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ABSTRACT

Efficient Numerical Methods for Capacitance Extraction

Based on Boundary Element Method. (December 2005)

Shu Yan, B.S., Tsinghua University;

M.S., Tsinghua University

Co–Chairs of Advisory Committee: Dr. Weiping Shi
Dr. Vivek Sarin

Fast and accurate solvers for capacitance extraction are needed by the VLSI in-

dustry in order to achieve good design quality in feasible time. With the development

of technology, this demand is increasing dramatically. Three-dimensional capacitance

extraction algorithms are desired due to their high accuracy. However, the present

3D algorithms are slow and thus their application is limited. In this dissertation, we

present several novel techniques to significantly speed up capacitance extraction algo-

rithms based on boundary element methods (BEM) and to compute the capacitance

extraction in the presence of floating dummy conductors.

We propose the PHiCap algorithm, which is based on a hierarchical refinement

algorithm and the wavelet transform. Unlike traditional algorithms which result in

dense linear systems, PHiCap converts the coefficient matrix in capacitance extraction

problems to a sparse linear system. PHiCap solves the sparse linear system iteratively,

with much faster convergence, using an efficient preconditioning technique. We also

propose a variant of PHiCap in which the capacitances are solved for directly from a

very small linear system. This small system is derived from the original large linear

system by reordering the wavelet basis functions and computing an approximate LU

factorization. We named the algorithm RedCap. To our knowledge, RedCap is the

first capacitance extraction algorithm based on BEM that uses a direct method to
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solve a reduced linear system.

In the presence of floating dummy conductors, the equivalent capacitances among

regular conductors are required. For floating dummy conductors, the potential is un-

known and the total charge is zero. We embed these requirements into the extraction

linear system. Thus, the equivalent capacitance matrix is solved directly. The number

of system solves needed is equal to the number of regular conductors.

Based on a sensitivity analysis, we propose the selective coefficient enhancement

method for increasing the accuracy of selected coupling or self-capacitances with

only a small increase in the overall computation time. This method is desirable

for applications, such as crosstalk and signal integrity analysis, where the coupling

capacitances between some conductors needs high accuracy. We also propose the

variable order multipole method which enhances the overall accuracy without raising

the overall multipole expansion order. Finally, we apply the multigrid method to

capacitance extraction to solve the linear system faster.

We present experimental results to show that the techniques are significantly

more efficient in comparison to existing techniques.
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CHAPTER I

INTRODUCTION

Many aspects of VLSI design, such as interconnect delay estimation and signal in-

tegrity analysis require understanding the electromagnetic properties of complex struc-

tures [1]. Consequently, accurate parasitic extraction is critical to the analysis and

design of VLSI chips, packaging and MEMS.

Capacitance is one of the important parasitics. Most existing capacitance ex-

traction methods fall into two categories: library look-up, where the layout is divided

into sections and matched against a pre-characterized library to derive the parasitic

value, and field solver, where the electromagnetic field is computed to derive the

capacitance. Although the library methods are faster, they are applicable only to

regular structures such as interconnects on ICs. As the need for modeling large and

complex package structures increases, the demand for fast and accurate 3D capaci-

tance extraction tools is increasing.

The capacitance of an m-conductor geometry is summarized by an m × m ca-

pacitance matrix C. To determine the j-th column of the capacitance matrix, we

compute the surface charges produced on each conductor by raising conductor j to

unit potential while grounding the other conductors. Then Cij is numerically equal

to the charge on conductor i. This procedure is repeated m times to compute all

columns of C.

The journal model is IEEE Transactions on Automatic Control.
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A. Boundary element method

The Boundary Element Method (BEM) [2] solves field problems by solving an equiva-

lent source problem. In the case of electric fields it solves for equivalent charge, while

in the case of magnetic fields it solves for equivalent currents. BEM uses an integral

formulation of Maxwell’s Equations, which allow for highly accurate field calculations.

BEM is the basis of many capacitance extraction algorithms [3, 4, 5, 6, 7]. Our work

is based on BEM as well.

For conductors in uniform media, each of the m potential problems can be solved

using an equivalent free-space formulation where the conductor-dielectric interface is

replaced by a layer of unknown charge density σ. The charge layer satisfies the integral

equation

ψ(x) =
∫

surfaces
σ(x′)

1

4πε0‖x− x′‖dα
′, x ∈ surfaces, (1.1)

where ψ(x) is the known conductor surface potential, dα′ is the incremental conductor

surface area, x′ ∈ dα′, and ‖x − x′‖ is the Euclidean distance between x and x′. A

Galerkin scheme is often used to solve (1.1) numerically for σ. In this approach, the

conductor surfaces are divided into n small panels, A1, . . . , An, and a dense linear

system is constructed:

Pccqc = vc, (1.2)

where qc ∈ �n is the unknown vector of conductor panel charges, vc ∈ �n is the vector

of known conductor panel potentials, and Pcc ∈ �n×n is the potential coefficient

matrix. Each entry of Pcc is defined as

pij =
1

ai

1

aj

∫
Ai

∫
Aj

1

4πε0‖xi − xj‖ dαjdαi (1.3)

for panels Ai and Aj , where ai and aj are panel areas.

To solve the problem with multiple dielectrics, we apply the equivalent charge



3

approach [8, 9], which solves the equivalent field problem in free-space with the same

boundary condition as for the original problem in multiple dielectrics. It uses the free-

space Green’s function in conjunction with total charge on the conductor surfaces

and polarization charge on the dielectric-dielectric interfaces. Thus, the potential

produced is given by

ψ(x) =
∫

Sc

σc(x
′)

1

4πε0‖x− x′‖dα
′ +

∫
Sd

σd(x
′)

1

4πε0‖x− x′‖dα
′, (1.4)

where σc and σd are the charge densities on the conductor surfaces Sc and the

dielectric-dielectric interfaces Sd, respectively. The interface condition

εa
∂ψa(x)

∂na
− εb∂ψb(x)

∂na
= 0 (1.5)

should be satisfied at any point x on the dielectric-dielectric interface. Here, as shown

in Fig. 1, εa and εb are the permittivities of the two adjacent regions a and b, na is

the normal to the dielectric-dielectric interface at x pointing to dielectric a, and ψa

and ψb are the potentials at x in the dielectrics a and b, respectively.

aε

bε
an

Fig. 1. Notations of the dielectric-dielectric interface.

Using the same numerical approach as that for the uniform case, we transform

(1.4) and (1.5) into the linear system

⎡
⎢⎢⎣ Pcc Pcd

Edc Edd

⎤
⎥⎥⎦
⎡
⎢⎢⎣ qc

qd

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ vc

0

⎤
⎥⎥⎦ , (1.6)

where qc and qd are the vectors of charges on the conductor panels and dielectric-
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dielectric interface panels, respectively, and vc is the vector of potential on conductor

panels. The entries of Pcc and Pcd are defined in (1.3). The entries of Edc and

off-diagonal entries of Edd are defined as

eij = (εa − εb) ∂

∂na

1

ai

1

aj

∫
Ai

∫
Aj

1

4πε0‖xi − xj‖ dαjdαi, (1.7)

and the diagonal entries of Edd are defined as

eii = (εa + εb)
1

2aiε0
.

BEM applied to the capacitance extraction problem gives rise to dense linear

systems (1.2) and (1.6). We reformulate the two linear systems as follows.

Pq = v. (1.8)

The matrix P is symmetric for uniform dielectric and unsymmetric for multiple di-

electrics.

According to the above discussion, the BEM involves the following three steps.

1. Panel discretization

2. Calculating P

3. Solving Pq = v

The three steps influence the speed and accuracy of the extraction algorithms.

Another important family of field solvers uses Finite Element Method (FEM) and

Finite Difference Method (FDM) to solve differential formulations. Those methods

discretize the space into small regions and convert the problem into sparse linear

systems. However, since the whole space are involved, the dimension of the linear

system is much larger than the linear system from BEM.
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B. Previous work

The dense linear system (1.8) is often solved by iterative techniques such as GMRES

(Generalized Minimal Residual) and CG (Conjugate Gradient) methods. Each iter-

ation requires the product of the dense coefficient matrix of order n with a vector,

which takes O(n2) time and O(n2) memory.

Great efforts have been made to accelerate computation and reduce memory

requirements of the matrix-vector product. By exploiting the fast decaying nature

of the Green’s function, the matrix-vector products can be computed efficiently. For

example, based on the fast multipole approximation [10], FastCap [4] reduces the

complexity to O(n). Based on the hierarchical refinement, the HiCap algorithm [3]

also reduces the complexity to O(n). With the regular gridding of the space and

Fast Fourier Transformation, the pre-corrected FFT method [6] solves the problem

in O(n logn) time. Based on singular value decomposition, the IES3 method [5]

approximate the linear system using its dominant singular values and corresponding

vectors. The complexity is reduced to O(n logn). However, solving the linear system

is still a formidable task because of the slow rate of convergence of the iterative solver,

especially when n is very large.

Unlike the methods mentioned above that solve a dense system, there are other

methods that solve a sparse system. In [11], the BEM in (1.2) was represented and

approximated in a wavelet basis. In [12] and [13], two different wavelet bases are

proposed. In each case, the linear system is constructed directly and sparsified us-

ing thresholding techniques. Iterative methods were used to solve the sparse linear

system. Compared with the BEMs without any acceleration, these wavelet-based

methods are significantly faster. However, a comparison of their efficiency with that

of other extraction methods with acceleration is not reported. In addition, the nu-
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merical quadrature involved in these methods is complicate and needs more analysis

as pointed out by the author [12].

In addition to the methods using iterative solvers, there are attempts to solve the

linear system of BEM without iterations. In [14] and [15], sparse representations of the

linear systems are constructed using low rank approximation of the off diagonal blocks.

These sparse representations are solved by LU factorization. The time complexity of

those algorithms is O(nγ), where γ ranges from 2.20 to 2.89, which is slower than

most iterative methods.

C. Our motivation

In this dissertation, we try to find faster capacitance extraction algorithms while

maintaining or improving the accuracy.

First, to avoid the slow convergence of solving the dense linear system, we

propose the PHiCap method, a Preconditioned Hierarchical refinement method for

Capacitance extraction, which transforms the dense linear system of HiCap into a

sparse linear system in wavelet basis. The sparse linear system is solved with faster

convergence using efficient preconditioners based on incomplete LU or Cholesky fac-

torizations. Unlike the wavelet approximation methods in [11, 12, 13], PHiCap first

approximates the problem using the multipole approach, and then applies an accurate

wavelet transformation. Therefore, PHiCap combines both the fast multipole and the

wavelet method.

We exploit the advantage of sparsification further by Reducing the sparse lin-

ear system of PHiCap into a small sub-system, which is solved for Capacitance by

Gaussian elimination (RedCap). RedCap does not require any iterative method, and

avoids solving the original large system. The time complexity of RedCap depends on
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the sparse transformation, which takes O(n logn) time if we use the transformation in

PHiCap. Compared to other iteration-free algorithms such as [14] and [15], RedCap

is more efficient in terms of complexity. To the best of our knowledge, RedCap is the

most efficient iteration-free method for capacitance extraction.

In the presence of floating dummy conductors, the equivalent capacitances among

regular conductors are required. For floating dummy conductors, the potential is un-

known and the total charge is zero. We embed these requirements into the extraction

linear system. Thus, the equivalent capacitance matrix is solved directly. The number

of system solves needed is equal to the number of regular conductors.

In the panel discretization step, approximation error is introduced due to the

assumption of uniform charge distribution on each panel. This is the dominant ap-

proximation error of BEM. Although fine discretization reduces error, it also results

in large linear systems and unacceptable computation time. We propose a multigrid-

like scheme to acquire a good initial solution based on coarse discretization. This

helps to preserve high accuracy while reducing the computation cost greatly.

When calculating P, approximation error is introduced due to the numerical

integration of (1.3) or (1.7) and truncation of multipole expansion. To reduce er-

ror without significant increase in computation time, we propose the variable order

multipole scheme and the selective coefficient enhancement scheme.

D. Organization of the dissertation

The rest of the dissertation will present our work on fast capacitance extraction.

Chapter II will introduce the HiCap [3] algorithm and the preconditioned iterative

solver, which form the basis of our work. The PHiCap algorithm [16], the RedCap

algorithm [17] will be explained in Chapter III and Chapter IV, respectively. In
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Chapter V, the fast extraction algorithm handling floating dummy conductors will be

introduced. The selective coefficient enhancement algorithm, variable order multipole

and multigrid methods will be described in the subsequent chapters. Finally, we

conclude our study in Chapter IX.

The major contributions of the dissertation include several novel algorithms that

improve the existing capacitance extraction methods in terms of running time and

accuracy.
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CHAPTER II

PRELIMINARIES

In this chapter, we introduce the two techniques used in the dissertation: the HiCap

algorithm [3] and the preconditioned iterative linear solver [19].

A. HiCap algorithm

The HiCap algorithm is a capacitance extraction algorithm based on adaptive hier-

archical refinement, which exploits the far field approximation of electrostatic field.

The field due to a cluster of charges at some distance can be approximated with a

single term. As a result, instead of O(n2) nonzero entries which denote the inter-

actions between all pairs of charges, the linear system from HiCap has O(n) block

entries. Consequently, the HiCap algorithm reduces the complexity of matrix-vector

product to O(n). Experimental results show that HiCap is significantly faster and

more memory efficient compared to FastCap [4] and QuickCap [7].

1. Potential matrix approximation

First, we introduce the hierarchical refinement used in HiCap. The following pro-

cedure Refine describes the recursive refinement procedure that subdivides a large

panel into a hierarchy of small panels, and builds a hierarchical representation of the

potential coefficient matrix.

Refine(Panel Ai, Panel Aj)

{

Pij = PotentialEstimate(Ai, Aj);

Ri = longest side of Ai;
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Rj = longest side of Aj;

if ((Pij*Ri < Peps) && (Pij*Rj < Peps))

RecordInteraction(Ai, Aj);

else if (Ri > Rj) {

Subdivide(Ai);

Refine(Ai.left, Aj);

Refine(Ai.right, Aj);

} else {

Subdivide(Aj);

Refine(Ai, Aj.left);

Refine(Ai, Aj.right);

}

}

Procedure PotentialEstimate returns an estimate of the potential coefficient

for two panels defined in (1.3) and(1.7). If the estimated coefficient is less than the

user provided error bound Peps (Pε), then the panels are allowed to interact at this

level. The recursion is terminated and the interaction is recorded between the two

panels by procedure RecordInteraction. However, if the estimate is greater than

Pε, then the estimate may not be accurate. In this case, the panel with the larger

area, say Ai, is to be subdivided into Ai.left and Ai.right. The procedure Refine

is called recursively. Procedure Subdivide subdivides a panel into two small panels.

The subdivision hierarchy is stored in a binary tree where each node has two pointers,

left and right, pointing to the two small panels.
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Since a panel may be refined against many other panels, the actual subdivision

of a panel may have occurred previously. When this happens, Subdivide uses the

same subdivision.
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Fig. 2. Partition conductor surfaces into panels.

Fig. 2 shows the refine process of two conductor surfaces. Given two conductor

surfaces A and H in (a), assume the estimated coefficient between A and H is greater

than the user provided error bound Pε, so A is subdivided into B ∪ C, and then H

is subdivided into I ∪ J in (b). Now assume the estimates between BJ,CI and CJ

are less than Pε, but estimate BI is greater than Pε. Then we record interactions

BJ,CI and CJ at this level, and further subdivide panels B and I. The final panels

are shown in (e). The self-potential coefficient Pii is computed at this time.

Fig. 3 shows the hierarchical data structure [18] produced by Refine, and asso-

ciated potential coefficients produced by RecordInteraction. The panels are stored

as nodes in the tree, and the coefficients are stored as links between the nodes. The

value of each coefficient is stored as a floating-point number associated with the link.
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Fig. 3. Hierarchical data structure and potential coefficients.

Each tree represents one conductor surface, each non-leaf node represents one panel

further subdivided, and each leaf node represents one panel not further subdivided.

The union of all the leaf nodes completely cover the surfaces of the conductors. Each

horizontal link represents one pair of potential coefficients defined in (1.3) and (1.7).

Each self-link represents one self-potential coefficient.

Fig. 4 shows the block matrix represented by the links of Fig. 3. Each block

entry represents one interaction between panels. Note that there are total 8 panels

for the two conductors, so an explicit representation of the coefficient matrix would

require 64 entries. However, the block matrix has only 40 entries. Furthermore, if

we use uniform grid discretization, then there would be a total of 16 panels, and 256

entries.

It has been shown that under a very general condition, the matrix of the HiCap

algorithm contains O(n) interactions [3]. The accuracy is controllable via Pε.
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Fig. 4. Potential coefficient matrix with block entries.

2. Matrix-vector multiplication

Matrix-vector multiplication is required by the iterative solver. Given the potential

matrix approximated as explained in section 1, matrix-vector multiplication includes

the three steps.

The first step computes the charge of all panels in the tree. The charge of a

leaf panel Ai is given by Qi from q. The charge of an non-leaf panel is the sum of

the charge of its children panels. This calculation can be done in a single depth-first

traversal of the tree, propagating the charge upward. In other words, to compute the

charge for each panel, the charges of its children panels are computed first, and then

the charge of the panel equals the sum of the charge of its children panels. The time
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to compute the charge on all panels is linear in the number of panels in the tree. The

following procedure AddCharge describes this step.

AddCharge(Panel Ai)

{

if (Ai is leaf)

Ai.charge = Qi;

else {

AddCharge(Ai.left);

AddCharge(Ai.right);

Ai.charge = Ai.left->charge + Ai.right->charge;

}

}

The second step computes the potential on each panel Ai due to its interacting

panels. This can be computed by adding the product of potential coefficient Pij with

charge at Aj, for every Aj that has interaction with Ai. The time to compute the

charge on all nodes is linear in terms of the number of links in the tree. The following

procedure CollectPotential describes this step.

CollectPotential(Panel Ai)

{

for all Aj such that AiAj has interaction {

Ai.potential = Ai.potential + Aj.charge*Pij;

if (Ai is not leaf) {

CollectPotential(Ai.left);

CollectPotential(Ai.right);

}
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}

}

The third step distributes the potential from the non-leaf nodes to the leaf nodes.

This is done by another depth first traversal of the tree that propagates potential down

to the leaf nodes. Each non-leaf node adds its accumulated potential to its children’s

potential, recursively. The time complexity of this step is linear in the number of

nodes in the tree. The following procedure DistributePotential describes this

step.

DistributePotential(Panel Ai)

{

if (Ai is not leaf) {

Ai.left->potential = Ai.left->potential + Ai.potential;

Ai.right->potential = Ai.right->potential + Ai.potential;

DistributePotential(Ai.left);

DistributePotential(Ai.right);

}

}

The total time for the matrix-vector product is linear in the number of nodes and

links. It is well known that for any binary tree with n leaves, there are exactly n− 1

non-leaf nodes. Therefore, the time is O(n), where n is the number of leaf panels.

3. Solving the linear system

The Generalized Minimum Residual (GMRES) method or the Conjugate Gradient

(CG) method can be used to solve the linear system. According to the section 2, the
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complexity of the matrix-vector multiplication is O(n), which is a major improvement

over the methods that do not use far field approximation. From the experiments in [3],

it is clear that HiCap is much more efficient than other methods. However, since the

linear system is dense even with the hierarchical refinement approximation, it is hard

to obtain effective preconditioners. Without preconditioning, the iterative solvers

converge slowly.

4. Summary

The HiCap algorithm approximates the far field effects by adaptively refining the

conductor surfaces. The linear system is dense with O(n) block entries. As a result,

the complexity of the matrix-vector multiplication at each iteration is reduced to

O(n). The rate of convergence is slow when the problem size is large. However, since

the linear system is dense, efficient preconditioners are hard to construct.

B. Preconditioned iterative solver

Iterative solvers are commonly used to solve the large-scale equations. The com-

putational cost of the iterative solvers is decided by both the cost of matrix-vector

multiplication and the number of iterations required for convergence [19].

As explained earlier in chapter I and the previous section, great efforts have been

made to reduce the complexity of the matrix-vector product. The capacitance ex-

traction algorithm such as FastCap [4], HiCap [3], pFFT [6] and IES3 [5] successfully

reduce the complexity of matrix-vector product from O(n2) to O(n logn) or O(n).

However, most of the algorithms do not apply efficient preconditioners to accelerate

the convergence of the iterative solver.

For the linear systems, especially those with poor condition number, a precon-
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ditioning matrix Q is desired to accelerate the convergence rate. We use (2.1) to

represent the general linear system

Ax = b. (2.1)

Consider the left-preconditioning system

QAx = Qb. (2.2)

Ideally, QA should be as close to the identity matrix as possible.

For the dense linear systems, it is hard to find a good preconditioner Q. However,

for the sparse linear systems, the incomplete Cholesky (for symmetric linear systems)

or LU (for unsymmetric linear systems) factors are very efficient preconditioners.

Let L̂ and Û be the incomplete triangular factors of A. Since L̂Û is close to

A, Û−1L̂−1 can be used a preconditioner. The corresponding preconditioned linear

system is

Û−1L̂−1Ax = Û−1L̂−1b. (2.3)

In this dissertation, we use the incomplete LU or incomplete Cholesky factoriza-

tion as preconditioners to solve the sparse linear system of PHiCap.
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CHAPTER III

PHICAP ALGORITHM

A. Introduction

In the previous chapter, we introduced the HiCap algorithm which is based on hierar-

chical refinement. The corresponding linear system has O(n) block entries, instead of

O(n2) entries. Consequently, the matrix-vector multiplication is accelerated to O(n).

In spite of the hierarchical refinement approximation, the linear system is dense. As a

result, effective preconditioners are hard to obtain and the iterative solvers converge

slowly.

Unlike the methods that solve a dense system, such as fast multipole approx-

imation [4, 3], pre-corrected FFT method [6, 20] or singular value decomposition

method [5], there are other methods that solve a sparse system. In [11], the BEM

in (1) was represented and approximated in a wavelet basis. In [12] and [13], two

different wavelet bases are proposed. In each case, the linear system is constructed

directly and sparsified using thresholding techniques. Iterative methods were used to

solve the sparse linear system. Compared with the BEMs without any acceleration,

these wavelet-based methods are significantly faster. However, a comparison of their

efficiency with that of other extraction methods with acceleration is not reported.

In addition, the numerical quadrature involved in these methods is complicate and

needs more analysis as pointed out by the author [12].

In this chapter, we present PHiCap, a Preconditioned Hierarchical algorithm for

∗ c©2005 IEEE. This section is reprinted, with permission, from “Sparse Transfor-
mations and Preconditioners for Capacitance Extraction”, by S. Yan, V. Sarin and
W. Shi, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, no. 9, pp. 1420-1426, Sept. 2005.



19

Capacitance extraction. Starting from the HiCap algorithm introduced in the pre-

vious chapter, we propose a wavelet transformation that transforms the dense linear

system with O(n) block entries from HiCap into a sparse linear system with O(n)

nonzero entries. To solve the sparse linear system, we use preconditioned GMRES

or CG iterative methods (see, e.g., [21]). Incomplete LU factorization or incomplete

Cholesky factorization is used as a preconditioner. The rate of convergence of the

iterative methods increases dramatically by using these preconditioners.

B. Algorithm outline

The PHiCap Algorithm

1. Compute the factorization P = JTHJ.

2. Transform the dense system Pq = v to an equivalent sparse system P̃q̃ = ṽ.

3. Compute an incomplete factorization preconditioner for P̃.

4. Solve P̃q̃ = ṽ using preconditioned CG or GMRES method.

5. Compute capacitance.

In the following sections, we will explain each step in detail.

C. Factorization of P (Step 1)

We use the HiCap algorithm [3] as explained in section II.A to construct the hierar-

chical data structure. Fig. 5(a) shows an example of the hierarchical data structure.

Now, we show that the hierarchical data structure can be used to obtain the factor-

ization of the potential coefficient matrix P.
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Fig. 5. Hierarchical refinement of conductors and the matrix of coefficients.
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LetN be the number of all panels in the hierarchy, qN ∈ �N be the vector of panel

charges, vN ∈ �N be the vector of panel potentials due to the coefficients directly

linked to each panel, and H ∈ �N×N be the matrix of all coefficients (Fig. 5(b)).

Matrix H has O(N) nonzero entries. Each nonzero entry represents a coefficient link

in the hierarchy. Let J ∈ IRN×n be the matrix representing the tree structure, as

shown in Fig. 5(c). Each row of J corresponds to a panel, either leaf or non-leaf, and

each column corresponds to a leaf panel. Entry (i, j) of J is 1 if panel i contains the

leaf panel j, and 0 otherwise.

In the HiCap algorithm, charge and potential of leaf panels are chosen as basis

functions. Let n be the number of leaf panels, q and v ∈ �n be the charge and

potential vectors of the leaf panels, respectively.

Accordingly, each of the three steps of the matrix-vector multiplication, discussed

in section II.A.2, can be represented by the following matrix operation.

1. AddCharge: qN= Jq

2. CollectPotential: vN= HqN

3. DistributePotential: v= JTvN

Combine the three step, we have

v = JTHJq.

As a result, we can represent the coefficient matrix P using its factorization: P = JTHJ.

Here P is a dense matrix with O(n) block entries (Fig. 5(d)).



22

D. Transforming the linear system (Step 2)

1. Overview

In this section, we transform the dense linear system (1.8) from HiCap into a sparse

system using a set of appropriate basis.

In traditional BEM, such as HiCap [3], the basis consists of voltage and charge

of each leaf panel. For any leaf panel Ai, qi represents the charge and vi represents

the potential on Ai.

PHiCap uses a different basis, which is equivalent to Haar wavelets. For every

pair of sibling panels, which could be either leaf or non-leaf, we arbitrarily name one

as “older” and one as “younger”. For each “older” sibling Ai, we define a variable

q̃i to represent the charge difference between Ai and its “younger” sibling, and a

variable ṽi to represent the potential difference between Ai and its “younger” sibling.

Fig. 6 shows the new basis functions for the example in Fig. 5. In the new basis, the

potential vector consists of entries for the potential difference between sibling panels,

and entries for the potential of root panels. The charge vector consists of the charge

difference between sibling panels along with the charge of the root panels.

HA

I-JB-C

K-L M-ND-E F-G

Fig. 6. Hierarchy of the basis functions of PHiCap.

Now, we briefly outline the sparse transformation. Details will be given in the

following sub-sections. Our transformation is constructed based on the factorization

P = JTHJ. Since rank(J) = n, we can always construct an orthonormal transforma-
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tion F ∈ IRN×N (described later in this section), such that

FJ =

⎡
⎢⎢⎣ W

0

⎤
⎥⎥⎦ ,

where W ∈ IRn×n. Thus,

P = JTHJ

= JT(FTF)H(FTF)J

= (FJ)T
(
FHFT

)
(FJ)

=
[

WT 0

] (
FHFT

) ⎡⎢⎢⎣ W

0

⎤
⎥⎥⎦ ,

where FHFT can be represented as

FHFT =

⎡
⎢⎢⎣ P̃ ×
× ×

⎤
⎥⎥⎦ .

Here, P̃ is a sparse n × n matrix (we show this property later), and ×’s denote

submatrices that do not contribute to P. Since P = WTP̃W, the dense linear system

(1.8) is transformed to the sparse system

P̃q̃ = ṽ, (3.1)

where q̃ = Wq and ṽ = W−Tv. The number of nonzero entries in the sparse matrix

P̃ is O(n) (we show this property later).
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2. Constructing F

We first introduce a basic transformation that is used to construct F. Consider the

matrix

Ĵk =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1

ck 0

0 ck

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where ck is a constant that depends on the height k of a node in the tree. For leaf

nodes, k = 0.

There exists an orthonormal matrix

F̂k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2√
2(ck

2+2)

ck√
2(ck

2+2)

ck√
2(ck

2+2)

ck√
ck

2+2
− 1√

ck
2+2

− 1√
ck

2+2

0 1√
2

− 1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

such that

F̂kĴk =

⎡
⎢⎢⎢⎢⎢⎢⎣

ck+1 ck+1

0 0

ek −ek

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.2)

where

ck+1 =

√
c2k + 2

2
, ek =

ck√
2
, k ≥ 1,

and c1 = 1.

To simplify the discussion, we define an element tree as a tree with one root

and two children. Given a hierarchical data structure and the corresponding matrix

J, the transformation is done by a depth-first traversal of the corresponding tree,

propagating the transformation upward to the root. Fig. 7 illustrates the procedure.

Starting from height k = 1, as shown in Fig. 7(a), for each element tree rooted at

height 1, i.e., trees (B, C, D) and (E, F, G), we can identify the corresponding Ĵ1
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Fig. 7. Construction of transformation F for a tree of height 2.
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blocks in J. We construct F1 that transforms all Ĵ1 blocks to F̂1Ĵ1 blocks without

changing anything else in J. Next, as illustrated in Fig. 7(b), we identify the element

tree at height k = 2, i.e., tree (A, B, E), and the corresponding Ĵ2 block in F1J. Note

that the rows of A, B, and E have two instances of the Ĵ2 block in columns C and F

and columns D and G, respectively. We construct F2 that transforms the Ĵ2 blocks to

F̂2Ĵ2 blocks without changing anything else in F1J. In this way, the transformation

is propagated to the root. Finally, as shown in Fig. 7(c), we move the nonzero rows

to the top of the matrix using a permutation matrix E. The overall transformation

is given as F = EF2F1. It is easy to see that the nonzero rows of FJ correspond to

the root node and nodes that are right children of other nodes. In other words, zero

rows in FJ correspond to nodes that are left children of other nodes.

For a tree of height h, the transformation is

F = EFhFh−1 · · ·F2F1,

where Fk is constructed according to the element trees at height k. Since F1,F2, . . . ,Fh,

and E are orthonormal, the transformation matrix F is orthonormal.

3. Computing FHFT

The matrix H is transformed into FHFT by applying the transformations Fk as

shown below

Hk+1 = FkHkF
T
k , k = 1, 2, . . . , h,

where H1 = H, and then by applying the permutation matrix E:

FHFT = EHh+1E
T.
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In the hierarchical data structure, this is done by a depth-first traversal of the tree,

propagating the transformation upward, in a manner similar to the process of con-

structing the matrix F. For any tree rooted at R, the transformation is described

below.

TreeTransform(Panel R)

{

if (R is leaf)

return;

if (R has children)

{

TreeTransform(R.left);

TreeTransform(R.right);

}

ElementTreeTransform(R);

}

In the code, R.left and R.right are the left and right children of panel R,

respectively. Let R.row, R.left.row and R.right.row consist of all the links point-

ing to panel R, R.left and R.right, respectively, and let R.col, R.left.col and

R.right.col consist of all the links starting from panel R, R.left and R.right, re-

spectively. The addition and subtraction are vector operations, adding or subtracting

the coefficients of the links panel-wise. After transformation, we reuse R.right to

represent the new wavelet basis of the difference of R.right and R.left.

Fig. 8 shows the application of the element tree transform for the example in

Fig. 5. We first transform the rows in H corresponding to panels B, D and E, where row
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ElementTreeTransform(Panel R)

{

// row transformation

R.row = R.row + R.right.row + R.left.row;

R.right.row = R.right.row - R.left.row;

Delete R.left.row;

// column transformation

R.col = R.col + R.right.col + R.left.col;

R.right.col = R.right.col - R.left.col;

Delete R.left.col;

}

B is replaced by the summation of the three rows, row E is replaced by the difference

of rows D and E, and row D is discarded (Fig. 8(a)). We then transform the columns

in the updated matrix H corresponding to panels B, D and E in a similar manner

(Fig. 8(b)). The matrix H before and after the row and column transformations of

ElementTreeTransform(B) is shown in Fig 8(c).

The matrix H is stored in the hierarchical structure as in Fig. 5(a). The procedure

for element trees transforms the basis and their coefficients by modifying the links

in the hierarchy. From hierarchical refinement, each pair of sibling panels are linked

to the similar group of panels. During transformation, the same amount of links to

the right sibling panel are remained and the coefficient values are replaced by the

corresponding coefficient difference of sibling panels. The links to the left sibling

panel are deleted. At the mean time, the number of links to the parent panel is
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Fig. 8. Transformation for element tree B,D, and E.
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increased by the same amount as that of link reduction to the left sibling panel. As

a result, after transformation, the higher level panels have more coefficients, and the

total number of coefficients remains about the same, which is O(n). For the example

in Fig. 5(a), the transformation results in the sparse matrix shown in Fig. 9(a). The

transformed sparse linear system is given by (3.1), where q̃ and ṽ are the charge and

potential vectors in the new basis, respectively.
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Fig. 9. The sparse pattern of P̃. (a) with arbitrary ordering, and (b) with the proposed

ordering according to the level of the new basis.

In the transformed matrix FHFT, we are concerned only with the submatrix P̃

that contains the links among root nodes and right child nodes. The matrix P̃ can

be treated as a sparse matrix with the number of nonzeros that are comparable to

the number of block entries in P (see Fig. 10).

4. Computing ṽ

The rows of the transformed matrix F̂kĴk are orthogonal. It follows that the rows of

W are mutually orthogonal, and that WWT is a diagonal matrix with values 2kc2k+1,

where k is the height of the corresponding node in the tree, as defined in the previous
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Fig. 10. The number of nonzero entries in P̃ and the number of block entries in P are

comparable, for various problem sizes.

subsections. This property is exploited when computing ṽ:

ṽ = W−Tv =
(
WWT

)−1
Wv.

Furthermore, the sum of entries in each row of W is zero for all nodes except the

root. The sum of entries in rows corresponding to root nodes at height k is 2kck+1.

As a result, ṽ has nonzero entries of value c−1
k+1 in the locations corresponding to the

roots of the conductor surfaces at unit potential.

Note: The preceding description is for a balanced tree in which all leaf nodes are

at height 1. An unbalanced tree can be embedded into a balanced tree by adding

additional dummy nodes, and the above procedure can be followed. An efficient im-

plementation can be developed by avoiding the actual construction of dummy nodes.
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E. Solving the transformed system (Steps 3-4)

For problems in uniform medium, the linear system (1.8) before transformation is

symmetric. Correspondingly, the transformed sparse linear system (3.1) is symmet-

ric. We use the incomplete Cholesky factorization with no fill [21] to compute the

preconditioner. Preconditioned Conjugate Gradients method is used to solve the

system.

For problems with multiple dielectrics, the linear system (1.8) before transforma-

tion is unsymmetric. Correspondingly, the transformed sparse linear system (3.1) is

unsymmetric. The preconditioner is computed from an incomplete LU factorization

with no fill [21]. We use right preconditioned GMRES method to solve the system.

F. Computing capacitance (Step 5)

Capacitance can be computed from q̃ directly without computing q. Recall that

q̃ = Wq, and that the rows of W corresponding to root nodes at height k have

identical nonzero entries with value ck+1. Thus, a root node entry in q̃ is ck+1 times the

sum of all the leaf panel charges in that tree. Capacitance can be computed by adding

the root node entries of each conductor in q̃ after scaling them by corresponding

factors c−1
k+1.

G. Complexity analysis

The complexity of constructing the factorization of P in Step 1 is O(n) [3]. The

transformation of the linear system in Step 2 usually takes O(nh) time, where h is

the height of the tree. Normally, h = O(logn). Since the number of nonzeros in P̃

is O(n), which was explained previously, the incomplete factorization can be done in

O(n) time. Each iteration requires a matrix-vector product with P̃, and a solution
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of systems with the lower and upper triangular factors of the preconditioner. Thus,

Steps 3 and 4 take O(n) time when the number of iterations is small. Capacitance can

be computed in constant time. The overall complexity of this algorithm is normally

O(n logn+mn), where m is the number of conductors.

H. Experimental results

We compare PHiCap with the following algorithms: FastCap with expansion order

2, FastCap with expansion order 1, and HiCap. Other methods, such as SVD [5] and

pFFT [6], exhibit performance that is similar to FastCap. No benchmark experiments

were reported for the geometric independent method [22]. In [3], HiCap algorithm

can only solve problems in uniform media. To make the comparison complete, we

extend HiCap to the multiple dielectrics case. The algorithms are executed on a Sun

UltraSPARC Enterprise 4000. Unless otherwise noted, the iterations are terminated

when the relative residual norm of the preconditioned system is reduced below 10−2.

The first set of benchmarks are k × k bus crossing structures from [4], shown in

Fig. 11. Each bus is scaled to 1 meter × 1 meter × (2k + 1) meters. The distance

between the adjacent buses in the same layer is 1 meter and the distance between the

two bus layers is 2 meter. For the uniform dielectric cases, the permittivity is assumed

to be ε0. For the multiple dielectric cases, see Fig. 12, the medium surrounding the

upper layer conductors has permittivity 3.9ε0 and the medium surrounding the lower

layer conductors has permittivity 7.5ε0. The shaded box represents the interface of

the two layers.

Tables I and II compare the four algorithms. PHiCap is the fastest and uses

much less memory compared to FastCap. The current implementation of PHiCap

uses more memory compared to HiCap because of the additional storage needed for
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Fig. 11. 4× 4 bus crossing benchmark in uniform dielectric.

Fig. 12. 4× 4 bus crossing benchmark in two layers of dielectrics (section view).
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the transformed system P̃. The storage requirement can be reduced by computing P̃

directly, since it is not necessary to construct H. In HiCap and PHiCap algorithms,

the discretization threshold Pε is chosen to be 0.008. This ensures that the relative

error in the capacitance matrix computed by PHiCap is below 3%, which is acceptable

in practice. The relative error in the capacitance matrix C′, which is computed by

HiCap or PHiCap algorithms, is defined as ‖C−C′‖F/‖C‖F , where ‖·‖F denotes the

Frobenius norm. As per standard practice, C is computed by FastCap with expansion

order 2.

Table III shows the first and second rows of the capacitance matrix computed

by PHiCap and FastCap. It is easy to see that for self-capacitances and significant

coupling capacitances, where a coupling capacitance is considered significant if it is

greater than 10% of the self capacitance, PHiCap’s error is mostly within 3%, with

respect to FastCap with expansion order 2. The error for the small coupling capaci-

tances is sometimes large, which is acceptable since the small coupling capacitances

have minor influence on the circuit performance. Fig. 13 shows the error distribution

of the self capacitances and the significant coupling capacitances for the six bench-

mark examples in Table I and II.

The second set of benchmarks are complex industrial circuits containing 8 lay-

ers of dielectrics and 48, 68 and 116 conductors, respectively. The smallest case of

48 conductors is shown in Fig. 14. The results are in Table IV. FastCap cannot

solve these examples because of prohibitive time and memory requirements. PHiCap

displays near-optimal preconditioning in these experiments. Fig. 15 shows that the

residual norm decreases rapidly for PHiCap. In contrast, the decrease is slower for

HiCap. As a result, PHiCap requires much less time to solve the problem.

The third benchmark we studied is the parallel-plate problem. It is well known

that this problem yields ill-conditioned systems when the two plates are very close to
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Table I. Comparison of PHiCap, HiCap and FastCap for bus crossing benchmarks with

uniform dielectric. Time is CPU seconds, iteration is average for solving one

conductor, memory is MB, and error is with respect to FastCap (order=2).

FastCap FastCap HiCap PHiCap

(order=2) (order=1)

4× 4 Bus with Uniform Dielectric

Time 18.6 19 0.5 0.4

Iteration 8 14.9 9 3

Memory 25.7 16.7 0.7 1.0

Error — 0.05% 2.1% 2.0%

Panel 2736 2736 1088 1088

6× 6 Bus with Uniform Dielectric

Time 113.9 68.5 2.4 1.5

Iteration 14.4 14.5 11.9 3.2

Memory 62.5 40.3 1.9 2.9

Error — 1.1% 2.1% 2.2%

Panel 5832 5832 3168 3168

8× 8 Bus with Uniform Dielectric

Time 206 204 7.3 3.4

Iteration 12 21.9 13.0 3.9

Memory 112 67 3.1 4.9

Error — 1.0% 3.1% 3.0%

Panel 10080 10080 4224 4224
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Table II. Comparison of PHiCap, HiCap and FastCap for bus crossing benchmarks

with multiple dielectrics. Time is CPU seconds, iteration is average for

solving one conductor, memory is MB, and error is with respect to FastCap

(order=2).

FastCap FastCap HiCap PHiCap

(order=2) (order=1)

4× 4 Bus with Two Layer Dielectrics

Time 63 36 1.7 2

Iteration 13 14 9 3

Memory 68 39 3.0 3.9

Error — 0.6% 1.0% 1.0%

Panel 3456 3456 2120 2120

6× 6 Bus with Two Layer Dielectrics

Time 162 104 10.4 5.8

Iteration 17.1 17 11.3 3

Memory 92 61 6.3 8.3

Error — 0.5% 1.0% 1.2%

Panel 5448 5448 4120 4120

8× 8 Bus with Two Layer Dielectrics

Time 324 197 32 15

Iteration 18 18 12.8 3

Memory 133 86.9 11.5 15.3

Error — 0.0% 1.4% 1.4%

Panel 7968 7968 6784 6784



38

Table III. First two rows of capacitance matrix computed by PHiCap and FastCap

(order=2) for 4× 4 bus crossing benchmark with uniform dielectric.

C11 C12 C13 C14 C15 C16 C17 C18

FastCap 405.54 -137.54 -12.02 -8.07 -48.40 -40.26 -40.17 -48.48

PHiCap 405.78 -139.30 -18.89 0.10 -48.05 -39.77 -39.84 -46.60

C21 C22 C23 C24 C25 C26 C27 C28

FastCap -137.54 468.23 -132.66 -11.89 -40.15 -32.59 -32.54 -40.20

PHiCap -139.32 468.27 -129.49 -18.30 -39.96 -31.49 -31.21 -41.04

−4 −2 0 2 4 6 8
0

20

40

60

80

100

120

Error (%)

FastCap(order=1)
HiCap
PHiCap

Fig. 13. Error distribution of self capacitance and significant coupling capacitance for

the 6 examples in Table I and II.
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Fig. 14. Example with 48 metal conductors and 8 dielectric layers. Metal wires are

shaded. Relative permittivity of M1 is 3.9, M2 through M6 is 2.5, and M7

and M8 is 7.0. Layers M2 through M5 have 10 conductors each whereas layers

M7 and M8 have 4 conductors each.
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Table IV. Comparison of PHiCap and HiCap for complex multiple dielectric problems

shown in Fig. 14. Time is CPU seconds, iteration is average for solving one

conductor, and memory is MB. FastCap was unable to solve these problems.

Error is with respect to HiCap.

48 conductors 68 conductors 116 conductors

HiCap PHiCap HiCap PHiCap HiCap PHiCap

Time 533 122 3011 389 12930 2391

Iteration 18.7 2.8 25.3 3.0 36.8 5.1

Memory 43 59 115 161 406 570

Panel 19840 19840 42912 42912 138552 138552
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Fig. 15. Comparison of the rate of convergence of PHiCap.
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each other. We consider the problem with plate size 10m× 10m and distance between

two plates 0.1m. The results in Table V indicate that PHiCap performs very well on

these problems too.

Table V. Comparison of PHiCap and HiCap for parallel plates of size 10m× 10m and

distance 0.1m. Time is CPU seconds and iteration is average for solving one

conductor.

Coarse Discretization Fine Discretization

Pε = 0.01 Pε = 0.005

Time Iteration Time Iteration

HiCap 100.2 54 523.5 72.5

PHiCap 53.3 6 265.8 6

The multi-scale method [23] uses a similar idea to sparsify the dense matrix P.

However, there are important differences between the multi-scale method and our

method. The multi-scale method is based on high-order FMM, whereas our method

is based on HiCap. It was shown that the hierarchical approach in HiCap is more

efficient and kernel independent [3]. The multi-scale method uses a block diagonal

preconditioner, while ours uses incomplete Cholesky or LU factorizations. In addition,

the multi-scale method has been applied to uniform dielectric only. For the k × k

bus crossing benchmarks, we compare the number of iterations needed by the two

methods to reduce the residual norm below 10−9. Table VI shows that the number

of iterations required by PHiCap is less than the multi-scale method. The growth

in iterations with the increase of the problem size is negligible for PHiCap. A more

detailed comparison was not possible because only the number of iterations were

reported in [23].
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Table VI. Comparison of iteration numbers for multi-scale method and new algorithm.

Experiments are for k × k bus crossing conductors. Convergence tolerance

is 10−9.

1× 1 2× 2 4× 4 6× 6 8× 8

Multiscale 12 17 18 18 18

New 7 14 13 14 16

I. Summary

This chapter introduces the PHiCap algorithm, which is a preconditioned hierarchical

algorithm for capacitance extraction. PHiCap transforms the dense linear system into

a sparse system and then solves it by a preconditioned iterative method. The sparse

structure allows construction of inexpensive but highly effective preconditioners based

on incomplete factorization techniques. The dense-to-sparse transformation used in

PHiCap is applicable to multipole-based methods as well, where the linear system can

be represented by a block matrix. Numerical experiments demonstrate the superiority

of PHiCap over FastCap and HiCap in terms of the number of iterations of the solver

and the overall running time.

Experiments on the k × k bus crossing benchmark show that PHiCap is up

to 70 times faster than FastCap (order=2), is up to 60 times faster than FastCap

(order=1), and is up to 2 times faster than HiCap. For complex industrial problems

with multiple dielectrics, PHiCap is 4-8 times faster than HiCap. With the same

computing resources, FastCap is not able to solve these problems due to the expensive

memory and running time cost. The number of iterations used by PHiCap is also less

than the multi-scale method [23].
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CHAPTER IV

REDCAP ALGORITHM

A. Introduction

In the previous chapter, we proposed the PHiCap algorithm that transforms the

dense linear system to the sparse linear system in wavelet basis. The incomplete

LU and incomplete Cholesky factorization are very effective preconditioners for the

sparse linear system. Experiments show that with preconditioning, the iterative solver

converges within 5 iterations even for very large problems.

Inspired by this observation, we propose an iteration free approach in which

we approximate the sparse linear system by its incomplete factorization and solve a

reduced linear system. The Reduced linear system is solved for Capacitance using

forward/backward substitution directly without resorting to an iterative method. We

name the algorithm RedCap. RedCap avoids solving the original large system.

The time complexity of RedCap depends on the sparse transformation, which

takes O(n logn) time if we use the transformation in PHiCap. If we use the ICCAP

algorithm [24], whose complexity is claimed to be O(n), to generate the sparse linear

system, the complexity is O(n). For the sake of clarity, we explain the RedCap

algorithm based on PHiCap that is introduced in the previous chapter.

RedCap is not the first attempt to solve the linear system of BEM without

iterations. In [14] and [15], sparse representations of the linear systems are constructed

using low rank approximation of the off diagonal blocks. These sparse representations

are solved by LU factorization. The time complexity of those algorithms is O(nγ),

where γ ranges from 2.20 to 2.89, which is much slower than RedCap. To the best

of our knowledge, RedCap is the most efficient iteration-free method that solves a
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reduced linear system for capacitance extraction.

We first outline the RedCap algorithm in section B. We explain the details of the

RedCap algorithm in sections C and D, and present experimental results in section

E. We summarize the algorithm in section F.

B. Algorithm outline

total charge or potential of conductor surfaces,
and total charge to potential coefficients

nonzero entry zero entry

(d) after reordering (e) after ILU(0) approximation

(f) sub-system for capacitances

(a) original linear system
from BEM

(c) after sparse
transformation

(b) with multipole
approximation

Fig. 16. The flow of the RedCap algorithm.

The outline of the RedCap algorithm is shown in Fig. 16. Fig. 16(a) is the dense

n × n linear system from BEM, which is never constructed explicitly. Fig. 16(b)

is the linear system approximated by hierarchical refinement approximation (HiCap
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algorithm in chapter II). This linear system is still dense, but is represented by

O(n) block entries. In Fig. 16(c), the linear system is transformed into a sparse

system (the PHiCap algorithm in chapter III). The unknown charge vector in the

transformed system includes entries for the total charge on each conductor surface.

These entries are sufficient to derive the capacitance. The entries of the right-hand

side potential vector in the transformed system are zero except for those corresponding

to the conductor surfaces. So far, the algorithm is the same as PHiCap, which is

explained in detail in chapter III.

In Fig. 16(d), the matrix is permuted symmetrically to order the dense rows and

columns at the end. Fewer fill-ins will be discarded in the following approximation

step. The total surface charge entries of the charge vector and the nonzero entries

of the potential vector are ordered at the end as well. We perform incomplete LU

factorization with no fill-in (ILU(0)) to approximate the sparse linear system (see

Fig. 16(e)). Since only the bottom part of the charge vector is needed to compute

the capacitances, we identify the corresponding small sub-system in Fig. 16(f), and

solve the sub-system for the total charges directly using Gaussian elimination.

In the algorithm, approximations are introduced only in the multipole approxi-

mation step and the ILU(0) step. From [3], we know that the multipole approximation

is very accurate. We will show later that the ILU(0) step does not introduce significant

error either since the reordering reduces the number of nonzeros that are discarded.

The first two steps (Fig. 16(b),(c)) of RedCap were discussed in previous chap-

ters II and III. In the following sections, we will describe the rest steps, including the

ordering (Fig. 16(d)), ILU (Fig. 16(e)) and solving the sub-system (Fig. 16(f)).
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C. Ordering and ILU(0) approximation

Unlike exact LU factorization, the incomplete LU factorization maintains sparsity of

the factors by dropping nonzero entries, called fill-in, in positions where the matrix

has zero entries. Formally, incomplete LU factorization with no fill-in, written as

ILU(0), replaces (3.1) with

L̂Ûq̂ = ṽ, (4.1)

where L̂ and Û are the incomplete lower and upper triangular factors of P̃, respec-

tively, and q̂ is an approximation of q̃. Compared to the original linear system (3.1),

error is introduced in the new system (4.1).

By ordering sparse rows before dense rows, the number of dropped fill-ins can

be reduced. According to the discussion in chapter III, the links at lower level of the

hierarchy are propagated and merged upward to the higher level panels. As a result,

basis functions at higher levels in the tree have more coefficients. Therefore, the rows

and columns of P̃ corresponding to higher levels tend to be denser. We order the basis

functions according to their levels in the tree. Low level basis functions are ordered

before high level basis functions. As a result, the total charges and the potentials of

the conductor surfaces are ordered at the bottom of q̃ and ṽ, respectively.

Table VII compares the effect of this ordering. Using the proposed ordering,

the exact LU factorization has fewer fill-ins, and therefore fewer fill-ins are dropped

in ILU(0) approximation. Fig. 9(b) shows the reordered P̃ matrix of the example

in Fig. 5. Fig. 17 shows the sparsity pattern of P̃ for the same 4 × 4 bus crossing

example used in Table VII. We used a coarser discretization to illustrate the sparsity

clearly.
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Fig. 17. Sparsity pattern of the transformed linear system after reordering the dense

rows and columns at the end.
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Table VII. Comparison of different orderings of P̃ for 4 × 4 bus crossing benchmark

in uniform dielectric. Since the linear system is symmetric, only the lower

triangular part is reported. ‖ · ‖ is the Frobenius norm.

Nonzeros Nonzeros dropped ‖L−L̂‖
‖L‖

in L in L̂

Arbitrary
1592928 94.4% 12.0%

ordering

Proposed
414938 78.6% 2.9%

ordering

D. Equivalent reduced system

Based on the ordering, we split q̂ and ṽ into two parts:

q̂ =

⎡
⎢⎢⎣ q̂1

q̂2

⎤
⎥⎥⎦ and ṽ =

⎡
⎢⎢⎣ ṽ1

ṽ2

⎤
⎥⎥⎦ ,

where q̂1 and ṽ1 correspond to the charge differences and potential differences between

sibling panels, and q̂2 and ṽ2 correspond to the total charges and potentials on

conductor surfaces. In the basis hierarchy, q̂2 and ṽ2 are basis functions for the

roots, and q̂1 and ṽ1 are basis functions for non-root nodes. It is easy to see that

ṽ1 = 0. For the capacitance extraction purpose, we only need to compute q̂2.

We split L̂ and Û to conform to q̂ and ṽ:

L̂ =

⎡
⎢⎢⎣ L̂11 0

L̂21 L̂22

⎤
⎥⎥⎦ and Û =

⎡
⎢⎢⎣ Û11 Û12

0 Û22

⎤
⎥⎥⎦ .
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From equation (4.1), we have

L̂11

(
Û11q̂1 + Û12q̂2

)
= 0, (4.2)

L̂21

(
Û11q̂1 + Û12q̂2

)
+ L̂22Û22q̂2 = ṽ2. (4.3)

Since L̂11 is nonsingular, equation (4.2) implies

Û11q̂1 + Û12q̂2 = 0. (4.4)

Combining equation (4.3) and (4.4), we obtain the following system for q̂2:

L̂22Û22q̂2 = ṽ2. (4.5)

The dimension of sub-system (4.5) equals the number of conductor surfaces,

which is O(m). It is a small system compared to the original system (4.1) of dimension

n. Furthermore, it can be solved in O(m2) time using its triangular factors L̂22 and

Û22. The vector q̂2 is sufficient to calculate the capacitances among conductors.

E. Experimental results

We compare RedCap with FastCap [4] and PHiCap [16]. Table VIII and Table IX

report the experimental results on bus crossing examples. The uniform dielectric cases

are standard benchmarks from [4] and the multi-layer dielectrics cases are from [16].

Fig. 11 and Fig. 12 are the 4 × 4 bus crossing examples in uniform and multi-layer

dielectrics, respectively. The experiments were conducted on a Sun UltraSPARC

Enterprise 4000. Time is cpu seconds needed to compute the entire capacitance

matrix. Iteration is average for solving one conductor. Memory is MB. The relative

error in the capacitance matrix C′ is defined as ‖C−C′‖F/‖C‖F , where ‖·‖F denotes

the Frobenius norm. The RedCap algorithm is much faster and more memory efficient
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than FastCap. It uses less memory compared to PHiCap because the algorithm does

not need to store iteration vectors. Additional saving is obtained by overwriting P̃

with L̂ and Û.

Table VIII. Comparison of RedCap, PHiCap and FastCap for bus crossing benchmarks

with uniform dielectric. Time is CPU seconds, iteration is average for

solving one conductor, memory is MB, and error is with respect to FastCap

(order=2).

Time Iter. Mem. Error Dim.

FastCap 18.6 8.0 25.7 — 2736

4× 4 PHiCap 0.4 3.0 2.4 2.1% 1088

RedCap 0.3 0 2.1 1.1% 48

FastCap 113.9 14.4 62.5 — 5832

6× 6 PHiCap 1.5 3.2 7.3 2.3% 3168

RedCap 1.1 0 6.4 1.7% 72

FastCap 206.7 12.0 111.9 — 10080

8× 8 PHiCap 3.3 3.4 12.8 3.0% 4224

RedCap 2.8 0 11.4 1.8% 96

Table X compares the RedCap algorithm with PHiCap for complex multiple

dielectric problems shown in Fig. 14. FastCap was unable to solve these problems,

because the running time cost and memory cost exceed the computation resource

available to us. RedCap and PHiCap use similar set-up time. However, RedCap

computes the solution in less than 1% of the time spent by PHiCap in the iterative

solver.

Table X gives the error of the RedCap algorithm with respect to PHiCap. The

overall error of the capacitance matrix is less than 2%. Fig. 18 shows the error dis-
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Table IX. Comparison of RedCap, PHiCap and FastCap for bus crossing benchmarks

with multiple dielectrics. Time is CPU seconds, iteration is average for

solving one conductor, memory is MB, and error is with respect to FastCap

(order=2).

Time Iter. Mem. Error Dim.

FastCap 63.2 13.0 67.5 — 3456

4× 4 PHiCap 2.0 2.0 6.4 0.7% 2120

RedCap. 1.5 0 5.6 0.7% 48

FastCap 162.1 17.1 91.5 — 5448

6× 6 PHiCap 5.7 3.0 14.0 1.3% 4120

RedCap 3.4 0 12.4 1.4% 72

FastCap 329.1 18.0 133.3 — 7968

8× 8 PHiCap 14.2 3.0 26.3 1.4% 6784

RedCap 6.9 0 23.5 1.5% 96
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Table X. Comparison of PHiCap and HiCap for complex multiple dielectric problems

shown in Fig. 14. Time is CPU seconds, iteration is average for solving one

conductor, and memory is MB. FastCap was unable to solve these problems.

Error is with respect to PHiCap.

48 conductors 68 conductors

PHiCap RedCap PHiCap RedCap

Dimension 19840 191 42912 655

Set-up time 34.5 34.0 150.7 153.0

Solving time 88.6 0.1 355.8 2.3

Total time 123.1 34.1 506.5 155.4

Iteration 2.8 0 3.0 0

Memory 98 64 310 210

Error — 1.7% — 1.5%
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Fig. 18. Error distribution of RedCap with respect to PHiCap. Self-capacitances and

significant coupling capacitances of all the experiments in Table VIII, IX

and X are included. Coupling capacitances greater than 10% of self capaci-

tances are considered significant.
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tribution of individual capacitances. These experiments confirm that the incomplete

LU factorization with the proposed ordering is indeed a good approximation of the

original system. We are unable to compare the charge distribution error since the

RedCap algorithm only computes the total charge on each conductor surface.

F. Summary

In this chapter, we presented the RedCap algorithm that solves a reduced linear

system, instead of the large linear system from BEM, to derive the capacitances. The

size of the reduced linear system is equal to the number of conductor surfaces, which is

much smaller than the number of panels in the discretization of BEM. Approximations

to the triangular factors of the reduced system are obtained directly via incomplete

factorization without computing the system explicitly. The reduced system is solved

directly using the approximate factors. To the best of our knowledge, the RedCap

algorithm is the most efficient iteration-free method for capacitance extraction.

Numerical experiments on conductors embedded in uniform and multi-layer di-

electric show that the RedCap algorithm is up to 100 times faster than FastCap [4]

and is up to 4 times faster than PHiCap [16]. The RedCap algorithm uses two

approximations: fast multipole approximation of the linear system and inexact fac-

torization of the sparse system. Despite the two approximations involved, RedCap

preserves very good accuracy. The error with respect to FastCap is within 2% for all

the experiments we have done.
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CHAPTER V

EXTRACTION WITH FLOATING DUMMY-FILLS

A. Introduction

To reduce the pattern-dependent process variations of the dielectric and metal thick-

ness, floating dummy metals are often inserted [25]. Unlike regular conductors whose

potential is known while charge distribution is unknown in the extraction process, the

potential of a floating dummy conductor is unknown and its global surface charge is

zero. In circuit simulation and integrity analysis, we need the equivalent capacitances

among the regular conductors only.

Conventional capacitance extraction tools treat floating dummy conductors as

regular ones, and compute the capacitances among both regular and dummy conduc-

tors. The capacitance matrix satisfies

⎡
⎢⎢⎣ Crr Crf

Cfr Cff

⎤
⎥⎥⎦
⎡
⎢⎢⎣ Vr

Vf

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ Qr

Qf

⎤
⎥⎥⎦ ,

where the subscript r represents regular conductors, and f represents floating dummy

conductors. Since the potential of a floating conductor is an unknown constant, and

its global surface charge is equal to zero, we have

Qf = 0.

Thus, the equivalent capacitance matrix is

Ceq = Crr −CrfCff
−1Cfr.

Let mr and mf represent the number of regular and floating dummy conductors,

respectively. Clearly, mr + mf = m. We have Crr ∈ IRmr×mr, Crf ∈ IRmr×mf ,
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Cfr ∈ IRmf×mr , Crr ∈ IRmf×mf and Ceq ∈ IRmr×mr . This method needs mr + mf

linear solves, which results in very high computation cost when there are many dummy

fill-ins. For the methods in ordinary basis, such as HiCap, the linear system is (1.8).

For methods, such as PHiCap, that use the wavelet basis, the linear system is (3.1).

For RedCap, the linear system is (4.5). Some methods [26] based on FDM/FEM were

proposed, but none is known for the BEM method.

In this chapter, we propose a method to expand the linear system for extraction

by embedding the floating dummy potential and global surface charge requirement

into extraction. As a result, the equivalent capacitances among regular conductors can

be solved through mr, instead of mr +mf , system solves. This method is applicable

to both the algorithm in ordinary basis, such as FastCap [4] and HiCap [3], and

the algorithm in wavelet basis, such as PHiCap [16] and RedCap [17]. However,

our studies show that the methods based on wavelet basis are much more efficient

than the methods based on ordinary basis, and the method based on RedCap is the

most efficient. The method based on standard basis are unattractive due to slow

convergence.

B. Expanded extraction methods

With the presence of floating dummy-fills, the extraction requirement is different.

For a floating dummy conductor, the global surface charge is zero and the potential

is unknown. In this section, we embed this requirement for dummy-fills to existing

capacitance extraction methods, including HiCap, PHiCap and RedCap.
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1. Expanded HiCap

We rewrite the linear system (1.8) from HiCap by distinguishing the panels of regular

conductors and those of floating dummy conductors.

⎡
⎢⎢⎣ Prr Prf

Pfr Pff

⎤
⎥⎥⎦
⎡
⎢⎢⎣ qr

qf

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ vr

vf

⎤
⎥⎥⎦ , (5.1)

where the subscript r represents regular conductors, and f represents floating dummy

conductors. Let nr and nf be the number of panels on regular conductors and floating

dummy conductors, respectively. Vectors qf ∈ IRnf and vf ∈ IRnf are charge and

potential on panels of floating dummy conductors, respectively.

Since the global surface charge of each floating dummy conductor is zero, we

have

BTqf = 0

BVf = vf

, (5.2)

where B ∈ IRnf×mf is the incidence matrix denoting the relationship between floating

dummy conductors and their panels. Each column of B corresponds to one floating

dummy conductor, and each row of B corresponds to one of the panels of floating

dummy conductors. Any entry Bij of B is one if the i-th panel belongs to the j-th

floating dummy conductor, otherwise Bij is zero.

Embed (5.2) into (5.1), we have the following expanded linear system.

⎡
⎢⎢⎢⎢⎢⎢⎣

Prr Prf 0

Pfr Pff −B

0 −BT 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

qr

qf

Vf

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

vr

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.3)

With mf system solves of (5.3), we get the equivalent capacitance matrix Ceq. How-

ever, since the expanded linear system is no longer symmetric positive definite, it is
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difficult to construct efficient preconditioners, and the convergence of the system is

very slow.

It is worth noting that the discussion in this section is applicable not only to

HiCap, but also to other extraction methods, such as FastCap, which use the ordinary

basis.

2. Expanded PHiCap

The linear system from PHiCap (3.1) is in wavelet basis. We use subscript r and

f represent the regular conductors and the floating dummy conductors, respectively.

We use subscript 1 to represent the wavelet basis for potential and charge difference

of sibling panels, and 2 to represent the wavelet basis for potential and total charge

of root panels. Thus, we rewrite (3.1) as

⎡
⎢⎢⎢⎢⎢⎢⎣

P̃1,1 P̃1,2r P̃1,2f

P̃2r,1 P̃2r,2r P̃2r,2f

P̃2f ,1 P̃2f ,2r P̃2f ,2f

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

q̃1

q̃2r

q̃2f

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

ṽ2r

ṽ2f

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5.4)

Let Mr and Mf be the number of surfaces of the regular conductors and floating

dummy conductors, respectively. Let M = Mr +Mf , which is the number of surfaces

of all conductors. Vectors q̃2r ∈ IRMr and ṽ2r ∈ IRMr are the total surface charges

and the surface potential of regular conductors, respectively.

Let B̃ ∈ IRMr×mr denotes the relationship between dummy conductors and their

surfaces (wavelet basis of roots). Each column of B̃ corresponds to one floating

dummy conductor, and each row of B̃ corresponds to one of the surfaces of floating

dummy conductors. Any entry B̃ij is one if the i-th surface belongs to the j-th

floating dummy conductor, otherwise B̃ij is zero. Since the global surface charge of
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each floating dummy conductor is zero, we have

B̃Tq̃2f = 0

B̃Vf = ṽ2f

. (5.5)

Embed (5.5) to (5.4), we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃1,1 P̃1,2r P̃1,2d 0

P̃2r,1 P̃2r,2r P̃2r,2f 0

P̃2f ,1 P̃2f ,2r P̃2f ,2f −B̃

0 0 −B̃T 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃1

q̃2r

q̃2f

Vf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ṽ2r

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.6)

We construct the approximate factorization of (5.6)

⎡
⎢⎢⎣ L̂

G1 Lexp

⎤
⎥⎥⎦
⎡
⎢⎢⎣ Û G2

Uexp

⎤
⎥⎥⎦ , (5.7)

where

GT
1 = Û−T

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

−B̃

⎤
⎥⎥⎥⎥⎥⎥⎦
,G2 = L̂−1

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

−B̃

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Matrix L̂ and Û are the incomplete LU factors of P̃ in (4.1), which we rewrite as

⎡
⎢⎢⎢⎢⎢⎢⎣

L̂1,1

L̂2r,1 L̂2r,2r

L̂2f ,1 L̂2f ,2r L̂2f ,2f

⎤
⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎣

Û1,1 Û1,2r Û1,2f

Û2r,2r Û2r,2f

Û2f ,2f

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Matrix Lexp, Uexp, G1 and G2 are from the exact LU factorization of the expanded

part, which implies

G1G2 + LexpUexp = 0.
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Thus, we have

LexpUexp = −G1G2 = −
[

0 0 B̃T

]
Û−1L̂−1

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

B̃

⎤
⎥⎥⎥⎥⎥⎥⎦

= −B̃TÛ2f ,2f
−1

L̂−1
2f ,2fB̃,

We solve the linear system (5.6) iteratively using (5.7) as preconditioner. Sim-

ilar to the previous section, with mf system solves of (5.6), we get the equivalent

capacitances among regular conductors. Though the condition number of the linear

system (5.6) is worse compared with (3.1), the iterative solver preconditioned by (5.7)

converges very fast.

3. Expanded RedCap

We approximate (5.6) using it is approximate factorization (5.7). The approximate

linear system is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L̂1,1

L̂2r,1 L̂2r,2r

L̂2f ,1 L̂2f ,2r L̂2f ,2f

0 0 −B̃TÛ−1
2f ,2f Lexp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Û1,1 Û1,2r Û1,2f 0

Û2r,2r Û2r,2f 0

Û2f ,2f −L̂−1
2f ,2f B̃

Uexp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃1

q̃2r

q̃2f

Vf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ṽ2r

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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We identify the small sub-system

⎡
⎢⎢⎢⎢⎢⎢⎣

L̂2r,2r

L̂2f ,2r L̂2f ,2f

0 −B̃TÛ−1
2f ,2f Lexp

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎣

Û2r,2r Û2r,2f 0

Û2f ,2f −L̂−1
2f ,2f B̃

Uexp

⎤
⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎣

q̂2r

q̂2f

vF

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ṽ2r

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(5.8)

and solve it mr times for q̂2r with the consideration of floating dummy conductors.

C. Experimental results

Experiments with floating dummy conductors are reported in Fig. 19. The four meth-

ods in Table XI are compared. Overall, the methods using wavelet bases, including

the expanded PHiCap algorithm and the expanded RedCap algorithm, are much

faster than the methods using the standard basis, such as the conventional method

and the expanded HiCap algorithm. In Table XI, the running time of the expanded

RedCap algorithm does not change much regardless of the number of dummy con-

ductors. This is because the solving time takes a very small portion of the total

running time. The expanded PHiCap converges fast, often within 3 iterations, when

preconditioned using (5.7), regardless of the number of dummy conductors. For the

expanded HiCap method, the iteration per solve increase greatly with the increase

of dummy conductors, which means the condition number of system (5.3) deterio-

rates. The total iterations needed by the expanded HiCap method is even larger than

the conventional method, although fewer system solves are needed for the expanded

HiCap method.
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Fig. 19. Comparison of four methods with different number of dummy conductors in

8× 8 bus crossing examples.
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D. Summary

Table XI summarizes the behavior of four extraction algorithms considering the float-

ing dummy conductors.

Table XI. Four extraction algorithms considering the floating dummy conductors. As

defined earlier, n is the number of panels, mr and mf are the number of

regular and floating dummy conductors, respectively.

Conventional Expanded Expanded Expanded

method (HiCap) HiCap PHiCap RedCap

Linear system (1.8) (5.3) (5.6) (5.8)

Dimension n n +O(mf) n +O(mf) O(mr +mf)

No. of solves mr +mf mr mr mr

Solver iterative iterative iterative� direct

Convergence bad worst good —

Efficiency�� bad worst good best
� use (5.7) as preconditioner.

�� refer to experimental results in Fig. 19.

In the presence of floating dummy-fills, the equivalent capacitances among non-

dummy conductors are needed. In this chapter, we proposed a scheme to embed the

global charge and potential conditions of floating dummy conductors into the extrac-

tion linear system, and compute the equivalent capacitances for regular conductors

directly. This idea is applied to HiCap, PHiCap and RedCap. Experiments show that

the methods based on wavelet basis are much more efficient than the methods based

on standard basis and the method based on RedCap is most efficient. The method

based on standard basis are unattractive due to the slow convergence.
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CHAPTER VI

SELECTIVE COEFFICIENT ENHANCEMENT METHOD

A. Introduction

As discussed in chapter I, due to the numerical integration of (1.3) or (1.7) and the

truncation of multipole expansions, error is introduced in the step of calculating P. In

this chapter, we present the sensitivity analysis for the accuracy of the capacitances

over the accuracy of the potential coefficient pij or eij . Based on the sensitivity

analysis, we propose a method which enhance the accuracy of selected coupling or

self-capacitances by only increasing the accuracy of those potential coefficients that

are critical.

The technique is desirable for such situations as crosstalk and signal integrity

analysis, where only the capacitances between some pairs of conductors need to be

computed with high accuracy.

B. Sensitivity analysis for the accuracy of C

We first present a theory on the accuracy of selected entries of C. Due to the error

caused by the second step of BEM mentioned in section C of chapter I, instead of

Pq = v, the linear system we actually solve is

P̄q̄ = v, (6.1)

where P̄ is an approximation of P and q̄ is the corresponding solution. As a result,

the capacitance matrix obtained is an approximation C̄ instead of C.

Assume there are ki panels on the i-th conductor, and the panels are numbered in

ascending order from the first conductor to the m-th conductor. To calculate the j-th
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column of C̄, we first solve (6.1) with v = v(j) = [0, . . . , 0, 1, . . . , 1, 0, . . . , 0]T , where

the first k1 + · · ·+ kj−1 entries of v(j) are 0, followed by kj 1’s and n− (k1 + · · ·+ kj)

0’s. Then for i = 1, 2, . . . , m,

C̄ij =
k1+···+ki∑

l=k1+···+ki−1+1

q̄(j)
l
, (6.2)

where q̄(j) is the solution of (6.1) corresponding to the right-hand side v = v(j).

Similarly, if q(j) denotes the solution of (1.8) corresponding to the right-hand side

v = v(j), then entry Cij of the capacitance matrix is given by

Cij =
k1+···+ki∑

l=k1+···+ki−1+1

q
(j)
l . (6.3)

Let r(l) denote the l-th column of P−1, then we have the following result.

Lemma 1 For every j = 1, 2, . . . , m, vector q(j) and the columns of P−1 satisfy the

equation

q(j) =
k1+···+kj∑

l=k1+···+kj−1+1

r(l).

Proof. It follows from the definition of r(l) that Pr(l) = e(l) where e(l) denotes the

l-th column of the identity matrix. Therefore

P · (
k1+···+kj∑

l=k1+···+kj−1+1

r(l)) =
k1+···+kj∑

l=k1+···+kj−1+1

Pr(l)

=
k1+···+kj∑

l=k1+···+kj−1+1

e(l)

= v(j).

On the other hand, Pq(j) = v(j), therefore

q(j) =
k1+···+kj∑

l=k1+···+kj−1+1

r(l).
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Let E = P̄−P be the error matrix. Then the following Lemma tells the relationship

between the error of C̄ij and E.

Lemma 2 Let C̄ij and Cij be given by (6.2) and (6.3) respectively, then Cij − C̄ij =

(q(i))TEq̄(j).

Proof. From P̄q̄(j) = v(j) and Pq(j) = v(j), we have P−1P̄q̄(j) = P−1v(j) = q(j).

In other words, P−1(P + E)q̄(j) = q(j). Hence q(j) − q̄(j) = P−1Eq̄(j), which implies

q(j)
l
− q̄(j)

l
= (P−1Eq(j))l = (r(l))TEq(j), for any j = 1, 2, . . . , m and l = 1, 2, . . . , n.

The last equality holds because the matrix P is symmetric. Now using Lemma 1,

formulas (6.2), (6.3), we have

Cij − C̄ij =
k1+···+ki∑

l=k1+···+ki−1+1

(q
(j)
l − q̄(j)

l )

=
k1+···+ki∑

l=k1+···+ki−1+1

(r(l))TEq(j)

= (q(i))TEq̄(j).

Lemma 3 Let d = q̄− q, Cond(P) be the condition number of P, and assume

‖E‖/‖P‖ ≤ 1/Cond(P). Then

d = −(I + P−1E)−1P−1Eq.

Proof. Since v = Pq and v = P̄q̄ = (P + E)(q + d), we have

(P + E)d = −Eq.

Therefore

d = −(P + E)−1Eq = −(I + P−1E)−1P−1Eq,
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where (I + P−1E)−1 exists because of the assumption.

The condition ‖E‖/‖P‖ ≤ 1/Cond(P) is usually satisfied in practice. It simply says

that the relative error of P̄ is small in comparison with 1/Cond(P).

Theorem 1 Under the notations and assumptions of previous Lemmas, we have the

following error representation

Cij − C̄ij = (q(i))TEq(j) − O(‖E‖2).

Proof. From Lemma 2 and Lemma 3,

Cij − C̄ij

= (q(i))TEq̄(j)

= (q(i))TEq(j) − (q(i))TE (I + P−1E)−1P−1Eq(j)

= (q(i))TEq(j) − O(‖E‖2).

Corollary 1 Let ekl be any entry of E, then

|Cij − C̄ij |

≤ |(q(i))T| · |E| · |q(j)|+ O(‖E‖2)

=
n∑

k=1

n∑
l=1

|q(i)
k | · |ekl| · |q(j)

l |+O(‖E‖2)

=
n∑

k=1

n∑
l=1

(|q(i)
k | · |pkl| · |q(j)

l |) ·
∣∣∣∣∣ekl

pkl

∣∣∣∣∣+O(‖E‖2).

Proof. Follows immediately from Theorem 1.

The relative errors
∣∣∣ ekl

pkl

∣∣∣ for all pairs of k, l are usually of the same magnitude,
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depending on how the coefficients are computed. Corollary 1 says that the relative

error is magnified by a factor |q(i)
k | · |pkl| · |q(j)

l |. Therefore for those p̄kl with large

corresponding factor |q(i)
k | · |pkl| · |q(j)

l |, we should compute p̄kl with high accuracy.

This helps to reduce the error for |Cij − C̄ij|.

C. Selective coefficient enhancement algorithm

Selective Coefficient Enhancement Scheme

Input: Conductors, integers i, j and threshold θ.

Output: Capacitance matrix C, where Cij is computed

at high accuracy.

Phase I: Initial computation.

1: Calculate P with ordinary accuracy.

2: For each conductor l, solve Pq(l) = v(l).

3: Compute matrix C.

Phase II: Selective coefficient enhancement.

4: For each entry pkl of P, if |q(i)
k · pkl · q(j)

l | ≥ θ,

recalculate pkl using a more accurate method,

and let the new coefficient matrix be P′.

5: Solve equation P′q(i) = v(i) using the solution

obtained in step 2 as the initial value.

6: Compute Cij using q(i).
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In circuit simulation, the aggressor net and the victim net are often known in

advance. Therefore we need to compute the coupling capacitance between the ag-

gressor and the victim with high accuracy. For this situation, we have the following

2-phase scheme based on the above theory. In the first phase, the capacitance matrix

is computed with the coefficient matrix of ordinary accuracy. In the second phase,

potential coefficients are selectively refined according to charges computed in the first

phase. The selected coupling capacitance is then recalculated.

In the algorithm, i and j denote the capacitance entry Cij that needs to be

computed to high accuracy. Input variable threshold θ is a user supplied value that

affects the final accuracy for Cij.

D. Experimental results

The implemented algorithm is executed on a SUN UltraSPARC Enterprise 4000, and

tested for the 8 bus example shown in Fig. 20. Note that in step 4, the naive way

to check all entries pkl of P takes O(n2) time. However, since we use the HiCap

algorithm [3] (chapter II), which stores matrix P with O(n) links, step 4 takes only

O(n) time.

Table XII gives the experimental results, where the traditional method is either

“no enhancement”, meaning that all coefficients are computed at ordinary accuracy, or

“full enhancement”, meaning that all coefficients are computed at high accuracy. The

high accuracy method uses 3 × 3 Gaussian quadrature, while the ordinary accuracy

method uses the single point. The conductors are labeled from 0 at one side to 7 at

the other side. Only self capacitance Cii or coupling capacitance Cij between adjacent

conductors are significant enough to be considered. The error of a capacitance entry

C̄ij is defined as |C̄ij − Cij|/|Cij|, where Cij is the capacitance computed by full
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Fig. 20. The 8 bus example.
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Table XII. Experimental results of selective capacitance enhancement algorithm.

Time is CPU seconds. Error is with respect to full enhancement.

Capacitance C00 C01 C10 C11 C12 C21 C22 C23 C32 C33

No Error 2.62 3.94 3.99 3.61 4.56 4.41 3.53 4.21 4.15 3.57

Enhance. Time 59.18

Error 0.88 0.79 0.77 0.61 0.95 0.89 0.92 0.54 0.62 0.94

Selective Time 64.8 64.6 66.2 67.6 65.7 65.8 66.8 65.9 65.5 66.9

Enhance. Time

Increase 9.5 9.2 11.9 14.3 11.0 11.2 12.9 11.4 10.7 13.1

Error 0

Full Time 83.25

Enhance. Time

Increase 41.1
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enhancement method. That is why the full enhancement method has no error in the

table. The “time increase” field is compared with the “no enhancement” method.

Our GMRES reduces the two-norm residual to 1% from the initial residual.

The “no enhancement” method gives a less accurate capacitance matrix, while

the “full enhancement” method consumes longer running time, compared with our

selective coefficient enhancement scheme. Our method is suitable for applications

where only a few entries of C need to be computed accurately. If we want to compute

all entries of C accurately, then the full enhancement method is still faster.

E. Summary

Using the sensitivity analysis for linear systems, we present a theory that clarifies

the relationship between the error of each entry of the capacitance matrix and the

error of the potential coefficients. Based on the theory, we propose a technique which

enhances the accuracy of user selected coupling or self-capacitances by increasing the

accuracy of those potential coefficients which are critical. Experiments show that the

accuracy for selected entries of the capacitance matrix can be improved greatly with

a small increase in the overall computation time. This technique is very useful for

accurate crosstalk and signal integrity analysis.
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CHAPTER VII

VARIABLE ORDER MULTIPOLE METHOD

A. Introduction

We discussed the three steps of BEM and the corresponding three sources of error in

chapter I. In the FMM, the potential due to a set of charges located within a region

is approximated by a multipole series. This approximation causes error in the step of

calculating P, which eventually reduces the accuracy of capacitance solution.

In this chapter, starting from the error estimation of the multipole approxima-

tion, we propose the variable order multipole method that selects nodes with large

unbalanced charge distribution for high order expansion, while keeps the expansion

order of other nodes unchanged. Finally, we present the experiments showing the

technique is effective and practical in improving the overall accuracy of the capaci-

tance matrix.

B. Error estimation of the multipole approximation

For FMM, error is introduced by the far field approximation. The traditional error

estimation of FMM [27] is expressed as a function of the radius of the sphere and the

distance to the observation point, but not expressed as a function of the location and

amount of charge. In the following, we present a better error estimation where the

locations and values of charges are taken into account.

For simplicity, let us consider the hierarchical refinement algorithm of chap-

ter II [3]. The hierarchical refinement algorithm can be viewed as the 0-th order

FMM, and is much easier to describe than the general FMM [27].

Theorem 2 Assume we partition a panel Ak into two small panels A1 and A2 of
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equal shape and size. Let the radius of the smallest sphere that contains Ak be rs.

Consider panel Al of distance r from the center of the sphere, for some r > rs. Then

the error of potential at Al due to using Ak with charge (q1 + q2) to approximate A1

and A2 with charges q1 and q2 respectively, is about

|q2 − q1|
2

· rs

r
· pkl.

where pkl is define in (3).

Proof. The potential at x ∈ Al due to the charge on panels A1 and A2, with uniform

charge densities σ1 = q1/area(A1) and σ2 = q2/area(A2) is

∫
x′∈A1

σ1

4πε0‖x′ − x‖da
′ +

∫
x′∈A2

σ2

4πε0‖x′ − x‖da
′. (7.1)

If we treat A1 and A2 as a single panel A with uniform charge density (σ1 + σ2)/2,

then the potential at x will be

∫
x′∈A

σ1 + σ2

2

1

4πε0‖x′ − x‖da
′. (7.2)

Assume without loss of generality σ2 ≥ σ1, then the difference between (7.1) and

(7.2) is

σ2 − σ1

2

1

4πε0

(∫
A1

1

‖x′ − x‖da
′ −

∫
A2

1

‖x′ − x‖da
′
)

≤ σ2 − σ1

2

1

4πε0

∫
A1

(
1

‖x′ − x‖ −
1

‖x′ − x‖+ rs

)
da′

≤ σ2 − σ1

2

rs

r

∫
A1

1

4πε0‖x′ − x‖da
′

≈ q2 − q1
2

· rs

r
· pkl.

The ratio rs/r decreases as r increases, which is fully exploited in the FMM. Now,
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Fig. 21. In (a), assume |q2−q1| ·pkl is less than a user supplied error bound. Therefore

Ak interacts with Al. In (b) assume otherwise. Ak passes the interaction down

to A1 and A2.
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we exploit the other factor q2 − q1, which has not been exploited before.

Previous study has illustrated the correlation between the error of potential and

the error of charge distribution, see [28]. From this correlation, we expect to see

a reduction of error in charge distribution if we reduce the error in potential. Our

variable order multipole idea is thus derived from Theorem 2 and illustrated in Fig. 21.

On the left side of Fig. 21, there is a hierarchy of panel discretization, where panel

Ak is discretized as A1 and A2. In Fig. 21(a), assume |q2 − q1| · pkl ≤ θ, where θ is

a user supplied threshold. Therefore the error given in Theorem 2 is small, and A1

and A2 are treated as one panel Ak when interacting with Al. In Fig. 21(b), assume

|q2−q1|·pkl > θ. Therefore A1 and A2 will interact with Al directly. The interaction in

Fig. 21(a) corresponds to 0-th order multipole, and the interactions in Fig. 21(b) can

be viewed as (1/2)-th order multipole. (It is equivalent to (1/2)-th order multipole

because of the amount of information computed. If we go down two levels, then it

will be comparable to 1st order multipole.) The concept can be applied recursively

for A1 and A2 respectively. As a result, panels high in the hierarchy tend to pass

the interaction down more often than panels low in the hierarchy, and panels contain

non-uniform charge tend to pass the interaction down more often than panels contain

uniform charge distribution.

C. Variable order multipole algorithm

Variable Order Multipole Scheme

Input: Conductors and threshold θ.

Output: Capacitance matrix C.

1: Build low order multipole structure P1.

2: For each conductor i
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3: t← 1.

4: Repeat

5: Run GMRES to solve Pt · q = v for one

iteration, and let the result be qt.

6: For each multipole coefficient pt
kl,

if
(∣∣∣(qt

lleft
− qt

lright

)
· pt

kl

∣∣∣ > θ
)

then use high order expansion for pt+1
kl ,

else use pt
kl for pt+1

kl .

7: t← t+ 1.

8: Until GMRES converges.

9: Compute the i-th row of C from qt.

Based on the error estimation presented in the previous section, we propose the

variable order multipole algorithm. Compared with the traditional FMM algorithms

[4, 3] that improves the accuracy by increasing the expansion order for all nodes,

our new scheme selects some nodes for high order expansion and leaves other nodes

with ordinary expansion order. For nodes with large unbalanced charge distribu-

tion and large potential coefficient, i.e., large
∣∣∣(qt

lleft
− qt

lright

)
· pt

kl

∣∣∣, we use high order

expansion.

Threshold θ is a user defined value that decides which coefficients are selected

for high order expansion. In our implementation, high order expansion means going

down the hierarchy as shown in Fig. 21. Note that in step 6, we also rely on the fact

that our algorithm stores the potential coefficients matrix in a data structure of size

O(n) [3]. Therefore step 6 takes only O(n) time.
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D. Experimental results

Experimental result is shown in Fig. 22. The implemented algorithm is executed on

a SUN UltraSPARC for the 4× 4 conductor example used in [4] and [3]. The error of

capacitance matrix C̄ is defined as ‖C̄−C‖/‖C‖, where norm ‖ · ‖ is the Frobenius

norm, and C is the accurate capacitance matrix computed by using direct method

without FMM. Our GMRES reduces the two-norm residual to 1% from the initial

residual.

In Fig. 22, point A is for the case where all nodes have ordinary expansion order

and point B is for the case where all nodes have high expansion order. Both A and B

are based on the traditional hierarchical method. Points between A and B are from

variable order multipole method with various θ.

From the curve in Fig. 22, we find point C has comparable accuracy as B while

uses much less time. This shows the advantage of the proposed scheme over traditional

methods.

E. Summary

In this chapter, we first present the error estimation of the multipole approximation.

Unlike the traditional error estimation of the multipole approximation, we consider

the locations and values of the charges in our error estimation as well. Then, based

on the new error estimation, we propose the variable order multipole method that

selects nodes with large unbalanced charge distribution for high order expansion,

while keeps the expansion order of other nodes unchanged. The experiments show

that the variable order multipole method is effective and practical in improving the

overall accuracy of the capacitance matrix.
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CHAPTER VIII

MULTIGRID METHOD

A. Introduction

According to the discussion in chapter I, in the discretization step, approximation

error is introduced due to the assumption of uniform charge distribution on each

panel. This error is the dominant approximation error of BEM. Ideally, very fine

discretization is desirable. However, fine discretization results in large linear systems

and unacceptable computation time. To reduce the time cost while preserving high

accuracy, we propose a multigrid-like scheme to acquire a good initial solution from

coarse discretization.

B. Multigrid method for capacitance extraction

The multigrid method is a fast linear iterative solver based on the multilevel or multi-

scale paradigm [29]. The multigrid method uses several levels of refinement. The

solution of each level is mapped to the next (finer) level and used as the initial value

for solving the next (finer) level. Compared with the traditional method, the multigrid

method may use the same number of iterations. However most systems solved by the

multigrid method are small, thereby saving the total time. The multigrid method

can be applied in combination with any of the common discretization techniques. In

this section, we apply multigrid method to capacitance extraction. The algorithm is

outlined below.

In this algorithm, charges on each coarse panel are evenly mapped to its fine

panels. Different convergence criteria εcoarse and εfine are used for coarse level and

fine level respectively. Usually, small εfine is chosen to guarantee the accuracy of the
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final solution. On the other hand, large εcoarse is chosen because it provides sufficiently

good initial solution at low computation cost.

Multigrid Scheme

Input: Conductors, convergence criteria

εcoarse and εfine.

Output: Capacitance matrix C.

1: Discretize conductor surfaces coarsely and build

corresponding coarse level linear system

Pcoarse · qcoarse = vcoarse.

2: Further discretize conductor surfaces and build

corresponding fine level linear system

Pfine · qfine = vfine.

3: For each conductor i,

4: Solve coarse level linear system for qcoarse
(i)

with convergence criteria εcoarse.

5: Map qcoarse
(i) to fine discretization q0

fine
(i)

.

6: Solve fine level linear system for qfine
(i)

using q0
fine

(i)
as the initial value,

with convergence criteria εfine.

7: Compute i-th row of matrix C using qfine
(i).

C. Experimental results

Fig. 23 is a comparison of multigrid method and traditional method for the 4 ×
4 bus crossing example (Fig. 11). For the traditional method, the conductors are
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divided into 17408 panels and the large system is solved directly with the convergence

criteria ε = 0.01. It takes 16 iterations to reduce the residual to less than 0.01.

The computation time is 34.84 sec. For the multigrid method, the conductors are

divided into 576 panels at the coarse level and further divided into 17408 panels at

the fine level. With convergence criteria εcoarse = 0.1 and εfine = 0.01, the number

of iterations for coarse level and fine level are 5 and 11, respectively. Compared with

the traditional method, multigrid method saves 5 iterations of solving a large system

at the expense of 5 iterations of solving a small system. The total computation time

is 26.72 sec, which is 23.2% less than that of the traditional method.

Our experience tells us that using more than two levels of refinement does not

provide additional benefit. This is because for capacitance extraction, the total num-

ber of iterations is small. Therefore if there are three or more linear systems, then

the number of iterations for the finest level will not decrease, while the overhead for

setting up linear systems will increase.

D. Summary

In this chapter, we apply multigrid method for the first time to capacitance extrac-

tion. The method solves the linear system with fine discretization faster by using the

solution of coarse discretization as a good initial solution for the linear solver. The

experiments show the potential of the multigrid method.
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Fig. 23. Experimental result for multigrid scheme.
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CHAPTER IX

CONCLUSIONS

In this dissertation, we presented several novel techniques based on BEM for the

capacitance extraction problem. Our algorithms are significantly faster than existing

techniques and have comparable accuracy.

We proposed the PHiCap algorithm, which is based on the hierarchical refine-

ment algorithm and the wavelet transformation. Unlike traditional algorithms which

result in dense linear systems, PHiCap reduces the capacitance extraction problem

to a sparse linear system. PHiCap uses the efficient preconditioning techniques to

accelerate the rate of convergence of the iterative method used to solve the sparse

linear system. Experiments on benchmark problems in both uniform and multi-layer

dielectric show that PHiCap is more efficient than FastCap and HiCap. Since the

transformation step is accurate, the accuracy of PHiCap is the same as that of Hi-

Cap. It is worth noting that the dense-to-sparse transformation used in PHiCap

is applicable to multipole-based methods as well, where the linear system can be

represented by a block matrix.

We have also proposed an iteration-free method called RedCap for capacitance

extraction. Starting from the sparse linear system of PHiCap, RedCap reorders the

wavelet basis, so that the sparse linear system is approximated by its incomplete

factorizations without much loss of accuracy. Then, a reduced linear system is iden-

tified and solved for the total charges of each conductor surface using forward and

backward substitution. The capacitances are computed directly from the solution of

the reduced linear system. To our knowledge, this is the first capacitance extraction

algorithm based on BEM that reduces the problem size from O(n) to O(m), and

solves the reduced problem using direct method. Numerical experiments show that
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the RedCap algorithm is up to 100 times faster than FastCap [4] and is up to 4 times

faster than PHiCap [16]. The error with respect to FastCap is within 2% for the

experiments we have done.

We presented a theory based on the sensitivity analysis for linear systems that

clarifies the relationship between the error of each entry of the capacitance matrix

and the error of the potential coefficients. We proposed a technique that enhances

the accuracy of user selected coupling or self-capacitances by increasing the accuracy

of those potential coefficients which are critical. Experiments show that the accuracy

for selected entries of the capacitance matrix can be improved greatly with a small

increase in the overall computation time. This technique is very useful for accurate

crosstalk and signal integrity analysis.

We also developed a more comprehensive error estimation procedure of the mul-

tipole approximation that consider the locations and values of the charges as well.

Using this procedure, we proposed a variable order multipole method in chapter VII.

This algorithm selects nodes with large unbalanced charge distribution for high order

expansion, while keeps the expansion order of other nodes unchanged. The exper-

iments show that the variable order multipole method is effective and practical in

improving the overall accuracy of the capacitance matrix.

Finally, we applied the multigrid method to capacitance extraction problems.

To the best of our knowledge, this is the first time multigrid has been used for

the capacitance extraction problem. The method solves the linear system with fine

discretization faster by using the solution of coarse discretization as a good initial

solution for the linear solver. The experiments show the potential of the multigrid

method.
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