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ABSTRACT 

 

Automated Sleep Scoring System Using Labview. (December 2005) 

Parikshit Bapusaheb Deshpande, B.E., Govt. College of Engineering, Pune, India 

Co-Chairs of Advisory Committee:  Dr. Charles Lessard 
Dr. Shankar Bhattacharyya 

 

 

 

Sleep scoring involves classification of polysomnographic data into the various sleep 

stages as defined by Retschaffen and Kales. This process is time-consuming and 

laborious as it involves experts visually scoring the data. During recent years, there has 

been an increasing focus on automated sleep scoring systems and professional software 

programs are finding increased use. However, these systems are not relied on for scoring 

and are often used as a tool that facilitates easy visual scoring.  

This thesis proposes a neural network based approach to automatic sleep scoring 

using LabVIEW. Effort has been made to give the sleep expert more control over key 

parameters such as the frequency bands, and thus come up with scores that are more in 

agreement with the individual scorer than being a rigid interpretation of the R&K rules. 

Though this thesis is limited to the development of an offline software program, given 

the data acquisition facilites in LabVIEW, a complete system from data acquisition to 

sleep hypnograms is a fair possibility. 
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CHAPTER I 

INTRODUCTION 

A. Introduction 

Studies indicate that almost 80 million Americans suffer from some kind of sleep 

disorder [1],[2]. These disorders have psychological and/or physiological origins and 

may have an impact on the psychological and physiological well-being of a person. 

While some qualitative aspects (e.g. nightmares, insomnia due to worries, etc) of sleep 

can be narrated by the patient himself or noted by an observer, physiological aspects that 

provide a quantitative insight into the body’s state during sleep are difficult to observe, 

and as such scientific methods need to be employed for their measurement. 

Such methods involve recording of the Electro-encephalograms (EEG), Electro-

cardiograms (ECG), Electro-myograms (EMG), and Electro-oculograms (EOG), 

together known as Polysomnograms. Once acquired, these parameters can be used to 

determine the state of sleep.  

  

B. Sleep Scoring 

Dement and Kleitman observed cyclic variations in EEG data that were closely 

related to the functional levels of the brain [3]. To analyze the large sets of data, they 

classified sleep into four stages, from Stage 1 to Stage 4. Later, Retschaffen and Kales 

 
  This thesis follows the style and format of IEEE Transactions on Biomedical Engineering. 
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standardized these into five stages – four Non-Rapid eye movement (NREM) stages 

from Stage 1 to Stage 4, and one Rapid eye movement (REM) stage, to increase 

compatibility between results in different laboratories [4]. These subsequently became 

the gold standard for quantitative analysis of sleep. 

Sleep scoring involves classifying 30 second epochs of the polysomnographic data 

into one of the stages above and then plotting the whole night’s trend as a sleep 

hynogram as shown in Fig. 1. 

 

 

 

W

REM

1

2

3

4

 

Fig. 1. All night Hypnogram. 
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C. Motivation 

In the 2002 “Sleep In America” poll commissioned by the National Sleep 

Foundation, 58% reported having at least one of the four symptoms of insomnia at least 

few nights a week, and 35% had had those symptoms for the past year [5]. About one in 

eight adults aged 55 to 84 reported being diagnosed with at least one sleep disorder [6]. 

Physicians have identified around 70 sleep disorders, most of which can be treated to 

some extent once they are diagnosed [7]. 

The American Academy of Sleep Medicine lists just 16 accredited Sleep Centers in 

Texas, and the situation is similar throughout the country [8]. It is clear that the number 

of sleep centers is drastically less compared to the population of people having sleep 

disorders. People reporting to these labs have to wait for months to get their sleep 

analyzed.  

Nowadays, the Polysomnographic systems sleep labs use also come with automated 

sleep scoring systems. Sleep scoring can also be outsourced to special labs for cost 

reduction [9]. However, these labs still have sleep experts who visually examine the 

polygraphic records and come up with the sleep scoring, since the results from the 

software are not in agreement with the sleep scorer. Agreement can be as low as 50%  

according to a sleep scorer at the College Station Physicians Center. 

Hence the need arises for a low cost, flexible sleep scoring system that can be relied 

upon by the individual sleep scorer. 
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D. Expectations from System 

The system developed should display all the signals together such that they can be 

easily distinguished from one another, and a scrollback mode should also be available. It 

should analyze the records and come up with the sleep stage for each of the 30 second 

epochs, and display a hypnogram of the same. User should be able to change key 

parameters – e.g. the frequencies of the clinical bands. Options to store the results 

digitally and print them must also be available.  

 

E. Thesis Overview 

This Thesis aims at developing an offline sleep scoring system in Labview. 

Anonymous data has been made available for this purpose. The data are whole night 

polysomnographic recordings of seven normal adults without any severe sleep disorders. 

Data has been sampled at a rate of 128 cycles/s, and the channels recorded are: ECG, 

chin EMG, LOC and ROC, C3 and O1. 

The software has been developed in LabVIEW because of its inherent abilites in 

processing large amounts of data, its elaborate GUIs, and its data acquisition capabilites 

and compatible hardware (which will prove extremely useful in case the system has to 

be turned into an online one).   

This system extracts certain features from the data after pre-processing it to remove 

artifacts, and uses a neural network to classify it into the sleep stages, and finally 
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displays a hypnogram of the same. It also allows for the results to be stored digitally, and 

printed if necessary. Thus it satisfies, in part, the expectations from such a system. 
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CHAPTER II 

SLEEP SCORING  

A. Electrode Placement and Sampling 

The placement of electrodes for recording the polysomnograph determines the data 

that will be obtained. For EEG signals, the international standard is the 10-20 system of 

electrode placement [10] as shown in Fig. 2.  

 

 

 

 

 

Fig. 2. The International 10-20 System of electrode placement. 
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The notations used for the brain lobes are F: Frontal, C: Central, T: Temporal, P: 

Parietal, O: Occipital. In this thesis, the channels provided in the EEG raw data are C3 

and O1. Also, the other channels used are Right Oculogram (ROC), Left Oculogram 

(LOC), Chin Electromyogram (EMG), and a channel of ECG. This Thesis uses all 

channels except the ECG channel to obtain the sleep stage, as no significant information 

regarding the stage can be obtained from the ECG. 

 

 

 

TABLE I 

POLYSOMNOGRAPHY FREQUENCIES AND AMPLITUDES 

Signal Maximum Frequency 

of Interest (Hz) 

Amplitude Nyquist Sampling 

Rate (cycles/s) 

EEG ~ 40 500 �V 80 

EOG 5 5 mV 10 

EMG ~ 2K 5 mV 4K 

ECG 50 (monitoring) 1 mV 100 
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To analyze the data with the help of a computer, it has to be digitized. Hasan [11] 

suggests a sampling rate of 100 Hz, and Penzel and Conradt [12], in their review article, 

suggest the same sampling rate. TABLE I shows the magnitudes and highest frequencies 

of interest for the various channels, and also the sampling rates as per Nyquist’s theory. 

The diagnostic frequency for ECG goes upto 250 Hz; however, for monitoring purposes 

(i.e. heart rate calculation) it is just 50 Hz.  

Data for this thesis has been sampled at 128 cycles/s. This will result in 

undersampling for the EMG channel, but only the power for the channel is to be 

considered and hence it doesn’t affect any calculations. Furthermore, for high resolution 

in EEG channels i.e. to detect small frequency shifts, a much higer sampling rate will be 

required, but this thesis does not involve such an analysis. 

 

B. Clinical Bands 

To classify the EEG recordings, the EEG frequencies are classified into bands as 

follows: Delta activity is from 0-4 Hz, Theta activity is from 4-8 Hz, Alpha activity is 

from 8 – 12 Hz, and Beta1 activity is from 13-22 Hz [13]. Few experiments also include 

one more band, called Beta2. In this thesis, a Beta2 band has been defined from 22-30 

Hz. Also, as shown in Fig. 3, K-complexes are defined as sharp bursts in the EEG 

activity and Spindles are defined as high frequency activity in the range of 12-14 Hz, 

both of  which last for more than 0.5 seconds [14]. 

K-complexes and spindles are difficult to be detected programmatically. Spindles 

usually follow k-complexes. 
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Fig. 3. Spindles and k-complex [15]. 

 

 

 

C. Sleep Stages and Scoring Criteria 

The polysomnographic data is scored by splitting it into 30 second epochs and 

analyzing each of those epochs. Based on the clinical bands described above, the epochs 

are classified into stages Wake, Stage 1, Stage 2, Stage 3, Stage 4, and REM.  

 

1) Stage Wakefulness: It is characterized by the presence of occipital alpha activity at 

8-12 Hz as show in Fig. 4 and occurs when the subject is awake with eyes closed [14]. 

This might be accompanied by slow eye movements. In a normal subject, this stage is 

not dominant, but for subjects with disturbed sleep it might be significant [16].  

 

2) Stage 1: As Fig. 5 shows, it is defined by a low voltage EEG, composed of mixed 

frequencies predominantly in the range of 2-7 Hz [4]. Also any epoch longer than 3 

minutes with low amplitude and absence of spindles and REM is classified as Stage 1. 
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Fig. 4. Stage wakefulness [3]. 
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Fig. 5. Stage 1 [3]. 

  

 

 

Dement et al. [3] defined it as any pattern with absolute lack of spindle activity, and 

it was more of a transient stage from wakefulness to Stage 2. Thus, this stage does not 

have any characteristic features which might help easily identify it, and hence any 

relatively long period which doesn’t satisfy the criteria for other stages is classified as 

Stage 1. 
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3) Stage 2: As Fig. 6(a) shows, its onset is characterized by the presence of 12-14 Hz 

spindles and K-complexes with a background of low voltage EEG activity [4]. However, 

the spindles and K-complexes have to last for atleast 0.5 s before the stage can be 

classified as Stage 2 [4]. Amzica & Steriade [17] found that K-complexes could last 

from 0.25 s to more than a second. In a later chapter, a method to detect these short 

duration complexes, given the relatively low sampling frequency, is described. 

 

 

 

 P 
 

(a) 

 

 P 
 

(b) 

 

 
P 

 

(c) 

Fig. 6. Stages 2, 3, and 4. (a) Stage 2, (b) Stage 3, (c) Stage 4 [3]. 
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4) Stage 3: This stage, as Fig. 6(b) depicts, is characterized by the presence of slow 

delta waves (0.5 - 2 Hz), exceeding 75 �V in amplitude, which occupy 20-50% of the 

epoch [4]. REM should also be absent. The frequency cutoffs for this band vary with 

scorers, and although R&K criteria define the cutoff at 2 Hz, scorers use upto 4 Hz as 

Delta [18]. This thesis also uses a default of 4 Hz, though it can be varied by the scorer. 

 

5) Stage 4: This is similar to stage 3, except that the slow, high amplitude delta 

activity occupies more than 50% of the epoch, as shown in Fig. 6(c) [4]. This is a very 

important sleep stage, as it has been shown to affect emotional behavior and memory, 

and their regulation is an obligatory function of this stage [19], [20]. Stage 4 could be 

responsible for clearing unused memories [21]. Selective deprivation of stage four sleep 

also induces depression and hypochondriacal state [22]. The human growth hormone is 

also released during this stage. 

 

6) Stage REM: This is defined by a low voltage, mixed frequency EEG activity along 

with the presence of Rapid-Eye-Movements (REM), and low amplitude EMG. It is 

similar to stage 1, except for the presence of characteristic saw-tooth waves in the EOG 

as shown in Fig. 7 [4]. There should also be absence of sleep spindles and K-complexes. 

The left and right oculograms have the exact opposite phase, since both the eyes always 

move in the same direction. REM sleep is also important for retention of new memories 

[21].  
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Fig. 7. EOGs during REM state [23]. 

 

 

 

D. Smoothing and Hypnograms 

As mentioned earlier, on a basic level, sleep data are analyzed epoch by epoch 

according to the rules of scoring mentioned above. But these rules are not applied in 

isolation to the individual epoch, rather neighboring epochs are also a factor in scoring. 

R&K rules include a number of smoothing rules for removing apparent sudden shifts in 

stages. E.g. if there is a continuation of stage 4 and in between that trend are one or two 

epochs of stage 1, then those epochs should also be scored as stage 4. This is in keeping 

with the view that physiologically speaking, the stages of sleep would change gradually 

and not fluctuate rapidly. 

With the advent of computerized scoring, epochs are now of a much smaller length – 

1 or 2 seconds each. This is done to analyze features that might be missed if larger 

epochs are considered e.g. spindles and K-complexes. However, even for such epochs, 

the results are averaged over 30 seconds. Thus the 30 s epoch might be considered as the 
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main epoch, while the smaller epochs, which can be called sub-epochs, exist merely for 

calculation purposes and have no physiological significance as such. 

After scoring and smoothing, the results for the whole night recording are plotted as 

a hypnogram. It is this hypnogram that gives a general idea about the subject’s sleep. 
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CHAPTER III 

PRESENT METHODOLOGIES 

A. Data Preparation 

Since the signals being recorded are of such low amplitudes, there is a lot of noise 

and interference involved. All automated scoring systems have an initial stage of artifact 

removal. These artifacts range from dc components, power line interference to those 

caused by movement, change in electrode impedance due to sweat, and mutual 

interference between channels [15]. Most of these artifacts can be removed by 

application of simple filters, while others, like mutual intereference, can be eliminated 

after calculating correlation coefficients. Epochs which have severe artifacts are not 

considered for scoring. 

 

B. Spectral Analysis 

Although there is increasing debate over acceptance of R&K rules as the gold 

standard, there is no other system which is being put to such extensive use [14]. As a 

result, most automated scoring systems try to mimic the visual scoring techniques as laid 

down by R&K. These being based on the frequencies occuring in the EEG, some sort of 

spectral analysis becomes integral to automated scoring systems. The power spectrum is 

obtained by implementation of FFT, and then powers or relative powers for each of the 

clinical bands are calculated.  
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Earlier on, the whole 30 s epoch used to be analyzed as a whole. Nowadays it is 

more common to further split the epochs into 1 s or 2 s epochs to address concerns about 

stationarity of 30 s data, and also to extract detailed features. Based on those features, 

each 30 s epoch is scored [13], [15]. This method is typically common for preliminary 

EEG analysis. After this stage however, the scoring methods diverge, and each system 

has a different approach to interpreting those results, as well analyzing other channels 

viz. EOG, and EMG. Also, methods differ in further analysis of EEG for detection of 

spindles and k-complexes. 

 

C. Rule and Case Based Reasoning 

Park et al. [15] designed an integrated Rule and Case based system to mimic the 

human approach to scoring.  In a Rule based system, a rigid knowledge base is 

developed in the form of If-Then rules. Thus, a Rule based scoring system tackles 

problems by identifying priorities of the rules and then applying the appropriate rule. An 

example would be that of classifying an epoch as Stage 4. R&K rules state that any 

epoch with absence of REM  and spindles in which slow waves occupy more than 50% 

of the epoch should be classified as Stage 4. This can easily be implemented as a series 

of rules – IF NO REM, AND, NO Spindles, AND, No K-complexes, AND Delta Power 

> 50%, THEN Stage 4. 

Any number of rules can be added based on a similar logic. The disadvantage is that 

they do not adapt based on success and failures. Park et al. bypassed this problem by 

using a Case based reasoning system. 
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A case based reasoning system defines cases as a set of problem-solution cases that 

are extracted from the Signal Processing Unit, and the Rule Based Scoring Unit [15]. 

The Case based unit is accessed only if the Rule based unit cannot classify the epoch in a 

reliable manner. This unit is similar to the human experience – it applies the solutions of 

a similar previous case, and if the solution doesn’t match, it revises the solution. 

However, this revision is limited in nature and a human expert might have to define a 

new case. The features extracted from the data are as follows.  

 

1)  EOG: The parameters calculated are - total power spectral frequency between 

0.15 to 0.45 Hz, and 0.5 to 1.2 Hz, and the correlation coefficient between LOC and 

ROC.  

 

2) EMG: Tone of chin EMG.  

 

3) Wave Segment of EEG: The EEG epochs are divided into sub-epochs of 1 s each, 

and then after computing a windowed FFT, indexes are calculated to determine 

dominant clinical band of the sub-epoch. This sub division of epochs is done to include 

temporal information which can get lost in the 30 s epochs. 

This system gives an average agreement rate in normal recordings of 87.5%. 

However the system suffered from problems in event detection at the Rule Based scoring 

level [15]. Also, to get a higher performance a much higher number of cases would be 
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required, which would essentially mean that the system has a large and complicated 

knowledge base, and that is clearly undesirable. 

 

D. Neural Network 

During recent years, neural networks have been finding increasing use to automatic 

sleep stage scoring [24]. Typically, neural networks are capable of mining through large 

amounts of data during the learning phase, and come up with weights which decide how 

much of a given parameter should be considered while making a decision. 

Schaltenbrand et al. [13] developed an automatic scoring system using a multilayer 

feedforward neural network. First, feature extraction is performed on 2 s epochs, and 

then those features are averaged over 15 such consecutive epochs to obtain information 

about the 30 s epoch. Note that the 2 s epochs do not overlap. The features are obtained 

entirely from the power spectrum of the EEG, EOG, and EMG. The features extracted 

are described below. 

 

1) EEG: Relative powers in the Delta (0-4Hz), Theta (4-8Hz), Alpha (8-13 Hz), 

Beta1 (13-22 Hz), and Beta2 (22-25Hz) bands; Total power of the EEG (0-35Hz); Ratio 

of powers Delta/Alpha and Alpha/Theta; Mean frequency of EEG spectral density; 

Dispersion of EEG spectral density. 
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2) EOG: Relative power in the Delta (0-4Hz) band; Total power of EOG spectral 

density; Mean frequency of the EOG spectral density; Dispersion of EOG spectral 

density. 

 

3) EMG: Total power of the EMG spectral density; Mean frequency of EMG spectral 

density; Dispersion of EMG spectral density. 

 

The above 17 parameters form the vector of parameters which is then fed to the 

neural network model. A 3 layer perceptron, with a 17 unit input layer, 10 unit hidden 

layer, and a 6 unit output layer is built. The 17 unit layer is input for the parameter 

vector, while the 6 unit layer is output of the 6 sleep stages (W, 1, 2, 3, 4, and REM). A 

hidden layer has been chosen keeping in view the complexity of the data.  

After training and supervision, this system yeilds an 80.6% agreement between the 

automatic system and the consensus of readers. In this system, the mean frequencies in 

the three channels seem like unnecessary parameters as they have no actual significance 

in the R&K scoring process. 
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CHAPTER IV 

PROPOSED APPROACH 

A. Epoch Length Selection 

To determine the epoch length to be used, a runs test was performed on the data to 

determine stationarity of various epoch lengths. This has to be done because spectral 

analysis need to be performed, and for that the data have to be stationary.  

 

 

 

TABLE II 

RUNS TEST SAMPLE RESULTS 

Expected Runs  Subject  Day Signal No. of 

Epochs 

Epoch  

Length(s)  

Runs 

Lower Upper 

Stationary 

23 7 EMG 60 30 27 Y 

23 7 LOC 60 30 19 N 

23 7 ROC 60 30 21 N 

23 7 C3 60 30 25 Y 

23 7 O1 60 30 21 

 

 

22 

 

 

39 

N 
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TABLE II (Continued) 

Expected Runs  Subject  Day Signal No. of 

Epochs 

Epoch  

Length(s) 

Runs 

Lower Upper 

Stationary 

24 7 EKG 60 20 23 Y 

24 7 EMG 60 20 7 N 

24 7 LOC 60 20 5 N 

24 7 ROC 60 20 9 N 

24 7 C3 60 20 3 N 

24 7 O1 60 20 7 N 

24 7 EKG 60 10 22 Y 

24 7 EMG 60 10 17 N 

24 7 LOC 60 10 19 N 

24 7 ROC 60 10 15 N 

24 7 C3 60 10 25 Y 

24 7 O1 60 10 21 N 

23 7 EKG 60 2 22 Y 

23 7 EMG 60 2 28 Y 

23 7 LOC 60 2 23 Y 

23 7 ROC 60 2 24 Y 

23 7 C3 60 2 26 Y 

23 7 O1 60 2 25 

 

 

 

 

 

 

 

22 

 

 

 

 

 

 

 

39 

Y 
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Shown above in TABLE II are sample results from the runs test. From these results, 

it is clear that 2 s data are stationary. Also, the 2 s analysis is preferred because smaller 

epoch lengths mean better detection of details which is important in stage 2 for e.g. As 

earlier mentioned, staging has to be performed for the 30 s epochs; thus the 2 s 

parameters are averaged over 15 such consecutive epochs. 

 

B. Thirty Second Level Epoch Processing 

Analysis of data are performed at two levels of epochs – one at the 30 s level, and the 

other at the 2 s level. The functions performed at the 30 s level are described here. All 

other functions are to be assumed to be at the 2 s sub-epoch level. 

 

1) Data Reading: This function acquires all the required data for the epoch from the 

data files. This is the function which necessisated the requirement of the 30 s level. It 

performs opening of the files, which is a slow processes. If this were to be done at the 2 s 

level, the program would spend most of its time reading the data from the files. Since the 

program is an offline one, it makes sense to read as much data as possible in a single 

iteration, without causing memory problems because all the data read is held in memory 

till the end of the iteration, when it is cleared.  

 

2) Removing DC Offset: Usually, all the channels are AC coupled and hence there is 

no dc component present, but since this is not known for a fact, the data is processed to 
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remove dc offset. This is simply done by removing mean of data from data itself, and 

this task is also performed at the 30 s level to minimize calculations. 

 

3) Movement Artifacts: This is a step towards pre-processing of data. The user can 

select thresholds for each of the channels, above which the epoch should be labeled as 

movement epoch. In an online system, these can have real units (�V or mV), but in an 

offline case where there is no indication of the gains, units have no meaning. Hence they 

have to be set in terms of absolute numbers, and may even vary from subject to subject. 

Data made available for this thesis had not indication about the gain and the actual 

physical values. However, they were found to have the same thresholds after visual 

examination and hence thresholds were set to correspond to obvious movement artifacts 

in the various channels. 

The thresholds for this thesis are as follows: ECG – 2500, EMG – 800, LOC and 

ROC – 1000, and C3 and O1 – 350. (To make this scoring system accept any data, these 

thresholds need to be standardized.) These are detected by using waveform peak 

detection algorithm in Labview. A string of consecutive elements (atleast equal to width 

of peak) which exceed the threshold and then return to the value below it, is defined as a 

peak.  

An epoch is classified as movement epoch if the absolute values of two or more 

channels exceed their thresholds or if the number of thresholds in a single channel 

exceeds six. The width of peak is defined as four (changeable by the user), as during 

visual inspection it was found to be a good compromise between detecting false peaks 
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and not detecting any real peaks. If epoch is scored as movement epoch, no further 

analysis is performed on it. This will also decrease the strain on the neural network, 

since the network won’t have to classify extra data. Performing this function at the 30 s 

level saves a lot of calculation effort. 

 

C. Two Second Level Epoch Processing 

After performing the 30 s level analysis, data are further split into 2 s epochs through 

a For loop with fifteen iterations. This is the stage where the filtering and feature 

analysis takes place. Everything that goes into this level plays a part in determining the 

stage of the epoch. After feature extraction for each of the 2 s data, the features are 

averaged for the fifteen iterations. Functions performed here include filtering (which is 

the first stage), spectral analysis to extract certain features, and REM and K-complex 

analysis where some more features are derived. The two parameter extraction processes 

mentioned above take place simultaneously as they do not pass data to one another and 

need only the filtered data. 

 

D. Filtering 

Before deriving the parameter vector, the data needs to be filtered to eliminate noise 

and extract data only upto frequencies of interest. The frequencies of interest extend upto 

30 Hz for EEG signals. For the rest of the signals here, the frequencies don’t count as 

much, since the total power of those signals is considered. In any case, due to data being 
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sampled at 128 cycles/s, according to Nyquist’s theory, the maximum frequency that can 

be represented is that of 64 Hz. 

Based on these considerations, the requirements of the filter are defined as: Bandpass 

filter; Lower Cutoff 1 Hz, Upper Cutoff 50 Hz,  Lower stopband 0.5 Hz, and Upper 

Stopband 55 Hz. By choosing the upper cutoff of 50 Hz, there is no need for another 

notch filter to eliminate the power line interference. The specifications for FIR and IIR 

are summarized below in TABLE III. 

 

 

 

TABLE III 

FILTER SPECIFICATIONS 

Filter Type Bandpass 

Lower Frequency Cutoff (Hz) 1 

Upper Frequency Cutoff (Hz) 50 

Lower stopband (Hz) 0.5 

Upper Stopband (Hz) 55 

Passband Ripple (db) 1 

Stopband Attenuation (db) 60 
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After deciding on these requirements, the type of filter needs to be chosen. The main 

options are FIR and IIR filters. For FIR filters, the transfer function is a polynomial in z-1 

as shown below.  
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For IIR filters, the transfer function is a real rational function in z-1. 
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The FIR filter can be designed to provide exact linear phase relationship, but for the 

same specifications, the FIR filter needs more coefficients than an IIR filter. Besides, the 

IIR filter also has sharp frequency cutoffs, and due to a lower order, the processing also 

takes lower computational effort and hence IIR is more efficient. Typically the FIR filter 

requires NFIR computations per output sample (NFIR being the order of the FIR filter), 

whereas the IIR filter requires 2* NIIR + 1 computations per output sample (NIIR being 

the order of the IIR filter). For the same magnitude response, the ratio NFIR/NIIR is in the 

order of tens or more [25]. The saving in computational effort is thus obvious. 
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FIR filters also have to be applied smoothing windows, due to truncation errors 

which results in Gibb’s phenomenon. Choice of windows (Hanning, Hamming, etc) is 

also allowed, but the Blackman window is recommended. 

In the case of this thesis, the phase response is not important, while the frequency 

cutoff is. Also, the computational effort has to be as minimal as possible for faster 

processing. So, although the user has a choice of deciding the type of filter to be 

implemented, the IIR filter is recommended, and set as default. 

 

 

 

 

 

Fig. 8. FIR filter response. 
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Fig. 8 shows the magnitude response of the FIR filter with 25 coefficients, with the 

Blackman window applied. The rest of the specifications are the same as mentioned in 

TABLE III. 

Fig. 9 below is the magnitude response of a 3rd order Butterworth Bandpass filter. 

Note that user can select between various IIR filters too, i.e. Butterworth, Chebyshev, 

etc. Since powers in individual bands are found out, the passband ripple has to be as low 

as possible. The Butterworth filters are better in this regard. 

 

 

 

 

 

Fig. 9. IIR filter response. 
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Thus, from the figures, it is clear that even a 3rd order IIR filter has a better response 

than a 25th order FIR filter. The subVI for filtering takes in data from all the channels, at 

the 2 s level, and outputs the filtered data for the those channels. The functions that take 

data from this subVI are the ones for spectra and REM and K-complex detection. 

 

E. Spectra 

The classifications of sleep stages (see Chapter II) is based on the frequencies 

present in the EEG signal, the presence of sharp waves (k-complexes) in the EEG, and 

the presence of REM in the EOG. In fact, stages 3 and 4 are distinguished from each 

other solely on the  basis of the power content of a single clinical band. Thus, it is only 

natural that the power content of the signal be studied in relation to the frequency 

content of the signals. This is achieved by calculating the Auto Power spectrum of the 

signals (on a 2 s level), which is defined as 

( 3) 
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For most of the time, the LOC and ROC will not be in perfect phase with each other. 

If the phase difference is large, then it implies that there is an error somewhere. 

Detecting whether the EOGs are in phase is important, because as mentioned later, the 

parameters for the EOG are averaged, and for that to be done, they have to in phase, else 

it might lead to false REM.  
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Detecting if the LOC and ROC are in phase with each other can be performed by 

finding phase of the Cross Spectrum, defined as 

( 4) 
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F. Features from the Spectra 

Before moving onto the features that are extracted from the spectra, the various 

clinical bands are summarized below in TABLE IV for easy reference. Also note that 

feature extraction is performed at the 2 s epoch level. 

 

 

 

TABLE IV  

CLINICAL BANDS 

Clinical Band Minimum Frequency (Hz) Maximum Frequency (Hz) 

Delta 0 4 

Theta 4 8 

Alpha 8 12 

Beta1 12 22 

Beta2 22 32 

 



 31 

 

To be able to extract the powers in the various clinical bands from the power spectra, 

numerical integration has to be performed. Labview performs integration in an 

incremental way i.e. it finds area under the curve from zero upto each of the 

frequencies1. Thus finding the powers in each of the clinical bands becomes easy. E.g. 

power in the Theta band can be found by extracting power upto 8 Hz, and subtracting the 

power of Delta band from it. Note that all the powers of clinical bands are normalized by 

the total power. 

 

1) EEG: The features extracted from the EEG channels (C3 and O1 in this case) are 

the relative powers in the various clinical bands and the total power. These are the only 

features that can be extracted from the spectra that have an influence on the sleep stage 

(see Chapter II). Thus, the features are – Relative powers in Delta, Theta, Alpha, Beta1, 

and Beta2 bands, and the Total Power. 

The features of each of the channel are considered separate features, as each channel 

(placed on a different lobe) provides different information. 

 

2)EMG: The only power extracted from this channel is the total power. Large 

amplitude EMGs correspond to flexing and/or movements, and low amplitude EMGs 

correspond to low or no movements. The frequency distribution of these is irrelavant in 

scoring, and hence only total power counts. 

 
1 If the input spectrum has 10 samples, the integration will also have 10 points. The 1st point would 
correspond to power upto the 1st point, and so on. The last element would correspond to the total power. 
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3)EOG: In EOGs, apart from detecting REMs, it is also necessary to know if there 

are very slow eye movements, which correspond to sleep onset. Hence, EOG power in 

the delta band is also extracted [13]. Since REM also results in large amplitudes, the 

total power in the EOG can be used to distinguish REM and NREM states to some 

extent.  

For most part, the EOGs are synchronous since both eyes move at the same time. 

Hence, to decrease the redundancy and thus number of features, the relative Delta 

powers and Total powers of the LOC and ROC are averaged. 

The averaging done might create small problems, as the EOGs are not exactly in 

perfect phase all the time. As mentioned earlier, a large difference in phase might 

indicate an error2. To find the extent to which the two signals are out-of-phase, their 

cross spectrum is calculated and the phase of one relative to the another is found. This 

calculation will have half the number of the samples in the 2 s data (due to the single 

sided spectra), and it will also vary from positive to negative, in the same epoch too, 

since the eyes can move with respect to one another in any direction (this is limited to 

very small movements). Hence, the standard deviation of the relative phase is found for 

each 2 s epoch. 

 
2 As an afterthought, it is interesting to note that even slight twitching of an eye (which usually occurs in a 
single eye at a time, or more in one than the other), could perhaps cause large sawtooth waves in the 
EOGs, which might lead to detection of REM. It is not known if such twitching occurs only while 
dreaming, which would indicate that the sleep stage is indeed REM, or in any stage, which would mean 
false detection of REM. The detection of relative phase will indicate this possibilty, hence its use as a 
parameter. 
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Thus the parameters extracted from the LOC and ROC are relative Delta Power, 

Total Power, and Phase between the two, meaning the number of features from both the 

channels combined is three. 

 

G. K-complex and REM Detection 

K-complexes and Spindles are essential for detection of Stage 2, while the rapid eye 

movements indicate REM stage. Detection of REM is crucial because of the similarity 

between the EEG waveforms in Stage 1 and Stage REM. Improper detection of K-

complexes (Stage 2) leads to a false classification. Schaltenbrand et al. [13] say their 

program had confusion between Stage 1 and Stage 2, and Stage 4 and Stage 2. The 

program by Park et al. [15] classified 11% of Stage 1 as REM, and 14% of Stage 1 as 

Stage 2. Thus detection of these two features become vital. The processing for these is 

done separately and simultaneously as they are not dependent on the spectral 

measurements.  

 

1) REM detection: This stage involves the typical sawtooth waves, usually of high 

amplitudes, in EOG channels. While this translates into increased power in the EOG 

spectrum which will also influence parameters in the spectral measurements, additional 

detection is performed here. The slope of the EOG channels is found out by way of 

derivatives (another method would be to run a peak detection algorigthm and find the 

slopes based on the number of samples between peaks and the consecutive valleys). 
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Since the slope is also calculated point-by-point, the standard deviation for the 2 second 

epoch is calculated. It is averaged over the 30 s epoch.  

Fig. 11(a) shows the LOC and ROC for a 30 s epoch having REM. Fig. 11(b) shows 

the plot of 15 standard deviations for the same 30 s epoch. It can be seen that the 

sawtooth waves in EOGs correspond to high values on the plot of standard deviation, 

although not in direct proportion.  

 

 

 

 

 

(a) 

 

 

(b) 

Fig. 10.  REM and plot of the feature for it. (a) LOC and ROC during REM, (b) Plot of Standard Deviation 

of the slope for the same epoch. 
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(a) 

 

 

(b) 

Fig. 11. N-REM and plot of the feature for it. (a) LOC and ROC during non-REM, (b) Plot of the Standard 

deviation of the slope for the same. 

 

 

 

Fig. 11(a) shows the LOC and ROC for a 30 s epoch of a non-REM period. Fig. 

11(b) shows the plot of the corresponding standard deviations. Note that the EOG scales 

and Parameter scales Fig. 11 and Fig. 11 are the same.  

Similar results were obtained for a large set of readings, and it was concluded that 

this feature is a good parameter for classification. 
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2) K-complex & Spindle detection: There are numerous difficulties in detecting a K-

complex. It cannot be detected by an auto spectrum, even on the 2 s level. This is 

because though it has a high magnitude, it has a very short duration, and in the spectra its 

get overshadowed by the dominant features. Also, the frequency of the K-complex is 

around 4 Hz, which falls in the portions of the Delta and Theta bands. Hence it becomes 

impossible to determine if the frequency content comes from the K-complex or if it just 

part of the background EEG activity. 

Quite a few programs do not extract any special features for the K-complex or 

spindles. E.g. Schaltendbrand et al. [13] perform no separate detection of waveforms, 

since they use smaller epochs of 2 s. Performing feature extraction at this level does give 

more information about K-complexes, but it is not significant enough to detect stage 2. 

As mentioned before, they have problems due to false positives resulting in Stage 2. 

Park et al. [15] used 1 s sub-epochs and generated indices to indicate the dominant 

frequency of the sub-epochs. 

Neural networks have also been used solely for the purpose of K-complex detection. 

Bankman et al. [26] used a general model of a k-complex to determine features that 

could be extracted from it, and fed those features to a neural network. Their method 

yeilded 8.1% false positives at a sensitivity of 90% and 14.1% false positives at a 

sensitivity of 95%, which is sufficiently high. But this involves a lot of features for the 

k-complex itself, and besides there is no data available on the implementation of this 

system for sleep scoring.  
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Due to the short time duration of the K-complexes and spindles, the temporal 

information of these features becomes essential. Since the processing is based on 

spectral measurements, all the temporal information gets lost. However, with the advent 

of Short Time Fourier Transform (STFT) and Wavelet Transforms, both of which give 

joint Time-Domain information, knowledge of spectral as well as temporal information 

becomes possible. Tang and Ishii [27] used a wavelet transform for detection of K-

complexes. (More information could not be found as only the abstract of this paper was 

available.) 

Gorur et al. [28] used an STFT to extract features and then those features were 

processed using a neural network.  They obtained a classification rate of 88.7% with the 

neural network. Once again, sleep scoring using this technique has not been discussed. 

This thesis detects K-complexes based on the fact that they are sharp waves and their 

power is concentrated below 4 Hz (which falls in the range of Delta and Theta bands) 

[26]. They are difficult to detect in the presence of similar background activity, and the 

only feature that can lead to their presence is that they are localized in time. Thus 

detection by STFT is ideal. 
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Fig. 12. Auto-Power spectrum of a 2 s epoch of C3. 

 

 

Consider the Auto-Power spectrum of a 2 s epoch of channel C3 as shown in Fig. 12. 

This spectrum, which is ultimately based on the FFT, has the disadvantage that all 

temporal information is lost in the frequency domain (and conversely there is no 

frequency information in the time domain).  

The Short Time Fourier Transform takes a sliding window (say length ‘l’) and 

applies it to the data, takes the Fourier of that windowed data, and then slides the 

window by a certain time (say ‘�’), and repeats the procedure. The shifting and 

windowing function, and the resulting STFT can be represented as 

( 5) 
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The parameters needed for the STFT are the window length ‘l’ and the time shift ‘�’. 

In the case of this thesis, the � was chosen to be 16 samples i.e. for a sampling rate of 

128 cycles/s, it corresponds to 12.5 msec, while the window length ‘l’ is chosen to be 32 

samples i.e. 25 msec. This provides for an overlap, which will smoothen the results. 

(Otherwise a spike or short spindle might fall in two different windows and as a result 

show up in none of them. Hence the overlap is needed to avoid such situations.) 

Fig. 13 shows the STFT of the same segment that was used for the spectra in Fig. 12. 

It is a 3D graph, where the Z-axis represents the amplitude, one axis represents the 

frequency, and the time axis represents the shift, and not the actual time. E.g. in this 

case, there are 256 samples, and � is 16. Therefore, the shift scale will have 256/16 i.e. 

16 units on it. The frequency scale has the same range as that of the auto power 

spectrum. 

Fig. 14 shows the projection of the STFT on the frequency axis. It is similar in nature 

to the FFT with the difference that the STFT performs such calculations for every 

increment in the time shift �. 
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Fig. 13. STFT for a 2 s C3 segment. 

 

 

 

 

Fig. 14. Projection of STFT on the frequency axis. 

 

Frequency Axis   
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The corresponding portion for the K-complexes (2-5 Hz) from the STFT is extracted 

as shown in Fig. 15(a). That portion is a 2D array in time & frequency. To get the total 

power over the frequency range without losing the temporal information, numerical 

integration is performed for each of the time shifts. This operation can visualized as 

collapsing the extracted portion of the STFT onto the time shift axis, as shown in Fig. 

15(b). 

If there are short K-complexes (~ 0.5 s) in a given segment of 2 s, they will occupy 

only a part of the epoch, and if they are longer (>1 s), they will occupy a larger portion 

of the epoch. In the first case, the standard deviation of the collapsed portion will be 

high, while in the latter case the mean will be high. So both the parameters are 

determined and are part of the feature vector. 

Now that all the features have been described, along with the justification for 

selecting them, they are summarized here in TABLE V. 
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(a) 

 

 

 

 

(b) 

Fig. 15. STFT extracted portion and its power. (a) Extracted portion from 2-5 Hz (b) Its power. 
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TABLE V 

FEATURES FROM VARIOUS CHANNELS 

Channel Feature Generic/Particular 

ECG - - 

EMG Total Power Generic 

Delta Power Slow eye movement 

Total Power Generic 

Cross Phase Std. Deviation LOC & ROC cross phase 

EOG 

Average slope Std. Deviation REM detection 

Delta Power Stage 3 & 4 

Theta Power Generic 

Alpha Power Stage Wake 

Beta1 Power Generic 

Beta2 Power Generic 

Total Power Generic 

STFT portion K-complex 
Standard Deviation 

K-complex, Stage 2 

EEG 

STFT portion K-complex 
Mean 

K-complex, Stage 2 
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CHAPTER V 

RESULTS 

A. Data Selection and Experiments 

The total raw data available for this study was that of 7 patients over 3 days. Similar 

sleep scores for testing and validation were also available. However, the scores were not 

for the entire duration of sleep i.e. the epochs of the raw data and the scores did not 

match. For most files, the time stamps on the raw data files (which contained the actual 

channels) and the time stamps for the scores were different. As a result, most of the files 

could not be used for testing. 

The files for Day1 (from raw data and scores) did match, alongwith two files from 

Day 7 and two from Day 2, and that data was used for training and validation of neural 

network. The neural network software used was Pathfinder. Parameters for subjects were 

generated by the Labview program. That data was combined into an Excel file, wherein 

the data was split into three segment – first part contained 60% of the data, and the latter 

two contained 30% data each. The first segment was for Training the Neural Network, 

the second for Testing, and the third for validation.  

 

1) First Sample Experiment: In this case, the valid data from all three days (a total of 

ten files) was considered. It was split into sections of 6, 2, and 2 files each. There were 6 

hidden nodes in this case. Also, the data was not modified to have equal number of 

samples for each of the sleep stages (in the training and testing portions). The number of 
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stage 2 epochs was much higher than the rest, and as a result the network trained well on 

this stage, but performed poorly on the others. The classification rate was 62.70%, with 

stage 2 having a rate of 99.2% and stage 0 (Wake) having a rate of 49.5% as Fig. 16 

shows. 

 

 

 

 

Fig. 16. Classification rates for 6 hidden node perceptron with all valid data.  

 

 

 

2) 2nd Sample Experiment: In this case, only data from Day 1 was considered, since 

this data better matched the sleep score data. Thus, five subjects were considered – three 

for training, and one for testing and validation each. Only 2 hidden nodes were used, as 
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in the previous case there was a possibility that the network had learnt the results for 

Stage 2. Also, similar number of epochs were considered for each of the stages to avoid 

the possibility of overlearning on a particular stage. Although this data had worse 

classification rates than before, it classified data into three stages and not just two as in 

the previous case. The classification rate for stage 2 was still higher than the rest at 

73.9%. The overall classification was 50.57% as shown in Fig. 17. 

 

 

 

 

Fig. 17. Classification rates for 2 hidden node perceptron with day1 data. 
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3) 3rd Sample Experiment: This case was similar to the previous one, except that 3 

hidden nodes were used. The classification rate was poorer than previous as Fig. 18 

shows. 

 

 

 

 

Fig. 18. Classification rates for 3 hidden node perceptron with day1 data. 

 

 

 

B. Results 

Similar experiements with small variations were performed on the data. However, 

the classification rates essentially remained the same. The rate for stage 2 remained high, 
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indicating that the k-complex detection program was giving suitable parameters. Overall, 

the performance of the system is poor, and as such cannot be used for classification. 

Whether this poor performance is due to mismatch of the raw data and scored data, or 

because of unsuitable parameters is not known. 
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CHAPTER VI 

SUMMARY 

The objective of this thesis was to develop a reliable sleep scoring system in 

Labview. The need for such a system was discussed. After defining the characteristics 

found in polysomnographs, the sleep scoring criteria were defined. Previous attempts 

using two different approaches were studied. 

Discussion on data preparation was followed by the features to be extracted along 

with the justification for their extraction. The results from the neural network based on 

those parameters were shown. 

Based on the results obtained, it is clear that at its present state the system is unable 

to reliably classify data, and thus it is inadequate to perform its objective. Training of 

neural network on reliable data will yield better results.  
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