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ABSTRACT

Tax Policies, Vintage Capital, and Exit and Entry of Plants. (December 2005)

Shao-jung Chang, B.A., National Cheng Chi University

Chair of Advisory Committee: Dr. Dennis W. Jansen

Following Chamley, Lucas, Laitner, and Aiyagari, this dissertation continues to

explore the answer for the question of zero capital taxation by discussing how taxes

on capital income, labor income, and property affect the economy in the context

of a vintage capital model where the embodied technology grows exogenously. The

government maximizes social welfare by finding the optimal combinations of the three

tax rates in the steady state and examines the welfare gain/loss over and after the

transitions caused by different types of shocks. The simulation method used here is

linear approximation.

My results show that in the steady-state economy, given a fixed level of gov-

ernment expenditure and a zero property tax rate, the capital-income tax rate that

maximizes steady-state utility may be negative, zero, or positive depending on the

level of government expenditure. I also find that, for many values of government

spending, the highest level of steady-state utility occurs with a subsidy to capital

income and a tax on labor income. Finally, I find that when taxes on capital income,

labor income, and property are available, capital-income taxes are generally the last

resort to finance government expenditures.

My results show that in the transitional economy, when tax rates are perma-

nently changed and the government expenditure is near zero, the loss of utility over

the transition from no taxes to capital subsidies is too large so the idea itself is not

utility-enhancing. Secondly, I find that when the government expenditure is low and

a positive technology shock occurs, social welfare in the economy without capital-
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income taxes may perform better in the early phase of the transition but worse in the

later phase of the transition than that in the economy without property taxes. How-

ever, the situation becomes the opposite as government expenditures increase. In

addition, when one tax is allowed to change, a changing labor-income tax may bring

more utility over the transition than the other two taxes. Finally, when the govern-

ment expenditure is unexpectedly reduced, I find that using property taxes rather

than capital-income taxes stimulates consumption and employment more given a

higher initial level of government expenditure.
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CHAPTER I

INTRODUCTION

It is widely known that taxing capital income is taxing future consumption.

Faced with taxes on capital income, consumers will consume more and save less to

avoid being taxed on capital income in the future. But why is capital income still

taxed?

Chamley (1986) discusses the optimal long-run capital-income tax rate, and ar-

gues that in an infinitely-lived representative agent model, even though the current

(short-run) capital-income tax rate may be positive (because the current capital stock

is fixed), the optimal capital-income tax rate should be zero in the long run. Lu-

cas (1990) and Laitner (1995) advocate this view and show that if the U.S. economy

switches from the currently positive capital-income tax rate to a zero capital-income

tax rate, and credibly commits to this rate of zero, the U.S. economy will experience

a welfare gain. Atkeson, Chari, and Kehoe (1999) show that Chamley’s result is well

established even when his model is further extended. However, as Aiyagari (1995)

points out, the currently positive capital-income tax rate may be optimal. By also

using an infinitely-lived representative agent model and adding idiosyncratic shocks

to individual income and an uninsured market structure into the model, Aiyagari

argues that, faced with a fluctuating income, consumers have the incentive to save

more out of precautionary motives and thus overly accumulate capital. When cap-

ital is over-accumulated, the return on capital is depressed and falls below the rate

of time preference. A positive capital-income tax rate can discourage consumers’

willingness to save and adjust capital income so that the return on capital is equal

This dissertation follows the style of American Economic Review.
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to the rate of time preference.

A. The Aim of This Dissertation

This dissertation attempts to find out how capital-income tax rates affect welfare

in the long run in a vintage capital model where embodied technology progresses

exogenously and plants are retired if their current value becomes lower than their

scrap value. To be more precise, we want to know if the optimal capital-income tax

rate is zero or positive in a vintage capital model with the exit and entry of plants.

There are two elements that make this paper different from Chamley (1986)

and Aiyagari (1995): Vintage capital and the exit and entry of plants. The concept

of vintage capital is that technology is embodied within capital (either equipment

or machine) when capital is created, and the productivity of that capital cannot be

changed after it is made. When the productivity of the capital becomes too low,

firms invest in new capital. In Greenwood, Hercowitz, Krusell (1997), the authors

discuss if the idea of vintage capital is practical. They show that prices of equipment

have been declining over the post-war years, and they conclude that the technology

of producing equipment is making equipment either more productive or cheaper over

time. They conclude that the idea of vintage capital is able to explain this phe-

nomenon. 1 Literature on vintage capital and investment behavior has been growing

since then. 2 For example, Cooley, Greenwood, and Yorukoglu (1997) endogenize

the rate of embodied technology growth by building a two-sector model with human

capital accumulation and discuss how tax policies affect the compositions of the ag-

1For earlier literature on equipment or capital price and economic growth, please
see DeLong and Summers (1991) and Jones (1994).

2Literature on examining the assumption of vintage capital by using empirical
data at the industry level has also been growing recently such as Cummins and
Violante (2002), and Sakellaris and Wilson (2004).
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gregate capital stock. Yorukoglu (1998) argues why investment is lumpy when firms

can choose to replace or upgrade the current capital stock. 3 On the other hand,

Hopenhayn (1992) extends a stochastic model for a competitive industry to account

for exit, entry, sizes, and growth of plants. Campbell (1998) sets up a model to

simulate the correlations among exit and entry rates of plants and output over the

business cycle when an exogenous technology shock hits an economy. Cooley and

Quadrini (2001) further discusses the relation between firm dynamics and financial

markets.

This paper is based on the model of Campbell (1998), who observes the corre-

lations among exit and entry rates of U.S. manufacturing plants and their output

growth rates over the business cycle. He notes that the entry rate covaries positively

with the contemporaneous output growth rate, and the exit rate leads both the entry

rate and the output growth rate. To explain this pattern, his model is based on the

phenomenon of exit and entry of plants and the premise of embodied technology

growth. Business cycles occur when the embodied technology grows more or less

than expected. While a positive shock to embodied technology growth speeds up the

exit of marginal plants, more new plants are created and are embodied with higher

technology. After some time, when these new plants enter the economy, output grows

faster than the trend rate.

This paper departs from Campbell (1998) to discuss how tax policies affect the

economy in a vintage capital model and with exit and entry of plants. We introduce

a government that engages in government expenditure and pays for this by taxing

capital income, labor income, and/or property. The design of the exit and entry of

3Lumpy investment has been further related to the real-business-cycle theory re-
cently. For this part of literature, please see Cooper, Haltiwanger, and Power (1999),
Gilchrist and Williams (2000), and Thomas (2002).
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plants makes it possible to discuss the effect of a property tax. In our model the

plant value can be taxed when ownership of the plant is traded between consumers

and firms. When plant value is taxed, it becomes lower and marginal plants whose

value is now lower than the scrap value exit the industry. Cooley, Greenwood, and

Yorukoglu (1997) also discuss tax policies, but their main focus is on the effects of a

capital-income tax and an investment credit on the compositions of the capital stock

and welfare in the economy. In our model, government expenditure is assumed to be

fixed in the steady state, and tax rates are chosen to satisfy the government budget

constraint. There is no debt issued. The government attempts to maximize social

welfare by finding optimal combinations of the three tax rates.

Our results show that in a stationary economy, given a fixed level of government

expenditure and a zero property tax rate, the optimal capital-income tax rate may

be negative, zero, or positive dependent on the level of government expenditure.

We find that for many values of government spending the highest level of steady-

state utility occurs with a subsidy to capital income and a tax on labor income.

Finally, we find that when taxes on capital income, labor income, and property

are available, a positive capital-income tax is generally the last resort to finance

government expenditures. As for the transitional economy, we find that although

subsidizing capital by taxing labor brings more utility in the steady state when

government expenditure is small, the idea of moving from the current tax rates to the

optimal tax rates is impractical. In addition, we find that when a technology shock

hits the economy, letting labor-income tax rate fluctuate may bring higher utility

over the transition. Finally, we find that when government expenditure is higher,

using property tax rate rather than capital-income tax rate stimulates consumption

and employment more when there is an unexpected reduction in the government

expenditure.
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One contribution of this dissertation is to further expand our knowledge about

the optimal capital-income tax. Chamley (1986) tells us that in the long run, the

capital income tax rate should be zero. From Aiyagari (1995), we know that with

idiosyncratic shocks to income and a market structure of incomplete insurance, the

capital-income tax rate may be positive because positive capital-income tax rates can

prevent consumers from overly accumulating capital for precautionary motives. We

use a vintage capital model of the exit and entry of plants to calculate the optimal

capital-income tax rate and find that this rate is not generally zero. In addition, this

paper also contributes to the knowledge of the optimal way to finance government

expenditures by using capital-income, labor-income, and property taxes.

This dissertation is organized as follows: Chapter II describes the model econ-

omy; Chapter III discusses the optimal tax policies in the steady state by examining

our simulation results; Chapter IV focuses on the transitions caused by several types

of shocks with the presence of government expenditure and tax rates; Chapter V

concludes.
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CHAPTER II

THE MODEL ECONOMY

A. The Story

In Campbell’s (1997) model, the private sector consists of consumers, firms, and

plants. Consumers, whose size will later be normalized to one, are identical in ability

and preference and are each endowed with same amount of initial wealth and one unit

of time per period. In each period, consumers maximize utility by allocating their

time between work and leisure and their wealth plus income between consumption

and investment in the ownership of plants.

The ownership of plants are traded between consumers and firms. Ownership is

purchased by consumers from firms at the end of the period, and is sold back to firms

at the beginning of the next period. In other words, plants are held by consumers

between periods, and by firms over periods. Plants are either operating plants or

developing plants. Operating plants are capable of production, while developing

plants are in need of more development (i.e. investment spending) before starting

to produce. There are also two types of firms. At the beginning of the period,

production firms purchase operating plants and manage them to produce the final

good, while investment firms purchase developing plants and further develop them.

In addition, production firms scrap unproductive plants after the production period,

while investment firms create new plants. At the end of the period, all existing

plants are sold to consumers. The timing of these events within a period is shown in

Figure 1.

Operating plants differ in productivity. The initial productivity of an operating

plant is partly decided by new capital created when the plant is built and is partly
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plants.

Time line

Production firms

Labor sold to production firmsA representative consumer

Investing on two types of assets

Operating plants Developing plants

production firms

Sold to Sold to

Investment firms

In the end, production firms liquidate by 

by selling all plants back to the consumer.

selling existing operating plants back to

the consumer; investment firms liquidate

investment firms

To−do things:

1: Develop plants created in the last period;

2: Build new plants.

t+1t

Endowed with

one unit of time

To−do things:

1: Produce the

aggregate good;

2: Retire unproductive

Figure 1. The Events in a Period

decided by the degree of success in using the capital with labor to produce the

final good a few periods later when the development process is over.1 The final

good produced by an operating plant can then be used as consumption good or new

capital. The idea of vintage capital in this model allows for new capital created

in each period to be endowed with the most advanced technology available in that

period. This frontier technology is assumed to grow exogenously. Capital, once

equipped inside a plant, cannot be replaced or upgraded until the plant is scrapped,

1In this chapter, the length of this whole development process is assumed for
illustrative purpose to take two periods and to be fixed across all new plants and
over time. In our quantitative experiment in the following chapter, the development
process takes five periods to complete, where one period can be thought of as one
quarter.
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so only new plants are equipped with new capital which in turn is embodied with the

leading-edge technology. 2 The subsequent evolution of productivity at an operating

plant depends on the idiosyncratic productivity shock which hits the plant between

periods, when consumers own the plant. 3 This shock is specific to individual plants,

in contrast to the embodied technology shock, which is specific to the whole economy

and incorporated into all capital of a particular vintage. The average next-period

productivity of an operating plant is expected to be as good as its current-period

productivity, so the idiosyncratic productivity shock has mean zero.

In comparison with those in traditional models who earn capital income by

renting their own capital to firms, consumers in this model earn capital income by

selling their own operating plants to production firms. 4 What production firms earn

from an operating plant is capital income from current production after paying labor

and then the scrap value from plants to be retired and the resale value from the rest

of the plants. Scrap value is measured in units of the final good, and in this model

the units of final good per unit of capital in scrapped plants is assumed to be fixed.

Because we assume free entry of firms, production firms compete with each other to

the extent that each firm earns zero profit. This implies that the sum of all earnings

from an operating plant at the end of the period should equal the purchase cost of

the operating plant, the price that production firms pay to consumers for the right

to operate the operating plant at the beginning of the period. In Campbell (1998),

trade in the ownership of plants is the mechanism for explicitly estimating the exit

2Yorukoglu (1998) assumes that a plant can either replace the whole capital stock
or upgrade part of it. How this assumption has an impact on the investment behavior
of a plant over the plant’s fixed lifetime is the focus in his paper.

3These shocks can be thought of as partly due to a random idiosyncratic
depreciation.

4Consumers earn no capital income from a developing plant whose productivity
remains undetermined until the plant enters the industry.
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and entry of plants. This mechanism may look odd at first, but as a matter of fact,

consumers in this model, just like those in traditional models, earn capital income

in each period. Here that income is realized in the price paid and price received on

the trade in operating plants. Note that investment firms also earn zero profit from

developing plants, again because of free entry.

After adding the government sector to the original model, our focus is changed

to study the effect of fiscal policy within this vintage-capital model with exit and

entry of plants. 5 In this model the government is assumed to finance government

expenditure by taxing capital income, labor income, and property. The last tax is

collected through a tax on trading the ownership of operating plants. Since operating

plants are traded twice between consumers and firms per period, it is assumed that

the property tax is imposed on the production firms at the beginning of the period.

The interesting part of the property tax lies on its influence on plant value, which

was originally decided by the productivity of a plant, and on the exit threshold

of productivity, which determines whether a plant survives through next period.

Initially we conjecture that there might be a trade-off between the capital-income

tax and the property tax for two reasons. First, compared to the tax base for the

capital-income tax, the tax base for a property tax is large so that the property

tax rate can be set at a relatively low rate compared to the capital-income tax

rate. Second, a property tax may influence social welfare because it affects the

exit threshold of productivity while capital-income tax does not. We assume the

government budget constraint is balanced in each period, and there is no other

instrument to pay for government expenditures. Our objective is to explore how

5Cooley, Greenwood, and Yorukoglu (1997) discuss a vintage-capital model in
which capital has a fixed lifetime and firms decide the optimal time to retire a plant
before the capital equipped inside of it reaches its end of lifetime.
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capital-income, labor-income, and property taxes interact to decide the economy’s

long-run equilibrium. In the long run, the capital-augmenting economy grows at

a fixed rate, and government expenditure is assumed to grow at the same rate as

output. Therefore, after a growing economy is transformed to a stationary economy,

government expenditure is again fixed at some level.

B. The Productivity of a Plant

This section explains the decision of the initial productivity of a plant and the

evolution of its subsequent productivity until the plant is scrapped. The production

of the final good needs capital and labor. An operating plant i faces a Cobb-Douglas

production function with elements of effective capital and labor. Effective capital is

the ”real” unit of capital after its embodied technology is taken into account. At

period t, the production function for the plant i is:

yi,t = (ki,t evi,t)1−α nα
i,t (2.1)

The capital stock of the plant, ki,t, is fixed over the plant’s lifetime, and its

size is normalized to one because the plant’s size is irrelevant. There is no limit on

a plant’s lifetime as long as it survives. The productivity of the plant is given by

evi,t , where e is the exponential function and vi,t is a random variable indicating the

plant i’s productivity at period t. The labor employed by the plant is ni,t, and its

output is yi,t. The share of labor income is α and is the same across plants and over

time. Effective capital is calculated as the product of the plant’s capital, ki,t, and

the plant’s productivity, evi,t . Suppose that the productivity of the plant i at period

t is evi,t . Its productivity at period t + 1 is described by Equation 2.2. Note that vi,t

follows a random walk process. The innovation, εi,t+1, is one of the two idiosyncratic
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shocks in this model. It symbolizes the fluctuation of a plant’s productivity. This

shock is realized between periods, when consumers hold the ownership of plants.

vi,t+1 = vi,t + εi,t+1 (2.2)

where

εi,t+1 ∼ N(0, σ2) (2.3)

To decide the initial productivity of a plant, we first denote the leading-edge

technology as z and assume that this technology accumulates according to the fol-

lowing equation:

zt = µ + zt−1 + εz
t (2.4)

where

εz
t ∼ N(0, σ2

z) (2.5)

Intuitively, the drift, µ, should be positive. The shock to the leading-edge tech-

nology is εz
t . There are two factors deciding the initial productivity of a plant. One

is the leading-edge technology, and the other one is the degree of success in operating

the leading-edge technology, which is the second type of idiosyncratic shocks. For a

plant being created at period t and entering the industry at period t + 2, its initial

productivity is a random draw from the following normal distribution with mean zt

(the leading-edge technology at t) and standard deviation σe.

vi,t+2 ∼ N(zt, σ
2
e) (2.6)

All types of shocks, including the aggregate embodied technology shock and

the two idiosyncratic shocks, are revealed between periods. Note that when the
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ownership of plants is traded at the beginning of the period, their new productivity

is observable to both consumers and firms, while at the end of the period, it is not

observable so that the resale price of plants is based on the expectation of the plant’s

productivity in the next period. Figure 2 illustrates the creation of a new plant

before it enters the industry.

Time line

Status: New Status: Developing

Status: Developing Status: Operational

one period of time, the plant is waiting for its capital

holds it actually does nothing to it.

By assumption that reallocation of capital takes

in position this period and the investment firm who

and before he/she sells it to a production

productivity is decided.

After the consumer purchases it back

firm at period t + 2, its initial level of

t + 2

1 unit of capital good
A new plant needs

which equals 1 unit of the

t + 1t

aggregate good

as a developing plant

The new plant is built and is
sold to the consumer

Figure 2. The Creation of a New Plant

C. Decisions by Production Firms

Production firms have several decisions to make in each period. The first one

is to decide the number of operating plants of different levels of productivity to

purchase at the beginning of the period. Once this decision is made, these firms hire

and allocate labor at the purchased plants, and after the production, they decide if

any of the purchased plants should be retired and sell the rest back to consumers.

A production firm’s profit-maximizing objective function at period t is shown as
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follows:

max
kt(vt),nt(vt),st(vt)

−(1 + τ p
t )
∫

∞

−∞

q0
t (vt) kt(vt) dvt

+(1 − τ c
t )
∫

∞

−∞

kt(vt) [ evt(1−α) nt(vt)
α − wt nt(vt) ] dvt

+
∫

∞

−∞

η st(vt) kt(vt) dvt

+
∫

∞

−∞

q1
t (vt) [ 1 − st(vt) ] kt(vt) dvt

(2.7)

The first term is the total cost of purchasing operating plants of different pro-

ductivity vt that is paid to consumers at the beginning of period t. The value of a

plant with a certain vt at the beginning of period t is q0(vt), and kt(vt) is the number

of such plants owned by the firm. The property tax that the firm pays for a plant

is proportional to the plant’s value and is τ p
t . The second term is the net capital

income that the firm earns after paying labor income, wtnt(vt). The real wage is wt,

and n(vt) is the labor allocated at the plant with vt. The output of the plant with

vt is evt(1−α)nt(vt)
α, where the plant’s capital stock is normalized to one. The tax

rate on capital income is τ c
t . The third term is the scrap value earned from scrapped

plants. The scrap value is assumed to be η per unit of capital and to be less than

one. The proportion s(vt) means the percentage of plants with vt to be scrapped

after current production. The last term is the resale value earned from the existing

plants. The value of the plant with vt at the end of the period is q1(vt). Note that

except the first term, the other terms are income earned after production.

A production firm solves its problem in two steps. First, taking the labor hired

by the firm, nt, as fixed, the firm decides how to allocate its labor into their purchased

plants of different productivity. The firm’s problem is as follows:
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max
nt(vt)

∫

∞

−∞

kt(vt) [ evt(1−α) nt(vt)
α ] dvt (2.8)

subject to

∫

∞

−∞

kt(vt) nt(vt) dvt ≤ nt (2.9)

As shown in Solow (1960), after the firm’s effective capital is defined as k̄t =

∫

∞

−∞
kt(vt) evt dvt, a solution for nt(vt) can be easily achieved as follows:

nt(vt) =
nt evt

k̄t

(2.10)

The solution for nt(vt), which decides the amount of labor hired at a plant with

a certain vt, depends on two factors, the labor-effective capital ratio and the plant’s

productivity. Because production firms are identical, each firm’s labor-effective cap-

ital ratio is the same as that for the economy.

At the second step, after nt(vt) is replaced with Equation 2.10, the firm’s ag-

gregate output can be simplified as the Cobb-Douglas production function, and its

objective function becomes:

max
kt(vt),nt,st(vt)

−(1 + τ p
t )
∫

∞

−∞

q0
t (vt) kt(vt) dvt + (1 − τ c

t )[ k̄1−α
t nα

t − wt nt ]

+
∫

∞

−∞

η st(vt) kt(vt) dvt +
∫

∞

−∞

q1
t (vt) [ 1 − st(vt) ] kt(vt) dvt

(2.11)

Next, the firm derives its first-order conditions with respect to kt(vt), nt, and

the proportion of plants with productivity vt to be scrapped, st(vt).
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wt = α [
k̄t

nt

]1−α (2.12)

q1
t (vt) = η (2.13)

(1 + τ p
t ) q0

t (vt) = (1− τ c
t ) (1− α) evt (

k̄t

nt

)−α + 1 { vt < vt } η + 1 { vt ≥ vt } q1
t (vt)

(2.14)

The first equation decides the labor hired by the firm. The second equation sets

the exit threshold of productivity, vt, such that plants of this specific productivity are

indifferent between operation and shutdown after the production. The plant value,

which equals the expected sum of a stream of revenue earned from output net of

wages paid to labor, rises with the plant’s productivity, so a plant with productivity

higher than vt survives through the next period and exits otherwise. The third

equation implies that the optimal purchase of a plant with productivity vt yields

zero profit. The term on the LHS is the purchase cost of the plant with vt, and the

three terms on the RHS are the after-tax capital income, the scrap value if the plant

is scrapped, and the resale value if the plant is sold back to consumers, respectively.

1 {·} is an indicator function, which takes the value of 1 when the plant with vt

survives and 0 otherwise.

D. Decisions by Investment Firms

Investment firms make two decisions each period. The first one is to decide the

number of developing plants to purchase at the beginning of the period. Investment

firms purchase developing plants and further develop them. Meanwhile, these firms
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build new plants. At the end of the period, investment firms sell their plants to

consumers. An investment firm’s objective function at period t is presented as (2.15):

max
xt(0),xt(1)

[ q1i
t (1) − q0i

t (0) ] xt(0) + [ q1i
t (2) − q0i

t (1) ] xt(1) (2.15)

The number of plants, xt(0), is created at period t, and xt(1) is the number of

plants created at period t− 1. The first term is the profits earned from creating new

plants. The second term is the profits earned from further developing plants created

in the last period. The resale value of a plant developed for j periods is q1i
t (j). The

cost of creating a new plant is q0i
t (0), and equals one because the capital stock of a

plant is normalized to one and the transformation from consumption good to capital

is one-to-one. The purchase cost of a plant created in the last period is q0i
t (1). The

zero-profit condition implies the following conditions:

q1i
t (1) = q0i

t (0) = 1 (2.16)

q1i
t (2) = q0i

t (1) (2.17)

E. Decisions by Consumers

Consumers are identical in preference. They consume the final good and invest

in the portfolio consisting of the ownership of plants with different productivity.

They are each endowed with one unit of time to allocate between leisure and work.

Utility comes from consumption and leisure. The problem for a consumer j at period

s is shown as follows:

max
cj
t ,nj

t ,i1j
t ,i2j

t ,kj
t (vt)

Es

(

∞
∑

t=s

βt u(cj
t , 1 − nj

t)

)

(2.18)
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where

u(cj
t , 1 − nj

t) = ln cj
t + κ (1 − nj

t) (2.19)

subject to

cj
t + q1i

t (1) i1j
t + q1i

t (2) i2j
t +

∫

∞

−∞

q1
t (vt) k1j

t (vt) dvt =

(1 − τw
t ) wt nj

t + q0i
t (1) i1j

t−1 +
∫

∞

−∞

q0
t (vt) k0j

t (vt) dvt

(2.20)

k0j
t+1(vt+1) =

∫

∞

−∞

1

σ
φ(

vt+1 − vt

σ
) k1j

t (vt) dvt +
1

σe

φ(
vt+1 − zt−1

σe

) i2j
t (2.21)

β is the discount factor. There are two constraints. The first one is the budget

constraint. At the beginning of period t, the consumer sells his/her plants including

operating plants and developing plants created in the last period, i1j
t−1, to firms.

The number of plants with a certain productivity vt owned by the consumer j is

denoted as k0j(vt). At the end of period t, the consumer earns labor income, wt nj
t ,

and invests in new plants that are created in the current period, i1j
t , the developing

plants that are created in the last period and are going to enter the market in the

next period, i2j
t , and the surviving operating plants of different productivity, k1j(vt).

The second constraint shows the evolution of the next-period productivity of the

plants invested by the consumer. The first term on the RHS is the expected number

of the purchased operating plants having a certain productivity in the next period,

where σ is the standard deviation of v and 1
σ
φ(·) is the normalized standard deviation

of v. The second term on the RHS is the number of plants that are ready to enter
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the market and will have the same productivity in the next period, where σe is the

standard deviation of z and 1
σe

φ(·) is the normalized standard deviation of z. The

first-order conditions for the consumer j are:

q1
t (vt) = Et [ β

cj
t

cj
t+1

∫

∞

−∞

1

σ
φ(

vt+1 − vt

σ
) q0

t+1(vt+1) dvt+1 ] (2.22)

q1i
t (2) = Et [ β

cj
t

cj
t+1

∫

∞

−∞

1

σe

φ(
vt+1 − zt−1

σe

) q0
t+1(vt+1) dvt+1 ] (2.23)

q1i
t (1) = Et [ β

cj
t

cj
t+1

q0i
t+1(1) ] (2.24)

κ = (1 − τw
t )

wt

cj
t

(2.25)

The first equation decides k1j(vt), the number of surviving operating plants with

productivity vt. The second equation decides i2j
t , the number of plants created in the

last period and starting to produce in the next period. The third equation decides

i1j
t , the number of plants created in the current period. The fourth equation decides

the labor supply. The labor-income tax rate is τw
t .

F. Decisions by Government

The government taxes capital income, labor income, and property to finance

government expenditure. Government expenditure does not enter the utility func-

tion. 6 There is no borrowing or transfer payment from the government to consumers.

6Since our interest is in the preferred combination of taxes, and since we are going
to hold the level of government expenditures fixed in the transformed and stationary
economy, this assumption is not important to our results.
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In equilibrium, government expenditure grows as fast as output so that it remains a

constant proportion of economy-wide output. The government budget constraint is

shown in Equation 2.26.

Gt = τw
t wt Nt + τ c

t ( K̄1−α
t Nα

t − wt Nt ) + τ p
t

∫

∞

−∞

q0
t (vt) Kt(vt) dvt (2.26)

where

Yt = K̄1−α
t Nα

t (2.27)

Denote government expenditure as G. The N , K̄, K(v), and Y are labor,

effective capital, number of plants with productivity v, and output at the aggregate

level, respectively. The government investigates the effect of various combinations

of taxes on capital income, labor income, and property on the economy’s long-run

equilibrium given a fixed path of government expenditure.

This economic system includes the first-order conditions of production firms

(Equations 2.12, 2.13, 2.14), investment firms (Equations 2.16, 2.17), and con-

sumers (Equations 2.22, 2.23, 2.24, 2.25). In addition, there are two constraints

of consumers (Equations 2.20, 2.21), one definition of the effective capital, one gov-

ernment budget constraint (Equation 2.26), and two aggregate resource constraints

(Equations 2.28, 2.29) as follows:

Ct + I1
t + Gt = Yt + η

∫ vt

−∞

Kt(vt) dvt (2.28)

I2
t+1 = I1

t (2.29)

Aggregate consumption is C and aggregate investment in the creation of new
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plants is I1. The second term on the RHS of the first equation is the units of the final

good that is transformed from scrapped capital. Note that investment defined in the

traditional way is either Yt − Ct − Gt or, equivalently, I1
t − η

∫ vt
−∞

Kt(vt) dvt. The

second constraint ensures that all new plants enter the industry after the development

process is completed. All markets are cleared. In the next chapter, we examine

our simulation results and discuss how tax policies affect the economy’s long-run

equilibrium.
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CHAPTER III

THE STEADY-STATE ECONOMY

A. Approximating Integrals

To compute the steady-state values, we need to approximate the integrals ap-

pearing in various equations. These integrals mainly come from the distribution of

the number of plants with different productivity and the corresponding distribution

of the plant value. The method we use is the Gaussian quadrature approximation,

which was also used in Campbell (1997). To illustrate the idea of Gaussian quadra-

ture approximation, suppose there is a function as follows:

g(y) = b(y) +
∫ b

a
A(y, x)g(x)dx (3.1)

As there is no analytic expression for the integral on the right side of the equa-

tion, this method approximates the integral with a weighted sum as follows:

g(y) ≈ b(y) +
N
∑

i=1

ωi(a, b)A(y, xi)g(xi) (3.2)

The abscissas xi’s and weights ωi’s are decided by the Gauss-Legendre N-point

quadrature formula. Each abscissa, xi, is located between a and b and is assigned

its weight, ωi. There are N chosen abscissas, (x1, x2, . . . , xN) to replace y in the

equation. With a system of N equations consisting of g(x1), g(x2), . . . , g(xN), the

distribution of g(y) can be approximated through simple matrix operations.

B. Building and Solving a Stationary System

Because the embodied technology grows constantly over time, such a non-

stationary economy needs a transformation to stationarity before steady-state values
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can be derived. The original economy is transformed in two steps. The first step is

to transform the economy into a labor-augmenting economy by defining:

ut = vt − zt−1 (3.3)

ut = vt − zt−1 (3.4)

KT
t (ut) = Kt(ut + zt−1) (3.5)

ut is defined as the difference between a plant’s productivity at period t and the

leading-edge technology at period t − 1, and ut is defined as the difference between

the exit threshold of productivity at period t and the leading-edge technology at

period t − 1. The second step is to transform the labor-augmenting economy into a

stationary economy by defining:

C∗

t = (e−
1−α

α
zt−1) Ct (3.6)

I∗j
t = (e−

1−α

α
zt−1) Ij

t ∀ j = 1, 2 (3.7)

K∗

t (ut) = (e−
1−α

α
zt−1) KT

t (ut) (3.8)

K̄∗

t =
∫

∞

−∞

eutK∗

t (ut)dut (3.9)

G∗

t = (e−
1−α

α
zt−1) Gt (3.10)

After the second transformation, the new variables are consumption, C∗

t , invest-

ment on plants undergoing different periods of development process, I∗j
t , distribution

of number of plants with different productivity, K∗

t (ut), effective capital, K̄∗

t , and

government expenditure, G∗

t . All are stable in the steady state. The transformed

equations are listed below, followed by the explanation of the solution method for

deriving steady-state values.
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Equations are divided into two groups in order to solve the system. The first

group includes the following equations:

If ut ≤ ut, then

(1 + τ p
t ) Qt(ut) = (1 − τ c

t ) Dt eut + η (3.11)

If ut > ut, then

(1 + τ p
t ) Qt(ut)

= (1 − τ c
t ) Dt eut

+Et {β
Mt+1

Mt

e−
1−α

α
(µz+εz

t )
∫

∞

−∞

1

σ
φ(

ut+1 − ut + µz + εz
t

σ
) Qt+1(ut+1)dut+1}

(3.12)

Mt = Et { β Mt+1 Q0i
t+1(1) e−

1−α

α
(µz+εz

t )} (3.13)

where

Q0i
t (1) = Q1i

t (2) (3.14)

Mt Q1i
t (2) = Et { β Mt+1 e−

1−α

α
(µz+εz

t )
∫

∞

−∞

1

σe

φ(
ut+1 + zt − zt−1

σe

) Qt+1(ut+1)dut+1}

(3.15)

η = Et {β
Mt+1

Mt

e−
1−α

α
(µz+εz

t )
∫

∞

−∞

1

σ
φ(

ut+1 − ut + µz + εz
t

σ
) Qt+1(ut+1)dut+1} (3.16)

Before computation starts, the technology shock, εz
t , and the inverse of con-
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sumption, Mt, can be omitted from these equations because there is no technology

shock in the steady state, and the steady-state consumption is constant. Given tax

rates on capital income and property, there are two unknown variables, Dt and ut,

and one unknown distribution of plant value, Qt(ut), in this group. To determine ut,

a number is chosen for Dt to derive the corresponding distribution of Qt(ut), and the

chosen Dt is the correct number if it satisfies the Equation 3.16. The second group

includes the rest of the equations:

Dt = (1 − α) (
K̄∗

t

Nt

)−α (3.17)

Mt (1 − τw) α (
K̄∗

t

Nt

)1−α = κ (3.18)

K̄∗

t

Nt

=
∫

∞

−∞

K∗

t (ut)

Nt

eutdut (3.19)

K∗

t+1(ut+1)

Nt

= e−
1−α

α
(µz+εz

t )

{
∫

∞

ut

1

σ
φ(

ut+1 − ut + µz + εz
t

σ
)

K∗

t (ut)

Nt

dut +
1

σe

φ(
ut+1 + µz + εz

t

σe

)
I∗2
t

Nt

}

(3.20)

e−
1−α

α
(µz+εz

t ) I∗2
t+1

Nt

=
I∗1
t

Nt

(3.21)

G∗

t

Nt

= (τw
t α + τ c

t (1 − α))(
K̄∗

t

Nt

)1−α + τ p
∫

∞

−∞

Qt(ut)
K∗

t (ut)

Nt

dut (3.22)

C∗

t + I∗1
t + G∗

t

Nt

= (
K̄∗

Nt

)1−α + η
∫ ut

−∞

K∗

t (ut)

Nt

dut (3.23)
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Since Dt is known now,
K̄∗

t (ut)

Nt
,

K∗

t (ut)

Nt
,

I∗2t

Nt
, and

I∗1t

Nt
can be derived. There are

three unknown variables left, and they are τw
t , Mt, and

G∗

t

Nt
. Given government

expenditure, the correct τw
t is the value that satisfies Equations 3.22 and 3.23.

C. Parameters

Given government expenditure and tax rates on capital income, labor income,

and property, there are some parameters left to be defined. These parameters include

the labor-income share, α, the subjective discount factor, β, the scrap value, η, the

average growth rate of embodied technology, µ, the standard deviation of the shock

to the productivity of an incumbent plant, σ, the standard deviation of the shock

to the initial productivity of a new plant, σe, the standard deviation of the shock to

embodied technology growth rate, σz, and the marginal utility of leisure, κ.

Table 1 lists the values for these parameters as used in Campbell (1998). Labor-

income share is 0.66, which equals the labor’s average share in the U.S. economy.

Given the value of α, µz is chosen to match the model’s steady-state growth rate of

output, (1 − α)µ/α, which is 0.34% per quarter estimated between 1972 and 1988.

The annual risk-free interest rate equals the steady state growth path, β−1e(1−α)µ/α,

and is estimated as 4.4% so β equals 0.9926. σ are chosen as 0.03 out of a range of

values from 0 to 0.06. σe is chosen to be larger than σ so that young plants faces

more productivity uncertainty than old plants. Along with the scrap value η, σe

is set to match exit rates from the U.S. economies. Finally, σz is set so that the

standard deviation of the exit rate in the model equals 0.0026, which is derived from

the data. Note that because the labor, N , is estimated as 0.26 from the real data,

the marginal utility of leisure, κ, can be derived with other steady-state values under

no-government scheme. Following that, we perform our experiment on the effects



26

of various combinations of tax rates on the economy by fixing this derived κ and

treating N as a variable.

Table 1— Parameter Values

α β η µ σ σe σz

0.66 0.9926 0.835 0.0066 0.03 0.36 0.0059

D. Optimal Tax Policies in the Transformed Model Economy

The goal of this section is to derive some interesting observations on social

welfare in the steady state from the simulation results of the quantitative experi-

ment. This experiment will proceed in three steps, involving various combinations

of capital-income, labor-income, and property tax rates. The first step, by assum-

ing zero property tax rate, the government looks for the optimal combination of

capital-income and labor-income tax rates that maximizes consumers’ utility, taking

government expenditure as fixed. This part of the experiment will provide informa-

tion on the optimal tax rate on capital for this model. Next, we are curious to know

if using a property tax instead of a capital-income tax is preferable for the economy.

Following that, we allow all three types of tax rates to change in order to examine

the combination that yields maximum utility for consumers.

As a basis for comparison, we derive the steady-state values for our economy

without government. This provides a baseline economy in which the resource allo-

cation is not distorted by any policy instrument. Provided the above parameters,

the distribution of plant productivity in the steady state is illustrated in Figure 3,

where the x-axis is labeled as percentage difference between plant productivity and

productivity brought by the leading-edge technology and the y-axis is labeled as
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units of plants of different levels of productivity. 1 As seen in Figure 3, this distri-

bution of plant productivity is right-skewed, and the corresponding mode is around

negative 25-30 percent. The average plant productivity is 6.6 percent less than the

leading-edge level.

Figure 3. Distribution of Plant Productivity in the Steady State

The derived steady-state aggregate and other relevant values are listed in Ta-

ble 2. Given the labor income share weight of 2
3
, output is 1.2649, created by the

Cobb-Douglas production technology with inputs of effective capital, 29.9368, and

labor, 0.26. Investment in new plants, 0.5077, net of scrapped capital, is net invest-

ment, 0.1762, so that consumption is 1.0887. Utility, which comes from consumption

and leisure, is 2.2895. Without considering embodied technology, K∗ is aggregate

1This distribution is approximated by 71 abscissas, and the reason to choose this
particular number is that singularity occurs with numbers larger than 71 in the
process of deriving the structure form of this model.
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capital, the sum of all physical units of capital, and is 31.0523, which is larger than

effective capital. The exit threshold, denoted as u, provides a guide for plants with

lower productivity to exit the market and is -49.51 percent. From this we derive the

exit and entry rates. The exit rate is the ratio of scrapped capital over aggregate

capital, while the entry rate is the ratio of new capital entering into the market

over aggregate capital. These values are 1.07 percent and 1.61 percent, respectively.

Represented as κ, the marginal utility of leisure is treated as a parameter. Given the

parameters in Table 1 and N of 0.26, the parameter κ is equal to 2.9790.

Table 2— Values in the Steady State without Government

K̄∗ N Y ∗ I∗ C∗ U∗

29.9368 0.2600 1.2649 0.1762 1.0887 2.2895

K∗ I∗1 u Exit Rate Entry Rate κ

31.0523 0.5077 -49.51% 1.07% 1.61% 2.9790

The ranges for government expenditure and tax rates are to be decided before

this quantitative experiment begins. Because the government fixes its expenditure

before collecting tax revenue, we set government expenditure first. Since the steady-

state output in the case of no government is 1.2649, we chose the set of potential

government expenditure to be { 10−9, 0.1, 0.2, 0.3, 0.4 }. In the subsequent grid

search for the optimal combinations of capital-income, labor-income, and property

tax rates, subsidies on capital income and property are also considered, again subject

to the balanced budget constraint. It is of interest to see if there are benefits to any

of these subsidies in the long run. Tax rates on capital income, labor income, and

property arbitrarily range from [ -50%, 50% ], [ 0%, 68% ], and [ -1%, 1% ], respec-

tively. The reason of property tax rates being narrowed between positive/negative

1 percent is because of the relative large tax base on plant value compared to firms’



29

capital income. The increment searched for all three taxes is 0.01 percent.

To be able to estimate excess burden later, a lump-sum tax is also considered,

and consumption and utility are derived accordingly. Since the lump-sum tax is a

non-distorting tax instrument that doesn’t distort the decisions of investment and

work hours, it is simply collected via consumption. Table 3 shows these values. Con-

sumption, 1.0887, is directly reduced for different levels of government expenditure.

Table 3— Consumption and Utility in the Steady State with Lump-sum Tax

G∗ 10−9 0.1 0.2 0.3 0.4

C∗ 1.0887 0.9887 0.8887 0.7887 0.6887

U∗ 2.2895 2.1931 2.0865 1.9671 1.8315

Enter the first part of this experiment, where property tax rate is set to zero.

Results for five different levels of government expenditure are illustrated respectively

in the following five figures. Each figure contains eight small figures, where the x-

axis is capital-income tax rate shown in percentage term. In the left top figure is the

corresponding labor-income tax rate with which the capital-income tax rate is used

to derive steady-state values. Among others, except the left figure in the second row,

the y-axis represents the percentage difference of variables derived with distortionary

taxes from those derived with lump-sum tax. As for the figure left, because the ratio

of government expenditure to output is itself percentage, its y-axis is simply the

difference between the ratio derived with distortionary taxes and that derived with

lump-sum tax. Besides this, only consumption and utility are influenced by lump-

sum tax, therefore most comparisons at this stage are made between steady states

with distortionary taxes and without tax except the figures in the bottom row.
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Figure 4 shows the results derived under different combinations of capital-income

and labor-income tax rates given government expenditure at 10−9. In the top left

figure, when capital-income tax rate rises from -50 percent to a zero percent, labor-

income tax rate slides from 25 percent to a near-zero percent. The x-axis stops

at zero because we do not consider a subsidy on labor income. The relationship

between these two rates is almost linear, implying that they are nearly perfectly

substitutable when government expenditure is near zero. Next, output in the top

right figure shapes concavely with both its starting and ending points staying close

to zero (from below). The concavity comes from the opposite movement of effective

capital and labor. In this case, when capital-income tax rate is negative, output

(almost) always performs better than that derived without tax and reaches its peak

about 1.95 percent more as capital-income tax rate is about -25 percent.

Because government expenditure is fixed and output is concave in the capital-

income tax rate, the ratio of government expenditure to output in the left figure

in the second row is convex. It starts at a near-zero point, falls to −1.5 × 10−9

percent when capital-income tax rate hits -25 percent, and then rises back to a near-

zero percent. The curves of effective capital and (net) investment are identical, and

their relationship with capital-income tax is negative. As the capital-income tax rate

falls by one percent, effective capital and investment grow by the same magnitude.

Normalized labor in the left figure in the third row drops from a near-zero percent to

almost 19 percent as capital-income tax rate falls from a zero percent. This illustrates

that, if capital-income subsidy rate is up by 2 percent, the corresponding 1-percent

increase in the labor-income tax rate brings about a 0.75-percent reduction of labor

force. The bottom two figures show that, with a negative capital-income tax rate,

consumption is always worse compared to the situation when no government exists.

On the contrary, utility is always higher because the increase in leisure makes up for
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Figure 4. continued
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the loss in consumption. This result is of course dependent in part on the assumed

utility function.

Observation 1: When government expenditure is close to zero, a capital-income

subsidy brings higher steady-state utility to the economy.

Figures 5, 6, 7, and 8 show that the higher the government expenditure, the

more convex the relationship between capital-income and labor-income taxes. This

convexity implies that, when G∗ is 0.2 or more, tax revenue lost by lowering the

capital-income tax rate 1 percent needs to be filled in by using a larger increase in

the labor-income tax rate than was necessary when the capital-income tax rate was

originally lower. The output effect is positive only when government expenditure is

infinitesimally small, and it turns out to be negative when government expenditure

grows high enough. This change is due to the downward shifts in both effective capital

and labor. Lowering the capital-income tax rate stimulates investment when G∗ is 0.3

or less. Utility shifts downward with higher government expenditure although leisure

does increase to offset part of the effect of reduced consumption. When G∗ is 0.3 or

more, a negative capital-income tax rate harms social welfare. Lastly, because output

decreases with higher government expenditure, the ratio of government expenditure

becomes positive.
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Figure 5. continued
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Figure 6. continued



38Figure 7. Capital-income Tax, Labor-income Tax, and Other Values Derived When G∗ = 0.3 and τ p = 0
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Figure 7. continued



40Figure 8. Capital-income Tax, Labor-income Tax, and Other Values Derived When G∗ = 0.4 and τ p = 0
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Figure 8. continued
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The following table lists the optimal values in the steady state derived with

different levels of government expenditure, zero property tax rate, and a specific

combination of capital-income and labor-income tax rates. Note that while the

above figures illustrate differences from baseline steady-state values, Table 4 presents

steady-state values for the economy and not differences from a baseline.

Table 4— Values in the Steady State with Distortionary Taxes (τp = 0)

G∗ τc(%) τw(%) Y ∗ G∗

Y ∗
(%) K̄∗ N I∗ C∗ U∗

10−9 -45.78 22.89 1.2719 7.86E-08 43.8822 0.2165 0.2582 1.0136 2.3475

0.1 -31.23 27.88 1.2230 8.18 37.9853 0.2194 0.2235 0.8995 2.2193

0.2 -15.83 33.66 1.1653 17.16 31.9467 0.2226 0.1880 0.7773 2.0641

0.3 0.99 40.64 1.0938 27.43 25.6325 0.2260 0.1508 0.6430 1.8643

0.4 20.82 49.86 0.9955 40.18 18.6566 0.2300 0.1098 0.4858 1.5719

Table 4 reveals several things about maintaining optimality with higher gov-

ernment expenditure. First, when government expenditure, G∗, is low (0.2 or less

in our simulation), the optimal capital-income tax rate, τc, is negative. As G∗ rises

(here 0.3 or more), τc is positive. Second, both τc and the optimal labor-income tax

rate, τw, increase with G∗. Third, the increase in τw results in more labor as G∗

rises. Note that as G∗ is fixed, rising labor-income tax rate still discourages labor.

Fourth, among other variables, compared with steady-state values derived without

government, effective capital, K̄∗, and investment, I∗, are higher when G∗ is 0.2 or

less due to capital subsidies, and labor, N , derived with any level of government

expenditure, is lower due to positive labor-income tax rate. Fifth, consumption in

this table is lower than that derived with lump-sum tax in Table 3. Lastly and the

most interestingly, utility derived when G∗ is 0.1 or less is greater than that when
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G∗ is financed via lump-sum tax.

What causes this effect in this model? This effect seems to be a manifestation of

intertemporal optimization resulting in a steady-state capital stock below the Golden

Rule. 2 A set of taxes and subsidies can generate higher steady-state capital-labor

ratios and greater steady-state utility, but it is not optimal for this to occur starting

from an initial steady state without taxes. Because of discounting, the initial decline

in consumption and utility necessary to support the increased investment required to

accumulate the increased capital stock is too costly relative to the gain in steady-state

utility.

Observation 2: Capital subsidies can improve steady-state social welfare when gov-

ernment expenditure is low enough.

The goal of this second part of the experiment is to provide a policy comparison

for the government who considers the possibility of choosing one of either a capital-

income tax or a property tax as the policy instrument in addition to a labor-income

tax. Like Table 4, Table 5 summarizes the property and labor-income tax rates that

maximize utility and the corresponding steady-state values derived with different

government expenditure.

Compare Table 5 with Table 4. As G∗ rises, τw rises as does property tax rate,

τp, which is much smaller than τc. In all cases, the optimal way for the government

to finance its expenditure is to subsidize capital income or property when G∗ is low

and raise taxes on labor income and on capital income or property as G∗ rises until

eventually the tax rate on capital income or property becomes positive. Behavior of

other variables are similar as G∗ rises. Utility is also higher when G∗ is 0.1 or less

than that derived with lump-sum tax. Subsidizing property lowers the purchase cost

2See Romer (2001) for the relation between steady state and golden rule.
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paid by production firms at the beginning of the period and therefore raises these

firms’ incentive to purchase more plants to produce. Lastly, it is not obvious that

choosing one of either a capital-income tax or a property tax creates more utility

than choosing the other.

Table 5— Values in the Steady State with Distortionary Taxes (τc = 0)

G∗ τp(%) τw(%) Y ∗ G∗

Y ∗
(%) K̄∗ N I∗ C∗ U∗

10−9 -0.41 22.89 1.2557 7.96E-08 42.9436 0.2147 0.2466 1.0092 2.3485

0.1 -0.31 27.74 1.2132 8.24 37.3607 0.2186 0.2158 0.8974 2.2195

0.2 -0.18 33.66 1.1605 17.23 31.6973 0.2220 0.1846 0.7759 2.0638

0.3 0.02 40.38 1.0946 27.41 25.5321 0.2267 0.1502 0.6444 1.8644

0.4 0.36 49.50 1.0013 39.95 18.7749 0.2312 0.1120 0.4894 1.5755

The third part of this experiment relaxes the limits on capital-income and prop-

erty tax rates by allowing both of them to move simultaneously and expands the set

of capital-income tax rate to [ -100%, 100% ] to match that of the property tax rate

as much as possible. The relevant results are illustrated in Figures 9, 10, and 11.

In Figure 9, the top figure features the change in the exit threshold as the prop-

erty tax rate rises. As shown in Equation 2.14, capital-income tax affects consumers’

willingness to invest, but its change does not affect the exit threshold of productivity.

On the contrary, for a production firm, a higher property tax rate seemingly increases

the purchase cost of a marginal plant at the beginning of the period, (1 + τp)q
0
t (vt),

but it also reduces the plant’ value, q0
t (vt), which in turn reduces the plant’s re-

sale value at the end of the period, q1
t (vt). According to Equation 2.13, when this

marginal plant’s resale value is less than η, the exit threshold must rise to satisfy

Equation 2.14 again, which in turn raises exit and entry rates. In the top figure,
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when the property tax rate is negative, the increase in the exit threshold is steep,

but when the property tax is positive, the increase in the exit threshold is less steep.

The bottom figure shows the same trend. From a tax rate of -1 percent to 0 percent,

the exit rate rises by 0.54 percent and the entry rate rises by 0.65 percent. As the

tax rate varies from 0 percent to 1 percent, the exit and entry rates rise by 0.32

and 0.39 percent, respectively. Note that the steps in the bottom figure come from

the limited ability to use more abscissas caused by a singularity when the matrix

decomposition is performed. 3

3With more abscissas, spans, created by the Gauss-Legendre N-point quadrature
formula between negative/positive one to simulate the distribution of the percentage
difference in plant’s productivity and the leading-edge productivity, become nar-
rower. With narrower spans, the exit threshold crosses one span to another more
easily so that exit and entry rates rise more quickly until steps are finally replaced
by a curve. However, since the problem of singularity exists, simply connecting the
middle point of each step to make it a curve may reduce confusions.
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Figure 9. Exit Threshold, Exit Rate, and Entry Rate



47

The negative relationship between property and capital-income taxes is shown in

Figure 10, where government expenditure is 10−9. The capital-income tax rate falls

from 72.67 percent to -100 percent when the property rate rises from -1 percent to 0.52

percent. Output, effective capital, labor, investment, and consumption illustrate the

trend inherited from the exit threshold. Unlike the above aggregate variables rising

over the entire set of property tax rate, utility mildly falls after property tax rate

hits -0.21 percent, compared to its previous rising. The corresponding capital-income

and labor-income tax rates that maximize utility are, respectively, -22.78 percent

and 23.02 percent. The figure of the ratio of government expenditure to output

looks empty because of the extremely low ratio. Another figure to compare with

Figure 10 is Figure 11, where government expenditure is 0.4. In Figure 11, the shape

of the ratio of government expenditure to output is symmetric to that of output.

Capital-income tax rate, ratio of government expenditure to output, and labor move

upwards, while others move downwards. The rising trend for utility extends until

property tax rate reaches 0.77 percent, where the corresponding capital-income and

labor-income tax rates are -24.38 percent and 49.74 percent, respectively.

Table 6 records the combinations of capital-income, labor-income, and property

tax rates that creates the highest utility given a certain level of government expen-

diture, and the corresponding steady-state values. As before, the labor-income tax

rate, τw, increases with government expenditure, G∗. While the property tax rate, τp,

also shows the same pattern as that of τw, the capital-income tax rate, τc, decreases

from -22.78 percent to -28.33 percent and then bounces back to -24.38 percent when

G∗ is 0.4. This result tells several things. First, when the government can avail itself

of all three taxes, τc is negative over a reasonable range of G∗. Second, although

τc falls as G∗ rises and starts to rise after G∗ reaches some threshold, (somewhere

between 0.3 and 0.4 in this case), τc stays negative and overall is relatively stable,
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Figure 10. continued



50Figure 11. Values in the Steady State When G∗ = 0.4
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Figure 11. continued
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compared with τp and τw. Third, the optimal way for the government to finance

higher G∗ is through τp and τw rather than τc unless G∗ is too high. In other words,

when more marginal plants are forced to exit the market by higher property tax rate,

capital subsidy is used instead to encourage the incentive to invest. Fourth, as the

previous cases, utility is higher than that derived with lump-sum tax again when G∗

is 0.1 or less.

Table 6— Values in the Steady State with Distortionary Taxes

G∗ τp(%) τc(%) τw(%) G∗

Y ∗
(%) K̄∗ N C∗ U∗

10−9 -0.21 -22.78 23.02 7.92E-08 43.4442 0.2151 1.0109 2.3492

0.10 -0.06 -25.33 27.93 8.20 37.8242 0.2188 0.8985 2.2203

0.20 0.14 -27.88 33.65 17.15 32.0056 0.2226 0.7778 2.0646

0.30 0.40 -28.33 40.59 27.30 25.8504 0.2266 0.6448 1.8652

0.40 0.77 -24.38 49.74 39.82 19.0033 0.2309 0.4892 1.5762

Observation 3: When capital-income, labor-income, and property taxes are avail-

able to the government, a positive capital-income tax rate might be the last

resort for use when government spending is high.

In Chapter IV, we build up a dynamic system and discusses how the economy

responses to two types of shocks over the transition from the old steady state to the

new steady state.
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CHAPTER IV

THE TRANSITIONAL ECONOMY

A. Building and Solving a Dynamic System

To build a dynamic system, the first step is to linearize equations with respect

to all the transformed variables around their steady-state values and make each new

variable in the dynamic system either as a percentage change between its period-t

value and its steady-state value or as a difference between its period-t value and

its steady-state value if the transformed variable is already a percentage. Next,

these new variables are separated into four vectors, each containing control, state,

co-state, or exogenous variables, respectively. Following procedures described in

Campbell (1997), the linearized equations are also divided into four groups, and

each group of equations is then merged into a large matrix equation. The vector

containing exogenous variables accommodates different shock terms such as shocks to

the leading-edge technology, tax rates, and the transformed government expenditure.

Lastly, we use the method originally introduced in King, Plosser, and Rebelo (1987)

to solve the dynamic system, which can be generalized as follows: 1

aa ∗ Et(Wt+1) + bb ∗ Wt + cc ∗ Et(Zt+1) + dd ∗ Zt = 0 (4.1)

where

Zt+1 = φ ∗ Zt + εt (4.2)

Wt include state variables and co-state variables at period t. Co-state variables

1For further programming problem, please refer to Marimon and Scott (1999).



54

are decided by state and exogenous variables at the same period. In this model

economy, co-state variables consist of the percentage deviations of the plant value

of operating and developing plants and of the percentage deviation of the price of

a contingent claim on one unit of consumption good as well. The state variables

include the percentage deviations of the number of plants with different levels of

productivity and of the percentage deviations of the previous investment on plants

that haven’t entered the market yet. Zt includes various types of exogenous shocks.

Control variables basically consists of the deviations of consumption, investment on

newly-built plants, labor, effective capital, exit threshold, and the price for capital

service. After control variables are determined by the co-state and state variables,

the corresponding deviations of the original (before transformed into stationary)

variables can be derived.

B. Quantitative Experiments

In this section, we perform four quantitative experiments which simulate the

transitional paths of various variables caused by different types of shocks. The ini-

tial setting of the economy is presumably in its steady state before any shock hits the

economy. In the first experiment, we suppose that initially the economy has very low

government spending and the tax rates are almost zero. According to the previous

chapter, when G∗ is 10−9, the optimal capital-income and labor-income tax rates in

the steady state are -45.78 and 22.89 percent, given a zero property tax rate. There-

fore, we would like to know how the economy will transit if the government starts

subsidizing capital by taxing labor at the fore mentioned optimal rates without expec-

tation. In the second experiment, we suppose that the economy is set to the optimal

tax rates that maximize its social welfare before a positive shock to the leading-edge
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technology hits the economy. The government maintains the pre-existing tax rates

and letting government expenditure fluctuate with other variables after the shock.

In other words, government expenditure is seen as a control variable, given tax rates

as fixed. In order to differentiate the effects of capital-income and property taxes on

the economy, a comparison is made between the transitional paths derived with the

zero property tax rate and those derived with the zero capital-income tax rate.

The third experiment is different than the second experiment in one place. We

suppose that the government lets one of the three taxes on capital income, labor

income, or property fluctuate instead of the government expenditure. We would like

to know which tax brings more utility over the transition. In the fourth experiment,

we suppose that the government lowers its expenditure unexpectedly and attempts

to satisfy the new level of government expenditure in the following periods by letting

tax rates fluctuate subsequently. With fixed government expenditure and the zero

property or capital-income tax rate, the dynamic system needs one more equation

that describe the relation between the other two taxes. Suppose the government

intends to guide tax rates to move from the original optimal combination to the new

one that is optimal in the steady state with new level of government expenditure

by setting a linear relationship which connects these two combinations of tax rates.

This linear relationship will serve as the needed equation.

1. Impulse Response to a Permanent Change in Tax Rates

In Figure 12 are the impulse responses of various variables caused by a per-

manent change in capital-income and labor-income tax rates when the transformed

government expenditure, G∗, is 10−9 before any shock occurs. Capital-income and

labor-income tax rates are assumed to be near zero in the original steady state, so the

economy has the least distortion on resource allocation. According to the previous
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chapter, in the steady state with the government expenditure of 10−9, the optimal

combination of capital-income and labor-income tax rates is -45.78 and 22.89 per-

cent, respectively, and therefore our first experiment is to simulate the transition

after the government suddenly changes these two tax rates from near zero to the

optimal rates. 2

The transition in each small figure in Figure 12 is the deviation of the variable

X from its original steady-state value. Its deviation at quarter t, xt, is defined as

Xt−Xs
t

Xs
t

if X is not a ratio, or Xt − Xs
t otherwise. In this case, Xs

t is the original

steady-state value derived with the near-zero capital-income and labor-income tax

rates. When capital-income and labor-income tax rates are changed permanently at

quarter 0, the exit threshold jumps up by 3.8 percent. The initial increase in the

exit threshold is caused by the dramatic fall in the capital-income tax rate, which

stimulates investment in new plants by subsidizing capital income, and its increase in

turn causes the exit rate to rise by 1.2 percent in the following quarter and the entry

rate to rise by 6 percent at quarter 5. Although the exit threshold is 1.6 percent

higher than its original steady-state value at quarter 40, it will gradually fall back to

its original steady-state value as time unfolds. Effective capital falls below its original

steady-state value from quarters 1 to 4 because more marginal plants exit the market

and steadily rises above its original steady-state value after more new plants enter

the market at quarter 5. To accumulate more capital, employment first jumps up by

15 percent but falls afterwards, and consumption, in contrast to employment, drops

by -28 percent at quarter 0 and gradually climbs back to about -10 percent at quarter

2Because of the linearization approximation, the approximation error caused by
the change in capital-income and labor-income tax rates, (-0.4578, 0.2289), might be
large. This experiment simply provides an idea about why moving from near-zero
capital-income and labor-income tax rates to the optimal ones might not be a good
idea.
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Figure 12. continued
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40. In the long run, employment should be around -17 percent (= 0.2165−0.26
0.26

× 100)

and consumption should be around -7 percent (= 1.0136−1.0887
1.0887

× 100).

The transitional path of output is the weighted sum of the deviations of effective

capital and employment, assigned with 1 − α and α as their respective weights,

where α is 2
3
. Output initially moves up by 10 percent because of the increase in

employment. Although output reaches its trough at quarter 4, it is still above its

original steady-state value. The transitional path of investment is derived from the

following simplified formula:

yt Y ∗ − ct C∗ − gt G∗

Y ∗ − C∗ − G∗

(4.3)

Investment increases by a surprising 240 percent at quarter 0 and stays 120

percent higher than its original steady-state value at quarter 40. Investment will be

around 47 percent (= 0.2582−0.1762
0.1762

× 100) higher than its original steady-state value

in the long run. After the government changes capital-income and labor-income

tax rates, government expenditure stays below its original steady-state value until

quarter 21. At quarter 0, government expenditure drops by -14 percent because

of the capital-income subsidy, and it keeps dropping until quarter 4 because of the

decrease in output. Lastly, the deviation of utility is decided by:

ct − κ nt N∗

ln C∗ + κ (1 − N∗) + 1−α
α

(t − 1) µ
(4.4)

The level of the leading-edge technology one quarter before the shock occurs,

z−1, is supposed to appear in the denominator and is assumed to be zero here. Utility

stays well below its original steady-state value over at least 10 years, which provides

an explanation on why moving from the near-zero capital-income and labor-income

tax rates to the optimal ones is not an attractive appeal if the loss of utility caused
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by the purpose of capital accumulation over the transition is taken into account.

Observation 1: Although subsidizing capital by taxing labor brings higher utility

in the steady state when the government expenditure is near zero, the fact that

the loss of utility caused by the change in the capital-income and labor-income

tax rates over the transition is too large makes this idea impractical.

2. Impulse Response to a Positive Technology Shock with Fixed Tax Rates

Figures 13 and 14 display the impulse responses of various variables caused by

a technology shock that unexpectedly raises the level of the leading-edge technology

by 1 percent, given the zero property tax rate. Capital-income and labor-income tax

rates are set to be the rates that maximize the economy in the original steady state

and are assumed to be fixed after the technology shock occurs so that the government

expenditure fluctuate over the transition like the first experiment. There are four

curves for the variable in each small figure, and each curve represents the deviation of

the variable from the original steady-state value derived with different levels of G∗ and

the corresponding optimal tax rates. As G∗ rises from 0.1 to 0.4, the corresponding

curve types are solid, dashed and dotted, dashed, and dotted, respectively. Note that

variables which have the same steady-state values no matter in the original or in the

transformed economy are exit threshold, exit rate, entry rate, and employment.

In Figure 13, the top two figures and the left figure in the second row illus-

trate the transitional paths of the exit threshold, exit rate, and entry rate. The

steady-state values of these three variables are unrelated with government expendi-

ture because of the zero property tax rate, and they are -49.51 percent, 1.07 percent,

and 1.61 percent, respectively. After the shock hits the economy at quarter 0, the

exit threshold moves up by 1.095 percent, so marginal plants with the productivity
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Figure 13. continued
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Figure 14. Rest of the Impulse Response When εz = 0.01, τp = 0 (G∗ = 0.1–Solid,

0.2–Dashed & Dotted, 0.3–Dashed, 0.4–Dotted)

difference between -48.415 percent and -49.51 percent are forced to exit. Afterwards,

the deviation of the exit threshold smoothly falls and reaches 1.04 percent at quarter

40. In the long run, because the shock size is 1 percent, the exit threshold should be

around 1 percent higher than the original exit threshold. There are two spikes for

the existing plants exiting the market. The first one occurs at quarter 1, and the exit

rate moves up by 0.35 percent. The second one occurs at quarter 6 after new plants,

built at quarter 0 and embodied with higher-than-usual level of technology, enter at

quarter 5, and the exit rate moves up again by 0.10 percent. The amplitude of the

first rise is 32.71 (= 0.35/1.07) percent of the steady-state exit rate. The entry rate

jumps up by 0.413 percent at quarter 5 and then falls only to rise again at quarter

10.

The deviations of effective capital, consumption, and employment are in the
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second and third rows of Figure 13, and it seems that government expenditure has

rather negligible effect on the transitions of the first two variables. Effective cap-

ital is fixed at quarter 0 but continues to fall in the following 4 quarters because

more marginal plants exit the market than usual. After hitting its trough at -0.6

percent, effective capital starts to rise at quarter 5 and becomes positive at quarter

7. At quarter 40, effective capital is 0.95 percent higher than its original steady-

state value. Consumption and employment react in opposite direction right after the

shock happens. Consumption is smoothed by first dropping by -0.2 percent and then

steadily increasing 0.4 percent through quarter 40. Employment with higher gov-

ernment expenditure tends to respond a bit less to the shock than that with lower

government expenditure, but their transitional paths stay pretty close. Generally

speaking, employment jumps up by 0.6 percent at quarter 0 because of the fixed

capital and the incentive to invest more on new plants built at that same quarter,

and then after quarter 0, employment keeps falling until it rises again at quarter 5

and finally reaches 0.3 percent at quarter 40.

At quarter 0, output rises by 0.4 percent due to the sudden increase in employ-

ment, and then, just like effective capital and employment, it falls after quarter 0

but rises at quarter 5. Although employment starts to fall after quarter 16, output

keeps rising and stops at 0.5 percent higher than the original steady-state value at

quarter 40. Investment on building new plants rises by 2.7 percent at quarter 0

but turns negative after quarter 2. It bounces up after quarter 4 and stays 1.7 per-

cent higher than the original steady-state value at quarter 40. In Figure 14 are the

transitions of the government expenditure and utility. The transitional path of the

government expenditure is identical to output’s because of the zero property tax rate

and the fixity of the capital-income and labor-income tax rates over the transition.

The transition of utility with higher G∗ seems to be more volatile. The transitional
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paths of utility derived with the zero property tax rate and those derived with the

zero capital-income tax rate will be compared and discussed more in detail in the

later part.

Next, the result shown in Figures 15 and 16 is the impulse responses caused

by 1-percent technology shock, given a zero capital-income tax rate. How are these

transitional paths different from those in the previous case? In the top left part of

Figure 15 is the transitional path of the exit threshold. Economies with different lev-

els of G∗ in the original steady state obviously differ in responding to the technology

shock compared with those in the previous case of the zero property tax rate. As

the technology shock occurs, the exit threshold of the economy with G∗ being 0.1

moves up by 1.15 percent, and its following fall through quarter 40 is 0.08 percent

while the corresponding numbers for the economy with G∗ being 0.4 are 1.02 per-

cent and 0.015 percent, respectively. By comparing these numbers with the original

steady-state values of the optimal property tax rates and exit thresholds (listed in

the second row of Table 7), it indicates that economies with low G∗, low optimal

property tax rate, and thus low exit threshold, tends to respond more than those

with higher G∗ after the shock happens.

Table 7— Exit Threshold, Exit Rate, and Entry Rate

Original G∗ 0.1 0.2 0.3 0.4

SS Exit Threshold (%) -57.51 -53.65 -49.17 -43.40

SS Exit Rate (%) 0.92 0.99 1.07 1.16

∆ExitRate1 (%) 0.27 0.30 0.39 0.61

Entry Rate (%) 1.43 1.52 1.61 1.72

∆EntryRate5(%) 0.31 0.35 0.47 0.76

However, relatively large initial rise in the exit threshold does not necessarily



66Figure 15. Impulse Response When εz = 0.01, τc = 0 (G∗ = 0.1–Solid, 0.2–Dashed & Dotted, 0.3–Dashed, 0.4–Dotted)



67

Figure 16. Rest of the Impulse Response When εz = 0.01, τc = 0 (G∗ = 0.1–Solid,

0.2–Dashed & Dotted, 0.3–Dashed, 0.4–Dotted)
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bring in a larger change in exit (or entry) rate here. As shown in Table 7, it is the

economy with G∗ being 0.4 that has the highest exit rate, 0.61 percent, at quarter

1, while that with G∗ being 0.1 has the lowest exit rate, 0.27 percent. The reason

for this is because when G∗ is high, the level of the initial capital stock is lower

and because the density of the steady-state distribution of productivity difference in

Figure 3 rises around these relevant exit thresholds.

Next, effective capital derived with higher G∗ drops more than that derived with

lower G∗ because economies with higher G∗ have higher exit rate at quarter 1. This

situation lasts until quarter 5 as new plants embodied with higher-than-usual tech-

nology finally enter the market. After quarter 5, it seems that economies with higher

G∗ gradually accumulate effective capital in a quicker pace than those with lower G∗.

In consumption, faced with more volatile transition of effective capital, economies

with higher G∗ adjust it by cutting more consumption initially and enjoying more

rapid consumption growth later. Employment in economies with higher G∗ initially

rises more but falls more afterwards because of the higher exit rate of plants and the

higher labor-income tax rate. As a whole, employment starts to rise after quarter 4,

and in the long run, the deviation of the employment in economies with higher G∗

is less than that in economies with lower G∗.

The deviation of output is determined by those of effective capital and em-

ployment. Economies with higher G∗ tend to have larger deviation in investment.

The transitional paths of government expenditure derived with different levels of

G∗ respond differently compared to those in the case of the zero property tax rate.

Because the property tax rate is not zero, which implies that the change in the exit

threshold or plant value affects the government expenditure, this transitional path is

not identical to output’s as in the case of the zero property tax rate. The deviation of

government expenditure derived with lower G∗ in the original steady state tends to
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be positive because when G∗ is lower in the original steady state, the optimal prop-

erty tax rate is negative. When the number of plants falls, the subsidy on property

is not as much as before, so without property tax rate changed, government expendi-

ture increases when other variables do not perform as well. Finally, the transition of

utility is more volatile when G∗ is higher, because its consumption and employment

usually respond more compared with those derived with lower G∗.

Observation 2: In contrast to the similarity among the transitional paths of a

variable derived with different G∗ in the case of the zero property tax rate,

the transition of a variable derived with a higher G∗ in the case of the zero

capital-income tax rate seems to respond more than that derived with a lower

G∗ when faced with a positive technology shock.

The deviations of utility derived from the zero property tax rate or zero capital-

income tax rate are compared in Figure 17. In each small figure, the solid curve is

derived when the property tax rate is zero, and the dashed one is derived when the

capital-income tax rate is zero. In the top left figure, when the original G∗ is 0.1, the

dashed curve is above the solid one before quarter 20 and is below afterwards. In the

bottom left figure, when G∗ is 0.3, the dashed curve matches the solid one. This is

because in the case of zero capital-income tax rate, the original optimal property tax

rate when G∗ is 0.3 is 0.02 percent, which is very close to 0 percent, and because of

this, the steady-state exit threshold is close, and the exit and entry rates are the same

as those when the government uses optimal capital-income tax rate. In the bottom

right figure, the dashed curve is not always above the solid one before quarter 15 but

becomes above to the other curve afterwards.

In the top two figures, with G∗ is smaller than 0.3, the steady-state exit thresh-

old, exit rate, and entry rate are smaller than those when G∗ is 0.3. And in the



70Figure 17. Impulse Response: τp = 0 (Solid) vs. τc = 0 (Dashed)
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bottom right figure, these three variables are all higher than those when G∗ is 0.3.

Yet when G∗ is 0.4, the relation between the two curves change in that the dashed

one seems to bring more utility to the economy during the later part of the transition,

while with G∗ being less or equal to 0.3, the utility brought by the technology might

not be as much as the solid line.

Observation 3: When G∗ is low and a positive technology shock occurs, social

welfare in the economy with the zero capital-income tax rate may perform

better in the early part of the transition and worse in the later part of the

transition than that in the economy with the zero property tax rate. As G∗

increases, the situation becomes the opposite.

3. Impulse Response to a Positive Technology Shock with One Changing Tax Rate

Different from the second experiment, this experiment simulates the transition

caused by 1-percent technology shock when one tax rate, instead of G∗, is allowed

to change after the shock. As before, the tax rates in the original steady state are

optimal. Figures 18 and 19 show the result derived when G∗ is 0.01 and the property

tax rate is zero. The original optimal capital-income and labor-income tax rates are

-31.23 and 27.88 percent. The solid, dashed and dotted, and dotted curves in each

small figure are derived when the capital-income tax rate, labor-income tax rate, and

property tax rate is allowed to fluctuate, respectively. Except the top left figure, the

others in Figure 19 illustrate the transitions of capital-income, labor-income, and

property tax rate when one of them is allowed to move after the shock.

In Figure 18, at quarter 0, the exit threshold increases by 1.1 percent derived

with the changing capital-income tax rate and 1.12 percent derived with the changing

labor-income or property tax rate. The transitions of the tax rates in the next figure



72Figure 18. Impulse Response When εz = 0.01, G∗ = 0.1 (τc—Solid, τw—Dashed & Dotted, τp—Dashed)
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Figure 18. continued
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Figure 19. Rest of the Impulse Response When εz = 0.01, G∗ = 0.1 (τc—Solid, τw—Dashed & Dotted, τp—Dashed)
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show that all the three tax rates fall at quarter 0 because of the fixed G∗ and the

increase in employment. Remember in the second experiment, when the initial G∗ is

0.1 and the capital-income tax rate is zero, the exit threshold rises by 1.15 percent,

which is higher than 1.12 percent here. This is because in this experiment, a lower

property tax rate at quarter 0 raises the plant value so that the exit threshold is

slightly less than 1.15 percent. Also in the second experiment, when the initial G∗ is

0.1 and the property tax rate is zero, the exit threshold moves up by 1.095 percent,

which is lower than 1.1 percent here. The reason for the initial increase in the exit

threshold being a bit higher here is that a lower capital-income tax rate at quarter

0 encourages investment in new plants so that the exit threshold is slightly more

than 1.095 percent. After quarter 0, because G∗ is assumed to be fixed, and when

a positive technology shock happens, marginal plants exit the market, to collect

enough tax revenue to satisfy the fixed G∗ requires higher tax rate, which in turn

makes the exit threshold rises further more until quarter 4. The difference in the

deviations of the exit threshold derived with a different changing tax rate does not

make much difference in the exit and entry rates. When labor-income tax rate

fluctuate, the deviation of consumption falls below the other two curves, and the

employment responds more strongly as well. In Figure 19, a changing labor-income

tax rate brings more utility than a changing capital-income or property tax rate, and

the utility mainly comes from the increase in leisure when employment falls in the

first several quarters. Except the exit threshold, the deviations of various variables

derived when either capital-income or property tax rate fluctuates are almost the

same as those in Figure 13.



76

4. Impulse Response to a Negative Government Expenditure Shock

In this experiment, we simulate the impulse responses caused by 1 percent sud-

den decrease in G∗ at quarter 0 when tax rates, (τc, τw) or (τp, τw), fluctuate after the

shock. A relation between the two tax rates must be built in order to derive their

transitions, and this relationship is assumed to connect two combinations of the two

rates that are each optimal for the old and new levels of government expenditure. To

simplify the calculation, this relation is assumed to be linear. Figures 20 and 21 show

the result derived when the original G∗ is 0.1 and 0.2, given the zero property tax

rate. The solid curve is derived with G∗ being 0.1, and the dotted curve is derived

with G∗ being 0.2. Figures 22 and 23 display the result derived when the original

G∗ is 0.1 and 0.2, given the zero capital-income tax rate.

In Figure 20, the top two figures are the transitional paths of capital-income

and labor-income tax rates. When G∗ falls by 1 percent at quarter 0, the fall in both

of the tax rates increases as G∗ becomes higher. When G∗ is 0.2, capital-income and

labor-income tax rates rise in the first 5 quarters, fall a bit at quarter 5, and stay

pretty constant afterwards. The exit threshold derived with a higher G∗ rises more

than that derived with a lower G∗ because of the larger fall in capital-income and

labor-income tax rates when G∗ is higher. At quarter 0, consumption rises by 0.04

percent when G∗ 0.1 and by 0.11 percent when G∗ is 0.2 and keeps rising afterwards.

Employment stays well above zero over the transition. When G∗ falls by 1 percent,

the economy with higher G∗ seems to be affected more. Both consumption and

employment derived with a higher G∗ are above those derived with a lower G∗. Also,

the decrease in G∗ seems to benefit the economy with a higher G∗ more than that

with a lower G∗.



77Figure 20. Impulse Response When G∗ Falls by 1 % and τp = 0
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Figure 20. continued
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Figure 21. Rest of the Impulse Response When G∗ Falls by 1 % and τp = 0
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In Figure 22, property and labor-income tax rates fall as G∗ decreases by 1

percent. Notice that the exit threshold moves downward over the transition because

of the fall in the property tax rate. Therefore, when G∗ is higher, the exit threshold

moves more downward, and the corresponding exit rate is also lower. Compared with

the economy with the zero property tax rate, the economy with the zero capital-

income tax rate has lower exit threshold over the transition, and except this, its

deviations of effective capital, consumption, employment, output, and investment are

all higher. However, because both consumption and employment rise, its deviation

of utility is almost the same as that derived with the zero property tax rate.

Observation 4: Consumption and employment are more stimulated by a negative

shock to government expenditure when the capital-income tax rate is zero.

Observation 5: The unexpected decrease of government expenditure brings more

utility to the economy with a higher G∗.



81Figure 22. Impulse Response When G∗ Falls by 1 % and τc = 0
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Figure 23. continued
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CHAPTER V

CONCLUSIONS

Based on a vintage-capital model with exit and entry of plants developed by

Campbell (1998), this paper enlarges the model by combining a government sector

into it and examines the effects of the three tax instruments, including capital-

income, labor-income, and property taxes, on the steady-state economy as well as

the transitional economy. In Chapter III, given various combinations of transformed

government expenditure and tax rates, a steady-state transformed economy where,

except idiosyncratic shocks, there is no other types of shocks at all, is solved. A

comparison is further made among different sets of optimal steady-state values, and

the conclusions are reached to provide some guides of optimal taxation for the gov-

ernment. They are summarized as follows:

In the case of zero property tax rate, when government expenditure is close

to zero, raising the capital-income subsidy may be beneficial to the economy. As a

matter of fact, the optimal capital-income tax rate may be negative, zero, or positive,

depending on the magnitude of government expenditure.

After a comparison between the optimal steady-state values derived with zero

property tax rate and those derived with zero capital-income tax rate, it is found

that to choose between taxing capital income or taxing property also depends on the

level of government expenditure.

When it is feasible for the government to tax on capital income, labor income,

and property, the optimal capital-income tax rate is always negative.

Following that, a dynamic system is built and solved in Chapter IV. Four

quantitative experiments are performed under different assumptions. The relevant

results are summarized as follows:
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Although subsidizing capital by taxing labor brings higher utility in the steady

state when the government expenditure is near zero, the fact that the loss of utility

caused by the change in the capital-income and labor-income tax rates over the

transition is too large makes this idea impractical.

In contrast to the similarity among the transitional paths of a variable derived

with different G∗ in the case of the zero property tax rate, the transition of a variable

derived with a higher G∗ in the case of the zero capital-income tax rate seems to re-

spond more than that derived with a lower G∗ when faced with a positive technology

shock.

When G∗ is low and a positive technology shock occurs, social welfare in the

economy with the zero capital-income tax rate may perform better in the early part

of the transition and worse in the later part of the transition than that in the economy

with the zero property tax rate. As G∗ increases, the situation becomes the opposite.

Consumption and employment are more stimulated by a negative shock to gov-

ernment expenditure when the capital-income tax rate is zero.

The unexpected decrease of government expenditure brings more utility to the

economy with a higher G∗.
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