buffer, adding wire delay or

merging, same cost will be added to both α1 and α2, then α2 is redundant.

It is easy to see if α1 dominates α2, then α1 B-dominates α2, and α2 will be

pruned. We call this predictive pruning since it prunes the future redundant solu-

tions. The nonredundant candidates after predictive pruning are in the same order as

the traditional nonredundant candidates under (Q, C, W) pruning, except that some

candidates that are nonredundant under (Q, C, W) are redundant under (P, C, W).

Most traditional buffer insertion algorithms based on (Q, C, W) can be improved

using the new pruning technique based on (P, C, W). Also, this method does not

change the data structure or the frame of previous algorithms. In the application,

the value P does not need to be stored. It can be computed from Q and will only be

used when the redundancy is checked.

For multiple buffer types, the (P, C, W) pruning is defined for each type of buffer

Bi: Pi(v, α) = Q(v, α)−K(Bi)−R(Bi) ·C(v, α). In other words, Pi(v, α) is the slack

before an imaginary buffer of type Bi at v. For any two candidates α1 and α2 of

T (v), we say α1 Bi-dominates α2 if Pi(v, α1) ≥ Pi(v, α2), C(v, α1) ≤ C(v, α2), and

W (v, α1) ≤W (v, α2).

87

b. Application to Buffer Cost Minimization

For buffer insertion with minimum cost, we use the framework of Lillis, Cheng and

Lin [1] and apply the predictive pruning technique to both solution set indexed by cost

and the range-query tree (if we perform on only one of them, the optimal solution can

still be achieved except that few redundant solutions will be pruned). Since all new

candidates are visited in nondecreasing order of cost, the predictive pruning technique

guarantees the optimality.

Multiple buffer types are also considered here. However, this will increase the

space complexity by a factor of b. We can avoid the extra space increase by only

pruning those candidates Bk-dominated by other candidates, where Bk is the buffer

with the smallest R(Bi) among all buffers. There will be less redundant solutions

pruned compared with using b lists, but our experiments show that there are still many

redundant solutions been pruned, compared with previously Q pruning technique.

c. Experimental Results

To show the advantage of new pruning technique, we tested our new algorithm for

buffer insertion with cost constraints. Six different buffer types based on TSMC 180

nm technology are used. For the smallest buffer(1X), R(B) = 1440Ω, C(B) = 2.9

fF , and K(b) = 36.4 ps. The largest buffer is 8X. The sink capacitances range

from 2 fF to 41 fF . The wire resistance is 0.076 Ω/µm and the wire capacitance

is 0.118 fF/µm. Intrinsic gate delay is identical for all buffers. All algorithms are

implemented in C and run on a Sun SPARC workstations with 400 MHz and 2 GB

memory. The implemented algorithms also output buffer positions.

The first experiment is to compare our new technique with Lillis, Cheng and Lin’s

original algorithm [1] for buffer cost minimization. The buffer cost is the number of

88

buffers. In Table X, the time and memory results are shown for six buffer types and

the number of buffer positions are the number of sinks. Our algorithm is 2 to 17 times

faster than Lillis’ algorithm and uses 1/1.5 to 1/30 of memory. The performance of

our algorithm is better when the size of buffer library is large. Since generally the

buffer library is large in industry designs, so our algorithm can achieve more significant

improvement in practice.

We also compare our algorithm with the O(b2n log2 n) time algorithm of Shi

and Li [33], without considering the buffer cost. The O(b2n log2 n) time algorithm is

asymptotically the fastest algorithm reported. Simulation results are shown in Table

XI for six buffer types on several industrial test cases. We can see that for multi-

ple buffer types without considering buffer cost, our new algorithm is better than

the O(b2n log2 n) time algorithm when n is small. The reason is that O(b2n log n)

algorithm needs to use b trees to store Bi-dominant solutions, which results in high

overhead. Instead, our new algorithm only needs one list to store Bk-dominant solu-

tions, for Bk that the smallest driving resistance.

One benefit of predictive pruning algorithm is that it is very flexible and can be

combined with many buffer insertion algorithms, such as ones described in Section D

and Section E, and the performances of those algorithms are all improved.

4. High Degree Vertices

During buffer insertion, one problem is to deal with routing tree vertices of out-degree

greater than 2. Although any such vertex can be replaced by a number of out-degree

2 vertices, the order is not unique. For example, there are three ways to replace an

out-degree 3 vertex in Fig. 28 with out-degree 2 vertices. Each new vertex, solid

or hollow, is a possible buffer position. Solid vertices involves merging and buffer

insertion. Hollow points involve buffer insertion only.

89

Table X. Simulation results for six buffer types with buffer cost constraints, where m

is the number of sinks, n is the number of buffer positions, and W is the

buffer cost.

m n W CPU Time (sec) Memory (MB)
Lillis New Speed- Lillis New Reduc-

(Q,C,W) (P,C,W) up (Q,C,W) (P,C,W) tion
30 2.51 0.79 3.2 0.91 0.22 4.1

337 336 50 3.11 1.09 2.9 1.39 0.25 5.6
100 4.58 2.48 1.8 1.52 0.26 6.1
30 142.56 9.80 14.5 13.14 0.70 18.8

1944 1943 50 244.90 14.14 17.3 24.15 0.96 25.2
100 470.87 26.84 17.5 53.06 1.76 30.1
30 196.23 22.26 8.8 12.50 1.60 7.8

2676 2675 50 347.86 33.63 13.0 22.86 2.26 10.1
100 559.54 57.81 9.7 42.82 3.81 11.2

Theorem II.24. Let v be an out-degree d vertex, then there are at most n + 2O(d)

nonredundant candidates for T (v), where n is the total number of candidates in the

branches.

Proof. For a vertex with out-degree d, the number of ways to merge the d branches

by a sequence of 2-merges is 1 · 3 · 5 · · · (2d−3) = 2O(d). This can be shown by solving

the recurrence relation using generation function [38]. Fig. 28 shows the three ways

for d = 3. We will first consider whether to insert a buffer at each hollow point. This

way, the total number of candidates in the branches is at most n + d.

Now consider the merging points, shown as the solid points in Fig. 28. In each

case, say Fig. 28(b), since there can be at most d − 1 new buffers, the number of

candidates with new buffers is at most d. The candidates without new buffers will

be the same as the candidates without new buffers in any other case, say Fig. 28(c).

Therefore if we combine all the cases, there will be only 2O(d) additional candidates.

90

Table XI. Simulation results for six buffer types without buffer cost constraints, where

m is the number of sinks and n is the number of buffer positions.

m n CPU Time (sec) Memory (MB)

O(b2n log n) New O(b2n log n) New

336 0.42 0.04 0.12 0.05

337 2992 2.45 0.45 0.24 0.25

26887 25.84 27.96 1.56 5.91

1943 2.42 0.28 0.23 0.21

1944 17538 16.09 4.23 0.54 1.34

95513 96.57 101.32 2.15 21.70

2675 3.32 0.41 0.24 0.25

2676 23875 21.92 6.26 0.58 1.88

129875 132.65 153.1 2.23 34.84

G. Approximation Techniques for Buffer Insertion with Minimum Cost

With the buffer library and cost consideration, van Ginneken’s algorithm becomes

practical yet more runtime intensive. The work in [2], which is also shown in Section F,

has proved that minimizing buffering resource in buffer insertion is NP-complete. In

this section, we propose three approximation techniques to further speed up the min-

cost buffer insertion algorithm in [1].

1. Aggressive Predictive Pruning (APP). When considering candidate buffer

solutions at a node, it can be concluded that there must exist a minimum

resistance driving this node, which leads to additional delay. This delay can

be factored in during pruning to prune more aggressively than van Ginneken’s

91

��

�

�

(a)

��
�

�

�

�

�
�

(b)

��
�
�

�

�

�
�

(d)

��

�
�

�

�

�
�

(c)

Fig. 28. Three ways to replace an out-degree 3 vertex (top left) by out-degree 2 ver-

tices. For an out-degree d vertex, there are 1 · 3 · 5 · · · (2d− 3) ways.

algorithm allows. One can even increase this resistance value to prune more

aggressively but potentially sacrifice optimality.

2. Convex Pruning (CP). When examining three sorted candidates, one may

be able to guess that the middle one will soon become dominated by the one

just below or just above it in the candidate solution list. By determining this

before the candidate actually becomes dominated, squeeze pruning allows it to

be removed earlier.

3. Library Lookup (LL). During van Ginneken style buffer insertion, one consid-

ers inserting each buffer from a library for a given candidate. Instead, Library

Lookup considers just the inverting and non-inverting buffer from the library

that yields the best delay. These are determined from a pre-computed lookup

table.

92

Here, we use a simple cost function to find the solution with the minimum number

of buffers that meets the delay target and fixes the slew constraint. Also, we consider

a discrete set of non-inverting and inverting buffers of various power levels. The

framework of Lillis, Cheng and Lin’s algorithm has been shown in Section F. Note

that at the end of the algorithm, a set of solutions with different cost-RAT tradeoff is

obtained. Each solution gives the maximum RAT achieved under the corresponding

cost bound. Practically, we choose neither the solution with maximum RAT at source

nor the one with minimum total buffer cost. Usually, we would like to pick one

solution in the middle such that the solution with one more buffer brings marginal

timing gain. In our implementation, we use the following scheme namely the “10ps

rule”. For the final solutions sorted by the source’s RAT value, we start from the

solution with maximum RAT and compare it with the second solution (usually it has

one buffer less). If the difference in RAT is more than 10ps, we pick the first solution.

Otherwise, we drop it (since with less than 10ps timing improvement, it does not

worth an extra buffer) and continue to compare the second and the third solution.

Of course, instead of 10ps, any time threshold can be used when applying to different

nets.

Different from the work of [32, 2] and Section F, which emphasizes more on large

and huge nets, our techniques are more effective on small and medium nets which

are the majority in most chip designs. Our experiments on thousands of nets from

industry designs show that when we combine these three techniques, we are able to

gain a factor of 9× to 25× speedup over traditional buffer insertion algorithm while

the slack only degrades by 2-3% on average.

These techniques can be easily integrated with the current buffer insertion engine

which considers slew, noise and capacitance constraints. Consequently, we believe

these techniques are essential to embed in a physical synthesis buffer insertion system.

93

1. Aggressive Predictive Pruning (APP)

Aggressive predictive pruning is based on predictive pruning. It has been shown in

Section F that the technique is very effective and produces optimal results. The detail

proof and discussion can be found in Section C and F. Intuitively, predictive pruning

is based on anticipated upstream resistance (such as buffer or driver resistance) of at

least Rmin.

Predictive Pruning (PP): For two non-redundant solutions (Q1, C1, W1) and

(Q2, C2, W2), where Q1 < Q2, C1 < C2, and W1 ≤W2, if (Q2−Q1)/(C2−C1) ≥ Rmin,

then (Q2, C2, W) is pruned.

For example, in Fig. 26(b), we assume Rmin = 1kΩ. For two non-dominating

candidates α4 = (1223ps, 11fF, 1) and α6 = (1258ps, 96fF, 1), since 1258 − 1000 ×

0.096 = 1162 < 1223−1000×0.011 = 1212, α6 is pruned since we certainly predict α6

will be dominated by α4 when the bottom-up process continues. In other words, the

extra 85fF of capacitance will add at least 85ps of upstream delay eventually. Thus,

the 25ps slack advantage of α4 is overshadowed by its weakness of larger capacitance.

An interesting observation is that if we use a resistance R which is larger than

Rmin value, obviously more solutions are pruned and the algorithm becomes faster.

However, it will sacrifice the solution quality. This technique is referred to as the

aggressive predictive pruning - APP since it does more aggressive pruning than pre-

dictive pruning. In order to investigate the relationship of algorithm speed-up and

solution sacrifice for APP, we have performed a set of experiments on 1000 industrial

nets (with a buffer library consisting of 24 buffers). The comparison is shown in

Fig. 29. The figure shows the degradation in slack and the decrease in CPU time

as a function of resistance. When R = 120Ω, this is the minimum resistance value

which still yields the optimal solution. As R increases, the CPU time drops much

94

more sharply than the slack. For example, one can get a 50% speedup for less than

5% slack degradation when R = 600Ω. Also, note from the bottom chart that the

number of buffers stays fairly stable until R gets quite large. The promising experi-

ment results show that by using APP, a tiny sacrifice in solution quality can bring a

huge speed-up in the van Ginneken’s algorithm.

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

10

20

30

40

50

60

70

80

90

100

R

%
 o

f o
pt

im
al

 c
as

e

 Comparison of the change in slack imprv and CPU−time

slack imprv
CPU time

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

2000

4000

6000

8000

10000

12000

14000
total number of buffers for 1000 nets

R

to
t #

 o
f b

uf

of buffers

Fig. 29. The speed-up and solution sacrifice of APP in 1000 nets

95

2. Convex Pruning (CP)

The basic data structure of van Ginneken style algorithms is a sorted list of non-

dominated candidate solutions. Both the pruning in van Ginneken style algorithm and

the predictive slack pruning are performed by comparing two neighboring candidate

solutions at a time. However, more potentially inferior solutions can be pruned out by

comparing three neighboring candidate solutions simultaneously. For three solutions

in the sorted list, the middle one may be pruned according to the convex pruning.

The concept of convex pruning was first proposed by Li and Shi [35] and has been

explained in Section D and E. It has been shown that in Lemma II.16 that convex

pruning preserves optimality for two-pin nets.

For a multi-sink net with Steiner nodes, convex pruning can not keep optimality

since each candidate solution may merge with different candidate solutions from the

other branch. For example, the middle candidate solution in Fig. 22(b) may offer

smaller capacitance to other candidate solutions in the other branch. Convex pruning

may prune out a post-merging candidate solution that is originally with less total

capacitance. Therefore, the final solution may be sub-optimal. However, convex

pruning only causes little degradation on the solution quality since it is performed for

each set of solutions with the same cost and the capacitance under-estimation effect

is alleviated.

One example of squeeze pruning that is not optimal at a Steiner node is shown as

follows: Suppose the candidate solutions at the right branch are αr1 = (1186ps, 13fF, 12),

αr2 = (1190ps, 150fF, 12) and αr3 = (1243ps, 201fF, 12), and the candidate solu-

tions at the left branch are αl1 = (1187ps, 20fF, 10) and αl2 = (1200ps, 40fF, 10).

If convex pruning are performed after merging point, the candidate solutions after

merging are α1 = (1186ps, 33fF, 22), α2 = (1190ps, 190fF, 22). If convex prun-

96

ing are performed before merging point, the candidate solutions after merging are

α1 = (1186ps, 33fF, 22), α2 = (1187ps, 221fF, 22). It can be seen that convex prun-

ing is sub-optimal at merging point except for the case when the convex pruning is

only performed after last merging point.

Note that, the predictive and aggressive predictive slack pruning techniques

prune the second candidate solution when the slope value between every two neigh-

boring candidate solutions is smaller than a threshold value. We can treat these two

techniques as special cases of convex pruning if we assume there is a dummy third

candidate solution with the slope to the first candidate solution being that threshold

value.

3. Library Lookup (LL)

In van Ginneken style algorithms, the size of buffer library is an important factor.

Modern designs often have tens of power levels for buffers and inverters. Sometimes it

climbs into the hundreds. From the algorithm analysis, the size of buffer library has

the square effect on the running time. In practice, this effect appears to be linear, but

it is still a bottleneck when we perform buffer insertion with large buffer libraries. On

the other hand, it is essential to have a reasonably sized library to obtain sufficient

timing performance. In [13], a buffer library selection algorithm is proposed to prune

the big library to get small library and use small library to perform buffer insertion.

In Section D, an O(bn2) algorithm is proposed for optimal buffer insertion with b

buffer types. Is that possible to speed up further to reduce b effect to constant with

a little degradation of solution quality?

During van Ginneken style buffer insertion, every buffer in the library is tried

for each candidate solution. If there are n candidate solutions at an internal node

before buffer insertion and the library consists of b buffers, then bn tentative solutions

97

are evaluated. For example, in Fig. 30(a), all eight buffers are considered for all n

candidate solutions.

However, many of these candidate solutions are clearly not worth considering

(such as small buffers driving large capacitance). But van Ginneken style algorithms

generate them anyway and let pruning step eliminates the redundant candidate solu-

tions. Instead, we seek to avoid generating poor candidate solutions in the first place

and not even consider adding m buffered candidate solutions for each unbuffered can-

didate solution. We propose to consider each candidate solution in turn. For each

candidate solution with capacitance Ci, we look up the best non-inverting buffer and

the best inverting buffer that yield the best delay from two pre-computed tables be-

fore optimization. In the example shown in Fig. 30(b), the capacitance Ci results in

selecting buffer B3 and inverter I2 from the non-inverting and inverting buffer tables.

(c1, q1, w1)
(c2, q2, w2)
...
(cn, qn, wn)

B1

B2

B3

B4

I1

I2

I3

I4

Ci

Buffer table Inverter table

(a)

I2

I1

I3

(b)

B1

B2

B3

B4 I4

Fig. 30. Library Lookup example. B1 to B4 are non-inverting buffers. I1 and I4 are

inverting buffers. (a) van Ginneken style buffer insertion. (b) Library Lookup.

Two pre-computed tables are built as follows: for each possible capacitance value,

we gives the non-inverting (inverting) buffer with minimum delay when a driver with

98

average size drives this buffer driving this capacitance. Using a table with 300 entries

can be quickly computed before buffering and gives more than sufficient granularity.

All 2n tentative new buffered candidate solutions can be divided into two groups,

where one group includes n candidate solutions with an inverting buffer just inserted

and the other group includes n candidate solutions with a non-inverting buffer just

inserted. We only choose one candidate solution that yields the maximum slack from

each group and finally only two candidate solutions are inserted into the original can-

didate solution lists. Since the number of tentative new buffered solutions is reduced

from bn to 2n, the speedup is achieved. Also, since only two new candidate solutions

instead of b new candidate solutions are inserted to the candidate solution lists (these

new solutions could be pruned later), the number of total candidate solutions are

reduced. It is equivalent to the case when the buffer library size is only two, but

the buffer type can change depending on the downstream load capacitance and all

b buffers in the original library can be used if they are all listed in the table. This

is the major difference between this technique and library pruning in [13] since after

library pruning, only those surviving buffers can be used.

4. Experimental Results

The proposed techniques are implemented together with the buffer insertion algorithm

in C and are tested on a SUN SPARC workstations with 400 MHz and 2 GB memory.

We test our speedup techniques on three groups of nets from industry ASICs with

300K+ gates. They have been placed and require physical synthesis to optimize

timing and fix electrical violations. The first group are extracted from one ASIC chip

and consists 1000 most time consuming nets for the algorithm of Lillis, Cheng and

Lin [1]. We named it as ChipA-1K. The second group and third group are extracted

from another ASIC chip and consist 1000 and 5000 most time consuming nets for

99

the algorithm in [1], respectively. We named them as ChipB-1K and ChipB-5K. We

choose the third group since this group includes more nets of small and middle size.

The net information for these three groups is shown in Table XII.

Table XII. Net information.

sinks m m ≤ 5 5 < m ≤ 20 20 < m ≤ 50 50 < m ≤ 100 m > 100
nets in ChipA-1k 944 56 0 0 0
nets in ChipB-1k 0 29 581 345 45
nets in ChipB-5k 2 1478 2956 513 51

The buffer library (denote by Full) consists of 24 buffers, in which 8 are non-

inverting buffers and 16 are inverting buffers. The range of driving resistance is from

120 Ω to 945 Ω, and the input capacitance is from 6.27 fF to 121.56 fF . We use

a scaled Elmore delay as interconnect delay, and apply the 10 ps rule to choose the

most cost efficient solution from a set of solutions with different cost-slack tradeoff.

Table XIII shows the simulation results for these three test groups. In each

experiment, we show the total slack improvement after buffer insertion, the number

of inserted buffers for all nets and the total CPU time of the buffer insertion algorithm

with our speedup techniques, APP, CP and LL. Finally we show the results when

three techniques are combined. For comparison, we also show the results of the

algorithm of Lillis, Cheng and Lin (baseline) [1] and predictive pruning technique

(PP) in Section F and [2]. Note that for the CP and LL, we also combine them with

predictive pruning technique. For APP, the resistance is chosen as 5% of the range

from minimum buffer resistance to the maximum buffer resistance plus the minimum

resistance. In [2], it is claimed that predictive slack pruning can achieve up to 17

times speedup. This huge speedup is achieved mainly because the size of test nets

and the number of buffer locations in [2] are much larger than our test cases.

The results show that our speedup techniques can provide 9× to 25× speedup

100

Table XIII. Simulation results for ChipA-1K, ChipB-1K and ChipB-5K nets on Full

library consisting of 24 buffers. Baseline are the results of the algorithm of

Lillis, Cheng and Lin[1]. PP are results of predictive pruning technique [2].

W is the number of buffers.

Test Case Algorithm Slack Imp. (ns) W CPU (s) Speedup
ChipA-1K Baseline 5954.93 9895 315.14 1

PP 5954.93 9895 280.67 1.12
APP 5954.84 (-0.001%) 9893 267.33 1.18

PP+CP 5954.91 (-0.000%) 9895 185.56 1.70
PP+LL 5945.47 (-0.16%) 9723 43.87 7.18

APP+CP+LL 5945.44 (-0.16%) 9724 33.50 9.41
ChipB-1K Baseline 1310.62 9295 1861.26 1

PP 1310.62 9295 860.32 2.16
APP 1311.64 (+0.08%) 9475 737.38 2.52

PP+CP 1311.04 (+0.03%) 9482 433.66 4.29
PP+LL 1288.29 (-1.7%) 9370 144.89 12.85

APP+CP+LL 1290.01 (-1.57%) 9746 75.00 24.82
ChipB-5K Baseline 2868.86 30438 3577.38 1

PP 2868.86 30438 1881.78 1.90
APP 2870.32 (+0.05%) 30702 1692.77 2.11

PP+CP 2868.95 (+0.03%) 30822 1036.20 3.45
PP+LL 2782.25 (-3.02%) 29080 312.96 11.43

APP+CP+LL 2785.36 (-3.00%) 29776 175.66 20.36

over baseline buffer insertion while the slack only degrades by 2-3%. From the table,

for ChipB-1K and ChipB-5K nets, the slack improvement of our speedup techniques

is slightly greater than the baseline algorithm in few cases. This is due to the usage

of the 10 ps rule in which the most cost-efficient solution is selected instead of the

maximum slack solution.

It is obvious that if the size of buffer library becomes smaller, the running time

can also go down with the degradation of the solution quality. Since our three tech-

niques are independent of the library size, it is interesting to compare our techniques

with the baseline algorithm with different buffer libraries. We adopt the buffer library

101

Table XIV. Simulation results for ChipA-1K, ChipB-1K, ChipB-5k nets on different

libraries. The number after each library is the library size. PP are results

of predictive pruning technique [2]. W is the number of buffers.

Test Case Library Algorithm Slack Imp. (ns) W CPU (s)
ChipA-1k Tiny(4) PP 5904.61 9864 59.09

Small(6) PP 5912.07 9843 77.48
Medium(9) PP 5949.30 9720 101.27
Large(13) PP 5951.46 9771 144.32
Full(24) APP+CP+LL 5945.44 9724 33.50

ChipB-1k Tiny(4) PP 1287.11 10235 220.02
Small(6) PP 1298.06 9511 237.47

Medium(9) PP 1305.26 9274 336.19
Large(13) PP 1306.93 9292 460.69
Full(24) APP+CP+LL 1290.01 9746 75.00

ChipB-5k Tiny(4) PP 2755.03 32361 460.43
Small(6) PP 2802.99 29758 509.72

Medium(9) PP 2844.57 29895 737.19
Large(13) PP 2853.04 30225 1009.91
Full(24) APP+CP+LL 2785.36 29776 175.66

selection algorithm [13] and generate four different buffer libraries from our original

library. The libraries are named Tiny, Small, Medium and Large, and they have 4,

6, 9 and 13 non-inverting and inverting buffers respectively. Then we run predictive

pruning technique on each library, and the results for three test groups are shown in

the Table XIV. For the ease of comparison, the results for APP+CP+LL on original

Full library are also shown in the last row for each test group. From the results we

can see that with APP+CP+LL, the running time is even faster (up to 3× faster)

than the results on Tiny buffer library, while we still achieve better slack improvement

(up to 1%) and use less buffers. This shows that applying our techniques on a large

buffer library could achieve both better slack improvement and faster running time

than applying traditional van Ginneken style algorithm on a small buffer library.

102

CHAPTER III

WIRE SIZING FOR NON-TREE NETWORKS

Most existing methods for interconnect wire sizing are designed for RC trees. With

the increasing popularity of the non-tree topology in clock networks and multiple link

networks, wire sizing for non-tree networks becomes an important problem.

In this Chapter, we propose the first systematic method to size the wires of

general non-tree RC networks. Our method consists of three steps: decompose a

non-tree RC network into a tree RC network such that the Elmore delay at every

sink remains unchanged; size wires of the tree; and merge the wires back to the

original non-tree network. All three steps can be implemented in low order polynomial

time. Using this method, previous wire sizing techniques for tree topology for various

objectives, such as minimizing the maximum delay, minimizing the total area or

power, reducing skew variability under process variations can be applied to non-tree

topologies. For certain types of networks, such as the tree+link network [4], our

method gives the optimal solution, provided the tree wire sizing is optimal.

A. Previous Work

Wire sizing plays an important role in achieving desirable circuit performance [39, 40,

41, 42]. In earlier work, the wire sizing problem under Elmore delay model is to min-

imize weighted average delay and optimal algorithm for discrete wire size is proposed

in [39]. Later, sensitivity based heuristics and convex programming techniques are

used to minimize the maximum delay [40]. For different objectives such as minimiz-

ing total area subject to delay bounds or minimizing maximum delay, these problems

can be reduced to solve a sequence of weighted sink delay problems by Lagrangian

relaxation [43]. Wire sizing under multiple input sources is handled in [44], and more

103

accurate delay models are used in [41, 45]. For a single interconnect wire, the optimal

wire sizing solution can be obtained in close form with or without constraints on the

wire size [46, 47]. In [48, 49], wire sizing techniques are used to reduce the skew in the

clock trees with minimum delay/area/power objective. However, all these work can

only handle tree topology. One major reason is that Elmore delay in an RC tree can

be modelled as a posynomial function in terms of wire width, similar to gate sizing

problem that was identified as a posynomial function in [50], and in turn wire sizing

problem is a convex program except for the skew problem. Note that the continuous

wire sizing problem can be solved in linear time in each iteration [51] while the given

fixed precision of the solution. the discrete wire sizing problem can be solved in O(nr)

time, where r is the number of wire choices.

It has been shown that compared with tree topologies, non-tree topologies can

effectively reduce the maximum delay [52, 53, 54], improve the yield [52, 55] and

reduce the clock skew under process variations [56, 54, 4].

However, wire sizing for general non-tree topologies is more complicated since

Elmore delay for non-tree topology cannot be modelled as a posynomial function.

Some methods [53, 3] add multiple links to an existing interconnect and use sequential

quadratic programming to optimize the wire size to reduce the maximum delay and

skew. In [57], a delay model based on dominant time constant is used since the

dominant time constant of a general RC circuit is a quasiconvex function of the

conductances and capacitances. Semidefinite programming is used to minimize the

total area and the dominant time constant. However, dominant time constant can

only measure the delay of the node with slowest response, and it can not evaluate

the weighted sum of the delay or the skew in the circuit, which is more important for

the clock network. In [54], an iterative linear programming approach is used to size

the wire on the top level edges of one-level mesh and a heuristic approach based on

104

sensitivity information is used to size the tree edges. However, it is restricted to simple

topologies. Generally, these approaches are inefficient for large circuits and general

topologies due to the high computational complexity of quadratic programming and

semidefinite programming.

B. Delay Models and Problem Formulations

The wire sizing problem for non-tree topology can be modelled as follows. A circuit

is given as a graph G = (V, E), where V = {v1} ∪ Vs ∪ Vn, and E ⊆ V × V . Vertex

v1 is the source node, Vs is the set of sink nodes, and Vn is the set of internal nodes.

The source v1 is associated with driver resistance R(v1), and each sink node vi ∈ Vs

is associated with sink capacitance C(vi) and required arrival time RAT (vi). If vi is

an internal or source node, C(vi) is 0.

In general VLSI circuit, there could be multiple metal layers. Let the wire resis-

tance for layer m be r0m per square and wire capacitance be c0m per square. Each

edge e is associated with length L(e) and width W (e). Therefore, its lumped resis-

tance is R(e) = r0mL(e)/W (e) and its lumped capacitance is C(e) = c0mL(e)W (e) if

the edge is on layer l. The π model is used to model the R and C of each edge.

Following previous work [4, 3, 57, 58], we use Elmore delay to evaluate an RC

network due to its high fidelity. According to [59], we have

Definition III.1. For any pair of nodes vi and vj, define Rij as the absolute value

of the voltage at vi when a unit current is injected to vj. For any node vj, define Cj

as the node capacitance at vj, or Cj = C(vj) +
∑

e=(vi,vj)
C(e)/2.

It was shown in [59] that the vector of the Elmore delay at every node in the

RC network is R ·C, where R = {Rij}n×n is the resistance matrix defined above and

C = {Cj}n is a vector of node capacitance defined above.

105

If every node capacitance Cj in an RC network is treated as a current source

whose current value is equal to Cj and the source v1 is grounded, then the original

RC network can be transformed to an equivalent DC network with only resistors

and current sources. It was shown that the first moment of every node in the RC

network, which is the negative Elmore delay, is equal to the voltage at every node in

its corresponding DC equivalent network [60].

Once we decide a wire sizing solution W (e) for every edge e ∈ E, the delay

from source to any node vi is D(vi) =
∑n

j=1 Ri,jCj. The slack at v1 is Q(v1) =

minvk∈Vs{RAT (vk) − D(vk)}, where RAT (vk) is the require arrival time at vk. The

weighted sum of sink delays is T =
∑

vi∈Vs
λiD(vi), where λi is the weight of the delay

penalty to sink vi. The greater λi is, the more critical sink vi is. The total weighted

area is A =
∑

e∈E β(e)W (e), where β(e) is weight of the each edge. The power of

the circuit can be modelled as the total capacitance of the circuit. The skew between

node vi and vj is S(i, j) = D(vi) − D(vj) and the maximum skew of the circuit is

defined as maxvi,vj∈Vs |S(i, j)|.

Non-Tree Topology Sizing Problem: Given a circuit represented by routing

graph G = (V, E), driver resistance R(v1), sink capacitance C(vi) and RAT (vi) for

each sink vi, capacitance C(e) and resistance R(e) for each edge e, discrete wire

width choices {W1, W2, . . . , Wr} or continuous range [WL(e), WU(e)], find the wire

width W (e) for each e ∈ E that minimizes the weighted sum of sink delays T , or

maximizes source slack Q(v1), or minimizes the total area A or power subject to

Q(v1) ≥ 0, or achieves zero skew for any two sinks.

106

C. Tree Decomposition

In the DC equivalent network of the original RC network, associate a current I(e) =

(−D(vi) − (−D(vj)))/R(e) = (D(vj) − D(vi)/R(e) with each edge e = (vi, vj). A

current path p from source v1 to vi is a sequence of nodes vi0 , . . . , vil , where vi0 = v1

and vil = vi, and I(e) > 0 for every edge in the path. It is easy to see that the Elmore

delay at vertex vi can be expressed as D(vi) =
∑

e∈p R(e)I(e), where p is any current

path from source v1 to vi.

From now on, we do not differentiate an RC network and its equivalent DC

network. We always assume the capacitance is replaced by the corresponding current

source.

For every node vi, let ei1, ei2, . . . , eid be its adjacent edges. Among these edges,

call the edges with current flowing into vi as incoming edges of node vi and the other

edges as out-going edges of node vi. It is obvious that in an RC tree, there is exactly

one incoming edge for every node, except for the source node. In a non-tree RC

network, however, some nodes may have more than one incoming edge. Intuitively,

if we can make every node in a non-tree RC network have only one incoming edge

without changing the Elmore delay, then the non-tree RC network can be decomposed

to an RC tree. Note that, we also want this RC tree realistic in order to perform

wire sizing, which means the node capacitance must be non-negative and the edge

capacitance correlated with the edge length and edge width. We now define three

main operations that will be used in our algorithm.

Edge Cutting: For an edge e = (vi, vj), if 0 ≤ I(e) ≤ 0.5C(e), then we can

cut edge e at the point vk such that the distance from vi to vk is xL(e), where

x = I(e)/C(e) + 0.5 and two nodes vk1 and vk2 that are equivalent to node vk are

generated. See Fig. 31.

107

Lemma III.2. Edge cutting keeps the Elmore delay at all nodes in the original RC

network unchanged and D(vk1) = D(vk2).

Proof. From Fig. 31, in the original circuit the current flowing from A to node vi is

I(e)+0.5C(e), the current flowing from B to vj is 0.5C(e)−I(e). After edge cutting,

the current flowing from A to node vi is xC(e) = I(e) + 0.5C(e), the current flowing

from B to node vj is (1− x)C(e) = C(e)− (I(e) + 0.5C(e)) = 0.5C(e)− I(e). Since

I(e) ≤ 0.5C(e), there must be another edge connected to vj with current flowing

into vj and therefore after edge cutting there is still a current path from source to

vj . Since all edge currents and resistances except for edge e are not changed, and the

paths from source to every node exist, the Elmore delay of every node in the original

RC network are not changed.

vi
vj

vi vjvk1 vk2

0.5C(e)

I(e)

L(e)
0.5C(e)

0.5xC(e) xL(e)

(1-x)L(e)

0.5xC(e) 0.5(1-x)
C(e) 0.5(1-x)C(e)

A B

A B

Fig. 31. Edge cutting. If 0 ≤ I(e) ≤ 0.5C(e), edge e = (vi, vj) is cut into two edges

(vi, vk1) and (vk2, vj), such that the Elmore delay for every node in the entire

circuit is unchanged. A is the part of the circuit adjacent to vi, and B is the

part of the circuit adjacent to vj . Symbol ©↓ represents a current source.

After edge cutting, we have

D(vk1) = D(vi) + 0.5x2R(e)C(e),

D(vk2) = D(vj) + 0.5(1− x)2R(e)C(e).

108

Before edge cutting, D(vj) = D(vi) + R(e) · I(e). Since D(vj) is not changed after

edge cutting, we have

D(vk2) = D(vi) + R(e)(x− 0.5)C(e) + 0.5(1− x)2R(e)C(e)

= D(vi) + 0.5x2R(e)C(e) = D(vk1).

Since after edge cutting, the initial current flowing from vi to vj is replaced by

the current from vj to vk2, it is easy to see that the number of incoming edges of vj

is reduced by 1.

Node Splitting: For an edge e = (vi, vj), if 0.5C(e) < I(e) ≤ 0.5C(e) + C(vj),

then we can split node vj to two nodes vj1 and vj2. The sink capacitance of vj1 is

I(e)− 0.5C(e), and the sink capacitance of vj2 is C(vj)− (I(e)− 0.5C(e)). The edge

e is changed to e = (vi, vj1). Other connections are not changed. See Fig. 32.

vj

0.5C(e) C(vj)

I(e)

vj1

0.5C(e)
I(e) -

0.5C(e)

I(e)

C(vj) - I(e)+ 0.5C(e)

vj2

vi

vi

A B

BA

Fig. 32. Node splitting. If 0.5C(e) < I(e) ≤ 0.5C(e) + C(vj), node vj is splitted to

two nodes vj1 and vj2, such that the Elmore delay at every node in the entire

circuit is unchanged. A is the part of the circuit adjacent to node vi, and B

is the part of the circuit adjacent to node vj .

109

Lemma III.3. Node splitting keeps the Elmore delay at all nodes in the original RC

network unchanged and D(vj1) = D(vj2) = D(vj).

Proof. From Fig. 32, in the original circuit the current flowing from A (including

another half edge capacitance 0.5C(e))to node vi is I(e), the current flowing from B

to vj is C(vj)+0.5C(e)−I(e). After node splitting, the current flowing from A to node

vi and the current flowing from B to node vj are unchanged. Similar to the proof in

Lemma III.2, there must be another edge connected to vj with current flowing into vj

and the delay of every node in the original RC network is the same. Therefore, after

node splitting we have D(vj2) = D(vj) and D(vj1) = D(vi) + R(e)I(e) = D(vj).

It is obvious that after node splitting, node vj2 has one less incoming edge than

the original node vj .

Edge Splitting: For an edge e = (vi, vj), if I(e) > 0.5C(e) + C(vj) and the

number of incoming edges of vj is greater than 1, we will split vj and outgoing edge(s)

of vj as follows. Let e1, e2, . . . , ed be adjacent edges of vj, with the first q edges being

incoming edges (assuming e = e1) and the rest being out-going edges. It is easy to

see that there must exist an edge es = (vj, vk), q < s ≤ d, such that

s−1∑
l=q+1

(I(el) + 0.5C(el)) < I(e)− 0.5C(e)− C(vj)

≤
s∑

l=q+1

(I(el) + 0.5C(el)).

We then split node vj to two nodes vj1 and vj2. The sink capacitance of vj1 is C(vj),

and the sink capacitance of vj2 is 0. Then for all edges originally connected to vj ,

we make edges e1(e), eq+1, . . . , es−1 connected to vj1, edges e2, . . . , eq, es+1, . . . , ed

connected to vj2, and split edge es into two edges es1 and es2, with es1 = (vj1, vk) and

es2 = (vj2, vk). The width of all edges except for es1 and es2 is the same, while the

110

width of edge es1 is b ·W (es) and the width of edge es2 is (1− b)W (es), where

b =
I(e)− 0.5C(e)− C(vj)−

∑s−1
l=q+1(I(el) + 0.5C(el))

I(es) + 0.5C(es)
.

The circuits before and after edge splitting is shown in Fig. 33.

vj

0.5C(e)+C(vj)

I(e)

...

I(eq+1)

A

vi B
vk

I(es)

0.5C(es)
0.5C(es)

C
0.5C(eq+1)

0.5C(e)+C(vj)

I(e)

...

I(eq+1)

A

vi

B

vkbI(es)0.5bC(es)

0.5bC(es)
C

0.5C(eq+1)

vj1

vj2

(1-b)I(e
s)

0.5(1-b)C(e
s)

0.5(1-b)C(e
s)

Fig. 33. Edge splitting. If I(e) > 0.5C(e)+C(vj), edge es = (vj, vk) is splitted into two

edges es1 = (vj1, vk) and es2 = (vj2, vk). A is the part of the circuit adjacent

to node vi. B is the part of the circuit adjacent to node vj including edges

e2, . . . , eq, es+1, . . . , ed. C is the part of the circuit adjacent node vk.

Lemma III.4. Edge splitting keeps the Elmore delay at all nodes in the original RC

network unchanged and D(vj1) = D(vj2) = D(vj).

Proof. From Fig. 33, in the original circuit the current flowing from A (including

another half edge capacitance 0.5C(e)) to node vi is I(e), the current flowing from B

111

(including all half capacitances of edges connected to vj except for edge e and es) to

vj is

I(B) =
s∑

l=q+1

(I(el) + 0.5C(el)) + 0.5C(e) + C(vj)− I(e).

The current flowing from C to vk is 0.5C(es)− I(es). After edge splitting, it is easy

to see the current flowing from A to node vi is unchanged and the current flowing

from region C to node vk is unchanged. The current I(B) flowing from B to vj2 is

I(B) = (1− b)(I(es) + 0.5C(es))

= I(es) + 0.5C(es)− (I(e)− 0.5C(e)− C(vj)

−
s−1∑

l=q+1

(I(el) + 0.5C(el)))

=
s∑

l=q+1

(I(el) + 0.5C(el)) + 0.5C(e) + C(vj)− I(e).

Since the current distribution is not changed, the Elmore delay of every node in the

original RC network is not changed. Therefore, after edge cutting we have D(vj2) =

D(vj). For vj1, D(vj1) = D(vi) + R(e)I(e) = D(vj).

It is easy to see the node vj2 has one less incoming edge than the original node

vj , node vj1 has only one incoming edge. Node vk has one more incoming edge than

before.

Lemma III.5. For any node with more than one incoming edge, we can use edge

cutting, node splitting and edge splitting to reduce its number of incoming edges to be

1. Furthermore, we can reduce the number of incoming edges of every node to be one

in O(|E|2) time.

Proof. For any node with more than one incoming edge, consider one arbitrary

incoming edge e. Its current I(e) must fall into one of the following intervals:

112

0 ≤ I(e) ≤ 0.5C(e), 0.5C(e) < I(e) ≤ 0.5C(e)+C(vj) or I(e) > 0.5C(e)+C(vj), and

the corresponding operation will be performed. From previous analysis, we know that

the incoming edges of this node will only decrease with these three operations. By

checking all incoming edges of this node, we can reduce its number of incoming edges

to be 1. It was mentioned that after edge splitting the number of incoming edges of

node vk will increase by 1. Therefore, we need to iteratively check every node and

perform these three operations. In each iteration, the complexity is O(|E|). Since

for any node, the total number of incoming edges in all iterations is upper bounded

by |E| (the worst case is that all edges connect to this node and the currents are all

flowing into this node), the maximum number of iterations is |E|. Therefore, we can

reduce the incoming edge(s) of every node to be one in O(|E|2) time.

It should be pointed out that Lemma III.2 to III.5 are correct for any layer assignment.

Before decomposition, we also need to know the Elmore delay of every node in

original non-tree RC networks. There are some methods that can get Elmore delay

in non-tree RC networks efficiently instead of doing LU factorization directly. A

tree/link partition method is introduced in [61]. The main idea is to remove edges

(called links in the paper) in the network iteratively until there is a spanning tree left

(note that this tree does not have the same Elmore delay as original topology). Then

the Elmore delays of the original non-tree network are computed by adding each link

back. The time complexity is m2n, where m is the number of removed links and n

is the number of nodes. For planar graphs, m = O(n). For the non-tree topologies

generated by adding links on a tree topology [3, 4], m = O(1) and is much less than

n. Then it is very efficient in terms of speed and memory than LU factorization. In

[58], a relaxation method is introduced and the running time depends on the required

accuracy. Even for a planar graph, since the G matrix is sparse, there are also some

113

efficient numeric approaches to get the Elmore delay. Thus, we have the following

decomposition algorithm and theorem.

Algorithm Decomposition
Input: Non-tree RC network G = (V, E).

Output: Tree RC network G′ = (V ′, E ′) with source v1.

Compute the Elmore delay for all nodes in V ;1

while there is a node with more than one incoming edge do2

for every edge e = (vi, vj) in E such that I(e) ≥ 0 and the number of3

incoming edges of vj is greater than 1 do

if 0 ≤ I(e) ≤ 0.5C(e) then4

Edge Cutting;5

else if 0.5C(e) < I(e) ≤ 0.5C(e) + C(vj) then6

Node Splitting;7

else if I(e) > 0.5C(e) + C(vj) then8

Edge Splitting;9

end10

end11

end12

return the new graph;13

Theorem III.6. Given any non-tree topology, we can decompose this topology into

an tree topology through edge cutting, node splitting and edge splitting such that the

Elmore delay of every point remains the same and all node capacitances are greater

than zero. The time complexity is O(n3) for a planar graph G.

One example of our decomposition algorithm is shown in Fig. 34. The example

114

circuit is net 1 used in [3] and the original topology is shown in Fig. 34(a). The

number associated with each edge is the edge length and the number in the bracket is

the Elmore delay of each node. We use the same interconnect and gate parameters:

driving resistance R(d) = 25Ω, unit resistance r0 = 0.008Ω/µm, unit capacitance

c0 = 0.06fF/µm, loading capacitance Cs = 1000fF . In this example, only edge

k in original topology needs to be checked after checking all edge currents. Here

edge cutting is performed. The new tree topology after decomposition is shown in

Fig. 34(b) and the Elmore delay at all original nodes and new generated nodes are

also shown.

D. Wire Sizing and Merging

After the decomposition, the network is a tree and all node capacitance is non-

negative. Therefore we can use existing wire sizing methods for the tree topology (or

we call tree-targeted wire sizing methods) to optimize various objectives, such as mini-

mizing weighted delay T , minimizing maximum delay, maximizing source slack Q(v1),

minimizing area A under delay constraints, or achieve zero skew [42, 39, 44, 48, 49].

After we get the optimal wire sizing solution for the tree topology, we need to

connect the edges or nodes to restore the original non-tree topology with a sized

solution. The merging process could change the delay at every node. If the design

targets are not satisfied, iterative process of tree decomposition (since the delay is

changed, the decomposition could be different), wire sizing and merging need to be

performed until the constraints are satisfied.

For the example circuit shown in Fig. 34, the non-tree topology after wire sizing

and merging process is shown in Fig. 34(c). The TRIO software package is used on

wire sizing for the tree topology [39, 44, 62]. We can see that the delay of the new

115

20mm

10mm

10mm

20mm

10mm

10mm 10mm

20mm

40mm
(1848ps)

(1952ps)

(2688ps)

(2792ps)

(2700ps) (2584ps)

(2792ps) edge K

(a) Original Non-tree Topol-
ogy

7.5mm
2.5mm

(1848ps)(1952ps)

(2688ps)

(2792ps)

(2700ps)
(2584ps)

(2792ps) (2701.5ps)
(2701.5ps)

(b) New Tree Topology

(1176.42ps)
(1280.42ps)

(1656.17ps)

(1760.17ps)

(1739.88ps)

(1695.60ps)

(1760.17ps)

4 3 3

2

4

3

2

(c) Non-tree Topology after wire

sizing

Fig. 34. Example of our algorithm applied to a non-tree topology. The white node is

source, black nodes are sinks, and grey nodes are new sink nodes generated

from splitting an edge.

116

circuit is 37% less than original circuit.

Though generally several iterations may be needed to satisfy the design objective,

Theorem III.7 to III.10 prove that for certain topologies and objectives, the merging

does not change the solution quality, which means one iteration may be enough.

Theorem III.7. After tree decomposition and wire sizing, if the delays of every pair

of merging points are equal, then after merging the delay at every node remains un-

changed.

Proof. The proof is similar to the analysis in [61, 60], in which it is proved that the

addition of a zero resistor between two nodes with same voltage does not change the

voltages of all circuit nodes.

Theorem III.7 implies that after tree decomposition, if the tree-targeted wire

sizing algorithms can generate a solution, which satisfies the design constraints (delay

or area) and at the same time guarantees zero skew between every pair of merging

points, then the solution after merging also satisfies the design constraints. One

application of Theorem III.7 is to use tree-targeted zero skew wire sizing algorithm

to achieve a zero skew solution for clock network built via the tree+link method by

Rajaram et al [4] under delay or area constraints. The main procedure of the tree+link

method in [4] is as follows. First, an initial zero skew clock tree is constructed, and

the links between sinks are identified. Then link capacitors are added to the tree

and tree is tuned to get zero skew. Finally link resistors is added back and it can

be proved the delay of every point does not change and new network still has zero

skew. The method is mainly to reduce the clock skew under process variation. For

tree-targeted zero skew wire sizing problems, some algorithms, such as [49, 48], can

size the wire of a given zero skew clock tree under delay or area constraints while

keeping zero skew after sizing.

117

Theorem III.8. For clock networks built by the tree+link method in [4], if after tree

decomposition the tree-targeted zero skew wire sizing algorithm generates a sized tree

satisfying the delay or area constraints, then after merging the new network also has

zero skew and satisfies the delay or area constraints.

Proof. Since every sink of the clock network built by the tree+link method in [4]

has the same delay, from Lemma III.2, by edge cutting at the middle of each link

edge, the network can be easily decomposed to a new tree and two new nodes are

generated at the middle of each link. Then for each sink in the original clock network

to which a link is connected, the sink capacitance is increased by half of the link edge

capacitance and two link edges (generated from cutting the original link) are omitted.

Then the tree-targeted zero skew wire sizing algorithm is used to size the new tree

under delay or area constraints. Since the delay between every sink in the tree is still

same after wire sizing, every pair of two nodes created by edge cutting on a link still

have the same delay, which equals to the sink delay plus half of interconnect delay

of that link. From Theorem III.7, the merging process does not affect the delay of

every node. Therefore, the new network after merging has the same delay and area

with the network before merging.

When the merging points located in some specific positions, it is also possible to

optimize the circuit in one iteration.

Theorem III.9. Given Dtarget and the objective being D(vi) < Dtarget for every node

vi, for a single RC loop circuit, where the degree of every node is 2, if after tree

decomposition the wire sizing solution for the tree topology satisfies the objective, then

after merging the solution for the non-tree topology still satisfies the objective.

Proof. It is easy to see that the RC loop circuit can be decomposed into a tree

topology by only using node splitting or edge cutting, where two new points vj1

118

and vj2 are created (for node splitting, original node vj disappears). Let Dt(vi) and

Dm(vi) represent the Elmore delay of node vi in the tree topology before merging and

non-tree topology after merging, respectively. If the wire sizing solution for the tree

topology satisfies the constraint, which means Dt(vj1) < Dtarget and Dt(vj2) < Dtarget.

Then after merging, with the analysis of similar to [61], the delay at every node vi

changes to Dm(vi) = Dt(vi)− (Dt(vj1)−Dt(vj2)) · ri/(rj1 − rj2), where Dt(vi) is the

delay of every node on tree topology before merging, ri, rj1, and rj2 are equal to the

Elmore delay at i, j1 and j2 on tree topology, respectively, when Cj1 = 1, Cj2 = −1

and the other node capacitances are zero. In our case, rj1 − rj2 is the whole loop

resistance. The absolute value of ri is the resistance from source to i, and it is positive

(negative) when vi locates on the path from source to j1 (j2) in the tree topology.

Then it is not hard to prove that, no matter where vi locates, Dm(vi) < Dt(vj1) or

Dm(vi) < Dt(vj2). Therefore, Dm(vi) < Dtarget.

Theorem III.10. Given Dtarget and the objective being D(vi) < Dtarget for every

node vi, if a non-tree circuit can be decomposed into a tree topology by only using

node splitting and edge cutting, and each pair of new created points only locates in a

single loop, where all nodes have degree 2 except for the jointing point of this loop to

other parts of circuit, then if the wire sizing solution for this tree topology satisfies

the objective, after merging the solution for the non-tree topology still satisfies the

objective.

Proof. Since every pair of merging points is in a single loop, then with the analysis

similar to [61], merging of these two points does not affect the delay at the other part

of the circuit out of the loop. Also, similar to the proof of Theorem III.9, the delay of

the node inside of a single loop does not increase. Therefore, after merging the delay

of every node in the non-tree topology still satisfies the objective.

119

The whole algorithm Non-tree Topology Wire Sizing (NTWS) is as follows:

Algorithm NTWS
Input: Non-tree RC network G = (V, E).

Output: Wire sizing solution for the edges in E..

Decomposition;1

Compute the optimal wire sizing solution for the tree based on different2

objectives;

Compute the Elmore delay for all nodes in V ;3

if the merged non-tree topology does not meet the objective then4

go to 1 with the current width assignment;5

end6

return wire sizing solution;7

Theorem III.11. NTWS can find the wire sizing in time O(|V |3 + S(G′)) per iter-

ation, where S(G′) is the time for wire sizing of RC tree G′.

E. Experimental Result

All experimental results are run on a Sun SPARC workstations with 400 MHz and 2

GB memory. The running time of decomposition and merging for each circuit is less

than 0.1 second.

1. Tree Decomposition Accuracy

We first run SPICE to verify the accuracy of our tree decomposition method. We

tested the non-tree topologies r1, r2 and r3 generated by the algorithm in [4] with all

snaking ignored to create nonzero skew. The technology parameters are as follows:

120

driving resistance R(v1) = 100Ω, unit wire resistance r0 = 0.03Ω/µm, unit wire

capacitance c0 = 0.2fF/µm, sink capacitance C(si) ranges from 3.1fF to 8.4fF . The

maximum delay error between the original non-tree topology and the decomposed tree

under SPICE simulation for r1, r2 and r3 are 0.05%, 0.11%, and 0.08% respectively.

Fig. 35 also shows the delay for all sinks in r3 before and after tree decomposition.

It is clear that our tree decomposition method is very accurate even under SPICE

simulation.

0 200 400 600 800 1000
1.75

1.76

1.77

1.78

1.79

1.8

1.81

1.82

1.83
x 10

−9

index of sinks

D
el

ay
 fr

om
 S

P
IC

E

Non−Tree
Decomposition Tree

Fig. 35. SPICE delay for all sinks in original non-tree topology and decomposed tree

tree topology

2. Delay Reduction via Wire Sizing

The second set of experiments are done for the non-tree topologies 1, 2 and 4 used

in [3]. The technology parameters are the same as in [53], where driving resistance

121

R(v1) = 25Ω, unit resistance and capacitance are 0.008Ω/µm, and 0.06fF/µm, and

sink capacitance C(si) = 1000fF . We only run one iteration of NTWS and we use

the TRIO package for tree wire sizing. Simulation results are shown in Table XV.

In the table, total area is equal to the sum of link area and average wire width is

defined as the ratio between the area of wire sized region and the length of wire

sized region. Since the method in [3] only sizes the links, we only show the average

wire width in the link region, which is equal to the area of links divided by the

length of links. Smaller average wire width implies smaller coupling capacitance

effect. Other nets in [3] are not simulated because the length of link is longer than

Manhattan distance and the detail topology parameter was not published in the

paper. In Table XV, LS represents the non-uniform link sizing method in [3] and

the data is got from [3]. NEW represents our wire sizing method. The objective is

set to minimize the weighted delay (every sink has the same weight) under the area

constraints, which is set by limiting the width upper bound for each wire. Both LS

and NEW use Elmore delay model. SPICE shows the SPICE simulation results of

our wire sizing method to verify the fidelity of Elmore delay model. The maximal

delay, skew, average wire width and the total area shown in the table are normalized

to minimum sizing solution.

With Elmore delay model, compared with non-uniform link sizing method [3],

our method get 2% to 17% delay reduction, 14% to 30% area reduction, and 49% to

65% average wire width reduction. With SPICE simulation, our method achieve 15%

to 25% delay reduction, and 20% to 35% skew reduction compared with minimum

size solution. It also shows that there is strong correlation between SPICE results

and the Elmore delay results. Since the wire sizing assignments are not give in [3],

we can not show SPICE results for link sizing method in [3].

From Table XV, our algorithm can also get the skew reduction about 20% com-

122

pared with the minimum sizing solution. Note that the skew reduction compared

with the link sizing method is not obvious since the sizing algorithm that we use

does not target on skew reduction. Also, we did some experiments without area con-

straints and we can get up to 28% delay reduction with 15% more area compared

with non-uniform link sizing method [3].

Table XV. Normalized maximum delay (MD), maximum skew (MS), average wire

width (AW) and total area (TA) results for 3 clock networks in [3]. LS

represents the network built by [3], NEW represents the network built by

our method, and SPICE represents SPICE simulation results of NEW .

Case Method MD MS AW TA

LS [3] 0.878 0.724 3.017 1.807

1 NEW 0.731 0.647 1.034 1.547

SPICE 0.745 0.641 1.034 1.547

LS [3] 0.856 0.653 3.500 1.789

2 NEW 0.834 0.857 1.472 1.268

SPICE 0.847 0.798 1.472 1.268

LS [3] 0.768 0.639 3.825 2.076

4 NEW 0.719 0.665 1.932 1.719

SPICE 0.750 0.705 1.932 1.719

3. Zero Skew via Wire Sizing for Clock Network

In this set of experiments, we use ClockTune package [49] to construct the original

clock tree r1, r2, r3 and r4. Then we generate the non-tree zero skew clock network by

adding links with the minimum weight matching based selection in [4]. The number

of links added for r1, r2 and r3 and r4 are 13, 4, and 27, and 9, respectively. After tree

123

decomposition, we use ClockTune to size the wires with 256 sampling points and get

zero skew solution by choosing min-delay embedding. The new network after merging

still has the zero skew in terms of Elmore delay at nominal case.

It is stated in [48] that the wire sizing can also help to improve the skew vari-

ability under variations for tree structure. We perform the following experiments to

test the wire sizing effect on skew variability for non-tree networks. The variation

factors considered in the experiments include the clock driver gate length, the width

of each wire segment in the network and each sink load capacitance. Following [4],

each variable has ±15% variation following a normal distribution. Note that in this

experiment we are using 0 correlation model for variation simulation, which assumes

the width of each wire segment is an independent variable. In real applications, if two

wires are on same layers they may be highly correlated and if they are closer, they

are even more correlated. Even though our model is an extreme case, this assump-

tion tends to give the worst case bound for skew variation. Also, we believe that the

effectiveness of our method is still valid under the other variation models.

In the experiments, the skew variations, total wire capacitances are compared

among clock trees, clock network including links, sized clock network. For each net-

work, a Monte Carlo SPICE simulation of 500 trials is performed to obtain the maxi-

mum skew variation (MSV) and the standard deviation (SD) of skew variations. The

size of benchmark circuits, nominal delay, maximum skew variations and total wire

capacitance of original clock tree, tree+link [4] and our method are given in Table

XVI. Compared with method in [4], our method results in 16% to 48% delay re-

duction, 54% to 66% maximum skew variation reduction and 57% to 65% standard

deviation reduction with 15%-27% more wire capacitances. Compared with the leave

leaf level meshes results reported in [4], our results even have much less total wire

capacitances with better skew and standard deviation reduction.

124

Table XVI. Nominal delay (ND), maximum skew variation (MSV), standard deviation

(SD) and total wire capacitances (WC) for tree, tree+link [4] and clock

network built by our method (New).

Case Method ND (ns) MSV (ns) SD (ns) WC (pF)

Tree 1.774 0.346 0.068 30.72

r1 Link [4] 1.804 0.218 0.042 33.02

New 1.518 0.099 0.018 42.10

Tree 4.299 1.029 0.167 61.14

r2 Link [4] 4.304 0.481 0.085 61.60

New 2.960 0.205 0.030 76.14

Tree 6.165 1.422 0.263 79.22

r3 Link [4] 6.477 1.146 0.187 86.69

New 4.125 0.391 0.069 104.34

Tree 16.200 4.472 0.789 161.35

r4 Link [4] 16.339 2.034 0.447 162.62

New 8.424 0.769 0.169 187.14

125

CHAPTER IV

CONCLUSIONS AND FUTURE WORK

We present several efficient algorithms for buffer insertion and wire sizing problems,

which are two essential interconnect optimization techniques. For max-slack buffer

insertion problem, three optimal algorithms for basic Van Ginneken’s algorithm, large

buffer libraries, and nets with small sinks have been proposed. The algorithms are

so efficient that large industrial nets can be optimized in few seconds. For min-cost

buffer insertion problem, we first prove that it is NP-complete. Then we propose

speedup techniques to accelerate the min-cost buffer insertion algorithm even for

nets of medium or small size. Extensive experiments on industrial designs show

that dramatically speedup is achieved through these techniques. For the wire sizing

problem, we present a new methodology to size the wires in circuits with non-tree

topology. The main idea is to decompose the non-tree topology to a tree topology and

then get the optimal size solution for the tree. By using edge cutting, node splitting

and edge splitting, we can transform any non-tree topology circuit to a new tree

circuit while keeping the Elmore delay at all nodes in the original non-tree topology

unchanged. This approach offer a new way to study the optimization problems of non-

tree topologies since well-developed optimization algorithms used on tree topologies

can be applied.

Though several different algorithms have been proposed, they are inside con-

nected and one algorithm is generally motivated from the technique originally pro-

posed for the other algorithm. For example, the O(mn) algorithm is motivated from

the convex pruning proposed in O(bn2) algorithm and the data structure idea from

O(n log2 n) algorithm. Our new algorithms not only speed up the classical algorithms,

also explore the instinct of the problem itself and find the implicit property, such as

126

the candidates that generate new buffered candidates must lie on the convex hull of

(Q, C). Therefore, many techniques proposed in this work can be used to more appli-

cations. For example, predictive pruning and convex pruning proposed for max-slack

buffer insertion can be used for min-cost problem also, and they have potential to be

used on some other buffer insertion problem, such as tree construction and high order

delay models.

Following this work, one future direction could be extend the fast buffer insertion

algorithm to buffered tree construction. All the algorithms presented in this work ares

based on static topologies. In a popular two step approach, a good timing-driven tree,

such as C-tree [63], is first constructed followed by buffer insertion. This process is

repeated until the timing is achieved. This method is generally faster than performing

tree construction and buffer insertion simultaneously, but the performance may be

degraded. Our algorithms strongly speed up the two step methodology to let designer

explore more potential trees. However, it is worthwhile to study the fast algorithms

for simultaneous tree construction and buffer insertion to get both better running

time and performance. Some of techniques proposed in this work have potential to

be applied, such as predictive pruning, convex pruning and simple list data structure

used in Section E. Also, one could consider buffer insertion and placement together.

It may happen that after the placement, the part of circuits need buffers are too

congested and only few buffers or even no buffers can be inserted, and in turn the

timing is very bad. Such scenario could be alleviated by leaving buffer spaces at the

placement stages. There are some works on this topic but still no complete solutions

yet.

In stead of delay optimization, buffer insertion can also fix slew violation (electric

violation), and in general, designers always first fix electric violation before any timing

optimization. Fast algorithms for slew based buffer insertion is also very essential and

127

we are working on this problem. Other extensions also include leakage power-aware

buffer insertion, buffer insertion considering multiple Vdds and Vvths. Such problems

are very important in the nano-meter era as the leakage power becomes dominant

over the dynamic power.

In the nano-meter era, many variation effects, such as intra-die and inter-die

process variations, power/ground noise, and temperature variations, start to manifest

strongly. To address this problem, one way to address this issue is to study the

statistical algorithms and methodologies instead of traditional deterministic methods.

Recently, many traditional problems have been re-visited to study the statistical

approaches. It is interesting to study the buffer insertion algorithms in the statistical

environment, which may be applied in the noise reduction or the optimization with

process variation or unpredictable design information (some early work has been

shown in [64]). The work of our wire sizing approach, which has been shown effective

to control the skew variations, will also be explored further to directly target on

variation reduction for clock network. In such case, the decomposition of tree may

not need to keep the same Elmore delay at every node and more efficient algorithms

may exist. Combined with clock routing and buffer insertion, a new clock network

with low power and variation control will be studied.

128

REFERENCES

[1] J. Lillis, C. K. Cheng, and T.-T. Y. Lin, “Optimal wire sizing and buffer insertion

for low power and a generalized delay model,” IEEE Journal of Solid-State

Circuits, vol. 31, no. 3, pp. 437–447, March 1996.

[2] W. Shi, Z. Li, and C. J. Alpert, “Complexity analysis and speedup techniques for

optimal buffer insertion with minimum cost,” in Proceedings of the Conference

on Asia South Pacific Design Automation, Yokohama, Japan, January 2004, pp.

609–614, IEEE Press.

[3] T. Xue and E. S. Kuh, “Post routing performance optimization via multi-link

insertion and non-uniform wiresizing,” in Proceedings of the International Con-

ference on Computer-Aided Design, San Jose, California, November 1995, pp.

575–580, IEEE Computer Society Press.

[4] A. Rajaram, J. Hu, and R. Mahapatra, “Reducing clock skew variability via

cross links,” in Proceedings of the 41st Conference on Design Automation, San

Diego, California, June 2004, pp. 18–23, ACM Press.

[5] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick, “Repeater scaling

and its impact on CAD,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 23, no. 4, pp. 451–463, April 2004.

[6] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance optimization of

VLSI interconnect layout,” The VLSI Journal of Integration, vol. 21, pp. 1–94,

November 1996.

[7] J. Cong, “An interconnect-centric design flow for nanometer technologies,” Pro-

ceedings of IEEE, vol. 89, pp. 505–528, April 2001.

129

[8] J. Cong and Z. Pan, “Interconnect performance estimation models for design

planning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 20, no. 6, pp. 739–752, June 2001.

[9] P. J. Osler, “Placement driven synthesis case studies on two sets of two chips:

Hierarchical and Flat,” in Proceedings of International Symposium on Physical

Design, Phoenix, Arizona, April 2004, pp. 190–197, ACM Press.

[10] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree network for

minimal Elmore delay,” in Proceedings of International Symposium on Circuits

and Systems, New Orleans, Louisiana, May 1990, pp. 865–868.

[11] W. C. Elmore, “The transient response of damped linear networks with partic-

ular regard to wideband amplifiers,” Journal of Applied Physics, vol. 19, no. 1,

pp. 55–63, January 1948.

[12] C. J. Alpert and A. Devgan, “Wire segmenting for improved buffer insertion,” in

Proceedings of the 34th Conference on Design Automation, Anaheim, California,

June 1997, pp. 588–593, ACM Press.

[13] C. J. Alpert, R. G. Gandham, J. L. Neves, and S. T. Quay, “Buffer library

selection,” in Proceedings of International Conference on Computer Design,

Austin, Texas, September 2000, pp. 221–226.

[14] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion for noise and delay

optimization,” in Proceedings of the 35th Conference on Design Automation,

San Francisco, California, June 1998, pp. 362–367, ACM Press.

[15] C. J. Alpert, A. Devgan, and S. T. Quay, “Buffer insertion with accurate gate

and interconnect delay computation,” in Proceedings of the 36th Conference

130

on Design Automation, New Orleans, Louisiana, June 1999, pp. 479–484, ACM

Press.

[16] P. Cocchini, “Concurrent flip-flop and repeater insertion for high performance in-

tegrated circuits,” in Proceedings of the International Conference on Computer-

Aided Design, San Jose, California, November 2002, pp. 268–273, ACM Press.

[17] C. L. Berman, J. L. Carter, and K. F. Day, “The fanout problem: From theory

to practice,” in Proceedings of the Decennial Caltech Conference on VLSI on

Advanced Research in VLSI, Cambridge, Massachusetts, June 1989, pp. 69–99,

MIT Press.

[18] K. J. Singh and A. Sangiovanni-Vincentelli, “A heuristic algorithm for the fanout

problem,” in Proceedings of the 27th Conference on Design Automation, Or-

lando, Florida, June 1990, pp. 357–360, ACM Press.

[19] S. Lin and M. Marek-Sadowska, “A fast and efficient algorithm for determining

fanout tree in large networks,” in Proceedings of the Conference on European

Design Automation, Amsterdam, The Netherlands, Febrary 1991, pp. 539–544,

IEEE Computer Society Press.

[20] T. Okamoto and J. Cong, “Buffered Steiner tree construction with wire sizing

for interconnect layout optimization,” in Proceedings of the International Con-

ference on Computer-Aided Design, San Jose, California, November 1996, pp.

44–49, IEEE Computer Society Press.

[21] M. Kang, W. W.-M. Dai, T. Dillinger, and D. Lapotin, “Delay bounded buffered

tree construction for timing driven floorplanning,” in Proceedings of the Inter-

national Conference on Computer-Aided Design, San Jose, California, November

1997, pp. 707–712, IEEE Computer Society Press.

131

[22] H. Zhou, D. F. Wong, I. M. Liu, and A. Aziz, “Simultaneous routing and buffer

insertion with restrictions on buffer locations,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 19, no. 7, pp. 819–824,

July 2000.

[23] S. Hassoun, C. J. Alpert, and M. Thiagarajan, “Optimal buffered routing path

constructions for single and multiple clock domain systems,” in Proceedings of

the International Conference on Computer-Aided Design, San Jose, California,

November 2002, pp. 247–253, ACM Press.

[24] M. Hrkic and J. Lillis, “S-tree: a technique for buffered routing tree synthesis,”

in Proceedings of the 39th Conference on Design Automation, New Orleans,

Louisiana, June 2002, pp. 578–583, ACM Press.

[25] M. Hrkic and J. Lillis, “Buffer tree synthesis with consideration of temporal

locality, sink polarity requirements, solution cost and blockages,” in Proceedings

of the International Symposium on Physical Design, San Diego, California, April

2002, pp. 98–103, ACM Press.

[26] M. Hrkic, “Tree optimization and synthesis techniques with application in au-

tomated design of integrated circuits,” Ph.D. dissertation, University of Illinois

at Chicago, Chicago, Illinois, 2004.

[27] S. Dhar and M. A. Franklin, “Optimum buffer circuits for driving long uniform

lines,” IEEE Journal of Solid State Circuits, vol. 26, no. 1, pp. 32–40, January

1991.

[28] C. C. N. Chu and D. F. Wong, “A quadratic programming approach to simulta-

neous buffer insertion/sizing and wire sizing,” IEEE Transactions on Computer-

132

Aided Design of Integrated Circuits and Systems, vol. 18, no. 6, pp. 787–798,

June 1999.

[29] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithm, MIT Press, Cambridge, Massachusetts, 2nd edition, 2001.

[30] M. R. Brown and R. E. Tarjan, “A fast merging algorithm,” Journal of ACM,

vol. 26, no. 2, pp. 211–226, April 1979.

[31] R. L. Graham, “An efficient algorithm for determining the convex hull of a finite

planar set,” Information Processing Letters, vol. 1, no. 4, pp. 132–133, June

1972.

[32] W. Shi and Z. Li, “An O(n log n) time algorithm for optimal buffer insertion,” in

Proceedings of the 40th Conference on Design Automation, Anaheim, California,

June 2003, pp. 580–585, ACM Press.

[33] W. Shi and Z. Li, “A fast algorithm for optimal buffer insertion,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24,

no. 6, pp. 879–891, June 2005.

[34] R. Chen and H. Zhou, “A flexible data structure for efficient buffer insertion,”

in Proceedings of the International Conference on Computer Design, San Jose,

California, October 2004, pp. 216–221, IEEE Computer Society Press.

[35] Z. Li and W. Shi, “An O(bn2) time algorithm for optimal buffer insertion with

b buffer types,” in Proceedings of the Conference on Design, Automation and

Test in Europe, Munich, Germany, March 2005, pp. 1324–1329, IEEE Computer

Society Press.

133

[36] Z. Li, C. N. Sze, C. J. Alpert, J. Hu, and W. Shi, “Making fast buffer insertion

even faster via approximation techniques,” in Proceedings of the Conference on

Asia South Pacific Design Automation. January 2005, pp. 13–18, IEEE Press.

[37] M. R. Garey and D. S. Johnson, Computers & Intractability: A Guide To The

Theory Of NP-Completeness, W. H. Freeman & Co., New York, New York,

1979.

[38] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press,

Cambridge, England, 1999.

[39] J. Cong and K.-S. Leung, “Optimal wiresizing under Elmore delay model,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

14, no. 3, pp. 321–336, March 1995.

[40] S. S. Sapatnekar, “RC interconnect optimization under the Elmore delay model,”

in Proceedings of the Conference on Design Automation, San Diego, California,

June 1994, pp. 387–391, ACM Press.

[41] N. Menezes, S. Pullela, F. Dartu, and L. T. Pillage, “RC interconnect synthesis

— a moment fitting approach,” in Proceedings of the International Conference

on Computer-Aided Design. November 1994, pp. 418–425, IEEE Computer So-

ciety Press.

[42] C.-P. Chen, H. Zhou, and D. F. Wong, “Optimal non-uniform wire-sizing under

the Elmore delay model,” in Proceedings of the International Conference on

Computer-Aided Design, San Jose, California, November 1996, pp. 38–43, IEEE

Computer Society Press.

[43] C.-P. Chen, C. C. N. Chu, and D. F. Wong, “Fast and exact simultaneous gate

134

and wire sizing by lagrangian relaxation,” in Proceedings of the International

Conference on Computer-Aided Design, San Jose, California, November 1998,

pp. 617–624, ACM Press.

[44] J. Cong and L. He, “Optimal wiresizing for interconnects with multiple sources,”

ACM Transactions on Design Automation of Electronic Systems, vol. 1, no. 4,

pp. 478–511, October 1996.

[45] J. Cong and L. He, “An efficient technique for device and interconnect optimiza-

tion in deep submicron designs,” in Proceedings of the International Symposium

on Physical Design, Monterey, California, April 1998, pp. 45–51, ACM Press.

[46] C. C. N. Chu and D. F. Wong, “Closed form solutions to simultaneous buffer

insertion/sizing and wire sizing,” ACM Transactions on Design Automation of

Electronic Systems, vol. 6, no. 3, pp. 343–371, July 2001.

[47] C.-P. Chen, Y.-P. Chen, and D. F. Wong, “Optimal wire-sizing formula under the

Elmore delay model,” in Proceedings of the Conference on Design Automation,

Las Vegas, Nevada, June 1996, pp. 487–490, ACM Press.

[48] S. Pullela, N. Menezes, and L. T. Pileggi, “Post-processing of clock trees via

wiresizing and buffering for robust design,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 15, no. 6, pp. 691–701,

June 1996.

[49] J.-L. Tsai, T.-H. Chen, and C. C.-P. Chen, “ε-Optimal minimum-delay/area

zero-skew clock tree wire-sizing in pseudo-polynomial time,” in Proceedings of

the International Symposium on Physical Design, Monterey, California, April

2003, pp. 166–173, ACM Press.

135

[50] J. P. Fishburn and A. E. Dunlop, “TILOS: a posynomial programming ap-

proach to transistor sizing,” in Proceedings of the International Conference on

Computer-Aided Design, November 1985, pp. 326–328.

[51] C. C. N. Chu and D. F. Wong, “Greedy wire-sizing is linear time,” in Proceed-

ings of the International Symposium on Physical Design, Monterey, California,

April 1998, pp. 39–44, ACM Press.

[52] B. A. McCoy and G. Robins, “Non-tree routing,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 6, pp.

780–784, June 1995.

[53] T. Xue and E. S. Kuh, “Post routing performance optimization via tapered link

insertion and wiresizing,” in Proceedings of the Conference on European Design

Automation, Brighton, England, September 1995, pp. 74–79, IEEE Computer

Society Press.

[54] H. Su and S. S. Sapatnekar, “Hybrid structured clock network construction,”

in Proceedings of the International Conference on Computer-Aided Design, San

Jose, California, November 2001, pp. 333–336, IEEE Press.

[55] A. B. Kahng, B. Liu, and I. I. Mǎndoiu, “Non-tree routing for reliability and yield

improvement,” in Proceedings of the International Conference on Computer-

Aided Design, San Jose, California, Untied States, November 2002, pp. 260–266,

ACM Press.

[56] S. Lin and C. K. Wong, “Process-variation-tolerant clock skew minimization,”

in Proceedings of the International Conference on Computer-Aided Design, San

Jose, California, November 1994, pp. 284–288, IEEE Computer Society Press.

136

[57] L. Vandenberghe, S. Boyd, and A. El Gamal, “Optimal wire and transistor

sizing for circuits with non-tree topology,” in Proceedings of the International

Conference on Computer-Aided Design, San Jose, California, November 1997,

pp. 252–259, IEEE Computer Society Press.

[58] T.-M. Lin and C. A. Mead, “Signal delay in general RC networks,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 3, no. 4, pp. 331–349, October 1984.

[59] J. L. Wyatt Jr., “Signal delay in RC mesh networks,” IEEE Transactions on

Circuits and Systems, vol. 32, no. 5, pp. 507–510, May 1985.

[60] T. L. Pillage, R. A. Rohrer, and C. Visweswariah, Electronic Circuit & System

Simulation Methods, McGraw-Hill Inc., New York, 1995.

[61] P. K. Chan and K. Karplus, “Computing signal delay in general RC networks

by tree/link partitioning,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 9, no. 8, pp. 898–902, August 1990.

[62] J. Cong, L. He, C.-K. Koh, D. Z. Pan, and X. Yuan, “UCLA Tree-

Repeater-Interconnect-Optimization Package (TRIO),” http://cadlab.cs.ucla.

edu/software/ release/trio/htdocs, 1999.

[63] C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, A. B. Kahng, J. Lillis, B. Liu, S. T.

Quay, S. S. Sapatnekar, and A. J. Sullivan, “Buffered Steiner trees for difficult

instances,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, pp. 3–14, January 2002.

[64] V. Khandelwal, A. Davoodi, A. Nanavati, and A. Srivastava, “A probabilistic

approach to buffer insertion,” in Proceedings of the International Conference

137

on Computer-Aided Design, San Jose, California, November 2003, pp. 560–567,

IEEE Computer Society Press.

138

VITA

Zhuo Li received the B.E. and M.S. degrees in Electrical Engineering from Xi’an

JiaoTong University, China, in 1998 and 2001 respectively.

In summer 2004, he worked at the IBM Austin Research Laboratory. His research

interests lie in the general area of VLSI CAD with an emphasis on interconnect

optimization, routability prediction, clock network synthesis, timing analysis and

delay testing.

He received the Applied Materials Fellowship in 2002. He was a substitute mem-

ber of Xi’an JiaoTong University Debating Team, who won the championship of the

Chinese National College Debating Contest and the CCTV Invitational Debating

Contest(CCTV is the official national TV station in China) in 1998. He won the

championship of Xi’an JiaoTong University Speech Contest in 1996.

The typist for this dissertation was Zhuo Li.

