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ABSTRACT

Analysis of Periodically-Forced Homogeneous Turbulence in

the Rapid Distortion Limit. (December 2004)

Joshua R. O’Neil, B.A., University of St. Thomas;

B.S., Texas A&M University

Chair of Advisory Committee: Sharath S. Girimaji

Rapid Distortion Theory is used to perform calculations of unsteadily-forced initially

isotropic turbulence so that the physics of such flows can be better understood. The

results of these calculations show that there are three distinct regimes of physical be-

havior for the kind of turbulence that we are considering: (1) turbulence that is forced

at a relatively low frequency in which the kinetic energy settles down to a constant

value at later times, (2) turbulence that is forced at a slightly higher frequency in

which the kinetic energy value oscillates for a time, but then increases dramatically,

and (3) turbulence that is forced at a relatively high frequency in which the kinetic

energy evolution exhibits a periodic behavior. To better understand the role of the

rapid pressure-strain correlation, these results are also compared to Inertial Model

results for the same set of forcing frequencies. The results of this comparison show

that the rapid pressure plays a key role in determining the stability characteristics of

unsteadily-forced turbulence. The evolution equation for kinetic energy is then used

to propose a model that describes the behavior approximately in terms of a time lag

between applied mean strain and the Reynolds stress. This model suggests that the

different responses under the different frequencies of forcing correspond to different

stress-strain time lags. Overall, then the results indicate that rapid pressure serves to

create a time lag between applied stress and strain, and it is the extent of this time
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lag that causes turbulence to respond differently under various frequencies of forcing.
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CHAPTER I

INTRODUCTION

A. Overview

Control of turbulent flows is a major area of research in the field of fluid dynamics.

Turbulent flow control has important utility in both internal and external flows,

including drag reduction and mixing enhancement for combustion, among others.

Although flow control strategies depend largely on the physical geometry and flow

conditions of each particular case, there are fundamental universal features that are

common to most flow control problems. To improve flow control strategies, it is

necessary to study these universal features.

One particular feature of turbulence that is relevant to flow control is the re-

sponse of turbulence to external forcing. The present study specifically considers

the response of initially isotropic turbulence when subjected to unsteady or periodic

forcing. This type of physical situation is commonly found in flow control problems

that use synthetic jet actuation to modify the boundary layer in a flow so that sepa-

ration can be modified. In the problem of periodically-forced turbulence, an initially

isotropic turbulent velocity field is subjected to a time-varying mean velocity gra-

dient, and the resulting turbulence is examined. This thesis focuses specifically on

determining the impact of unsteady shearing on a turbulent velocity field over a range

of different forcing frequencies.

Of particular interest in devising a turbulence control strategy is the response of a

turbulent flowfield to unsteady external forcing, the timescale of which is smaller than

the characteristic timescale of turbulence. Such forcing can modify the turbulence

The journal model is the Journal of Fluid Mechanics.
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cascade process leading to a desired behavior. The turbulence processes that play a

key role in determining the dynamics when subject to such rapidly varying forcing

are production and rapid pressure-strain correlation. Therefore in the present study

we restrict our attention to the rapid distortion limit of turbulence. In this limit, the

governing equations are linear and the resulting analysis is called Rapid Distortion

Theory (RDT). In RDT, the turbulent velocity field behaves in an elastic manner

rather than a viscous manner, that is, the stresses in a fluid element depend on the

total strain, and not on the current strain rate. In addition, due to the linearity

of the governing equations, they can be solved much more easily than full nonlinear

turbulence treatments. Because of this property of RDT, the problem considered here

can be studied in a much more computationally affordable manner.

B. Background and Objectives

This study uses RDT equations to investigate the physical phenomenon of periodically-

forced turbulence. RDT has been much used in the past as an effective tool for an-

alyzing turbulence, especially with respect to modeling of the rapid pressure-strain

correlation. The most significant RDT analysis of initially isotropic turbulence (Crow,

1968) led to the following rapid pressure-strain correlation model in the RD limit:

Φ
(r)
ij = −3

5
(Pij − 2

3
Pδij) (1.1)

This relation was derived assuming initially isotropic turbulence and has been used in

subsequent work to help model the rapid pressure-strain correlation term. The most

important RDT studies for initially anisotropic turbulence are found in Sreenivasan

and Narasimha (1978), Maxey (1982), Hunt and Carruthers (1990), and Girimaji,

Jeong, and Poroseva (2003). These studies look at turbulence evolution under vari-
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ous different types of rapid deformation and initial anisotropy. Maxey is chiefly con-

cerned with studying the role of the rapid pressure-strain correlation term in the RD

limit. He further compares the performance of RDT in the homogeneous shear case

to a turbulence model proposed by Launder, Reece, and Rodi (1973). The work of

Hunt and Carruthers studies the role of initial and boundary conditions on turbulence

evolution. This work indicates that the evolution of initially anisotropic turbulence

depends heavily on the level of the initial anisotropy. Girimaji, Jeong, and Poroseva

(2003) investigated the evolution of turbulence in the rapid distortion limit for several

different initially anisotropic cases. The behavior of the rapid pressure-strain correla-

tion was studied for a variety of different types of strain-dominated deformation. The

results of this study indicated that the evolution of turbulence in the rapid distortion

limit is dependent not only on the type and level of initial anisotropy, but also on the

imposed mean flow deformation. The work also proposed new guidelines for modeling

the rapid pressure-strain correlation term based on these findings.

All of the previous work outlined above addresses steady, homogeneous deforma-

tion of turbulence in the rapid distortion limit. The present study takes the next step

by examining the response of turbulence when subjected to a periodically-varying

shear deformation. This study is motivated by two main factors. First, the physical

phenomenon of unsteadily-forced turbulence is a situation that is not well understood

at present, even in the rapid distortion limit. Developing an understanding of this

turbulent regime can conceivably lead to significant practical application in the area

of turbulent flow control. Second, as a linear theory, RDT specifically has been shown

to be a useful tool and thus it serves as a practical starting point from which to gain

a general understanding and description of a particular type of turbulent flow, in

this case, unsteadily forced turbulence. Once the RDT physics of this problem are

understood, future work can use this understanding as a starting point to focus on
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the non-linear physics and geometric flow aspects the problem.
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CHAPTER II

RAPID DISTORTION THEORY

A. RDT Background and Derivation of Equations

In Rapid Distortion Theory, the governing equation for the evolution of the fluctuating

velocity is derived from the Navier-Stokes equation, which is given by

DU

Dt
= −1

ρ
∇p + ν∇2U. (2.1)

If we decompose the turbulent velocity field into mean and fluctuating parts, the

so-called Reynolds decomposition, this gives

U(x, t) = 〈U(x, t)〉 + u(x, t). (2.2)

Substituting this decomposition into the Navier-Stokes equation and taking the mean

gives the the mean momentum, or the Reynolds-averaged Navier-Stokes (RANS)

equations (Pope, 2000). This is the mean velocity evolution equation, and is given by

D〈Uj〉
Dt

= ν∇2〈Uj〉 − ∂〈uiuj〉
∂xi

− 1

ρ

∂〈p〉
∂xj

. (2.3)

In the above equation, D
Dt

is the mean substantial derivative defined by

D

Dt
≡ ∂

∂t
+ 〈U〉 · ∇ (2.4)

Finally, the evolution equation for the fluctuating velocity is found by subtracting the

RANS equations (Eq. (2.3)) from the Navier-Stokes equation (Eq. (2.1)), and the

result is given by

Duj

Dt
= −ui

∂〈Uj〉
∂xi

− ui
∂uj

∂xi

+ ν∇2uj − ∂p′

∂xj

. (2.5)
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In this equation, p′ is the fluctuating pressure which is governed by

∇2p′ = −2ρ
∂〈Ui〉
∂xj

∂〈Uj〉
∂xi

− ∂ui

∂xj

∂uj

∂xi

. (2.6)

The pressure is decomposed into two parts: p′ = p(r) + p(s), where p(r) is the rapid

pressure, and p(s) is the slow pressure. If we substitute the Reynolds decomposition

(Eq. 2.2) into equation (2.6), the equation for the fluctuating pressure can be written

as

1

ρ
∇2p′ =

1

ρ
∇2(p(r) + p(s)) = −2

∂〈Ui〉
∂xj

∂uj

∂xi

− ∂2uiuj

∂xi∂xj

. (2.7)

From this the individual equations for slow and rapid pressure are identified:

1

ρ
∇2p(r) = −2

∂〈Ui〉
∂xj

∂uj

∂xi

(2.8)

1

ρ
∇2p(s) = − ∂2uiuj

∂xi∂xj

. (2.9)

Note that equations (2.5) and (2.7) are both nonlinear in the fluctuating velocity.

For both of these equations, the first term on the right hand side is linear in the

fluctuating velocity while the second term is nonlinear.

The relationship between the linear and nonlinear terms can be quantified by

a timescale ratio, Sk
ε

. The term S in this ratio can be viewed as the frequency of

the mean flow. It represents the timescale that characterizes the the mean flow as a

production mechanism that forces turbulence, and it is is defined by

S ≡ (
2SijSij

) 1
2 (2.10)

where Sij is the mean rate-of-strain tensor, given by:

Sij ≡ 1

2

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xj

)
. (2.11)

The term ε/k can be viewed as the characteristic frequency of the turbulence itself.



7

It represents the timescale of the turbulent response to the forcing of the mean flow.

Looking again at equations (2.5) and (2.7), it is clear that the linear terms in these

equations scale with the mean flow time scale S while the nonlinear terms, which

include only fluctuating velocity, scale with the turbulent timescale ε/k. (For more

details on the development of turbulence-to-mean-shear time scale ratio, see Tennekes

and Lumley (1972).) Thus, Sk
ε

is a ratio of the time scale of the mean flow production

mechanism, S to that of the turbulent response ε
k
. In rapid distortion theory, we

consider the limit in which the ratio Sk
ε

is arbitrarily large, that is, the case where

the distortions caused by the mean flow dominate. This implies that all terms in

the above equations that scale with S also dominate, and in this limit, the nonlinear

terms may be dropped. Thus, equations (2.5) and (2.7) simplify to

Duj

Dt
= −ui

∂〈Uj〉
∂xi

− 1

ρ

∂p(r)

∂xj

(2.12)

1

ρ
∇2p(r) = −2

∂〈Ui〉
∂xj

∂uj

∂xi

(2.13)

and these are called the RDT equations. Note that, in contrast to the full turbulence

equations (Eqs. (2.5)and(2.7)), these equations are linear in the fluctuating velocity.

This property makes them much easier to solve computationally. It is also interesting

to note that in rapid distortion theory, the evolution of the velocity field depends

solely on the amount of deformation and the geometry of deformation, rather than

on the deformation rate (Pope, 2000).

B. Fourier Description of RDT

The observation in the previous section that the governing equations are linear in

the fluctuating velocity leads to a simpler approach for treating RDT. This approach

was first introduced by Taylor and Batchelor (1949). In this treatment, the turbulent
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velocity field u(x, t) is represented by the sum of several Fourier modes. Keeping in

mind that the RDT equations are linear in u and p(r) then it is clear that if u(x, t)

is decomposed into Fourier modes, then each of these modes evolves independently.

Further, the total number of Fourier modes remains constant, as the nonlinear cascade

effect is absent. This treatment leads to the following type of assumed solution for

the rapid-distortion equations:

u(x, t) = û(t)eiκ̂(t)·x (2.14)

p(r)(x, t) = p̂(t)eiκ̂(t)·x (2.15)

where κ̂(t) is the wavenumber vector and û(t) is the Fourier coefficient. From these

assumed solutions, it can be shown that the solution for u(x, t) above is determined

by the following evolution equations for κ̂(t) and û(t)(See Pope, 2000):

dκ̂l

dt
= −κ̂j

∂〈Uj〉
∂xl

(2.16)

dûj

dt
= −ûk

∂〈Ul〉
∂xk

(
δjl − 2

κ̂jκ̂l

κ̂2

)
. (2.17)

These two equations govern the evolution of each Fourier mode in the turbulent

velocity field u(x, t) in the RD limit. Note that these equations are further subject

to the incompressibility condition (Pope, 2000)

ûiκi = 0. (2.18)

The wavenumber vector can also be decomposed as

κ̂(t) = κ̂(t) ê(t) (2.19)
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with the unit wavevector defined by

ê(t) =
κ̂(t)

κ̂(t)
. (2.20)

From equation (2.17) we can see that the evolution of the Fourier coefficient does not

depend on the magnitude of the wavenumber vector, but only its direction, and so

equations (2.16) and (2.17) can be rewritten as follows:

dûj

dt
= −ûk

∂〈Ul〉
∂xk

(δjl − 2êj êl) (2.21)

dêl

dt
= −∂〈Um〉

∂xi

êm(δil − êiêl) (2.22)

These equations completely describe the evolution of the turbulent velocity field û(t).

Again, these equations depend only on the unit wavevector for each wavenumber

vector, that is, they depend only on the direction of each wave. In this way, the

evolution of ê(t) given in equation (2.22) can be treated as a trajectory traced on a

unit sphere. This treatment is used in the RDT calculations that are performed for

the present study. (For more details in the above derivation, see Pope (2000).)

C. Spectral Description of RDT

The previous section developed the equations that govern the evolution of a single

Fourier mode. This treatment can be generalized to consider a group of Fourier

modes, which in turn can be generalized to represent a random fluctuating velocity

field. In this manner, we can consider a fluctuating velocity field u(x, t), with an

initial condition given by:

u(x, 0) =
∑
κ◦

eiκ◦·x û(κ◦, 0) (2.23)
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where κ◦ = κ(t = 0) is a set of initial wavenumbers and û(κ◦, 0) is the Fourier

coefficient associated with these wavenumbers. Again we point out that as the velocity

field evolves according to the RDT equations (Eqs. (2.16 and (2.17)), the number

of waves in the flow field remain the same as a consequence of the linearity of the

equations. However, the wavenumbers (or wavelengths) and the amplitude of each of

these waves will evolve. Thus, at any later time, each wave present in the flow can

be identified according to either its initial wavenumber κ◦ or its current value κ̂(t).

In this way, the velocity field at any subsequent time can be given by

u(x, t) =
∑
κ0

eiκ̂·x û(κ◦, t) (2.24)

At this point, we introduce a quantity called the velocity-spectrum tensor, Φij(κ, t)

which gives a statistical representation of the turbulent velocity field:

Φij(κ, t) =
〈 ∑

κ◦
δ(κ − κ̂(t))û∗

i (κ
◦, t) ûj(κ

◦, t)
〉
. (2.25)

The velocity spectrum tensor represents the contribution of the Fourier mode eiκ·x

to the Reynolds stress 〈uiuj〉. Thus it can be viewed as the Reynolds stress density

in wavenumber space. The above definition is for the velocity spectrum tensor when

it is parameterized by the current wavenumber κ̂(t). The velocity spectrum tensor

parameterized the initial wavenumber κ◦ is expressed as

Φ◦
ij(κ, t) =

〈 ∑
κ◦

δ(κ − κ◦)û∗
i (κ

◦, t)ûj(κ
◦, t)

〉
. (2.26)

Since the velocity-spectrum tensor represents the Reynolds-stress density in wavenum-

ber space, Φij can be integrated over all wavenumbers to obtain the Reynolds stress,

given by

〈uiuj〉 =

∞∫∫∫
−∞

Φij(κ, t) dκ =
〈 ∑

κ◦
û∗

i (κ
◦, t) ûj(κ

◦, t)
〉
. (2.27)
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Using the above definition of the velocity-spectrum tensor (Eq.(2.25)) and keeping in

mind the evolution equations for κ̂(t) and û(t) (Eqs.(2.16) and (2.17)), the equation

for the evolution of the velocity-spectrum tensor can be derived as

∂Φij

∂t
=

∂〈Um〉
∂xl

κm
∂Φij

∂κl

− ∂〈Ui〉
∂xk

Φkj − ∂〈Uj〉
∂xk

Φik +2
∂〈Ul〉
∂xk

(κiκl

κ2
Φkj +

κjκl

κ2
Φik

)
. (2.28)

This equation gives the evolution of a turbulence spectrum in the rapid distortion

limit. For future considerations is is useful to note the physical significance of the

different terms on the right hand side of this equation. The first term represents

the transport of the turbulent spectrum in wavenumber space. The next two terms

represent turbulent production, and the last terms represent the rapid pressure-strain

correlation. The evolution equation for the spectrum parameterized by the initial

wavenumber can also be derived and is given by

∂Φ◦
ij

∂t
= −∂〈Ui〉

∂xk

Φ◦
kj −

∂〈Uj〉
∂xk

Φ◦
ik + 2

∂〈Ul〉
∂xk

(κiκl

κ2
Φ◦

kj +
κjκl

κ2
Φ◦

ik

)
. (2.29)

Note this equation is the same as equation (2.28) except for the omission of the

transport term. Thus, in this equation the first two terms represent production and

the last terms represent rapid pressure.

a. RDT Reynolds Stress Equation

Now, just as with the equation for the velocity-spectrum tensor itself, we can in-

tegrate the evolution equation for the velocity-spectrum tensor (Eq.(2.28)) over all

wavenumbers to obtain an evolution equation for the Reynolds stress in the RD limit:

∂

∂t
〈uiuj〉 = −〈ujuk〉 ∂〈Ui〉

∂xk

− 〈uiuk〉 ∂〈Uj〉
∂xk

+ 2
∂〈Ul〉
∂xk

(Mkjil + Mikjl) (2.30)
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where Mijkl is a fourth order tensor defined by

Mijkl =

∞∫∫∫
−∞

Φij
κkκl

κ2
dκ =

∑
κ◦

û∗
i ûj

κ̂kκ̂l

κ̂2
=

∑
κ◦

û∗
i ûj êkêl. (2.31)

If we define the production, Pij as

Pij = −〈ujuk〉 ∂〈Ui〉
∂xk

− 〈uiuk〉 ∂〈Uj〉
∂xk

(2.32)

and the rapid pressure-rate-of-strain tensor R
(r)
ij as

R
(r)
ij = 2

∂〈Ul〉
∂xk

(Mkjil + Mikjl), (2.33)

we can rewrite equation (2.30) as

∂

∂t
〈uiuj〉 = Pij + R

(r)
ij . (2.34)

For more details in this development of RDT theory, see Pope (2000).

b. Inertial Model

The rapid distortion limit considers the physics of inertial (production) and rapid

pressure effects. Further simplification can be made to isolate the contributions of

each effect. Towards this end, we can also consider the case where the rapid-pressure

term is omitted, this we call the Inertial Model. In the Inertial Model for RDT, the

evolution of the velocity field is governed only by inertial action. Thus, the evolution

equation for the velocity-spectrum tensor for the Inertial Model becomes

∂Φ◦
ij

∂t
= 2

∂〈Ul〉
∂xk

(κiκl

κ2
Φ◦

kj +
κjκl

κ2
Φ◦

ik

)
. (2.35)

Just as with the full Reynolds Stress Equation, we can integrate this evolution equa-

tion over all wavenumbers to obtain the Reynolds stress evolution equation for the
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Inertial Model:

∂

∂t
〈uiuj〉 = −〈ujuk〉 ∂〈Ui〉

∂xk

− 〈uiuk〉 ∂〈Uj〉
∂xk

(2.36)

or

∂

∂t
〈uiuj〉 = Pij. (2.37)

This is the Inertial Model Reynolds stress equation. Again, this model is similar

to RDT, but it differs in the fact that it considers inertial effect only, and omits the

effect of the rapid pressure. Although the Inertial Model velocity field does not satisfy

the incompressibility condition, it can provide important insight into the turbulence

process.

These equations form the theoretical basis for the computer implementation of

RDT for the present work, and its application to the study of unsteadily-forced tur-

bulence. Throughout this thesis, we will compare RDT results with Inertial Model

Results to identify the effects of the rapid pressure physics.



14

CHAPTER III

RDT SIMULATIONS

In this section, the numerical implementation of the above RDT equations and the

details of the calculations that were performed are presented. The RDT equations

are solved using a fourth order Runge-Kutta solution scheme. The implementation

consists of three main parts, each of which is outlined below. First, the turbulent

velocity field is initialized by defining a set of wavenumbers that correspond to an

isotropic initial condition. Next, the simulation itself is performed which solves the

appropriate evolution equations using the fourth order Runge-Kutta scheme. Finally,

from the raw RDT data, other relevant physical parameters in the flow are calculated.

Much of the code development is similar to that presented in Girimaji, Jeong and

Poroseva (2003).

A. Initialization

The first step in performing the RDT simulation is to initialize the turbulent veloc-

ity field. In the present study, we consider an initially isotropic velocity field that

is subsequently subjected to unsteady forcing. Recalling the Fourier description of

RDT in the previous chapter, it can be seen that this initially isotropic velocity field

corresponds to a set of wavenumber vectors that are evenly distributed over a unit

sphere in wavenumber space. For a perfectly accurate calculation we would need an

infinite number of wavenumber vectors distributed over the sphere. Naturally this

is not computationally feasible. In the program that has been implemented for the

present study, the number of points defined on the surface of the sphere is defined by

a parameter Nφ. Specifically Nφ indicates the number of equally distributed points

that are to be defined on a unit half circle on the wavenumber sphere. This number
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is then used to generate the points over the entire unit sphere that correspond to the

density given by Nφ for the half circle. (For more details, see Girimaji, Jeong and

Poroseva (2003).

In the present study, all calculations have been made with an Nφ value of 50,

which corresponds to the generation of approximately 6000 points for wavenumber

vectors that are distributed evenly over the unit sphere. Once the locations of the

points on the unit sphere are defined for an isotropic initial condition, the wavenum-

ber vectors themselves are defined. Here we assume that the turbulent kinetic energy

is evenly distributed with respect to the wavenumber vectors, and therefore the mag-

nitude of each wavenumber vector is initialized to unity. Before proceeding to the

calculations, the spectrum is checked to assure that it satisfies continuity, a condition

defined by

κi〈uiuj〉 = κj〈uiuj〉 = 0. (3.1)

B. Simulation

Once the isotropic set of wavenumber vectors is initialized, the calculations for the

evolution of the turbulent velocity field can be made. The program uses a fourth order

Runge-Kutta scheme to find the solution to the RDT evolution equations at each time

step. The equations that are solved for the full RDT case are equation (2.16) for the

wavenumber evolution and equation (2.29) for the evolution of the Reynolds stresses

conditioned on a given wavenumber. Calculations are also made for the velocity field

evolution for the Inertial Model case. In this case, the same wavenumber evolution

equation is used, while the Reynolds stress evolution equation used in the calculations

is equation (2.36).

One of the most important features of the solution procedure is the treatment
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of the time-dependent mean velocity gradient tensor. Since the present study is

concerned with the turbulent response to unsteady forcing, the role of the velocity

gradient tensor, ∂Ui

∂xj
in the calculations is a central one. This consideration is discussed

in the following section.

C. Characterization of Forcing

The study of homogeneous shear turbulence has been central to our understanding

of constantly (time-independently) forced turbulence. Therefore, it is natural that

our study of unsteadily-forced turbulence be centered around an unsteady analog

of constant homogeneous turbulence. The mean velocity field used in this study

corresponds to a flow in which the shear is rotating. In other words, the eigen-

directions of the shear tensors rotate uniformly while the eigenvalues remain constant.

This flow is quite distinct from homogeneous shear flow in a rotating reference frame.

To incorporate this unsteady forcing into the simulations, we define two sinusoidal

forcing functions:

f1 = sin(2πΛt) (3.2)

and

f2 = cos(2πΛt). (3.3)

In these equations, Λ is the dimensional forcing frequency. We report the results in

terms of a nondimensional frequency λ given by

λ = Λ/S. (3.4)

In the present calculations, S is always unity, and so λ = Λ. Due to this fact, we will

use λ and Λ synonymously through this thesis.
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The time-dependent velocity gradient tensor for our study, then, is defined as:

∂Ui

∂xj

=

⎛
⎜⎜⎜⎜⎝

f1f2 f2f2 0

−f1f1 −f1f2 0

0 0 0

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

sin(2πλt)cos(2πλt) cos2(2πλt) 0

−sin2(2πλt) −sin(2πλt)cos(2πλt) 0

0 0 0

⎞
⎟⎟⎟⎟⎠

(3.5)

This velocity gradient tensor represents time-dependent but homogeneous oscillatory

motion. The forcing frequency is defined for a given calculation by a specification of

λ, and held constant for the duration of that calculation. When λ = 0, this velocity

gradient tensor reduces to

∂Ui

∂xj

=

⎛
⎜⎜⎜⎜⎝

0 1 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎠ (3.6)

which is a steady homogeneous shear flow case. Thus, the current study considers

the oscillating shear case where S(t) =
√

Sij(t)Sij(t) = const. During the solution

process, the time-dependent velocity gradient tensor is updated at each timestep dur-

ing the solution. This includes the appropriate temporal updating at each individual

step of the Runge-Kutta process.

Initially, values for λ were chosen to cover a broad range of forcing frequencies.

When different physical responses of the turbulence to the different forcing frequen-

cies began to emerge, the frequencies of interest were narrowed down and chosen to

better examine and differentiate between the physical phenomena that had become

evident. Table I shows the forcing frequencies used in the present study. Note that

the frequencies in bold are the primary ones that are used for the reporting of the
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results in Chapter IV. Calculations were made for both the Inertial Model and the full

Table I. Forcing Frequencies

Regime λ

Zero Frequency 0.00

0.02
0.04
0.06

Low Frequency 0.08
0.10
0.12
0.14

0.16
Intermediate Frequency 0.18

0.20

0.30
High Frequency 0.40

0.50

RDT case at these frequencies. The Runge-Kutta solution of the evolution equations

results in evolution data for the wavenumbers and the Reynolds stresses.

D. Calculation of Statistics

The final step in the calculation process is the computation of the other relevant

statistical values in the turbulent field. Once the data for the evolution for the

wavenumbers, the Reynolds stresses, and the mean velocity gradients have been cal-

culated by the Runge-Kutta calculation, the evolution data for other statistics can

be computed from these. These include, but are not limited to the production:

Pij = −〈ujuk〉 ∂〈Ui〉
∂xk

− 〈uiuk〉 ∂〈Uj〉
∂xk

, (3.7)
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the rapid pressure-strain correlation:

R
(r)
ij = 2

∂〈Ul〉
∂xk

(Mkjil + Mikjl), (3.8)

the turbulent kinetic energy:

k =
1

2
〈uiui〉, (3.9)

and the components of the Reynolds stress anisotropy tensor

bij =
〈uiuj〉

2k
− 1

3
δij; (3.10)

where δij is the Kronecker delta defined by

δij =

⎧⎪⎪⎨
⎪⎪⎩

0 i �= j

1 i = j

. (3.11)

These calculated statistics, along with the original evolution data for the Reynolds

stresses and the unsteady velocity gradient tensor form the complete set of RDT and

Inertial Model data that is presented in this thesis.



20

CHAPTER IV

RESULTS

Results from the RDT calculations for unsteadily-forced turbulence are presented in

this chapter. The RDT calculations were implemented as described in Chapter III,

and computations were made for forcing frequencies specified in Table I to observe

the physical response of the turbulent field to the different frequencies. These calcula-

tions provided data for the evolution of the turbulent kinetic energy, Reynolds-stress

anisotropy, turbulent production, and rapid pressure-strain correlation. The calcu-

lations were performed first using the Inertial Model to observe the evolution of the

turbulent field in the absence of rapid pressure effects. Next, the same set of forc-

ing frequencies was considered in calculations using full RDT, including the rapid

pressure term.

Since the Inertial Model omits the effects of rapid-pressure (see Eq.(2.36)), it

essentially describes the effects of the production mechanism, that is, the applied

distortion, in the turbulent field without any consideration of the response of the

turbulence itself. Previous work has already considered the problem of turbulence

subjected to steady homogeneous shear distortion in the rapid distortion limit (see the

discussion in Chapter I). A brief look at the response of an initially isotropic turbulent

velocity field when it is subjected to a constant homogeneous shear distortion (see

Eq.(3.6)) for both the Inertial Model case and for full RDT can give some insight into

why it might be useful to consider both cases for the present study. Figure 1 shows

the evolution of the b11, b22, and b12 components of the Reynolds stress anisotropy

tensor for homogeneous shear distortion for both the Inertial Model and RDT.

From the figure it is clear that at early times there is a quantitative difference

between the predictions of the Inertial Model and those of RDT for homogeneous
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Fig. 1. Inertial Model vs. RDT for Homogeneous Shear (λ = 0)

shear distortion. This is evident for the b11 and b12 components. At early times,

these components exhibit steep gradients for the Inertial Model calculation, while the

RDT results show an early behavior that can be characterized as somewhat damped.

However, while there are some quantitative differences, it seems that the Inertial

Model predicts the qualitative features quite well. The qualitative differences illus-

trate the activity of the rapid pressure in the turbulent field and indicate that the

rapid pressure serves to counteract the production mechanism in homogeneous shear

rapid distortion. (According to theory, in initially isotropic turbulence, the rapid

pressure counteracts 60% of the production in homogeneous shear flow. For more de-

tails, see Pope (2000)) Since the Inertial Model and RDT results appear to converge

a later times, and it can be inferred from this fact that the Inertial Model actually

sets the asymptotic behavior of the RDT solutions.

While the roles of the production and rapid pressure are relatively well under-
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stood for the constant homogeneous shear distortion case above, the present study

considers the case of periodically-forced homogeneous distortion, a situation not pre-

viously considered in detail. For this case, then, we also consider both the Inertial

Model and full RDT. In a manner similar to the homogeneous shear case, it is ex-

pected that the Inertial Model should give some qualitative insight into the changes

in the initially isotropic velocity field due to the periodic forcing. In addition, just as

in the homogeneous shear case above, any differences between the behaviors predicted

by the Inertial Model and full RDT will illustrate the effect of the rapid pressure,

that is, the influence of the straining response of the turbulent field due to the applied

distortion.

The results themselves are presented in two main sections. In the first section,

results from the Inertial Model calculations are given. These include the evolution

turbulent kinetic energy, and components of the Reynolds stress anisotropy tensor as

well as production for several different forcing frequencies. Obviously, all components

of the rapid pressure-strain correlation in the Inertial Model case are zero. In the

second section, the full RDT calculation results are presented. The results in this

section include data for the same parameters given for the Inertial Model case, as

well data for the evolution of the rapid pressure-strain correlation.

A. Inertial Model Results

In this section, the results for the calculations performed for unsteadily-forced tur-

bulence using the Inertial Model are presented. Inertial model simulations were per-

formed for the range of forcing frequencies previously presented in Table I. The

results are presented in the form of plots of the evolution over time of the various

turbulent flow parameters that are considered. These include the turbulent kinetic
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energy, Reynolds-stress anisotropy and turbulent production. For all cases, the initial

turbulent velocity is isotropic, and the applied distortion is that given previously in

equation (3.5).

1. Turbulent Kinetic Energy

The first parameter to be considered in the Inertial Model case is the turbulent kinetic

energy. The results for the evolution of the kinetic energy for a periodically-forced

turbulent velocity field in the rapid distortion limit are shown in Figures 2-4. In
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Fig. 2. Inertial Model - Kinetic Energy Evolution (Large Scale)

the figures, the case of zero forcing frequency corresponds to a homogeneous shear

distortion applied to the velocity field. For this case, the turbulent kinetic energy,

as expected, exhibits a monotonic increasing behavior, a result noted previously. In

addition, the slope of the turbulent kinetic evolution for the homogeneous shear case

appears to be increasing steadily. This behavior is in agreement with the Inertial
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Model equation for the evolution of the Reynolds stresses (Eq.(2.36)). This equation

stipulates that the gradients of the Reynolds stresses are directly dependent upon the

production. In homogeneous shear distortion, the production increases linearly, and

this leads to the observed behavior in which the slope of the kinetic energy evolution

equation increases linearly as well.

Next, we consider the cases where the periodic forcing of the turbulent velocity

field is present. For all the nonzero forcing frequencies shown, the evolution of the

turbulent kinetic energy exhibits pure periodicity. The oscillatory behavior for each

case is bounded by its initial value of unity (for all cases) as a minimum, and with

with a maximum that decreases with increasing forcing frequency. It has already been

observed (See Chapter II) that that the calculations of the Inertial Model illustrate the

role of the production mechanism, and so it is expected that in the case of periodic

forcing, the evolution of the kinetic energy is also periodic in nature. Therefore

the above result is an expected one, and, as stated above, it is expected that this

result also gives some qualitative feel for the actual response of the turbulent field

for periodic forcing. Finally, it is useful to also note that for this Inertial Model case,

the evolution of turbulent kinetic energy exhibits no dissipative effects, and so for a

velocity field under unsteady forcing, the process is fully reversible.

2. Reynolds Stress Anisotropy

The evolution of components of the Reynolds Stress Anisotropy tensor for Inertial

Model is considered next. The components of the Reynolds Stress Anisotropy tensor

at each moment give information as to the relative isotropy of the velocity field.

Since the initial condition for the velocity field is isotropic (see Chapter III), the

evolution of the b11, b22, and b12 components that are given below have initial values

of zero. Figures 5-10 below show the evolution of the different components of the
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Reynolds stress anisotropy tensor for periodically-forced turbulent flow in the rapid

distortion limit, as predicted by the Inertial Model. In the figures, we again look

first at the homogeneous shear distortion case (λ = 0). Note that evolution of the

b11 and b22 components clearly converge to values of 2/3 and -1/3, respectively, while

the b12 component converges slowly to zero. If we recall the definition of bij given in

equation (3.10), it is clear that these are the appropriate values for the convergence of

these components of the anisotropy tensor as the flow approaches the one-component

limit, as is the case for constant homogeneous shear distortion. Thus, as expected,

the Inertial Model directly illustrates the role of the production mechanism as the

components of the Reynolds-stress anisotropy tensor converge to values that directly

correspond to those associated with the type of subjected distortion.

Next we consider the cases in the figures where the periodic forcing of the turbu-

lent velocity field is present. The results show a behavior that is somewhat analogous

to the results for the evolution of the turbulent kinetic energy. Again for the nonzero

forcing cases, we see a regular periodic evolution for all three components, although

the oscillations are clearly more complex than in those for kinetic energy. Recall

that the kinetic energy evolution is directly dependent on the production specifically,

which has pure single-mode oscillations according to the applied periodic distortion,

and hence simple oscillatory behavior is expected for the kinetic energy evolution.

Of course, since we are presently considering the Inertial Model, the evolution of the

Reynolds-stress anisotropy is also dependent on the production, but its dependence

is not as direct as that of the kinetic energy. Specifically, the Reynolds stresses are

have two contributions which determine its evolution, and while these contributions

both depend directly on the production, their combined effect on the Reynolds stress

anisotropy leads to an evolution that is not simple, but rather contains more than one

mode. Looking again at the equation for the Reynolds-stress anisotropy components
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(Eq.(3.10)) it can be seen that the evolution of this parameter depends not only on

the evolution of the Reynolds stress (which, in turn is directly dependent on produc-

tion), but also on the evolution of the kinetic energy (which is also, in turn, directly

dependent on production). The influence of these two parameters yields the complex

oscillatory motion seen for all three components shown in the figures.

3. Turbulent Production

Finally, the evolution of the turbulent production for the Inertial Model is considered.

The evolution behavior given in the figures can be helpful in understanding the role

of production in the evolution of the turbulent kinetic energy and Reynolds stress

anisotropy, as discussed above. Figures 11 and 12 below show the evolution of the

P11 component of production, normalized by the kinetic energy. Again, note first
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Fig. 11. Inertial Model - Evolution of Production (Full View)

the zero frequency homogeneous shear distortion case. For this case, the evolution of



31

-1

-0.5

0

0.5

1

0 5 10 15 20 25

St

P11/2k

0.00

0.02

0.14

0.16

0.18

0.30

λ

Fig. 12. Inertial Model - Evolution of Production (Close-up View)

the normalized P11 increases initially, and at very early times this increase appears

to be nearly linear. The growth levels off, however, as the production begins to

decrease with an apparent tendency to converge to a value of zero. We know that

for a velocity field subjected to steady homogeneous shear distortion in the rapid

distortion limit, the production increases linearly. It has also been shown above that

the kinetic energy increases without bound for this distortion case. So both the early

linear increase and the long-term tendency for P11/2k to converge to zero are expected

for the homogeneous shear case.

Once again, we next consider the cases with periodic forcing. As with the evolu-

tion of the Reynolds stress anisotropies, we see oscillatory evolution for the production

that clearly is made up of several modes. In the case of the anisotropy tensor, these

modes were due to the contribution of two separate terms. Looking again at the def-

inition of production (Eq.(2.32)), it is clear that the evolution is dependent on both
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the Reynolds stresses and the applied velocity gradient. Thus, as with the anisotropy

evolution, it is the influence of these two parameters that determines the oscillatory

evolution for P11 that is shown in the figures. Overall, however, it is important to

note (as will be seen in subsequent sections) that the evolution of the production,

and indeed of all the above parameters is ’well behaved’. That is, the Inertial Model

dictates that for periodically-forced homogeneous turbulence, the evolutions of all

parameters exhibit regular oscillatory response that is bounded.

B. Full RDT Results

In this section, the results for the calculations performed for periodically-forced tur-

bulence using the the full Rapid Distortion Equations (equations (2.16) and (2.30))

are presented. The full RDT calculations were performed for the same set of frequen-

cies as those made for the Inertial Model above (see Table I), and the results are

also presented for the same select reported forcing frequencies. Again, the results are

presented in the form of plots of the evolution over time of the various turbulent flow

parameters that are considered. As previously discussed, RDT contrasts with the In-

ertial Model in that it also includes the effect of rapid pressure. We have already seen

the behavior of the production mechanism acting alone in the Inertial Model results

in the previous section. In the results presented in this section we also see the effects

of the response of the turbulent velocity field due to this production mechanism.

Therefore, as with the Inertial Model, the data for the evolution of the kinetic en-

ergy, Reynolds-stress anisotropy, and turbulent production for the case of periodically-

forced turbulence are presented here for the full RDT case. In addition, the full RDT

results for the evolution of the rapid pressure-strain correlation are also presented

here. As before, the turbulent velocity field is initialized to be isotropic and the
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applied periodic forcing is given by equation (3.5) for the time-dependent velocity

gradient tensor that is considered in this study.

The results in this section can be examined and compared to the Inertial Model

results already presented, and any differences in behavior can can be attributed to the

presence of the rapid pressure-strain correlation term, which distinguishes full RDT

from the Inertial Model.

1. Turbulent Kinetic Energy

The first parameter presented here for the full RDT case is the turbulent kinetic

energy. Results for the evolution of the kinetic energy for a periodically-forced tur-

bulent velocity field in the rapid distortion limit are shown in figures 13-16. Figure

13 below shows the complete RDT results for all forcing frequencies calculated in

this study, and for an extended time. This figure immediately illustrates a very im-
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portant result from the RDT calculations. It is clear from the evolution data that

there is a significant difference in the predicted behavior of the turbulent velocity field

between the Inertial Model and full RDT when considering periodically-forced turbu-

lence. While the Inertial Model predicts bounded periodic evolution of the turbulent

kinetic energy, full RDT results show a number of different types responses for the

evolution of k. This also leads to the observation that not only are there differences

in the responses between RDT and the Inertial Model, but also, for the RDT results

themselves, there are significant differences in the responses of the turbulence to the

different frequencies of forcing, not only quantitatively as in the Inertial Model, but

also qualitatively.

Figures 14-16 below show the results for the evolution of the kinetic energy for

a shorter time interval and for different scales of magnification to show more closely

the different responses that are observed. An initial observation can be made in
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Figure 14 concerning the homogeneous shear (λ = 0) distortion case in RDT. As

discussed at the beginning of this chapter, the figure shows that, as with the Inertial

Model case, the turbulent kinetic energy increases without bound for the zero forcing

frequency (homogenous shear) case. Again, this growth appears to be asymptotically

linear as opposed to the exponential growth predicted by the Inertial Model, and

again, this is due to the influence of the rapid pressure, and it is the expected result

in homogeneous shear RDT. (For more details see Pope (2000).)

In considering the periodic forcing cases (λ > 0), the evolution of the turbulent

kinetic energy for full RDT is most effectively shown in figures 13, 15 and 16. For these

nonzero forcing cases, the results indicate that there are several different categories of

responses for different forcing frequencies. The differences in the evolution trajectories

are extreme in some cases, and this is shown most effectively in Figure 13, where the

data for all the frequencies that were calculated is presented for an extended time

period. Again, the differences in response present a clear contrast to the Inertial

Model, which predicts regular periodic behavior for all forcing frequencies. Figures 15

and 16 show ’close ups’ of the nonzero forcing cases. The different types of response

seem to characterize different ranges of forcing frequencies, and therefore can be

looked at as different ’regimes’ of response.

a. Low Frequency Regime

Looking at the data, especially in figures 13 and 15, it is clear that for the lower fre-

quency cases, the evolution of the turbulent kinetic energy is marked by a slight initial

increase followed by a decrease and eventual convergence to a constant value. This

converged value for the kinetic energy evolution decreases as the forcing frequency

λ increases. This evolution behavior characterizes the response of the turbulent ve-

locity field for the reported forcing frequencies of λ = 0.2, 0.8, and 0.14, and all of
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the intermediate frequencies in this range that were calculated, but not included in

the figures. (See Table I) This set of frequencies that exhibit the same qualitative

response for turbulent kinetic energy evolution can be considered as a ’low frequency

regime’ of behavior that is characterized especially by convergence to a constant value

of k.

Recalling the RDT equation for the evolution of Reynolds stresses (Eq.(2.30)) and

keeping in mind that the Inertial Model predicts regular oscillatory response in the

absence of rapid pressure, this convergence to a constant k implies that the influence

of the rapid pressure tends to damp out the oscillations in kinetic energy caused

by the production mechanism. For this regime of low frequency forcing, the rapid

pressure is able to completely damp out the oscillations in the kinetic energy evolution,

eventually driving the kinetic energy gradient to zero and causing the evolution to

reach a steady state. In this way it can be seen that in the low frequency regime of

periodically-forced turbulence the presence of the rapid pressure acts to completely

counteract the production, negating its influence on the turbulent velocity field at

later times.

b. Intermediate Frequency Regime

Looking again at the data presented in figures 13 and 15, it can be seen that as we

consider forcing frequencies above λ = 0.14, we see a sudden change in the response.

When we consider the evolution data for a forcing frequency of λ = 0.16, we see

that at early times, the turbulent kinetic energy evolution exhibits a response that

is similar to the that of the lower frequency cases. This includes a very slight initial

increase, followed by a decrease and apparent convergence to a constant value. As

the evolution proceeds, however, there is an early indication that there has been a

significant change in behavior. This indication is the fact that the kinetic energy
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evolution for this higher forcing frequency case actually appears to settle down to

a value that his higher than the asymptotic value for the previous lower frequency.

This is contrary to the previous trend found in the low frequency regime where the

kinetic energy evolutions for cases with progressively increasing forcing frequencies

converge to progressively lower values. Then, at even later times in the evolution for

λ = 0.16, there is a much more pronounced difference in the evolution, as the kinetic

energy exhibits a sudden and very sharp increase. Again, in figure 13 the evolution

of turbulent kinetic energy is shown for much later times, and it is clear that for

forcing frequencies above λ = 0.14 there is, at later times, a sudden and drastic

increase in kinetic energy, as the evolution data quickly diverges to extremely large

values. This behavior holds true for an ’intermediate frequency regime’ of forcing

frequencies, above λ = 0.14 and below λ = 0.30.

Again, keeping in mind the pure oscillatory nature of the turbulent kinetic energy

evolution that was predicted by the Inertial Model, it is clear that the activity of the

rapid pressure is somehow responsible for the unusual divergent behavior exhibited

in this range of forcing frequencies. Unlike the low frequency regime, the specifics of

the influence of the rapid pressure in causing this unusual evolution behavior are not

immediately apparent.

c. High Frequency Regime

We can now look at figures 15 and 16 to examine more closely the behavior of the

kinetic energy evolution at frequencies above λ = 0.20. In figure 15 among the selected

frequencies of forcing that are reported, we have the evolution data for frequencies of

λ = 0.30 and 0.50. Although it is difficult to infer any quantitative information for

these frequencies, it is clear that they predict an evolution that at least remains in the

vicinity of the initial value of unity for later times. In Figure 16 we see a ’zoomed in’
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view of the kinetic energy evolution for a number of different frequency, most notably

for λ = 0.30.

From the figures it is clear that while the evolution data for the low frequency

regime exhibited a behavior that settled down to a constant value and intermediate

frequency evolution showed sudden and dramatic increases, the kinetic energy at

higher frequencies above λ = 0.20 neither converge to a constant value nor exhibit

a sudden increase. Instead, it is apparent that the higher frequency forcing causes

the kinetic energy respond in a regular, oscillatory fashion, remaining in the vicinity

of the initial value of 1. It is important to note while the response of the low and

intermediate forcing cases differed drastically from the evolution predicted by the

Inertial Model, this evolution behavior predicted by full RDT for high frequency

forcing is qualitatively very similar to the response predicted by the Inertial Model

as shown previously, especially in figures 2 and 3. For this reason, it is useful to

compare the RDT results with those of the Inertial Model for the turbulent kinetic

energy evolution in the high forcing frequency cases. Figure 17 below compares the

responses predicted by the two models for the case of a high forcing frequency of

λ = 0.50. From the figure it is apparent that the full RDT calculations, which

include the effects of rapid pressure, shows distinct qualitative similarities to the

Inertial Model results. While the oscillatory behavior is very similar, the amplitude

of the oscillations is smaller for the full RDT case. In this way, it appears firstly

that the for high forcing frequencies, the role of the rapid pressure is significantly less

pronounced since it does not appear to significantly alter the qualitative response, as

it apparently does for the low and intermediate frequency cases. Secondly, it appears

that the small influence that the rapid pressure does have in the high frequency cases

serves to mainly to dampen the magnitude of the oscillations that are present.
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2. Reynolds Stress Anisotropy

The next parameter considered in the full RDT calculations for periodically-forced

turbulence is the Reynolds-stress anisotropy. Figures 18-23 below show the evolution

of the b11, b22, and b12 terms in the Reynolds stress anisotropy tensor. First, con-

sidering the constant homogeneous shear case (λ = 0.0), it is clear that the full RDT

results for the evolution of the Reynolds stress anisotropies do not show a drastic dif-

ference in qualitative behavior when compared to the Inertial Model predictions (see

Figs. 5-10). However, as with the turbulent kinetic energy evolution for the homoge-

neous shear case, there are certain quantitative differences. When compared to the

Inertial Model, the full RDT results exhibit a behavior that can be best characterized

as a ’damped’ response for some components. Specifically, this is true for the b11 and

b12 components, while the b22 component exhibits a nearly identical response to that

predicted by Inertial Theory. Figure 24 below compares the responses for each of the
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three components considered above for the zero forcing frequency case. This damped

response predicted by full RDT is analogous to the results for the turbulent kinetic

energy evolution, which also showed a damped response for the homogeneous shear

in the full RDT calculation. It is another illustration of the role of rapid pressure in

counteracting the influence of production.

Next, we consider the evolution of the Reynolds-stress anisotropies for the periodic-

forcing cases (λ > 0). As with the kinetic energy evolution, the results in figures

18-23 indicate that there are several different behaviors present for the evolution of

the anisotropies for different forcing frequencies. Thus, as with the kinetic energy

evolution, the full RDT evolution data for the anisotropy components exhibit sig-

nificant differences from the predictions of Inertial Theory. These differences can be

divided into the same three regimes of low, intermediate, and high frequency response

as defined for the turbulent kinetic energy.
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Again, the results for the evolution of the anisotropy components display the

same regime of coherent response for low frequency forcing as seen in the kinetic

energy data. In the case of b11, the evolution data for the low forcing frequency cases

exhibit a convergence to a value of -1/3. Recalling the definition of bij (Eq.(3.10)),

this value that corresponds to the 〈u1u1〉 Reynolds stress converging to zero. The

evolution of the b22 component exhibits the same response for the low frequencies,

converging to a value of -1/3, which again implies that 〈u1u1〉 converges to zero.

For the b12 component of the Reynolds stress anisotropy tensor, the response for

the low forcing frequency case exhibits a convergence to a value of zero. For this

off-diagonal component, this also corresponds to the corresponding Reynolds Stress

〈u1u2〉 converging to zero. These RDT results for the evolution of b11, b22, and b12 are

in contrast to the Inertial Model results shown in figures 5-10 that show an oscillatory

response for the anisotropy components for all forcing frequencies. This again shows

the influence of the rapid pressure at low forcing frequencies, and implies that its

activity serves to damp out the oscillations in the Reynolds stresses.

As the forcing frequencies above λ = 0.14 are considered, we are in the ’inter-

mediate frequency regime’ where the results for the kinetic energy evolution have

already shown that there is a drastic change in the response of the turbulent velocity

field due to the periodic forcing. Recall once again that the Inertial Model predicts a

well-behaved periodic response for the evolution of the Reynolds-stress anisotropy for

all frequencies of forcing, including the intermediate regime. Now for the full RDT

calculations in this regime we see oscillatory behavior that is clearly not as predicted

for any of the components shown. For the b11 component, while the behavior is irreg-

ular, there are no apparent drastic increases in the evolution, as the amplitude of the

oscillations remains comparable to that predicted by the Inertial Model calculations.

For both the b22 and b12 components, however, we do see dramatic increases in the
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amplitude of the oscillations, which correspond to the dramatic increases observed in

the kinetic energy evolution (see figure 15). This response is most evident in the evo-

lution of the b12 component, as the amplitude of the oscillations increases markedly

over time. As with the results for the kinetic energy evolution, the drastic changes in

response seen in the intermediate frequency range are understood as the result of the

activity of the rapid pressure. Again, it is not immediately apparent how the action

of the rapid pressure causes the velocity field to exhibit this behavior.

For forcing frequencies in the ’high frequency’ regime (above λ = 0.20), there is

again a different characteristic response that is present. Again, the evolution data for

the anisotropy components exhibits a high frequency behavior that is analogous to

the distinct high frequency results for the kinetic energy evolution. That is, while the

evolution of the anisotropy components showed convergence to a constant value for

low frequency forcing and marked increases and irregular behavior for the intermediate

frequencies, the evolution of the high frequency forcing case predicts an evolution

behavior that is qualitatively very similar to the response predicted by the Inertial

Model (see figures 5-10). Specifically, at higher forcing frequencies the anisotropy

components respond in a periodic fashion, oscillating about the initial value of zero,

with an amplitude slightly less than that predicted by the Inertial Model. Figure 25

below compares the responses predicted by RDT and the Inertial Model for the b11

component of the Reynolds-stress anisotropy tensor at the high forcing frequency of

0.50.

As with the full RDT results for the evolution of the kinetic energy, we again

see that the role of the rapid pressure in the high frequency regime is significantly

less pronounced. Again, it does not appear to alter the qualitative response of the

turbulent velocity field significantly, unlike low and intermediate frequency regimes.

In addition, as with the kinetic energy evolution, the data indicates that the little
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Fig. 25. Inertial Model vs. RDT - b11 Evolution for λ = 0.50

influence that the rapid pressure does have serves mainly to dampen the magnitude

of the oscillations of the Reynolds-stress anisotropy components.

3. Turbulent Production

The next parameter considered in the full RDT calculations of periodically-forced

turbulence is the turbulent production. Recall that the effect of the production in

the absence of the effects of the rapid pressure was examined in the Inertial Model

calculations, presented earlier in this chapter. In the full RDT calculation, the effects

of rapid pressure are present, and thus we consider the behavior of production in the

presence of the response of the turbulent velocity field. Figure 26 below shows the

full RDT results for the evolution of the P11 component of production for the several

different frequencies of forcing.

The same type of distinctions from the Inertial Model that were found in the
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Fig. 26. Full RDT - Evolution of P11

evolution of kinetic energy and anisotropy components are also noted in the full RDT

production data. This includes the three distinct regimes of response to the unsteady

forcing, as well as differences in the homogeneous shear response.

For the homogeneous shear (λ = 0.0) case, the Inertial Model predicts a perfectly

linear increase for P11 since the only independent quantity in the model (see equations

2.32 and 2.36) is the applied mean flow gradient, and this is specified as a constant

in homogeneous shear distortion case. The results for the full RDT model show

the P11 component increasing initially, but leveling off at a constant value that is

low in comparison to the values predicted by the linearly increasing Inertial Model.

This is a response analogous to that seen for the kinetic energy evolution where the

Inertial Model predicted parabolic increase while full RDT results exhibited a linear

evolution with a much smaller magnitude. The evolution of P11 then then exhibits

some unsteady behavior at later times. Overall, this behavior further illustrates
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the impact of the rapid pressure on the evolution of the turbulent velocity field. The

production term is dependent upon the Reynolds stresses, and since the rapid pressure

alters the response of the Reynolds stresses, this in turn causes the production to have

a different response for full RDT than for the Inertial Model.

For the periodic forcing cases we again see evolution behavior for P11 that cor-

responds the three regimes of response already discussed. Looking again at figure 26

we see that for the low frequency regime, the P11 evolution shows a convergence to

zero. In the intermediate frequency regime the values no longer die out, but show

significant increases in amplitude that correspond with the results for the other pa-

rameters considered above. For the high frequency cases, the response is again very

similar to that predicted by the Inertial Model. In fact for the evolution of P11, the

full RDT results are not only qualitatively very similar to the Inertial Model results,

but they are also very similar quantitatively. The high frequency evolution data for

P11 for the Inertial Model and the full RDT calculation are compared in Figure 27.
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It is clear from the figure that at high frequencies, the evolution of the production

is effected very little by the activity of the rapid pressure. Of all the parameters

considered here, this data for the evolution of the production is the most illustrative

of the reduced role of rapid pressure at high forcing frequencies.

4. Rapid Pressure-Strain Correlation

Finally we consider the full RDT results for the evolution of the rapid pressure-strain

correlation term. As has been stated, the rapid pressure represents the straining

reaction of the turbulent flow field when it is subjected to rapid distortion, in this

case, periodic forcing. The results of the RDT calculation for the evolution of the R11

term of the rapid pressure for different forcing frequencies are shown in Figure 28.
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Fig. 28. Full RDT - Evolution of R11

Because the Inertial Model omits the rapid pressure term, there are obviously no

Inertial Model results with which to compare the results in Figure 28. However, the
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results for the rapid pressure evolution are again similar to the previous RDT results.

For the homogeneous shear case, the rapid pressure remains in the vicinity of zero

for all components, with a number of apparent instabilities that seem to correspond

to instabilities seen in the production evolution. We have already seen that the

production converges to a relatively steady behavior. Recalling that the gradient of

the Reynolds stresses is dependent upon the sum of the production and the rapid

pressure (Eq. (2.34)), this evolution behavior for R11 is consistent with the linear

increase in kinetic energy for the RDT case that we have already seen.

Looking again at figure 28 and considering the nonzero forcing cases, we find

the expected three regimes that we have already seen for the RDT calculation of

the the other parameters in the velocity field. Specifically we find that the full RDT

results for the evolution of R11 for periodically-forced turbulence exhibit three distinct

regimes of behavior, with the evolution associated with increasing forcing frequencies

characterized progressively by decay, growth, and periodic response.
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CHAPTER V

DISCUSSION

In the previous chapter, the results from both the Inertial Model and full RDT cal-

culations were presented. The data shows that for relatively low forcing frequencies,

the effect of the rapid pressure on the velocity field is the greatest, as it is able to

completely damp out the oscillations in the flowfield. As the forcing frequency is

increased, the influence of the rapid pressure becomes weaker, and the damping of

the oscillations in the velocity field becomes less and less effective. As the forcing

frequency is increased further, a range of frequencies is reached where the damping

action of the rapid pressure appears to become insufficient to completely damp out

the oscillations in the velocity field and these oscillations appear to grow drastically.

Finally, at even higher forcing frequencies, the influence of the rapid pressure appears

to become insignificant, as the oscillations in the velocity field exhibit purely periodic

behavior consistent with the forcing itself, and with the Inertial Model, which omits

the role of the rapid pressure.

Thus, from the data that was shown, it is clear that full RDT predicts three

different regimes of response for the periodic forcing case, and these regimes are

directly dependent on the forcing frequency. More notable is the fact that while these

different regimes of response were evident in the full RDT case, the Inertial Model

predicted consistent response across all forcing frequencies. This difference implies

that the distinct regimes of response that are predicted by RDT are dependent in

some way on the effect of the rapid pressure, since it is the absence of this term that

characterizes the Inertial Model. In a physical sense, that is to say that it is the

relationship between the applied strain and the response in the velocity field that

somehow causes it to respond differently under different forcing regimes. Specifically,
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existence of three regimes of response implies that the influence of the rapid pressure

in the presence of unsteady forcing causes the velocity field to exhibit three different

types of relationships between the applied distortion and the resulting strain in the

velocity field.

To better illustrate this behavior it is useful to consider the evolution of the

turbulent kinetic energy. As shown in figure 15 in the previous chapter, the kinetic

energy evolution very clearly exhibits the existence of the three regimes of response.

Now consider the equation for the evolution of the turbulent kinetic energy in RDT.

To derive this equation it is necessary first to consider the evolution equation for the

Reynolds stresses, first given in Chapter II (Eq. (2.30)):

∂

∂t
〈uiuj〉 = −〈ujuk〉 ∂〈Ui〉

∂xk

− 〈uiuk〉 ∂〈Uj〉
∂xk

+ 2
∂〈Ul〉
∂xk

(Mkjil + Mikjl) (5.1)

Now keeping in mind the definition of Mijkl (Eq.(2.31)), also given in Chapter II,

and recalling the definition of the turbulent kinetic energy, given in equation (3.9)

the equation for the evolution of the kinetic energy can be obtained from the above

equation:

∂k

∂t
= −2kbijSij. (5.2)

This equation further illustrates the relationship between the applied distortion

(contained in the Sij tensor), and the response of the flow (contained in the anisotropy

tensor, bij). Figures 29 and 30 below show the full RDT results for the evolution of

the (1,1) component of the bij and Sij tensors for two different forcing frequencies.

Looking at the results in the figures, we see that the evolutions for bij and Sij are

oscillatory (with nearly the same time period), and that there is an apparent phase lag

between them. This data suggests that the evolutions of bij and Sij can be modeled
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as trigonometric functions, separated by some finite phase lag. In this manner, the

following simple model for the turbulent kinetic energy evolution is proposed:

∂k

∂t
= −kcos(θ)cos(θ + α) (5.3)

This equation is analogous to equation (5.2), with the Sij term modeled as cos(θ)

and the bij term modeled as cos(θ + α). In this equation, α is some constant phase

lag. When the above model is integrated, we obtain the following evolution equation

for the kinetic energy:

k(t) = e−
1
2
cos(α)t− 1

4
sin(2t+α)+ 1

4
sin(α) (5.4)

Thus, if we consider a specific case with a given value for the phase lag between stress

and strain, the above equation gives the evolution of the kinetic energy for our model.

Figure 31 gives the evolution of k according to equation (5.4) for several values of α.

The results in the figure are remarkable because they show that for the simple model
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that was proposed above, we see three regimes of behavior for the kinetic energy.

This closely resembles the results given in the previous chapter for the kinetic energy

evolution, which also exhibited three distinct regimes of behavior.

In order to relate the behavior of this simple model to the actual results for

unsteadily-forced turbulence predicted by RDT, we look again at the RDT data. We

have already seen that for high forcing frequencies, the influence of the rapid pressure

disappears and we are left with a periodic response in the velocity field. Looking

at figure 30 we see this periodic response in terms of b11, and in this data set it

is clear that there is a phase lag of π/2 between b11 and S11. That is, when the

effects of rapid pressure are negligible, there seems to be a phase lag of π/2 between

the applied distortion and the straining response of the velocity field. In addition,

the data obtained in the previous chapter for both the Inertial Model (Fig. 4) and

RDT at high frequency (Fig. 16) shows that the kinetic energy is oscillatory with

a minimum value of unity. This behavior is captured well in the proposed model.

We see in Fig. 31 that if there is a phase lag of π/2 between bij and Sij the model

predicts a purely oscillatory response for the kinetic energy, with the initial value of

unity as a minimum.

Referring again to the RDT results, we consider the case where the effects of

rapid pressure are the strongest. As we have already seen, this corresponds to the

low forcing frequency cases where rapid pressure is able to completely damp out all

oscillations in the flow. The RDT data shows that the effects of rapid pressure are

strongest at the slowest of forcing frequencies, as oscillations are damped out most

quickly in these cases. As the forcing frequency is increased, the oscillations are

damped out less and less effectively. Again, this behavior seems to be captured very

effectively by the model proposed above. In phase lag values ranging from 0 to π/2

we see a highly damped response, with oscillations in the kinetic energy damping
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out to zero. We also observe in this model the phenomena of decreased damping

effectiveness with increased values of phase lag. Recall that we have already seen

that in the absence of the effects of rapid pressure we see a phase lag of π/2 between

bij and Sij. Therefore any action of the rapid pressure would be to alter this phase

lag, so that a value of α close to π/2 would correspond to the rapid pressure having

small influence. Looking again at Fig. 31 we see that for values of α ranging from 0

to π/2, those values closest to zero show a highly damped behavior while those very

close to π/2 exhibit the least effective damping of the kinetic energy.

Finally we consider the RDT results for forcing frequencies where the effects of

rapid pressure are present, but they are not sufficient to completely damp out the

responses in the velocity field. These frequencies correspond to the ’intermediate

regime’ specified in the previous chapter. In the RDT data for these frequencies,

we see an initial oscillatory response that shows little or no damping, followed by a

sudden increase in the amplitude of the oscillations. In the model proposed above,

we see that for phase lag in the range from π/2 to π, the model predicts oscillations

that increase drastically in magnitude. However, we have already demonstrated that

for the proposed model, the influence of rapid pressure range from zero effect, which

corresponds to a phase lag value of π/2 to greatest effect which corresponds to phase

lag values approaching zero. It is not immediately clear how the rapid pressure can

directly cause the velocity field to experience a phase lag of greater than π/2 when

the limiting case for zero effect of rapid pressure corresponds to a phase lag of π/2.

Overall, the different regimes of phase lag for the simple proposed model above

are illustrated in figure 32 below. The figure shows the range of phase lag values

outlined above and illustrates the corresponding regimes of behavior and the relative

influence of rapid pressure. In order to explain the physical results seen in RDT in

terms of the model proposed above, it is postulated that for a given value of the forcing



58

α=0

α=π/2

α=π

k - decayk - growth

k - periodicity

Increasing influence
of rapid pressure

α=0

α=π/2

α=π

k - decayk - growth

k - periodicity

Increasing influence
of rapid pressure

Fig. 32. Regimes of behavior for α

frequency, the rapid pressure allows for a range of values for the actual lag between

bij and Sij. The size of the range may depend upon the forcing frequency. At very

high and very low frequencies this range is small, but at intermediate frequencies, it

may be larger. It is also observed that this lag can vary over time as the flow evolves.

For the very low frequency cases, the corresponding values allowed for α are all close

to zero, and they are all readily damped out by the rapid pressure itself. As we

consider higher forcing frequencies we move to values of α that are closer and closer

to the limit of π/2. At some frequency sufficiently close to this limit, the range of

values for α that are ’permitted’ by the rapid pressure include those that are greater

than π/2, and when the oscillations cross into this region we observe the dramatic

increases in amplitude that characterize the intermediate regime of response. In this

manner the proposed model also captures the behavior of the velocity field as seen in

’intermediate regime’ RDT results. Finally, when the forcing frequency is sufficiently

high such that the effects of rapid pressure are negligible, the velocity field is ’forced’

to remain on the π/2 limit, since the influence of the rapid pressure disappears.
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The analysis outlined above implies that the role of rapid pressure in unsteadily

forced turbulence serves to create a temporal lag between the applied distortion and

the strain in the flow. For different frequencies of forcing, this phase lag can take on

different values, and depending on the amount of lag that is present between stress

and strain, we see different responses in the turbulent velocity field. The results of

the present study have already illustrated the existence of three regimes of response

in the presence of periodic forcing. The simple model analysis above suggests that

these regimes correspond to three distinct ranges of values for a phase lag between

stress and strain that are caused by rapid pressure.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

In this study, the response of a turbulent velocity field to unsteady periodic forc-

ing has been examined. The study was performed using Rapid Distortion Theory, a

linear theory that provides for relatively affordable computation over a wide range

of parameters. Calculations were performed for both full RDT and also the Inertial

Model (which neglects the presence of the rapid pressure-strain correlation) to ex-

amine the role of rapid pressure in the observed RDT response. The the responses

predicted by the Inertial Model were calculated first. For this case, the flow exhib-

ited a consistent, steady, periodic response for all forcing frequencies. Next, the full

RDT calculations were performed using various forcing frequencies, and the results

showed that the velocity field exhibits three distinct types of responses to the periodic

forcing. For relatively low frequencies, the velocity field settles down to a constant

steady behavior, with all fluctuations dying out. In an intermediate frequency range,

the velocity field exhibits sudden and drastic increases in kinetic energy. When sub-

jected to higher forcing frequencies, the velocity field behaves in a simple periodic

fashion, with all parameters oscillating around their initial condition. The differences

in the predicted response between full RDT and the Inertial Model make it clear that

the distinct regimes of behavior that are exhibited by the turbulent velocity field,

as shown in the RDT calculations, are due to the effect of the rapid pressure. For

low-frequency forcing, the effects of rapid pressure are the strongest and are sufficient

to counteract production and completely damp out oscillations. In the intermediate

regime of frequencies, the effects or rapid pressure are less pronounced, but are sig-

nificant enough to cause the velocity field to exhibit sudden dramatic increases in

the turbulent kinetic energy and other flow parameters. At relatively high frequen-
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cies, the velocity field behaves in a manner very similar to that seen in the Inertial

Model, with a constant, steady, periodic response. This implies that at these high

frequencies, the qualitative effects of rapid pressure are significantly diminished.

In order to explain the observed behavior more specifically in terms of the in-

teraction between applied stress and the straining response in the flow, the equation

for the evolution of the kinetic energy was considered. Using this equation, a model

was proposed that represents the stress and strain as trigonometric functions with a

phase lag. Calculations using this model produce results that closely resemble the

results of the RDT calculations. For this model we see the existence of three distinct

regimes of behavior, according to different ranges of the phase lag. A value of π/2 for

the phase lag leads to bounded periodic behavior of kinetic energy corresponding to

the Inertial Model and RDT at high forcing frequencies. For phase lag values from

zero to π/2 we see a damped response for the model, while those ranging from π/2

to π show a kinetic energy evolution that increases dramatically. It is proposed that

phase lag values close to zero in the model correspond to the low forcing frequency

regime in which the role of the rapid pressure is strongest and it is able to damp

all oscillations in the flow. For values of the phase lag that approach the limiting

value of π/2 (zero effect of rapid pressure) we see that the rapid pressure allows for

oscillations can occasionally take values greater than π/2, causing sudden increases in

oscillation that correspond to the dramatic increases seen in the intermediate regime

of forcing seen in RDT. Overall, the results of the simple model verify that that dif-

ferences in response first seen in the RDT calculations can be explained in great part

as the effects of a ’lag’ between stress and strain that is caused by the activity of the

rapid pressure. Finally, it should be noted that while the calculations in the present

study were performed for initially isotropic turbulence, we expect the behavior to be

consistent for other initial conditions as well.
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In summary, the main conclusions that can be drawn from the results of this

study are:

(i.)Turbulence, when subjected to unsteady periodic forcing, exhibits three dif-

ferent regimes of response.

(ii.)The existence of the regimes is caused by the effect of rapid pressure.

(iii.)Rapid pressure serves to create a ’phase lag’ between the applied stress and

the straining in the velocity field, and this phase lag accounts in great part for the

different regimes of response that are evident in periodically-forced turbulence.
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