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ABSTRACT 

 

        Development of an Extender Protocol to Enhance the Viability of 

Frozen-Thawed Spermatozoa. 

(December 2004) 

Erin Michelle Griffin, B.S., The Ohio State University 

Chair of Advisory Committee: Dr. David Forrest 

 

Determination of an extender protocol which will enhance the viability of frozen-

thawed bovine spermatozoa will allow producers to obtain higher conception rates due 

to the increased survival rate of the spermatozoa.  Ejaculates of six Brangus bulls 

(age=18 months) were evaluated for spermatozoal motility, acrosomal integrity, and 

morphological characteristics (collectively called spermatozoal viability) in two 

experiments to test our hypotheses that (1) the treatment combination of a 4 hr cooling 

duration and a 2 hr equilibration with glycerol will result in optimum spermatozoal 

characteristics after freezing and thawing and (2) rank of three selected extenders 

relative to their effects on spermatozoal viability after freezing and thawing will be egg 

yolk-citrate (EC), egg yolk-tris (IMV), and skim milk (milk).  In experiment 1, an 

ejaculate from each bull was partially extended and cooled to 4 ºC for either 2 or 4 hr 

and then allowed to equilibrate with the glycerolated extender for 2, 4, or 6 hr.  

Spermatozoal viability was assessed at 0, 3, 6, and 9 hr after thawing.  In experiment 1, 4 

hr of cooling resulted in a higher percentage of motile spermatozoa than did 2 hr of 
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cooling.  The 2 hr equilibration with glycerol yielded lower percentages of motile 

spermatozoa, acrosomal integrity, and morphologically normal spermatozoa than 4 and 6 

hr equilibration durations with glycerol.  In experiment 2, we observed a decrease in 

spermatozoal viability for all three extenders upon freezing and thawing.  Viability of 

frozen-thawed spermatozoa extended in the milk was reduced for all incubation 

durations, and the IMV extender had a higher percentage of motile spermatozoa than the 

EC extender at 6 hr of incubation.  A higher percentage of intact acrosomes was 

observed with the IMV extender; however, the EC extender had a higher percentage of 

morphologically normal spermatozoa than the IMV extender.  Our results indicate that at 

cooling duration of 4 hr and a 4 hr equilibration with glycerol provide the highest level 

of spermatozoal viability post-thaw of the treatments evaluated and that the IMV 

extender enhances the percentage of spermatozoa with an intact acrosome for frozen-

thawed spermatozoa over the EC and skim milk extenders. 
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CHAPTER I 

INTRODUCTION  

 
 

The use of frozen semen for artificial insemination (AI) allows producers to 

utilize superior genetics, decrease the spread of disease, and obtain higher profits 

through the attainment of calf crops that are more desirable for market sales and 

consumer preferences.  However, a majority of beef producers continue to use natural 

service mating programs due, at least in part, to the variability in conception rates to AI.  

If higher conception rates could be consistently achieved, then producers would be more 

inclined to incorporate the use of AI into their breeding programs to enhance genetic 

merit, thus producing a more desirable product.   

However, advances in the cryopreservation of bull spermatozoa have not kept 

pace with the advances that have occurred in other reproductive technologies.  Only 

minimal changes in protocols for processing and freezing bull semen have been 

implemented in the past 20 years.  This limited rate of progress is due to a lack of 

complete understanding of the factors and interactions that alter spermatozoal viability 

upon processing, freezing, and thawing [1-3].  Some of these factors include membrane 

permeability, extender components, cooling duration of the spermatozoa prior to the 

addition of glycerol, equilibration time with glycerol prior to freezing, freezing process, 

thaw rate, collection frequency of the ejaculate, and seasonal effects.  In general, the 

viability of the ejaculate determines how sensitive the spermatozoa will be to the freeze-

                                                
  This thesis follows the style and format of Theriogenology. 



 2

thaw process.  The osmotic gradient of a sperm cell is determined by membrane 

permeability.  If the spermatozoal membrane is damaged during the freeze-thaw process, 

intracellular components may be damaged or destroyed, thus rendering the 

spermatozoon useless for AI. Cryoprotectants such as glycerol are added to the extended 

ejaculate to protect the spermatozoa from damage during cryopreservation; however, due 

to variation among bulls [4,5], no exact concentration of glycerol [6,7] or equilibration 

time with glycerol [5,8] has been recommended for use by the semen collection facilities 

for freezing semen.  The cooling duration functions to protect the spermatozoa against 

cold shock [2,9], and the length of cooling duration has an impact on the required length 

of glycerol equilibration [8].  Thaw rate is dependent upon the concentration of glycerol 

utilized in the extender, but practical considerations need to be taken into account.  

Producers will have a more difficult time accurately thawing straws without causing 

lethal damage for 7.5 sec at a high temperature than for 30 sec at a lower temperature 

[10].   To further complicate the process, environmental and management factors, such 

as seasonality, relative temperature, housing, and nutrition, also affect the quality and 

quantity of spermatozoa collected.   

The optimum combination of variables that affect spermatozoal characteristics 

during the freezing-thawing process has not been clearly defined as illustrated above by 

the cascade of interdependent factors affecting spermatozoal post-thaw viability.  This 

example is only one of the many possible combinations of variables that affect and 

protect spermatozoa viability post-thaw.  Enhancing our knowledge of these variables is 
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imperative to increase the conception rates of beef cows and heifers following 

insemination with frozen-thawed semen. 

The overall objective of this project was to identify methods for semen 

cryopreservation that will maximize post-thaw spermatozoan viability.  Determining the 

optimal extender protocol for enhancing the viability of frozen-thawed spermatozoa will 

allow producers to more confidently utilize frozen semen for artificial insemination and 

obtain higher conception rates due to the increased survival rate of the spermatozoa that 

have been frozen and then thawed for breeding purposes.   

 

1.  Statement of Problem 

1.1.  Experiment 1  

Artificial insemination is utilized worldwide by both beef and dairy cattle 

producers.  However, conception rates by AI could be improved if the processing 

techniques during semen processing and freezing were more accurately defined.  The 

length of time that is allowed for the partially-extended semen to cool to 5 ºC has an 

impact on the quality of the spermatozoa upon post-thaw examination.  This “cooling 

duration” buffers the sperm cells against cold shock.  Cold shock affects spermatozoal 

morphology, acrosomal integrity, membrane lipid ultrastructure, as well as many 

metabolic reactions required for cell survival [11].  However, cold shock can be reduced 

if the spermatozoa are given an adequate amount of time to slowly reach 5 ºC.  Limited 

research has been conducted to determine the optimal cooling duration.  Ennen et al. [8] 

demonstrated that either a 2 hr or 4 hr cooling duration resulted in the optimum 



 4

percentage of motile spermatozoa post-thaw, however these results hinged on the length 

of glycerol equilibration for the sample.  For the 2 hr cooling duration, Ennen et al. [8] 

reported that 4 or 10 hr of glycerol equilibration was optimal for spermatozoal viability.  

In contrast, the 4 hr cooling duration required either 2 or 4 hr equilibration durations 

with glycerol for optimal spermatozoal viability post-thaw [8].  This brings to light the 

importance of glycerol equilibration as well as cooling duration for optimal 

spermatozoal viability post-thaw.  Graham et al. [4] evaluated the effect of glycerol 

equilibration for 4, 8, and 12 hr at 4 ºC prior to freezing on non-return rates and observed 

a higher non-return rate for the 12 hr (67.8 %) equilibration over the 4 hr (63.4 %) 

equilibration, but not over the 8 hr (65.2 %).  In contrast, Jondet [5] did not observe any 

significant differences in spermatozoal survival or non-return rates between 1 min (70 % 

survival and 80.60 % non-return) and 6 hr (70 % survival and 79.95 % non-return) 

equilibration durations with glycerol.  Extensive research on equilibration with glycerol 

has continued to have great variability in the duration of glycerol equilibration that is 

recommended to semen collection facilities.   

Further research is needed to obtain the optimum lengths for both cooling 

duration and equilibration with glycerol.  The current study evaluated cooling duration 

and equilibration with glycerol in an attempt to make a recommendation as to the 

optimum durations for each by comparing the effects of cooling duration and the length 

of time for glycerol equilibration on the post-thaw motility, morphology, and acrosomal 

integrity of bovine spermatozoa. 
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1.2.  Experiment 2 

 Several seminal extenders are available for use by semen collection facilities [12-

14].  However, egg yolk and milk-based extenders have been most commonly utilized by 

the beef and dairy cattle industries for the past 50 years.  While acceptable non-return 

rates, spermatozoal motility, acrosomal integrity, and morphological characteristics are 

achieved with egg yolk and milk-based extenders, extensive research has documented 

that differences exist between the two [15,16].  Schenk et al. [17] compared the effects 

of egg yolk-citrate, egg yolk-tes-tris, and homogenized milk extenders on spermatozoal 

motility and non-return rates.  It was observed that at 0 hr post-thaw, the egg yolk-citrate 

extender resulted in a higher percentage of motile sperm than for the egg yolk-tes-tris or 

milk extenders [17].  Senger et al. [16] noted that the greatest degree of variation in 

spermatozoal motility was caused by the extender.   

As with the cooling duration and equilibration time with glycerol, an optimal 

extender has yet to be established for commercial use in semen collection facilities.  

Further research needs to be conducted in order to recommend the optimal extender for 

semen cryopreservation.  The current study evaluated three extenders in an attempt to 

make a recommendation as to the optimum extender for semen processing by comparing 

the effects of three extenders (egg yolk-citrate, IMV, and skim milk) on pre- and post-

thaw motility, morphology, and acrosomal integrity of bovine spermatozoa.   
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CHAPTER II 

LITERATURE REVIEW 
 
 

 
1.  Capacitation and the Acrosome Reaction 

 The fertilization of an ovum by a sperm cell is dependent upon the completion of 

capacitation and the acrosome reaction.  Capacitation is the process whereby a sperm 

cell undergoes structural changes to the sperm head membranes, has a loss of seminal 

proteins, and an increased uptake of calcium causing hyperactivity [18].  Capacitation 

describes the changes that spermatozoa must undergo in the female reproductive tract for 

completion of the maturation process that allows for fertilization.  This process is time 

dependent and requires approximately 8 hr in the bovine species.  Capacitation is 

thought to be induced, at least in part, by the discharge of reactive oxygen species 

[19,20].  These reactive oxygen species alter the sulfhydryl groups in the head of 

spermatozoa, and are important in modulating cellular activities [19,20].  The 

mechanism whereby reactive oxygen species alter the sperm plasma membranes is 

unknown; however, alterations in the sulfhydryl groups appear to decrease the fertilizing 

capability of spermatozoa.  The effects of cooling, freezing, and thawing on the sperm 

plasma membrane are thought to alter the sulfhydryl groups in such a way as to induce 

premature capacitation and/or hinder fertility by interfering with the fertilizing potential 

of the sperm cells [20].  The initiation of capacitation due to alterations of the plasma 

membrane cannot be easily assessed by semen collection facilities to estimate the 

fertilizing abilities of spermatozoa in a quick, reliable, and inexpensive fashion.  
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Therefore, visual estimates of fertility, such as spermatozoal motility, morphology, and 

acrosomal membrane integrity [21] are routinely used in the determination of 

spermatozoal viability post-thaw. 

Saacke [22] demonstrated that a positive correlation exists between the 

percentage of sperm with an intact acrosomal membrane and the non-return rate in 

cattle.  This positive correlation has given semen collection facilities an alternative 

means for evaluating spermatozoa viability beyond the evaluation for motility and 

spermatozoal morphological characteristics.  Spermatozoa must maintain an intact 

acrosome throughout the freeze-thaw process in order to undergo the acrosome reaction 

in the female tract when breeding a cow or heifer by AI.  The acrosome reaction is the 

final stage of maturation that spermatozoa undergo and is dependent upon the 

completion of capacitation for its occurrence [23].  The acrosome reaction occurs due to 

a fusion of the membranes located on the head region of a sperm cell and functions to 

allow the spermatozoa to penetrate the zona pellucida and results in exposure of the 

equatorial segment which is involved in sperm binding to the vitelline membrane of the 

ovum [23].  The fusion of these membranes allows for the release or leakage of 

acrosomal enzymes that function to open a channel through the zona pellucida, thus 

aiding in penetration of the egg [18].  An intact acrosome will encapsulate the acrosomal 

enzymes until the completion of capacitation.  Upon contact with the zona pellucida of 

the ovum, the outer acrosomal membrane and the plasma membrane undergo 

vesiculation to release the enzymes required for the sperm to penetrate the zona 

pellucida.  Damage to the acrosome prior to release of the acrosomal enzymes may result 
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in spermatozoa that cannot fertilize an ovum due to premature release of the enzymes or 

improper membrane fusion.   

As with all biological systems, many factors influence slight, but significant 

changes in cellular competence.  Mathevon et al. [24] attributed variability in 

spermatozoal characteristics to the environment, management, physiological status, and 

the genetics of the bull.  More specifically, acrosomal membrane integrity can be 

influenced by sudden cooling and heating, changes in osmotic pressure, and or changes 

in pH [2,25,26].  Spermatozoa that are processed for freezing and AI are constantly 

being exposed to conditions that would not occur during natural mating, therefore every 

aspect of semen processing must be scrutinized in order to avoid damaging the 

spermatozoa beyond fertilizing potential.   The delicate balance between increasing post-

thaw spermatozoal survival and decreasing post-thaw spermatozoal incompetence is now 

beginning to be examined through research evaluating the induction of capacitation and 

the retention of the acrosome. 

 

2.  Spermatozoal Membrane Permeability 

Successful cryopreservation depends on the survival of several cellular 

components including, but not limited to, the sperm plasma membrane, acrosome, and 

nucleus [3].  If the cellular components are damaged or destroyed during the freeze-thaw 

process, the spermatozoa will be rendered useless for fertilization if used for AI.  

Cryoprotectants are added to the semen to protect spermatozoa during the freeze-thaw 

process and are classified as penetrating or non-penetrating agents of the sperm plasma 
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membrane [1,3].  Penetrating cryoprotectants, such as glycerol, pass through the sperm 

plasma membrane to act both intracellularly and extracellularly to protect cell structures 

[3,27].  Non-penetrating cryoprotectants (generally termed the extender), such as egg 

yolk and milk, cannot pass through the sperm plasma membrane.  The non-penetrating 

agents function to protect the outer lipid bi-layer of the cell against cold shock and aid in 

the movement of water out of the spermatozoa, resulting in dehydration and shrinkage of 

the cell [3,27,28].  The mechanisms by which the lipid-based, non-penetrating 

cryoprotectants protect the sperm plasma membrane are unknown [29].  However, low 

density lipoproteins (LDL) are thought to be involved by binding loosely to the outer 

sperm plasma membranes [29-31].   

In addition to protecting membrane integrity, the osmotic characteristics of 

cryoprotectants function to alter the volume of intracellular water in order to decrease 

the formation of intracellular ice during the freezing process [28,32,33].  Freezing semen 

is the process whereby intracellular water concentrations of the spermatozoa are 

decreased due to the increasing amount of solutes outside the cell.  The decrease in 

intracellular water allows the spermatozoon to dehydrate or shrink in response to the loss 

of water; this in turn prevents spermatozoal injury that would be caused by the formation 

of intracellular ice [3,34].  The extracellular solutes consist of the egg yolk or milk 

(lipid) portion of the extender as well as the ice crystals that are forming during the 

initial stages of the freezing process.  As the extracellular water condenses into ice 

crystals, water diffuses from the spermatozoon to decrease the increasing solute 

concentration.  Glycerol aids in the displacement of the intracellular water by diffusing 
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into the cell and functions to protect the spermatozoon by lowering the temperature at 

which water will begin to freeze, thus increasing the extracellular ice formation and 

diffusion of water out of the cell [1].  The change in osmotic pressure and subsequent 

loss of water out of the sperm cell that occurs as a result of the addition of seminal 

extenders and cryoprotectants allows spermatozoa to be successfully frozen, thawed, and 

used for artificial insemination [27].  

As with all biological systems, spermatozoa cannot be altered beyond a specific 

osmotic tolerance without damaging motility, morphology, or acrosomal integrity.  

Previous studies have noted that moderate changes in cellular volume are tolerated by 

spermatozoa, in that motility is not greatly affected upon post-thaw evaluation of 

cryopreserved semen [28,32,33].  In accordance with previous research, Gilmore et al. 

[28] reported that bull spermatozoa must be kept within 92 – 103 % of their initial 

isosmotic volume to avoid reducing the motility percentage below 90 % of its original 

isosmotic value.  A delicate balance between disrupting spermatozoal isotonicity with 

the addition of cryoprotective agents to preserve spermatozoa cryogenically needs to be 

studied in further detail to enhance the freeze-thaw process and subsequent motility, 

morphology, and acrosomal membrane integrity percentages for bovine spermatozoa. 

 

3.  Cooling Rate 

Cooling rate is the process whereby the semen is slowly cooled from 

approximately 37 ºC (body temperature) to 5 ºC over several hours to prevent cold shock 

to the spermatozoa.  Cold shock decreases spermatozoal viability by altering sperm cell 
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membrane integrity, thus affecting motility, morphology, and acrosomal membrane 

integrity [3,35].  Decreases in spermatozoal motility, morphologically normal 

spermatozoa, and acrosomal integrity decrease the potential fertility of a bull when 

breeding females by AI. 

Jones and Stewart [25] reported that cooling semen to 5 ºC over 30 min primarily 

caused swelling of the acrosome, but not acrosomal rupture, and the freezing-thawing 

process caused damage to the acrosomal membranes as well as damage to the middle 

piece.  Jones and Stewart [25] speculated that the swelling of the acrosome during the 

cooling process weakens the acrosomal membranes and facilitates increased damage or 

rupture of the acrosome during the freeze-thaw process.  Gilbert and Almquist [36] 

studied the effects of cooling time from 25 ºC to 5 ºC for 0.5 or 3.5 hr.  The authors 

reported higher percentages of motile spermatozoa after cooling the sample for 3.5 hr 

than for 0.5 hr (40 and 37 %, respectively) as well as a higher percentage of intact 

acrosomes (70 and 64 %, respectively).  Results obtained from Ennen et al. [8] who 

studied the effects of cooling spermatozoa from 37 ºC to 5 ºC for 0.5, 2, or 4 hr on post-

thaw spermatozoal motility support the observations of Gilbert and Almquist [36].  The 

authors also observed higher motility percentages for spermatozoa cooled for 2 or 4 hr 

than for 0.5 hr (17.1, 19.1, and 13.6 %, respectively).  McFee and Swanson [9] evaluated 

the cooling rate of extended semen packaged in 0.5 mL plastic vials cooled directly on 

wire racks or in a 500 mL beaker of 32 ºC water.  McFee and Swanson [9] reported the 

length of time required for the semen sample to reach 5 ºC for samples cooled on wire 

racks (< 25 min) and in the beaker (140 min).  Their results illustrate the beneficial 
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effects of slowly cooling samples in some type of insulating water bath or bulk cooling 

to the desired storage temperature, as a higher percentage of motile sperm were observed 

following freezing and thawing for samples cooled slowly in the beaker of water than for 

samples cooled directly on the wire racks.  Similarly, Dhami and Sahni [37] noted that a 

longer duration of cooling (2 vs 1 hr), once the semen reaches 4 ºC, was important for 

spermatozoal survival after the freezing-thawing process. Thus indicating that the 

damage caused to spermatozoa during the cooling process may not be solely dependent 

on the rate of cooling but also on the overall process and the total duration of cooling. 

The rate and duration of cooling prior to freezing greatly influences post-thaw 

spermatozoal characteristics that are required for high non-return rates in females bred 

by AI.  However, due to the variation in processing procedures among semen collection 

facilities, a recommendation for optimal cooling rates have yet to be determined for the 

semen collection industry. 

 

4.  Equilibration Time with Glycerol 

The equilibration time with glycerol is a time-dependent process, where glycerol 

is slowly added to the partially-extended ejaculate to facilitate the displacement of water 

out of the sperm cell and the penetration of glycerol into the sperm cell.  Commonly, 

semen collection facilities, allow for a period of glycerol equilibration upon addition of 

the final glycerolated extender components.  Extensive research has been conducted on 

the optimum duration of equilibration with glycerol prior to freezing [6,38,39], however, 

a recommendation for the optimal equilibration duration has yet to be established.   
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Cragle et al. [40] evaluated equilibration durations ranging from 4 to 28 hr and 

then estimated that maximum post-thaw spermatozoal survival occurred with an 

equilibration duration of 14.9 hr.  Jondet [5] reported that 6 hr of glycerol equilibration 

resulted in a higher percentage of progressively motile spermatozoa than did 8 min of 

glycerol equilibration (64 and 59 %, respectively).  Jondet [5] also reported that almost 

equal percentages for progressive motility were observed for 6 hr vs 1 min equilibration 

with glycerol (70 %).  The percentages obtained by Jondet [5] for progressively motile 

spermatozoa suggest that shorter durations of glycerol equilibration can be utilized to 

recover viable spermatozoa post-thaw.  Graham et al [4] evaluated the effect of 4, 8, or 

12 hr equilibration durations with glycerol on the non-return rate.  The authors observed 

a higher non-return rate for cows inseminated with semen that was equilibrated with 

glycerol for 12 hr (67.8 %) than for the 4 hr (63.4 %), but not the 8 hr (65.2 %) 

equilibration.  Foote and Kaproth [41] evaluated the effects of either a 4 or 18 hr 

equilibration with glycerol on the percentage of motile spermatozoa and an equilibration 

with glycerol for 4 or 28 hr on non-return rates.  Foote and Kaproth [41] observed higher 

percentages of motile spermatozoa for 18 hr of equilibration (46 %) than for 4 hr of 

equilibration (44 %), but no significant difference between 4 or 28 hr of equilibration 

prior to freezing on the non-return rates.  Miller and VanDemark [42] studied the effects 

of equilibration with glycerol for a duration of 2, 6, or 18 hr.  The authors reported that 

higher spermatozoal survival rates, measured by percentage of motile sperm, were 

obtained with the 6 hr equilibration duration (48.8 % motile spermatozoa) than for the 2 

or 8 hr durations (47.4 and 46.3 % motile spermatozoa, respectively).   
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As with all other aspects of semen processing, the duration for the equilibration 

with glycerol is dependent upon the semen collection facility, however, glycerol 

equilibration commonly ranges between 3 and 18 hr [43,44].  Further research is needed 

in order to determine the optimal duration for equilibration with glycerol to attain 

maximal spermatozoal motility post-thaw while maintaining processing protocols that fit 

within the production protocol of semen collection facilities. 

 

5.  Extender Components for Cryopreservation 

   Semen extenders increase the number of females that can be bred to a particular 

ejaculate and allow semen to be frozen, stored, shipped, and then thawed for artificial 

insemination.  The accessibility of frozen semen to beef producers enables them to 

obtain superior genetics from multiple sires at a fraction of the cost of purchasing a bull 

for use in the cow herd.  In addition to the greater access to superior genetics, producers 

can reduce disease in the cow herd, due to the antibiotic component of the extender and 

the rigorous health testing that most bulls must go through in order for their semen to be 

collected and processed for freezing.  Freezing semen cannot successfully occur without 

the addition of components to the ejaculate to protect the spermatozoa against cold 

shock, intracellular ice formation, the depletion of energy reserves, autotoxication, and 

microorganisms during the freeze-thaw process.   

5.1.  Lipids and lipoproteins 

A source of lipid (generally egg yolk) or liproprotein (generally milk) or a 

combination of the two is required to protect the spermatozoa from cold shock [1,3,11].  
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Cold shock is the process whereby the lipid bi-layer of the spermatozoa is altered, due to 

rapid changes in temperature [1].  This rapid change in temperature can be due to many 

factors during semen processing.  Cold shock occurs most frequently when undiluted 

semen at 30 ºC or above is (1) added to a pre-cooled (5 ºC) diluent, (2) allowed to come 

into contact with pre-cooled glassware or instruments, and (3) when transferring a small 

volume of semen in a holding container to a pre-cooled water jacket to cool the semen to 

5 ºC [11].  This is supported based on research conducted by Foote and Bratton [45] who 

demonstrated the importance of extending semen prior to cooling and slowly cooling the 

sample to minimize cold shock and to increase the non-return rates of cows bred by AI 

with cooled spermatozoa.  The results of the authors reported that for 3 hr of storage at 5 

ºC after cooling, the pre-extended semen had higher motility percentages than semen 

that had been extended after cooling to 5 ºC (63 and 48 %, respectively).  Egg yolk and 

milk have been proven to enhance spermatozoa viability, specifically motility, upon the 

freeze-thaw process by protecting spermatozoal membranes through the provision of 

lipids and lipoproteins, respectively [46-48].  Hammerstedt et al. [1] and Watson [11] 

speculated that the lipid and lipoprotein fractions of the egg yolk and milk component of 

the extenders function to alter membrane lipid fluidity in such a way as to protect the 

membranes from damage upon cooling and re-warming.  Hammerstedt et al. [1] 

suggested that even though the sperm plasma membranes are altered upon the cooling, 

freezing, and thawing processes, the lipid and lipoprotein properties of egg yolk and 

milk will allow the sperm plasma membrane to be reconstituted to its original state if 

given adequate time to adjust to the changes during processing and freezing.  Pace and 
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Graham [30], reported that freezing and thawing bovine semen in an egg yolk-based 

extender without glycerol yielded higher percentages for spermatozoal motility as 

compared to extenders composed of glycerol alone.  Furthermore, use of an egg yolk-

based extender in combination with glycerol resulted in higher percentages of 

spermatozoal motility than for extenders with the use of either egg yolk or glycerol alone 

(40, 24, and 3 %, respectively).  Their results suggest that both the egg yolk and the 

glycerol fractions of the extender are involved in protecting spermatozoa during 

cryopreservation and inclusion of both fractions is imperative for obtaining adequate 

spermatozoal motility post-thaw. 

5.2.  Glycerol 

Since the discovery of glycerol as a cryoprotective agent for bovine spermatozoa 

[49], extensive research has been conducted to determine the optimal percentage (by 

volume) of glycerol to add to the extended semen in order to achieve maximum 

spermatozoal motility, acrosomal membrane integrity, and morphologically normal 

spermatozoa post-thaw [12,38,49].  Cragle et al. [40] compared three levels of glycerol 

in an egg yolk-citrate based extender.  The authors determined the optimal value for 

glycerol to be 7.6 % by determining the maximum percentage of motile sperm and 

solving for the optimum level of glycerol corresponding to maximum motility.  Saacke 

et al. [50] also evaluated the concentration of glycerol required to obtain maximum 

viability of spermatozoa post-thaw.  Saacke et al. [50] reported the optimum 

concentration of glycerol for maximum spermatozoal survival to be 8.5 % when a thaw 

rate of 65 ºC for 7.5 sec was utilized.  The authors noted that for practical purposes, 
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thawing frozen semen for 7.5 sec would be difficult for producers and AI technicians to 

achieve, therefore, they recommended utilizing a lower glycerol concentration, such as 7 

% to allow for a thawing duration longer than 7.5 sec.  Due to the constraint of thaw 

duration, many semen collection facilities, utilize a final glycerol concentration between 

7 and 7.5 % by volume with a thaw rate of 35 ºC for 30 sec to achieve acceptable 

percentages for motility, acrosomal membrane integrity, and morphologically normal 

spermatozoa post-thaw [44,51]. 

5.3.  Simple sugars  

 Energy obtained from simple sugars is required for cellular activity in all cell 

types of the body.  For spermatozoa, energy is primarily required for motility and then 

cell maintenance [43].  Therefore, a source of energy must be abundant and easily 

accessible for spermatozoa that have been collected and extended for AI in order for 

them to successfully navigate the female reproductive tract and have an ample source of 

energy remaining to fertilize the ovum.  In a study conducted by Blackshaw [38], the 

addition of arabinose to an extended glycerolated semen sample increased the revival of 

frozen-thawed spermatozoa.  While the mechanism of action that simple sugars had on 

enhancing the viability of spermatozoa frozen and thawed in glycerol was unknown at 

that time, it has since been demonstrated that the simple sugars provide additional 

energy sources to guard against the energy-depleting process of glycolysis [44].  

Glycolysis is a biological reaction that reduces glucose and other simple sugars to acidic 

toxic products such as lactic acid [44].  Without a way to provide additional sugars for 

energy and a method to prevent cellular death from autotoxication, spermatozoa will not 
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be able to survive the freeze-thaw process or harbor adequate energy reserves to fertilize 

the ovum. 

5.4.  pH 

Maintaining a near neutral pH (6.5-6.9) of the spermatozoa and the seminal 

extender is imperative for protecting the spermatozoa against autotoxication caused by 

glycolysis [43,44].  Cragle et al. [40] studied the effects of various levels of sodium 

citrate on the viability of frozen-thawed spermatozoa.  The authors estimated the level of 

sodium citrate required for the attainment of optimal motility in an egg yolk-based 

extender to be 2.9 %.  Their findings more accurately defined the optimum percentage of 

sodium citrate (by volume) required for enhancing spermatozoal motility than the 

percentages utilized by previous researchers, as this level of sodium citrate is most 

commonly utilized by semen collection and processing facilities today.  However, the 

optimum level of pH will vary with the extender components utilized; therefore, pH 

levels should be evaluated and modified as necessary with every change in extender 

component [44]. 

5.5.  Antibiotics 

Controlling microbial growth is an important step in preventing the spread of 

reproductive diseases through the use of semen and for enhancing reproductive 

efficiency of the cow herd.  Extender components, such as egg yolk and milk, enhance 

microbial growth by providing the microorganisms with a favorable environment for 

their proliferation [43].  The addition of antibiotics to the neat semen as well as the 

extender provides semen collection facilities with an effective means at controlling 
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microbiological growth [44,51].  A multitude of antibiotics exist to control pathogenic 

microorganisms, however, the antibiotic regimen utilized by Certified Semen Services 

(CSS) participants is the most widely adopted protocol today.  CSS requires the addition 

of gentamicin sulfate, tylosin, and linco-spectin to the neat semen and extender in order 

to provide effective microbiological control of Mycoplasmas, Ureaplasmas, 

Haemophilus somnus, and Campylobacter fetus subsp. venerealis [51].  Regardless of 

the antibiotics chosen for semen processing, preventing the spread of microbial 

reproductive diseases is necessary for promoting herd health. 

As with many of the components of semen processing, individual semen 

collection facilities utilize their own combination of ingredients to create their extenders.  

However, as a general rule of thumb, extenders utilized for cryopreservation should 

contain the following components: (1) egg yolk or milk, (2) glycerol at a final 

concentration of approximately 7 %, (3) simple sugars, (4) sodium citrate dihydrate or 

tris (hydroxymethyl) amminomethane, and (5) antibiotics [3,43,44].  The efficacy of 

each extender must be evaluated to determine its effectiveness in enhancing post-thaw 

spermatozoal viability.  Without determining the efficacy of each newly developed 

extender, semen collection facilities and producers alike may be reducing the potential 

for spermatozoal fertilization. 

 

6.  Freezing Process 

Semen samples that have been extended, cooled, and packaged into straws can be 

frozen by various methods such as nitrogen vapor and mechanical freezing.  Mechanical 
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freezers can be used to produce a consistent freeze by evenly distributing liquid nitrogen 

vapor throughout the freezing chamber at programmable rates [27,44].  However, 

nitrogen vapor is commonly utilized for freezing semen as it is a simple yet inexpensive 

technique to employ.  Forgason et al. [52] and Roussel et al. [53] demonstrated that 

semen frozen in liquid nitrogen vapor produced spermatozoa with adequate post-thaw 

motility percentages (65.7 and 43.8 %, respectively) to impregnate a cow or heifer by 

AI.  The rate of freezing varies among samples, however, as long as the extended semen 

within the straws achieves a temperature of at least –80 ºC in the liquid nitrogen vapor 

prior to plunging them into liquid nitrogen, spermatozoal viability remains adequate for 

fertilization post-thaw  [54].   

The facilities and equipment that are available for freezing determine the 

technique that will be utilized by each bull stud facility as well as govern any alterations 

to the freezing technique that are necessary in order to ensure an accurate match between 

the freezing process and the extender components.  Currently, with the nitrogen vapor 

technique, semen-filled straws are held approximately 3 cm above liquid nitrogen in the 

vapor from 7 to 10 min to cool the sample to –100 ºC, then the straws are plunged into 

liquid nitrogen for storage at –196 ºC [44].   

 

7.  Thaw Rate 

 Thaw rate is the process of thawing straws of semen at a specific temperature 

(thaw temperature) for a specific amount of time (thaw duration).  Extensive research 

has been conducted on thaw temperature and thaw duration to determine the thaw rate 
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that produces the highest percentage of viable spermatozoa post-thaw [7,10,55].  In a 

study conducted by Robbins et al. [56], the effects of thaw temperature and duration on 

frozen spermatozoa at 5 ºC for 4 min, 20 ºC for 1 min, 35 ºC for 30 sec, 75 ºC for 6 sec, 

and 75 ºC for 12 sec were evaluated.  The authors observed higher percentages for 

motility and for acrosomal membrane retention with a thaw temperature of 35 ºC and a 

thaw duration of 30 sec than for any other treatment combination tested.  Similar 

findings were reported by Pace et al. [55], who evaluated the effects of motility and 

acrosomal membrane integrity of semen frozen and thawed in iced water (1-3 ºC) for a 

minimum of 60 sec, ambient (5-20 ºC) for a minimum of 60 sec, or between 35-37 ºC for 

a minimum of 30 sec.  The authors observed higher percentages for motility and 

acrosomal membrane integrity with samples thawed between 35-37 ºC for 30 sec than all 

other treatment groups.   

Robbins et al. [7] demonstrated a positive correlation between the concentration 

of glycerol in the extender and the thaw rate and temperature required for maximum 

percentages of intact acrosomes and of motile spermatozoa upon post-thaw.  Their 

results help to explain the optimal thaw temperature and duration (between 35-37 ºC and 

30-60 sec, respectively) obtained from Pace et al. [55] and Robbins et al. [56].  Robbins 

et al. [7] evaluated the effects of thaw temperature and rate on frozen spermatozoa at 5 

ºC for 2 min, 20 ºC for 1 min, 35 ºC for 30 sec, 50 ºC for 15 sec, and 65 ºC for 7.5 sec 

for final glycerol concentrations of 1, 4, 7, 10, and 13 %.  Maximum percentages for 

motility and intact acrosomal membrane were extrapolated from the data and final 

glycerol concentration and thaw rate were calculated to be 8.5 % and 65 º C for 7.5 sec, 
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respectively.  In general, the authors observed an inverse relationship between the final 

glycerol concentration and the thaw rate.  As the glycerol concentration increased, the 

thaw temperature needed to increase, and the thaw duration needed to decrease in order 

to attain the highest percentage of post-thaw motility and acrosomal membrane integrity. 

While increasing spermatozoal viability upon post-thaw is desirable, decreasing 

the thaw time is challenging for producers to achieve with the level of accuracy required 

to recover live motile spermatozoa thawed at high temperatures [10].  Therefore, semen 

is commonly thawed at a temperature between 33 ºC and 37 ºC with a thaw duration of 

30 to 40 seconds [44].  Since thaw rate is dependent upon the equilibration time with 

glycerol, extender components (including final glycerol percent), and freezing technique 

utilized by individual semen collection facilities, it remains an unmarked piece of the 

freeze-thaw puzzle, fitting into any number of spaces to produce an overall picture that is 

not quite complete. 

 

8.  Collection Frequency 

 Obtaining the maximum number of progressively motile spermatozoa for the use 

of artificial insemination is the primary goal of any AI organization.  Therefore, 

selecting a collection frequency that maximizes the output of normal progressively 

motile spermatozoa from a bull is imperative to the success of each individual semen 

collection facility.  Almquist [57] demonstrated that continuous high frequency 

ejaculations, (collections were obtained six times per week), resulted in a 3.3 fold 

increase in motile sperm collected per week when compared with ejaculates collected 
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once per week (30.8 and 11.0 X 109, respectively).  Lorton et al., [58] observed no 

significant differences in the quantity and quality of spermatozoa when three ejaculates 

were collected twice-weekly versus the collection of two ejaculates three days per week 

(33.9 X 109and 33.2 X 109, respectively).  Furthermore, the total number of spermatozoa 

collected two to three times per week was similar to that of the bulls collected six times 

per week in the study performed by Almquist [57].  This suggests that the same number 

of total spermatozoa can be obtained when collections are performed 2-3 times per week 

vs. 6 times per week.  Decreasing the collection frequency has the potential to increase 

the cryopreservation of spermatozoa from multiple sires, in that a higher number of bulls 

could be collected per week at facilities utilizing a rotational collection schedule and that 

collect 4-5 times per week.  Studies conducted by Everett et al., [59], Everett and Bean 

[60], and Mathevon et al., [24] has proven that shorter periods between collection times 

decreased the volume, concentration, and total number of sperm per ejaculate, and 

suggested several days of sexual rest between collections.  By combining these results, 

researchers and AI organizations are provided with insight to the frequency at which 

bulls can be collected to maximize the production of quality spermatozoa within the time 

constraints that plague semen collection facilities. 

In general, placing the bulls on a collection schedule of two to three times per 

week will allow these facilities to obtain the maximum number of progressively motile 

spermatozoa per ejaculate, while providing sexual rest between collections to increase 

the volume, concentration, and total number of spermatozoa per ejaculate in a timely 

fashion for production purposes.  Varying processing procedures and company time 
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constraints will demand that semen collection facilities continue to utilize a basic 

collection regimen that has been altered to fit their specific needs in order to maximize 

individual facility production potential. 
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CHAPTER III 

EFFECTS OF COOLING DURATION AND EQUILIBRATION WITH 

GLYCEROL ON PERCENTAGE OF SPERMATOZOAL MOTILITY, 

ACROSOMAL INTEGRITY, AND MORPHOLOGICAL CHARACTERISTICS 

 

1.  Introduction 

 Cooling duration and equilibration with glycerol have an impact on post-thaw 

spermatozoal viability as measured by the percentage of spermatozoal motility, 

acrosomal integrity, and morphological characteristics [25,39].  Research demonstrates 

that the viability of spermatozoal characteristics is dependent upon the length of time 

allotted for the partially-extended sample to cool from 37 ºC to 5 ºC as well as the length 

of time that the fully-extended sample is equilibrated with glycerol [40,61].  

Determining the optimal lengths of time for cooling duration and equilibration with 

glycerol will allow semen collection facilities to produce a greater volume of straws that 

yield higher percentages of post-thaw spermatozoan viability, which in turn will increase 

the non-return rate of females bred by AI.  

 Numerous studies have evaluated the effects of the cooling duration and 

equilibration with glycerol on the non-return rates as a means of economic assessment 

for the value of frozen thawed spermatozoa.  Jondet [5] conducted two studies to 

compare the effect of glycerol equilibration lengths (8 min vs 6 hr and 1 min vs 6 hr) on 

the non-return rate of females bred with frozen-thawed spermatozoa.  The author 
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reported non-return rates of 58.70 vs 60.06 % and 80.60 vs 79.95 % for equilibration 

durations of 8 min vs 6 hr and for 1 min vs 6 hr, respectively.  Pinpointing and 

eliminating, or at least decreasing, the factors that adversely affect post-thaw 

spermatozoal viability, and ultimately the non-return rate, will enable semen collection 

facilities to process and freeze semen that will enhance the ability of the producers to 

attain higher non-return rates with the use of frozen-thawed semen. 

This experiment was designed to evaluate the effects of cooling duration, 

equilibration with glycerol, and inherent interactions between cooling duration and 

equilibration with glycerol in order to provide a recommendation to the semen collection 

industry as to the optimum combination of the two. 

1.1.  Hypothesis   

The treatment combination of a 4 hr cooling duration and a 2 hr equilibration 

time with glycerol will result in the optimal viability of spermatozoal characteristics 

after freezing and thawing. 

1.2.  Objective 
 

1. Compare the effects of cooling duration and the glycerol equilibration time 

on the post-thaw motility, morphology, and acrosomal integrity of bovine 

spermatozoa, and 

2. Determine the effectiveness of each combination of cooling duration and 

equilibration with glycerol in order to make a recommendation to semen 

collection facilities as to which cooling duration and equilibration with 
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glycerol combination will provide the highest percentage of viable 

spermatozoa post-thaw. 

 

2.  Materials and Methods 

 A 2 x 3 factorial arrangement was designed to determine which of two cooling 

durations and three glycerol equilibration times was most effective in preserving bovine 

spermatozoa upon freezing and thawing.  The treatment groups were as follows:  (1) 2 hr 

cooling duration and 2 hr equilibration with glycerol, (2) 2 hr cooling duration and 4 hr 

equilibration with glycerol, (3) 2 hr cooling duration and 6 hr equilibration with glycerol, 

(4) 4 hr cooling duration and 2 hr equilibration with glycerol, (5) 4 hr cooling duration 

and 4 hr equilibration with glycerol, and (6) 4 hr cooling duration and 6 hr equilibration 

with glycerol.  Each ejaculate was used in every treatment combination.  The average 

monthly temperatures for March, April, and May, 2003 were 16, 21, and 26 ºC, 

respectively.  The average percentages for relative humidity for March, April, and May, 

2003 were 73, 68, and 70 %, respectively.  

2.1.  Extender preparation 

2.1.1.  IMV International CSS two step extender 

 The IMV International CSS two step extender (IMV International MN, USA) is a 

commercially available tris-based extender that is packaged as a complete kit including 

the CSS concentrate (containing the tris buffer), glycerol, and CSS antibiotics (Tylosin; 

100 mg/mL Gentamyacin; 500 mg/mL Linco-Spectin; 300/600 mg/mL).  The IMV 

extender was prepared as instructed by the manufacturer. 
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Eggs used to provide the yolk portion of the extender were purchased fresh on a 

weekly basis from Feather Crest Farms (Kurten, TX, USA) and stored at 4 ºC until use.  

Eggs were broken midway and the yolk was held in one half of the shell to allow most of 

the egg white to separate from the yolk and be discarded.  The remaining egg white and 

yolk were then transferred to filter paper (Ahlstrom Corporation, Mt. Holly Springs, PA, 

USA) and gently rolled to further separate the egg white from the yolk.  The yolk was 

rolled to a clean spot on the filter paper and slight pressure was applied to the yolk by 

folding the paper around the yolk, causing the yolk to rupture.  The yolk was then 

collected in a graduated cylinder.  Yolk membranes, discolored yolks, or yolks 

containing blood spots were not used for the extender. 

The extender was prepared by making two fractions, A, the non-glycerol portion 

containing egg yolk and CSS bovine buffer concentrate and fraction B, the glycerol 

portion containing egg yolk, CSS bovine buffer concentrate, and glycerol.  The IMV 

International CSS two step extender was prepared the night before collection and stored 

at 4 ºC until use.  Table 1 provides a description of the volumes utilized to prepare the 

IMVextender. 
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Table 1 
Experiment 1:  Preparation of the IMV International CSS two step extender. 

Component Fraction A 
(nonglycerol)

Fraction B 
(glycerol) 

Final % of 1:1 
Fractions 

Distilled Water 350 mL 350 mL 64.1 
CSS Antibiotics 10 mL -------- 0.9 
CSS Bovine Buffer 
Concentrate 50 mL 50 mL 9.2 

Egg Yolk 100 mL 100 mL 18.3 
Glycerol -------- 82 mL 7.5 
Total Volume for Fractions 
A and B 510 mL 582 mL -------- 

 

 
2.2.  Semen collection  

Single ejaculates from six 18-month-old Brangus bulls were collected two times 

per week until a total of six ejaculates had been collected from each bull.  Bulls were 

loaded into the holding stalls approximately 15 min prior to the start of collections.  An 

experienced handler led a haltered steer around the collection arena, stopping abruptly to 

mimic the behavior of a cow in estrus, that will stand to be mated by the bull, to increase 

sexual stimulation of the bulls.  The collector released one bull at a time into the arena to 

be collected in a free-style fashion via an artificial vagina, prepared as previously 

described [44].  Artificial vaginae were prepared the night prior to collection and stored 

in an incubator overnight at 38 ºC until use.  An insulated jacket was used to protect 

semen in the collection tube against temperature shock upon collection.  The bull was 

allowed to false mount the steer up to three times prior to collection to enhance the 

concentration of the ejaculate via increasing the sexual stimulation of the bull.  During 

the false mounting procedure, contact of the penis of the bull with the teaser animal was 

prevented by gently diverting the bull’s sheath toward the collector.  When the collector 
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determined that the bull was ready for collection, the bull was allowed to mount the steer 

again, however, this time the collector diverted the bull’s penis into the AV for the 

collection of the ejaculate.  Once the bull had successfully ejaculated into the AV, the 

ejaculate was taken into the lab for semen processing. 

2.3.  Semen processing 

 The neat semen volume was determined by use of a 15 mL graduated plastic vial 

and CSS antibiotics (Tylosin; 100 mg/mL Gentamyacin; 500 mg/mL Linco-Spectin; 

300/600 mg/mL) were added to the neat semen based upon total volume (0.02 mL 

antibiotics to 1 mL neat semen).  Spermatozoal concentration was determined by 

spectrophotometric assay.  Total extender volume divided into two fractions, A and B, 

was based upon spermatozoal concentration and volume.  Fraction A was allowed to 

equilibrate to 37 ºC before collections began, to prevent the spermatozoa from 

undergoing cold shock upon the combination of fraction A to the neat semen in a 

polystyrene tube within 5 min of collection.  Prior to cooling, the partially-extended 

spermatozoa (neat semen plus fraction A) was equally divided into two polystyrene 

conical tubes to facilitate handling of the samples.  Tubes were identified with bull 

name, time entered into cold room, duration of cooling (i.e., 2 or 4 hr cooling period 

prior to addition of fraction B), and volume of fraction A.  Samples were cooled to and 

maintained at 4 ºC for either 2 or 4 hr.  The semen was fully extended with the addition 

of the fraction B component of the extender by slowly dripping it into the samples 

(average time of 2 minutes) via a plastic funnel cup with a hole punctured in the bottom 

of the funnel cup by a 21 ga needle.  Fully extended samples were equally divided into 
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one of six polystyrene conical tubes with lids, denoting the treatment group, bull name, 

and time entered into the cold room, then allowed to equilibrate with the fraction B 

portion of the extender for 2, 4, or 6 hr prior to being loaded into straws.  The addition of 

fraction A and B to the raw sample extended the neat semen sample to a final 

concentration of at least 45 x 106 spermatozoa/mL (final volume includes permeable and 

non-permeable extender components and the spermatozoa).   

 Straws were labeled with the Minitub straw printer (Verona, WI, USA), 

identifying the stud facility, breed, individual bull identification code for the stud 

facility, bull name, private herd number, registration number, and collection date.  

Straws were cooled to 4 ºC to prevent the spermatozoa from warming above the cold 

room temperature.  The fully extended semen was loaded into 0.5 mL French straws and 

heat sealed via the IMV MRSI straw filler (Maple Grove, MN, USA) with treatment and 

bull-specific metal needles and disposable tubing, eliminating the possibility of cross-

contamination between treatment groups and/or bulls.  The semen had a 30 min 

equilibration time in the straws on horizontal freezing racks prior to freezing.  The 

extended semen was frozen by suspending the straws approximately 3 cm above the 

liquid nitrogen in liquid nitrogen vapor for 7 min before plunging them into the liquid 

nitrogen.  Samples were then stored in a liquid nitrogen refrigerator (-196 ºC until the 

post-thaw evaluation was conducted. 

2.4.  Post-thaw evaluations 

 The frozen-thawed semen was evaluated for progressive motility, percentage of 

intact acrosomes, and any morphological abnormalities using a Nikon Eclipse E600 
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phase-contrast microscope (Melville, NY, USA).  For evaluation of the frozen-thawed 

semen, two straws were chosen at random, thawed together in a Cito Thaw Unit between 

35 ºC and 37 ºC for 30 sec, blotted dry, contents pooled in a graduated plastic vial with 

lid, and held in a dry bath between 35 ºC and 37 ºC for the duration of the 9-hr period. 

The percentage of progressively motile spermatozoa was evaluated at 0 (immediate), 3, 

6, and 9 hr post-thaw and was visually estimated for gross motility (within 5%) at a low 

magnification in the phase-contrast setting of the microscope by averaging several fields 

of view.  The percentage of intact acrosomes and morphological abnormalities were 

evaluated once between 0 and 6 hr post-thaw.  The percentage of intact acrosomes was 

determined by observing 100 sperm cells for the presence of an apical ridge and/or 

damage to the apical ridge with the use of the differential interference contrast (DIC) 

setting on the microscope.  The percentage of primary, secondary, and tertiary 

morphological abnormalities were determined by counting 100 sperm cells under high 

magnification with the use of the phase-contrast setting of the microscope and 

classifying the spermatozoa as either normal or as having a primary, secondary, or 

tertiary abnormality.  Primary abnormalities are abnormalities of the head, secondary 

abnormalities are abnormalities of the middle piece, and tertiary abnormalities are 

abnormalities of the tail [44,62].  The percentage of morphologically normal 

spermatozoa was obtained by subtracting the sum of primary, secondary, and tertiary 

abnormalities from 100.  The percentage of progressively motile spermatozoa and of 

morphological characteristics was evaluated by one individual throughout the entire 
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experiment and the percentage of spermatozoa with an intact acrosome was evaluated by 

one of two individuals on any given collection date.   

2.5.  Statistical analyses 

Data retrieved from this study were analyzed using analysis of variance and all 

percentage data were transformed using arcsin before analysis.  The effects of bull, 

collection date, treatment, and two-way interactions were studied as independent 

variables on progressively motile sperm, normal sperm, and acrosome integrity through 

the General Linear Model procedure of SAS (8.2, SAS Institute, Cary, NC, USA).  Least 

squares mean separations were performed by the PDIFF procedure of SAS (two-tailed t-

tests).  The experimental design was a 2 X 3 factorial arrangement with two cooling 

durations and three equilibration times; however, the design also allowed for the study of 

potential interactions of treatment effects with collection date and individual bull. 

 

3.  Results 

 Table 2 provides a summary of P-values and the R-Square value for the effect of 

the independent variables on percentage of progressively motile frozen-thawed 

spermatozoa at 0, 3, 6, and 9 hr of incubation.  Table 3 provides a summary of P-values 

and the R-Square value for the effect of the independent variables on percentage of 

intact acrosomal membrane, of primary, secondary, and tertiary abnormalities, and of 

morphologically normal spermatozoa. 
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Table 2 
Experiment 1:  Effect of independent variables (P-values and R-square value) 
on percentage of progressively motile, frozen-thawed spermatozoa at 0 (M0), 
3 (M3), 6 (M6), and 9 (M9) hr of incubation. 
 
 
Variable M0  M3  M6  M9 
        
CD 0.0078  0.0043  <.0001  0.0033 
EG 0.0539  0.1835  0.079  0.0354 
CD x EG 0.2477  0.0015  0.0259  0.1429 
CDate 0.1618  <.0001  0.0008  <.0001 
Bull 0.0002  <.0001  <.0001  <.0001 
CDate x Bull <.0001  <.0001  <.0001  <.0001 
CDate x CD 0.2831  0.4766  0.8434  0.0025 
CDate x EG 0.3009  0.8408  0.1884  0.7229 
Bull x CD 0.4317  0.4856  0.4524  0.0257 
Bull x EG 0.2624  0.5911  0.9541  0.5571 
        
R-Square 0.5457  0.6473  0.7083  0.817 
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 
5-13-2003, 5-16-2003, 5-19-2003, 5-22-2003, 5-27-2003, and 5-30-2003, 
respectively. 
CD = cooling duration at 4ºC in hours. 
EG = equilibration with glycerol at 4ºC in hours. 
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Table 3 
Experiment 1:  Effect of independent variables (P-values and R-square value) on percentage 
of intact acrosomal membrane (PIA), percentage primary (1º), secondary (2º), and tertiary (3º) 
morphological abnormalities, and percentage morphologically normal (N) spermatozoa. 
 
Variable PIA  1º  2º  3º  N 
          
CD 0.5911  0.1516  0.334  0.288  0.3185 
EG 0.006  0.6616  0.0304  0.5624  0.0702 
CDate <.0001  0.0081  <.0001  <.0001  <.0001 
Bull <.0001  <.0001  <.0001  <.0001  <.0001 
CD x EG 0.4699  0.4812  0.2693  0.627  0.2054 
CDate x Bull <.0001  <.0001  0.0038  0.0005  0.002 
CDate x CD 0.1793  0.4786  0.6363  0.7998  0.916 
CDate x EG 0.254  0.4886  0.9047  0.949  0.9411 
Bull x CD 0.5121  0.4437  0.3003  0.2497  0.2523 
Bull x EG 0.57  0.3029  0.6114  0.8104  0.5032 
          
R-Square 0.739  0.7025  0.6215  0.5479  0.6413 
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 5-13-2003, 5-16-2003, 
5-19-2003, 5-22-2003, 5-27-2003, and 5-30-2003, respectively. 
CD = cooling duration at 4ºC in hours. 
EG = equilibration with glycerol at 4ºC in hours. 
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3.1.  Cooling duration 

Mean percentage of motile spermatozoa at 0 through 9 hr post-thaw differed (P < 

0.01) between cooling durations (CD) of either 2 or 4 hr prior to cryopreservation (Table 

2).  Cooling spermatozoa at 4 ºC for a 2 hr duration prior to cryopreservation resulted in 

lower (P < 0.05) motility percentages at 0, 3, 6, and 9 hr post-thaw than a CD of 4 hr at 4 

ºC (Table 4; Figure 1).  However, upon post-thaw evaluation, there were no differences 

between the 2 and 4 hr CD at 4 ºC on mean percentage of intact acrosomes, primary, 

secondary, and tertiary morphological abnormalities, or percentage of morphologically 

normal spermatozoa (Table 5).   

3.2.  Equilibration with glycerol 

Mean percentage of motile spermatozoa differed (P < 0.05) at 9 hr, but not at 0 

through 6 hr post-thaw by duration of equilibration with glycerol (EG, Table 2).  A 2-hr 

EG at 4 ºC resulted in lower (P < 0.05) motility percentages at the 9 hr post-thaw 

evaluation than a 6 hr EG (Table 4; Figure 2).  Mean percentage of intact acrosomal 

membrane and secondary morphological abnormalities differed (P < 0.05) between the 

2, 4, and 6 hr EG (Table 3).  For spermatozoal morphological characteristics, the 

percentage of intact acrosomes was lower (P < 0.05) for 2 vs. 6 hr EG (Table 5; Figure 

3), but secondary morphological abnormalities were higher (P < 0.05) when equilibrated 

for 4 hr vs 6 hr (Table 5; Figure 4).  Percentage of primary and tertiary abnormalities and 

of morphologically normal spermatozoa were not different (P > 0.07) among the 2, 4, or 

6 hr EG (Table 3).  Percentages of morphologically normal spermatozoa by glycerol 

equilibration duration are graphically presented in Figure A-1. 
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Table 4 
Experiment 1:  Mean percentage of progressively motile, frozen-thawed 
spermatozoa at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation by cooling 
duration, by equilibration with glycerol, and for cooling duration X equilibration 
with glycerol. 
 
Variable M0   M3 M6 M9 
    
CD            
2 30 b  21 b  9 b  3 b 
4 32 a  23 a  12 a  4 a 
Pooled SEM 0.53   0.60   0.53   0.29  
            
EG            
2 30   21   9   3 b 
4 31   22   11   4 a,b 
6 32   23   12   4 a 
Pooled SEM 0.65   0.73   0.65   0.36  
            
CD x EG            
2 x 2 28   18 b  6 c  2  
2 x 4 30   21 a  10 b  3  
2 x 6 31   23 a  10 a,b  4  
4 x 2 32   24 a  13 a  4  
4 x 4 31   22 a  11 a,b  4  
4 x 6 33   23 a  13 a  4  
Pooled SEM 0.91   1.04   0.92   0.51  
 

a,b,c LSMeans within a column by variable with different superscripts differ 
(P < 0.05). 
CD = cooling duration at 4ºC, with 2 representing a 2 hr cooling duration and 4 
representing a 4 hr cooling duration. 
EG = equilibration with glycerol at 4ºC, with 2, 4, and 6 representing 2 hr, 4hr, 
and 6hr equilibration times with glycerol, respectively. 
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Table 5 
Experiment 1:  Mean percentage of intact acrosomal membrane (PIA), percentage primary (1º), 
secondary (2º), and tertiary (3º) morphological abnormalities, and percentage morphologically 
normal (N) spermatozoa by cooling duration, by equilibration with glycerol, and for cooling 
duration X equilibration with glycerol. 
 
Variable PIA  1º 2º 3º   N
              
CD              
2 64   6   27   2   72
4 65   6   26   2   74
Pooled SEM 0.79   0.28   0.74   0.17   0.96
              
EG              
2 62 b  6   26 a,b  2   73
4 65 a,b  6   28 a  2   71
6 67 a  6   25 b  2   75
Pooled SEM 0.97   0.34   0.91   0.20   1.18
              
CD x EG              
2 x 2 61   6   28   2   71
2 x 4 65   6   28   2   71
2 x 6 67   5   25   2   75
4 x 2 63   6   24   2   76
4 x 4 64   6   29   1   71
4 x 6 66   7   25   2   75
Pooled SEM 1.37   0.48   1.28   0.29   1.67
 
 
a,b LSMeans within a column by variable with different superscripts differ (P < 0.05). 
CD = cooling duration at 4ºC, with 2 representing a 2 hr cooling duration and 4 representing a 4 
hr cooling duration. 
EG = equilibration with glycerol at 4ºC, with 2, 4, and 6 representing 2 hr, 4hr, and 6hr 
equilibration times with glycerol, respectively. 
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3.3.  Interaction of cooling duration X equilibration with glycerol 

 Mean percentage of motile spermatozoa at 3 hr post-thaw was affected (P < 0.01) 

by an interaction of CD X EG (Table 2).  Spermatozoal motility at the 3 hr post-thaw 

evaluation was reduced (P < 0.05) for the 2 hr CD X 2 hr EG when compared with all 

other treatment combinations (Table 4; Figure 5).  Mean percentage of motile sperm was 

also lowest (P < 0.05) at the 6 hr post-thaw evaluation for the 2 hr CD X 2 hr EG 

treatment, however, there was greater variability among treatments at the 6 hr than the 3 

hr incubation (Table 4; Figure 5).  The interaction between CD X EG did not affect (P < 

0.05) mean percentage of intact acrosomes, primary, secondary, or tertiary 

morphological abnormalities, or percentage of morphologically normal spermatozoa 

(Table 3; Table 5). 

3.4.  Collection date 

 Mean percentage of motile spermatozoa at 3 through 9 hr post-thaw differed (P < 

0.01) by collection date (CDate, Table 2).  Collection dates 1, 2, 4, and 5 had higher 

spermatozoal motility percentages at 3 hr of incubation than CDates 3 and 6 (Table A-1; 

Figure 6).  For the 6 hr incubation, CDates 3 through 5 had higher (P < 0.05) 

spermatozoal motility percentages than CDates 2 and 6 (Table A-1; Figure 6).  Motility 

percentages at 9 hr of incubation were higher (P < 0.05) on CDates 3, 5, and 6 than on 

CDates 1 and 2.  Motility percentages at 0 hr of incubation were not affected(P > 0.16) 

by CDate (Table 2; Figure 6).  Mean percentage of intact acrosomal membrane, 

percentage of primary, secondary, and tertiary abnormalities, and percentage 

morphologically normal spermatozoa differed (P < 0.01) by CDate (Table 3).  Collection 
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date 1 resulted in the highest (P < 0.05) percentage of intact acrosomal membranes, 

while CDate 6 resulted in the lowest percentage of intact acrosomal membranes (Table 

A-2; Figure A-2).  A two-percentage point difference (P < 0.05) among CDates was 

observed for primary morphological abnormalities (Table A-2; Figure 7).  The highest (P 

< 0.05) percentage of secondary morphological abnormalities was observed for CDate 6, 

while the lowest percentage of secondary morphological abnormalities was observed for 

CDate 2 (Table A-2; Figure 7).  Tertiary morphological abnormalities resulted in a two-

percentage point difference (P < 0.05) among CDates (Table A-2; Figure 7).  The 

highest (P < 0.05) value for percentage of morphologically normal spermatozoa was 

observed for CDate 2, while the lowest (P < 0.05) percentage of morphologically normal 

spermatozoa was observed for CDate 6 (Table A-2; Figure 8). 

3.5.  Bull 

Mean percentage of motile spermatozoa at 0 through 9 hr post-thaw differed (P < 

0.01) by bull (Table 2).  Bulls B, D, and F had a higher (P < 0.05) motility percentage at 

0 hr post-thaw than bulls A, C, and E (Table A-1; Figure 9).  Bull F had the highest (P < 

0.05) motility percentage at 3 hr post-thaw, while bulls A and E had the lowest (P < 

0.05) motility percentage at 3 hr post-thaw (Table A-1; Figure 9).  Bulls B and F had the 

highest (P < 0.05) motility percentage at 6 hr post-thaw, while bull A had the lowest (P < 

0.05) motility percentage at 6 hr post-thaw (Table A-1; Figure 9).  Ten percentage points 

separated bull F from bulls A and D for the highest (P < 0.05) percentage of motile 

spermatozoa at 9 hr post-thaw (Table A-1, Figure 9). 
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The highest (P < 0.05) intact acrosomal membrane percentage was observed in bull B, 

while the lowest (P < 0.05) was observed in bull F (Table A-2; Figure A-3).  Primary 

morphological abnormalities were highest (P < 0.05) in bull E, while bulls A, B, and C 

had the least (Table A-2; Figure A-4).  The highest (P < 0.05) occurrence of secondary 

morphological abnormalities was observed in bull C and the lowest (P < 0.05) 

occurrence was observed in bull B (Table A-2; Figure A-4).  The highest (P < 0.05) 

occurrence of tertiary morphological abnormalities was observed in bull E and the 

lowest occurrence was observed in bull C (Table A-2; Figure A-4).  Bull B yielded the 

highest (P < 0.05) percentage of morphologically normal spermatozoa and bulls E and F 

yielded the lowest (P < 0.05) percentage of morphologically normal spermatozoa (Table 

A-2; Figure A-5).  

3.6.  Interaction of collection date X bull 

Mean percentage of motile spermatozoa at 0 through 9 hr post-thaw differed (P < 

0.0001) due to an interaction between CDate X bull (Table 2; Figures A-6 through A-9).  

Percentages of motile spermatozoa for the interaction between CDate X bull at 0 through 

9 hr post-thaw are presented in Table A-3.  Mean percentage of intact acrosomal 

membrane also differed (P < 0.0001) due to an interaction between CDate X bull (Table 

3; Figure A-10).  Mean percentage of primary, secondary, and tertiary morphological 

abnormalities differed (P < 0.003) due to an interaction between CDate X bull (Table 3; 

Figures A-11 through A-13).  Mean percentage of morphologically normal spermatozoa 

differed (P < 0.002) due to an interaction between CDate X bull (Table 3; Figure A-14).  

Percentages of intact acrosomal membrane, of primary, secondary, and tertiary 
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morphological abnormalities, and of morphologically normal spermatozoa for the 

interaction between CDate X bull are presented in Table A-4.  

3.7.  Interaction of collection date X cooling duration 

Mean percentage of motile spermatozoa at 9 hr post-thaw differed (P < 0.002) 

due to an interaction between CDate X CD (Table 2).  Collection date 3 with a 4 hr CD 

and CDate 5 with a 4 hr CD resulted in a higher (P < 0.05) percentage of motile 

spermatozoa at 9 hr post-thaw than any of the other treatment combinations (Table A-5; 

Figure A-15).  Mean percentage of motile spermatozoa did not differ (P > 0.28) for 

CDate X CD at 0, 3, and 6 hr post-thaw (Table 2).  Mean percentage of intact acrosomal 

membrane, percentage primary, secondary, and tertiary morphological abnormalities, 

and percentage of morphologically normal spermatozoa did not differ (P > 0.17) for 

CDate X CD (Table 3; Table A-6). 

3.8.  Interaction of collection date X equilibration with glycerol 

Mean percentage of motile spermatozoa at 0 through 9 hr post-thaw did not differ 

(P > 0.18) for the interaction between CDate X EG (Table 2; Table A-7).  Mean 

percentage of intact acrosomal membrane, of primary, secondary, and tertiary 

morphological abnormalities, and of morphologically normal spermatozoa did not differ 

(P > 0.25) for the interaction between CDate X EG (Table 3; Table A-8). 

3.9.  Interaction of bull X cooling duration 

Mean percentage of motile spermatozoa at 9 hr post-thaw differed (P < 0.02) due 

to an interaction between bull X CD (Table 2).  Ten percentage points separated the 

highest (P < 0.05) spermatozoal motility percentage, bull F with CD of 2 and 4 hr, from 
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the lowest (P < 0.05) spermatozoal motility percentage, bulls A and D with CD of 2 and 

4 hr (Table A-9; Figure A-16).  Mean percentage of intact acrosomal membrane, of 

primary, secondary, and tertiary morphological abnormalities, and of morphologically 

normal spermatozoa did not differ (P > 0.17) for the interaction between bull X CD 

(Table 3; Table A-10).   

3.10.  Interaction of bull X equilibration with glycerol 

  Mean percentage of motile spermatozoa at 0 through 9 hr post-thaw did not 

differ (P > 0.26) for the interaction between bull X EG (Table 2; Table A-11).  Mean 

percentage of intact acrosomal membrane, of primary, secondary, and tertiary 

morphological abnormalities, and of morphologically normal spermatozoa did not differ 

(P > 0.30) for the interaction between bull X EG (Table 3; Table A-12). 

 

4. Discussion  

4.1.  Cooling duration 

Spermatozoal post-thaw viability is dependent, at least in part, upon the length of 

time the extended sample is allotted to cool to 5 ºC prior to the addition of the 

glycerolated portion of the extender.  Slowly cooling the partially extended semen over 

several hours reduces spermatozoa plasma membrane and mid-piece damage caused by 

cold shock [9,35].  Our study evaluated the effect of a 2 or 4 hr cooling duration on post-

thaw spermatozoal motility, morphology, and acrosomal integrity. 

Lower percentages for motility were observed for the 2 hr than 4 hr cooling 

duration in our study.  These results concur with reports by Gilbert and Almquist [36] 
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and Ennen et al. [8] in which spermatozoal motility is increased as the cooling duration 

is increased.  Interestingly, Ennen et al. [8] also reported that no differences in 

percentage of motile spermatozoa upon post-thaw evaluation between the 2 and 4 hr 

cooling durations were observed, which is not in agreement with our study.  Ennen et al. 

[8] may not have observed an affect of cooling duration on post-thaw motility due to 

differences in breed (Angus and Hereford), bull age (2 to 5 years old), or packaging type 

(0.25 mL plastic straws) relative to the current study.  A 1.5 hr difference in cooling 

durations between our experiment and those conducted by Gilbert and Almquist [36] and 

Ennen et al. [8], thus potentially explaining the lower motility percentages observed for 

the 0.5 hr cooling duration, but not between the 2 and 4 hr cooling durations.  The 

difference between our observations and those of Ennen et al. [8] for percentage of 

spermatozoal motility post-thaw could be due to any number of factors involved in the 

processing, freezing, and or thawing procedures of the spermatozoa. 

We observed no differences between the 2 and 4 hr cooling durations for 

percentage of intact acrosomal membranes, of primary, secondary, and tertiary 

abnormalities, and of morphologically normal spermatozoa.  Our observations are not in 

agreement with a study [36] that reported differences in acrosomal retention and 

morphology with varying cooling durations.  The discrepancy between our results and 

those of Gilbert and Almquist [36] could be due to differences in the final glycerol 

concentrations, straw volume, packaging technique, and or thaw rate, as those employed 

by Gilbert and Almquist [36] are significantly different from those utilized in our 

experiment. 
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4.2.  Equilibration with glycerol 

Glycerol is utilized in the extender to lower the freezing point of water, thus 

aiding in the reduction of intracellular ice formation [1].  However, the length of time 

required for maximum diffusion of glycerol into spermatozoa for optimal cryoprotection 

is unknown at this time.  Our experiment evaluated the effect of a 2, 4, or 6 hr 

equilibration with glycerol on post-thaw spermatozoal motility, morphology, and 

acrosomal integrity percentages in an attempt to provide a recommendation for an 

optimal duration of glycerol equilibration. 

Equilibration of the spermatozoa for 2, 4, or 6 hr with glycerol did not affect the 

percentage of motile spermatozoa when evaluated at 0, 3, or 6 hr post-thaw, however, 

the percentage of motile spermatozoa was higher for the 6 hr equilibration than the 2 hr 

equilibration when evaluated at 9 hr post-thaw.  A potential explanation for the 

difference in motility at the 9 hr post-thaw check, but not at 0, 3, or 6 hr could be due to 

the stress of incubating the frozen-thawed spermatozoa at 37 ºC for the post-thaw 

examination, because spermatozoal viability, specifically motility and acrosomal 

integrity, decreases as the time of incubation post-thaw increases [1].  Miller and 

VanDemark [42] reported higher spermatozoal motility when spermatozoa were 

equilibrated with glycerol for 2 or 6 hr than 18 hr at 4.5 ºC.  Even though we did not 

evaluate the effect of an 18 hr equilibration with glycerol, the findings of Miller and 

VanDemark [42] support our results.  In contrast, Berndtson and Foote [6] reported the 

attainment of higher spermatozoal motility after 10 sec of glycerol equilibration as 

compared to10 min, 20 min, 30 min, or 6 hr of glycerol equilibration.  However, the total 
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concentration of spermatozoa/mL was significantly higher in the experiment for 

Berndtson and Foote [6] than what was utilized in our experiment (300 x 106 and 45 x 

106, respectively).  In addition, we packaged our extended semen into 0.5 mL plastic 

French straws, while Berndtson and Foote [6] utilized the pellet method for freezing the 

spermatozoa.   

We observed that the percentage of intact acrosomes was lower for the 2 hr than 

for the 6 hr equilibration with glycerol.  Equilibration time with glycerol also affected 

the percentage of secondary morphological abnormalities.  We observed a higher 

percentage of secondary morphological abnormalities when the sample was equilibrated 

for 4 hr vs 6 hr of equilibration.  We did not however, observe any effects of 

equilibration of spermatozoa for 2, 4, or 6 hr with glycerol on the percentage of primary 

and tertiary morphological abnormalities or of morphologically normal spermatozoa.   

4.3.  Interaction of cooling duration X equilibration with glycerol 

 The time required for equilibration with glycerol to provide cryoprotective 

support to the spermatozoa is dependent upon the cooling duration [8].  Therefore, it can 

be speculated that an interaction between the cooling duration and equilibration with 

glycerol exists.  We evaluated the effect of an interaction of CD X EG on spermatozoal 

motility, morphology, and acrosomal integrity to validate the potential of an interaction 

between the two. 

Spermatozoal motility was decreased for the 2 hr CD X 2 hr EG relative to all 

other treatment combinations at the 3 and 6 hr post-thaw evaluations.  Our results show 

that the maximum percentage for motility was obtained for a 4 hr CD X 2 or 6 hr EG.  
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Our results are supported by Ennen et al. [8], who also observed an effect on 

spermatozoal motility for interaction of CD X EG.  The authors reported that the highest 

motility percentages were obtained for a 4 hr CD X 2 or 4 hr EG. Variations in final 

glycerol concentration, straw volume and or the procedure employed for thawing frozen 

spermatozoa could contribute to the differences observed in our experiment compared to 

those of Ennen et al. [8]. 

The percentages of acrosomal membrane retention, of primary, secondary, and 

tertiary morphological abnormalities, and of morphologically normal spermatozoa were 

not affected by the interaction of CD X EG in our study.  Although others [8,61] have 

stated that the equilibration time with glycerol is dependent upon the cooling duration 

we are not aware of any reports of an effect on acrosomal integrity or sperm morphology 

due to an interaction between cooling duration and equilibration time with glycerol. 

Decreasing the time from collection to freezing will increase the efficiency of 

semen collection facilities in their processing procedures.  With this in mind, we 

recommend utilizing a cooling duration of 4 hr with a 4 hr equilibration with glycerol to 

achieve optimal percentages of motile spermatozoa post-thaw.  The 4 hr equilibration 

time was chosen over 2 or 6 hr based on previous research [8,42], which reported that 

there were no significant differences between 2 and 6 hr equilibration durations with 

glycerol and from our own observations.  Our research suggests that the utilization of a 4 

or 6 hr equilibration with glycerol will provide maximal frozen-thawed spermatozoal 

viability post-thaw, as no significant differences were observed between the two for the 
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percentage of motile spermatozoa, of intact acrosomes, primary, secondary, and tertiary 

abnormalities, and of morphologically normal spermatozoa. 

4.4.  Collection date 

 Seasonality affects the quality and quantity of each ejaculate collected and 

processed for use by AI [60,63].  The effect of collection date was highly significant (P 

< 0.01), with the exception of motility at 0 hr post-thaw incubation.  However, even 

though a high degree of variation exists, we observed a significant interaction only 

between CDate X Bull for all treatments and CDate X CD at 9 hr post-thaw incubation.  

Due to the known effects of bull variation on spermatozoal quality and a lack of 

significant interactions between CDate, CD, and EG, we chose not to perform separation 

of means across bull related interactions, with the exception of the interaction of CDate 

X CD for motility at 9 hr post-thaw incubation.  We speculate that the variation in 

spermatozoal variability due to collection date and the interaction of collection date by 

bull observed in our study are primarily due to the collection personnel, order of 

collection, and seasonality. 

4.4.1.  Collection personnel and order of collection 

The personnel involved in the collection process have an impact on the quantity 

and quality of the ejaculate upon collection [24].  Mathevon et al. [24] evaluated the 

effects of the bull handler and semen collector on ejaculate characteristics of Holstein 

bulls.  The authors reported that the total number of cells and the total number of motile 

cells were affected (P < 0.05) by collection team and that the collection personnel 

accounted for less than 10 % of the variance observed in ejaculate characteristics among 
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bulls.  Bulls in our experiment were not always collected by the same personnel; thus the 

current study was not designed to quantify the potential effect of the collection team.  

The order in which the bulls are collected has the potential to increase or decrease 

spermatozoal characteristics per ejaculate.  This can be attributed to the degree of visual, 

olfactory, and or auditory stimulation required to sexually prepare each bull for semen 

collection [44].  The bulls in our study were not collected in any particular order.  All six 

bulls were moved to the collection arena at the same time, loaded and then collected 

from individually.  However, the first bull to load into the holding stalls was the first bull 

collected from and so on, providing each bull with equal opportunity to be collected 

first, last, or in the middle of the group.  If a bull requiring a higher degree of sexual 

stimulation in order to achieve maximal sexual preparation prior to collection was one of 

the first bulls collected from, the time allotted for maximal sexual stimulation may not 

have been met, thus potentially reducing the quality of the ejaculate [64].  

4.4.2.  Seasonality 

 Seasonality has been reported to alter sperm output, production, motility, 

morphology, and acrosomal integrity [65-67].  Johnston and Branton [68] observed a 

decline in non-return rates for semen collected during the summer months of July, 

August, and September in Louisiana as the ambient temperature was increased as 

compared to all other months.  In a comprehensive study in dairy bulls located in the mid 

western United States, Erb et al. [69] evaluated the effects of seasonality on ejaculate 

volume and concentration, spermatozoal motility, morphology, and viability upon 

storage at 4 ºC.  The months were divided into 4 seasons, consisting of winter (January 
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through March), spring (April through June), summer (July through September), and fall 

(October through December).  Overall, Erb et al. [69] reported that semen of inferior 

quality was produced during the summer months, while semen of superior quality was 

obtained during the spring months.  Specifically, Erb et al. [69] reported, that volume, 

motility, and duration of viability upon storage were decreased during the summer 

months, and the percentage of abnormal spermatozoa increased by 25 % during the 

summer months.  However, the authors observed maximal spermatozoal concentration 

and total sperm numbers during the spring months.  As trends in spermatozoal quality 

and semen production followed the changes in temperature closely, Erb et al. [69] 

speculated that changes in temperature have the potential to have the largest impact on 

spermatozoal quality and production. 

4.5.  Bull 

 Individual variation among bulls can affect the cryoprotective properties that 

extenders and processing procedures have on the outcome of spermatozoal viability 

post-thaw [26,60].  Extensive reviews have examined the influence of animal 

individuality on the outcome of spermatozoal characteristics and spermatozoal viability 

post-thaw [3,70].  Graham et al. [4] studied the effects of glycerol equilibration time on 

non-return rate and observed differences among bulls on the equilibration with glycerol 

as well as the collection period.  The observations of Graham et al. [4] were significant 

at the five percent level, which supports our observation that the effect of individual 

variation among bulls was highly significant (P < 0.0003).  The interaction of CDate X 

bull affected all measures of spermatozoal variability.  We observed a significant 
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interaction only for Bull X CD on spermatozoal motility at 9 hr post-thaw incubation.  

However, the percentage of progressively motile spermatozoa at 9 hr post-thaw was > 10 

% for all bulls.   

4.5.1.  Variability among individual bulls 

 Reviews conducted by Hammerstedt et al. [1] and Watson [48] demonstrate that 

semen processing and thawing adversely affect spermatozoal viability, by altering and or 

damaging membrane structures throughout one or all of the aspects of spermatozoal 

evaluation, extension, cooling duration, equilibration with glycerol, and the freezing-

thawing process.  Several authors [26,40,53] have made note of the variation among 

bulls upon post-thaw evaluation, however, none speculated as to the cause of the 

variation among the bulls.  Even though Graham et al. [4] and Jondet [5] did not 

evaluate spermatozoal characteristics prior to processing, their research illustrates that 

variation among bulls exists and can influence the percentage of cows that do not return 

to estrus after breeding by frozen-thawed semen.  Graham et al. [4] observed variation 

among bulls when studying the effects of glycerol equilibration time on the non-return 

rate of cows bred by AI.  Graham et al. [4] observed non-return rates as high as 78 % 

and as low as 61 % among bulls for the 12 hr equilibration with glycerol.  The author 

observed an 11 percentage point spread for the 8 and 4 hr durations of equilibration with 

glycerol among the bulls, suggesting that differences among bulls and treatments exist.  

Jondet [5] also observed variations in spermatozoal motility and non-return rates among 

bulls for varying durations of glycerol equilibration.  Jondet [5] observed differences in 

the percentage of motile spermatozoa and the non-return rate ranging from 1 to 13 
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percentage points between one bull and another.  The author also speculated that the 

ejaculates vary from one to another for the same bull.   

4.5.2. Age of bull 

The age of the bull may also affect spermatozoal output and quality.  Evertt and 

Bean [60] observed large differences between bulls in sperm producing ability from 

bulls of varying ages.  Their research supported that of Amann et al. [71], who reported 

that spermatozoal concentration per ejaculate increased as the bull increased in age.  

Hallap et al. [72] observed no differences in spermatozoal motility or morphology on 

semen collected from bulls at 1 and 4 years of age, however, the authors did report that 

acrosomal membrane integrity was higher at 4 years of age than 1.  The bulls utilized in 

our study were all approximately 18 months of age (± 2 months) and from the same 

contemporary group on one ranch in central Texas.  Housing was identical for all bulls 

while on the ranch and while at the collection facility for all six bulls, thus eliminating or 

at least greatly reducing any environmental and or managerial differences among the 

bulls.  The young age of the bulls in our study may have influenced the results obtained 

from our observations based on previous research [24,67], which demonstrated that 

younger bulls have decreased spermatozoal quality until they attain a plateau in sexual 

development.  However, by utilizing bulls that appear to be more sensitive to all aspects 

of cryopreservation, we may have been able to more accurately demonstrate 

spermatozoal sensitivity to the cooling duration and or the equilibration with glycerol.   
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5.  Conclusion 

 Cooling spermatozoa for 4 hr resulted in a higher percentage of motile 

spermatozoa than for a cooling duration of 2 hr.  A higher percentage of motile 

spermatozoa at 9 hr post-thaw and of intact acrosomes was observed when equilibrated 

with glycerol for 6 hr than for 2 hr.  The percentage of secondary morphological 

abnormalities was higher when equilibrated with glycerol for 4 hr than for 6 hr.  

Collection date and bull did affect motility, percentage of intact acrosomes, and 

morphological characteristics of spermatozoa.  From our results, we conclude that 

maximal percentages of motility, of intact acrosomes, and of morphologically normal 

spermatozoa will be obtained when utilizing a cooling duration of 4 hr and equilibrating 

the sample with glycerol for 4 hr.   
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CHAPTER IV 

EFFECTS OF SEMEN STORAGE TYPE AND EXTENDER TYPE ON 

PERCENTAGE OF SPERMATOZOAL MOTILITY, ACROSOMAL 

INTEGRITY, AND MORPHOLOGICAL CHARACTERISTICS 

 

1.  Introduction 

 Semen storage type (fresh or frozen-thawed) and extender type have an impact 

on spermatozoal viability as measured by the percentage of spermatozoal motility, 

acrosomal integrity, and morphological characteristics [14,17,73].  It is widely accepted 

by the beef and dairy cattle industries, semen collection facilities, and producers that 

frozen-thawed sepermatozoa have decreased percentages of spermatozoal motility, of 

acrosomal integrity, and morphological characteristics due to the stress of the freeze-

thaw process [61].  Senger et al. [16] evaluated the effects of egg yolk-citrate, egg yolk-

tris, and skim milk-based extenders on spermatozoal post-thaw viability.  The authors 

reported that acrosomal integrity was higher for the egg yolk-tris-based extender than for 

egg yolk-citrate or skim milk (65, 54, and 48 %, respectively).  Senger et al. [16] also 

reported that the percentage of motile spermatozoa was higher for semen frozen and 

thawed in the egg yolk-tris extender than for egg yolk-citrate or skim milk (52, 41, and 

27 %, respectively).  The work of Senger et al. [16] clearly demonstrates the variability 

of spermatozoal characteristics upon post-thaw, thus illustrating the need to determine an 

optimum extender to be utilized by semen collection facilities. 
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The primary goal of any semen collection facility is to efficiently and 

economically package and distribute quality spermatozoa for the use of AI in the beef 

and dairy cattle industries.  Many extenders exist for processing semen, and 

spermatozoal viability fluctuates with the extender utilized.  Determination of an 

extender composition which optimizes spermatozoal post-thaw viability will enable 

semen collection facilities to process and freeze semen that will yield higher non-return 

rates based upon post-thaw viability of the spermatozoa. 

 This experiment was designed to evaluate the effects of semen type (fresh or 

frozen-thawed), extender type, and inherent interactions between semen type and 

extender type in order to provide a recommendation to the semen collection industry as 

to the optimum extender to utilize for the processing and freezing of bovine 

spermatozoa. 

1.1.  Hypothesis 

 The rank of the three extenders relative to their beneficial effects on 

spermatozoal viability after freezing and thawing will be egg yolk-citrate, IMV, and 

skim milk.   

1.2.  Objective 

1. Compare the effects of three extenders (egg yolk-citrate, IMV, and skim 

milk) on the motility, morphology, and acrosomal integrity (viability) of 

spermatozoa during a 9-hr incubation period either before or after freezing, 

and 
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2. Determine which of the three extenders utilized will provide the highest 

percentage of viable spermatozoa post-thaw. 

 

2.  Materials and Methods 

A 3 x 2 factorial arrangement was designed to determine which of three 

cryopreservation extenders (egg yolk-citrate, IMV International CSS two step extender, 

or skim milk) was most effective in preserving bovine spermatozoa upon freezing and 

thawing.  The semen was treated as follows: (1) fresh semen extended in egg yolk- 

citrate, (2) frozen-thawed semen extended in egg yolk-citrate, (3) fresh semen extended 

in IMV, (4) frozen-thawed semen extended in IMV, (5) fresh semen extended in skim 

milk, and (6) frozen-thawed semen extended in skim milk.  Each ejaculate was used in 

every treatment combination.  Samples were diluted to yield 45 x 106 spermatozoa/mL 

in one of the three extenders at 37 ºC, within 5 min of collection.  The average monthly 

temperatures for March, April, May, and June, 2003 were 16, 21, 26, and 27 ºC, 

respectively.  The average percentages for relative humidity for March, April, May, and 

June, 2003 were 73, 68, 70, and 73 %, respectively. 

2.1.  Extender Preparation 

2.1.1.  Egg yolk-citrate 

 The sodium citrate buffer (Na3C6H5O7 · H2O) was prepared by weighing out 29 g 

of practical grade, granular sodium citrate (Nasco, Fort Atkinson, WI, USA) on an 

analytical balance and adding the salt to 1 liter of distilled water.  The solution was then 

swirled to completely dissolve the sodium citrate crystals and stored at 4 ºC until use. 
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 Eggs used to provide the yolk portion of the extender were purchased fresh on a 

weekly basis from Feather Crest Farms (Kurten, TX, USA) and stored at 4 ºC until use.  

Eggs were broken midway and the yolk was held in one half of the shell to allow most of 

the egg white to fall out and be discarded.  The remaining egg white and yolk were then 

transferred to filter paper (Ahlstorm Corporation, Mt. Holly Springs, PA, USA) and 

gently rolled to further separate the egg white from the yolk.  The yolk was rolled to a 

clean spot on the filter paper and slight pressure was applied to the yolk by folding the 

paper around the yolk, causing the yolk to rupture.  The yolk was then collected in a 

graduated cylinder.  Yolk membranes, discolored yolks, or yolks containing blood spots 

were not used for the extender. 

 The extender was prepared by making two fractions, A, the non-glycerol portion 

containing egg yolk and the sodium citrate buffer and fraction B, the glycerol portion 

containing egg yolk, the sodium citrate buffer, and glycerol.  The egg yolk-citrate 

extender was prepared the night before collection and stored at 4 ºC until use.  Table 6 

provides a description of the volumes utilized to prepare the egg yolk-citrate extender. 

 

Table 6* 
Experiment 2:  Preparation of 250 mL of the egg yolk-citrate extender. 

Component Fraction A 
(nonglycerol)

Fraction B 
(glycerol) 

Final % of 1:1 
Fractions 

Sodium Citrate Buffer 
(2.9%) 100 mL 82.5 mL 73 

Egg Yolk 25 mL 25 mL 20 
Glycerol -------- 17.5 mL 7 
Total Volume for Fractions 
A and B 125 mL 125 mL -------- 

*Adapted from Mitchell and Doak (2004) 
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2.1.2.  Skim milk 

 Fresh pasteurized, homogenized skim milk ( approximately ½ percent fat) was 

utilized for this experiment.  Approximately 700 mL of skim milk were heated in a metal 

double boiler without a lid at 92 ºC to 95 ºC for 10 min.  While heating, the milk was 

stirred constantly to keep it from sticking to the bottom of the double boiler.  The milk 

was removed from the heat and allowed to cool to room temperature.  Once the milk was 

cooled, it was strained through a disposable plastic funnel lined with sterile gauze into a 

graduated flask to remove the film.  Any boiled, strained skim milk that was not utilized 

in the preparation of the skim milk extender was discarded. 

 The extender was prepared by making two fractions, A, the non-glycerol portion 

containing the boiled, strained skim milk and fraction B, the glycerol portion containing 

the boiled, strained skim milk and glycerol.  The skim milk extender was prepared the 

night before collection and stored at 4 ºC until use.  Table 7 provides a description of the 

volumes utilized to prepare the skim milk extender. 

 

Table 7* 
Experiment 2:  Preparation of 250 mL of the skim milk extender. 

Component Fraction A 
(nonglycerol)

Fraction B 
(glycerol) 

Final % of 1:1 
Fractions 

Skim Milk 125 mL 107.5 mL 93 
Glycerol -------- 17.5 mL 7 
Total Volume for Fractions 
A and B 125 mL 125 mL -------- 

*Adapted from Mitchell and Doak (2004) 
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2.1.3.  IMV International CSS two step extender 

 The IMV International CSS two step extender (IMV International MN, USA) 

was prepared as described in chapter III.  Table 1 in chapter III provides a description of 

the volumes utilized to prepare the IMV CSS two step extender. 

2.2.  Semen collection  

Single ejaculates from six 18-month-old Brangus bulls were collected two times per 

week until a total of six ejaculates had been collected from each bull.  Bulls were loaded 

into the holding stalls approximately 15 min prior to the start of collections.  An 

experienced handler led a haltered steer around the collection arena, stopping abruptly to 

mimic the behavior of a cow in estrus, that will stand to be mated by the bull, to increase 

sexual stimulation of the bulls.  The collector released one bull at a time into the arena to 

be collected in a free-style fashion via an artificial vagina, prepared as previously 

described [44].  Artificial vaginae were prepared the night prior to collection and stored 

in an incubator overnight at 38 ºC until use.  An insulated jacket was used to protect 

semen in the collection tube against temperature shock.  The bull was allowed to false 

mount the steer up to three times prior to collection to enhance the concentration of the 

ejaculate via increasing the sexual stimulation of the bull.  During the false mounting 

procedure, contact of the penis of the bull with the teaser animal was prevented by 

gently diverting the bull’s sheath toward the collector.  When the collector determined 

that the bull was ready for collection, the bull was allowed to mount the steer again, 

however, this time the collector diverted the bull’s penis into the AV for the collection of 
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the ejaculate.  Once the bull had successfully ejaculated into the AV, the ejaculate was 

taken into the lab for semen processing. 

2.3.  Semen processing 

 The neat semen volume was determined by use of a 15 mL graduated plastic vial 

and CSS antibiotics (Tylosin; 100mg/mL Gentamyacin; 500mg/mL Linco-Spectin; 

300/600 mg/mL) were added to the neat semen based upon total volume (0.02 mL 

antibiotics to 1 mL neat semen).  Spermatozoal concentration was determined by 

spectrophotometric assay.  Total extender volume divided into two fractions, A and B, 

was based upon spermatozoal concentration and volume.  Fraction A was allowed to 

equilibrate to 37 ºC before collections began to prevent the spermatozoa from 

undergoing cold shock upon the combination of fraction A to the neat semen in a 

polystyrene tube within 5 min of collection.  Prior to cooling, the partially extended 

spermatozoa (neat semen plus fraction A) was equally divided into three polystyrene 

conical tubes to facilitate handling of the samples.  Tubes were identified with bull 

name, time entered into cold room, extender type (i.e., egg yolk-citrate, IMV, or milk), 

and volume of fraction A.  Samples were cooled to and maintained at 4 ºC for a total of 3 

hr.  The semen was fully extended with the addition of the fraction B component of the 

extender by slowly dripping it into the samples via a plastic funnel cup with a hole 

punctured in the bottom of the funnel cup by a 21 ga needle.  Fully extended samples 

were then allowed to equilibrate with the fraction B portion of the extender for 1.5 hr 

prior to being loaded into straws.  The addition of fraction A and B to the raw sample 

extended the neat semen sample to a final concentration of at least 45 x 106 



 

 

70 

 
spermatozoa/mL (final volume includes permeable and non-permeable extender 

components and the spermatozoa).   

 Straws were labeled with the Minitub straw printer (Verona, WI, USA), 

identifying the stud facility, breed, individual bull identification code for the stud 

facility, bull name, private herd number, registration number, and collection date.  

Straws were cooled to 4 ºC to prevent the spermatozoa from warming above the cold 

room temperature.  The fully extended semen was loaded into 0.5 mL French straws and 

heat sealed via the IMV MRSI straw filler (Maple Grove, MN, USA) with treatment and 

bull specific metal needles and disposable tubing, eliminating the possibility of cross-

contamination between treatment groups and/or bulls.  The semen had a 30 min 

equilibration time in the straws on horizontal freezing racks prior to freezing.  The 

extended semen was frozen by suspending the straws approximately 3 cm above the 

liquid nitrogen in liquid nitrogen vapor for 7 min before plunging them into the liquid 

nitrogen.  Samples were then stored in a liquid nitrogen refrigerator until the post-thaw 

evaluation was conducted. 

2.4.  Fresh, partially-extended semen and post-thaw evaluations 

 The fresh, partially-extended semen and the frozen-thawed semen were evaluated 

for progressive motility, percentage of intact acrosomes, and any morphological 

abnormalities using a Nikon Eclipse E600 phase-contrast microscope (Melville, NY, 

USA).  For the fresh, partially- extended semen, a 1 mL aliquot of semen was placed in a 

graduated plastic vial with lid and held in a dry bath between 35 ºC and 37 ºC for the 

duration of the 9-hr period.  For the post-thaw sample, two straws were chosen at 
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random and thawed together in a Cito Thaw Unit between 35 ºC and 37 ºC for 30 sec 

and the contents pooled in a graduated plastic vial with lid and held in a dry bath 

between 35 ºC and 37 ºC for the duration of the 9-hr period.  The percentage of 

progressively motile spermatozoa was evaluated at 0 (immediate), 3, 6, and 9 hr post-

collection or post-thaw and was visually estimated for gross motility (within 5 %) at a 

low magnification in the phase-contrast setting of the microscope by averaging several 

fields of view.  The percentage of intact acrosomes and morphological abnormalities 

were evaluated between 0 and 6 hr post-collection and post-thaw.  The percentage of 

intact acrosomes was determined by observing 100 sperm cells for the presence of an 

apical ridge and/or damage to the apical ridge with the use of the differential interference 

contrast (DIC) setting on the microscope.  The percentage of primary, secondary, and 

tertiary morphological abnormalities were determined by counting 100 sperm cells under 

high magnification with the use of the phase-contrast setting of the microscope and 

classifying the spermatozoa as either normal or as having a primary, secondary, or 

tertiary abnormality.  Primary abnormalities are abnormalities of the head, secondary 

abnormalities are abnormalities of the middle piece, and tertiary abnormalities are 

abnormalities of the tail [44,62] for further descriptions of spermatozoal abnormalities.  

The percentage of morphologically normal spermatozoa was obtained by subtracting the 

sum of primary, secondary, and tertiary abnormalities from 100.  The percentage of 

progressively motile spermatozoa and of morphological characteristics was evaluated by 

one individual throughout the entire experiment and the percentage of spermatozoa with 

an intact acrosome was evaluated by one of two individuals on any given collection date.   



 

 

72 

 
2.5.  Statistical analyses 

Data retrieved from this study were analyzed using analysis of variance, and all 

percentage data were transformed using arcsin before analysis.  The effects of bull, 

collection date, treatment, and two-way interactions were studied as independent 

variables on progressively motile sperm, normal sperm, and acrosome integrity through 

the General Linear Model procedure of SAS (8.2, SAS Institute, Cary, NC, USA).  Least 

squares mean separations were performed by the PDIFF procedure of SAS (two-tailed t-

tests).  The experimental design was a 3 X 2 factorial arrangement with three extenders 

and two storage temperatures. 

 

3.  Results  

Table 8 provides a summary of P-values and the R-Square value for the effect of 

the independent variables on percentage of progressively motile frozen-thawed 

spermatozoa at 0, 3, 6, and 9 hr of incubation.  Table 9 provides a summary of P-values 

and the R-Square value for the effect of the independent variables on percentage of 

intact acrosomal membrane, of primary, secondary, and tertiary abnormalities, and of 

morphologically normal spermatozoa. 
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Table 8 
Experiment 2:  Effect of independent variables (P-values and R-square value) on 
percentage of progressively motile, frozen-thawed spermatozoa at 0 (M0), 3 (M3), 6 
(M6), and 9 (M9) hr of incubation. 
 
Variable M0  M3  M6  M9 
        
Semen <.0001 <.0001 <.0001  NS 
Extender <.0001 <.0001 <.0001  NS 
Semen x Extender 0.4993 <.0001 <.0001  NS 
CDate 0.0136 0.2221 0.5472  NS 
Bull 0.0045 <.0001 <.0001  NS 
CDate x Bull 0.0035 0.003 0.0658  NS 
CDate x Extender 0.0193 0.007 0.9016  NS 
Bull x Semen 0.0007 <.0001 0.0026  NS 
Bull x Extender 0.8079 0.0036 0.0171  NS 
CDate x Bull x Semen 0.0005 0.0196 0.0773  NS 
CDate x Semen x Extender 0.3651 0.2491 0.246  NS 
Bull x Semen x Extender 0.1719 0.0498 0.2778  NS 
   
R-Square 0.8927 0.925 0.8365  0.5982 
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 6-13-2003, 
6-17-2003, 6-20-2003, 6-24-2003, 6-27-2003, and 7-1-2003, respectively. 
Semen = semen storage type as either fresh or frozen-thawed semen. 
Extender = seminal extender type as either egg yolk-citrate, skim milk, or IMV. 
NS = Model did not account for a significant portion of variability in the percentage 
of progressively motile spermatozoa at 9 hr of incubation (P > 0.09). 
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Table 9 
Experiment 2:  Effect of independent variables (P-values and R-square value) on percentage of 
intact acrosomal membrane (PIA), percentage of primary (1º), secondary (2º), and tertiary (3º) 
morphological abnormalities, and percentage of morphologically normal (N) spermatozoa. 
 
Variable PIA  1º  2º  3º  N 
          
Semen <.0001 0.0013 <.0001 <.0001  <.0001
Extender <.0001 0.9823 <.0001 0.6257  <.0001
Semen x Extender 0.3234 0.3044 0.0036 0.6257  0.0771
CDate <.0001 0.0438 <.0001 0.0059  0.0004
Bull 0.0006 <.0001 0.0079 0.316  <.0001
CDate x Bull 0.006 0.0299 0.012 0.0222  0.0127
CDate x Extender 0.2961 0.0602 0.0426 0.58  0.3307
Bull x Semen <.0001 0.2843 0.3922 0.316  0.3506
Bull x Extender 0.9269 0.1513 0.074 0.7601  0.2853
CDate x Bull x Semen 0.1034 0.2948 0.0638 0.0222  0.0441
CDate x Semen x Extender 0.032 0.0895 0.7856 0.58  0.4594
Bull x Semen x Extender 0.333 0.1176 0.1815 0.7601  0.1014
   
R-Square 0.9811 0.8365 0.8947 0.8122  0.8834
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 6-13-2003, 6-17-2003, 
6-20-2003, 6-24-2003, 6-27-2003, and 7-1-2003, respectively. 
Semen = semen storage type as either fresh or frozen-thawed semen. 
Extender = seminal extender type as either egg yolk-citrate, skim milk, or IMV. 
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3.1.  Semen storage type 

Mean percentage of motile spermatozoa at 0 through 6 hr post-thaw differed (P < 

0.0001) between semen storage type (semen) prior to cryopreservation (Table 8).  Mean 

percentage of motile spermatozoa at 9 hr post-thaw did not differ (P > 0.09) between 

semen storage types prior to cryopreservation (Table 8).  Cryopreservation decreased (P 

< 0.05) spermatozoal motility at 0, 3, and 6 hr of incubation as compared to 

spermatozoal motility at 0, 3, and 6 hr of incubation for fresh semen (Table 10; Figure 

10).  Mean percentage of intact acrosomal membrane, of primary, secondary, and 

tertiary morphological abnormalities, and of morphologically normal spermatozoa 

differed (P < 0.01) by semen storage type (Table 9).  Semen stored fresh had higher (P < 

0.05) percentages of intact acrosomal membrane, tertiary morphological abnormalities, 

and morphologically normal spermatozoa (Table 11).  Secondary morphological 

abnormalities were two-fold higher (P < 0.05) for frozen-thawed than for fresh semen 

(Table 11).  There was a difference of two percentage points (P < 0.05) in tertiary 

morphological abnormalities between fresh and frozen-thawed semen (Table 11).  

Percentages of primary, secondary, and tertiary morphological abnormalities stored in 

fresh or frozen-thawed semen are graphically presented in Figure A-17. 
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Table 10 
Experiment 2:  Mean percentage of progressively motile, frozen-thawed spermatozoa 
at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation by semen, by extender, and 
semen X extender. 
 
Variable M0   M3   M6   M9 
           
Semen            
1 52 a  43 a  24 a  5 
2 29 b  17 b  10 b  4 
Pooled SEM 0.72   0.69   0.88   0.76 
           
Extender           
1 43 a  34 a  17 b  3 
2 36 b  21 b  9 c  4 
3 43 a  36 a  25 a  6 
Pooled SEM 0.89   0.84   1.08   0.93 
           
Semen x Extender           
1 x 1 54   49 a  25 b  4 
1 x 2 48   30 b  10 c,d  4 
1 x 3 55   50 a  38 a  9 
2 x 1 32   18 c,d  10 c,d  3 
2 x 2 24   13 d  8 d  4 
2 x 3 30   21 c  12 c  4 
Pooled SEM 1.78   1.68   2.15   1.86 
 
 

a,b,c,d LSMeans values within a column by variable with different superscripts differ 
(P < 0.05). 
Semen = semen storage type, where, 1 refers to fresh and 2 refers to  
frozen-thawed semen. 
Extender = seminal extender type, where, 1 through 3 correspond to egg 
yolk-citrate, skim milk, and IMV, respectively. 
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Table 11 
Experiment 2:  Mean percentage of intact acrosomal membrane (PIA), percentage of primary 
(1º), secondary (2º), and tertiary (3º) morphological abnormalities, and percentage of 
morphologically normal (N) spermatozoa by semen, by extender, and semen X extender. 
 
Variable PIA 1º 2º 3º   N
               
Semen               
1 92 a  7   14 b  2 a  89 a 
2 27 b  9   28 a  0 b  69 b 
Pooled SEM 0.81   0.30   0.62   0.13   0.95  
               
Extender               
1 55 b  8   18 b  1   83 a 
3 64 a  8   24 a  1   75 b 
Pooled SEM 0.81   0.30   0.62   0.13   0.95  
               
Semen x Extender               
1 x 1 88   7   13 d  2   92  
1 x 3 96   7   15 c  2   87  
2 x 1 22   9   24 b  0   74  
2 x 3 32   9   33 a  0   64  
Pooled SEM 1.15   0.43   0.87   0.19   1.34  
 
 

a,b,c,d LSMeans values within a column by variable with different superscripts  differ (P < 0.05). 
Semen = semen storage type, where, 1 refers to fresh and 2 refers to  frozen-thawed  
semen. 
Extender = seminal extender type, where, 1and 3 correspond to egg yolk-citrate and IMV, 
respectively. 
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3.2.  Extender type 

Mean percentage of motile spermatozoa at 0 through 6 hr post-thaw differed (P < 

0.0001) by extender type (extender, Table 8).  Utilization of the skim milk (milk) 

extender as a cryoprotectant prior to freezing resulted in lower (P < 0.05) motility 

percentages after 0 and 3 hr of incubation post-thaw than the egg yolk-citrate (EC) and 

IMV extenders (Table 10; Figure 11).  The 6 hr post-thaw had the highest (P < 0.05) 

motility percentage with the use of the IMV extender and the lowest (P < 0.05) motility 

percentage with the use of the milk extender.  Mean percentage of motile spermatozoa at 

9 hr post-thaw did not differ (P > 0.09) between extenders (Table 8). Due to the 

opaqueness of the semen extended in skim milk, mean percentage of intact acrosomal 

membrane, of primary, secondary, and tertiary abnormalities, and of morphologically 

normal spermatozoa were not evaluated for the milk extender throughout the 

experiment.  Mean percentages of intact acrosomal membrane, of secondary 

morphological abnormalities, and of morphologically normal spermatozoa differed (P < 

0.0001) by extender (Table 9).  The EC extender had lower (P < 0.05) percentages for 

intact acrosomal membrane, and for secondary morphological abnormalities (Table 11; 

Figure 12).  The EC extender had higher (P < 0.05) percentages of morphologically 

normal spermatozoa than the IMV extender (83 and 75 percent, respectively; Table 11).  

Mean percentages of primary and tertiary morphological abnormalities were not 

different (P > 0.62) by extender (Table 9). 
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3.3.  Interaction of semen storage type X extender type 

Mean percentage of motile spermatozoa at 3 and 6 hr post-thaw differed (P < 

0.0001) due to an interaction between semen X extender (Table 8).  At 3 hr post-thaw, 

highest (P < 0.05) motility was observed with the use of fresh semen and either EC or 

IMV as the extender, while, lowest (P < 0.05) motility was observed with the use of 

frozen-thawed semen and milk as the extender (Table 10; Figure A-18).   At 6 hr post-

thaw, highest (P < 0.05) motility was observed with the use of fresh semen and IMV as 

the extender, while, lowest (P < 0.05) motility was observed with the use of frozen-

thawed semen and milk as the extender (Table 10; Figure A-18).  Mean percentage of 

secondary morphological abnormalities differed (P < 0.01) due to an interaction between 

semen X extender (Table 9).  Frozen-thawed semen extended in the IMV extender had a 

higher (P < 0.05) percentage of secondary morphological abnormalities than fresh semen 

extended in the EC (Table 11; Figure 13).  Mean percentage of intact acrosomal 

membrane, of primary and tertiary morphological abnormalities, and of morphologically 

normal spermatozoa did not differ (P > 0.07) for the interaction between semen X 

extender (Table 9; Table 11). 

3.4.  Collection date 

Mean percentage of motile spermatozoa at 0 hr differed (P < 0.02) by collection 

date (CDate, Table 8).  Collection dates 1, 2, 5, and 6 had a higher (P < 0.05) percentage 

of motile spermatozoa at 0 hr post-thaw than CDate 3 (Table A-13; Figure A-19).  Mean 

percentage of motile spermatozoa at 3, 6, and 9 hr did not differ (P > 0.09) by CDate 

(Table 8).  Mean percentage of intact acrosomal membranes, of secondary and tertiary 
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morphological abnormalities, and of morphologically normal spermatozoa differed (P < 

0.01) by CDate.  The highest (P < 0.05) percentage of acrosomal membrane retention 

occurred on CDates 2 and 5, while, the lowest (P < 0.05) retention occurred on CDate 6 

(Table A-14; Figure A-20).  The highest (P < 0.05) percentage of secondary 

morphological abnormalities was observed for CDate 1 and the lowest (P < 0.05) 

percentage of secondary morphological abnormalities was observed for CDates 2 and 5 

(Table A-14; Figure 14).  There was a difference of two-percentage points (P < 0.05) in 

tertiary morphological abnormalities among CDates (Table A-14; Figure 14).  The 

highest (P < 0.05) percentage of morphologically normal spermatozoa was observed for 

CDate 2 and the lowest (P < 0.05) percentage of morphologically normal spermatozoa 

was observed for CDate 1 (Table A-14; Figure 15). 

3.5.  Bull 

Mean percentage of motile spermatozoa at 0, 3, and 6 hr post-thaw differed (P < 

0.01) by bull (Table 8).  Bull E had the highest (P < 0.05) percentage of motile 

spermatozoa at 0 hr post-thaw and bull B had the lowest (P < 0.05) percentage of motile 

spermatozoa at 0 hr post-thaw (Table A-13; Figure 16).  Bulls E and F had the highest (P 

< 0.05) percentage of motile spermatozoa at 3 hr post-thaw and bulls A, B, C, and D had 

the lowest (P < 0.05) percentage of motile spermatozoa at 3 hr post-thaw (Table A-13; 

Figure 16).  Bull E had the highest (P < 0.05) percentage of motile spermatozoa at 6 hr 

post-thaw and bull A had the lowest (P < 0.05) percentage of motile spermatozoa at 6 hr 

post-thaw (Table A-13; Figure 16).  Mean percentage of motile spermatozoa at 9 hr did 

not differ (P > 0.09) by bull (Table 8).
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Mean percentages of motile spermatozoa at 9 hr post-thaw are presented in Table A-13 

and Figure 16.  Mean percentage of intact acrosomal membrane, of primary and 

secondary morphological abnormalities, and of morphologically normal spermatozoa 

differed (P < 0.01) by bull (Table 9).   The highest (P < 0.05) percentage of acrosomal 

membrane retention was observed for bull D while, the lowest (P < 0.05) percentage of 

acrosomal membrane retention was observed for bull A (Table A-14; Figure A-21).  The 

highest (P < 0.05) percentage of primary morphological abnormalities was observed for 

bull F and the lowest (P < 0.05) percentage of primary morphological abnormalities was 

observed for bulls B and C (Table A-14; Figure 17).  The highest (P < 0.05) percentage 

of secondary morphological abnormalities was observed for bulls A and C and the 

lowest (P < 0.05) percentage of secondary morphological abnormalities was observed 

for bull E (Table A-14; Figure 17).  Bulls B and E were approximately ten-percentage 

points higher (P < 0.05) for morphologically normal spermatozoa than bulls A, C, D, and 

F (Table A-14; Figure 18). 

3.6.  Interaction of collection date X bull 

Mean percentage of motile spermatozoa at 0 and 3 hr post-thaw differed (P < 

0.01) due to an interaction between CDate X bull (Table 8; Figure A-22; Figure A-23).  

Mean percentage of motile spermatozoa at 6 and 9 hr post-thaw did not differ (P > 0.09) 

for the interaction between CDate X bull (Table 8).  Percentages of motile spermatozoa 

for the interaction between CDate X bull at 0 through 9 hr post-thaw are presented in 

Table A-15.  Mean percentage of intact acrosomal membrane differed (P < 0.01) due to 

an interaction between CDate X bull (Table 9; Figure A-24).  Mean percentage of 
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primary, secondary, and tertiary morphological abnormalities differed (P < 0.02) due to 

an interaction between CDate X bull (Table 9; Figures A-25 through A-27).  Mean 

percentage of morphologically normal spermatozoa differed (P < 0.02) due to an 

interaction between CDate X bull (Table 9; Figure A-28).  Percentages of intact 

acrosomal membranes, of primary, secondary, and tertiary morphological abnormalities, 

and of morphologically normal spermatozoa for the interaction between CDate X bull 

are presented in Table A-16. 

3.7.  Interaction of collection date X extender type 

Mean percentage of motile spermatozoa at 0 and 3 hr post-thaw differed (P < 

0.02) due to an interaction between CDate X extender (Table 8; Figure A-29; Figure A-

30).  Mean percentage of motile spermatozoa at 6 and 9 hr post-thaw did not differ (P > 

0.09) for the interaction between CDate X extender (Table 8).  Percentages of motile 

spermatozoa for the interaction between CDate X extender at 0 through 9 hr post-thaw 

are presented in Table A-17.  Mean percentage of intact acrosomal membrane, of 

primary and tertiary morphological abnormalities, and of morphologically normal 

spermatozoa did not differ (P > 0.06) for the interaction between CDate X extender 

(Table 9; Table A-18).  Percentages of intact acrosomal membranes for the interaction 

between CDate X extender are graphically presented in Figure A-31.  Mean percentage 

of secondary morphological abnormalities differed (P < 0.5) due to an interaction 

between CDate X extender (Table 8).  Mean percentages of secondary morphological 

abnormalities by CDate X extender are presented in Table A-18 and Figure A-32.  
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3.8.  Interaction of bull X semen storage type 

Mean percentage of motile spermatozoa at 0, 3, and 6 hr post-thaw differ (P < 

0.01) due to an interaction between bull X semen (Table 8).  The highest (P < 0.05) 

percentage of motile spermatozoa at 0 hr post-thaw was observed for bulls A, C, and E 

with fresh semen and the lowest (P < 0.05) percentage of motile spermatozoa at 0 hr 

post-thaw was observed for bulls A and B with frozen-thawed semen (Table A-19; 

Figure 19).  The highest (P < 0.05) percentage of motile spermatozoa at 3 hr post-thaw 

was observed for bulls A, E, and F with fresh semen and the lowest (P < 0.05) 

percentage of motile spermatozoa at 3 hr post-thaw was observed for bull A with frozen-

thawed semen (Table A-19; Figure 20).  The highest (P < 0.05) percentage of motile 

spermatozoa at 6 hr post-thaw was observed for bull E with fresh semen and the lowest 

(P < 0.05) percentage of motile spermatozoa at 6 hr post-thaw was observed for bull A 

with frozen-thawed semen (Table A-19; Figure 21).  Mean percentage of motile 

spermatozoa at 9 hr post-thaw did not differ (P > 0.09) for the interaction between bull X 

semen (Table 8).  Mean percentage of intact acrosomal membrane differed (P < 0.0001) 

due to an interaction between bull X semen (Table 9).  The highest (P < 0.05) percentage 

of acrosomal membrane retention was observed for bull C using fresh semen and the 

lowest (P < 0.05) percentage of acrosomal retention was observed for bulls A, C, E, and 

F using frozen-thawed semen (Table A-20; Figure 22).  Mean percentage of primary, 

secondary, and tertiary morphological abnormalities and of morphologically normal 

spermatozoa did not differ (P > 0.28) for the interaction between bull X semen (Table A-

20).  
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3.9.  Interaction of bull X extender type 

Mean percentage of motile spermatozoa at 3 and 6 hr post-thaw differed (P < 

0.02) due to an interaction between bull X extender (Table 8).  The highest (P < 0.05) 

percentage of motile spermatozoa at 3 hr post-thaw was observed for bull E with the 

IMV extender and the lowest (P < 0.05) percentage of motile spermatozoa at 3 hr post-

thaw was observed for bulls B and C with the milk extender (Table A-21; Figure A-33).  

The highest (P < 0.05) percentage of motile spermatozoa at 6 hr post-thaw was observed 

for bulls B, E, and F with the IMV extender and the lowest (P < 0.05) percentage of 

motile spermatozoa at 6 hr post-thaw was observed for bulls A and C with the milk 

extender (Table A-21; Figure A-34).  Mean percentage of motile spermatozoa at 0 and 9 

hr post-thaw did not differ (P > 0.09) for the interaction between bull X extender (Table 

8).  Mean percentage of intact acrosomal membranes, of primary, secondary, and tertiary 

morphological abnormalities, and of morphologically normal spermatozoa did not differ 

(P > 0.07) for the interaction between bull X extender (Table 9; Table A-22). 

3.10. Interaction of Collection date X bull X semen storage type 

Mean percentage of motile spermatozoa at 0 and 3 hr post-thaw differed (P < 

0.02) due to an interaction among CDate X bull X semen (Table 8).  Mean percentages 

for the interaction among CDate X bull X semen for 0 and 3 hr post-thaw are presented 

in Table A-23, Figure A-35 and Figure A-36. Mean percentage of motile spermatozoa at 

6 and 9 hr post-thaw did not differ (P > 0.07) for the interaction among CDate X bull X 

semen (Table 8).  Mean percentages for the interaction among CDate X bull X semen for 

6 and 9 hr post-thaw are presented in Table A-23.  Mean percentage of tertiary 
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morphological abnormalities and morphologically normal spermatozoa differed (P < 

0.05) due to an interaction among CDate X bull X semen (Table 9).  Mean percentages 

for the interaction among CDate X bull X semen for morphologically normal 

spermatozoa are presented in Table A-24 and Figure A-37.  Mean percentage of intact 

acrosomal membranes and of primary and secondary morphological abnormalities did 

not differ (P > 0.06) for the interaction among CDate X bull X semen (Table 9).  Mean 

percentages for the interaction among CDate X bull X semen for intact acrosomal 

membranes, primary, secondary, and tertiary morphological abnormalities are presented 

in Table A-24. 

3.11.  Interaction of collection date X semen storage type X extender type 

Mean percentage of motile spermatozoa at 0 through 9 hr post-thaw did not differ 

(P > 0.09) for the interaction among CDate X semen X extender (Table 8).  Mean 

percentages for the interaction among CDate X semen X extender for 0 through 9 hr 

post-thaw are presented in Table A-25.  Mean percentage of intact acrosomal 

membranes differed (P < 0.04) due to an interaction among CDate X semen X extender 

(Table 9).  Mean percentages for the interaction among CDate X semen X extender for 

intact acrosomal membranes are presented in Table A-26.  Mean percentage of primary, 

secondary, and tertiary abnormalities and morphologically normal spermatozoa did not 

differ (P > 0.08) for the interaction among CDate X semen X extender (Table 9).  Mean 

percentages for the interaction among CDate X semen X extender for primary, 

secondary, and tertiary morphological abnormalities and morphologically normal 

spermatozoa are presented in Table A-26. 
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3.12.  Interaction of bull X semen storage type X extender type 

Mean percentage of motile spermatozoa at 3 hr post-thaw differed (P < 0.05) due 

to an interaction among bull X semen X extender (Table 8).  Mean percentages for the 

interaction among bull X semen X extender for 3 hr post-thaw are presented in Table A-

27 and Figure A-38.  Mean percentage of motile spermatozoa at 0, 6, and 9 hr post-thaw 

did not differ (P > 0.09) for the interaction among bull X semen X extender (Table 8).  

Mean percentages for the interaction among bull X semen X extender for 0, 6, and 9 hr 

post-thaw are represented in Table A-27.  Mean percentage of intact acrosomal 

membranes, of primary, secondary, and tertiary abnormalities, and of morphologically 

normal spermatozoa did not differ (P > 0.11) for the interaction among bull X semen X 

extender (Table 9).  Mean percentages for the interaction among bull X semen X 

extender for intact acrosomal membrane, primary, secondary, and tertiary morphological 

abnormalities, and morphologically normal spermatozoa are represented in Table A-28. 

 

4.  Discussion  

4.1.  Semen storage type  

 Extensive reviews regarding cryopreservation of mammalian spermatozoa have 

illustrated that spermatozoal viability is decreased upon the freezing and thawing process 

[1,48,74].  A reduction in viable spermatozoa of approximately 33 % is observed upon 

post-thaw evaluation of frozen-thawed semen [70].  Our study compared percentages of 

motility, intact acrosomes, and morphological characteristics of spermatozoa between 

fresh and frozen semen. 
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 Fresh semen yielded higher percentages of motile spermatozoa at 0, 3, and 6 hr 

post-thaw and had higher percentages of intact acrosomes, tertiary abnormalities, and 

morphologically normal spermatozoa than frozen-thawed semen.  We also observed 

higher percentages of secondary abnormalities in frozen-thawed semen than fresh.  

Bruemmer et al. [73] evaluated the effects of low temperature storage (-196 ºC) on the 

viability of spermatozoa based upon staining.  The authors reported a decrease in 

spermatozoal viability of up to 45 % upon post-thaw examination.  While Bruemmer et 

al. [73] did not evaluate percentages for spermatozoal motility, acrosomal integrity, or 

morphological characteristics, their research supports ours in that we both observed a 

decrease in spermatozoa viability upon post-thaw examination.  In the current study, 

progressively motile sperm after 0, 3, an 6 hr of incubation were reduced by 44, 60, and 

58 % for frozen-thawed compared with fresh semen. 

Necrosis and apoptosis of spermatozoa are enhanced by cryopreservation.  Peña 

et al. [75] evaluated boar ejaculates for percentage of spermatozoal motility and of live 

spermatozoa and the occurrence of apoptotic and necrotic spermatozoa and observed a 

decrease in spermatozoal motility between fresh (63 %) and frozen (40 %) semen.  The 

authors evaluated the spermatozoa for the percentage of live, live early apoptotic, dead 

late apoptotic/early necrotic, and dead late necrotic cells in the sample based upon flow 

cytometry analysis.  Cells were treated with fluorescein-labeled Annexin-V and 

propidium iodide and microscopically evaluated for the uptake of green and or red stain 

by the sperm cells.  For fresh semen, Peña et al. [75] observed that 83 % of the cells 

were alive (no stain), 5 % were early apoptotic (green stain), 9 % were late 
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apoptotic/early necrotic (green and red stain), and 3 % were late necrotic (red).  For 

frozen-thawed semen, Peña et al. [75] observed that 37 % of the cells were alive (no 

stain), 6 % were early apoptotic (green stain), 36 % were late apoptotic/early necrotic 

(green and red stain), and 21 % were late necrotic (red).  The results of Peña et al. [75], 

clearly demonstrate a loss in spermatozoal motility and viability upon freezing and 

thawing.  Peña et al. [75] speculated that the procedures surrounding the entire process 

for extending, cooling, freezing, and thawing semen induce cellular apoptosis and 

necrosis in frozen-thawed spermatozoa.  In concurrence with the observations of Peña et 

al. [75], Lachaud et al. [76] also observed a decrease in spermatozoal motility, an 

increase in the percentage of dead cells, and an increased occurrence of necrotic and 

apoptotic cells after 24 hr of incubation and storage, but not cryopreservation of human 

sperm. The results of Lachaud et al. [76] lead the authors to speculate that the cause of 

increased spermatozoal death (loss of viability) and the decrease in motility are due to 

necrosis of the cell, but not apoptosis, because they did not observe an increase in DNA 

fragmentation or phosphatidylserine externalization, which would have occurred if the 

decreased motility and increased cell death were due to apoptosis.  Furthermore, Anzar 

et al. [77] reported that bull semen contained 17 % apoptotic sperm in fresh semen and 

31 % apoptotic sperm in frozen-thawed bovine semen.  Interestingly, Anzar et al. [77] 

observed a decrease in the number of necrotic cells for frozen-thawed semen as 

compared to fresh.  However, the authors reasoned that this decease in necrotic cell 

numbers is due to fragmentation of the spermatozoal membrane over the acrosomal 

region making it unable to be detected with fluorescent labeling.  Anzar et al. [77] did 
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not evaluate spermatozoal motility in fresh or frozen semen in their study, however, it 

can be speculated that the motility and viability (percentage of live cells) of bull 

spermatozoa will also be decreased as seen in boar [75] and human [76] spermatozoa 

due to the increased number of apoptotic and necrotic cells post-thaw. 

4.2.  Extender type  

Egg yolk-based extenders are utilized on a regular basis for semen processing in 

the beef cattle industry.  However, milk-based extenders also yield acceptable post-thaw 

percentages for motility, intact acrosomes, morphological characteristics and non-return 

rates [41,78]. Our study evaluated the effect of three extenders, egg yolk-citrate (EC), 

IMV, and skim milk (milk) on pooled fresh and frozen-thawed percentages of 

spermatozoal motility, and the effect of two extenders (egg yolk-citrate and IMV) on 

pooled fresh and frozen-thawed percentages of morphology, and of acrosomal integrity. 

Lower percentages for motility were observed for the milk extender than the EC 

or IMV extenders in our study.  At 6 hr post-thaw, the IMV extender had the highest 

percentage of motile spermatozoa, however the IMV and EC extenders were not 

significantly different in the percentage of motile spermatozoa for the 0, 3, or 9 hr post-

thaw examination.  Thun et al. [13] reported that a soybean extract extender (Biociphos-

Plus®) resulted in lower percentages for spermatozoal motility than the egg yolk-tris 

extenders packaged at 4 ºC and at room temperature.  This trend follows our observation 

of decreased percentages for motility in the skim milk extender and increased 

percentages for motility in the egg yolk-based extender, even though the processing 

across all of our treatments was completed at 4 ºC. 
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Higher percentages for intact acrosomes and secondary morphological 

abnormalities and lower percentages of morphologically normal spermatozoa were 

observed for the IMV extender than the EC extender.  However, no differences were 

observed between the EC and IMV extenders for primary and tertiary morphological 

abnormalities.  Our observations are supported by Senger et al. [16], who reported that 

higher percentages of intact acrosomes were obtained with the egg yolk-tris-based 

extender than for egg yolk-citrate or skim milk (65, 54, and 48 %, respectively).   In 

concurrence with our study, Thun et al. [13], evaluated the effects of Biociphos-Plus® 

and egg yolk-tris extenders packaged at 4 ºC and at room temperature on the percentage 

of morphologically normal spermatozoa and of primary and secondary morphological 

abnormalities.  The authors observed no differences in the percentage of 

morphologically normal spermatozoa and of primary and secondary morphological 

abnormalities between the egg yolk-tris-based extenders.  The Biociphos-Plus® had 

lower morphology percentages than the egg yolk-tris based extenders.  While Thun et al. 

[13] evaluated spermatozoal morphological characteristics for all three extender 

treatments; their results demonstrate the effectiveness of utilizing an egg yolk-based 

extender over a soybean-based extender. 

 4.3.  Interaction of semen storage type X extender type 

 Freezing and thawing cryopreserved spermatozoa for AI has a tremendous 

impact on spermatozoal motility and membrane integrity [75-77].  However, the type of 

extender also influences the viability of frozen-thawed spermatozoa upon the post-thaw 

evaluation [16,79].  It stands to reason, that an interaction between semen storage type 
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and extender type exists based on previous research that has demonstrated alterations in 

spermatozoa membrane integrity occur due to the freezing-thawing process.  Damage to 

the plasma membrane may alter the means by which various extenders protect the 

spermatozoa, thus altering the extender effectiveness between semen that is stored at 4 

ºC and semen that undergoes cryopreservation. 

No differences (P > 0.49) were observed between fresh and frozen-thawed semen 

or among the extenders when the samples were evaluated at 0 hr for motility.  The 

percentage of motile spermatozoa for the EC and IMV extenders did not differ for fresh 

semen; however, the IMV extender had a higher percentage of motile spermatozoa in 

frozen-thawed spermatozoa than the EC extender at the 3 hr post-thaw evaluation.  At 6 

hr of incubation at 37 ºC, both the IMV and EC extenders had a higher percentage of 

motile spermatozoa for both fresh and frozen-thawed spermatozoa than for the milk 

extender.  Our findings are supported by Senger et al. [16], who demonstrated that egg 

yolk-tris based extenders resulted in higher percentages of motile spermatozoa upon 

post-thaw than egg yolk-citrate or skim milk based extenders.  In concurrence with our 

results and those of Senger et al. [16], Schenk et al. [17] observed no significant 

differences among the three extenders for motility, with the exception of a higher 

percentage of motile spermatozoa for the egg yolk-citrate extender evaluated at 0 hr 

post-thaw.  Previous research [80,81] on low density lipoproteins (LDL) from hen egg 

yolk or milk solids suggests that higher percentages of motile spermatozoa from frozen-

thawed semen may be attained with the utilization of LDL in bovine seminal extenders 

as compared to the traditional egg yolk or milk extenders.  Moussa et al. [29] reported 
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that higher percentages of motile spermatozoa were observed for extenders containing 5 

and 10 % LDL (55 and 51 %, respectively) than for the commercial egg yolk-based 

TRILADYL® extender (27 %).  Even though our study did not evaluate the effectiveness 

of substituting LDL for whole egg yolk, we speculate that extenders composed strictly of 

egg yolk and pH buffers, may not provide an adequate level of cryopreservation as 

compared to alternative extender components. 

Acrosomal integrity, primary and tertiary morphological abnormalities, and 

morphologically normal spermatozoa, were not significant for the interaction between 

semen type and extender type.  However, in the fresh and frozen-thawed semen, the 

IMV extender had a higher percentage of secondary morphological abnormalities than 

the EC extender.  Our observation that acrosomal integrity is not influenced by extender, 

is supported by Schenk et al. [17], who also observed that the mean percentage of 

spermatozoa with an intact acrosome was not influenced by an egg yolk-citrate, egg 

yolk-tes-tris, or homogenized milk extender.   In contrast to our study and that of Schenk 

et al. [17], Senger et al. [16] reported that the percentage of intact acrosomes was higher 

for spermatozoa frozen in an egg yolk-tris-based extender than for egg yolk-citrate or 

skim milk-based extenders (65, 54, and 48 %, respectively).  Even though we did not 

analyze the frozen-thawed semen extended in skim milk for acrosomal integrity, we 

observed an increase of approximately 10 percentage points for intact acrosomes in the 

IMV-tris-based extender than in the egg yolk-citrate-based extenders as reported by 

Senger et al. [16].   
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The differences in spermatozoal post-thaw characteristics between the EC and 

IMV extenders could potentially be due to the effectiveness of the buffer and or the 

proprietary components of the IMV extender.  Egg yolk-citrate and egg yolk-tris have 

been the primary extenders utilized for semen processing for the last 50 years.  However, 

our results suggest that the use of a tris-based buffer may be advantageous over the 

citrate-based egg yolk buffer for enhancing motility and acrosomal integrity upon post-

thaw evaluation.  The proprietary components of the IMV extender may function to 

provide additional cryoprotection to the spermatozoa as the LDL fraction of egg yolk 

does.  Semen collection facilities may wish to utilize an egg yolk based extender that 

contains ingredients for the enhancement of spermatozoal viability post-thaw, whether it 

is in the form of a pH buffer, such as tris, or alternative components to the whole egg 

yolk, such as the IMV concentrate or the LDL fraction of egg yolk. 

Thacker and Almquist [15] demonstrated that the use of boiled skim milk and 

egg yolk-citrate extenders yield comparable percentages of motile spermatozoa when 

stored for 16 days.  In contrast, our study did not obtain comparable percentages of 

motile spermatozoa among the extender types.  This may be explained by our boiling 

technique or the 9 hr incubation at 37 ºC we utilized to determine motility.  Thacker and 

Almquist [15] also observed that spermatozoa extended in the boiled skim milk moved 

faster than those extended in egg yolk-citrate, an observation that we also made.  In our 

study, the egg yolk extenders appeared to be less viscous than the skim milk, opposite 

from what Thacker and Almquist [15] had reported, however, processing procedures for 
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pasteurizing skim milk may have been different than those of today, causing a 

discrepancy in our explanation of the faster movements in the milk extender.   

Research conducted by Foote and Kaproth [41] evaluating the effects of whole 

milk extenders with and without the addition of fructose to the extender yielded post-

thaw spermatozoal motility values approximately 10 percentage points higher than we 

observed at 0 hr post-thaw.  Foote and Kaproth [41] reported 44 and 46 % motile 

spermatozoa for the whole milk and whole milk plus fructose extenders, respectively.  

Mitchell and Doak [44] stated that acceptable post-thaw motility ranges from 30 to 70 

percent.  This suggests, that milk-based extenders have the potential to attain acceptable 

percentages of post-thaw spermatozoal characteristics, beyond what was observed in our 

study.  Further research is required on milk-based extenders in order to assess their value 

as bovine seminal extenders as compared to egg yolk-based extenders. 

4.4.  Collection date 

 Ejaculate characteristics vary from one ejaculate to the next depending on the 

collection frequency and the season of the year [59,82].  Environmental and 

management conditions surrounding the collection date have the potential to affect 

ejaculate characteristics, which in turn may alter the effectiveness of one seminal 

treatment over another.  Graham et al. [4] evaluated  the effect of three collection periods 

on the non-return rate of cows bred by AI and reported that variation existed among 

different collection periods and that the variation among collection periods affected the 

freezability and fertility.  The effect of individual variation among the collection dates 

was significant (P < 0.05) for  the percentage of motile spermatozoa at 0 hr incubation, 
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percentage of intact acrosomes, of primary, secondary, and tertiary morphological 

abnormalities, and of morphologically normal spermatozoa.  Even though variation 

exists, we observed significant interactions between CDate X bull, CDate X extender, 

CDate X bull X semen, and CDate X semen X extender for select treatments only.  It is 

difficult to interpret the interaction of CDate with bull, semen storage type, or seminal 

extender type since there were no consistent trends for any of the dependent variables. 

If the collection date resulted in an ejaculate of poorer quality, the freezing-

thawing process may be unduly stressful on the spermatozoa, thus reducing post-thaw 

viability.  The interaction of the extender components with the plasma membrane may 

vary among collection dates as well, thus affecting the level of protection offered by the 

base component of egg yolk or milk and potentially enhancing or limiting the 

effectiveness of the base component among different collection dates.  In chapter III we 

speculated that the variation among collection dates and collection date interactions were 

primarily due to the collection personnel, order of collection and seasonality.  These 

same hypotheses hold true for this chapter.   

4.5.  Bull 

 Animal individuality influences the outcome of spermatozoal viability [70] as 

was demonstrated in our study.  For all treatment groups, with the exception of motility 

at 9 hr incubation and tertiary morphological abnormalities, a high (P < 0.008) degree of 

variation among bulls was observed.  However, even though a high degree of variation 

exists, we observed significant interactions only between bull X semen and bull X 

extender for motility at 0, 3, and 6 hr of incubation, and percentage of intact acrosomes 
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and for motility at 3 and 6 hr of incubation, respectively.  The heritability of 

reproductive traits is one possible explanation for our observations. 

The heritability of various traits, such as, ejaculate volume, spermatozoal 

concentration, motility and morphological characteristics may also influence the 

outcome of spermatozoal viability among bulls.  While all of our bulls were from the 

same contemporary group, only two of the six were closely related (half brothers on the 

sire side).  Mathevon et al. [24] determined of heritability estimates on volume, 

spermatozoal concentration, motility, total number of spermatozoa, as well as the total 

number of motile spermatozoa for each ejaculate.  Bulls were divided into two groups, 

young and mature, based upon age and then heritability and repeatability were calculated 

from each group.  Even though Mathevon et al. [24] evaluated groups of bulls, 

heritabilities for bulls in the young group were estimated to be 0.24, 0.52, 0.31, 0.38, and 

0.49 for spermatozoal volume, concentration, motility, total number of sperm, and total 

motile sperm, respectively.   

 

5.  Conclusion 

 Freezing and thawing spermatozoa resulted in a lower percentage of motile 

spermatozoa and intact acrosome, and in a higher percentage of primary, secondary, and 

tertiary morphological abnormalities than fresh semen for all three extenders evaluated.  

The motility percentage in the skim milk extender was lower than for the EC and IMV 

extenders for incubation durations of 0 to 6 hr. Motility was not significantly different 

between the EC and IMV extenders until the 6 hr incubation, at which time, the IMV 
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extender yielded more motile spermatozoa than the EC extender.  A higher percentage of 

intact acrosomes and secondary morphological abnormalities were observed in the IMV 

extender; however, the EC extender had a higher percentage of morphologically normal 

spermatozoa than the IMV extender. Collection date and the variation among bulls 

affected motility, intact acrosomes, and morphological characteristics of the 

spermatozoa.  From our results, we conclude that the EC and IMV extenders are 

comparable in their effectiveness in promoting spermatozoal motility and livability post-

thaw when incubated at 37 ºC for 9 hr in vitro and that the IMV extender is more 

conducive to acrosomal retention, while the EC extender is more efficacious in the 

promotion of morphologically normal spermatozoa.  Compiling our observations, we 

recommend the use of the IMV extender over the EC or the skim milk extenders due to 

spermatozoal motility in combination with enhanced retention of the acrosomal 

membrane that is required for the completion of fertilization. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

1.  Experiment 1 

The treatment combination of a 4 hr cooling duration and a 2 hr equilibration 

time with glycerol does not result in the optimum viability of spermatozoa after freezing 

and thawing.  The results presented in this thesis, support the following conclusions: 

1. A cooling duration of 4 hr before equilibration with glycerol resulted in the 

highest percentage of motile spermatozoa as assessed upon post-thaw 

evaluation, 

2. An equilibration with glycerol of 4 or 6 hr resulted in comparable 

percentages of intact acrosomes and of morphologically normal spermatozoa, 

indicating that either 4 or 6 hr of glycerol equilibration is adequate for the 

retrieval of optimum acrosomal integrity and morphological characteristics as 

assessed upon post-thaw evaluation,  

3. A cooling duration of 4 hr in combination with equilibration with glycerol for 

4 hr resulted in comparable percentages of motile spermatozoa and of 

acrosomal integrity as compared to a cooling duration of 4 hr in combination 

with equilibration with glycerol for 6 hr, and  

4. Significant differences exist among collection dates as well as individual 

bulls. 
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Future studies should evaluate the effects of cooling durations and equilibration 

times with glycerol that range between 2 and 4 hr on the percentage of spermatozoal 

motility, acrosomal integrity, and morphological characteristics. Future data may 

indicate that the duration of semen processing and freezing could be reduced from 8 hr 

to a total of 5 to 7 hr, which would more efficiently address the constraints of 

commercial semen processing. 

We are not aware of any reports that specifically recommend a 4 hr cooling 

duration and a 4 hr equilibration time with glycerol.  However, results of this study 

generally coincide with similar findings in regards to cooling duration and equilibration 

with glycerol.  Upon review of the findings of the current experiment and consideration 

of the constraints imposed upon commercial semen collection facilities, we reject our 

hypothesis that the treatment combination of a 4 hr cooling duration and a 2 hr 

equilibration time with glycerol will result in the optimization of spermatozoal 

characteristics after freezing and thawing. 

 

2.  Experiment 2 

The hypothesized rank of the three extenders as egg yolk-citrate, IMV, and skim 

milk in relevance to their beneficial effects on spermatozoal viability after freezing and 

thawing does not result in the correct order of rank for the optimum viability of 

spermatozoal characteristics after freezing and thawing.  The results presented in this 

thesis, support the following conclusions: 
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1. Frozen-thawed spermatozoa had significantly lower percentages of 

spermatozoal motility, acrosomal integrity, and normal morphology than 

fresh semen for all three extender types, 

2. Semen frozen in skim milk had lower percentages of spermatozoal motility 

than semen frozen in extenders composed of egg yolk-citrate or IMV, 

3. Semen evaluated as fresh or frozen-thawed in the egg yolk-citrate and IMV 

extenders were comparable in their percentages for spermatozoal motility,  

4. Semen evaluated as fresh in the IMV extender had higher percentages of 

intact acrosome than the egg yolk-citrate extender, 

5. Semen evaluated as fresh in the egg yolk-citrate extender had higher 

percentages of morphologically normal spermatozoa than the IMV extender, 

and 

6. Significant differences exist among collection dates as well as among bulls. 

Future studies on the effects of semen type (fresh or frozen) and extender type on 

percentage of spermatozoal motility, acrosomal integrity, and morphological 

characteristics should be designed to optimize the effectiveness of egg yolk-citrate or 

egg yolk-tris extenders on post-thaw spermatozoa viability.  The current study utilized a 

glycerol level of 7 % for all three extenders to eliminate the possibility of confounding 

the results with differing concentrations of glycerol for each of the extenders.  Wiggin 

and Almquist [83] remarked that heated skim milk-based extenders yielded higher 

percentages of viable spermatozoa upon post-thaw when a 10 % level of glycerol was 
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employed.  The effects of including low density lipoproteins with the IMV extender on 

post-thaw spermatozoal viability should also be evaluated. 

The results of this study confirm the findings of Senger et al. [16] and Garcia and 

Graham [80], who reported that egg yolk-tris-based extenders, similar to the IMV 

extender utilized in the current study, had higher post-thaw viability than the egg yolk-

citrate or skim milk extenders.  We reject our hypothesis that the rank of the extenders to 

provide the optimal viability of spermatozoa after freezing and thawing would be egg 

yolk-citrate, IMV, and skim milk. 
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Table A-1 
Experiment 1:  Mean percentage of progressively motile, frozen-thawed 
spermatozoa at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation by collection 
date and by bull. 
 
Variable M0  M3 M6 M9 
    
CDate            
1 32   24 a  10 b,c  2 b 
2 31   23 a  8 c  2 b 
3 31   18 b  12 a,b  5 a 
4 32   25 a  11 a,b  .  
5 31   24 a  13 a,b  5 a 
6 29   17 b  8 c  3 a 
Pooled SEM 0.91   1.04   0.92   0.51  
            
Bull            
A 30 b  16 d  3 d  0 d 
B 33 a  25 b  16 a  5 b 
C 28 b  21 c  11 b  3 c 
D 33 a  24 b  7 c  0 d 
E 29 b  18 d  7 c  2 c 
F 33 a  28 a  19 a  10 a 
Pooled SEM 0.91   1.04   0.92   0.51  
 
a,b,c,d LSMeans within a column by variable with different superscripts differ 
(P < 0.05). 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 
5-13-2003, 5-16-2003, 5-19-2003, 5-22-2003, 5-27-2003, and 5-30-2003, 
respectively. 
Any column containing “.” represents no data entry in the data set. 
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Table A-2 
Experiment 1:  Mean percentage of intact acrosomal membrane (PIA), percentage primary (1º), 
secondary (2º), and tertiary (3º) abnormalities, and percentage morphologically normal (N) 
spermatozoa by collection date and by bull. 
 
Variable PIA  1º 2º 3º   N
     
CDate               
1 68 a  6 a,b  23 c  3 a,b  76 b 
2 68 a,b  5 c  18 d  3 a  84 a 
3 64 b  6 b,c  27 b  1 c  73 b,c

4 67 a,b  7 a  27 b  2 b,c  71 c 
5 66 a,b  7 a,b  29 b  1 c  69 c,d

6 54 c  6 a,b,c  34 a  0 d  66 d 
Pooled SEM 1.37   0.48   1.28   0.29   1.67  
               
Bull               
A 61 c  4 c  28 a,b  2 a,b  72 b 
B 76 a  4 c  19 d  2 b,c  86 a 
C 61 c  3 c  31 a  1 d  73 b 
D 70 b  7 b  24 c  1 c,d  75 b 
E 62 c  10 a  27 b,c  3 a  66 c 
F 57 d  8 b  29 a,b  1 b,c,d  67 c 
Pooled SEM 1.37   0.48   1.28   0.29   1.67  
 

a,b,c,d LSMeans within a column by variable with different superscripts differ (P < 0.05). 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 5-13-2003, 5-16-2003, 
5-19-2003, 5-22-2003, 5-27-2003, and 5-30-2003, respectively. 
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Table A-3 
Experiment 1:  Mean percentage of progressively motile, frozen-thawed 
spermatozoa at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for collection 
date X bull. 
 
CDate x Bull M0  M3 M6 M9
           
1 x A 31   13   2   0
1 x B 33   30   21   9
1 x C 29   26   11   0
1 x D 31   24   9   0
1 x E 33   18   1   0
1 x F 36   33   19   2
2 x A 34   17   2   0
2 x B 31   26   18   5
2 x C 29   24   5   1
2 x D 33   31   5   1
2 x E 33   19   8   1
2 x F 25   23   13   6
3 x A 33   9   4   0
3 x B 27   18   11   5
3 x C 30   18   16   10
3 x D 36   20   8   0
3 x E 28   21   16   8
3 x F 31   23   18   7
4 x A 31   23   2   .
4 x B 40   32   17   .
4 x C 26   24   16   .
4 x D 31   24   6   .
4 x E 31   18   5   .
4 x F 31   30   20   .
5 x A 27   24   10   2
5 x B 32   23   19   3
5 x C 30   19   10   5
5 x D 38   28   7   0
5 x E 22   13   8   0
5 x F 38   34   25   18
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Table A-3 
Continued, 
 
CDate x Bull M0  M3 M6 M9
           
6 x A 22   11   0   0
6 x B 33   19   12   5
6 x C 27   13   7   0
6 x D 28   17   6   0
6 x E 27   17   8   0
6 x F 36   28   18   15
Pooled SEM 2.24   2.54   2.26   1.25
 
CDate = date of ejaculate collection, where, 1 through 6 correspond 
to 5-13-2003, 5-16-2003, 5-19-2003, 5-22-2003, 5-27-2003, and 
5-30-2003, respectively. 
Any column containing “.” represents no data entry in the data set. 
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Table A-4 
Experiment 1:  Mean percentage of intact acrosomal membrane (PIA), percentage primary (1º), 
secondary (2º), and tertiary (3º) abnormalities, and percentage morphologically normal (N) 
spermatozoa for collection date X bull. 
 
CDate x Bull PIA   1º 2º 3º  N
     
1 x A 71   3   30   5   68
1 x B 89   5   20   3   81
1 x C 59   3   28   2   75
1 x D 73   8   24   2   73
1 x E 67   8   19   2   83
1 x F 49   10   18   2   77
2 x A 62   2   19   3   87
2 x B 87   4   9   3   99
2 x C 65   3   21   1   88
2 x D 65   8   16   2   85
2 x E 77   2   21   7   77
2 x F 49   11   23   2   70
3 x A 58   5   30   1   69
3 x B 70   3   19   1   89
3 x C 62   2   32   1   72
3 x D 67   5   21   1   83
3 x E 65   12   28   1   63
3 x F 61   7   34   2   61
4 x A 71   5   27   2   73
4 x B 75   4   17   3   88
4 x C 61   4   33   1   70
4 x D 64   7   26   1   74
4 x E 67   18   23   4   60
4 x F 64   7   36   1   62
5 x A 65   7   24   1   74
5 x B 67   4   24   2   79
5 x C 65   3   38   0   64
5 x D 76   9   23   0   76
5 x E 61   12   30   4   58
5 x F 61   7   35   1   61
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Table A-4 
Continued, 
 
CDate x Bull PIA   1º 2º 3º  N
               
6 x A 41   4   38   1   63  
6 x B 68   6   23   0   79  
6 x C 55   4   36   0   66  
6 x D 72   9   34   1   61  
6 x E 34   6   43   0   55  
6 x F 56   7   30   0   69  
Pooled SEM 3.35   1.17   3.14   0.71   4.08  
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 5-13-2003, 5-16-2003, 
5-19-2003, 5-22-2003, 5-27-2003, and 5-30-2003, respectively. 
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Table A-5 
Experiment 1:  Percentage of progressively motile, frozen-thawed spermatozoa 
at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for collection date X cooling 
duration. 
 
CDate x CD M0  M3 M6 M9 
    
1 x 2 31   23   9   2 b 
1 x 4 33   24   12   2 b 
2 x 2 31   23   7   2 b 
2 x 4 31   24   10   2 b 
3 x 2 30   18   10   3 b 
3 x 4 31   19   14   7 a 
4 x 2 29   22   9   .  
4 x 4 34   28   13   .  
5 x 2 29   22   11   3 b 
5 x 4 33   25   15   6 a 
6 x 2 28   15   8   3 b 
6 x 4 29   20   9   3 b 
Pooled SEM 1.29   1.47   1.30   0.72  
 
 

a,b LSMeans within a column by variable with different superscripts differ 
(P < 0.05). 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 
5-13-2003, 5-16-2003, 5-19-2003, 5-22-2003, 5-27-2003, and 5-30-2003, 
respectively. 
CD = cooling duration at 4ºC, with 2 representing a 2 hr cooling 
duration and 4 representing a 4 hr cooling duration. 
Any column containing “.” represents no data entry in the data set. 
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Table A-6 
Experiment 1:  Mean percentage of intact acrosomal membrane (PIA), percentage primary 
(1º), secondary (2º), and tertiary (3º) abnormalities, and percentage morphologically normal 
(N) spermatozoa for collection date X cooling duration. 
 
CDate x CD PIA   1º 2º 3º  N
     
1 x 2 68   6   24   3   75  
1 x 4 68   6   22   2   78  
2 x 2 64   5   18   3   83  
2 x 4 71   5   18   3   86  
3 x 2 63   5   28   2   73  
3 x 4 64   6   27   1   73  
4 x 2 68   6   29   2   70  
4 x 4 67   8   25   2   72  
5 x 2 67   7   29   1   69  
5 x 4 65   7   30   1   68  
6 x 2 55   6   34   0   66  
6 x 4 53   6   34   0   65  
Pooled SEM 1.94   0.67   1.81   0.41   2.36  
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 5-13-2003, 5-16-2003, 
5-19-2003, 5-22-2003, 5-27-2003, and 5-30-2003, respectively. 
CD = cooling duration at 4ºC, with 2 representing a 2 hr cooling duration and 4 representing 
a 4 hr cooling duration. 
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Table A-7 
Experiment 1:  Mean percentage of progressively motile, frozen-thawed spermatozoa 
at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for collection date X 
equilibration with glycerol. 
 
CDate x EG M0  M3 M6 M9  
    
1 x 2 31   23   12   1  
1 x 4 32   24   8   2  
1 x 6 34   25   11   2  
2 x 2 28   22   6   2  
2 x 4 33   22   9   3  
2 x 6 31   25   10   2  
3 x 2 30   17   10   3  
3 x 4 31   20   14   6  
3 x 6 31   18   12   6  
4 x 2 31   24   10   .  
4 x 4 29   25   13   .  
4 x 6 35   27   10   .  
5 x 2 31   24   12   5  
5 x 4 29   22   12   4  
5 x 6 33   25   16   5  
6 x 2 29   17   7   3  
6 x 4 29   19   7   3  
6 x 6 28   16   10   4  
Pooled SEM 1.58   1.80   1.60   0.88  
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 5-13-2003, 
5-16-2003, 5-19-2003, 5-22-2003, 5-27-2003, and 5-30-2003, respectively. 
EG = equilibration with glycerol at 4ºC, with 2, 4, and 6 representing 2 hr, 4hr, 
and 6hr equilibration times with glycerol, respectively. 
Any column containing “.” represents no data entry in the data set. 
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Table A-8 
Experiment 1:  Mean percentage of intact acrosomal membrane (PIA), percentage primary (1º), 
secondary (2º), and tertiary (3º) abnormalities, and percentage morphologically normal (N) 
spermatozoa for collection date X equilibration with glycerol. 
 
CDate x EG PIA   1º 2º 3º  N
     
1 x 2 69   6   23   2   77  
1 x 4 69   6   23   3   77  
1 x 6 65   7   24   3   75  
2 x 2 64   4   17   3   85  
2 x 4 67   5   21   3   81  
2 x 6 72   5   16   3   87  
3 x 2 59   6   26   1   74  
3 x 4 63   6   29   1   71  
3 x 6 69   5   27   1   74  
4 x 2 64   7   28   2   70  
4 x 4 67   7   30   2   68  
4 x 6 71   7   23   2   75  
5 x 2 65   7   29   1   69  
5 x 4 65   7   30   1   67  
5 x 6 68   6   28   1   70  
6 x 2 51   8   33   0   65  
6 x 4 56   5   37   0   63  
6 x 6 55   5   32   1   68  
Pooled SEM 2.37   0.83   2.22   0.50   2.88  
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 5-13-2003, 5-16-2003, 
5-19-2003, 5-22-2003, 5-27-2003, and 5-30-2003, respectively. 
EG = equilibration with glycerol at 4ºC, with 2, 4, and 6 representing 2 hr, 4hr, and 6hr 
equilibration times with glycerol, respectively. 
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Table A-9 
Experiment 1:  Mean percentage of progressively motile, frozen-thawed 
spermatozoa at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for bull X 
cooling duration. 
 
Bull x CD M0  M3 M6 M9 
    
A x 2 28   14  2   0e 
A x 4 31   18  4   0e 
B x 2 32   24  16   3c 
B x 4 33   26  17   7b 
C x 2 27   19  8   3c,d 
C x 4 30   22  14   4c 
D x 2 33   24  6   0e 
D x 4 33   23  8   0e 
E x 2 26   15  5   1d,e 
E x 4 31   20  9   3c 
F x 2 32   28  16   10a 
F x 4 33   29  21   10a 
Pooled SEM 1.29   1.47  1.30   0.72 
 
 

a,b,c,d,e LSMeans within a column by variable with different superscripts differ 
(P < 0.05). 
CD = cooling duration at 4ºC, with 2 representing a 2 hr cooling duration and 4 
representing a 4 hr cooling duration. 
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Table A-10 
Experiment 1:  Mean percentage of intact acrosomal membrane (PIA), percentage primary (1º), 
secondary (2º), and tertiary (3º) abnormalities, and percentage morphologically normal (N) 
spermatozoa for bull X cooling duration. 
 
Bull x CD PIA   1º 2º 3º  N
              
A x 2 63   4   29   3   69
A x 4 60   4   27   2   75
B x 2 75   4   20   2   86
B x 4 77   5   18   2   86
C x 2 60   3   30   1   73
C x 4 62   3   33   1   72
D x 2 70   7   26   1   72
D x 4 69   7   21   1   79
E x 2 62   9   28   3   66
E x 4 62   11   27   3   66
F x 2 55   8   29   1   68
F x 4 58   8   30   2   66
Pooled SEM 1.94   0.67   1.81   0.41   2.36
 
 
CD = cooling duration at 4ºC, with 2 representing a 2 hr cooling duration and 4 representing 
a 4 hr cooling duration. 
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Table A-11 
Experiment 1:  Mean percentage of progressively motile, frozen-thawed 
Spermatozoa at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for bull X 
equilibration with glycerol. 
 
Bull x EG M0  M3 M6 M9 
   
A x 2 28   14   3   0 
A x 4 32   18   4   0 
A x 6 29   16   3   1 
B x 2 32   25   14   3 
B x 4 33   23   16   6 
B x 6 33   27   18   6 
C x 2 27   18   11   3 
C x 4 28   21   10   3 
C x 6 30   23   11   4 
D x 2 32   23   5   0 
D x 4 33   24   7   0 
D x 6 34   24   8   0 
E x 2 26   17   6   2 
E x 4 29   19   7   3 
E x 6 32   16   9   2 
F x 2 34   28   17   8 
F x 4 30   26   18   9 
F x 6 35   31   20   11 
Pooled SEM 1.58   1.80   1.60   0.88 
 
 
EG = equilibration with glycerol at 4ºC, with 2, 4, and 6 representing 2 hr, 4hr, 
and 6hr equilibration times with glycerol, respectively. 
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Table A-12 
Experiment 1:  Mean percentage of intact acrosomal membrane (PIA), percentage primary 
(1º), secondary (2º), and tertiary (3º) abnormalities, and percentage morphologically normal 
(N) spermatozoa for bull X equilibration with glycerol. 
 
Bull x EG PIA   1º 2º 3º  N
              
A x 2 58   4   28   2   74
A x 4 63   5   29   2   70
A x 6 63   5   27   3   73
B x 2 76   4   19   2   86
B x 4 74   4   19   1   87
B x 6 78   5   18   2   85
C x 2 59   3   30   0   75
C x 4 61   3   35   1   68
C x 6 63   3   30   1   75
D x 2 70   8   24   1   74
D x 4 66   6   24   1   77
D x 6 73   7   24   1   75
E x 2 58   10   26   2   66
E x 4 64   10   29   3   63
E x 6 64   8   27   3   69
F x 2 52   9   29   2   66
F x 4 59   8   35   1   61
F x 6 59   8   24   2   72
Pooled SEM 2.37   0.83   2.22   0.50   2.88
 
 
EG = equilibration with glycerol at 4ºC, with 2, 4, and 6 representing 2 hr, 4hr, and 6hr 
equilibration times with glycerol, respectively. 
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Table A-13 
Experiment 2:  Mean percentage of progressively motile, frozen-thawed 
spermatozoa at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation by 
collection date and by bull. 
 
Variable M0   M3 M6 M9
    
CDate           
1 42 a  30   16   3
2 43 a  32   17   4
3 37 b  31   18   5
4 40 a,b  30   18   6
5 41 a  31   19   7
6 41 a  28   16   2
Pooled SEM 1.26   1.19   1.52   1.31
           
Bull           
A 39 b,c  29 b  11 d  1
B 37 c  27 b  19 a,b  4
C 42 a,b  28 b  17 b,c  6
D 42 a,b  27 b  14 c,d  2
E 44 a  35 a  22 a  9
F 40 b,c  35 a  20 a,b  6
Pooled SEM 1.26   1.19   1.52   1.31
 
a,b,c,d LSMeans within a column by variable with different superscripts differ 
(P < 0.05). 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 
6-13-2003, 6-17-2003, 6-20-2003, 6-24-2003, 6-27-2003, and 7-1-2003, 
respectively. 
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Table A-14 
Experiment 2:  Mean percentage of intact acrosomal membrane (PIA), 
percentage primary (1º), secondary (2º), and tertiary (3º) morphological 
abnormalities, and  percentage of morphologically normal (N) spermatozoa by 
collection date and by bull. 

 

Variable PIA   1º 2º 3º  N  
               
CDate               
1 63 a,b  7   27 a  2 a  71 c 
2 66 a  7   17 d  1 b  85 a 
3 60 b  7   23 b  0 c  78 b 
4 62 a,b  8   21 b,c  1 b  78 b 
5 64 a  10   18 d  0 b,c  81 a,b 
6 43 c  9   20 c,d  1 b  80 b 
Pooled SEM 1.40   0.52   1.07   0.23   1.64  
               
Bull               
A 54 d  7 a,b,c  23 a  1   77 b 
B 63 a,b  5 c  20 b  1   86 a 
C 59 b,c  6 c  25 a  1   77 b 
D 65 a  11 a,b  19 b,c  1   77 b 
E 60 b,c  7 b,c  19 c  1   85 a 
F 56 c,d  12 a  22 a,b  1   73 b 
Pooled SEM 1.40   0.52   1.07   0.23   1.64  
 
 
a,b,c,d LSMeans within a column by variable with different superscripts differ  
(P < 0.05). 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 6-13-2003, 
6-17-2003, 6-24-2003, 6-27-2003, and 7-1-2003, respectively. 
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Table A-15 
Experiment 2:  Mean percentage of progressively motile, frozen-thawed 
spermatozoa at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for 
collection date X bull. 
 
CDate x Bull M0   M3 M6 M9
    
1 x A 45   33   8   1
1 x B 34   21   9   2
1 x C 46   31   19   6
1 x D 47   25   17   0
1 x E 43   31   20   5
1 x F 39   36   20   6
2 x A 42   29   7   1
2 x B 43   33   21   2
2 x C 43   31   16   6
2 x D 42   25   15   1
2 x E 44   35   24   9
2 x F 42   40   20   8
3 x A 36   30   13   1
3 x B 28   27   25   3
3 x C 39   34   19   9
3 x D 44   32   9   1
3 x E 44   36   21   10
3 x F 29   28   25   3
4 x A 41   23   9   1
4 x B 39   31   20   4
4 x C 42   27   19   6
4 x D 36   25   21   8
4 x E 36   37   18   9
4 x F 44   37   19   8
5 x A 37   31   12   3
5 x B 44   30   26   11
5 x C 39   21   15   5
5 x D 40   33   18   2
5 x E 45   37   26   11
5 x F 40   31   17   8
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Table A-15 
Continued, 
 
CDate x Bull M0   M3 M6 M9
    
6 x A 33   27   19   1
6 x B 33   21   12   0
6 x C 41   26   16   1
6 x D 43   24   5   0
6 x E 49   32   22   9
6 x F 45   39   20   2
Pooled SEM 3.07   2.91   3.73   3.22
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 
6-13-2003, 6-17-2003, 6-20-2003, 6-24-2003, 6-27-2003, and 7-1-2003, 
respectively. 
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Table A-16 
Experiment 2:  Mean percentage of intact acrosomal membrane (PIA), percentage 
primary (1º), secondary (2º), and tertiary (3º) morphological abnormalities, and 
percentage of morphologically normal (N) spermatozoa for collection date X  bull. 
 
 
CDate x Bull PIA   1º 2º 3º  N 
              
1 x A 48   8   35   3   58 
1 x B 68   2   26   0   86 
1 x C 63   5   30   4   66 
1 x D 72   9   18   1   83 
1 x E 63   7   30   1   70 
1 x F 62   13   25   3   64 
2 x A 64   5   21   1   83 
2 x B 75   7   13   1   93 
2 x C 66   6   21   0   83 
2 x D 70   9   21   1   76 
2 x E 64   7   13   1   94 
2 x F 55   11   15   2   84 
3 x A 61   6   25   0   78 
3 x B 65   4   22   0   84 
3 x C 58   5   24   0   81 
3 x D 55   11   25   1   70 
3 x E 62   6   17   0   90 
3 x F 56   11   29   0   67 
4 x A 61   5   20   2   82 
4 x B 72   10   14   2   84 
4 x C 59   5   34   1   68 
4 x D 66   11   20   1   73 
4 x E 66   4   19   0   89 
4 x F 49   12   22   0   74 
5 x A 60   8   16   1   85 
5 x B 61   5   17   1   90 
5 x C 59   11   20   0   77 
5 x D 78   13   19   1   75 
5 x E 64   11   19   1   79 
5 x F 64   11   16   0   82 
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Table A-16 
Continued, 
 
CDate x Bull PIA   1º 2º 3º  N 
              
6 x A 32   11   21   1   75 
6 x B 38   4   26   1   79 
6 x C 51   5   20   0   87 
6 x D 47   15   12   0   85 
6 x E 39   7   15   1   90 
6 x F 51   13   24   4   65 
Pooled SEM 3.44   1.28   2.62   0.56   4.01 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 6-13-2003, 
6-17-2003, 6-24-2003, 6-27-2003, and 7-1-2003, respectively. 
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Table A-17 
Experiment 2:  Mean percentage of progressively motile, frozen-thawed spermatozoa 
at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for collection date X extender. 
 
CDate x Extender M0  M3 M6 M9 
    
1 x 1 44   36   14   1 
1 x 2 40   23   9   4 
1 x 3 43   30   24   4 
2 x 1 43   31   17   2 
2 x 2 43   27   8   5 
2 x 3 43   38   26   6 
3 x 1 41   33   21   5 
3 x 2 28   23   8   2 
3 x 3 40   38   26   6 
4 x 1 40   36   15   2 
4 x 2 38   18   11   7 
4 x 3 42   36   27   9 
5 x 1 46   34   20   5 
5 x 2 34   22   10   4 
5 x 3 42   36   26   11 
6 x 1 45   33   16   4 
6 x 2 32   15   7   1 
6 x 3 45   36   24   2 
Pooled SEM 2.17   2.06   2.63   2.28 
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 
6-13-2003, 6-17-2003, 6-20-2003, 6-24-2003, 6-27-2003, and 7-1-2003, 
respectively. 
Extender = seminal extender type, where, 1 through 3 correspond to egg 
yolk-citrate, skim milk, and IMV, respectively. 
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Table A-18 
Experiment 2:  Mean percentage of intact acrosomal membrane (PIA), percentage 
primary (1º), secondary (2º), and tertiary (3º) morphological abnormalities, and 
percentage of morphologically normal (N) spermatozoa for collection date X 
extender. 

 
CDate x Extender PIA  1º 2º 3º   N 
               
1 x 1 55   8   22   2   78  
1 x 3 70   7   33   2   64  
2 x 1 60   7   16   1   89  
2 x 3 71   8   19   1   82  
3 x 1 55   7   21   0   82  
3 x 3 65   7   26   0   74  
4 x 1 59   10   16   1   85  
4 x 3 64   7   27   1   72  
5 x 1 61   10   16   1   83  
5 x 3 67   9   20   0   80  
6 x 1 39   8   19   1   82  
6 x 3 46   10   21   0   77  
Pooled SEM 1.99   0.74   1.51   0.32   2.32  
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 6-13-2003, 
6-17-2003, 6-24-2003, 6-27-2003, and 7-1-2003, respectively. 
Extender = seminal extender type, where, 1 and 3 correspond to egg yolk-citrate and 
IMV, respectively. 
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Table A-19 
Experiment 2:  Mean percentage of progressively motile, frozen-thawed 
spermatozoa at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for bull X 
semen storage type.  
 
Bull x Semen M0  M3 M6 M9 
    
A x 1 55 a  48 a  21 c,d  2 
A x 2 23 e  10 f  1 h  0 
B x 1 48 b  36 c  24 b,c  4 
B x 2 26 e  19 d,e  13 e,f  3 
C x 1 55 a  41 b  28 a,b  9 
C x 2 28 d,e  15 e,f  7 g,h  2 
D x 1 50 b  36 c  18 d,e  1 
D x 2 34 c  19 d,e  10 f,g  2 
E x 1 55 a  49 a  30 a  11 
E x 2 32 c,d  20 d  13 e,f  7 
F x 1 51 a,b  49 a  25 a,b,c  5 
F x 2 28 d,e  21 d  16 d,e,f  7 
Pooled SEM 1.78   1.68   2.15   1.86 
 
 
a,b,c,d,e,f,g,h LSMeans within a column with different superscripts differ (P < 0.05). 
Semen = semen storage type, where, 1 denotes fresh semen and 2 denotes 
frozen-thawed semen. 
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Table A-20 
Experiment 2:  Mean percentage of intact acrosomal membrane (PIA), percentage 
primary (1º), secondary (2º), and tertiary (3º) morphological abnormalities, and 
percentage of morphologically normal (N) spermatozoa for bull X semen storage 
type. 
 
Bull x Semen PIA   1º 2º 3º  N 
              
A x 1 88 c,d  6   17   2   85 
A x 2 20 g  8   29   0   68 
B x 1 93 b,c  4   13   2   97 
B x 2 33 f  7   26   0   75 
C x 1 99 a  6   18   2   86 
C x 2 19 g  6   31   0   68 
D x 1 85 d  11   13   1   84 
D x 2 44 e  12   25   0   69 
E x 1 95 a,b  6   10   1   98 
E x 2 24 g  8   27   0   72 
F x 1 91 b,c  11   13   3   84 
F x 2 21 g  13   31   0   61 
Pooled SEM 1.99   0.74   1.51   0.32   2.32 
 
a,b,c,d,e,f,g LSMeans within a column by variable with different superscripts differ 
(P < 0.05). 
Semen = semen storage type, where, 1 denotes fresh semen and 2 denotes 
frozen-thawed semen. 
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Table A-21 
Experiment 1:  Mean percentage of progressively motile, frozen-thawed 
spermatozoa at 0 (M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for bull X  
extender. 
 
Bull x Extender M0   M3 M6 M9
    
A x 1 41   31 c,d,e  11 e,f,g  0
A x 2 35   22 f  5 g  3
A x 3 42   34 a,b,c,d  18 c,d,e  1
B x 1 41   31 c,d,e  19 c  2
B x 2 30   15 g  8 f,g  3
B x 3 40   35 a,b,c,d  29 a  7
C x 1 45   35 a,b,c,d  19 c  7
C x 2 37   15 g  6 g  3
C x 3 43   35 a,b,c,d  27 a,b  7
D x 1 45   30 d,e  18 c,d  1
D x 2 39   16 f,g  10 f,g  2
D x 3 42   35 a,b,c,d  15 c,d,e,f  3
E x 1 43   38 a,b  20 b,c  8
E x 2 40   28 e  14 c,d,e,f  7
E x 3 47   39 a  31 a  11
F x 1 43   36 a,b,c  17 c,d,e  2
F x 2 35   32 b,c,d,e  11 d,e,f,g  6
F x 3 41   37 a,b,c  33 a  10
Pooled SEM 2.17   2.06   2.63   2.28
 
 

a,b,c,d,e,f,g LSMeans within a column with different superscripts differ (P < 0.05). 
Extender = seminal extender type, where, 1 through 3 correspond to egg 
yolk-citrate, skim milk, and IMV, respectively. 
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Table A-22 
Experiment 2:  Mean percentage of intact acrosomal membrane (PIA), percentage 
primary (1º), secondary (2º), and tertiary (3º) morphological abnormalities, and 
percentage of morphologically normal (N) spermatozoa for bull X extender. 
 
Bull x Extender PIA  1º 2º 3º  N  
               
A x 1 51   7   22   1   79  
A x 3 57   8   24   1   75  
B x 1 58   5   18   1   88  
B x 3 68   6   21   1   84  
C x 1 54   7   19   0   85  
C x 3 64   5   31   1   69  
D x 1 59   10   17   1   82  
D x 3 70   13   21   1   72  
E x 1 55   7   15   1   89  
E x 3 64   7   22   0   81  
F x 1 52   12   18   2   75  
F x 3 60   11   26   1   70  
Pooled SEM 1.99   0.74   1.51   0.32   2.32  
 
 
Extender = seminal extender type, where, 1 and 3 correspond to egg yolk-citrate and 
IMV, respectively. 
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Table A-23 
Experiment 2:  Mean percentage of progressively motile, frozen-thawed spermatozoa at 0 
(M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for collection date X bull X semen 
storage type. 
 
CDate x Bull x Semen M0 M3 M6  M9 
   
1 x A x 1 60   54   14   1 
1 x A x 2 30   12   2   0 
1 x B x 1 56   33   12   2 
1 x B x 2 12   10   7   2 
1 x C x 1 64   42   25   1 
1 x C x 2 27   20   13   10 
1 x D x 1 60   36   26   1 
1 x D x 2 34   13   8   0 
1 x E x 1 58   45   26   3 
1 x E x 2 27   17   13   7 
1 x F x 1 52   52   22   1 
1 x F x 2 25   20   18   12 
2 x A x 1 62   54   13   2 
2 x A x 2 22   4   0   0 
2 x B x 1 58   47   33   2 
2 x B x 2 29   19   8   2 
2 x C x 1 58   51   27   12 
2 x C x 2 29   12   5   0 
2 x D x 1 52   36   26   1 
2 x D x 2 32   13   5   0 
2 x E x 1 56   50   28   1 
2 x E x 2 32   20   20   17 
2 x F x 1 56   52   26   10 
2 x F x 2 27   27   15   5 
3 x A x 1 52   52   24   1 
3 x A x 2 20   8   2   0 
3 x B x 1 26   33   29   1 
3 x B x 2 31   22   20   5 
3 x C x 1 53   53   35   19 
3 x C x 2 25   15   2   0 
3 x D x 1 52   43   5   2 
3 x D x 2 36   20   12   0 
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Table A-23 
Continued, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CDate x Bull x Semen M0 M3 M6  M9 
           
3 x E x 1 58   52   28   17 
3 x E x 2 29   20   15   4 
3 x F x 1 33   34   31   1 
3 x F x 2 25   22   18   5 
4 x A x 1 62   31   15   1 
4 x A x 2 20   15   4   0 
4 x B x 1 47   34   16   0 
4 x B x 2 32   27   24   8 
4 x C x 1 52   33   26   11 
4 x C x 2 32   20   12   1 
4 x D x 1 41   27   22   2 
4 x D x 2 31   22   20   13 
4 x E x 1 39   52   27   12 
4 x E x 2 34   22   8   7 
4 x F x 1 56   50   19   4 
4 x F x 2 32   24   20   12 
5 x A x 1 54   52   24   7 
5 x A x 2 20   10   0   0 
5 x B x 1 58   42   36   19 
5 x B x 2 29   19   15   3 
5 x C x 1 52   34   29   10 
5 x C x 2 25   8   1   0 
5 x D x 1 47   38   24   2 
5 x D x 2 34   29   12   1 
5 x E x 1 54   52   32   14 
5 x E x 2 36   22   19   7 
5 x F x 1 49   47   21   12 
5 x F x 2 31   15   13   4 
6 x A x 1 38   41   38   2 
6 x A x 2 27   13   0   0 
6 x B x 1 40   26   19   1 
6 x B x 2 26   16   5   0 
6 x C x 1 52   36   26   2 
6 x C x 2 30   15   7   0 
6 x D x 1 47   33   5   0 
6 x D x 2 39   15   5   0 
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Table A-23 
Continued, 
 
CDate x Bull x Semen M0 M3 M6  M9 
           
6 x E x 1 66   44   42   17 
6 x E x 2 32   20   2   0 
6 x F x 1 60   58   29   2 
6 x F x 2 29   20   10   2 
Pooled SEM 4.35   4.12   5.27   4.55 
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 6-13-2003, 
6-17-2003, 6-20-2003, 6-24-2003, 6-27-2003, and 7-1-2003, respectively. 
Semen = semen storage type, where, 1 denotes fresh semen and 2 denotes 
frozen-thawed semen. 
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Table A-24 
Experiment 2:  Mean percentage of intact acrosomal membrane (PIA), percentage 
primary (1º), secondary (2º), and tertiary (3º) morphological abnormalities, and 
percentage of morphologically normal (N) spermatozoa for collection date X bull X 
semen storage type. 
 
CDate x Bull x Semen PIA 1º 2º 3º   N
              
1 x A x 1 76   9   32   5   58
1 x A x 2 19   8   39   0   59
1 x B x 1 93   2   6   1   116
1 x B x 2 42   3   46   0   57
1 x C x 1 90   8   20   7   74
1 x C x 2 36   3   40   0   58
1 x D x 1 83   10   10   2   93
1 x D x 2 61   9   25   0   73
1 x E x 1 90   11   16   2   81
1 x E x 2 36   3   44   0   58
1 x F x 1 89   15   17   5   68
1 x F x 2 35   12   34   0   59
2 x A x 1 108   4   14   1   95
2 x A x 2 20   7   29   0   70
2 x B x 1 107   4   6   3   107
2 x B x 2 44   11   19   0   78
2 x C x 1 105   6   13   1   95
2 x C x 2 26   6   29   0   72
2 x D x 1 95   9   14   2   86
2 x D x 2 44   10   28   0   67
2 x E x 1 100   6   7   2   103
2 x E x 2 28   8   18   0   85
2 x F x 1 90   9   6   3   97
2 x F x 2 20   12   24   0   70
3 x A x 1 103   5   17   0   90
3 x A x 2 19   7   33   0   65
3 x B x 1 88   3   27   0   78
3 x B x 2 42   5   17   0   90
3 x C x 1 103   4   24   0   82
3 x C x 2 14   6   24   0   79
3 x D x 1 75   14   22   2   69
3 x D x 2 36   8   27   0   71
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Table A-24 
Continued, 
CDate x Bull x Semen PIA 1º 2º 3º   N
              
3 x E x 1 105   5   12   0   101
3 x E x 2 19   8   22   0   78
3 x F x 1 93   9   19   0   80
3 x F x 2 20   13   39   0   53
4 x A x 1 101   5   7   5   100
4 x A x 2 21   6   34   0   65
4 x B x 1 114   7   12   5   90
4 x B x 2 30   14   16   0   78
4 x C x 1 102   5   25   1   80
4 x C x 2 16   6   42   0   56
4 x D x 1 93   11   12   1   79
4 x D x 2 38   12   27   0   66
4 x E x 1 104   3   10   1   107
4 x E x 2 27   6   29   0   71
4 x F x 1 84   10   12   1   90
4 x F x 2 14   15   33   0   57
5 x A x 1 97   5   16   2   89
5 x A x 2 24   11   17   0   81
5 x B x 1 99   3   12   1   101
5 x B x 2 22   7   22   0   80
5 x C x 1 105   11   14   1   84
5 x C x 2 13   11   26   0   69
5 x D x 1 103   14   13   1   81
5 x D x 2 53   11   26   0   69
5 x E x 1 101   6   11   2   97
5 x E x 2 27   16   27   0   61
5 x F x 1 106   11   10   0   92
5 x F x 2 23   11   23   0   73
6 x A x 1 47   9   19   1   80
6 x A x 2 17   13   24   0   69
6 x B x 1 59   4   17   1   90
6 x B x 2 17   5   34   0   67
6 x C x 1 92   5   12   0   99
6 x C x 2 9   5   28   0   75
6 x D x 1 61   9   8   0   99
6 x D x 2 33   21   16   0   71
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Table A-24 
Continued, 

 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 6-13-2003, 
6-17-2003, 6-24-2003, 6-27-2003, and 7-1-2003, respectively. 
Semen = semen storage type, where, 1 denotes fresh semen and 2 denotes frozen-thawed 
semen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CDate x Bull x Semen PIA 1º 2º 3º   N
              
6 x E x 1 72   6   8   1   103
6 x E x 2 6   8   22   0   78
6 x F x 1 83   11   14   8   75
6 x F x 2 18   15   35   0   54
Pooled SEM 4.87   1.81   3.70   0.79   5.68
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Table A-25 
Experiment 2:  Mean percentage of progressively motile, frozen-thawed spermatozoa at 0 
(M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for collection date X semen storage type X 
extender. 
 
CDate x Semen x Extender M0 M3 M6   M9 
    
1 x 1 x 1 60   54   18   1 
1 x 1 x 2 58   33   9   3 
1 x 1 x 3 57   44   35   1 
1 x 2 x 1 28   17   10   2 
1 x 2 x 2  22   13   8   6 
1 x 2 x 3 29   17   13   8 
2 x 1 x 1 56   52   28   1 
2 x 1 x 2 58   39   9   4 
2 x 1 x 3 57   54   40   10 
2 x 2 x 1 30   10   7   3 
2 x 2 x 2  27   15   8   6 
2 x 2 x 3 29   22   13   3 
3 x 1 x 1 52   47   33   7 
3 x 1 x 2 34   34   5   2 
3 x 1 x 3 52   53   39   11 
3 x 2 x 1 31   18   10   3 
3 x 2 x 2  23   13   12   3 
3 x 2 x 3 29   22   13   1 
4 x 1 x 1 47   44   14   1 
4 x 1 x 2 49   22   11   6 
4 x 1 x 3 53   49   37   9 
4 x 2 x 1 33   28   16   4 
4 x 2 x 2  28   14   11   8 
4 x 2 x 3 30   23   17   9 
5 x 1 x 1 54   50   27   6 
5 x 1 x 2 49   33   15   7 
5 x 1 x 3 54   50   40   20 
5 x 2 x 1 37   18   13   4 
5 x 2 x 2  20   11   6   1 
5 x 2 x 3 31   23   11   2 
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Table A-25 
Continued, 
 
CDate x Semen x Extender M0 M3 M6   M9 
           
6 x 1 x 1 56   47   27   8 
6 x 1 x 2 41   20   12   2 
6 x 1 x 3 55   52   40   3 
6 x 2 x 1 34   18   4   0 
6 x 2 x 2  23   10   3   0 
6 x 2 x 3 35   21   9   1 
Pooled SEM 3.07   2.91   3.73   3.22 
 
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 6-13-2003, 
6-17-2003, 6-20-2003, 6-24-2003, 6-27-2003, and 7-1-2003, respectively. 
Semen = semen storage type, where, 1 denotes fresh semen and 2 denotes 
frozen-thawed semen. 
Extender = seminal extender type, where, 1 through 3 correspond to egg yolk-citrate, 
skim milk, and IMV, respectively. 
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Table A-26 
Experiment 2:  Mean percentage of intact acrosomal membrane (PIA), percentage 
primary (1º), secondary (2º), and tertiary (3º) morphological abnormalities, and 
percentage of morphologically normal (N) spermatozoa for collection date X semen X 
extender. 
 
CDate x Semen x Extender PIA 1º 2º 3º   N
              
1 x 1 x 1 82   8   14   3   87
1 x 1 x 3 92   10   19   4   77
1 x 2 x 1 28   7   29   0   69
1 x 2 x 3 49   5   46   0   52
2 x 1 x 1 100   6   9   2   98
2 x 1 x 3 101   6   11   2   96
2 x 2 x 1 21   7   23   0   79
2 x 2 x 3 40   10   27   0   69
3 x 1 x 1 92   6   19   0   85
3 x 1 x 3 97   7   21   0   82
3 x 2 x 1 18   7   22   0   79
3 x 2 x 3 32   8   32   0   66
4 x 1 x 1 94   6   8   2   100
4 x 1 x 3 105   7   17   2   82
4 x 2 x 1 25   13   23   0   70
4 x 2 x 3 24   6   37   0   62
5 x 1 x 1 98   9   13   1   89
5 x 1 x 3 105   7   12   1   93
5 x 2 x 1 24   11   20   0   77
5 x 2 x 3 30   11   27   0   67
6 x 1 x 1 64   6   13   3   92
6 x 1 x 3 75   8   13   1   90
6 x 2 x 1 15   10   25   0   73
6 x 2 x 3 18   12   28   0   65
Pooled SEM 2.81   1.04   2.14   0.45   3.28
 
CDate = date of ejaculate collection, where, 1 through 6 correspond to 6-13-2003, 6-17-2003, 
6-24-2003, 6-27-2003, and 7-1-2003, respectively. 
Semen = semen storage type, where, 1 denotes fresh semen and 2 denotes frozen-thawed 
semen. 
Extender = seminal extender type, where, 1 and 3 correspond to egg yolk-citrate and 
IMV, respectively. 
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Table A-27 
Experiment 2:  Mean percentage of progressively motile, frozen-thawed spermatozoa at 0 
(M0), 3 (M3), 6 (M6), and 9 (M9) hr of incubation for bull X semen X extender. 
 
Bull x Semen x Extender M0 M3 M6  M9 
   
A x 1 x 1 57   52   21   0 
A x 1 x 2 49   37   8   5 
A x 1 x 3 58   53   35   2 
A x 2 x 1 24   10   0   0 
A x 2 x 2 20   7   3   0 
A x 2 x 3 25   14   1   0 
B x 1 x 1 52   45   25   1 
B x 1 x 2 40   16   6   2 
B x 1 x 3 51   46   41   10 
B x 2 x 1 29   18   13   2 
B x 2 x 2 21   14   9   4 
B x 2 x 3 29   24   18   4 
C x 1 x 1 57   52   31   12 
C x 1 x 2 53   21   9   5 
C x 1 x 3 56   51   44   10 
C x 2 x 1 32   19   7   2 
C x 2 x 2 22   9   3   1 
C x 2 x 3 31   18   10   3 
D x 1 x 1 52   41   25   1 
D x 1 x 2 46   19   9   2 
D x 1 x 3 52   47   20   2 
D x 2 x 1 39   19   12   1 
D x 2 x 2 31   14   10   3 
D x 2 x 3 32   23   9   3 
E x 1 x 1 50   53   26   7 
E x 1 x 2 57   42   21   8 
E x 1 x 3 58   52   44   16 
E x 2 x 1 36   22   14   9 
E x 2 x 2 23   13   8   6 
E x 2 x 3 37   25   18   6 
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Table A-27 
Continued, 
 
Bull x Semen x Extender M0 M3 M6  M9 
        
F x 1 x 1 55   51   19   1 
F x 1 x 2 45   45   8   2 
F x 1 x 3 53   52   47   13 
F x 2 x 1 31   22   15   3 
F x 2 x 2 25   19   14   10 
F x 2 x 3 28   23   18   7 
Pooled SEM 3.07   2.91   3.73   3.22 
 
 
Semen = semen storage type, where, 1 denotes fresh semen and 2 denotes 
frozen-thawed semen. 
Extender = seminal extender type, where, 1 through 3 correspond to egg yolk-citrate,  
skim milk, and IMV, respectively. 
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Table A-28 
Experiment 2:  Mean percentage of intact acrosomal membrane (PIA), percentage 
primary (1º), secondary (2º), and tertiary (3º) morphological abnormalities, and 
percentage of morphologically normal (N) spermatozoa for collection date X bull X 
extender. 
 
Bull x Semen x Extender PIA 1º 2º 3º   N
               
A x 1 x 1 84   6   17   3   86  
A x 1 x 3 92   6   18   2   85  
A x 2 x 1 18   8   27   0   71  
A x 2 x 3 22   9   31   0   65  
B x 1 x 1 86   2   14   2   98  
B x 1 x 3 100   5   13   2   96  
B x 2 x 1 30   8   23   0   78  
B x 2 x 3 36   6   29   0   72  
C x 1 x 1 97   7   12   1   95  
C x 1 x 3 102   6   24   2   77  
C x 2 x 1 12   7   26   0   75  
C x 2 x 3 26   5   37   0   61  
D x 1 x 1 82   8   13   1   91  
D x 1 x 3 88   14   14   1   78  
D x 2 x 1 36   12   22   0   73  
D x 2 x 3 52   12   28   0   66  
E x 1 x 1 93   7   8   2   100  
E x 1 x 3 97   5   13   1   97  
E x 2 x 1 17   8   22   0   79  
E x 2 x 3 30   9   32   0   65  
F x 1 x 1 87   12   14   3   81  
F x 1 x 3 95   10   12   2   87  
F x 2 x 1 17   13   23   0   70  
F x 2 x 3 26   12   40   0   52  
Pooled SEM 2.81   1.04   2.14   0.45   3.28  
 
 
Semen = semen storage type, where, 1 denotes fresh semen and 2 denotes frozen-thawed 
semen. 
Extender = seminal extender type, where, 1 and 3 correspond to egg yolk-citrate and IMV, 
respectively. 
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