
 

 

WAVELET ANALYSIS STUDY OF MICROBUBBLE DRAG 

REDUCTION IN A BOUNDARY CHANNEL FLOW 

 
 
 
 

 
 

A Thesis 

by 

LING ZHEN 

 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  
 

MASTER OF SCIENCE 
 
 
 
 
 

December 2004 
 

 
 
 

 

Major Subject: Nuclear Engineering 

 
 



   ii
 

 
WAVELET ANALYSIS STUDY OF MICROBUBBLE DRAG 

REDUCTION IN A BOUNDARY CHANNEL FLOW 
 

A Thesis 

by 

LING ZHEN 

 

Submitted to Texas A&M University 
in partial fulfillment of the requirements  

for the degree of 
 

MASTER OF SCIENCE 
 

 
Approved as to style and content by: 
 

 
_______________________________ 

Yassin A. Hassan 
(Chair of Committee) 

 
_______________________________ 

Kalyan Annamalai 
(Member) 

 
_______________________________ 

William H. Marlow 
(Member) 

 
_______________________________ 

William E. Burchill 
(Head of Department) 

 

 
 

 
 

 
 
 

December 2004 
 
 
 

Major Subject: Nuclear Engineering 



 

 

iii
 
 

 

ABSTRACT 
 
 

 
Wavelet Analysis Study of Microbubble Drag Reduction  

in a Boundary Channel Flow. (December 2004) 

Ling Zhen, B.S., Zhejiang University, China; 
                  

 M.S., Zhejiang University, China 
 

Chair of Advisory Committee: Dr. Yassin A. Hassan 
 
 
 

Particle Image Velocimetry (PIV) and pressure measurement techniques were 

performed to investigate the drag reduction due to microbubble injection in the boundary 

layer of a fully developed turbulent channel flow. Two-dimensional full-field velocity 

components in streamwise-near-wall normal plane of a turbulent channel flow at 

Reynolds number of 5128 based on the half height of the channel were measured. The 

influence of the presence of microbubbles in the boundary layer was assessed and 

compared with single phase channel flow characteristics. A drag reduction of 38.4% was 

achieved with void fraction of 4.9%.  

The measurements were analyzed by studying the turbulence characteristics utilizing 

wavelet techniques. The wavelet cross-correlation and auto-correlation maps with and 

without microbubbles were studied and compared. The two-dimensional and three-

dimensional wavelet maps were used to interpret the results.  

The following observations were deduced from this study: 
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1.  The microbubble injection within the boundary layer increases the turbulent 

energy of the streamwise velocity components of the large scale (large eddy size, low 

frequency) range and decreases the energy of the small scale (small eddy size, high 

frequency) range.  

2.  The wavelet cross-correlation maps of the normal velocities indicate that the 

microbubble presence decrease the turbulent energy of normal velocity components for 

both the large scale (large eddy size, low frequency) and the small scale (small eddy size, 

high frequency) ranges. 

3.  The wavelet auto-correlation maps of streamwise velocity shows that the 

intensities at low frequency range were increased with microbubble presence and the 

intensities at high frequency range were decreased.   

4.  The turbulent intensities for the normal fluctuating velocities at both low 

frequency and high frequency range were decreased with microbubble injection. 

This study presents the modifications in the characteristics of the boundary layer of 

channel flow which are attributed to the presence of microbubbles. Drag reduction 

studies with microbubble injections utilizing wavelet techniques are promising and are 

needed to understand the drag reduction phenomena. 
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NOMENCLATURE 
 

d Diameter of microbubbles 

∆P Differential pressure 

DR Drag reduction 

g Acceleration due to gravity 

h Half height of the channel 

k1 Wavenumber in the streamwise direction 

k2 Wavenumber in the normal direction 

l Wall layer thickness or viscous length scale 

N Total number of samples 

P Pressure field 

Qa Volume flow rate of air 

Qw Volume flow rate of water 

Re Reynolds number 

R(x, x) Auto correlation of signal x 

R(x, y) Cross correlation of signal x and y 

Ri,j (∆r) Cross correlation coefficient between two-point signal 

Ri,j (∆t) Auto correlation coefficient of one point signal 

s Riblet space 

s+ Riblet space in wall units 

t τ Viscous time scale 
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T τ Integral time scale 

u Streamwise velocity 

u’ Streamwise fluctuating velocity 

urms  Turbulent intensity of the streamwise component 

Ub Bulk velocity 

ūi Mean velocity 

v Normal velocity 

v’ Normal fluctuating velocity 

vrms Turbulent intensity of the normal velocity 

w Spanwise velocity 

x Distance in streamwise direction 

y Distance in normal direction 

z Distance in spanwise direction 

x + Dimensionless distance in streamwise direction 

y + Dimensionless distance in normal direction 

z + Dimensionless distance in spanwise direction 

Eij(k1) 
One dimensional spectra in the streamwise wavenumber 

direction 

Eij(k2) 
One dimensional spectra in the normal wavenumber 

direction 

Eij(k1,k2) 
Two dimensional spectra in the streamwise and normal 

wavenumber direction 
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'v'uρ−  Reynolds stresses 

uτ Friction velocity 

Greek letter  

ω Vorticity 

µ Water viscosity 

ν Water kinematics viscosity 

ρ Water density 

τ Shear stress 

η Kolmogorov length scale 

τw Shear stress at the wall 

Superscript  

~ Instantaneous 

- Average or mean 



 

 

ix
 
 

 

TABLE OF CONTENTS 
 
 

Page 

ABSTRACT...........................................................................................................iii 

ACKNOWLEDGMENTS....................................................................................... v 

NOMENCLATURE............................................................................................... vi 

TABLE OF CONTENTS....................................................................................... ix 

LIST OF FIGURES................................................................................................ xi 

LIST OF TABLES .............................................................................................. xxv 

CHAPTER 
 
         I INTRODUCTION ....................................................................................... 1 

      1.1 Background.....................................................................................1 
      1.2 Turbulence......................................................................................2 
      1.3 Review of drag reduction research..................................................5 
            1.3.1 Drag reduction by polymer ....................................................5 
            1.3.2 Drag reduction by injection of microbubbles .......................10 
            1.3.3 Drag reduction by riblets .....................................................13 
            1.3.4 Drag reduction by biology based methods ...........................15 
      1.4 Aim and framework of this thesis .................................................18 
 

         II EXPERIMENTAL SETUP AND THE PIV SYSTEM............................ 19 

      2.1 Channel flow setup .......................................................................19 
      2.2 Pressure measurement...................................................................22 
      2.3 Common velocity measurement technique ...................................23 
      2.4 Particle image velocimetry ...........................................................24 
            2.4.1 PIV sampling system ...........................................................25 
            2.4.2 Image processing after PIV sampling ..................................27 
 

         III TURBULENT BOUNDARY LAYERS................................................. 29 

      3.1 Equation of motion .......................................................................29 
      3.2 Commonly used turbulent quantities ............................................31 

 



 

 

x
 
 

 

CHAPTER 
Page 

         IV WAVELET ANALYSIS ON TURBULENCE STUDY........................ 35 

      4.1 Review of wavelet analysis on turbulence study...........................35 
      4.2 Wavelet analysis theory ................................................................40 
            4.2.1 One dimensional continuous wavelet transform ..................40 
            4.2.2 One dimensional discrete wavelet transform .......................42 
            4.2.3 Wavelet auto-correlation transform .....................................45 
            4.2.4 Wavelet cross-correlation transform ....................................47 
            4.2.5 Two dimensional discrete wavelet transform.......................48 
            4.2.6 Wavelet function selection...................................................49 
      4.3 Wavelet application methods in our work.....................................52 
            4.3.1 One-dimensional continuous wavelet time-frequency map .....52 
            4.3.2 Wavelet auto-correlation map ..............................................65 
            4.3.3 Wavelet cross-correlation map.............................................70 

 
         V EXPERIMENTAL RESULTS AND ANALYSIS................................... 75 

      5.1 Wavelet cross-correlation map in the longitudinal direction.........78 
      5.2 Wavelet cross-correlation map in the normal direction.................94 
      5.3 Three-D wavelet cross-correlation energy map and wavelet  
            cross-correlation density spectrum…………………...………....108 
      5.4 Wavelet auto-correlation map at y+ =14.7..................................131 
      5.5 Wavelet auto-correlation map at y+ =17.4..................................151 

 
         VI CONCLUSIONS................................................................................... 172 

REFERENCES.................................................................................................... 175 

VITA…….. ......................................................................................................... 182 

     



 

 

xi
 
 

 

LIST OF FIGURES 
Page 

FIGURE 2.1 Schematic diagram of the experimental set up. ...............................21 

FIGURE 2.2 Time synchronization process. ........................................................26 

FIGURE 4.1 Decomposition and reconstruction of a signal.................................43 

FIGURE 4.2 Two-dimensional wavelet decomposition. ......................................48 

FIGURE 4.3 The Mexican hat wavelet.................................................................50 

FIGURE 4.4 The Morlet wavelet..........................................................................51 

FIGURE 4.5 (a) Standard cosine periodical signal )*10*2cos( tπ . ....................55 

FIGURE 4.5 (b) Wavelet time frequency map of the signal in figure 4.5 (a)   
using Mexican hat wavelet. .................................................... 55 

FIGURE 4.5 (c) Wavelet energy map of the signal in figure 4.5 (a) using 
Mexican hat wavelet............................................................... 56 

FIGURE 4.5 (d) Wavelet density spectrum of the signal in figure 4.5 (a)        
using Mexican hat wavelet. .................................................... 56 

FIGURE 4.5 (e) Wavelet time frequency map of the signal in figure 4.5 (a)   
using Morlet wavelet. ............................................................. 57 

FIGURE 4.5 (f) Wavelet energy map of the signal in figure 4.5 (a) using     
Morlet wavelet........................................................................ 57 

FIGURE 4.5 (g) Wavelet density spectrum of the signal in figure 4.5 (a)        
using Morlet  wavelet. ............................................................ 58 

FIGURE 4.6 (a) )*50*2cos()*30*2cos()*10*2cos( ttt πππ ++ ...................58 

FIGURE 4.6 (b) Wavelet time frequency map of the signal in figure 4.6 (a)   
using Mexican hat wavelet. .................................................... 59  



 

 

xii
 
 

 

Page 

FIGURE 4.6 (c) Wavelet energy map of the signal in figure 4.6 (a) using 
Mexican hat wavelet............................................................... 59 

FIGURE 4.6 (d) Wavelet density spectrum of the signal in figure 4.6 (a)          
using Mexican hat wavelet. .................................................... 60 

FIGURE 4.6 (e) Wavelet time frequency map of the signal in figure 4.6 (a)   
using Morlet wavelet. ............................................................. 60 

FIGURE 4.6 (f) Wavelet energy map of the signal in figure 4.6 (a) using     
Morlet wavelet........................................................................ 61 

FIGURE 4.6 (g) Wavelet density spectrum of the signal in figure 4.6 (a)          
using Morlet  wavelet. ............................................................ 61 

FIGURE 4.7 (a) )*50*2cos()*30*2cos()*10*2cos( ttt πππ ++ +white     
noise. ...................................................................................... 62 

FIGURE 4.7 (b) Wavelet time frequency map of the signal in figure 4.7 (a)   
using Mexican hat wavelet. .................................................... 62 

FIGURE 4.7 (c) Wavelet energy map of the signal in figure 4.7 (a) using 
Mexican hat wavelet............................................................... 63 

FIGURE 4.7 (d) Wavelet density spectrum of the signal in figure 4.7 (a)          
using Mexican hat wavelet. .................................................... 63 

FIGURE 4.7 (e) Wavelet time frequency map of the signal in figure 4.7 (a)   
using Morlet wavelet. ............................................................. 64 

FIGURE 4.7 (f) Wavelet energy map of the signal in figure 4.7 (a) using     
Morlet wavelet........................................................................ 64 

FIGURE 4.7 (g) Wavelet density spectrum of the signal in figure 4.7 (a)          
using Morlet wavelet. ............................................................. 65 

FIGURE 4.8 (a) Wavelet auto-correlation map of the signal in figure 4.7 (a)  
using Mexican hat wavelet. .................................................... 67 



 

 

xiii
 
 

 

 Page 

FIGURE 4.8 (b) Wavelet auto-correlation energy map of the signal in           
figure 4.7 (a) using Mexican hat wavelet. .............................. 67 

FIGURE 4.8 (c) Wavelet auto-correlation density spectra of the signal in      
figure 4.7 (a) using Mexican hat wavelet. .............................. 68 

FIGURE 4.8 (d) Wavelet auto-correlation map of the signal in figure 4.7 (a) 
using Morlet wavelet. ............................................................. 68 

FIGURE 4.8 (e) Wavelet auto-correlation energy map of the signal in figure     
4.7 (a) using Morlet wavelet. ................................................. 69 

FIGURE 4.8 (f) Wavelet auto-correlation density spectra of the signal in figure     
4.7 (a) using Morlet wavelet. ................................................. 69 

FIGURE 4.9 (a) )*50*2cos()*30*2cos()*10*2cos( ttt πππ ++  + white     
noise in 1 second. ................................................................... 70 

FIGURE 4.9 (b) )*20*2cos()*30*2cos()*10*2cos( ttt πππ ++  + white      
noise in 1 second. ................................................................... 71 

FIGURE 4.9 (c) Wavelet cross-correlation map of the signals in figures 4.9       
(a) and 4.9 (b) using Mexican hat wavelet. ............................ 71 

FIGURE 4.9 (d) Wavelet cross-correlation energy map of the signals in figures     
4.9 (a) and 4.9 (b) using Mexican hat wavelet. ...................... 71 

FIGURE 4.9 (e) Wavelet cross-correlation density spectra of the signals in   
figures 4.9 (a) and 4.9 (b) using Mexican hat wavelet. .......... 72 

FIGURE 4.9 (f) Wavelet cross-correlation map of the signals in figures 4.9       
(a) and 4.9 (b) using Morlet wavelet. ..................................... 72 

FIGURE 4.9 (g) Wavelet cross-correlation energy map of the signals in figures    
4.9 (a) and 4.9 (b) using Morlet wavelet. ............................... 73 

 



 

 

xiv
 
 

 

Page 

FIGURE 4.9 (h) Wavelet cross-correlation density spectra of the signals in   
figures 4.9 (a) and 4.9 (b) using Morlet wavelet. ................... 73 

FIGURE 5.1 (a) Cross correlation coefficient in the longitudinal direction at      
y+ = 9.2 for streamwise fluctuating velocity. ........................ 78 

FIGURE 5.1 (b) Cross correlation coefficient in the longitudinal direction at      
y+ = 9.2 for normal fluctuating velocity. ............................... 78 

FIGURE 5.2 (a) Wavelet cross-correlation map of (u u) using Mexican hat 
wavelet in the longitudinal direction at y+ = 9.2 for  
streamwise fluctuating velocity.............................................. 79 

FIGURE 5.2 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet       
in the longitudinal direction at y+ = 9.2 for streamwise 
fluctuating velocity................................................................. 79 

FIGURE 5.3 (a) Wavelet cross-correlation map of (v v) using Mexican hat 
wavelet in the longitudinal direction at y+ = 9.2 for        
normal fluctuating velocity. ................................................... 80 

FIGURE 5.3 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet       
in the longitudinal direction at y+ = 9.2 for normal     
fluctuating velocity................................................................. 80 

FIGURE 5.4 (a) Two-point correlation coefficient in the longitudinal direction        
at y+ = 14.7 for streamwise fluctuating velocity.................... 81 

FIGURE 5.4 (b) Two-point correlation coefficient in the longitudinal direction        
at y+ = 14.7 for normal fluctuating velocity. ......................... 81 

FIGURE 5.5 (a) Wavelet cross-correlation map of (u u) using Mexican hat 
wavelet in the longitudinal direction at y+ = 14.7 for 
streamwise fluctuating velocity.............................................. 82 

FIGURE 5.5 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet         
in the longitudinal direction at y+ = 14.7 for streamwise 
fluctuating velocity................................................................. 82 



 

 

xv
 
 

 

Page 

FIGURE 5.6 (a) Wavelet cross-correlation map of (v v) using Mexican hat 
wavelet in the longitudinal direction at y+ = 14.7 for      
normal fluctuating velocity. ................................................... 83 

FIGURE 5.6 (b) Wavelet cross-correlation map of (v v) using Morlet         
wavelet in the longitudinal direction at y+ = 14.7 for      
normal fluctuating velocity. ................................................... 83 

FIGURE 5.7 (a) Two-point correlation coefficient in the longitudinal direction        
at y+ = 17.4 for streamwise fluctuating velocity.................... 84 

FIGURE 5.7 (b) Two-point correlation coefficient in the longitudinal direction        
at y+ = 17.4 for normal fluctuating velocity. ......................... 84 

FIGURE 5.8 (a) Wavelet cross-correlation map of (u u) using Mexican hat 
wavelet in the longitudinal direction at y+ = 17.4 for 
streamwise fluctuating velocity.............................................. 85 

FIGURE 5.8 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet         
in the longitudinal direction at y+ = 17.4 for streamwise 
fluctuating velocity................................................................. 85 

FIGURE 5.9 (a) Wavelet cross-correlation map of (v v) using Mexican hat 
wavelet in the longitudinal direction at y+ = 17.4 for      
normal fluctuating velocity. ................................................... 86 

FIGURE 5.9 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet         
in the longitudinal direction at y+ = 17.4 for normal  
fluctuating velocity................................................................. 86 

FIGURE 5.10 (a) Two-point correlation coefficient in the longitudinal     
direction at y+ = 25.7 for streamwise fluctuating velocity. ... 87 

FIGURE 5.10 (b) Two-point correlation coefficient in the longitudinal     
direction at y+ = 25.7 for normal fluctuating velocity. .......... 87 

 

 



 

 

xvi
 
 

 

Page 

FIGURE 5.11 (a) Wavelet cross-correlation map of (u u) using Mexican hat 
wavelet in the longitudinal direction at y+ = 25.7 for 
streamwise fluctuating velocity.............................................. 88 

FIGURE 5.11 (b) Wavelet cross-correlation map of (u u) using Morlet       
wavelet in the longitudinal direction at y+ = 25.7 for 
streamwise fluctuating velocity.............................................. 88 

FIGURE 5.12 (a) Wavelet cross-correlation map of (v v) using Mexican hat 
wavelet in the longitudinal direction at y+ = 25.7 for      
normal fluctuating velocity. ................................................... 89 

FIGURE 5.12 (b) Wavelet cross-correlation map of (v v) using Morlet       
wavelet in the longitudinal direction at y+ = 25.7 for      
normal fluctuating velocity. ................................................... 89 

FIGURE 5.13 (a) Two-point correlation coefficient in the longitudinal     
direction at y+ = 69.7 for streamwise fluctuating velocity. ... 90 

FIGURE 5.13 (b) Two-point correlation coefficient in the longitudinal     
direction at y+ = 69.7 for normal fluctuating velocity. .......... 90 

FIGURE 5.14 (a) Wavelet cross-correlation map of (u u) using Mexican hat 
wavelet in the longitudinal direction at y+ = 69.7 for 
streamwise fluctuating velocity.............................................. 91 

FIGURE 5.14 (b) Wavelet cross-correlation map of (u u) using Morlet       
wavelet in the longitudinal direction at y+ = 69.7 for 
streamwise fluctuating velocity.............................................. 91 

FIGURE 5.15 (a) Wavelet cross-correlation map of (v v) using Mexican hat 
wavelet in the longitudinal direction at y+ = 69.7 for      
normal fluctuating velocity. ................................................... 92 

FIGURE 5.15 (b) Wavelet cross-correlation map of (v v) using Morlet       
wavelet in the longitudinal direction at y+ = 69.7 for      
normal  fluctuating velocity. .................................................. 92 

 



 

 

xvii
 
 

 

Page 

FIGURE 5.16 (a) Two-point correlation coefficient in the transverse direction       
at x+ = 3.7 for streamwise fluctuating velocity...................... 95 

FIGURE 5.16 (b) Two-point correlation coefficient in the transverse direction       
at x+ = 3.7 for normal fluctuating velocity. ........................... 95 

FIGURE 5.17 (a) Wavelet cross-correlation map of (u u) using Mexican hat 
wavelet in the transverse direction at x+ = 3.7 for     
streamwise fluctuating velocity.............................................. 96 

FIGURE 5.17 (b) Wavelet cross-correlation map of (u u) using Morlet         
wavelet in the transverse direction at x+ = 3.7 for     
streamwise fluctuating velocity.............................................. 96 

FIGURE 5.18 (a) Wavelet cross-correlation map of (v v) using Mexican hat 
wavelet in the transverse direction at x+ = 3.7 for normal 
fluctuating velocity................................................................. 97 

FIGURE 5.18 (b) Wavelet cross-correlation map of (v v) using Morlet       
wavelet in the transverse direction at x+ = 3.7 for normal 
fluctuating velocity................................................................. 97 

FIGURE 5.19 (a) Two-point correlation coefficient in the transverse direction       
at x+ = 28.4 for streamwise fluctuating velocity.................... 98 

FIGURE 5.19 (b) Two-point correlation coefficient in the transverse direction       
at x+ = 28.4 for normal fluctuating velocity. ......................... 98 

FIGURE 5.20 (a) Wavelet cross-correlation map of (u u) using Mexican hat 
wavelet in the transverse direction at x+ = 28.4 for   
streamwise fluctuating velocity.............................................. 99 

FIGURE 5.20 (b) Wavelet cross-correlation map of (u u) using Morlet       
wavelet   in the transverse direction at x+ = 28.4 for 
streamwise fluctuating velocity.............................................. 99 

FIGURE 5.21 (a) Wavelet cross-correlation map of (v v) using Mexican hat 
wavelet in the transverse direction at x+ = 28.4 for          
normal fluctuating velocity. ................................................. 100 



 

 

xviii
 
 

 

Page 

FIGURE 5.21 (b) Wavelet cross-correlation map of (v v) using Morlet       
wavelet in the transverse direction at x+ = 28.4 for          
normal fluctuating velocity. ................................................. 100 

FIGURE 5.22 (a) Two-point correlation coefficient in the transverse direction          
at x+ = 72.4 for streamwise fluctuating velocity.................. 101 

FIGURE 5.22 (b) Two-point correlation coefficient in the transverse direction          
at x+ = 72.4 for normal fluctuating velocity. ....................... 101 

FIGURE 5.23 (a) Wavelet cross-correlation map of (u u) using Mexican hat 
wavelet in the transverse direction at x+ = 72.4 for   
streamwise fluctuating velocity............................................ 102 

FIGURE 5.23 (b) Wavelet cross-correlation map of (u u) using Morlet       
wavelet in the transverse direction at x+ = 72.4 for   
streamwise fluctuating velocity............................................ 102 

FIGURE 5.24 (a) Wavelet cross-correlation map of (v v) using Mexican hat 
wavelet in the transverse direction at x+ = 72.4 for          
normal fluctuating velocity. ................................................. 103 

FIGURE 5.24 (b) Wavelet cross-correlation map of (v v) using Morlet       
wavelet in the transverse direction at x+ = 72.4 for          
normal fluctuating velocity. ................................................. 103 

FIGURE 5.25 (a) Two-point correlation coefficient in the transverse direction          
at x+ = 110.9 for streamwise fluctuating velocity................ 104 

FIGURE 5.25 (b) Two-point correlation coefficient in the transverse direction          
at x+ = 110.9 for normal fluctuating velocity. ..................... 104 

FIGURE 5.26 (a) Wavelet cross-correlation map of (u u) using Mexican           
hat wavelet in the transverse direction at x+ = 110.9 for 
streamwise fluctuating velocity............................................ 105 

FIGURE 5.26 (b) Wavelet cross-correlation map of (u u) using Morlet       
wavelet in the transverse direction at x+ = 110.9 for 
streamwise fluctuating velocity............................................ 105 



 

 

xix
 
 

 

Page 

FIGURE 5.27 (a) Wavelet cross-correlation map of (v v) using Mexican           
hat wavelet in the transverse direction at x+ = 110.9              
for normal fluctuating velocity............................................. 106 

FIGURE 5.27 (b) Wavelet cross-correlation map of (v v) using Morlet       
wavelet in the transverse direction at x+ = 110.9 for        
normal   fluctuating velocity. ............................................... 106  

FIGURE 5.28 (a) Wavelet cross-correlation energy map of (u u) in      
longitudinal direction using Mexican hat for single phase. ... 109 

FIGURE 5.28 (b) Wavelet cross-correlation energy map of (u u) in     
longitudinal direction using Mexican hat for two phase. ..... 110 

FIGURE 5.29 (a) Wavelet cross-correlation energy map of (v v) in      
longitudinal direction using Mexican hat for single phase. . 111 

FIGURE 5.29 (b) Wavelet cross-correlation energy map of (v v) in     
longitudinal direction using Mexican hat for two phase. ..... 112 

FIGURE 5.30 (a) Wavelet cross-correlation energy map of (u u) in longitudinal 
direction using Morlet wavelet for single phase. ............. …113 

FIGURE 5.30 (b) Wavelet cross-correlation energy map of (u u) in longitudinal 
direction using Morlet wavelet for single phase. ................. 114 

FIGURE 5.31 (a) Wavelet cross-correlation energy map of (v v) in longitudinal 
direction using Morlet wavelet for single phase. ................. 115 

FIGURE 5.31 (b) Wavelet cross-correlation energy map of (v v) in longitudinal 
direction using Morlet wavelet for two phase. ..................... 116 

FIGURE 5.32 Wavelet cross-correlation density spectra of (u u) in longitudinal 
direction using Morlet wavelet............................................. 117 

FIGURE 5.33 Wavelet cross-correlation density spectra of (v v) in longitudinal 
direction using Morlet wavelet............................................. 119 



 

 

xx
 
 

 

Page 

FIGURE 5.34 (a) Wavelet cross-correlation energy map of (u u) in transverse 
direction using Mexican hat for single phase....................... 121 

FIGURE 5.34 (b) Wavelet cross-correlation energy map of (u u) in transverse 
direction using Mexican hat for two phase. ......................... 122 

FIGURE 5.35 (a) Wavelet cross-correlation energy map of (v v) in transverse 
direction using Mexican hat for single phase....................... 123 

FIGURE 5.35 (b) Wavelet cross-correlation energy map of (v v) in transverse 
direction using Mexican hat for two phase. ......................... 124 

FIGURE 5.36 (a) Wavelet cross-correlation energy map of (u u) in transverse 
direction using Morlet wavelet for single phase. ................. 125 

FIGURE 5.36 (b) Wavelet cross-correlation energy map of (u u) in transverse 
direction using Morlet wavelet for two phase. ..................... 126 

FIGURE 5.37 (a) Wavelet cross-correlation energy map of (v v) in transverse 
direction using Morlet wavelet for single phase. ................. 127 

FIGURE 5.37 (b) Wavelet cross-correlation energy map of (v v) in transverse 
direction using Morlet wavelet for two phase. ..................... 128 

FIGURE 5.38 Wavelet cross-correlation density spectra of (u u) in transverse 
direction using Morlet wavelet............................................. 129 

FIGURE 5.39 Wavelet cross-correlation density spectra of (v v) in transverse 
direction using Morlet wavelet............................................. 130 

FIGURE 5.40 (a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7,      
x=4.11mm, x+ =47.7. ........................................................... 131 

FIGURE 5.40 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm,               
y+ =14.7, x=4.11mm, x+ =47.7. .......................................... 131 

FIGURE 5.41 (a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7,      
x=4.58mm, x+ =53.2. ........................................................... 132 



 

 

xxi
 
 

 

Page 

FIGURE 5.41 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm,               
y+ =14.7, x=4.58mm, x+ =53.2. .......................................... 132 

FIGURE 5.42(a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7,       
x=5.06mm, x+ =58.7. ........................................................... 133 

FIGURE 5.42 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm,               
y+ =14.7, x=5.06mm, x+ =58.7. .......................................... 133 

FIGURE 5.43(a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7,       
x=5.53mm, x+ =64.2. ........................................................... 134 

FIGURE 5.43 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm,               
y+ =14.7, x=5.53mm, x+ =64.2. .......................................... 134 

FIGURE 5.44 (a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7,      
x=6.01mm, x+ =69.7. ........................................................... 135 

FIGURE 5.44 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm,               
y+ =14.7, x=6.01mm, x+ =69.7. .......................................... 135 

FIGURE 5.45 (a) Three-D plot of wavelet auto-correlation map for (u u) at          
y= 1.27mm, y+ =14.7 of single phase using Mexican hat 
wavelet. ................................................................................ 136 

FIGURE 5.45 (b) Three-D plot of wavelet auto-correlation map for (u u) at          
y= 1.27mm, y+ =14.7 of two phase using Mexican hat  
wavelet. ................................................................................ 137 

FIGURE 5.46 (a) Three-D plot of wavelet auto-correlation map for (v v) at          
y= 1.27mm, y+ =14.7 of single phase using Mexican hat 
wavelet. ................................................................................ 138 

FIGURE 5.46 (b) Three-D plot of wavelet auto-correlation map for (v v) at          
y= 1.27mm, y+ =14.7 of two phase using Mexican hat  
wavelet. ................................................................................ 139 

 



 

 

xxii
 
 

 

Page 

FIGURE 5.47 (a) Three-D plot of wavelet cross-correlation map for u v at         
y= 1.27mm, y+ =14.7 of single phase using Mexican hat 
wavelet. ................................................................................ 140 

FIGURE 5.47 (b) Three-D plot of wavelet cross-correlation map for u v at         
y= 1.27mm, y+ =14.7 of two phase using Mexican hat  
wavelet. ................................................................................ 141 

FIGURE 5.48 (a) Three-D plot of CWT map for (u u) at y= 1.27mm, y+ =      
14.7 of single phase using Morlet wavelet........................... 142 

FIGURE 5.48 (b) Three-D plot of wavelet auto-correlation map for (u u) at y= 
1.27mm, y+ =14.7 of two phase using Morlet wavelet........ 143 

FIGURE 5.49 (a) Three-D plot of wavelet auto-correlation map for (v v) at y= 
1.27mm, y+ =14.7 of single phase using Morlet wavelet. ... 144 

FIGURE 5.49 (b) Three-D plot of wavelet auto-correlation map for (v v) at y= 
1.27mm, y+ =14.7 of two phase using Morlet wavelet........ 145 

FIGURE 5.50 (a) Three-D plot of wavelet cross-correlation map for u v at y= 
1.27mm, y+ =14.7 of single phase using Morlet wavelet. ... 146 

FIGURE 5.50 (b) Three-D plot of wavelet cross-correlation map for u v at y= 
1.27mm, y+ =14.7 of two phase using Morlet wavelet........ 147 

FIGURE 5.51 Wavelet auto-correlation density spectra of (u u) in transverse 
direction using Morlet wavelet............................................. 149 

FIGURE 5.52 Wavelet auto-correlation density spectra of (v v) in transverse 
direction using Morlet wavelet............................................. 150 

FIGURE 5.53 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4,      
x=4.11mm, x+ =47.7. ........................................................... 151 

FIGURE 5.53 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm,               
y+ =17.4, x=4.11mm, x+ =47.7. .......................................... 151 



 

 

xxiii
 
 

 

Page 

FIGURE 5.54 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4,      
x=4.58mm, x+ =53.2. ........................................................... 152 

FIGURE 5.54 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm,               
y+ =17.4, x=4.58mm, x+ =53.2. .......................................... 152 

FIGURE 5.55 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4,      
x=5.06mm, x+ =58.7. ........................................................... 153 

FIGURE 5.55 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm,               
y+ =17.4, x=5.06mm, x+ =58.7. .......................................... 153 

FIGURE 5.56 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4,      
x=5.53mm, x+ =64.2. ........................................................... 154 

FIGURE 5.56 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm,               
y+ =17.4, x=5.53mm, x+ =64.2. .......................................... 154 

FIGURE 5.57 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4,      
x=6.01mm, x+ =69.7. ........................................................... 155 

FIGURE 5.57 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm,               
y+ =17.4, x=6.01mm, x+ =69.7. .......................................... 155 

FIGURE 5.58 (a) Three-D plot of wavelet auto-correlation map for (u u) at          
y= 1.50mm, y+ =17.4 of single phase using Mexican hat 
wavelet. ................................................................................ 156 

FIGURE 5.58 (b) Three-D plot of wavelet auto-correlation map for (u u) at          
y= 1.50mm, y+ =17.4 of two phase using Mexican hat   
wavelet. ................................................................................ 157 

FIGURE 5.59 (a) Three-D plot of wavelet auto-correlation map for (v v) at          
y= 1.50mm, y+ =17.4 of single phase using Mexican hat 
wavelet. ................................................................................ 158 

 

 



 

 

xxiv
 
 

 

Page 

FIGURE 5.59 (b) Three-D plot of wavelet auto-correlation map for (v v)             
at y= 1.50mm, y+ =17.4 of two phase using Mexican            
hat wavelet............................................................................ 159 

FIGURE 5.60 (a) Three-D plot of wavelet cross-correlation map for u v at y= 
1.50mm, y+ =17.4 of single phase using Mexican hat......... 160 

FIGURE 5.60 (b) Three-D plot of wavelet cross-correlation map for u v at y= 
1.50mm, y+ =17.4 of two phase using Mexican hat        
wavelet. ................................................................................ 161 

FIGURE 5.61 (a) Three-D plot of wavelet auto-correlation map for (u u) at y= 
1.50mm, y+ =17.4 of single phase using Morlet wavelet. ... 162 

FIGURE 5.61 (b) Three-D plot of wavelet auto-correlation map for (u u) at y= 
1.50mm, y+ =17.4 of two phase using Morlet wavelet........ 163 

FIGURE 5.62 (a) Three-D plot of wavelet auto-correlation map for (v v) at y= 
1.50mm, y+ =17.4 of single phase using Morlet wavelet. ... 164 

FIGURE 5.62 (b) Three-D plot of Wavelet auto-correlation map for (v v) at y= 
1.50mm, y+ =17.4 of two phase using Morlet wavelet........ 165 

FIGURE 5.63 (a) Three-D plot of Wavelet auto-correlation map for u v at y= 
1.50mm, y+ =17.4 of single phase using Morlet wavelet. ... 166 

FIGURE 5.63 (b) Three-D plot of Wavelet auto-correlation map for u v at y= 
1.50mm, y+ =17.4 of two phase using Morlet wavelet........ 167 

FIGURE 5.64 Wavelet auto-correlation density spectra of (u u) in transverse 
direction using Morlet wavelet............................................. 170 

FIGURE 5.65 Wavelet auto-correlation density spectra of (v v) in transverse 
direction using Morlet wavelet............................................. 171 

 



 

 

xxv
 
 

 

LIST OF TABLES 
Page 

TABLE 5.1 Drag reduction at various void fraction conditions…………….   76 

TABLE 5.2 ∆x index, ∆x, ∆x+ check table.………………………………...   93 

TABLE 5.3 ∆y index, ∆y, ∆y+ check table.………………………………... 107 

 

 



 

 

1
 
 

 

CHAPTER I    

INTRODUCTION 

 

1.1 Background 

 

According to Wood (2003), existing data indicates that up to 25% of the total energy 

consumed in the United States is used to overcome aerodynamic drag, 27% of the total 

energy used in the United States is consumed by transportation systems, and 60% of the 

transportation energy or 16% of the total energy consumed in the United States is used to 

overcome aerodynamic drag in transportation systems. This energy consuming correlates 

to a yearly cost savings in the 30 Billion dollar range. To save energy in engineering 

applications such as hydraulic machines, aircraft, pumping systems, automobiles, slurry 

pipeline systems, oil pipeline transport, oil well operations, marine applications etc, drag 

reduction technologies need to be investigated and developed. The benefits of obtaining 

a decrease in drag can have environmental and economic impacts. Actually, drag 

reduction by use of additives such as polymers and microbubbles have already obtained 

great success in the laboratory and some industries. A similar application is the addition 

of polymers to oil being pumped from offshore platforms to shore facilities (Beaty et al., 

1984).  
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Also, in sewerage pipes and storm-water drains polymers have been used to increase 

the flow rates so that the peak loads do not result in over flowing and this can be much 

cheaper than constructing new pipes (Sellin 1988). 

And there is even a possible medical application: the addition of low concentrations 

of polymers might be capable of improving blood flow without altering flow through 

normal vessels, as is suggested by a study by Unthank et al., (1992). Though the drag 

reduction effect is extremely interesting from a practical point of view, it is still not 

ready to practice on shipboard systems. Transition from the laboratory to full-scale has 

been severely limited because the physical mechanisms underlying additive-based drag 

reduction are still poorly understood.  

 

1.2 Turbulence 

 

A drag force has two components. One is the drag that is directly related to the wall 

shear stress, which means the skin friction drag. The other one is pressure drag 

associated with the normal stresses or pressure variation over the surface. Most of the 

industries systems have very large Reynolds numbers and are in turbulent flow 

conditions where skin friction is very large. Hence, to implement drag reduction 

schemes at full-scale in industry, the dynamics of the turbulence must be understood. 

As an old but challenging topic, turbulence has attracted the attention of the world’s 

greatest scientists over the last hundred years, and yet our understanding is far from 

complete.  According to Tsinober, 2001, turbulence is a fluctuating and chaotic state of 
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fluid motion when non-linear inertial effects dominate over viscous effects. Turbulence 

has irregular fluctuation of velocity in all three directions. A time history of the velocity 

at a point looks like a random signal. Nevertheless, there is structure to the fluctuations, 

so it is not absolutely accurate to say that the fluctuations are random. The irregularities 

in the velocity field have certain spatial structures known as eddies. An eddy may be like 

a vortex, an imbedded jet, a mushroom shape, or any other recognizable form. Small 

eddies exist inside larger eddies, and even smaller eddies exist inside the small eddies. 

The turbulence is also self-sustaining, once a flow becomes unstable and turbulence 

develops. Turbulence, once initiated, continues and perpetuates itself without 

diminishing. A gradient in the mean velocity profile exists as the mean shear for the 

turbulence to be self-sustaining. The rigorous way to decide whether fluid is turbulent or 

nonturbulent is based on vorticity. Turbulent flow also involves processes that change 

the length scale of the eddies. Turbulent eddies are continually formed with smaller and 

smaller length scales. There is also a limit to this process. When the spatial extent of an 

eddy becomes very small, viscous forces, because of the steep velocity gradient, become 

very important. They tend to destroy the smallest eddies, and hence viscosity puts a 

lower limit on the eddy size. Any flow with viscosity has viscous dissipation, but 

turbulent flows have much more of it because the small-scale eddies have sharp velocity 

gradients. The energy dissipated in the small-scale eddies dominates that dissipated in 

the largest eddies and in the mean flow. Since the small eddies dissipate energy and tend 

to destroy themselves, the scale-changing process that produces smaller eddies is a 

necessary element of self-sustaining turbulence.  
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It has already been discovered that turbulence production and self-sustainment in a 

boundary layer are organized phenomena and it could be discovered by using 

visualization techniques. These are generally called “coherent structures". It is assumed 

that the coherent structures, evolving in time and in space, play an important role in the 

dynamics of turbulence. However, it is quite difficult to determine the properties of the 

coherent structures with traditional measurement techniques. In the past decade there 

have been some developments in turbulence research that hold some promise for the 

future. One of these is Particle Image Velocimetry (PIV), which is an optical technique 

that opens the possibility to study the coherent structures quantitatively (see Adrian 1991, 

Hassan 1992). Another important technique is Direct Numerical Simulation (DNS). It is 

based on solving the governing equations that describe the spatial and temporal 

evolutions of flows numerically. However, to solve the Navier-Stokes equation 

numerically, the size of grid mesh and time increment of solution must be carefully 

considered. The calculations would have to be made on the grid at a frequency greater 

than the frequency of the passage of a small eddy by a fixed position. Considering the 

number of the grid points and the time dependent nature of the solution, the number of 

arithmetic operations is immense and impractical for any normal computer. For the 

additives drag reduction analysis, DNS will become more impractical since a lot of 

assumptions have to be made for the size, distribution of the polymers or microbubbles.  

 

 



 

 

5
 
 

 

1.3 Review of drag reduction research 

 

Wall turbulence physics fundamental advances and drag reduction methodologies 

need to be coupled to solve the challenges of full scale drag reduction. Many techniques 

have been approved numerically and experimentally to pursue drag reduction. Some 

hypotheses have been made to elucidate the mechanics of the drag reduction. However, 

there is no consensus between them. Further experiments and analysis still need to be 

continued. An extensive review on different techniques has been carried out in order to 

better understanding the mechanism of drag reduction effect happened on the boundary 

layer. Turbulent drag reduction methods-including polymer, microbubbles, riblets on the 

wall and biology based methods are discussed as follows.  

 

1.3.1 Drag reduction by polymer 

 

In 1946, Toms (1977) conducted one of the most famous experiments for drag 

reduction by addition of polymers. The flow was kept the same pressure at inlet and 

outlet which were glass aspirator jars and the fluid was moved from one jar to the other. 

Both jars were submersed in a water tank to maintain the same constant temperature (25o 

C). The time required for one liter of solution to pass through the tube under a known 

pressure (showed by a mercury U-tube manometer) was measured. It was found that the 

flow rate was increased in the condition that polymer solution was offered. 
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From then on, there was a substantial research on this drag reduction phenomenon, 

including theoretical, experimental and numerical approaches in different countries and 

in thousands of institutions. Research of the effect of polymer additives on turbulent 

drag is described leading to a number of significant findings and possible explanation of 

the mechanism of drag reduction. Tests of the turbulence characteristics in the boundary 

layer with and without the polymer injection was conducted. 

The two most important findings from experimental studies by Virk (1975) were the 

onset of drag reduction and the existence of maximum drag reduction (MDR). De 

Gennes (1990) suggested that drag reduction does not come from a purely viscous effect 

of the dilute polymer solution. Experiments showed that the drag reduction had a 

threshold regardless of the amount of polymer concentration. So the viscosity could not 

be a dominant parameter for drag reduction.  

Among the studies for drag reduction by laser Doppler velocimetry (LDV) 

measurement were for example the contributions of Pinho & Whitelaw (1990), Harder & 

Tiederman (1991) and Wei & Willmarth (1992). Pinho & Whitelaw (1990) measured all 

three velocity components in a pipe flow, while the other two studies used a two-

dimensional LDV system in a channel flow. Wei & Willmarth (1992) gave special 

attention to the power spectra. One of the most striking results found in these papers, and 

also in the majority of other studies reported in the literature, was that polymer additives 

do not simply suppress the turbulent motion. On the contrary, the streamwise turbulence 

intensity is increased, while the normal turbulence intensity is decreased. This means 

that the turbulence structure was changed, rather than attenuated. Wei & Willmarth 
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(1992) found that the energy in the normal velocity component was dramatically 

suppressed over all frequencies, while there is a redistribution of energy from high 

frequencies to low frequencies for the streamwise component.  

Den Toonder et al., (1997) studied the roles of stress anisotropy and of elasticity in 

the mechanism of drag reduction by polymer additives in numerical and laboratory 

experiments. In their DNS two different models were used to describe the effects of 

polymers on the flow. The first was a constitutive equation based on Batchelor's theory 

of elongated particles suspended in a Newtonian solvent which models the viscous 

anisotropic effects caused by the polymer orientation. The second was an extension of 

the first model with an elastic component, and can be interpreted as an anisotropic 

Maxwell model. The LDV experiments had been carried out in a reticulating pipe flow 

facility by using of a solution of water and 20 w.p.p.m Superfloc A110. Turbulence 

statistics up to the fourth moment, as well as power spectra of various velocity 

components, were measured. The results of the numerical simulation and of the 

measurements were compared in order to elucidate the role of polymers in the 

phenomenon of drag reduction. For the case of the viscous anisotropic polymer model, 

almost all turbulence statistics and power spectra calculated agreed in a qualitative sense 

with the measurements. The addition of elastic effects, on the other hand, had an adverse 

effect on the drag reduction, i.e. the viscoelastic polymer model showed less drag 

reduction than the anisotropic model without elasticity. Moreover, for the case of the 

viscoelastic model not all turbulence statistics showed the right behavior. On the basis of 



 

 

8
 
 

 

these results, they proposed that the viscous anisotropic stresses introduced by extended 

polymers played a key role in the mechanism of drag reduction by polymer additives. 

By using LDV system and pressure measurement, Warholic et al., (1999) 

investigated on experiments for drag reduction of 14, 19, 27, 33, 64 and 69% by addition 

of Percol 727 (Copolymer of polyacylamide and sodium acrilate). It was conducted on a 

channel with a length of 1100 cm, a height of 5.1 cm, and 61 cm wide, and several 

polymer concentration (from 5 to 200 ppm) were used. A Validyne pressure transducer 

(DP103) was used to evaluate the pressure drop (∆p) with polymer and without polymer 

over a distance (∆x) of 154 cm. In 2001, Warholic used Particle image Velocimetry to 

study the effect of drag-reducing polymers on the structure of turbulence in a channel 

flow. The polymer choose at this time was Percol 727. The PIV system was composed of 

a pulsed ruby-laser with energy of 1 J/pulse, and time difference between pulses of 4 ms, 

and a CCD camera with a resolution of 256 x 256 pixels. Because of the non-intrusive 

and 2-dimension characteristic of PIV, this time the measurements could be carried on in 

the x-y plane and in the x-z plane.  In both LDV (Warholic et al., 1999) and PIV 

(Warholic et al., 2001), it was found that the root-mean square of the streamwise 

velocity fluctuation, urms, made dimensionless with the friction velocity increased and 

was displaced outward with increasing drag reduction. The root-mean square of the 

normal velocity fluctuation vrms, decreased systematically with increasing drag reduction 

for y+ <100. Furthermore, Reynolds stress made dimensionless by τw, show a decrease 

when the drag reduction increases. Frequency spectra for different cases were also given. 

The addition of polymer was seen to decrease drastically the contribution of high 
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frequency fluctuations to the turbulence.  Furthermore, by using PIV, a notable 

difference between turbulence structures of Newtonian fluids and of polymer solutions 

with high drag reduction is the reduction of small scale fluctuations and this 2-

dimensional visual comparison could not be given by the tradition 1-dimensional 

measurement. The small scale fluctuation reduction effect was also evidenced by the 

spectral functions vs. wave numbers. The result from PIV measurement showed a 

damping effect for the turbulence activity near the wall which means a decrease of bursts 

event happened due to the injected polymers. Suppression of small scale eddies and shift 

of the turbulence spectrum towards the larger eddy sized were observed. 

The structure of turbulence in a drag-reduced flat-plate boundary layer flow has also 

been studied with particle image velocimetry (PIV) by White et al., (2003). Drag 

reduction was achieved by injection of a concentrated polymer solution through a 

spanwise slot along the test wall at a location upstream of the PIV measurement station. 

Planes of velocity were measured parallel to the wall (x–z plane), for a total of 30 planes 

across the thickness of the boundary layer. For increasing drag reduction, it was found a 

significant modification of the near-wall structure of turbulence with a coarsening of the 

low-speed velocity streaks and a reduction in the number and strength of near-wall 

vortical structures. 

Min (2003) carried out a DNS simulation using an Oldroyd-B model for the linear 

elastic behavior of the polymer solution. Simulations were carried out by changing the 

Weissenberg number at the Reynolds numbers of 4000 and 20000 based on the bulk 

velocity and channel height. The onset criterion for drag reduction predicted in this study 
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showed a good agreement with previous theoretical and experimental studies. In 

addition, the flow statistics such as the r.m.s value of velocity fluctuations were also in 

good agreement with previous experimental observations. The onset mechanism of drag 

reduction was interpreted based on elastic theory, which was one of the most plausible 

hypotheses suggested in the past. It was observed that the polymer stores the elastic 

energy from the flow very near the wall and then releases it there when the relaxation 

time was short, showing no drag reduction. However, when the relaxation time was long 

enough, the elastic energy stored in the very near-wall region was transported to and 

released in the buffer and log layers, showing a significant amount of drag reduction. 

 

1.3.2 Drag reduction by injection of microbubbles 

 

In the US, the first study on drag reduction by injection of bubbles was conducted by 

Mccormick & Bhattacharyya (1973). In their experiment, hydrogen bubbles were 

produced by driving an electrical current through a wrapped wire (0.6 cm in diameter). 

A fully submersed axisymetric body of revolution (SABR) with 91.44 cm in length and 

12.7 cm in maximum diameter was used. The total drag force was measured by a 

dynamometer. The bubbles were injected beneath the boundary layer, and a maximum 

total drag reduction of approximately 30 % was measured. The author attributed the drag 

reduction to the decrease of the viscosity near the wall, which could also stop 

transmission of the small viscous shear stresses from the turbulent region of the 

boundary layer to the wall. As the bubbles distributed from the surface to the outer 
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regions of the boundary layer, it was proposed that micro bubbles reduced the Reynolds 

stresses by absorbing the momentum by their elasticity. 

Madavan et al., (1984) used Laser Dopler anemometer (LDA) technique to measure 

velocity profiles in drag reduction conditions. Experiments were carried out at the top 

and bottom of a rectangular test section with a length of 76.2 cm and a cross section of 

50.8 cm x 11.4 cm of a water channel. Microbubbles were injected in the boundary layer 

by driving air into a sintered stainless steel plate. A floating element force balance was 

used for the integrated skin friction evaluation, and a flush mounted hot film probe was 

used to measure the local skin friction. The maximum integrated skin friction reduction 

was more than 80%. It showed that the differences of the velocity and turbulent 

intensities with and without bubbles were small outside the boundary layer. Spectra 

results showed a shifting effect of the turbulent energy toward lower frequencies in 

bubbles injected conditions.  

Madavan et al., (1985) investigated a numerical study in microbubble drag 

reduction. The mixing length model was used. The viscosity and density were locally 

changed as a function of a trapezoidal concentration profile. The results obtained 

indicated that the skin friction depends on not only the concentration of the bubbles, but 

also in their location, and distribution in the boundary layer. Bubbles were most 

efficacious when they are located in the buffer layer.  

Kato et al., (1994) conducted frictional drag reduction experiments by injecting 

bubbly water into turbulent boundary layer. The tunnel had 120 mm x 50 mm in cross 

section. A circular rod of 5 mm diameter was set on the tunnel wall 115 mm upstream of 
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the test section and it acted as a turbulence stimulator. LDV was used to measure the 

velocity. The shear stress was measured using five shear-stress sensors on the flat wall of 

the test sections. The results showed that the position of the microbubbles within the 

boundary layer had a determinant role in the drag reduction phenomenon. 

Fontaine et al., (1999) injected micro bubbles with homogeneous solution of 

surfactant or drag reduction polymers for drag reduction experiment. It was performed 

on an axisymmetric body with a length of 63.2 cm and a diameter of 8.9 cm. A wire with 

a diameter of 0.035 was located at 4.6 cm from the leading edge of the body to assure 

fully developed flow in test section. It was observed that reduction of drag for a 

combination of polymer and microbubbles is greater than that obtained by polymer and 

microbubbles lonely. A drag reduction higher than 80 % was measured with a polymer 

concentration of 20 ppm and 10 m3/s of gas.  It was proposed that polymers modify the 

turbulence close to the wall in such way that the effectiveness of the microbubbles is 

increased.  

Kodama et al., (2000) performed microbubble experiments in a water tunnel. The 

test section has 100 mm width, 15 mm height and 3000 mm length. Microbubbles were 

generated in an air injection chamber by injecting air through a porous plate. It was 

found that the local void fraction is an important factor for the drag reduction. It was also 

indicated that the interaction between the bubbles and the wall turbulence near the wall 

contributes to the reduction of turbulent energy.  The drag reduction effect was attributed 

to the prevention of the formation of the sheet-like structure of the spanwise vorticity 

near the wall due to the bubbles’ presence. The streamwise vorticity was weakened, 
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depressing the bursting phenomenon. The low-speed streaks of the spanwise vorticity 

was found to be disappeared in the drag reduction condition. 

Kitagawa et al., (2003) investigated the turbulence structure of flow field with 

microbubbles injected. Both particle tracking velocimetry and Laser Induced 

Fluorescence (PTV/LIF) technique were used. The channel had 15 mm in height, 

100mm in width and 3000 mm in length. Air bubbles were injected through an array of 

holes installed at the upper wall. The turbulence intensity was found to be increased and 

the Reynolds stress was decreased with the increasing of void fraction. 

 

1.3.3 Drag reduction by riblets 

 

In addition to Polymers, Bubbles injections, riblets are also used for turbulent drag 

reduction. This technique has already been studied for more than two decades by 

different institutions. The most significant parameters to describe a riblet are spacing 

riblet (s), height of the riblet (h), and the spacing of the riblet in wall units, which is 

shown in the equation (1), where uτ is the friction velocity and  ν is the kinematic 

viscosity of the fluid. 

                                                    
ν

= τ+ su
s                                                              ( 1 ) 

The same method to define the dimensionless normal distance y+= yuτ/ν. 

Baron & Quadrio (1993) performed some experiments using V riblets in a wind 

tunnel with a length of 170 cm, width of 30 cm, and a height of 9.3 cm. The test section 
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was located at 65 cm downstream of the leading edge of the lower wall of the tunnel. 

Smooth and V shape riblets were flushed to the wall. The velocity field was measured by 

a hot wire anemometer. The best performance of the riblets was achieved at s+ = 12 for a 

skin friction coefficient of 6 percent. 

The turbulent intensity with riblets is lower than without them and the maximum 

value is achieved about y+ ≈ 10. Using hot wire anemometer, Choi & Orchard (1997) 

performed another similar experiment in the lower wall of a flat plate with V-riblets 

mounted the surrounding flat plate. Riblets with an s/h =1 and s = 0.183 cm was tested 

using a free stream velocity of 250 cm/s. It was founded again that nearly 6 % of drag 

reduction achieved. The turbulent intensity profile for the riblets case is lower than 

without them, and the maximum value was reported for y+ = yuτ/ν = 13 (where y is the 

distance from the wall). Turbulent energy of the spectra with riblets was found to be 

reduced compared to the energy spectra without riblets. Using Laser Doppler 

Velocimetry (LDV), Wang et al., (2000) performed experiments of V type riblets. The 

maximum value was reported around y+ = 10.9.  

Experiments with semicircular riblets were carried out in a closed type subsonic 

wind tunnel by Lee & Lee (2001). A sharp flat plate with a length of 620 cm was 

installed in the test section of a wind tunnel. Roughness elements were situated at 50 cm 

downstream the leading edge of the flat plate to get a fully developed flow at the 

measurement station, which is located at 541 cm downstream the leading edge. The 

measurements are performed in two exchangeable plates with 30 cm wide and 60 cm 

long, one of them is smooth and the other has riblets, which was aligned to the flat plate 
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by using the virtual origin of the riblets. They have semicircular grooves with an s = 0.3 

cm.  Instantaneous velocity fields in y-z plane (vertical plane) with an area of 6.75 x 6.75 

mm2 were obtained by Particle Image (PIV) measurement technique. Their PIV system 

is in general composed of Nd:YAG laser with a maximum frequency of 40 Hz (width 

pulse about 7ns, and approximately 25 mJ/pulse), and high speed CCD camera with a 

frame rate from 31-1000 frames per second and a resolution of 512x512 pixels. Drag 

reduction was obtained at the lower velocity at s+ = 25.2. However, the opposite trend 

occurs for the highest velocity at s+ = 40.6. 

 

1.3.4 Drag reduction by biology based methods 

 

Evolutionary adaptations of animals to sustained fast flying and swimming face the 

same challenges as engineering of modern aircraft, cars, ships and submarines. Contrary 

to engineering, nature had a huge experimental ground. Only optimal combinations of 

mechanically highly efficient propulsion systems and extraordinary complex drag 

reduction measures can explain the spectacular achievements of animal locomotion in air 

and water. Videler (1992) did a comparison of the costs of transport of animal flight with 

that of aircraft and helicopter in a dimensionless way showed that nature was found to 

have much more economic solutions. However, due to the enormous diversity in life 

styles, feeding and survival strategies, principles of force generation and the many other 

functions incorporated in the animal’s body, many details and structural solutions to the 

problem of natural drag reduction still remained undiscovered or ill-understood 

(Bannasch 1998).   
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Experimental studies of the fluid dynamic properties of live swimming animals are 

crucial. Their flexible bodies were adaptable to particular flow conditions. In fish and 

dolphins the body was strongly involved in the process of thrust generation and is thus 

exposed to highly unsteady effects, which can hardly be reproduced in labs. Studies with 

rigid models had been rather disappointing, and various numerical approaches to 

discover the secrets of the dolphin swimming, namely to solve Gray’s Paradox (1936), 

led to controversial results. Gray stated that “If the resistance of an actively swimming 

dolphin is equal to that of a rigid model towed at the same speed, the muscles must be 

capable of generating energy at a rate at least seven times greater than that of other types 

of mammalian muscle.” Gray went on to identify the proposition that the rhythmic 

movements of the dolphin in some way that prevent the fluid from generating turbulence 

along the body. Gray proposed the paradox and speculated that laminar flow exited 

along the body.  However, some other authors reject the existence of any drag reducing 

mechanisms in dolphins, but concluded that dolphins swim fast, but do not exceed what 

they would be able of doing without exotic drag reduction mechanisms (Fein 1998, Fish 

1991). After respective correction, it turned out that, Gray was right (Bannasch 1998). 

These animals must be able to use special methods for drag reduction. Apart from the 

ability to delay considerably the laminar-turbulent transition in the boundary layer by 

compliant wall effects (Carpenter P.W. 1990), other authors proposed that dolphin used 

secretion on the skin or wave-like body motion to get drag reduction Bannasch (1998). 

Rosen (1971) reported that the dilute solutions of fish mucus in turbulent pipe flow 

exhibited as much as 66% in friction drag.   The mucus secreted by fish over the body 
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surface was believed to reduce the rate of momentum transfer from the free-stream flow 

to the surface of the fish.  The development of riblets to reduce turbulent skin friction 

came from the study of shark scales. For instance sharks have small riblets (parallel, 

converging and diverging patterns) on their skin, which are assumed to improve the 

performance (Koeltzsch et al., 2002, Bechert et al., 1997, Bechert et al., 2000). Some 

species also deploy roughness by projecting bands near the position of maximum body 

girth to ensure the presence of turbulent flow over the body to avoid flow separation, 

which would increase the pressure drag. Likewise, investigations indicate most fish 

slime, which contains high molecular weight polymer and surfactants, manifest a 

considerable drag reduction behavior with maximum effectiveness taking place close to 

the wall region, which suggest that drag reduction by addition of additives and 

surfactants is present in nature (Bushnell & Moore, 1991).  A diversity of drag reducing 

mechanisms existed in aquatic animals in association with their habits and restrictions on 

body design (Fish, 1998).  

As matters of energy economy and greater speeds are desired in engineered systems 

(Bushnell & Moore, 1991), imaginative solutions for drag reduction from nature may 

serve as the inspiration for new technologies. It can be believed that the combination 

between biology and engineering and modern computational approaches (Moin, 1997) 

can achieve a promising future for the industry drag reduction techniques. 
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1.4 Aim and framework of this thesis 

 

The aim of the present thesis is to shed more light on the mechanism of drag 

reduction by micro bubbles. We use two different techniques measurement technology 

to reach our goal, the first being laboratory experiments using Particle Image 

Velocimetry (PIV) and the second differential pressure measurement using Validyne 

DP-103 transducer. Both techniques are applied to turbulent flow in a rectangular pipe. 

The plan of the remainder of this thesis is as follows. First, in Chapter II we mention the 

description of our laboratory experimental setup followed by the PIV system description. 

Then in Chapter III, basic equations in turbulence analysis that apply to our problem are 

discussed. Then we come to the main body of this thesis that is application of the 

wavelet analysis on drag reductions. In Chapter IV, the wavelet theory was discussed, 

including the literatures on the wavelet application in turbulence study, and the different 

wavelet algorithms were discussed. In Chapter V, we present the results by using 

wavelet based algorithms from the experiment data were shown. We end this thesis with 

some closing remarks and conclusions in Chapter VI. 
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CHAPTER II    

EXPERIMENTAL SETUP AND THE PIV SYSTEM 

 

Our experiments were performed in two series. Single phase flow condition without 

bubbles was measured for the first series, and micro bubbles at different void fractions –

for another series. The instantaneous velocity fields near the wall were measured by PIV 

at streamwise-normal plane and in the upper wall region. The differential pressure was 

measured at both cases. For the facility, a rectangular cross section channel was built and 

the upper water tank was designed to achieve constant water head pressure. Water was 

used as a working fluid and microbubbles were produced by electrolysis.  

 

2.1 Channel flow setup 

 

The experimental measurements for this study took place in a rectangular channel 

flow at Reynolds Number of 5128. The channel was build with Plexiglas. The 

dimensions of the channel are 5.6 cm high, 20.5 cm wide and 4.8 m long. Water was 

used as our working fluid. Water was pumped from the lower tank to the upper tank by 3 

pumps with power of 1/6, 1/4, 1/2 hp respectively. Then water was driven trough the 

channel by gravity from the upper tank and this tank is located 3m above the channel. 

The water flows from the channel to the lower tank back and thus formed a close loop. 

Upper tank’s water level was kept constant through the tests to ensure constant flow rate 
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through the channel. The flow of water was controlled by two spherical valves and one 

butterfly valve. Water runs through the channel by gravity and is quantified by two 

digital turbine flow meters (GPI, 0-50 GPM), and a float rotameter (Dwyer, 0-10 GPM). 

The schematic diagram of the experimental set up is shown in figure 2.1. 

     The water flow was seeded by polystyrene neutrally buoyant particles with a 

diameter that goes from 6 to 9 µm, and a density of 1.050 g/cm.3. This type of particle 

can reflect enough light to be detected by the CCD cameras and they were injected and 

mixed thoroughly in the lower tank before going to the channel. The channel was filled 

smoothly to avoid air bubbles entering into the flow.  

Microbubbles was produced by electrolysis at 10 cm upstream the test zone. Two 

parallel platinum wires with a diameter of 76 µm are used as cathode an anode and their 

distance is 2.54 cm. The anode is 0.5 cm far from the upper wall and the cathode is 

separated 1 cm far from the wall. The ratio between the distance from the closest wire to 

test station and the wire’s diameter is 0.1/76 x 10-6   = 1315. Hence, the wire effect on 

the test station can be neglected. To produce hydrogen microbubbles of 30 µm diameter 

a current of 25 mA is conducted trough the electrodes. 
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FIGURE 2.1 Schematic diagram of the experimental set up. 
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2.2 Pressure measurement 
 

As mentioned in Chapter I, Warholic et al. (1999) reported an investigation on drag 

reduction by addition of polymer. In their experiment, a Validyne pressure transducer 

(Model DP103) was used to evaluate the pressure drop (∆p) with polymer and without 

polymer over a distance (∆x) of 154 cm. As a differential pressure transducer, 

(Validyne DP-103) is able to measure a pressure drop range from 0-35 Pa. This device 

was installed in the upper wall of the channel. The same method was used in our 

experiment. The differential pressure was measured through pressure taps positioned 

on the top wall of the channel over a distance of 157.5 cm.   

                      
x
PHw ∆

∆
−=τ                                                    ( 2 ) 

where wτ  is the wall shear stress, P∆  is the pressure drop measured by the pressure 

transducer; x∆  is the axial distance between the pressure connection tabs and H is the 

half height of the channel.                    

The wall shear stress was defined as  

                    
0=

=
y

w dy
dUµτ                                                    ( 3 ) 

The wall shear stresses were obtained by extrapolating measured Reynolds stresses 

at different y in the outer part of the flow or by using measured pressure drops and the 

force balance equation. For a Newtonian fluid the same wτ  is obtained by both 

methods. However, for flows with large drag-reductions smaller values of wτ were 
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obtained by equation (2) because of the existence of large stress deficits pτ . 

Consequently, pressure drop measurements were used in all experiments to 

determine wτ . Percent drag-reductions, was defined as the ratio of wτ  for a polymer 

solution to that for water. The drag reduction percentage can be calculated by  

        ⎥
⎦

⎤
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where τw0 is obtained in single phase flow condition and τw is obtained at different 

void fractions. 

The estimate of void fraction values can be evaluated from  

lg

g

VV
V
+

=α                                                       ( 5 ) 

where Vg is the volume for injected bubbles and Vl is the volume for water. wτ , 

0wτ , Vg and VL could be obtained from the PIV measurement. 

 

2.3 Common velocity measurement technique 

 

To investigate the drag reduction mechanism, it is very important to study the 

velocity field in the near wall region. Most of the instantaneous flow information were 

reported using Hot film or Hot-wire anemometry, Doppler Velocimetry (LDV) or 

Laser Doppler Anemometry (LDA). Hot-wire or hot-film is a one-point intrusive 

technique measurement. The principle of this technique is based on the relationship 

between the heat removed from the wire by convection and the velocity of the fluid. 
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However, fluid temperature is hard to keep exactly constant. And the impurities in the 

fluid can easily adhere to the wire. All these kind of factors can destroy the calibration 

of the hot-film system. The measurement is not flexible since one sensor can only be 

located at one point at one time. LDA or LDV is a non-intrusive measurement 

technique, which will not impact the fluid field by installation. LDA or LDV is 

designed by Doppler effect. When a particle passes through the intersection volume 

formed by the two coherent laser beams, the scattered light received by a detector has 

components from both beams. The components interfere on the surface of the detector. 

Due to the changes in the difference between the optical path lengths of the two 

components this interference produces pulsating light intensity as the particle moves 

through the measurement volume. Thus the velocity can be measured. A velocity field 

can be obtained by moving the measuring volume, which has the size of the region 

intersected by the laser beams. However, this technique is still for one point 

measurement. To discern the real information and capture the coherent structure in the 

near wall region of a turbulent channel flow, more advanced technique is still needed.  

 

2.4 Particle image velocimetry  

 

As an optical and non-intrusive measurement technique, Particle Image 

Velocimetry (PIV) provides both temporal and spacial information for instantaneous 

velocity fields. Thus, more valuable turbulence statistics parameter could be calculated 

based on two dimensional velocity field U(x, y, t) and V(x, y, t).  Important turbulence 
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study parameters such as velocity profiles, turbulent intensities, Reynolds stress, 

vorticity, entropy, spatial derivatives, wavenumber-spectrum could be achieved etc. 

Meanwhile, the PIV has some limitation due to the memory size, and hard disk size of 

the computer and the performance of recording devices. The power and sampling 

frequency of the Laser can also impede the good performance of the whole PIV system. 

 

2.4.1 PIV sampling system 

 

The early discussion about PIV can be referred to Adrian (1991) and Hassan (1992).  

The detailed information about PIV can be found in Markus (1998). In our experiment, 

PIV was used to estimate instantaneous velocity fields in the x-y plane. Optical access 

in x-z plane is required to place a sheet of light and the camera. Pictures were recorded 

by a CCD Kodak camera (model Megaplus ES 1.0/1.0) with a resolution of 1008 x 

1018 pixels. The camera has the trigger double exposure mode, which permits 

measurements at high velocity flows. The seeded flow is illuminated by a high power, 

dual oscillator Nd:Yag laser with a power of 300-350 mJ/pulse, and a wavelength of 

532 nm (green light). The incident laser beam is transformed into a 1 mm thickness 

sheet of light by an array of cylindrical and spherical lenses. The viewing area was 1.28 

cm2 in x-y plane. 60 images were taken in one second and 30 pairs velocity field was 

given. Each velocity field was obtained from two successive images and the elapsed 

time between the two pictures is 1 ms. Total sets of velocity fields per run were 100 

and images were recorded for a time span of approximately 3.3 second. 
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FIGURE 2.2 Time synchronization process. 

 

A high accuracy pulse generator (Stanford Research System Inc., model DG535) 

with a four channels digital delay/ pulse and accuracy of picoseconds is used to 

synchronize the PIV system. The commercial frame rate of the CCD camera is 

increased from 30 to 60 fps by doing a precise synchronization between the laser light 

pulsing and the double exposure capability of the CCD camera. 

To have a better idea of the image sampling sequence, a diagram is given in Fig 2.2 

to show the synchronization system. Two exposure times, are used for the odd and 

even frames in order to attain the 60 fps. The exposure time for the first frame is 0.128 

ms and for the second frame the CCD array was exposed for 32.4 ms, respectively. The 

diagram of the synchronization and timing used on this study is shown in figure 2.2. 

The time length between pulse 1 and pulse 2 was 1 ms. The time duration between 
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pulse 2 and pulse 3 is 32.33 ms. The pictures taken at frame 1 and frame 2 were 

processed to get the vector field. And the pictures taken at frame 3 and frame 4 were 

processed to get the next vector field. So the time duration between two consecutive 

vector fields is 33.33 ms. 

A calibration grid with adjacent white dots regularly divided, is located at the 

viewing plane, in order to obtain a scale for the physical measurement.  

 

2.4.2 Image processing after PIV sampling 

 

Step 1, preprocessing needed to be done before getting velocity vectors. Since the 

illumination time of odd frame (Laser A) and even frame (Laser B) is different, two 

average image from the whole set of the original images are evaluated separately for 

the odd images and another for the even images. Then, the odd/even average is 

subtracted respectively from the original odd/even images. After this, the images from 

the subtraction process are equalized. 

Step 2, two different PIV processing software are used for the tracking process. 

One is a Windows based application (Uemura et al., 1989) and can be used directly to 

process the images from the preprocessing process. This software is flexible since it 

allows the user to set different image threshold and tracking parameter for each pair of 

images. The second software is an in-house code (Hassan et al., 1992). First, the image 

files from the preprocessing process was transformed to ASCII files by a program 

developed in Lab-View. Then, the ASCII files were processed by our in-house code in 
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Unix systems. The resulting velocity vectors from these two applications were 

compared, corrected and combined. This hybrid technique widely increment the 

number of vectors used for the flow field analysis.  

Steps 3, the velocity vectors from step 2 were filtered by two processes. The first 

filter got rid of the vectors that have a lower cross-correlation value than the average 

value (~50% of the vectors).  The second filter took away the vectors that are not 

within +/- a standard deviation value of the magnitude and direction of the 

representative velocity vector of within a small window (~20 X 20 pixels). About 40% 

of the initial vectors of each velocity field remain after performing the filtering 

processes. Then, the vectors of both filtering process for each velocity field, are 

combined to get one single file, and compared to remove repeated vectors. Finally, 

these vectors are interpolated using the inverse distance algorithm in a window of 20 x 

20 pixels to obtain instantaneous velocity fields in an ordered grid of 50 x 50 vectors. 
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CHAPTER III    

TURBULENT BOUNDARY LAYERS 

 

The problems of fully developed turbulence have fascinated people for centuries. 

Interest has been fueled both by the abundance of turbulent flows which require 

prediction and control and by the persistent belief that out of the limit of many 

compounded instabilities should arise a universal statistical state. Many mathematical 

models have been developed for the study of the turbulent boundary layer. However, 

turbulence has the character of 3-dimensional, time-dependent, eddy motions with 

various scales, a lot of difficulties still arise even using the most advanced technology. 

It is extremely complex if not impossible to obtain a deterministic solution because of 

their irregularities (randomness). To investigate the turbulent drag reduction 

mechanism, the turbulent boundary layers need to be studied combining the previously 

discussed measurement technique. In this chapter, the classical turbulence analysis 

methods such as the mean velocity profiles, the turbulent intensity, Reynolds stress, 

spectra and correlation were discussed. 

 

3.1 Equation of motion 

 

For the adiabatic, incompressible, and Newtonian fluid, the Navier-Stokes equation 

could be expressed in this way: 
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Continuity equation:                            0
x
u

i

i =
∂
∂                                         ( 6 ) 
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where ui is the instantaneous velocity component in the direction of xi, p is the 

instantaneous static pressure, ν represents the kinematics viscosity, and ρ is the density 

of the fluid. 

Reynolds decomposition is a very common used technology for turbulence 

statistics. The instantaneous component of the velocity was decomposed into an 

average and a fluctuating component: 

'uUu +=                ( 8 ) 

 

The average value of the velocity or pressure over an interval of time can be 

obtained from  
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Substituting equation (8) into equation (5) and (6), making the time average for 

each term and enforcing conservation of mass the mean momentum equation in the 

streamwise direction: 
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The second term on the right hand represents the transport of momentum due to 

fluctuating velocities. The term jivu  is called the Reynolds stress, which is the 
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contribution of the turbulent motion to the mean stress tensor. The Newtonian viscous 

stress is important in a region close to the wall. Far from the wall, the Reynolds stress 

will suppress the Newtonian viscous stress. When the N-S equations are time averaged 

information about the structures of the flow is lost and to discern the coherent structure 

inside the turbulent flow, more advanced technology is still needed.  

 

3.2 Commonly used turbulent quantities 

 

The region close to the wall (0≤ y+<5) is known as the viscous sublayer; from y+=5 

to y+= 70 is the buffer layer; the overlap layer is located at y+>70. The study of the 

region close to the wall is very important to clarify skin friction reduction. The 

comparison between the near wall region parameters with drag reduction and without 

drag reduction could give us a direct result for drag reduction analysis. 

The kinematic viscosity and the wall shear stress are the most important parameters 

near the wall region. The wall shear stress can be represented by 
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For a fully developed channel flow, which is homogeneous in the streamwise 

direction, there is an exact balance between the wall shear stress acting on the walls 

and the net pressure force acting across the flow. Thus the shear stress can also be 

calculated by equation (1).  
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In a turbulent flow several scales exist. Most of them are scaled by the friction 

velocity uτ, which is also associated with the wall shear stress τw. The evaluation of the 

friction velocity can be done by equation (11), where ρ is the density of the fluid. 

ρ
τ

τ
wu =                                                             ( 12 ) 

 

A corresponding length scale for this region is defined as wall layer thickness or 

viscous length scale (Schlichthing & Gersten, 2000): 
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For the viscous region, the time scale is defined as  
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The velocity ū and the distance from the wall y can be made dimensionless in wall 

units by the friction velocity.  

                                          
τ

+ =
u
uu                                                             ( 15 ) 

                                        2u
yy
τ

+ ν
=                                                              ( 16 ) 

Since our velocity field was measured by PIV in the x-y plane, all the following 

calculation are based on the instaneous velocity ui(x, y) and vi(x y). 
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Averaged normal velocity:                       ∑
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Two point correlation coefficient:     )()(
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The integral length scale:                 ∫ ∆=
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One point auto-correlation coefficient: )()(
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Wavenumber spectra: ∫∫
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All the detailed information about the above equations could be referred to 

Gutierrez Torres (2004) and Jimenez Bernal (2004). In their work, the extensive 
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discussion about the turbulence statistic theory was done and the application of 

turbulence intensity, Reynolds stress, both integral time scale and integral length scale, 

wavenumer spectra in streamwise direction and normal direction were applied to full 

data sets from the turbulent measurements. Both the results from single phase flow and 

micro bubbles injected two phase flow were compared. Good and consistent 

conclusions were reached. Mechanisms about drag reduction by microbubbles were 

discussed and good suggestions about drag reduction control were given.  

Based on their extensive work in the microbubbles drag reduction studies, my 

thesis focused on the wavelet technique to process our lab data. Basic turbulence 

statistic theory was applied both in Gutierrez Torres (2004) and Jimenez Bernal (2004). 

However, Gutierrez Torres (2004) focused on time domain or space domain processing 

by using correlation calculation for the temporal correlation or the space correlation 

while Jimenez Bernal (2004) focused on frequency domain or wavenumber domain 

processing by using Fourier transform. As a time-frequency or space-wavenumber 2-

Dimensional analysis method, Wavelet is powerful to decompose the signals of 

turbulence measurement into 2-D plane. My thesis followed this idea and does the 

following studies for the drag reduction research. 
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CHAPTER IV    

WAVELET ANALYSIS ON TURBULENCE STUDY 

 

4.1 Review of wavelet analysis on turbulence study 

 

PIV technique provides us a lot of information about the velocity field distribution 

and it is very powerful to capturer the 2-dimensional information about the velocity 

fluctuation, vorticity formation. The quantities such as Reynolds Stress, turbulence 

intensity, spatial correlation, the integral length scale, the integral time scale, vortices 

and spectra can all be calculated from the PIV measurement. However, it is still hard to 

classify fluid structure patterns and capture the coherent structure by the previous 

mentioned parameters since the classical theory of turbulence is blind to the presence 

of coherent structures because they are advected by the flow in a homogeneous and 

isotropic random fashion, and hence they are lost by ensemble averaging. Moreover, 

the spatial support of coherent structures becomes smaller and smaller when Reynolds 

number increases. 

The wavelet transform was first introduced by Grossman & Morlet (1984) for the 

applications of the analysis of seismic data. As a useful tool for analysis of non-

stationary signals such as seismic signals, wavelet showed its ability of resolving 

features at various scales. The theory and applications of wavelets have undoubtedly 

dominated the journals in all mathematics, engineering and related fields. Few other 
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theoretical developments in mathematical sciences have enjoyed this huge attention 

and popularity. A mathematician comes up with a good idea, develops a concrete 

theory, faces great opposition from other prominent figures in the area, but continues to 

work nevertheless. Then come in engineers and physicists, reformulate and modify that 

theory to make it more accessible, and eventually that idea becomes a standard tool for 

many researchers in many fields. Wavelet theory has now already enjoyed a 

tremendous attention and success over the last decade, and almost all signals 

encountered in practice call for a time-frequency analysis, and wavelets provide a very 

simple and efficient means of performing such an analysis. And now the application 

areas for wavelets have been growing for the last ten years at a very rapid rate. 

Reviewing all of them in our paper is certainly not possible. The purpose of our review 

is to point out to various areas that wavelets can be used, and especially be a source of 

inspiration for research on turbulence.  

Applications have already been taken on image processing and compression. Due 

to the compact support of the basis function used in wavelet analysis, DWT have good 

energy concentration properties. By discarding some coefficients using threshold and 

reconstructing the data, the image data can be largely compressed without significant 

error. Since most of the noise distribute on some specific scales like fine scales, 

discarding the coefficients at these scales can remove the noise for the reconstruction 

of the signals. Due to the very nature of all biological signals being non-stationary, 

wavelets have enjoyed great success in biomedical engineering. Wavelets have been 

used for the analysis of electrocardiogram for diagnosing cardiovascular disorders, and 
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of electroencephalogram for diagnosing neuropsychological disorders, such as seizure 

detection, or analysis of evoked potentials for detection of Alzheimer’s disease (Polikar 

et al., 1997).  Another interesting area of applications has been nondestructive 

evaluation. Wavelets have been successfully used for the analysis of ultrasonic and 

eddy current signals for flaw detection in various media such as nuclear power plant 

tubings (Polikar et al., 1998), gas pipelines, aircraft components, etc. Wavelets have 

even been used on hierarchical organization of distant galaxies. Bijaoui et al. (1996) 

developed a multi-scale vision model using wavelets for classifying each component in 

the hierarchical structures at various scales. Jordan et al. (1997) characterized the 

turbulence scales in the atmospheric surface layer with the continuous wavelet 

transform. 

Although the wavelet theory has been very successfully applied in various fields 

for a long time, the application of the wavelet analysis to turbulence started not a long 

time ago. Argoul et al., (1989) firstly used the wavelet transform to analyze the wind-

tunnel turbulence data and provided the visual evidence of the Richardson cascade. 

Liandrat & Moret-Bailly (1990) showed that the wavelet transform is very well 

adapted to fluid dynamics and turbulence study and is much more powerful comparing 

with the VITA (Variable Interval Time Averaging) technique. Everson & Sirovich, 

(1990) analyzed two-dimensional dye concentration data from a turbulent jet by 

wavelet transform, and revealed the nature and self-similarity of the inner structure of 

the jet. Yamada & Ohkitani (1990) applied the orthogonal wavelet expansion to the 

experimental data of turbulence and found a direct relation between the wavelet 
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spectrum and the Fourier spectrum. Muzy et al., (1991) used wavelet transform to the 

fully developed turbulence data and characterized the local multifractal behavior of 

turbulence in the range of inertial scales. Dallard & Browand (1993) have reported 

extensive results of wavelet analysis from phase-averaged 2-D velocity fields in an 

acoustically forced mixing layer. Dallard & Browand (1993) also extended 1-D 

wavelet functions to the 2-D case for the application of the experimental data in fluid 

mechanics. And now, the wavelet transform was already widely used to reveal various 

turbulent or eddy structure, such as in jets (Li & Nozaki, 1995), multiphase flows (Li & 

Tomita, 1998) and others. Now, the wavelet transform has already become a standard 

tool or software kit in identification of flow structure. Several new diagnostics (Farge, 

1992, Farge et al., 2001, Farge et al., 2003, Protas et al., 2002) developed from the 

wavelet transform were employed to analyze structure of turbulence and eddy analysis. 

They offer the potential of extracting the essence of structure feature from flow fields, 

which are lost if using traditional statistics methods.  

Wavelet technique allows tracking turbulent structures in terms of time and scale, 

and extracts new information on turbulence scale. Li did a lot of work combining 

wavelet with fluid mechanics. In 1997, Li (1997a) used wavelet to analyze the coherent 

structure dynamics in a plane turbulent jet. Li (1997b) also gave wavelet Reynolds 

stress analysis to two-dimensional vortex flow. Furthermore, Li (1997c) gave wavelet 

velocity correlation analysis in a plane turbulent jet. The turbulent structure analysis of 

a two-dimensional jet using wavelets was given by Li (1997d). Li & Nozaki (1995) 

made wavelet analysis for the plane turbulent jet (analysis of large eddy structure) and 
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the flow structure in a bounded jet (Li et al., 1997). The velocity correlation analysis 

was made in the near-field of a turbulent jet with help of discrete wavelet transform by 

Li et al., (1998a). Li et al., (1998b) also used orthogonal wavelet basis on multi-

resolution image analysis for a turbulent flow. For PIV measurement, Li et al. (2000, 

2001a, 2001b, 2002) gave wavelet multi-resolution analysis for dual-plane stereoscopic 

PIV measurement results in a lobed jet.  

Though wavelet is widely applied in turbulent study, few papers discussed the drag 

reduction phenomena in bubbly channel turbulent flow by wavelet analysis.  The aim 

of this paper is to apply the wavelets to analyzing the coherent structures in the near 

wall region of a turbulent channel flow. Camussi (2002) identificated the coherent 

structure from wavelet analysis of particle image velocimetry data. Coherent structures 

are known to exist and be responsible for most of the momentum transfer in the 

boundary layers. Turbulent flows are characterized for showing incoherent structures 

and coherent structures (vortices) lying parallel and close to the wall, and oriented in 

the streamwise direction. These coherent structures account for 80% of the turbulent 

fluctuating energy (Lumley & Blossey, 1998). Many identification techniques such as 

visualization, spectra analysis, spatial correlation functions, and temporal correlation 

functions are well established in theory for turbulence analysis. In our lab, all the above 

identification methods have already been used to extract coherent structures in the 

turbulent flows. However, the local frequency with respect to space-time changes 

continuously for the turbulence and large-scale eddy motion, and the coherent structure 

in both time and frequency or in both space and wavenumber has not been clarified. Li 
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(2000, 2001a, 2001b) extracted multi-scale turbulent structure from PIV results based 

on wavelet vector multiresolution technique. Identification of coherent structure 

requires the acquisition of detailed quantitative data on such structure characteristics as 

size, strength, convection velocity, etc. Neither the Fourier analysis nor the traditional 

correlation method gives us sufficient information.   

 

4.2 Wavelet analysis theory 

 

4.2.1 One dimensional continuous wavelet transform 

 

As we know that the Fourier transform is a mathematical prism that breaks up a 

signal into the frequencies that compose it (Hubbard, 1996), as a prism breaks up light 

into colors. It transforms a function that depends on time or space into a new function 

that depends on frequency or wave number.  

∫
∞

∞−

−= dttfewF iwt )()(                                               ( 28 ) 

The new function is called the Fourier transform of the original function. The 

function and new function display the information in time domain and frequency 

domain separately. The Fourier transform of music tells what notes (frequencies) is 

played, but it is virtually impossible to discern when the notes are played.  

Wavelets are an extension of Fourier analysis and the basic approach is the same. 

The coefficients tell in what way the analyzing function (sine and cosines, or wavelets) 
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needs to be modified in order to reconstruct a signal. But wavelet automatically adapt 

to the different components of a signal, using a small window to look at brief, high 

frequency components and a large window to look at long-lived, low-frequency 

components. This procedure is called multiresolution; the signal is studied at a coarse 

resolution to get an overall picture and at higher and higher resolutions to see 

increasingly fine details. So wavelets have been called a “mathematical microscope”; 

compressing wavelets increases the magnification of this microscope, enabling us to 

take a closer look at small details in the signal. 

Wavelets are obtained from a single prototype wavelet ψ (t) called mother wavelet 

by dilations and shifting: 

)(1)(, a
bt

a
tba

−
= ψψ                                        ( 29 ) 

, where a is the scaling parameter and b is the shifting parameter. 

The continuous wavelet transform (CWT) of a function f is defined as 

dt
a

bttf
a

fbaTf ba )()(1,),( *
, ∫

−
>=<= ψψ                     ( 30 ) 

If ψ  is such that 

∫
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                                      ( 31 ) 

f can be reconstructed by an inverse wavelet transform:  

                  2
0

,
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4.2.2 One dimensional discrete wavelet transform 

 
The main idea of DWT is the same as it is in the CWT. A time-scale representation 

of a digital signal is obtained using digital filtering techniques. Recall that the CWT is 

a correlation between a wavelet at different scales and the signal with the scale (or the 

frequency) being used as a measure of similarity. The continuous wavelet transform 

was computed by changing the scale of the analysis window, shifting the window in 

time, multiplying by the signal, and integrating over all times. In the discrete case, 

filters of different cutoff frequencies are used to analyze the signal at different scales. 

The signal is passed through a series of high pass filters to analyze the high frequencies, 

and it is passed through a series of low pass filters to analyze the low frequencies. The 

resolution of the signal, which is a measure of the amount of detail information in the 

signal, is changed by the filtering operations, and the scale is changed by upsampling 

and downsampling (subsampling) operations. Subsampling a signal corresponds to 

reducing the sampling rate, or removing some of the samples of the signal. For 

example, subsampling by two refers to dropping every other sample of the signal. 

Subsampling by a factor n reduces the number of samples in the signal n times. 

Upsampling a signal corresponds to increasing the sampling rate of a signal by adding 

new samples to the signal. For example, upsampling by two refers to adding a new 

sample, usually a zero or an interpolated value, between every two samples of the 

signal. Upsampling a signal by a factor of n increases the number of samples in the 

signal by a factor of n. 
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FIGURE 4.1 Decomposition and reconstruction of a signal. 

 

The 1-D decomposition process can be clearly seen in Fig 4.1. The original signal 

is labeled as f(n). The boxes represent convolution with either g or h. The box with 

downward arrows represents down sampling by a factor of two. The outputs, cj and dj 

are known as scaling coefficients and wavelet coefficients. This process can be 

repeated for the number of scales desired. Repeat the convolution to the next step to 

our desired scale number, we can get the scaling coefficients and the wavelet 

coefficients in different scales. This method is called multi-resolution analysis or 

pyramid decomposition. The box with upward arrows represents up sampling by a 

factor of two, which means that a zero is inserted between each sample. g is known as 

the wavelet filter and h is the scaling filter. In the reverse direction, the reconstruction 

of the original signal can be achieved using the wavelet coefficients and the scaling 

coefficients. 

The scaling coefficients can be given by:  

][]2[][1 mcmnhnc j

m

j ∑ −=+
                      ( 33 ) 

And the wavelet coefficients can be given by:  
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][]2[][1 mcmngnd j

m

j ∑ −=+
                                ( 34 ) 

The unit of frequency is of particular importance at this time. In discrete signals, 

frequency is expressed in terms of radians. Accordingly, the sampling frequency of the 

signal is equal to 2π  radians in terms of radial frequency. Therefore, the highest 

frequency component that exists in a signal will be π  radians, if the signal is sampled 

at Nyquist’s rate (which is twice the maximum frequency that exists in the signal); that 

is, the Nyquist’s rate corresponds to π  rad/s in the discrete frequency domain. 

Therefore using Hz is not appropriate for discrete signals. However, Hz is used 

whenever it is needed to clarify a discussion, since it is very common to think of 

frequency in terms of Hz. It should always be remembered that the unit of frequency 

for discrete time signals is radians. 

After passing the signal through a half band lowpass filter, half of the samples can 

be eliminated according to the Nyquist’s rule, since the signal now has a highest 

frequency of π /2 radians instead of π  radians. Simply discarding every other sample 

will subsample the signal by two, and the signal will then have half the number of 

points. The scale of the signal is now doubled. Note that the lowpass filtering removes 

the high frequency information, but leaves the scale unchanged. Only the subsampling 

process changes the scale. Resolution, on the other hand, is related to the amount of 

information in the signal, and therefore, it is affected by the filtering operations. Half 

band lowpass filtering removes half of the frequencies, which can be interpreted as 

losing half of the information. Therefore, the resolution is halved after the filtering 
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operation. Note, however, the subsampling operation after filtering does not affect the 

resolution, since removing half of the spectral components from the signal makes half 

the number of samples redundant anyway. Half the samples can be discarded without 

any loss of information. In summary, the lowpass filtering halves the resolution, but 

leaves the scale unchanged. The signal is then subsampled by 2 since half of the 

number of samples are redundant. This doubles the scale.  

 

4.2.3 Wavelet auto-correlation transform 

 

Wavelet correlation analysis can overcome limitations of the traditional correlation 

method which only describes the correlation of signals in terms of time delay and assist 

analysis of the similarity structure of signals in terms of scale and time delay. The 

traditional auto-correlation method still plays an important role, but it had been hiding 

the essence of the similarity structure since it lacks frequency resolution. Then the 

experimental fluctuating velocities at some spatial locations in the near wall region of 

the channel turbulent flow are analyzed by the wavelet auto-correlation analysis to 

reveal coherent structures over a two-dimensional time-period plane, and to extract the 

most essential scales governing the features of eddy motions. 

From 4.2.1, we have the definition of continuous wavelet transform. And equation 

(28) can be expressed as 

 dwewwfbaTf ibw
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where 
Λ

f and 
Λ

ψ  are the Fourier transforms of f and ψ  respectively. 

In nonstationary situation, velocity signals of turbulence and others, signals contain 

various frequency components that rapidly change with time in complex ways. The 

traditional auto-correlation method is quite capable in identifying the self-similarity 

structure. However, it cannot extract the information of the self-similarity structure in 

frequency space and had been hiding the essence of the self-similarity feature since it 

lacks frequency resolution. The traditional correlation method is well suited to analyze 

the periodic signals and is not suited for complex signal analysis. From CWT, the 

wavelet coefficients can describe a signal as localized strength of the signal in both 

time and period or frequency spaces. The modulus of wavelet coefficients has been 

employing to describe the characteristics of a signal. Therefore the all traditional 

statistics method may be applied. In order to obtain the self-similarity structure of a 

signal for various scales at any given time delay, at first, the original signal is unfolded 

into time-frequency plane using equation  (28). Then the following correlation function 

was applied to the wavelet coefficient: 

                     dbbaTfbaTf
T

aTC
T

TT
∫

−∞→
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/2

/2

),(),(1),( lim ττ                 ( 36 ) 

where τ  is time delay of wavelet coefficients in the wavelet space, or the time delay of 

the signal f(t). It is evident that the wavelet auto-correlation function can provide 

important self-similarity features on a two-dimensional period-time delay plane and 

then extracts the most essential frequencies governing the self-similarity features of 

signals.  
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4.2.4 Wavelet cross-correlation transform 

 

In identifying the spatial turbulent structure or coherent structures and its evolution 

in time, the cross-correlation analysis between velocities components measured at two 

separated points in flow filed is most used. A difficulty with the traditional cross-

correlation function only provides information about the cross-cross correlation 

behaviors in scale space at each scale due to lack of scale resolution.   

Similar to the wavelet auto-correlation, the original signal fx(t) and fy(t) are 

unfolded into time-frequency plane using equation  (28). Then the following cross-

correlation function was applied to the wavelet coefficient: 

                          dbbaTfbaTf
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yx

T
∫
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),(),(1),( lim ττ                         ( 37 ) 

where τ  is time delay of wavelet coefficients in the wavelet space, or the time delay of 

the signal fx(t) and fy(t) . It is evident that the wavelet cross-correlation function can 

separate different period of the time domain correlation. And this separation is 

achieved without excessive loss of resolution in time variable due to use of the wavelet 

transform. Therefore, the wavelet cross-correlation function can describe important 

statistical correlation features between two different signals on a two-dimensional 

scales time delay plane, and extract the most essential scales governing the correlation 

features, which is lost if using traditional method. 
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4.2.5 Two dimensional discrete wavelet transform 
 

 
 

FIGURE 4.2 Two-dimensional wavelet decomposition. 

 

For our study, we also need to analyze two-dimensional signals by two-

dimensional wavelet analysis. We perform the two-dimensional wavelet transform by 

applying one-dimensional wavelet transform first on rows firstly and on columns 

secondly as shown in figure 4.2. Then the original two-dimensional signal is 

decomposed to the coarse mesh approximation space (LL), horizontal detail (LH) 

approx space, vertical detail approx space (HL) and diagonal detail approx space (HH) 

for the first level decomposition. And the two-dimensional wavelet decomposition can 

be finished. 

Related to turbulence study, we are interested in the multi-resolution of wavelet 

which can decompose the original signal into different scales. By combining the 

obtained coefficents at different scales, we get the reconstrution velocity field and 

then by using eqn (21 ) the spanwise vorticies field is also obtained. The 

reconstruction can be realized by the following equation: 
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( 38 ) 

For our two dimensional vector field, we process our data in 4 steps: 

First, the wavelet coefficients of instaneous velocity vector u(x, y) was computed 

as figure 4.2. Second, velocity field reconstruction in coarse scale and fine scale were 

realized from the wavelet coefficients by equation (37). Third, using the reconstructed 

velocity field to caculate the vorticities field by equ (5) and calculate the 

dimensionless coordinates by equ (3) and (4). Finally, the original velocity field was 

projected into its components in fine scale and coarse scale, which help us to discern 

the coherent structure hided in original turbulence flow. 

 

4.2.6 Wavelet function selection 

 

According to equation (29), any arbitrary function satisfying the admissibility 

condition of wavelet may be used as an analyzing wavelet. Several well-defined 

wavelet functions such as Haar, Mexican hat, Morlet, Db 2 wavelet are commonly used 

as the analyzing wavelet. The choice of the appropriate wavelet function is at the user’s 

disposal and depends on the kind of information that we want to extract from the signal.  

We will start with a simple wavelet: the `Mexican hat', shown on Fig. 4.3.  
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FIGURE 4.3 The Mexican hat wavelet. 

  

It is important to note that, for this to be a wavelet, the positive and negative areas 

`under' the curve must cancel out. This is known as the admissibility condition. The 

admissibility condition, spelled out in mathematical references (Daubechies, 1992), is 

satisfied as long as     

                                                      ∫
+∞

∞−

=Ψ 0)( ωω d                                              ( 39 )  

The admissibility condition ensures that the inverse transform and Parseval formula 

are applicable. Analytically, the Mexican hat wavelet is represented by  
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FIGURE 4.4 The Morlet wavelet. 

 

Selection of the wavelet shape is one of the important decisions on the user's part. It 

is similar to the choice of instruments of observation, like X-rays or filtered colored 

light or infra-red; or again like the selection of dyes as specific markers of biological 

tissues: each will show a part of the reality with specificity, and each reveals something 

that the others had concealed.  

Although the discrete Haar wavelets predate Morlet's, it was only as a consequence 

of Morlet's work that the mathematical foundations of wavelets as a better formulation 

of time-frequency methods were laid. Conceptually related to windowed-Fourier 

analysis, the Morlet wavelet is a locally periodic wave train. It is obtained by taking a 
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complex sine wave, and by localizing it with a Gaussian (bell-shaped) envelope. As 

shown in figure 4.4, the Morlet wavelet is represented by  

                   )5cos(*)2/exp()( 2 xxx −=ψ                                       ( 41 ) 

 

4.3 Wavelet application methods in our work 

 

Farge (1992) gave recent summaries of applications of wavelet analysis in the fluid 

mechanics. Numerous papers on this topic have been published rapidly, but from the 

view of fluids engineering these researchers can be broadly split into two categories: 

(1) Extracting the characters of turbulent or eddy structure from the wavelet analysis of 

experimental data and simulation data (2) developing turbulence modeling and 

numerical methods based on wavelet analysis. In our research, we focused on the 

wavelet analysis of our experimental data, which means differential pressure and 

velocity vectors from PIV measurement.  

 

4.3.1 One-dimensional continuous wavelet time-frequency map 

 

We can identify the individual peaks and troughs of the cosine wave as well as their 

frequency: this compromise between the temporal domain and the spectral domain is 

the hallmark of wavelet transforms. The cost of this compromise is the need to map the 

signal as a function of both time and duration. Therefore, we see that some spectral 
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resolution is achieved by selection of the wavelet size, and some temporal resolution 

follows from the location of the wavelet relative to the signal. One of the most widely 

used tools of Fourier analysis is the Parseval theorem. It enables the experimentalist to 

view how the `energy' in the signal is distributed among frequencies. The Fast Fourier 

Transform (FFT) algorithms have made power spectra one of the obvious diagnostics 

tools during data acquisition, and energy maps are a versatile alternative.  

Wavelet transforms are endowed with a similar theorem. This time, the energy 

density is distributed in the wavelet half-plane (k,t), according to the expression  

π2),(),( tkftkE =                                          ( 42 ) 

The result is an energy map, showing the distribution of energy corresponding to 

the wavelet map.  

For non-periodic signals, the mean wavelet spectrum is similar to the Fourier 

spectrum. Of course, the energy map can be integrated in time at each duration. The 

result of this operation is to distribute the energy of the signal among the durations - a 

concept identical to that of the Fourier power spectrum. The content of the Parseval 

formulae for Fourier and wavelet transforms needs to be reexamined.  

What the equations say is the following  

                                   ∫
−∞

∞+

dttf 2)( total energy in signal 

=  ∫
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∞+

dzzf 2)( total energy in Fourier spectrum 
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                       = ∫ ∫
∞

∞−

∞

0

2),( dtdktkf
π total energy in the energy map 

     = ∫
∞

0

)( dkkE total energy in the mean spectrum                             ( 43 ) 

The integrals have the same value. Clearly, this does not imply that the integrands 

should be equaled point-by-point; in fact, there is infinity of integrands that would 

meet the integral criterion, each for a different functional basis. It is a matter of 

interpretation to associate the integrands with an energy density. By using the Fourier 

spectra exclusively, the user may have developed a false sense of security in this regard, 

and the clear interpretation in the case of periodic signals provides no hint of trouble. 

However, in the case of broadband spectra associated with a sequence of square waves, 

say, the particular spectral content at a given frequency is clearly an artifact of the sine 

wave decomposition. As the signal becomes more intermittent or modulated, no 

functional basis seems privileged, least of all a periodic one covering the entire time 

axis.  

Now with the method discussed above, we show the standard signals and their 

corresponding results of wavelet time frequency map, wavelet energy map, and 

wavelet density spectrum. 

Figure 4.5 (a) gives the standard periodical cosine periodical signal and the 

frequency of this signal is 10 Hz.  
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FIGURE 4.5 (a) Standard cosine periodical signal )*10*2cos( tπ . 

 
 
 
Figure 4.5 (b) gives the wavelet time frequency map of the signal in figure 4.5 (a). 

It can be seen that the strong red color corresponds to the peak of the signal 4.5 (a) and 

the strong blue color corresponds to the valley of the signal 4.5(b). And the center line 

of the vortex structure of figure 4.5 (b) is related to 10 Hz. Figure 4.5 (c) gives the 

wavelet energy map of the signal in figure 4.5 (a). The red color represents the 

strongest intensity of the energy and the blue color represents the weakest intensity of 

the energy. By this way, the energy distribution can be shown in a two-dimensional 

plane. The horizontal axis is time and the vertical axis is scale which also corresponds 

to frequency. The center line of the vortex structure of figure 4.5 (c) is related to 10 Hz. 

 
 
 

 
FIGURE 4.5 (b) Wavelet time frequency map of the signal in figure 4.5 (a) 

using Mexican hat wavelet. 
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FIGURE 4.5 (c) Wavelet energy map of the signal in figure 4.5 (a) using 

Mexican hat wavelet. 
 
 
 

 
FIGURE 4.5 (d) Wavelet density spectrum of the signal in figure 4.5 (a) using 

Mexican hat wavelet. 
 
 
 
Figure 4.5 (d) gives the wavelet density spectrum of the signal in figure4.5 (a). The 

peak of the energy density corresponds to 10 Hz.  

Figure 4.5 (e) gives the wavelet time frequency map of the signal in figure4.5 (a) 

using Morlet wavelet. It can be seen that the strong red color corresponds to the peak of 

the signal 4.5 (a) and the strong blue color corresponds to the valley of the signal 4.5(b).  
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FIGURE 4.5 (e) Wavelet time frequency map of the signal in figure 4.5 (a) 

using Morlet wavelet. 
 
 
 

 
 FIGURE 4.5 (f) Wavelet energy map of the signal in figure 4.5 (a) using 

Morlet wavelet. 
 
 
 
Figure 4.5 (f) gives the wavelet energy map of the signal in figure 4.5 (a) using 

Morlet wavelet. For a simple signal like signal 4.5 (a) which is a single cosine wave, 

the difference of using Mexican hat wavelet and Morlet wavelet is not shown. 
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Figure 4.5 (g) gives the wavelet time frequency map of the signal in figure 4.5 (a) 

by using Morlet wavelet. Again, the main frequency of 10 Hz can be detected by this 

figure. 

 

 
FIGURE 4.5 (g) Wavelet density spectrum of the signal in figure4.5 (a) using 

Morlet wavelet. 
 
 
 

 
FIGURE 4.6 (a) )*50*2cos()*30*2cos()*10*2cos( ttt πππ ++ . 

 
 

 
Now we need to discuss some relatively complex signals of three frequencies: 

)*50*2cos()*30*2cos()*10*2cos( ttt πππ ++  in Figure 4.6 (a). Figure 4.6 (b) 

gives the wavelet time frequency map of the signal in figure 4.6 (a) using Mexican hat. 

In this figure, the frequency of 10 Hz can be clearly seen. The frequency of 30 Hz can 

still be seen. However, the frequency of 50 Hz can hardly be detected in this figure. 
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FIGURE 4.6 (b) Wavelet time frequency map of the signal in figure 4.6 (a) using 

Mexican hat wavelet. 
 
 
 

 
FIGURE 4.6 (c) Wavelet energy map of the signal in figure 4.6 (a) using Mexican 

hat wavelet. 
 
 

 
Figure 4.6 (c) gives the wavelet energy map of the signal in figure 4.6 (a). The 

frequency of 10 Hz and 30 Hz can be seen, but the 50 Hz signal could not be found. 

Figure 4.6 (d) gives the wavelet density spectrum of the signal in figure 4.6 (a). To 
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detect the 50 Hz signal hided inside the original signal, other wavelet function needs to 

be tested. 

 
FIGURE 4.6 (d) Wavelet density spectrum of the signal in figure 4.6 (a) using 

Mexican hat wavelet. 
 
 
 

 
FIGURE 4.6 (e) Wavelet time frequency map of the signal in figure 4.6 (a) using 

Morlet wavelet. 
 
 
 

Figure 4.6 (e) gives the wavelet time frequency map of the signal in figure 4.6 (a) 

using Morlet wavelet. Now, the three frequencies can be seen in this figure. So in 

figure 4.6 (f), the wavelet energy map gives the energy distribution at both time and 
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frequency domain. The frequency of 10 Hz, 30 Hz and 50 Hz can all be found in the 

figure.  

 

 
FIGURE 4.6 (f) Wavelet energy map of the signal in figure 4.6 (a) using Morlet 

wavelet. 
 
 
 

 
FIGURE 4.6 (g) Wavelet density spectrum of the signal in figure 4.6 (a) using 

Morlet wavelet. 
 
 
 

Figure 4.6 (g) shows that Morlet wavelet is good to distinguish the different 

frequencies in the high frequency range. However, in the low frequency range, Morlet 

wavelet may have some problems of aliasing as shown in figure 4.6 (e). For real 
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signals measured in labs, the noise disturbance must be considered. Now we generate 

some white noise and add them to the signal 4.6 (a). Figure 4.7 (a) shows the signal. 

 

 

FIGURE 4.7 (a) )*50*2cos()*30*2cos()*10*2cos( ttt πππ ++ +white noise. 

 
 

 
FIGURE 4.7 (b) Wavelet time frequency map of the signal in figure 4.7 (a) using 

Mexican hat wavelet. 
 
 
 

The wavelet time frequency map of the signal in figure 4.7 (a) is given in figure 4.7 

(b). Comparing figure 4.7 (b) with figure 4.6 (b), the vortex structures fade in the left 

and right boundary of the map. This effect is caused by the noise distribution. For the 
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simple signals like )*30*2cos()*10*2cos( tt ππ + )*50*2cos( tπ+ +white noise, the 

structures can still be detected. For real complex signals from turbulence measurement, 

new algorithm is still needed.  

Figure 4.7 (c) gives the wavelet energy map of the signal in figure 4.7 (a). 

Comparing figure 4.7 (c) with figure 4.6(c), the disturbance of noise is more obvious. 

 
 

 
FIGURE 4.7 (c) Wavelet energy map of the signal in figure 4.7 (a) using Mexican 

hat wavelet. 
 
 
 

 
FIGURE 4.7 (d) Wavelet density spectrum of the signal in figure 4.7 (a) using 

Mexican hat wavelet. 
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Figure 4.7 (d) gives the density spectrum of the signal in figure 4.7 (a) using 

Mexican hat wavelet. 

 
FIGURE 4.7 (e) Wavelet time frequency map of the signal in figure 4.7 (a) using 

Morlet wavelet. 
 
 
 

 
FIGURE 4.7 (f) Wavelet energy map of the signal in figure 4.7 (a) using Morlet 

wavelet. 
 
 
 
Comparing figures 4.7 (e), 4.7 (f) with figures 4.6 (e), 4.6 (f), the disturbance of 

noise can be clearly seen. Choosing Mexican hat wavelet or Morlet wavelet can not 
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remove the disturbance of noise at this time. Figure 4.7 (g) gives the wavelet density 

spectrum of the signal in figure 4.7 (a) using Morlet hat wavelet. The three frequency 

can be detected. 

 

 
FIGURE 4.7 (g) Wavelet density spectrum of the signal in figure 4.7 (a) using 

Morlet wavelet. 
 

 

4.3.2 Wavelet auto-correlation map 

 

In Section 4.2.3, the wavelet auto-correlation map algorithm was discussed. In 

figures 4.5, 4.6, 4.7, the standard cosine signal was processed directly by one-

dimensional continuous wavelet transform. From the wavelet time frequency map, 

wavelet energy map and wavelet density spectrum using Mexican hat and Morlet 

wavelet, it can be found that the time-frequency information was projected into two-

dimensional plane. The different period components of the original signal were clearly 

discerned.  However, when the original signal was not standard signals like sine or 

cosine and when a lot of noise disturbs the experiment measurement, it is hard to use 

the one-dimensional continuous wavelet transform to capture the essence information 
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inside the original signal. For signals from turbulence measurement, the problem will 

be more severe. Traditional method like autocorrelation, cross-correlation and Fourier 

transform just provide the decomposition of signal only in time domain or in frequency 

domain. Just like playing a piano, using correlation method, you can only know how 

often a key was played without knowing which key was played. Using Fourier 

transform, you can only know which key was played without knowing when it was 

played. With the idea of wavelet auto-correlation map, wavelet cross-correlation map, 

the correlation information of the signal can be clearly observed in both time domain 

and frequency domain. Comparing figures 4.6 (b), (c) with figures 4.6 (e), (f), it can be 

found that the frequency resolution by using Morlet wavelet is better than using 

Mexican hat wavelet since the component of 50 Hz can be discerned from figures 4.6 

(e), (f). However, Morlet wavelet can cause aliasing problem, which can be seen, from 

figure 4.6 (e). Wavelet energy map tells us the energy evolution process at each 

frequency. Comparing figure 4.6 with figure 4.7, the only difference of the original 

signal is the white noise. However, the white noise brings the bad resolution in high 

frequency domain in figure 4.7 (e) and figure 4.7 (f). Using wavelet auto-correlation 

map method, the noise disturbance was removed when comparing figure 4.8 (a) with 

figures 4.6 (b) and 4.7 (b). 
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FIGURE 4.8 (a) Wavelet auto-correlation map of the signal in figure 4.7 (a) using 

Mexican hat wavelet. 
 
 
 
 

 
FIGURE 4.8 (b) Wavelet auto-correlation energy map of the signal in figure 4.7 (a) 

using Mexican hat wavelet. 
 
 
 

Using wavelet auto-correlation energy map method, the noise disturbance was also 

removed when comparing figure 4.8 (b) with figure 4.7(c), figure 4.6 (c). Figure 4.8 (c) 

gives the wavelet auto-correlation density spectra of the signal in figure 4.7 (a) using 

Mexican hat wavelet. 
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FIGURE 4.8 (c) Wavelet auto-correlation density spectra of the signal in figure 4.7 

(a) using Mexican hat wavelet. 
 
 
 

Using wavelet auto-correlation map method by Morlet wavelet, the noise 

disturbance was also removed when comparing figure 4.8 (d) with figure 4.7(e), figure 

4.6 (e). 

 

 

 
FIGURE 4.8 (d) Wavelet auto-correlation map of the signal in figure 4.7 (a) using 

Morlet wavelet. 
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Using wavelet auto-correlation energy map method by Morlet wavelet, the noise 

disturbance was also removed when comparing figure 4.8 (e) with figures 4.6 (f) and 

4.7 (f). 

 

 

 
FIGURE 4.8 (e) Wavelet auto-correlation energy map of the signal in figure 4.7 (a) 

using Morlet wavelet. 
 
 
 

 
FIGURE 4.8 (f) Wavelet auto-correlation density spectra of the signal in figure 4.7 

(a) using Morlet wavelet. 
 
 
 

Figure 4.8 (f) gives the wavelet auto-correlation density spectra of the signal in 

figure 4.7 (a) using Morlet wavelet.  
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4.3.3 Wavelet cross-correlation map 

 

Figures 4.9 (a) and 4.9 (b) provide two generated signals. To detect the correlation 

information between these two signals, the wavelet cross-correlation map could be 

used. In figures 4.9 (c), 4.9 (d), 4.9 (e) and 4.9 (f), it can be found that not only the 

white noise disturbance was removed but also the frequency domain information of the 

similarity between two different signals was provided. From the original signal, we 

know that these two signals both have 10 Hz and 30 Hz cosine signals in common. 

Figure 4.9 (c) gives the wavelet cross-correlation map of the signals in figures 4.9 (a) 

and 4.9 (b) using Mexican hat wavelet. Figure 4.9 (d) gives the wavelet cross-

correlation energy map of the signals in figures 4.9 (a) and 4.9 (b) using Mexican hat 

wavelet. 

 

FIGURE 4.9 (a) )*50*2cos()*30*2cos()*10*2cos( ttt πππ ++ + white noise in 
1 second. 
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FIGURE 4.9 (b) )*20*2cos()*30*2cos()*10*2cos( ttt πππ ++ + white noise in 

1 second. 
 
 
 

 
FIGURE 4.9 (c) Wavelet cross-correlation map of the signals in figure 4.9 (a) and 

figure 4.9 (b) using Mexican hat wavelet. 
 
 
 

 
FIGURE 4.9 (d) Wavelet cross-correlation energy map of the signals in figures 4.9 

(a) and 4.9 (b) using Mexican hat wavelet. 
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FIGURE 4.9 (e) Wavelet cross-correlation density spectra of the signals in figures 

4.9 (a) and 4.9 (b) using Mexican hat wavelet. 
 
 
 

Figure 4.9 (e) gives the wavelet cross-correlation density spectra of the signals in 

figures 4.9 (a) and 4.9 (b) using Mexican hat wavelet. 

Figure 4.9 (f) gives the wavelet cross-correlation map of the signals in figures 4.9 

(a) and 4.9 (b) using Morlet wavelet. Figure 4.9 (g) gives the wavelet cross-correlation 

energy map of the signals in figures 4.9 (a) and 4.9 (b) using Morlet wavelet.  

 
 
 

 
FIGURE 4.9 (f) Wavelet cross-correlation map of the signals in figures 4.9 (a) and 

4.9 (b) using Morlet wavelet. 
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FIGURE 4.9 (g) Wavelet cross-correlation energy map of the signals in figures 4.9 

(a) and 4.9 (b) using Morlet wavelet. 
 
 
 

Figure 4.9 (h) gives the wavelet cross-correlation density spectra of the signals in 

figures 4.9 (a) and 4.9 (b) using Morlet wavelet. 

 From figures 4.9 (c), 4.9 (d), 4.9 (f) and 4.9 (g), it can be clearly seen that 10 Hz 

and 30 Hz signals coexist. In our turbulence measurement, we get velocity information 

at different locations. Applying this wavelet cross-correlation map method, it can be 

 
FIGURE 4.9 (h) Wavelet cross-correlation density spectra of the signals in figures 

4.9 (a) and 4.9 (b) using Morlet wavelet. 
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believed that the coherent structure could be discerned and more information in the 

boundary layer of the turbulence field could be found. 

All these methods were applied for data measured from single phase flow and 

micro-bubbles injected two phase flow at the same Reynolds number. 
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CHAPTER V    

EXPERIMENTAL RESULTS AND ANALYSIS 

 

In our lab, the extensive study of drag reduction using microbubbles within the 

boundary layer has been studied for a long time. And consistent results have been 

obtained from different researchers over a period of time (Gutierrez Torres 2004, 

Jimenez Bernal 2004, Hassan, 2003) Some preliminary results about modification of 

the boundary layer structure by microbubbles have been already presented in their 

papers. The non-dimensional mean streamwise U+ velocity versus the non-dimensional 

y location, y+ agreed well with the results for a fully developed channel flow obtained 

form LDV (Warholic 1997) at very similar conditions in the single phase flow 

condition. Still in single phase condition, the calculation of shear stress using equation 

(2) and equation (10) agrees well. And these two agreements can validate the accuracy 

of our PIV measurement.  

The drag reduction percentage can be calculated by equation (3) and the 

corresponding void fraction can be calculated by equation (4). The calculation result is 

listed in Table 5.1. The maximum drag reduction, 38%, was obtained with a local void 

fraction of 4.8%. The wavelet cross-correlation map and wavelet auto-correlation map 

for single phase and maximum drag reduction are compared at several locations. The 

diameter, d, of the bubble is presented in wall units
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ
ρ

= τ+ du
d

, where τu  is the 

friction velocity.  
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uτ [m/s] d+ Void fraction (α) Drag Reduction 
0.0091 0.27 4.90% 38.40% 

TABLE 5.1 Drag reduction at various void fraction conditions 
 

 
 
All the streamwise and normal turbulence intensities, Reynolds stresses from single 

phase flow and two phase were showed and discussed both in Gutierrez Torres (2004) 

and Jimenez Bernal (2004). A significant decrease in the Reynolds stress with 

increasing local void fraction is obtained. This effect is sometimes called Reynolds 

stress defect in different experiments with drag-reducing polymers. A decorrelation 

between the streamwise (u’) and the normal (v’) velocity fluctuating components is the 

source of this decrease of the Reynolds stresses.  

Spectra is one of the most essential parameters that are evaluated to give an idea 

about the distribution and interchange of fluctuating turbulent kinetic energy between 

eddies of different size with and without microbubbles in the near wall region. The 

spectra for the streamwsie fluctuating velocity Euu(k1), for normal fluctuating 

component Evv(k1) and for the product of the two components Euv(k1) are evaluated in 

the streamwise wavenumber direction k1 in Jimenez Bernal (2004). 

To elucidate the changes that the presence of microbubbles originates within the 

turbulent boundary layer, two-point correlation coefficients and auto correlation 

coefficients were both calculated in longitudinal and transverse direction at different 

locations for the streamwise and normal fluctuating components of the velocity in 

Gutierrez Torres (2004) thesis. Furthermore, the integral length scale for each case is 

computed and presented in her study.   
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However, Fourier transform can only give spectrum information in frequency 

domain and the time domain information is lost in the spectra. Cross correlation and 

auto correlation can only give time domain information. Both methods are limited on 

the time-frequency or space-wavenumber analysis. For turbulence study, we believe 

that new technique is necessary to be used to elucidate the coherent structures near the 

boundary layers. As discussed in Chapter IV, wavelet analysis is a powerful tool for 

this purpose. We apply the algorithms of Wavelet cross-correlation map, Wavelet 

cross-correlation Energy map, Wavelet cross-correlation density spectra, Wavelet auto-

correlation map, Wavelet auto-correlation Energy map and Wavelet auto-correlation 

density spectra to the PIV measurement data from single phase flow and two phase 

flow.  

The turbulence quantities such as the streamwise and normal turbulent intensities, 

the Reynolds shear stresses, correlation and spectra calculations were always calculated 

to quantitie the difference between single phase flow and microbubble injected two 

phase flow to see the effects of microbubble injections. Good and relatively consistent 

conclusions were achieved. However, the shortcomings of these techniques are the 

lacking of detection for coherent structures. Whatever correlation or spectra, the 

processing for the turbulent data could only be done in time domain or in frequency 

domain.  
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5.1 Wavelet cross-correlation map in the longitudinal direction 

 

Figures 5.1(a) and 5.1 (b) give the cross correlation coefficient in the longitudinal 

direction at y+ = 9.2 for streamwise fluctuating velocity and normal fluctuating 

velocity.  
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FIGURE 5.1 (a) Cross correlation coefficient in the longitudinal direction at y+ = 9.2 

for streamwise fluctuating velocity. 
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FIGURE 5.1 (b) Cross correlation coefficient in the longitudinal direction at y+ = 9.2 

for normal fluctuating velocity. 
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Figures 5.2 (a) and 5.2 (b) give the wavelet cross-correlation map of (u u) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 9.2 for 

streamwise fluctuating velocity.  

 
 
 

 
FIGURE 5.2 (a) Wavelet cross-correlation map of (u u) using Mexican hat wavelet in 

the longitudinal direction at y+ = 9.2 for streamwise fluctuating velocity. 
 
 
 

  
FIGURE 5.2 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet in the 

longitudinal direction at y+ = 9.2 for streamwise fluctuating velocity. 
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Figures 5.3 (a) and 5.3 (b) give the wavelet cross-correlation map of (v v) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 9.2 for 

normal fluctuating velocity.  

 

 
 

   
FIGURE 5.3 (a) Wavelet cross-correlation map of (v v) using Mexican hat wavelet in 

the longitudinal direction at y+ = 9.2 for normal fluctuating velocity. 
 
 
 

    
FIGURE 5.3 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet in the 

longitudinal direction at y+ = 9.2 for normal fluctuating velocity. 
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Figures 5.4(a) and 5.4 (b) give the cross correlation coefficient in the longitudinal 

direction at y+ = 14.7 for streamwise fluctuating velocity and normal fluctuating 

velocity. 
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FIGURE 5.4 (a) Two-point correlation coefficient in the longitudinal direction at y+ = 

14.7 for streamwise fluctuating velocity. 
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FIGURE 5.4 (b) Two-point correlation coefficient in the longitudinal direction at y+ = 

14.7 for normal fluctuating velocity. 
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 Figures 5.5 (a) and 5.5 (b) give the wavelet cross-correlation map of (u u) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 14.7 for 

streamwise fluctuating velocity. 

 
 
 

 
FIGURE 5.5 (a) Wavelet cross-correlation map of (u u) using Mexican hat wavelet in 

the longitudinal direction at y+ = 14.7 for streamwise fluctuating velocity. 
 
 
 

  
FIGURE 5.5 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet in the 

longitudinal direction at y+ = 14.7 for streamwise fluctuating velocity. 
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 Figures 5.6 (a) and 5.6 (b) give the wavelet cross-correlation map of (v v) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 14.7 for 

normal fluctuating velocity.  

 
 
 

  
FIGURE 5.6 (a) Wavelet cross-correlation map of (v v) using Mexican hat wavelet in 

the longitudinal direction at y+ = 14.7 for normal fluctuating velocity. 
 
 
 

  
FIGURE 5.6 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet in the 

longitudinal direction at y+ = 14.7 for normal fluctuating velocity. 
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Figures 5.7(a) and 5.7 (b) give the cross correlation coefficient in the longitudinal 

direction at y+ = 17.4 for streamwise fluctuating velocity and normal fluctuating 

velocity.  
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FIGURE 5.7 (a) Two-point correlation coefficient in the longitudinal direction at y+ = 

17.4 for streamwise fluctuating velocity. 
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FIGURE 5.7 (b) Two-point correlation coefficient in the longitudinal direction at y+ = 

17.4 for normal fluctuating velocity. 
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Figures 5.8 (a) and 5.8 (b) give the wavelet cross-correlation map of (u u) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 17.4 for 

streamwise fluctuating velocity.  

 
 
 

 
FIGURE 5.8 (a) Wavelet cross-correlation map of (u u) using Mexican hat wavelet in 

the longitudinal direction at y+ = 17.4 for streamwise fluctuating velocity. 
 
 
 

  
FIGURE 5.8 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet in the 

longitudinal direction at y+ = 17.4 for streamwise fluctuating velocity. 
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Figures 5.9 (a) and 5.9 (b) give the wavelet cross-correlation map of (v v) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 17.4 for 

normal fluctuating velocity.  

 
 
 

  
FIGURE 5.9 (a) Wavelet cross-correlation map of (v v) using Mexican hat wavelet in 

the longitudinal direction at y+ = 17.4 for normal fluctuating velocity. 
 
 
 

  
FIGURE 5.9 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet in the 

longitudinal direction at y+ = 17.4 for normal fluctuating velocity. 
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Figures 5.10(a) and 5.10 (b) give the cross correlation coefficient in the 

longitudinal direction at y+ = 25.7 for streamwise fluctuating velocity and normal 

fluctuating velocity.  
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FIGURE 5.10 (a) Two-point correlation coefficient in the longitudinal direction at y+ 
= 25.7 for streamwise fluctuating velocity. 
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FIGURE 5.10 (b) Two-point correlation coefficient in the longitudinal direction at y+ 
= 25.7 for normal fluctuating velocity. 
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Figures 5.11 (a) and 5.11 (b) give the wavelet cross-correlation map of (u u) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 25.7 for 

streamwise fluctuating velocity.  

 
 
 

 
FIGURE 5.11 (a) Wavelet cross-correlation map of (u u) using Mexican hat wavelet 

in the longitudinal direction at y+ = 25.7 for streamwise fluctuating velocity. 
 
 
 

  
FIGURE 5.11 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet in the 

longitudinal direction at y+ = 25.7 for streamwise fluctuating velocity. 
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Figures 5.12 (a) and 5.12 (b) give the wavelet cross-correlation map of (v v) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 25.7 for 

normal fluctuating velocity.  

 
 
 

  
FIGURE 5.12 (a) Wavelet cross-correlation map of (v v) using Mexican hat wavelet in 

the longitudinal direction at y+ = 25.7 for normal fluctuating velocity. 
 
 
 

  
FIGURE 5.12 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet in the 

longitudinal direction at y+ = 25.7 for normal fluctuating velocity. 
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Figures 5.13(a) and 5.13 (b) give the cross correlation coefficient in the 

longitudinal direction at y+ = 69.7 for streamwise fluctuating velocity and normal 

fluctuating velocity. 
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FIGURE 5.13 (a) Two-point correlation coefficient in the longitudinal direction at y+ 

= 69.7 for streamwise fluctuating velocity. 
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FIGURE 5.13 (b) Two-point correlation coefficient in the longitudinal direction at y+ 

= 69.7 for normal fluctuating velocity. 
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Figures 5.14 (a) and 5.14 (b) give the wavelet cross-correlation map of (u u) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 69.7 for 

streamwise fluctuating velocity. 

 

 

 
FIGURE 5.14 (a) Wavelet cross-correlation map of (u u) using Mexican hat wavelet 

in the longitudinal direction at y+ = 69.7 for streamwise fluctuating velocity. 
 
 
 

  
FIGURE 5.14 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet in the 

longitudinal direction at y+ = 69.7 for streamwise fluctuating velocity. 
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Figures 5.15 (a) and 5.15 (b) give the wavelet cross-correlation map of (v v) using 

Mexican hat wavelet and Morlet wavelet in the longitudinal direction at y+ = 69.7 for 

normal fluctuating velocity. 

 
 
 

  
FIGURE 5.15 (a) Wavelet cross-correlation map of (v v) using Mexican hat wavelet in 

the longitudinal direction at y+ = 69.7 for normal fluctuating velocity. 
 
 
 

  
FIGURE 5.15 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet in the 

longitudinal direction at y+ = 69.7 for normal fluctuating velocity. 
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In the wavelet cross-correlation map figures, the horizontal axis is ∆x index which 

can be checked in Table 5.2.  

 

 

∆x index 1 5 10 15 20 25 30 35 40 45 50 
∆x 0.32 1.27 2.45 3.64 4.82 6.01 7.19 8.37 9.56 10.74 11.93

  ∆x+ 3.71 14.7 28.4 42.2 55.9 69.7 83.4 97.1 110.9 124.6 138.4
TABLE 5.2 ∆x index, ∆x, ∆x+ check table. 

 

 

The vertical axis is the scale number. Large scale corresponds to low wavenumber, 

large eddy size. Small scale number corresponds to high wavenumber, small eddies. It 

can be seen that the area for the large eddy is increased from the Wavelet cross-

correlation map for (u u) in two phase flow conditions. For five y+ locations 9.2, 14.7, 

17.4, 25.7, 69.7, both Mexican hat wavelet and Morlet wavelet give the consistent 

changing tendency for streamwise fluctuating velocity. It can also be seen that the 

contrast between single phase and two phase flow is better by using Mexican hat 

wavelet than using Morlet wavelet. As stated in Chapter IV, the Mexican hat wavelet 

has good resolution in low frequency and Morlet wavelet has good resolution in high 

frequency. This kind of area increase from single phase to two phase flow shows that 

the drag reduction should not be simply explained as the damping of turbulence 

intensity. Actually, for four y+ locations 14.7, 17.4, 25.7, 69.7, the area for the large 

eddy is decreased from the Wavelet cross-correlation map for (v v). These show that 
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the correlation between velocities at different x locations change from single phase 

flow to two phase flow not in a simple way of increasing or damping. Wavelet cross-

correlation map show that the correlation in the longitudinal direction between 

streamwise velocities increase in the low frequency range and the correlation in the 

longitudinal direction between normal velocities decrease in the low frequency range. 

This result works well with what Gutierrez Torres (2004) found in her thesis by using 

length scale method. Wavelet cross-correlation map provide more space-wavenumber 

information.  

 

5.2 Wavelet cross-correlation map in the normal direction 

 

Figures 5.16 (a) and 5.16 (b) give the cross correlation coefficient in the transverse 

direction at x+ = 3.7 for streamwise fluctuating velocity and normal fluctuating 

velocity. 
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FIGURE 5.16 (a) Two-point correlation coefficient in the transverse direction at x+ = 
3.7 for streamwise fluctuating velocity. 
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FIGURE 5.16 (b) Two-point correlation coefficient in the transverse direction at x+ = 
3.7 for normal fluctuating velocity. 
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Figures 5.17 (a) and 5.17 (b) give the wavelet cross-correlation map of (u u) using 

Mexican hat wavelet and Morlet wavelet in the transverse direction at x+ = 3.7 for 

streamwise fluctuating velocity. 

 
 
 

 
FIGURE 5.17 (a) Wavelet cross-correlation map of (u u) using Mexican hat wavelet 

in the transverse direction at x+ = 3.7 for streamwise fluctuating velocity. 
 
 
 

 
FIGURE 5.17 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet in the 

transverse direction at x+ = 3.7 for streamwise fluctuating velocity. 
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Figures 5.18 (a) and 5.18 (b) give the wavelet cross-correlation map of (v v) using 

Mexican hat wavelet and Morlet wavelet in the transverse direction at x+ = 3.7 for 

normal fluctuating velocity. 

 
 
 

 
FIGURE 5.18 (a) Wavelet cross-correlation map of (v v) using Mexican hat wavelet 

in the transverse direction at x+ = 3.7 for normal fluctuating velocity. 
 
 
 

 
FIGURE 5.18 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet in the 

transverse direction at x+ = 3.7 for normal fluctuating velocity. 
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Figures 5.19 (a) and 5.19 (b) give the cross correlation coefficient in the transverse 

direction at x+ = 28.4 for streamwise fluctuating velocity and normal fluctuating 

velocity. 
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FIGURE 5.19 (a) Two-point correlation coefficient in the transverse direction at x+ = 
28.4 for streamwise fluctuating velocity. 
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FIGURE 5.19 (b) Two-point correlation coefficient in the transverse direction at x+ = 
28.4 for normal fluctuating velocity. 
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Figures 5.20 (a) and 5.20 (b) give the wavelet cross-correlation map of (u u) using 

Mexican hat wavelet and Morlet wavelet in the transverse direction at x+ = 28.4 for 

streamwise fluctuating velocity. 

 
 
 

 
FIGURE 5.20 (a) Wavelet cross-correlation map of (u u) using Mexican hat wavelet 

in the transverse direction at x+ = 28.4 for streamwise fluctuating velocity. 
 
 
 

 
FIGURE 5.20 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet in the 

transverse direction at x+ = 28.4 for streamwise fluctuating velocity. 
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Figures 5.21 (a) and 5.21 (b) give the wavelet cross-correlation map of (v v) using 

Mexican hat wavelet and Morlet wavelet in the transverse direction at x+ = 28.4 for 

normal fluctuating velocity. 

 
 
 

 
FIGURE 5.21 (a) Wavelet cross-correlation map of (v v) using Mexican hat wavelet 

in the transverse direction at x+ = 28.4 for normal fluctuating velocity. 
 
 
 

FIGURE 5.21 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet in the 
transverse direction at x+ = 28.4 for normal fluctuating velocity. 
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Figures 5.22 (a) and 5.22 (b) give the cross correlation coefficient in the transverse 

direction at x+ = 72.4 for streamwise fluctuating velocity and normal fluctuating 

velocity. 
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FIGURE 5.22 (a) Two-point correlation coefficient in the transverse direction at x+ = 
72.4 for streamwise fluctuating velocity. 
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FIGURE 5.22 (b) Two-point correlation coefficient in the transverse direction at x+ = 
72.4 for normal fluctuating velocity. 
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Figures 5.23 (a) and 5.23 (b) give give the wavelet cross-correlation map of (u u) 

using Mexican hat wavelet and Morlet wavelet in the transverse direction at x+ = 72.4  

for streamwise fluctuating velocity. 

 
 
 

  
FIGURE 5.23 (a) Wavelet cross-correlation map of (u u) using Mexican hat wavelet 

in the transverse direction at x+ = 72.4 for streamwise fluctuating velocity. 
 
 
 

  
FIGURE 5.23 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet in the 

transverse direction at x+ = 72.4 for streamwise fluctuating velocity. 
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Figures 5.24 (a) and 5.24 (b) give give the wavelet cross-correlation map of (u u) 

using Mexican hat wavelet and Morlet wavelet in the transverse direction at x+ = 72.4  

for streamwise fluctuating velocity. 

 
 

 
FIGURE 5.24 (a) Wavelet cross-correlation map of (v v) using Mexican hat wavelet 

in the transverse direction at x+ = 72.4 for normal fluctuating velocity. 
 
 
 

 
FIGURE 5.24 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet in the 

transverse direction at x+ = 72.4 for normal fluctuating velocity. 
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Figures 5.22 (a) and 5.22 (b) give the cross correlation coefficient in the transverse 

direction at x+ = 72.4 for streamwise fluctuating velocity and normal fluctuating 

velocity. 
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FIGURE 5.25 (a) Two-point correlation coefficient in the transverse direction at x+ = 
110.9 for streamwise fluctuating velocity. 
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FIGURE 5.25 (b) Two-point correlation coefficient in the transverse direction at x+ = 
110.9 for normal fluctuating velocity. 
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Figures 5.23 (a) and 5.23 (b) give give the wavelet cross-correlation map of (u u) 

using Mexican hat wavelet and Morlet wavelet in the transverse direction at x+ = 72.4  

for streamwise fluctuating velocity. 

. 

 
 

 
FIGURE 5.26 (a) Wavelet cross-correlation map of (u u) using Mexican hat wavelet 

in the transverse direction at x+ = 110.9 for streamwise fluctuating velocity. 
 
 
 

 
FIGURE 5.26 (b) Wavelet cross-correlation map of (u u) using Morlet wavelet in the 

transverse direction at x+ = 110.9 for streamwise fluctuating velocity. 
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Figures 5.24 (a) and 5.24 (b) give give the wavelet cross-correlation map of (u u) 

using Mexican hat wavelet and Morlet wavelet in the transverse direction at x+ = 72.4  

for streamwise fluctuating velocity. 

 
 
 

FIGURE 5.27 (a) Wavelet cross-correlation map of (v v) using Mexican hat wavelet 
in the transverse direction at x+ = 110.9 for normal fluctuating velocity. 

 
 
 

FIGURE 5.27 (b) Wavelet cross-correlation map of (v v) using Morlet wavelet in the 
transverse direction at x+ = 110.9 for normal fluctuating velocity. 
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Since the transverse direction correlation was processed at this time, the wavelet 

cross-correlation map ’s horizontal axis is ∆y index, which can be checked in Table 5.3. 

The vertical axis is the scale number. Large scale corresponds to low wavenumber, 

large eddy size. Small scale number corresponds to high wavenumber, small eddies.  

 

 

∆y index 1 5 10 15 20 25 30 35 40 45 50 
∆y 0.32 1.27 2.45 3.64 4.82 6.01 7.19 8.37 9.56 10.74 11.93

  ∆y+ 3.71 14.7 28.4 42.2 55.9 69.7 83.4 97.1 110.9 124.6 138.4
TABLE 5.3 ∆y index, ∆y, ∆y+ check table. 

 
 

 

For four x+ locations 3.7, 28.4, 72.4, 110.9, both Mexican hat wavelet and Morlet 

wavelet give the consistent changing tendency for streamwise fluctuating velocity. It 

can also be seen that the contrast between single phase and two phase flow is better by 

using Mexican hat wavelet than using Morlet wavelet. This kind of increase from 

single phase to two phase flow shows that the drag reduction should not be simply 

explained as the damping of turbulence intensity. Actually, for x+ locations 3.7, 28.4, 

72.4, 110.9, the area for the large eddy is decreased from the Wavelet cross-correlation 

map for (v v). These show that the correlation between velocities at different y 

locations change from single phase flow to two phase flow not in a simple way of 

increasing or damping. Wavelet cross-correlation map show that the correlation in the 

transverse direction between streamwise velocities increase in the low frequency range 
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and the correlation in the longitudinal direction between normal velocities decrease in 

the low frequency range. This result also works well with what Gutierrez Torres (2004) 

found in her thesis by using length scale method. Wavelet cross-correlation map 

provide more space-wavenumber information.  

 

5.3 Three-D wavelet cross-correlation energy map and wavelet cross-correlation 

density spectrum  

 

Using the algorithm of wavelet cross-correlation energy map discussed in Chapter 

IV, the data from single phase flow and two phase flow are calculated. And three-D 

plot was used. Figures 5.28 (a), (b) give the (u u) Wavelet cross-correlation Energy 

map in longitudinal direction Mexican hat for single phase and two phase. And figures 

5.29 (a), (b) give the (v v) Wavelet cross-correlation Energy map in longitudinal 

direction Mexican hat for single phase and two phase. Figures 5.30 (a), (b), 5.31(a), (b) 

follow the same idea but using Morlet wavelet function. In figures 5.28 (a), the energy 

distribution was plotted at five y+ locations. And in each y+ plane, the energy strength 

was expressed by the color of the contour. The energy strength was located in 

wavenumber-∆x plane. It can be seen that the energy distribution from near the wall 

was lower than the energy distribution far from the wall. In figure 5.28 (b), the same 3-

D plot was given. The difference between these two 3-D plots was obvious. The energy 

distribution in the longitudinal direction from streamwise direction was increased in 

microbubbles injected conditions.  



 

 

109

 

Using the algorithm of wavelet cross-correlation density spectra discussed in 

Chapter IV, the data from single phase flow and two phase flow are calculated. Figures 

5.32, 5.33 give the (u u) and (v v) Wavelet cross-correlation density spectra in 

longitudinal direction using Morlet wavelet. It can be seen that at the large eddy range, 

the density for (u u) was increased and the density for (v v) was decreased. 

 

 
FIGURE 5.28 (a) Wavelet cross-correlation energy map of (u u) in longitudinal 

direction using Mexican hat for single phase. 
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FIGURE 5.28 (b) Wavelet cross-correlation energy map of (u u) in longitudinal 

direction using Mexican hat for two phase. 
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FIGURE 5.29 (a) Wavelet cross-correlation energy map of (v v) in longitudinal 

direction using Mexican hat for single phase. 
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FIGURE 5.29 (b) Wavelet cross-correlation energy map of (v v) in longitudinal 

direction using Mexican hat for two phase. 
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FIGURE 5.30(a) Wavelet cross-correlation energy map of (u u) in longitudinal 

direction using Morlet wavelet for single phase. 
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FIGURE 5.30(b) Wavelet cross-correlation energy map of (u u) in longitudinal 

direction using Morlet wavelet for single phase. 
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FIGURE 5.31 (a) Wavelet cross-correlation energy map of (v v) in longitudinal 

direction using Morlet wavelet for single phase. 
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FIGURE 5.31 (b) Wavelet cross-correlation energy map of (v v) in longitudinal 

direction using Morlet wavelet for two phase. 
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FIGURE 5.32 Wavelet cross-correlation density spectra of (u u) in longitudinal direction using Morlet wavelet. 
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FIGURE 5.33 Wavelet cross-correlation density spectra of (v v) in longitudinal direction 
using Morlet wavelet. 
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Figures 5.34 (a), (b) give the (u u) Wavelet cross-correlation Energy map in 

transverse direction Mexican hat for single phase and two phase. And figures 5.35 (a), (b) 

give the (v v) Wavelet cross-correlation Energy map in transverse direction Mexican hat 

for single phase and two phase. Figures 5.36(a), (b), 5.37(a), (b) follow the same idea but 

using Morlet wavelet function. In figure 5.34 (a), the energy distribution was plotted at 

five x+ locations. And in each x+ plane, the energy strength was expressed by the color 

of the contour. The energy strength was located in wavenumber-∆y plane. The energy 

distribution follows the direction of the flow can be seen. In figure 5.34 (b), the same 3-

D plot was given. The difference between these two 3-D plots was obvious. The energy 

distribution in the normal direction from streamwise direction velocities was increased in 

microbubbles injected conditions. Figures 5.35 (a) and (b) showed that the energy 

distribution in the transverse direction from normal direction velocities decreased in 

microbubbles injected conditions. 

 Using the algorithm of wavelet cross-correlation density spectra discussed in 

Chapter IV, the data from single phase flow and two phase flow are calculated. Figures 

5.38, 5.39 give the (u u) and vv Wavelet cross-correlation density spectra in the 

transverse direction using Morlet wavelet. It can be seen that at the large eddy range, the 

density for (u u) was increased and the density for (v v) was decreased. It can also be 

seen that at the small eddy range, the density for (u u) was decreased and the density for 

(v v) was decreased. 
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FIGURE 5.34 (a) Wavelet cross-correlation energy map of (u u) in transverse direction 

using Mexican hat for single phase. 
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FIGURE 5.34 (b) Wavelet cross-correlation energy map of (u u) in transverse direction 

using Mexican hat for two phase. 
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FIGURE 5.35 (a) Wavelet cross-correlation energy map of (v v) in transverse 

direction using Mexican hat for single phase. 
 



 

 

124

 

 
FIGURE 5.35 (b) Wavelet cross-correlation energy map of (v v) in transverse 

direction using Mexican hat for two phase. 
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FIGURE 5.36 (a) Wavelet cross-correlation energy map of (u u) in transverse 

direction using Morlet wavelet for single phase. 
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FIGURE 5.36 (b) Wavelet cross-correlation energy map of (u u) in transverse 

direction using Morlet wavelet for two phase. 
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FIGURE 5.37 (a) Wavelet cross-correlation energy map of (v v) in transverse 

direction using Morlet wavelet for single phase. 
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FIGURE 5.37 (b) Wavelet cross-correlation energy map of (v v) in transverse 

direction using Morlet wavelet for two phase. 
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FIGURE 5.38 Wavelet cross-correlation density spectra of (u u) in transverse direction using Morlet wavelet. 
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FIGURE 5.39 Wavelet cross-correlation density spectra of (v v) in transverse direction using Morlet wavelet. 
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5.4 Wavelet auto-correlation map at y+ =14.7 

 

Figures 5.40 (a) give the auto-correlation for (u u) at x+ = 47.7, y+ = 14.7 for single 

phase flow and two phase flow. Figures 5.40 (b) give the corresponding wavelet auto-

correlation map. 

 
 
 

  
FIGURE 5.40 (a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7, x=4.11mm, x+ 

=47.7. 
 
 
 

 
FIGURE 5.40 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm, y+ =14.7, 

x=4.11mm, x+ =47.7. 
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Figures 5.41 (a) give the auto-correlation for (u u) at x+ = 53.2, y+ = 14.7 for single 

phase flow and two phase flow. Figures 5.41 (b) give the corresponding wavelet auto-

correlation map. 

 
 
 

 
FIGURE 5.41 (a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7, x=4.58mm, x+ 

=53.2. 
 
 
 

 
FIGURE 5.41 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm, y+ =14.7, 

x=4.58mm, x+ =53.2. 
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Figures 5.42 (a) give the auto-correlation for (u u) at x+ = 58.7, y+ = 14.7 for single 

phase flow and two phase flow. Figures 5.42 (b) give the corresponding wavelet auto-

correlation map. 

 
 
 

 
FIGURE 5.42(a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7, x=5.06mm, x+ 

=58.7. 
 
 
 

 
FIGURE 5.42 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm, y+ =14.7, 

x=5.06mm, x+ =58.7. 
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Figures 5.43 (a) give the auto-correlation for (u u) at x+ = 64.2, y+ = 14.7 for single 

phase flow and two phase flow. Figures 5.43 (b) give the corresponding wavelet auto-

correlation map. 

 
 
 

 
FIGURE 5.43(a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7, x=5.53mm, x+ 

=64.2. 
 
 
 

 
FIGURE 5.43 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm, y+ =14.7, 

x=5.53mm, x+ =64.2. 
 
 



 

 

135

 

Figures 5.44 (a) give the auto-correlation for (u u) at x+ = 69.7, y+ = 14.7 for single 

phase flow and two phase flow. Figures 5.44 (b) give the corresponding wavelet auto-

correlation map. 

 
 
 

FIGURE 5.44 (a) Auto-correlation for (u u) at y= 1.27mm, y+ =14.7, x=6.01mm, x+ 
=69.7. 

 
 
 

FIGURE 5.44 (b) Wavelet auto-correlation map for (u u) at y= 1.27mm, y+ =14.7, 
x=6.01mm, x+ =69.7. 
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Figures 5.45 (a) give the three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =14.7 of single phase using Mexican hat wavelet. 

 
 
 

 

 
FIGURE 5.45 (a) Three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =14.7 of single phase using Mexican hat wavelet. 
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Figures 5.45 (b) give the three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =14.7 of two phase using Mexican hat wavelet. 

 
 
 

 

 

 
FIGURE 5.45 (b) Three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =14.7 of two phase using Mexican hat wavelet. 
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Figures 5.46 (a) give the three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of single phase using Mexican hat wavelet. 

 
 
 

 

 

 
FIGURE 5.46 (a) Three-D plot of wavelet auto-correlation map for (v v) at y= 1.27mm, 

y+ =14.7 of single phase using Mexican hat wavelet. 
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Figures 5.46 (b) give the three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of two phase using Mexican hat wavelet. 

 
 
 

 

 

 
FIGURE 5.46 (b) Three-D plot of wavelet auto-correlation map for (v v) at y= 1.27mm, 

y+ =14.7 of two phase using Mexican hat wavelet. 
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Figures 5.47 (a) give the three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of single phase using Mexican hat wavelet. 

 
 
 

 

 

 
FIGURE 5.47 (a) Three-D plot of wavelet cross-correlation map for u v at y= 1.27mm, 

y+ =14.7 of single phase using Mexican hat wavelet. 
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Figures 5.47 (b) give the three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of single phase using Mexican hat wavelet. 

 
 
 

 

 

 
FIGURE 5.47 (b) Three-D plot of wavelet cross-correlation map for u v at y= 1.27mm, 

y+ =14.7 of two phase using Mexican hat wavelet. 
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Figures 5.48 (a) give the three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =14.7 of single phase using Morlet wavelet. 

 
 

 
 

 
FIGURE 5.48 (a) Three-D plot of CWT map for (u u) at y= 1.27mm, y+ =14.7 of 

single phase using Morlet wavelet. 
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Figures 5.48 (b) give the three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 

 
 

 
 

 

 
FIGURE 5.48 (b) Three-D plot of wavelet auto-correlation map for (u u) at y= 1.27mm, 

y+ =14.7 of two phase using Morlet wavelet. 
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Figures 5.49 (a) give the three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of single phase using Morlet wavelet. 

 
 
 

 

 
FIGURE 5.49 (a) Three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of single phase using Morlet wavelet. 
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Figures 5.49 (b) give the three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 

 
 

 
 

 
FIGURE 5.49 (b) Three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 
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Figures 5.50 (a) give the three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 

 
 
 

 

 
FIGURE 5.50 (a) Three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of single phase using Morlet wavelet. 
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Figures 5.50 (b) give the three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 

 
 

 
 

 
FIGURE 5.50 (b) Three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 
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Using the algorithm of wavelet auto-correlation map discussed in Chapter IV, the 

data from single phase flow and two phase flow are calculated. From figures 5.45 (a), 

5.45 (b), 5.46 (a), 5.46 (b), 5.47 (a), 5.47 (b), 5.48 (a), 5.48 (b), 5.49 (a), 5.49 (b), 5.50 

(a), 5.50 (b), the frequency shifting effect could be found. From single phase to two 

phase, the periodical coherent structures in the high frequency range disappeared or were 

damped and the periodical coherent structures in the low frequency range appeared or 

were strengthened. 

In figure 5.45 (a), the wavelet auto-correlation map was plotted at five x+ locations. 

And in each x+ plane, the coherent structure magnitude was expressed by the color of 

the contour. The coherent structure magnitude was located in frequency-time plane. In 

figure 5.45 (b), the same 3-D plot was given. The difference between these two 3-D 

plots was obvious. The coherent structures at high frequency range were decreased in 

microbubbles injected conditions for the auto-correlation of streamwise fluctuating 

velocities. The coherent structures at low frequency range were increased in 

microbubbles injected conditions for the auto-correlation of streamwise fluctuating 

velocities. The coherent structures at high frequency range were decreased in 

microbubbles injected conditions for the auto-correlation of normal fluctuating velocities. 

From figures 5.48 (a), 5.48 (b), 5.49 (a), 5.49 (b), the difference between single phase 

and two phase was more clear.  

As stated in Chapter IV, the Morlet wavelet has better resolution in high frequency. 

In figures 5.48 (a), 5.48 (b), it can be found that the coherent structures at low frequency 

range were increased in microbubbles injected conditions for the auto-correlation of 
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streamwise fluctuating velocities. The coherent structures at high frequency range were 

decreased in microbubbles injected conditions for the auto-correlation of streamwise 

fluctuating velocities. Furthermore, in figure 5.49, the coherent structures at both high 

frequency and low frequency range were decreased in microbubbles injected conditions 

for the auto-correlation of normal fluctuating velocities. 

Using the algorithm of wavelet auto-correlation density spectra discussed in Chapter 

IV, the data from single phase flow and two phase flow are calculated. Figures 5.52, 

5.53 give the (u u) and (v v) Wavelet auto-correlation density spectra using Morlet 

wavelet. It can be seen that at the low frequency, the density for (u u) was increased and 

the density for (v v) was decreased. 
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FIGURE 5.51 Wavelet auto-correlation density spectra of (u u) in transverse direction using Morlet wavelet. 
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FIGURE 5.52  Wavelet auto-correlation density spectra of (v v) in transverse direction using Morlet wavelet. 
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5.5 Wavelet auto-correlation map at y+ =17.4 

 

Figures 5.53 (a) give the auto-correlation for (u u) at x+ = 47.7, y+ = 17.4 for single 

phase flow and two phase flow. Figures 5.53 (b) give the corresponding wavelet auto-

correlation map. 

 
 

 

 
FIGURE 5.53 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4, x=4.11mm, x+ 

=47.7. 
 
 
 

 
FIGURE 5.53 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm, y+ =17.4, 

x=4.11mm, x+ =47.7. 
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Figures 5.54 (a) give the auto-correlation for (u u) at x+ = 53.2, y+ = 17.4 for single 

phase flow and two phase flow. Figures 5.54 (b) give the corresponding wavelet auto-

correlation map. 

 
 
 

  
FIGURE 5.54 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4, x=4.58mm, x+ 

=53.2. 
 
 
 

 
FIGURE 5.54 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm, y+ =17.4, 

x=4.58mm, x+ =53.2. 
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Figures 5.55 (a) give the auto-correlation for (u u) at x+ = 58.7, y+ = 17.4 for single 

phase flow and two phase flow. Figures 5.55 (b) give the corresponding wavelet auto-

correlation map. 

 
 
 

FIGURE 5.55 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4, x=5.06mm, x+ 
=58.7. 

 
 
 

FIGURE 5.55 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm, y+ =17.4, 
x=5.06mm, x+ =58.7. 
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Figures 5.56 (a) give the auto-correlation for (u u) at x+ = 64.2, y+ = 17.4 for single 

phase flow and two phase flow. Figures 5.56 (b) give the corresponding wavelet auto-

correlation map. 

 
 
 

  
FIGURE 5.56 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4, x=5.53mm, x+ 

=64.2. 
 
 
 

  
FIGURE 5.56 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm, y+ =17.4, 

x=5.53mm, x+ =64.2. 
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Figures 5.57 (a) give the auto-correlation for (u u) at x+ = 69.7, y+ = 17.4 for single 

phase flow and two phase flow. Figures 5.57 (b) give the corresponding wavelet auto-

correlation map. 

 
 
 

 
FIGURE 5.57 (a) Auto-correlation for (u u) at y= 1.50mm, y+ =17.4, x=6.01mm, x+ 

=69.7. 
 
 
 

FIGURE 5.57 (b) Wavelet auto-correlation map for (u u) at y= 1.50mm, y+ =17.4, 
x=6.01mm, x+ =69.7. 
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Figures 5.58 (a) give the three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =17.4 of single phase using Mexican hat wavelet. 

 
 
 

 

 

 
FIGURE 5.58 (a) Three-D plot of wavelet auto-correlation map for (u u) at y= 1.50mm, 

y+ =17.4 of single phase using Mexican hat wavelet. 
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Figures 5.58 (b) give the three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =14.7 of two phase using Mexican hat wavelet. 

 
 
 

 

 
FIGURE 5.58 (b) Three-D plot of wavelet auto-correlation map for (u u) at y= 

1.50mm, y+ =17.4 of two phase using Mexican hat wavelet. 
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Figures 5.59 (a) give the three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of single phase using Mexican hat wavelet. 

 
 
 

 

 
FIGURE 5.59 (a) Three-D plot of wavelet auto-correlation map for (v v) at y= 

1.50mm, y+ =17.4 of single phase using Mexican hat wavelet. 
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Figures 5.59 (b) give the three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of two phase using Mexican hat wavelet. 

 
 

 
 

 
FIGURE 5.59 (b) Three-D plot of wavelet auto-correlation map for (v v) at y= 

1.50mm, y+ =17.4 of two phase using Mexican hat wavelet. 
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Figures 5.60 (a) give the three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of single phase using Mexican hat wavelet. 

 
 

 
 

 
FIGURE 5.60 (a) Three-D plot of wavelet cross-correlation map for u v at y= 1.50mm, 

y+ =17.4 of single phase using Mexican hat. 
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Figures 5.60 (b) give the three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of single phase using Mexican hat wavelet. 

 
 
 

 

 
FIGURE 5.60 (b) Three-D plot of wavelet cross-correlation map for u v at y= 1.50mm, 

y+ =17.4 of two phase using Mexican hat wavelet. 
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Figures 5.61 (a) give the three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =14.7 of single phase using Morlet wavelet. 

 
 

 
 

 
FIGURE 5.61 (a) Three-D plot of wavelet auto-correlation map for (u u) at y= 

1.50mm, y+ =17.4 of single phase using Morlet wavelet. 
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Figures 5.61 (b) give the three-D plot of wavelet auto-correlation map for (u u) at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 

 
 

 
 

 
FIGURE 5.61 (b) Three-D plot of wavelet auto-correlation map for (u u) at y= 

1.50mm, y+ =17.4 of two phase using Morlet wavelet. 
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Figures 5.62 (a) give the three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of single phase using Morlet wavelet. 

 
 
 

 

 

 
FIGURE 5.62 (a) Three-D plot of wavelet auto-correlation map for (v v) at y= 

1.50mm, y+ =17.4 of single phase using Morlet wavelet. 
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Figures 5.62 (b) give the three-D plot of wavelet auto-correlation map for (v v) at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 

 
 

 
 

 
FIGURE 5.62 (b) Three-D plot of Wavelet auto-correlation map for (v v) at y= 

1.50mm, y+ =17.4 of two phase using Morlet wavelet. 
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Figures 5.63 (a) give the three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 

 
 
 

 

 

 
FIGURE 5.63 (a) Three-D plot of Wavelet auto-correlation map for u v at y= 1.50mm, 

y+ =17.4 of single phase using Morlet wavelet. 
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Figures 5.63 (b) give the three-D plot of wavelet cross-correlation map for u v at y= 

1.27mm, y+ =14.7 of two phase using Morlet wavelet. 

 
 

 
 

 
FIGURE 5.63 (b) Three-D plot of Wavelet auto-correlation map for u v at y= 1.50mm, 

y+ =17.4 of two phase using Morlet wavelet. 
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Using the algorithm of wavelet auto-correlation map discussed in Chapter IV, the 

data from single phase flow and two phase flow are calculated. From figures 5.58 (a), 

5.58 (b), 5.59 (a), 5.59 (b), 5.60 (a), 5.60 (b), 5.61 (a), 5.61 (b), 5.62 (a), 5.62 (b), 5.63 

(a), 5.63 (b), the frequency shifting effect could be found. From single phase to two 

phase, the periodical coherent structures in the high frequency range disappeared or were 

damped and the periodical coherent structures in the low frequency range appeared or 

were strengthened. 

In figure 5.58 (a), the wavelet auto-correlation map was plotted at five x+ locations. 

And in each x+ plane, the coherent structure magnitude was expressed by the color of 

the contour. The coherent structure magnitude was located in frequency-time plane. In 

figure 5.58 (b), the same 3-D plot was given. The difference between these two 3-D 

plots was obvious. The coherent structures at high frequency range were decreased in 

microbubbles injected conditions for the auto-correlation of streamwise fluctuating 

velocities. The coherent structures at low frequency range were increased in 

microbubbles injected conditions for the auto-correlation of streamwise fluctuating 

velocities. The coherent structures at high frequency range were decreased in 

microbubbles injected conditions for the auto-correlation of normal fluctuating velocities. 

From figures 5.61 (a), 5.61 (b), 5.62 (a), 5.62 (b), the difference between single phase 

and two phase was more clear.  

As stated in Chapter IV, the Morlet wavelet has better resolution in high frequency. 

In figures 5.61 (a), 5.61 (b), it can be found that the coherent structures at low frequency 

range were increased in microbubbles injected conditions for the auto-correlation of 
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streamwise fluctuating velocities. The coherent structures at high frequency range were 

decreased in microbubbles injected conditions for the auto-correlation of streamwise 

fluctuating velocities. Furthermore, in figures 5.62 (a), 5.62 (b), the coherent structures 

at both high frequency and low frequency range were decreased in microbubbles 

injected conditions for the auto-correlation of normal fluctuating velocities. 

Using the algorithm of wavelet auto-correlation density spectra discussed in Chapter 

IV, the data from single phase flow and two phase flow are calculated. Figures 5.64, 

5.65 give the (u u) and vv Wavelet auto-correlation density spectra using Morlet wavelet. 

It can be seen that at the low frequency, the density for (u u) was increased and the 

density for (v v) was decreased. 
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FIGURE 5.64 Wavelet auto-correlation density spectra of (u u) in transverse direction using Morlet wavelet. 
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FIGURE 5.65 Wavelet auto-correlation density spectra of (v v) in transverse direction using Morlet wavelet. 
 171
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CHAPTER VI 

CONCLUSIONS 

 

In this study, the experimental analysis in the near upper wall of a rectangular 

channel was carried out. Microbubbles with an average diameter of 30 µm, were 

produced by electrolysis and injected in the near wall region. Particle Image Velocimetry 

(PIV) measurement technique was used to measure instantaneous two dimensional x-y 

velocity fields. New time-frequency analysis technique was used.  

The drag reduction due to microbubble injection in the boundary layer of a fully 

developed turbulent channel flow was investigated. Particle Image Velocimetry (PIV) 

and pressure measurement techniques were taken. Two-dimensional velocity 

components in an x-y plane at Reynolds number of 5128 based on the half height of the 

channel were measured. The effects of the presence of microbubbles in the boundary 

layer were assessed. A drag reduction of 38.4% was obtained with void fraction of 4.9%. 

The turbulence quantities such as the streamwise and normal turbulent intensities, 

the Reynolds shear stresses, correlation and spectra were calculated to assess the 

difference between single phase flow and microbubble injected two phase flow. 

Relatively consistent conclusions were achieved. However, one shortcoming of these 

techniques is the lack of coherent structures detection. With correlation or spectra 

techniques, the processing for data would be presented only in time or in frequency 

domain respectively.  
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The algorithms of wavelet cross-correlation and wavelet auto-correlation maps were 

applied to the PIV velocity field measurement. Modifications in the wavelet cross-

correlation and wavelet auto-correlation maps due to the presence of microbubbles were 

studied and compared in two- and three-dimensions. Wavelet cross- and auto- 

correlation maps provide an easy coherent structure detection method. Using 3-D 

plotting routines, the wavelet cross-correlation maps in different locations were 

presented to aid in evaluation of the turbulent coherent structures at various locations. 

Furthermore, Wavelet auto-correlation map would provide the coherent structures 

detection at different transient time. The following observations were deduced from this 

study: 

1. The microbubble injection within the boundary layer increases the turbulent energy 

of the streamwise velocity components of the large scale (large eddy size, low 

frequency) range and decreases the energy of the small scale (small eddy size, high 

frequency) range.  

2.  The wavelet cross-correlation maps of the normal velocities indicate that the 

microbubble presence decrease the turbulent energy of normal velocity 

components for both the large scale (large eddy size, low frequency) and the small 

scale (small eddy size, high frequency) ranges. 

3.  The wavelet auto-correlation maps of streamwise velocity shows that the 

intensities at low frequency range were increased with microbubble presence and 

the intensities at high frequency range were decreased.   
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4.  The turbulent intensities for the normal fluctuating velocities at both low 

frequency and high frequency range were decreased with microbubble injection. 

All the above analysis can give visualized explanation to the drag reduction 

phenomena. Further studies by using wavelet technique can definitely help to answer 

some long-standing questions about the nature of the drag reduction.  

. 
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