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ABSTRACT

Investigation of Glacial Dynamics in Lambert Glacial Basin Using
Satellite Remote Sensing Techniques.
Jaehyung Yu, B.S., Chungnam National University;
M.S., Chungnam National University

Chair of Advisory Committee: Dr. Hongxing Liu

The Antarctic ice sheet mass budget is a very important factor for global sea level. An
understanding of the glacial dynamics of the Antarctic ice sheet are essential for mass
budget estimation. Utilizing a surface velocity field derived from Radarsat three-pass
SAR interferometry, this study has investigated the strain rate, grounding line, balance
velocity, and the mass balance of the entire Lambert Glacier — Amery Ice Shelf system,
East Antarctica.

The surface velocity increases abruptly from 350 m/year to 800 m/year at the
main grounding line. It decreases as the main ice stream is floating, and increases to
1200 to 1500 m/year in the ice shelf front. The strain rate distribution defines the shear
margins of ice flows. The major ice streams and their confluence area experience the
most severe ice deformation. The width of the shear margin decreases as it flows
downstream except for the convergent areas with tributary glaciers. The grounding line
for the main ice stream and the boundary of Amery Ice Shelf and surrounding tributary

glaciers is delineated.



iv

The total basal melting is estimated to be 87.82 + 3.78 Gt/year for the entire
Amery Ice Shelf. Compared with the ice flux (16.35 £+ 3.11 Gt/year) at the ice shelf
front, basal melting is apparently the dominant discharging process of the system. The
melting rate for the Amery Ice Shelf decreases rapidly from the grounding zone (21.64 +
2.17 m/year) to the ice shelf front (-0.95 £+ 0.14 m/year).

The Lambert Glacial Basin contributes the total ice mass of 95.64 + 2.89 Gt/year
to the ocean, which is equivalent to increasing the global sea level by 0.24 mm/year.
Considering 90.54 = 1.55 Gt/year of snow accumulation, the entire Lambert Glacier —
Amery Ice Shelf system is slightly negatively imbalanced at -5.09 + 3.46 Gt/year.
Although the entire system is estimated to have a slight negative mass balance, three
sub-glacial systems have a net positive mass balance due to a relatively high snow
accumulation rate or relatively slow ice motion. Considering the large mass loss in West
Antarctica, it is believed that the overall mass budget in Antarctica is negative based on

this research.
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CHAPTER1

INTRODUCTION

1.1. Background

The global warming and sea level rise are critical issues to science communities as well
as general public because of its possible consequence on everyday human life.
Especially, the Antarctic ice sheet is extremely sensitive to both atmospheric and oceanic
environmental changes. As an immense reservoir, it contains over 70% of Earth’s fresh
water. Of particular importance is the possibility of a significant rise in global sea level
brought on by a change in the mass balance of the ice sheet under the influence of global
warming, or by the surging and collapse of a major ice drainage basin (Mercer 1978,
Bindschadler 1991, Rott ef al. 1996).

Based on previous sea level change measurements, the Antarctic ice sheet
contributed 0.0 to 0.5 mm/yr in sea level rise over the 20" century (Intergovernmental
Panel on Climate Change 2001). Melting all the ice contained in Antarctic ice sheets
would raise sea level by 60 m (IPCC 2001). In the last 7 years, the picture of a slowly
changing Antarctic ice sheet has radically altered. It is now realized that ice shelf basal
melting may account for up to one third of the loss from the grounded ice; extensive,
rapid thinning is occurring in one part of the West Antarctic ice sheet interior; and the

collapse of the Antarctic Peninsula ice shelves is accelerating the discharge of grounded

This dissertation follows the style of International Journal of Remote Sensing.



ice. These discoveries inject a new sense of urgency into gaining a better understanding
of the evolution of the ice sheet (The International Council for Science committee on
Antarctic Research 2002).

Recent advances in the determination of the mass balance of polar ice sheets
show that the West Antarctic ice sheet is probably thinning overall with a loss of -48+14
km?/year. The mass balance of West Antarctic ice sheet shows bimodal mass imbalance
distribution with thickening in the east and thinning in the north (Rignot and Thomas
2002). In addition, new discoveries by satellite interferometry have shown that the ice
previously thought to be accumulating in the interior of East Antarctica is likely to be
small, but whether the interior is gaining or losing mass can not yet be determined with
the value of 22423 km® /year. Considering mass loss in West Antarctica, the overall mass
budget in Antarctica is believed to be negative (Rignot and Thomas 2002).

The Lambert Glacier basin, located in East Antarctica, is the largest glacial basin
in the world with a width of about 1300 km, a length of 1450 km, and an ice thickness
up to 4000 m (Lythe et al. 2001) (Figure 1.1). Because of its size, the Lambert Glacial
Basin plays a fundamental role in the glacial dynamics and mass budget of East
Antarctica in response to present and future climate changes.

Pioneering work on the Lambert Glacial Basin was carried out by the Australian
National Antarctic Research Expeditions (ANARE) during 1962-65 (Budd, 1966), 1968-
71 (Budd et al. 1982), and 1989-95 (Higham et al. 1997). Based on the information

collected by these expeditions, several research attempts have been made to assess the



dynamic behavior and total mass budget of the Lambert Glacial Basin (e.g. Budd 1966,
Allison 1979, Mclntyre 1985, Higham et al. 1997).

Due to logistical and technical difficulties in this remote region, ground-based
measurements ice velocity, ice thickness and snow accumulation rates are sparse and
mainly confined to transverse routes, with large portions of the interior region having no
data collected. As a result, these previous analyses have been seriously limited. Early
mass-budget estimates reported by Allison (1979) and MclIntyre (1985) vary widely.
Supporting evidence for surging has been offered for the Lambert Glacier-Amery Ice
Shelf System (Allison 1979), but other investigators have argued against surging for this
system (Mclntyre 1985, Radok et al. 1987, Hambrey and Dowdeswell 1994).

Following successful completion of the RADARSAT-1 Antarctic Mapping
Mission (AMM-1) from September to October, 1997 (Jezek 1998) and the Antarctic
Mapping Mission 2 (AMM-2) from October to December, 2000 (Jezek 2002), 25 m
resolution Radarsat-1 SAR data is available for the entire Lambert Glacial Basin. With a
24-day orbit cycle and 6 days of repeat-pass acquisitions a substantial volume of
interferometric SAR (InSAR) data was acquired during these two missions.
Interferometric synthetic aperture radar has now become a well-established means of
collecting ice-velocity measurements with high resolution and high accuracy (Joughin et

al. 2000).
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Figure 1.1 Ice divides and flow lines overlaid in SAR image mosaic of the Lambert

Glacial Basin, Antarctica.

Using radar remote sensing techniques, there have been advanced studies of mass
balance, ice velocity, and the grounding line of the Lambert Glacial Basin area
(Wingham et al. 1998, Vaughan et al. 1999, Fricker et al. 2000, Gray et al. 2002,
Rignot 2002, Young and Hyland 2002, Joughin 2002, Rignot and Thomas 2002). Those
include mass balance studies using ERS-1 and ERS-2, and mass balance and ice velocity
studies using RADARSAT-1.

Based on ERS-1 radar altimeter data and in sifu velocity measurements at ground

stations, Fricker et al. (2000) obtained positive balance fluxes for the upstream region of



Lambert Glacier-Amery Ice Shelf drainage system. Vaughan et al. (1999) derived a
surface accumulation map for Antarctica at 10 km resolution. Wingham et al. (1998)
also reported positive mass accumulation rate by calculating elevation change from 1992
to 1996 using ERS-1 and ERS-2 altimeter data.

By using SAR interferometry and speckle tracking, Rignot (2002) and Rignot
and Thomas (2002) concluded substantial losses for the Lambert glacier. Ice velocity
maps were created by a number of research groups for the portion of Lambert Glacial
Basin and the Amery Ice Shelf for mass balance and strain rate calculation (Rignot
2002, Rignot and Thomas 2002, Joughin 2002, Young and Hyland 2002).

Rignot (2002) calculated the velocity at the grounding line and the mass balance
for the part of the Lambert Glacial Basin using speckle tracking methods for the region.
Joughin (2002) completed a two-dimensional ice velocity map using combined InSAR
and speckle tracking. Fricker et al. (2000) calculated the mass balance of the Lambert
Glacier-Amery Ice Shelf System with ERS radar altimeter DEM and in-situ surface
velocity data using the balance flux concept. Young and Hyland (2002) derived the
surface velocity and strain rates over the Amery Ice Shelf using the speckle tracking
method.

However, these previous velocity and mass balance studies covered only portions
of the Lambert Glacial Basin and had limited accuracy. With newly acquired InSAR
pairs available in three pass interferometry, a higher accuracy velocity field can be
extracted. The three pass SAR interferometry over the study area will result in ice

dynamic analysis with higher accuracy including application of the mass balance, strain



rate, balance flux, and grounding line position. In terms of data quality, InSAR pairs
from the newly processed ascending and descending orbits from AMM-2 will give the
best possible improvement on the velocity measurements because the three pass
interferometry can remove the topographic information using one pair of InSAR pair and
the secondr pair can be used for calculating surface movement. The best topographic
data available for previous studies was ERS radar altimetry data, which has significant
limitations in steep and mountainous areas. The recent GLAS/ICESat laser altimetry
data will be utilized for drainage basin delineation and ice divide extraction. In addition,
the accurate height information can provide useful information for ice thickness
calculations in addition to identification of floating ice.

As mentioned earlier, the mass balance of the Antarctic Ice Sheet plays important
role in global sea level rise, and it is still unclear the mass balance of East Antarctica is
gaining or losing the mass. The mass balance and glacier dynamics of the Lambert
Glacial Basin is, therefore, very important in determining the mass balance of East
Antarctica as well as global sea level contribution from Antarctic Ice Sheet since it can
provide essential clue on the mass balance and sea level contribution of East Antarctica.
It is expected that this study will to our knowledge of this glacier system in detailed
structure of mass balance of the Lambert Glacial Basin and, eventually, in the impact of

Antarctic Ice Sheet on global sea level rise.

1.2. Research scope and objectives

The study aims to provide the answers for the following questions:



What is the mass balance status of the Lambert Glacial Basin?

Does the mass balance of the Lambert Glacial Basin affect global sea level rise?
What are the internal mass balance structure of the Lambert Glacial Basins and
its contribution of sub-systems?

What are the characteristics of glacial dynamics in the Lambert glacier system?
To answer the research questions, the following tasks are carried out:

Calculate the strain rate distribution over the entire Lambert Glacial Basin based
on Radarsat InSAR velocity information.

Delineate and refine the grounding line position of the Amery Ice Shelf by
utilizing InSAR coherence images and the vertical velocity component from
InSAR.

Delineate the basin boundary and ice divides from InSAR derived ice motion
direction information and direction information derived from OSU DEM and
ICESat laser altimetry.

Calculate the mass imbalance distribution over the glacial basin using balance
velocity and ice depth averaged velocity from InSAR.

Calculate the mass balance and ice discharges of all ice streams in the Lambert
Glacier — Amery Ice Shelf system, and estimate basal melting along the Amery
Ice Shelf from the grounding line to the ice shelf front.

Derive the net mass balance field over the glacier basin to provide ice thickening
and thinning information utilizing the newly derived ice velocity data in GIS

environment.



These specific tasks will be the main components in explaining the current state of ice

dynamics and mass balance of the Lambert Glacier-Amery Ice Shelf System.

1.3. Lambert Glacier-Amery Ice Shelf System

The Lambert Glacier-Amery Ice Shelf System is located between latitudes 67°S and
75°S and longitudes 68°E and 75°E, and is the largest glacier-ice shelf system in the
world. The Lambert Glacier-Amery Ice Shelf System is defined as “the area where snow
precipitates and ice are drained and discharged through the Amery Ice Shelf. The
Lambert Glacier-Amery Ice Shelf System covers about 13 % of the grounded Antarctic
ice sheet (Allison 1979), whereas the Amery Ice Shelf front comprises approximately
1.7% of the total Antarctic coastline (Giovinetto and Bently 1985). Therefore the
Lambert Glacier-Amery Ice Shelf System is dynamic and important in mass balance and
ice dynamics studies of the Antarctic ice sheet.

The Lambert Glacier-Amery Ice Shelf System consists of eight structurally
defined ice streams (Hambrey and Dowdeswell 1994) (Figure 1.2). Flowing northward
of the system, three major ice streams, the Lambert, Mellor, and Fisher Glaciers are
flowing through the center of the system resulting in a confluence zone that becomes the
main ice stream discharging to Amery Ice Shelf and is named Lambert Glacier (Figure
1.2). A number of other tributary ice streams join the main stream of Amery Ice Shelf
from both the east and west; notably Charybdis Glacier, the tributary glacier from the
Price Charles Mountains, and the tributary glacier from the northeast Mawson

Escarpment (Figure 1.2).
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Figure 1.2 Major ice streams and land marks of the Lambert Glacier-Amery Ice Shelf

system.

1.4. Organization of the research

The research background and objectives have been presented in the preceding sections.
Chapter II begins with an overview of two-dimensional surface velocity extraction
techniques, including SAR interferometry and speckle tracking. The theoretical
background and the details of the processing components are then discussed. Then the
two-dimensional surface velocity field extraction method, and the mosaic and calibration
of the velocity fields is discussed. This is followed by a general description and
discussion of the two-dimensional velocity field of Lambert Glacier Basin to explain its

application in this study.



10

In chapter III, the grounding line delineation and location is examined. Principal
methods to delineate the grounding line including InSAR coherence images and vertical
velocities are discussed. Previous studies of grounding lines for the study area are
summarized and the newly delineated grounding line and its location is discussed. The
result of grounding line delineation is validated through comparison with previous
studies as concluding this chapter.

Chapter IV examines the strain rate of main ice streams of the Lambert Glacier-
Amery Ice Shelf System. This chapter begins with a brief description of previous studies
of strain rates for the study area. The strain rate calculation method using x directional
and y directional velocity fields from SAR interferometry is explained. The final section
presents discussions on the newly created strain rate map.

Chapter V investigates the balance velocity and its application for determining
the mass balance of the Lambert Glacier-Amery Ice Shelf System. Previous methods and
the newly developed flow direction and flux distribution method are introduced. The
balance velocity distribution and its comparison with previous methods are discussed.
The chapter concluded with the mass imbalance distribution of grounded ice streams.

Chapter VI presents the basin scale glacial mass balance calculation methods and
previous studies for Lambert Glacier Basin. The sub-basins are delineated using a
Digital Elevation Model, ICESat laser altimetry data, and direction information from
SAR interferometry. The basin and sub-basin scale mass balance of the Lambert Glacier-
Amery Ice Shelf System is presented. Finally, basal melting of Amery Ice Shelf is

discussed. Then, the result comparison with a previous study is discussed. In addition,
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the methodology and algorithm for GIS based net mass calculation is presented. The net
mass balance distribution over the main ice streams of the Lambert Glacier-Amery Ice
Shelf is discussed. This chapter concludes with discussions on ice thickening and
thinning, and their relationship with surface features.

The final chapter summarizes the research findings and presents conclusions and

implications derived from this study.
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CHAPTER 11

DERIVATION OF SURFACE VELOCITY FIELD

2.1. Velocity measurement techniques

Knowledge of ice flow velocity and strain rate is important in assessing ice mass balance
and in understanding the flow dynamics of ice streams. The ice flow direction and
magnitude are instrumental in the re-distribution of ice mass within the drainage basin.
When ice thickness and accumulation rates are known, ice velocities can be used in a
direct calculation of the mass balance or can be compared with balance velocities to
assess the state of equilibrium of any ice mass (Paterson 1994).

Speckle tracking of repeat-pass complex radar images (Gray et al. 1998, Gray et
al. 2001, Rignot 2002, Young and Hyland 2002), and SAR interferometry (Goldstein et
al. 1993, Joughin et al. 1996, Kowk and Fahnestock 1996, Rignot 2002, Joughin 2002)
have been proven to produce a reliable two-dimensional surface velocity field in for ice
sheets. The analysis in this study relies primarily on a combination of speckle tracking
and interferometric SAR techniques.

The Canadian Radarsat-1, launched on November 4, 1995, is equipped with a C-
band Synthetic Aperture Radar (SAR) capable of acquiring high resolution (25 m)
images of Earth's surface day or night and under all weather conditions. Because of its
enhanced flexibility to collect data using a variety of swath widths, incidence angles and
spatial resolutions, RADARSAT-1 can be maneuvered in orbit to rotate the normally

right-looking SAR to a left-looking mode. This 'Antarctic Mode' provides means for the
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first time of nearly instantaneous, high-resolution views of the entirety of Antarctica.
The first Antarctic Mapping Mission (AMM-1) began on September 9, 1997 and was
successfully concluded on October 20, 1997 to create the first, high resolution, radar
image of the continent. The second, AMM-2 began on September 3, 2000 and was
successfully concluded on November 17, 2000 to compare the data with AMM-1 and to
obtain as much surface velocity data on the ice sheet as possible (Jezek 1998, Jezek
2002).

The AMM-1 and AMM-2 missions provided a wealth of data for InNSAR based
process of Antarctica. However, many of the problems with this InNSAR data set relate to
its 24 day repeat cycle which is a long period to make interferometric measurements of
an ice sheet. Reasonable correlation levels can usually be obtained in low-accumulation
areas. In many high-accumulation areas, interferometry over 24 days will often fail
(Joughin 2002).

A 24 day repeat cycle provides a strong sensitivity to displacement, with one
interferometric fringe roughly equivalent to 1 m a' of horizontal ice motion
perpendicular to the satellite track. This yields good accuracy in slow-moving areas,
where the phase can successfully be unwrapped. In fast-moving areas, however, phase
unwrapping is much more difficult, in many cases, no phase measurement can be made.
Thus, with conventional 24 day interferometry, velocity estimation is largely limited to
slow-moving areas. For the fast moving areas, speckle tracking takes advantage of the
ability to determine with sub-pixel accuracy the displacements between scenes in an

interferometric pair using the cross-correlation function of the speckle patterns, which
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are sharply peaked. Because matches are based on speckle rather than visible features,
speckle tracking, like conventional interferometry, is limited by temporal and other
sources of decorrelation (Joughin 2002).

For the most of ice dynamics and mass balance analysis, this study mainly uses
the surface velocity field created by Byrd Polar Research Center at Ohio State University
from the AMM-2 three-pass InSAR data. As a co-project with the Ohio State University,
this study acquired the most advanced and updated surface velocity data for the first time
among the many institutions. In addition, this study developed a new algorithm for
mosaic and calibration of the surface velocity information for neighboring InSAR
frames.

This chapter briefly summarizes the SAR interferometry based surface velocity
extraction methods. New techniques for mosaicing and calibration of the surface
velocity information for neighboring frames or orbits is introduced. The two dimensional
surface velocity field of Lambert glacier — Amery Ice Shelf system from the Ohio State

University is discussed and its application for this study concludes this chapter.

2.2. SAR interferometry

The repeat-pass interferometric SAR data consists of two or more complex radar images
for the same scene acquired by a SAR sensor in a precise repeat orbit. The scene is
imaged from almost the same geometry, but with slightly different positions and aspect
angles during different passes of the spacecraft. The phase unwrapping method and

speckle tracking method represents two different schemes to measure surface
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displacements based on the repeat-pass InSAR data. Along with the known time span of
the repeat cycle, the derived surface displacements can be converted to the
measurements for surface motion speed and direction.

The phase unwrapping method measures the phase differences between the
complex radar images. If the ground is not seriously disturbed between passes, two
complex radar images can be correlated to form an interferogram. The phase measured
from the interferogram includes contributions from both the topography effect and the
surface motion effect. Using a digital elevation model, the topography-induced phase
can be removed, resulting in fringe patterns solely due to surface motion. When more
than two passes of SAR data are available, differential interferometry can be used to
separate the surface motion component from the topography component by a double
difference technique (Kwok and Fahnestock 1996, Joughin et al. 1996a). After
performing the phase unwrapping operation, the absolute phase measurements can be
converted to surface displacements in the radar line-of-sight (LOS) direction. The
accuracy of the resulting displacement measurement at each pixel is highly accurate, at a
fraction of the radar signal c-band wavelength. Under the assumption that the ice flow
vector is parallel to the ice surface, the radial LOS velocity can be projected into
horizontal surface velocities with an estimate of the flow direction from a digital
elevation model (DEM) (Kwok and Fahnestock 1997). With two InSAR pairs
respectively from ascending and descending passes, three-dimensional surface

displacements can be solved at an improved accuracy without using the surface parallel
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flow assumption (Kwok and Fahnestock, 1996, Joughin et al. 1998, Mohr et al. 1998,
Joughin 2002, Gray et al. 2005).

For one interferometric SAR pair, the surface motion induced phase component
(D,,) in the LOS direction can be expressed as (Zhao 2001):

D =D-D, 2.1

where @ is the unwrapped phase after the removal of the topography effect, and @ is an
unknown constant phase, which is caused by the arbitrary selection of an initial start
point for phase unwrapping. The surface motion velocity (V,) in the range (cross-track)

direction can be calculated by Equation (2):

V. = A b = A
" daTsin(f+ea,) " 4aTsin(f+a,)

@-®,) (22

where A is the wavelength of radar signal, T is the time interval between acquisitions, 3
is the incidence angle, and ¢, is the surface slope angle in the range (cross-track)

direction. The geometry parameters of interferometry are illustrated in Figure 2.1.
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Figure 2.1 Geometry configuration of repeat-pass interferometry and terrain surface.

2.3. Speckle tracking

The speckle tracking method measures surface displacements by correlating and tracking
the image speckle patterns between two repeat-pass acquisitions (Gray et al. 1998). A
correlation matching algorithm is commonly used to obtain both azimuth (along-track)
and range (across-track) direction offsets based on the coherent speckle pattern of small
chips of the InSAR image pair. The cross-correlation can be performed using the real-

valued amplitude images or the complex-valued radar images (Gray et al. 2001, Young
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and Hyland 2002, Joughin 2002). For low-correlation regions, the cross-correlation
surface from the complex-valued radar images is more strongly peaked, and hence more
accurate matches can be achieved with a relatively small chip size. In regions with shear
or steep topography, however, large phase gradients across the image chips often fail the
match by reducing or eliminating the correlation peak. In such regions, the cross-
correlation based on the amplitude radar images is unaffected by the phase gradients and
can generate reliable offset estimates. Through oversampling of the correlation surface,
the matching peak can be determined to a small fraction of a pixel spacing, resulting in
accurate estimates of the surface displacements. It should be noted that the speckle
tracking method does not depend on visible features in the images and is normally much
more accurate than the feature retracking method, which depends on visible and
identifiable features. The topography induced range offset component can be removed
by using a digital elevation model. The range offset (J,) after the removal of topography
effect and azimuth offset (d,) includes a non-motion component contributed by the
imaging geometry (parallel baseline and orbit squint angle). The non-motion term in the
range and azimuth offsets can be modeled using a linear model. The actual surface
displacements in the range and azimuth direction can be computed by removing the
modeled non-motion term as (Zhao 2001, Joughin 2002):
d. =06 —(a,+ax+a,y) (2.3)
d,=0,—(b,+bx+b,y) (2.4)

where d, and d, are respectively the surface displacements in the range and azimuth

directions measured in pixel, x and y are the range and azimuth coordinates of the slant
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range image, ay, a;, and a, are coefficients of the linear model, which account for the
non-motion term in range direction, and, by, b;, and b, are coefficients of the linear
model, which account for the non-motion term in azimuth direction. Parameters ay and
by, are related to the parallel baseline, a; and b, are related to the orbit squint angle, and
a; and b,, are related to the change of the orbit squint angle along the flight line. The
velocity components in the range (V,) and azimuth (V,) directions can be calculated from

the equations below:

V= d, —Fcos(;(—@) s,
Tsin(f+«,)

(2.5)

= L S, (2.6)
T cos(ex,)

where B is the length of the base line, y is the baseline angle, £ is the local incidence

angle, @is the radar look angle, ¢, and ¢, are terrain slopes respectively in the range and
azimuth directions, S, and S, are pixel sizes respectively in range and azimuth directions,
and T is the time interval between two image acquisitions. The definitions of the above
geometric parameters are illustrated in Figure 2.1. Since range pixel size is larger than
azimuth pixel size for a slant range SAR image and the range motion estimates are
affected by the baseline and topography, the range velocity estimates from the speckle

tracking method are much less accurate than the azimuth velocity estimates.
The two-dimensional horizontal velocity field (V ) can be expressed as:

V=Vi+Va 2.7)

r a
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where V_ and V_ are the magnitudes of the surface motion speed in the range and

azimuth directions, and 7 and a are unit vectors in the range and azimuth directions.
The surface motion speed (s) and direction () can be calculated by the following

equations:

s=yV.+V} (2.8)

W= arctan(‘;" J 2.9)

r

2.4. Two dimensional surface velocity field

The phase unwrapping method and speckle tracking method have their advantages and
disadvantages (Joughin et al. 1999b, Gray et al. 2001, Zhao 2001, Joughin 2002). In
fact, they are complementary each other. With one interferometric SAR image pair, the
speckle tracking method can derive two-dimensional surface displacements in both
range and azimuth directions, in contrast to the range-only displacement measurement of
the phase unwrapping method. For the speckle tracking method, the accuracy
requirements for orbit and topographic data are not as stringent as for phase unwrapping
method.

In fast-moving areas, the high fringe rate of the interferogram may make the
phase unwrapping impossible, or the interferogram may be unwrapped into several small
and disconnected regions due to the patchy coherence. Since the speckle tracking
method is less sensitive to decorrelation and does not require phase unwrapping, it is

able to provide displacement measurements farther into the shear margins and across
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areas with a higher strain rate. In comparison, the primary advantages of the speckle
tracking method lie in its ability to estimate surface motion speed and direction with one
interferometric data pair and its suitability in areas of high ice velocity and long orbit
repeat cycles. The major disadvantage of the speckle tracking method is that its range
direction displacement measurements have intrinsically lower resolution and inferior
accuracy, compared with the differential phase-based measurements of the phase
unwrapping method.

To make full use of the comparative advantages of both methods, the range
motion component derived by the phase unwrapping method and the azimuth motion
component derived by the speckle tracking method should be combined whenever
possible (Gray et al. 2001, Zhao 2001, Joughin 2002). Coupling the speckle tracking
method with the phase unwrapping method creates the two-dimensional horizontal
surface velocity field with the best possible accuracy. When no differential phase
measurements can be made, for instance, in the case of fast-moving areas or the InSAR
data pair with a long temporal baseline, the speckle tracking method is the only possible

approach to obtain the measurements of both the range and azimuth motion components.

2.5. Velocity mosaic and calibration

An InSAR image frame acquired by ERS-1, ERS-2 or Radarsat-1 SAR sensor normally
covers a ground area of 100 km by 100 km. Many applications require surface velocity
data over a wider area. Multiple InNSAR image frames from the same or adjacent orbits

are required to achieve a full coverage. Conventionally, InSAR image data were
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processed separately frame by frame. As a consequence of independent processing,
velocity measurements obtained from one InSAR image frame are generally different
from those obtained from other adjacent InSAR frames for the overlapping region. When
the velocity data derived from individual image frames are merged, inconsistency and
discontinuity in the surface motion speed and direction between neighboring frames are
bound to occur. In addition, no matter whether the phase unwrapping method or speckle
tracking method is used, velocity control points are required to calibrate the relative
surface displacements from the InSAR data to absolute velocity estimates. Commonly,
rock outcrops are conveniently selected as zero velocity control points for this purpose.
Such velocity control points may not be identified for some InSAR image frames, which
preclude the derivation of absolute velocity information.

This study presents a simultaneous least-squares adjustment method for
calibrating and merging surface motion measurements obtained from multiple InSAR
image frames. Based on a limited number of velocity control points and a set of velocity
tie points, this method simultaneously calibrates model parameters and determines
surface displacement measurements for all frames in a strip or a block. With this
method, the velocity discrepancies between adjacent image frames are minimized, and a
seamless velocity mosaic can be produced. In addition, this method greatly relaxes the
velocity control point requirements. For those frames devoid of velocity control points,
absolute velocity measurements can still be derived by utilizing distant velocity control
points in other image frames or by utilizing the flow direction constraints imposed by

surface flow stripes.
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2.5.1. Mathematical formulation of observation equations

The first step in a least-squares strip or block adjustment is to identify the underlying
observation equations, along with the minimum number of constraints (control points)
necessary to solve for the adjustment problem. In the simultaneous least-squares
adjustment, this study incorporates the following types of constraints: velocity control
points, flow direction control points, and velocity tie points. The goal of the
simultaneous least-squares adjustment is to reduce the number of required control points
to a minimum and to produce a consistent and seamless velocity mosaic within a strip or
a block. This study derives and presents mathematical observation equations in two
different cases, which are referred to as case 1 and case 2 in the following sections. In
case 1, the speckle tracking method alone is used to derive both range and azimuth
displacements for the two-dimensional velocity field. Case 1 fits situations where the
surface motion is fast and/or the interferometric SAR pair has a long temporal baseline.
In case 2, the range displacements derived from the phase unwrapping method are
combined with the azimuth displacements derived from the speckle tracking method to
calculate the two-dimensional velocity field. As discussed above, case 2 is suiTable for

the slow moving areas.

2.5.1.1. Observation equations for velocity control points
In casel, surface velocity extraction using speckle tracking method, Equations (2.3) and
(2.4) are used to calculate range and azimuth displacements. Six unknown parameters

need to be determined, including ay, a;, az. by, b;, and b,. In case2, Equation (2.1) is
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used to calculate range displacements while Equation (2.4) is still used to calculate
azimuth displacements. There are four unknown parameters in Equations (2.1) and (2.4),
including @, by, b;, and b, Once the four parameters are determined, the two-
dimensional surface displacements can be calculated.

Velocity control points play an important role in calibrating the unknown
parameters. A velocity control point is a feature with a known position and velocity.
Namely, its range and azimuth coordinates and its surface displacements in both range
and azimuth directions (D,, D,) during the orbit repeat cycle are known. For case 1,
observation equations for a velocity control point can be derived from Equations (2.3)
and (2.4) as:

a,+a,x+a,y=0,—D, (2.10)

by +bx+b,y=96,-D, (2.11)
For case 2, the azimuth observation equation for the velocity control point is the same as
equation (2.11), and the range observation equation can be derived from Equation (2.1)
as:

4
@, =q§—% (2.12)

In practice, features at rock outcrops are often selected as stationary velocity
control points, and their surface displacements are set to zero, namely, D,=0 and D,=0.
Non-stationary velocity control points can be acquired through in situ GPS
measurements, but they are often unavailable. Each stationary or non-stationary velocity

control point gives rise to two observation equations. The accurate determination of the
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unknown parameters requires a least-squares calibration with redundant observations. In
case 1, a minimum of 4 non-collinear velocity control points are required to calibrate the
six unknown parameters ayg, a;, a;. by, b;, and b, in observation equations (2.10) and
(2.11). In case 2, at least 3 non-collinear velocity control points are required to calibrate
the four unknown parameters @,, by, b;, and b, in observation equations (2.11) and
(2.12). The quality, number, and spatial distribution of the velocity control points
influence the estimates of the unknown parameters and hence the accuracy of the surface
displacements. If the velocity control points are well distributed in both the range and
azimuth directions, the least-squares solution for the parameters would be more stable
and reliable. A larger number of velocity control points can reduce the propagation of

errors in the velocity control points.

2.5.1.2. Observation equations for flow direction control points

In some cases, no sufficient number of stationary or non-stationary velocity control
points can be identified for the least-squares calibration of the unknown parameters. But,
it may be possible to determine the ice flow direction at many locations using ice flow
stripes visible on the SAR images. In this paper, the definition of velocity control points
is extended by including the flow direction control points. A flow direction control point
is a location whose flow direction angle (¥) is known, but no information is available for
the magnitude of flow speed. The flow direction control point defines a ratio of range

motion and azimuth motion by the equation below:
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\%
£ =tan 2.13
v 4 (2.13)

where V, and V,, are range and azimuth direction velocity components, and ¥ is the flow

directional angle.
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Figure 2.2 Acquisition of a flow direction control point based on an ice flow stripe.

A flow direction control point can be acquired by directly measuring the
orientation angle (¥) of a flow stripe on a SAR image. Nevertheless, it is more
convenient and efficient in practice to measure the range and azimuth coordinates of the
end points (x;, y;) and (x,, y2) for a short straight segment along a flow stripe in the slant

range SAR image (Figure 2.2). By differencing the range and azimuth coordinates of the
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two end points, we can obtain the range and azimuth offsets (Ar, Aa) along the flow
stripe, which virtually define the flow directional angle.
For case 1, the measured range and azimuth offsets along a flow stripe can be
expressed as:
kAr=96. —a,—a,x—a,y (2.14)
kAa=906,-b,—bx—b,y (2.15)
where k is a constant scaling factor, other parameters are the same as those in Equations
(2.10) and (2.11). By dividing Equation (2.15) by Equation (2.14), we can cancel the

scaling factor k and obtain the following observation equation for a flow direction

control point:
a,+ax+a,y—"L b, +bx+by) =5 -2 (2.16)
Ar Ar

For case 2, Equation (2.14) is replaced by the following equation:

A
47S

r

kAr =

(P—-D,) (2.17)

By dividing Equation (2.15) by Equation (2.17), we can cancel the scaling factor k and
obtain the following observation equation for case 2:

Ma AMa
ey D, -b,—bx—b,y= 4erq5—5a (2.18)

Compared with stationary and non-stationary velocity control points, flow
direction control points impose relatively weaker constraints on the least-squares
adjustment. Each flow direction control point can only provide one observation

equation. In case 1, there are six unknown parameters in observation equation (2.16),
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including ay, a;, a;. by, b;, and b,. At least 7 non-parallel flow direction control points
are required for the least-squares solution. In case 2, there are four unknowns in
observation equation (2.18), including @y, by, b;, and b,. A minimum of 5 non-parallel
flow direction control points are required for the least-squares solution for the unknown
parameters. For the areas where no rock exposures can be found or no in situ velocity
measurements are available, the flow stripes visible on SAR images can be used as flow
direction control points to form observation equations for the least-squares adjustment.
However, caution should be exercised when using flow stripes as direction controls.
Although in most cases visible flow stripes indicate the present ice flow directions, they
might be relic and hence do not represent current ice flow patterns in some rare

situations (Casassa and Brecher 1993).

2.5.1.3. Observation equations for tie points and simultaneous adjustment of
multiple frames

To obtain a full coverage of velocity measurements for a large area, multiple frames of
interferometric SAR data sets from the same or adjacent orbits need to be processed. If
interferometric data frames are processed independently, at least 4 non-collinear velocity
control points or 7 non-parallel flow direction control points are required for each frame
in case 1, and at least 3 non-collinear velocity control points or 5 non-parallel flow
direction control points are required for each frame in case 2. If both velocity control
points and flow direction control points are available, they can be combined to form the

minimum number of observation equations required to calibrate the unknown parameters
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for each frame. However, absolute velocity measurements cannot be derived for those
frames where the number of available control points is fewer than the required
minimum. The other serious problem is that, even with an adequate number of control
points for each frame, velocity measurements calculated from neighboring frames often
are different for overlapping areas. This is because the accuracy and spatial arrangement
of control points vary from frame to frame. To eliminate velocity discontinuities and to
relax the need for a certain number of control points for each frame, this study uses
velocity tie points to stitch individual interferometric SAR frames together within a strip
or a block. Instead of an independent least-squares calibration for a single
interferometric SAR image frame at a time, this method simultaneously computes
unknown parameters for all image frames in a strip or a block by linking individual
image frames through tie points.

A tie point refers to the same ground feature that can be recognized in two
overlapping images. For a tie point, its velocity can be derived from two different
images. Logically, the velocity measurement for a tie point derived from one image
frame should be exactly the same as that from the other image. This condition is used as

a constraint to derive the observation equations for the tie points.
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Figure 2.3 Strip adjustment of two consecutive frames with velocity control points and

tie points.

As shown in Figure 2.3, tie points are located in the overlap area between two
adjacent images i and i+/. In case 1, we can write two equations for calculating the
range and azimuth surface displacements of a tie point based on the first image frame (i)
as follows:

d =38 —(a)+ax" +aly") (2.19)
d, =8 — (b, +b/x' +b)y") (2.20)

a

where x' and y’ are range and azimuth coordinates of the image frame i, 8! and &' are
the measured range and azimuth offsets of the tie point from the image frame i, and a,

a;, a,, by, b/, and b} are six unknown parameters for the image frame i.
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Similarly, we can write two equations for the tie point based on the second image

frame (i+1) as follows:

dr — §:+1 _(aé-H +ali+lxi+l +alz'+lyi+l) (2.21)
da — é‘;-%—l _ (b(§+l +b1i+lxi+l + bé+lyi+l) (2'22)
where x' and y™' are range and azimuth coordinates of the image frame i+1/, §*' and

S!"" are the measured range and azimuth offsets of the tie point from the image frame
i+1, and a;", a/™, ai", b)"', b, and b} are six unknown parameters for the image
frame i+1.
By subtracting equation (2.21) from equation (2.19) and equation (2.22) from

equation (2.20), we obtain two observation equations for a tie point in case 1:

a(i) +alixi +a;yi _aéﬂ —af“xm _a;+1yi+1 _ 5: _§:+1 (2.23)

bé +blixi +b;’yi _bé+1 _bli+1xi+1 _b;'+lyi+1 _ 5;; _ 5:;+1 (2.24)
In case 2, the azimuth observation equation for a tie point is the same as equation (24).
Following Equation (1), we can write two equations to calculate the phase respectively

from image frame i and frame i+/ as:

b, =0 -, (2.25)
o, =" - (2.26)

where @', @™ are the measured phases from image frame i and image frame i+1, @

i+1 . . . .
and @, are the unknown parameters respectively for image frame i and image frame
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i+1. Subtracting Equation (26) from Equation (25), we obtain the range observation
equation for a tie point in case 2:
D, -d) =" — ™! (2.27)

Observation equations for velocity control points, flow direction control points,
and velocity tie points within a strip or a block can be integrated to perform a unified
least-squares calibration of unknown parameters for all image frames. Assume that we
have n velocity control points and m flow direction control points for image frame i, p
velocity control points for image frame i+1/, and g velocity tie points between image
frame i and image frame i+ /. Observation equations for a mixture of different types of
control points and tie points can be written in a matrix format for case 1 as equation
2.28. Similarly, we can write the observation equations in matrix format for case 2 as

equation 2.29.
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In the matrix, the upper index of each variable refers to the frame number, while
the lower index refers to the sequential identification number of control points and tie
points. Totally, there are 2(n+k+p)+m observation equations. We denote the design
matrix on the left side of the equation (2.28) or (2.29) by A, the observation vector on
the right side by b, and the vector of unknown parameters by X. Then, we have the
generic form of the observation equations:

AX=Db (2.30)

The least-squares solution for the unknown parameters can be obtained by solving
normal equations as follows (Mikhail and Ackermann 1976, Press et al. 1992, Mikhail et
al. 2001):
X=(A"A)"A"b (2.31)

where A” is the transpose of the design matrix and (A”A)™ is the inverse of the matrix of
the normal equations. If the normal equations are close to singular or large round-off
errors are involved, the singular value decomposition (SVD) method gives a more
reliable solution to the least-squares problem (Press et al. 1992). The simultaneous least-
squares adjustment is made so that the velocities of tie points fit together as well as
possible, and the residual discrepancies at the velocity control points are as small as

possible.

2.5.2. Application results and surface velocity calculation of Lambert Glacier —
Amery Ice Shelf

The Lambert Glacier basin and the Amery Ice Shelf were imaged by the Radarsat-1 C-
band sensor on September 24, 1997 with a nominal look angle of 27°. The same area

was imaged again on October 18, 1997 during a repeat orbit. Figure 2.4 shows the
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coverage of the interferometric SAR data. The image strip consists of 8 consecutive
frames of interferometric SAR data pairs. Each frame covers a ground area of 100 km by
100 km, with about 10 km wide overlap between neighboring frames. Due to fast ice
motion and relatively high relief, the conventional phase unwrapping method does not
work well, and no reliable phase measurements can be made for this site. Therefore, the
speckle tracking method is used to derive both the range and azimuth displacements. The
cross-correlation is performed using the single look slant range amplitude images. This
study experimented with different sizes for the match window. Larger window sizes
generally produce more and stronger matches, but require greater spacing between
adjacent velocity nodes to minimize the correlation of those surface displacement
estimates. An amplitude match was accepted as a successful match based on an
experimentally determined correlation threshold of 0.05. This study chose an optimal
window size of 96 by 96 pixels, which produced a dense coverage of observations. The
match only failed in the margins of the ice streams with high shear strain rate, in the
central part of the confluence of the Lambert Glacier, the Mellor Glacier, and the Fisher
Glacier, and in a small patch toward the front of the Amery Ice Shelf.

The correlation peak was determined by oversampling the correlation surface by
a factor 10. The matched points were checked for outliers using a median operator. A
match whose estimated range or azimuth offset differs from the median of its
surrounding match points by a specified threshold value was flagged as an outlier and
discarded. We interpolated good match points into a range offset grid and an azimuth

offset grid with a spacing of 200 m. The topography induced component is removed
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from the range offset grid by using the OSU Digital Elevation Model (DEM) (Liu et al.

1999).

315 4998 4981
meryl|ide She

—

._»-QVV\.‘- 3 - 3 "‘:4"

Figure 2.4 Data coverage of Radarsat interferometric data over the Lambert Glacier and

the Amery Ice Shelf acquired in 1997.

First, this study uses frame 5095 and frame 5082 to demonstrate the advantages
of simultaneous least-squares adjustment over independent frame-by-frame adjustment.
Since no in-situ velocity measurements are available for this region, rock outcrops are
identified and used as stationary velocity control points. This study identified 17
stationary velocity control points for frame 5082 and 16 stationary velocity control
points for frame 5095, which are well distributed in both the range and azimuth
directions. Following Equation (2.10) and Equation (2.11), 34 observation equations for
frame 5082, and 32 observation equations for frame 5095 are written based on the

control points. With overabundant observation equations, this study calibrated the
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unknown parameters ay, aj, az. by, b;, and b; respectively for frame 5082 and frame 5095

as shown in Table 2.1 using the calibrated parameters, the motion induced surface

displacements in the range and azimuth directions were computed for each grid cell, and

the surface velocity for each grid cell was then calculated by using Equations (2.5) and

(2.6). In the calculation, the surface slopes along the range and azimuth directions were

estimated by using the OSU Digital Elevation Model (DEM) (Liu ef al. 1999).

Table 2.1 Comparison of model parameters of frames 5082 and 5095 calibrated by the

frame-by-frame method and the simultaneous adjustment method.

Model Frame-by-frame calibration Simultaneous calibration
parameters Frame 5095 Frame 5082 Frame 5095 Frame 5082
g -1.77726 -1.22928 -7.61446 -1.25436
a -0.000225 -0.000278 -0.000257 -0.000267
ay | -0.0000074901 | -0.0000143081 | -0.0000127392 | -0.0000154897
by -88.9 412.4678 -88.83 412.5
b, 0.0001488 0.0001197 0.0001361 0.0001225
b, 0.0000181 0.000001494 0.00001546 0.0000013

As shown in Figure 2.5, the spatial pattern of the derived speed appears

consistent with glacial features and the flow directions agree well with ice flow stripes in
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the scene. However, the merged velocity field has an obvious seam line (Figure 2.6a),
which indicates a sudden change in velocity between frame 5082 and frame 5095. In
fact, the average speed discrepancy between frames is about 6 m/year for the

overlapping area.

0 (m/yr) - S 332 0 (m/fyr . 548
(a) (b)

Figure 2.5 Two-dimensional velocity fields derived by the speckle tracking method. (a)

frame 5082; (b) frame 5095.

With 30 tie points in the overlapping area between two frames, a simultaneous
least-squares adjustment is performed. The tie points were initially determined by using

ancillary information in the header files and then refined using the cross-correlation
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matching with sub-pixel level accuracy. Following Equations (2.23) and (2.24), we
obtained 60 observation equations for the tie points. By combining 17 stationary velocity
control points from frame 5082, 16 stationary velocity control points frame 5095, and 30
tie points, 126 observation equations are obtained in a matrix format similar to Equation
(2.28). The unknown parameters ay, a;, az. bg, b;, and b, for frame 5082 and frame 5095
were simultaneously computed based on the 126 observation equations, as shown in
Table 1. The parameters calibrated by the simultaneous least-squares adjustment were
used to re-compute the velocity fields for the two frames. The consistency of the
estimated velocity between two frames was greatly improved. The velocity difference
for each pixel in the 10 km wide overlapping area is calculated. The average velocity
difference has been reduced from 6 m/year to 1.33 m/year, and the standard deviation of
the velocity difference has also been reduced from 9.5 m/year to 4.6 m/year. Note that
the standard deviation value mainly represents the effect of random noise, and the effect
of the simultaneous least-squares adjustment on the reduction of the systematic bias is
obviously greater than that of the random error. The simultaneous adjustment achieved a
continuous transition of the velocity field between the two frames as evidenced by the

seamless velocity mosaic in Figure 2.6b.
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Figure 2.6 Velocity mosaic of frames 5082 and 5095. (a) processed by the frame-by-

frame method; (b) processed by the simultaneous adjustment method.

The simultaneous least-squares adjustment method also eliminates the stringent
requirement regarding velocity control points for each frame. To demonstrate this
desirable property, we dropped the 17 stationary velocity control points for frame 5082,
and only employed 16 stationary velocity control points for frame 5095 and 30 tie
points. In the course of the simultaneous strip adjustment, the parameters ay, a;, az. by,
b;, and b, for frame 5082 were calculated based on the tie points and stationary velocity

control points in the adjacent frame 5095. As shown in Table 2.2, the parameters
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estimated for frame 5082 without using the velocity control points in this frame are very
similar to those calculated by using the velocity control points in this frame. The average
velocity difference for the entire frame is only 3.2 m/year, compared with the velocity
estimates using velocity control points in frame 5082. This demonstrates that the
simultaneous least-squares adjustment method is able to derive the velocity
measurements for those frames without velocity control points. This is of particular
importance for flat featureless snow surfaces such as portions of the Amery Ice Shelf
covered by frames 4998 and 4981, where no rock exposures can be found and used as

stationary velocity controls.

Table 2.2 Model parameters for frame 5095 derived respectively without using its own

velocity control points and using flow direction control points.

Model Without velocity Using flow direction
parameters control points from control points in frame
frame 5095 5095
ao -7.53359 -7.67819
aj -0.000278 -0.00024
a -0.0000131975 -0.0000141040
by -88.78 -88.7485
b 0.00013 0.0001405
by 0.000007757 -0.000005634
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Figure 2.7 Flow direction control points identified for frame 5095 based on visible ice

flow stripes.

Flow direction control points can be used alone or in conjunction with stationary
velocity control points in the least-squares adjustment for solving the unknown
parameters for a frame. To demonstrate this, 24 flow direction control points for frame
5095 are identified by drawing a line segment along the visible flow stripes on the slant
range SAR image. The flow direction control points are shown in Figure 2.7 as line
segments, and their positions are marked as circles in the middle of the line segments.
Following Equation (2.16), 24 observation equations are established for the flow

direction control points. As shown in Figure 2.7, the flow stripes used for flow direction
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control have different orientations, which ensure linear independence between the
observation equations. By using 24 observation equations derived only from the flow
direction control points, we calibrated the parameters for frame 5095. As shown in Table
2.2, the parameter values of ay, a;, az. by, b;, and b, calibrated from the flow direction
control points are similar to those calibrated from the stationary velocity control points.
The corresponding velocity difference is 8.1 m/year on average for the entire frame,
compared with the results from the stationary velocity control points. It should be
pointed out that the parameters calibrated by the stationary velocity control points have
higher accuracy and should be used whenever they are available. Nevertheless, if
stationary velocity control points cannot be identified, flow direction control points can
be used instead to derive velocity estimates at a slightly lower but accepTable level of

accuracy.
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Table 2.3 The number of velocity control points and flow direction control points used in
the unified least-squares adjustment of eight interferometric data frames over the

Lambert Glacier and the Amery Ice Shelf.

Frame Stationary velocity Flow direction
control points control points

5095 16 0

5082 17 0

5065 15 0

5048 18 0

5032 14 0

5015 3 14

4998 0 9

4981 0 6

0 1470 (m/year)
|

Figure 2.8 A seamless velocity mosaic over the Lambert Glacier and the Amery Ice

Shelf derived by the unified least-squares adjustment.



46

To derive a seamless velocity mosaic for the entire strip, a unified simultaneous
least-squares adjustment of the eight consecutive interferometric frames is performed by
integrating stationary velocity control points, flow direction control points and tie points.
As shown in Table 2.3, this study identified plenty of stationary velocity control points
for the five frames on the left side of the strip, a few stationary velocity control points
for frame 5015, and no stationary velocity control points for frame 4998 and frame 4981.
Nevertheless, it was able to extract 9 flow direction control points for frame 4998 and 6
flow direction control points for frame 4981. This study identified 30 tie points for
adjacent frames, resulting in 210 tie points for the entire strip in total. The combination
of stationary velocity control points, flow direction control points and tie points from all
frames creates observation equations in a similar matrix format as Equation (2.28). This
study simultaneously computed the parameters for all eight frames and hence created a
seamless velocity mosaic across the entire strip as shown in Figure 2.8. Ice surface
velocity is shown as a color overlay. The lower speeds are represented with blue tones,
changing to red for the highest speeds. Velocity varies considerably along the glacial
floor and the ice shelf. It increases from the interior up to about 800 m/year at the
confluence of the Lambert Glacier, the Mellor Glacier and the Fisher Glacier. Then, the
velocity decreases to lower values of 300-350 m/year in the middle section and increases

to a maximum of about 1470 m/year near the front of the Amery Ice Shelf.
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2.5.3. Discussion

The observation equations contributed by tie points free us from the stringent need of
velocity control points (stationary or non-stationary) and/or flow direction control points
for each frame. The simultaneous strip or block adjustment solves one difficult practical
problem: for some image frames we are unable to identify a sufficient number of
velocity control points. By exploiting tie points in the strip or block adjustment,
unknown parameters for those frames without velocity control points can be calibrated
based on distant velocity control points in other image frames. In other words, velocity
control points in one frame can contribute to the calibration of unknown parameters of
other frames through tie points. The incorporation of constraints imposed by tie points
also minimizes the discrepancies of velocity measurements derived from adjacent image
frames for overlapping areas. The improved consistency makes it possible to create a
seamless velocity mosaic. In addition, the integration of all velocity control points within
a strip or a block will increase the redundancy of observation equations and constrain the

propagation of errors in individual velocity control points.

2.6. Surface velocity of the Lambert Glacial Basin

Following the method described above, a two-dimensional surface velocity map is
created along the orbit passing the confluence area of Lambert, Mellor and Fisher
Glaciers to the discharging area of Amery Ice Shelf using the speckle tracking method
(Figure 2.8). The two-dimensional surface velocity map of the study area from the three

pass interferometry technique is processed and provided by Ohio State University
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(Figure 2.9). The ascending and descending pass have been used for surface velocity
extraction using InSAR data acquired from the Antarctic Mapping Mission 2 (AMM-2)
in 2000 (Jezek, 2002). The 25 m resolution Radarsat-1 SAR data is available for the
most of Lambert Glacial Basin—Amery Ice Shelf system with 24-day orbit cycles and 6
days of repeat-pass acquisitions.

The available velocity data covers about 90% of the Lambert Glacier—Amery Ice
Shelf basin (Figure 2.9); though more important is that most of the main ice streams are
covered, thereby enabling this study to investigate the dynamics of glacier systems such
as strain rate, and ice thickening and thinning. Possible problems lie with error pixels in
the process of phase unwrapping, and the discontinuous velocity variations on the border
of orbits because of different processing parameters used for each orbit. In addition, the
phase unwrapping process in a fast moving area leaves no velocity patches in the middle
of the ice streams. As Figure 2.9 shows, there are many vertical stripes observed in the
surface velocity which can cause discontinuous surface velocity variations which are
more severe in low velocity areas in high elevation. The highest velocity of the original
data set is unreasonably high (3791 m/year) because of error pixels. The south part of the
upstream region contains many small patches that are mostly error pixels. Furthermore,
no-data patches can be identified in the high surface velocity areas such as confluence
area of Lambert, Mellor, and Fisher Glaciers and ice discharging area of Amery Ice

Shelf front.
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Figure 2.10 shows the speed error distributions of surface velocity derived from
SAR interferometry. There are different error distributions between the orbits depending
on the surface velocity extraction methods. If the velocity is extracted by phase
unwrapping for range and by the offset method for the azimuth direction, it produces
speed error ranges between 2 to 4 m/year, where as the offset method for both azimuth
and range direction is in the error range of 7 to 16 m/year. However, if the phase
unwrapping or the coregistration process is not successful, the maximum error is
increased to 52 m/year. Although there are some portions that have error ranges more
than 18 m/year, most of the ice streams are less than 8 m/year, except for no-data areas
and some shear margins. Therefore, it is safe to say that the ice velocity data this
research uses is trustable in terms of mass balance calculations and ice dynamic analysis
in spite of the discontinuous velocity distribution between the orbits. This discontinuity
may cause errors on the orbit boundaries for strain rate and ice thickening analysis;
however, the output result of those analyses should be trustable since the calculation is

relative to neighboring pixels which have continuous distributions within the orbit.
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Figure 2.9 Original surface velocity derived from SAR interferometry by Ohio State

University.
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Figure 2.10 The error distribution of surface velocity field derived by the Ohio State

University.

The problems of velocity error pixels and no-data pixels in the major ice stream
can involve huge effects in ice dynamics analysis. To minimize the problem, a median
filter with a 5 x 5 kernel was applied until the definite error pixels were removed. After
three filtering passes, the most critical error pixels were removed without degrading the
valid data points (Figure 2.11). The no-data pixels were interpolated by linear
Triangulated Irregular Network (TIN) interpolation, except for the confluence region of

Lambert, Mellor, and Fisher Glaciers where the surface velocity changes dramatically as
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glacier dynamics change. In addition, the confluence region was considered as the
grounding line position, and that is critical for the mass balance calculation since the flux
gate should be located along the grounding line. The velocity field from speckle tracking
mentioned in previous sub-chapters was used to fill out the gaps in the region.

As a result, the post processed 2 dimensional surface velocity filed was created
(Figure 2.11). All the major ice streams and tributary ice streams are clearly
distinguished, and the maximum ice velocity is decreased to 1516 m/year at the ice shelf
front as the error pixels are removed. The general surface velocity increases as the
glaciers merge into the confluence region, and the velocity increases abruptly at the
region of 800 m/year. It decreases as it is floating as an ice shelf with the ranges of
300~400 m/year in the middle, and increases to 1200 ~ 1500 m/year in the ice shelf front
area as the tributary glaciers merge and the main ice stream discharges into the ocean.

This velocity field is utilized for the ice dynamics and mass balance analysis as a
core part. The strain rate is calculated based on velocity gradient in x and y direction in
unit distance in Chapter III. The vertical velocity field from InSAR process is used for
grounding line identification in Chapter IV. The mass imbalance is calculated by
comparing balance velocity and the surface velocity field in Chapter V. The flow
direction information from the surface velocity field is used for sub-basin delineation.
The ice flux is calculated based on the surface velocity at flux gate for mass balance and

basal melting calculation in Chapter V1.
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Figure 2.11 Post-processed surface velocity field of the Lambert Glacier — Amery Ice

Shelf system.
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CHAPTER III

STRAIN RATE ANALYSIS

3.1. Concept of strain rate

Strain rate is the main component used to explain large scale ice flow dynamics. The
glacier flow manifests a relationship between the ice deformation (strain) and stress
(force/unit area) that produces strain (Ritter et al. 1995). Especially, glacier flow
deforms by shear stress when it flows by a function of glacier movement by internal
deformation (shear stress) (Ritter et al. 1995). Until recent developments in the
extraction of surface ice flow velocity using satellite remote sensing techniques, ice
deformation was measured by field measurements implementing stake networks and
surveying their deformation over a known time interval (Nye 1959, Zumberge et al.
1960, Drew and Whillans 1984, Thomas ef al. 1984, MacAyeal 1985).

Since shear stress is directly related to surface velocity, the velocity at any depth
along the central axis of ice can be estimated by assuming that the shear stress is
proportional to depth and that the strain rate directly relates to that stress (Ritter et al.
1995). Therefore, it is safe to say the surface velocity is the sum total of strain rates for
all the layers within the ice mass (Ritter et al. 1995). Therefore the strain rate can be
calculated if the surface ice flow velocity is known.

From the velocity, strain rates in the longitudinal and transverse directions can be
calculated. The surface stress field can be calculated from the surface strain rate using

the Glenn’s flow law of ice. Interferometrically derived surface velocity has become one
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of the most effective tools for calculating strain rate distribution over an ice sheet (Yong
and Hyland 2002, Forster et al. 1998, Pattyn and Derauw 2002). Forster et al. (1998)
show that longitudinal strain rates along a flow line within the main ice stream can be
calculated directly from the unwrapped phase with an accuracy of about 15%. This
chapter first describes previous strain rate studies for the Lambert Glacier-Amery Ice
Shelf System, then details strain rate calculation methodology using surface velocity
information, and finally discusses the resulting strain rate of the Lambert Glacier-Amery
Ice Shelf System.

There have been some studies on the strain rate of Amery Ice Shelf using field
measurements and satellite techniques. However, the strain rate for the grounded ice of
Lambert Glacier is not well known. Initial measurements of the velocity and strain-rate
distribution on Amery Ice Shelf were obtained by surveys from electronic distance-
measuring equipment and theodolite in 1968 and 1970 (Budd et al. 1982). The survey
was carried out along a 260 km long profile aligned along the average flow direction of
Amery Ice Shelf, and two transverse profiles; one across the shelf near the front, the
other near the longitudinal profile. The velocities for tributary glaciers were measured at
11 points in the 1970s (Allison 1979). These surveys provided velocity values on the
upper reaches of these glaciers. Global positioning systems have been utilized for
velocity measurements in the 1990s (Manson et al. 2000).

However, the study of strain rate distribution for the entire Amery Ice Shelf has
been unknown until Young and Hyland (2002) created a strain rate distribution method

based on surface velocity as extracted by speckle tracking techniques. Using
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RADARSAT-1 SAR interferometry pairs, they calculated the surface velocity and strain
rate for Amery Ice Shelf within an accuracy of 8 m/year along-track, and 27 m/year
across-track for the surface velocity. In addition to the transverse shear strain rate,
longitudinal and transverse strain rate components were calculated over an 8 km distance
scale. They found a systematic variation of strain rate over the ice shelf, and were
successful in identifying shear stress margins where the strain rate exceeds 0.1 a™'. The
strain rates are largest in the shear margins in the southern section of the shelf, and the
middle stream shows the strain distribution of a distinct longitudinal pattern. However,
their study was limited in the ice shelf area where velocities were sufficient to use from
speckle tracking. This study overcomes the limitations of previous studies based on the
analysis of not only ice shelf but also major and tributary glaciers discharging into

Amery Ice Shelf.

3.2. Calculation method

The along-track and across-track displacements obtained from interferometry were
interpolated in 400 m by 400 m. Since the velocity field still contains high-frequency
noise associated with errors, the original velocity field is smoothed using a 5 by 5 cell
size median filter until the error points are removed. Velocity gradients for strain rate
calculations are considered constant within any window and are determined through a
linear regression analysis of all x directional and y directional velocity values in that
window with respect to the x and y direction (Pattyn and Derauw 2002). This study used

a 9 by 9 window for the linear regression analysis of x and y directional velocity
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gradients. To simplify the strain rate calculations, this study applied ice depth velocity
average factor of 0.87 (Budd and Warner 1998) for grounded ice, and assumed that the
strain rates calculated from ice depth average velocity represents the strain rate of the
point.

If a stress is applied to a medium, the strain or deformation is expected to occur.
If it considers infinitesimal displacements which the time required for the deformation is
zero, the normal strain in the x direction at the point is defined as

£, = Liml_m% 3.1)

where [ is the length of a line drawn in the x direction, and A/ is the elongation of that
line., so Al/l is the elongation of the line per unit length. If end of the line 1 is moved a
distance x in the x-direction, it’s the other end moves a distance )_c+l(8)_c/ dx)in this

direction, and the x-component of its new length is / + Al, then the equation 3.1 is:

x+1@x/9)—x _dx
l ox

g =Lim,

XX

(3.2)

To obtain strain rate in a deforming ice mass, it is necessary to differentiate with

respect to time. Thus, the normal strain rate in the x-direction is:

de, d dx

éxx - -, N
dt  dt ox

(3.3)

Velocity is defined as a change in distance with time. If u is the velocity in the x

direction, u = dx/dr. Thus, we obtain:

_ou

= 3.4
gXX ax ( )
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Since the major ice motion is in the x direction from the Mellor and Lambert glaciers to
Amery Ice Shelf, the major strain components are the surface longitudinal strain rate

&, the surface transverse strain rate é‘yy, and the surface lateral shear-strain rate é‘xy,

defined as
A
& = Vs 3.5)
AX
) AV, (3.6)
E = .
»OAY
1{ AV. AV, 1
E =—| —2+— ==& +&_ 3.7
2(AX AYJ Jleve,) (3.7)

where the overbar denotes the averaging over the window, and AV, and AV, denote
velocity gradients within the unit distance of AX and AY in x and y direction.
Since this study uses a 9 by 9 window for strain rate calculation, 81 observation

equations for each x and y direction should be constructed to solve the equation as;

V. =a, +b x

X

(3.8)

V. =a, +b xg

81

for x direction, where a_and b_ denote coefficients for the x directional velocity

gradient model. And the observation equations for the y directional model can be
explained as the following;
vV, =a,+by,

(3.9)
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V. = a, +byy81

Y81
where a, and b, denote coefficients for the y directional velocity gradient.

Each window has one matrix constructed for mathematic solutions in the x and y
directions, respectively, and coefficients for each window are calculated as the window

moves. The matrix model for i™ window can stated be as the following,

I x Vx,
Lo e |V (3.10)
S B N I
| Vg,

for the x directional model, and

Ly Vy,
L N I A G.11)
N
Ly Vysg,

for the y directional model.
Since the matrix has a form of M x N and the number of rows M is greater than or equal
to its number of columns N, a least-squares model of singular value decomposition is

used to solve the parameters (Mikhail and Ackermann 1976).

3.3. Strain rate of the Lambert Glacial Basin

Based on the methodology above, longitudinal, transverse, and lateral shear strain rates
are calculated. Since the strain rate is applied mainly for the ice stream area, and the
slow surface velocity field contains a larger error rate in the flow direction from the

velocity field, the strain rate field with surface velocity above 15 m/year is clipped for
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visual interpretation and error removal. The value of the longitudinal (x directional)
strain rate is positive where the velocity increases downstream (rightward or northward).
The value of the transverse (y directional) strain rate is positive where the velocity
increases Eastward. The lateral shear strain is positive where the velocity increases to the
right, which most of the major ice stream is in the down stream direction. This means
that it is positive on the left margin of the stream on the ice shelf and decreases in
magnitude towards the center of the stream.

Where the ice is freely floating, it effectively moves as a block. Therefore, the
surface strain field for the ice shelf is representative of the strain field through the entire
ice thickness whereas for grounded ice takes the assumption of depth averaged velocity
and homogeneous strain rates for the thickness.

As Figure 3.1 shows, the lateral shear strain rate distribution defines the shear
margins of ice flows. The range of lateral shear strain varies depending on the location
and ice flow velocity from -0.0621 to 0.0542 a™'. The result explains that the major ice
stream of Lambert and Mellor Glaciers and their confluence area experiences the most
severe ice deformation and the width of the shear margin decreases as it flows
downstream except for the convergent area with the tributary glaciers. The high values
of the strain rate in the shear margins have noteworthy implications for the internal
properties of the ice flows (Young and Highland 2002). Because of low quality for
orbital adjustment for the original velocity data, artifacts appear in a diagonal direction.
But the general pattern and the value of the strain rate within the orbit are correct and

provide an effective view on glacier dynamic analysis and flow regime description.
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Figure 3.1 Lateral shear

strain rate of the Lambert Glacier — Amery Ice Shelf system.
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3.2 Longitudinal strain rate of the Lambert Glacier — Amery Ice Shelf system.

Since in the polar stereographic projection in this study the generally north-
flowing major ice streams and Amery Ice Shelf moves in x direction, the longitudinal
strain is the main component of ice deformation for the main ice stream. It tells the strain
rate distribution for the center part of the main ice streams. As Figure 3.2 shows, the
confluence region has the highest ice deformation in the main ice stream with the
maximum values of 0.075 and -0.039 a™. Especially, the elongated zone of high positive
strain rate distribution is observed at the main ice streams confluence where the

grounding line is located as the ice velocity increases at the grounding zone. The



63

longitudinal strain rate becomes negative as the velocity decreases after the ice is
floating. Because of the stable ice stream movement in the middle of the ice shelf, the
middle of the ice stream shows minimal longitudinal ice deformations. Notably, the front
of the ice shelf shows variable positive strain rate values ranging 0.089 to 0.014 a™.
These imply the extensive deformation at the ice shelf front, and it may contribute to the
development of longitudinal rifts and crevasses. The high positive strain rate distribution
and the rifts and fractures distribution observed in SAR image mosaic shows close

correspondence.

3.3.1. Strain rate of grounded ice of Lambert, Mellor and Fisher Glaciers
As mentioned before, the strain rate for grounded ice assumes that shear stress is
proportional to depth and the depth averaged velocity represents the depth averaged
stress, therefore the strain rate calculated for grounded ice is directly related to that
stress. The grounded ice flow shows a very complicated strain rate distribution (Figure
3.2). Since it neglects effects of the basal friction, the there are limited interpretations for
the complicated pattern. However, the general pattern of strain rate distribution can be
explained through the ice flow direction, velocity, ice flow merging, and rock exposure
along the glacier. The longitudinal and transverse strain rate profile supports the
interpretation of the strain rate distribution of this study.

The strain rate of the grounded Lambert Glacier shows characteristic trends of
positive and negative strain rate bands along the flow caused by high velocity flow and

shear margin by Mawson Escarpment and Cumpston Massif (Figure 3.2). The highest
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strain rate is detected at the confluence area with Mellor Glacier of 0.0482 a™' which is a
major effect of ice streams merging. The lowest strain rate of -0.0267 a™ is identified
near the grounding line on the east side of the glacier and is caused by a velocity
increase in the grounding zone.

Two flow lines are placed along the east and west shear margin to illustrate the
longitudinal variation in strain rate, and the other two for upstream and downstream for
the transverse strain rate profile (Figure 3.2). The west longitudinal shear margin (Figure
3.3 a) shows a plain distribution as ice flow approaches to Cumpston Massif which acts
as a major obstacle to the flow. As the glacier flows towards Cumpston Massif, the strain
rate abruptly increases to 0.03 a’' then decreases to 0.005 a as it flows away from the
massif. Another positive strain rate peak is observed around 123,000 m of the flow line
and is caused by the ice flow merging with Mellor Glacier as they face each other. It
results in the high deformation of the region. The strain rate drops down as it approaches

the grounding line with increasing velocity (Figure 3.3 a).
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Figure 3.3 Lateral shear strain rate distribution of grounded ice flow of the Lambert,

Mellor and Fisher Glaciers. “a”, “b”, “c”, and “d” in the Figure indicates the strain rate

profile lines for each glacier in the following Figures.
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Figure 3.4 Longitudinal (a and b) and transverse (c and d) lateral shear strain rate

profiles of grounded Lambert Glacier.

The east shear margin of Lambert Glacier exhibits a typical negative strain rate
shear margin (Figure 3.3 b) caused by the fast moving glacier flowing away from the
Mawson Escarpment. The strain rate dramatically decreases where the glacier flows
away from Mawson Escarpment as the velocity increases, creating a high negative strain
rate in the section between 20,000 m and 43,000 m. The three abrupt decreases after the
section are the effect of small ice stream merging draining from the valley in the
mountain area.

The transverse profile of the upstream area shows the typical trend of a high
shear margin glacier created by ice flow merging in the western shear margin near

22,000 m and the flowing away effect from the mountain area in eastern shear margin
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(Figure 3.3 c¢). The center area of the ice flow doesn’t experience any noTable shear
strains near 10,000 m and 38,000 m of the profile. However, the two extreme
distributions along the profile are more exaggerated in the upstream region because of
Cumpston Massif and the grounding line effect (Figure 3.3 d). The western shear margin
shows high deformation where the ice flow moves in a high velocity towards Cumpston
Massif. The center portion of the stream shows a negative strain rate distribution which
is different from general trend of the strain rate distribution. This is caused by the
velocity increase effect near the grounding line as well as the ice flow merging. It is
concluded that the grounded ice flow of Lambert Glacier experiences a lot of dynamic
ice variation and deformation because of the topographic and grounding line effects in

addition to its fast movement.
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Figure 3.5 Longitudinal (a and b) and transverse (¢ and d) lateral shear strain rate

profiles of grounded Mellor Glacier.
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The grounded part of Mellor Glacier shows a more complicated distribution of
strain rates (Figure 3.2). It exhibits high variations as the velocity varies with the ice
flow merging experiencing the effects of three streams merging into one. The highest
strain rate of 0.4048 a is detected at confluence area and the minimum of -0.0267 a™
near grounding line in the grounded ice flow of Mellor Glacier. The western longitudinal
profile (Figure 3.4 a) starts with a positive strain rate as it passes by the rock exposure
and drops to a negative strain rate as it flows away from the rock. The section between
15,000 and 50,000 m draws positive fluctuations in strain rate as it merges with two ice
streams, and it decreases as a negative fluctuation because of the velocity increase effect.
The minimum is detected near the grounding line where the velocity increase is highest.
The eastern longitudinal profile shows negative strain rates and increases up to 0.005 a™
which can be explained by two neighboring mountains as the flow moves away from the
small mountain and towards a larger mountain (Figure 3.4 b); decreases are attained in
the 20,000 to 80,000 m section where the flow moves away from the mountain and the
velocity increases until it gets to the confluence region.

The upstream transverse profile shows the highest positive strain rate distribution
in the center and is lowest in the margins (Figure 3.4 c). This can be explained by
velocity decrease as the flow width decreases with the ice flow merging in the
downstream area. The downstream transverse profile has a negative strain rate trend with
an abrupt decrease near 17,000 m (Figure 3.4 d). This region is the major area where the

velocity increases as the width of the ice flow path is the smallest.
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Fisher Glacier shows a similar trend as the other glaciers. The northern shear
margin shows a negative strain rate distributions and the southern shear margin shows
positive strain rate distributions. The highest strain rate of 0.0151 a™' is observed at the
southern shear margin at the edge of Mt. Stinear, and the lowest of -0.0173 a’' at the
northern shear margin in contact with the mountain. The longitudinal trend can be
explained the same way as the other glaciers where the grounding line effect and shear
margin effect of mountain area depends on the ice flow direction and velocity variation

(Figure 3. 5 a, b, and c).
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Figure 3.6 Longitudinal (a and b) and transverse (c) lateral shear strain rate profiles of

grounded Fisher Glacier.
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3.3.2. Lateral shear strain rate distribution of the upstream area of Amery Ice Shelf
and western and eastern tributary glaciers

The upstream region of Amery Ice Shelf can be characterized by high shear strains on
the stream margins and strain rate variations in center stream due to the grounding line
effect, high average velocity, meander of the ice stream along the Mawson Escarpment,
and tributary channel merging. Although not as complicated as grounded ice, the
upstream region experiences high deformations through the entire stream (Figure 3.6).
The highest lateral shear strain rate observed in the main ice shelf stream is 0.0403 a™'
where there is a stream merging from the western tributary glacier, and the lowest of -
0.0592 a™at the edge of Mawson Escarpment where the velocity increases away from the
edge with flow direction changes. Three longitudinal profile lines are placed along each
end of the shear margins and the center flow to observe the changes in the lateral shear

strain rate of the upstream area (Figure 3.6).
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Figure 3.7 Lateral shear strain rate distribution in the upstream area of Amery Ice Shelf,
western tributary glacier, and eastern tributary glacier. “a”, “b”, “c”, “d” and “e” in the
Figure indicate the strain rate profile lines in the following Figures. The pink line in the

Figure represents the grounding line extracted from this study.

The western shear margin begins with a negative shear strain as it passes the
grounding line and makes a turn into a shear margin which causes positive shear strain
along the margin (Figure 3.7 a). Some of the abrupt increase on the profile near 50,000

m are noticable and can be explained by the tributary glacier facing the main ice stream.
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Linear artifacts are observed along the ice stream and in the profile as jumps or drops
which are caused by the orbital adjustment problem. The eastern shear margin shows the
opposite trend of lateral strain rate from the western shear margin; i.e. the flow pattern
creates the opposite strain field along the margin. However, the same positive jumps are
observed when the tributary glaciers are merging and the ice flow is dividing which
causes decreases in the ice velocity (Figure 3.7 c). The center portion does not
experience any noticeable deformation once it gets away from the grounding line and the
ice velocity decrease area at 50,000 m. Other than a few drops in strain rate from the
orbital adjustment errors, the general pattern is plain and the variation range is minimal.
The western tributary channel shows no noticeable deformations on high
elevation areas until it comes to the Prince Charles Mountain area, especially near the
grounding line (Figure 3.6). The highest strain rate of 0.0137 a™' is detected at the
northern margin of Shaw Massif and the lowest strain rate of -0.0160 a”' at southern
edge of Shaw Massif. The transverse strain rate shows dramatic changes at the sides of
the mountains (50,000 m, 100,000 m and 150,000 m) (Figure 3.7 d). The eastern
tributary glacier shows a maximum of 0.0335 a™' near the rock exposure where the
velocity decreases and a minimum of -0.0224 a”' where the velocity increases. Both
western and eastern tributary glaciers make good example of the topographic effects of
alternative bands of positive and negative shear strain rates (Figure 3.7 d and e).
However, the general magnitude of the strain rate is smaller than the main ice streams

because of slower ice stream movement.
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Figure 3.8 Longitudinal ((a), (b), and (c)) lateral shear train rate profiles of upstream area
of Amery Ice Shelf, and transverse ((d) and (e)) lateral shear strain rate profiles of

western and eastern tributary glaciers in Amery Ice Shelf upstream region.
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3.3.3. Lateral shear strain rate of downstream area of Amery Ice Shelf and eastern
tributary glacier

The main ice stream of the downstream area of Amery Ice Shelf shows a more stable ice
flow pattern as it flows in a relatively constant direction and the path of the ice stream
increases (Figure 3.8). As a result, the deformation in the center flow is almost zero and
the shear margin is narrow except for the tributary glacier merging area. The highest and
lowest values are observed at the eastern tributary merging area with the values of
0.0174 a” and -0.0177 a™* respectively.

The longitudinal profile of the western shear margin shows a major positive
lateral shear margin along the Jetty Peninsula (Figure 3.9 a) between 45,000 m and
123,000 m. The major drops at 130,000 m can be explained by the flow away effect
from the edge of the peninsula. After 140,000 m, the profile becomes the transverse
profile of the ice flow from the Charybdis Glacier area. As mentioned in the beginning
of the paragraph, the center flow of the main ice stream shows minimal deformations
which range less than 0.001 a™ in both positive and negative fields except for the error
peaks from orbital adjustment (Figure 3.9 b). The eastern shear margin shows some
variations near the tributary glacier merging area, but these are generally minimal
deformations because of the relatively wider channel and gentle flow direction (Figure
3.9 ¢). The transverse shear strain rate distribution shows how stable the ice stream is
through its width. Except for the high peak western shear margin at Jetty Peninsula,

about 80% of the width shows the plain strain rate near 0 a” (Figure 3.9 d).
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The eastern tributary glacier shows the effect of topographic variations very well.
Since the surface topography has many rock exposures and protrusions, it hampers and
changes ice flow movement and causes alternative variations in lateral shear strain rate
(Figure 3.8). This causes high magnitudes of lateral shear strain rate ranges from -0.0621
a' to0 0.0542 a’'. The transverse strain rate profile confirms the effect (Figure 3.9 e).
Dramatic changes from positive to negative lateral shear strain rate change are detected
by the physical barrier of rock exposures. Once it gets out of the topographic effect area
it shows the typical ice stream strain rate distribution (Figure 3.9 f).
3.3.4. Lateral shear strain rate of Charybdis Glacier area
The area upstream of Charybdis Glacier and Scylla Glacier shows a plain shear strain
distribution down to the merging area since the flow direction is constant and parallel to
the valley wall direction, and velocity change through the ice stream is minimal (Figure
3.10). These are the same characteristics as the downstream area of the main ice stream.
The longitudinal profiles of these glaciers are not necessary as they show the same
pattern that was described before. However, there are complicated patterns of strain rate
as it gets to the discharging area. The complication is mainly caused by 8 ice streams
merging into one in addition to topographic variations of rock exposures (Figure 3.10).
The transverse profile from upstream to downstream shows the same general trend of the
merging area (Figure 3.11 a, b, and c). As small streams merge into each other, the
lateral shear strain rate shows a lot of fluctuations in relatively small magnitudes (Figure
3.12 a). As they merge into each other, four major merged ice streams fewer peaks but

higher magnitudes (Figure 3.12 b). Once they merge into one ice stream, they show the
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effects of merging at the beginning (Figure 3.12 c), but with the typical characteristics of
the ice stream of one edge in positive and the other in negative (Figure 3.9 a and Figure
3.10). The highest strain rate is observed at the major merging area of 0.0287 a™' and the

lowest of -0.0196 a™' near the same area.
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Figure 3.9 Lateral shear strain rate distribution of the downstream area of Amery Ice
Shelf and the eastern tributary glacier. “a”, “b”, “c”, “d”, “e”, and “f” in the Figure
indicate the strain rate profile lines in the following Figures. The pink line in the Figure

represents the grounding line extracted from this study.
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Figure 3.10 Longitudinal (a, b, and c) and transverse (d) lateral shear strain rate profiles
of the downstream area of Amery Ice Shelf, and transverse (e and f) lateral shear strain

rate profiles of the eastern tributary glaciers in Amery Ice Shelf downstream region.
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Figure 3.11 Lateral shear strain rate distribution of the Charybdis Glacier and Beaver

Lake area. “a”, “b”, “c”, and “d” in the Figure indicate the strain rate profile lines in the

following Figures. The pink line in the Figure represents the grounding line extracted

from this study.
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Figure 3.12 Transverse lateral shear strain rate profiles of the Charybdis Glacier area (a,

b, and c¢) and Beaver Lake (d) area.

3.4. Spatial pattern and trend of strain rate

The lateral shear strain rate effectively tells the story of the ice deformation distribution
over the glaciers. The values of the shear strain rate can imply internal properties. The
high strain rate causes heating distributed over the ice thickness, and it results in
significant horizontal temperature gradients out of the shear margins (Young and Hyland
2002, Harrison et al. 1998). The strain rate distribution shows close relationships to the
ice flow direction, ice flow velocity, and surface features. When the glacier flows
towards mountains, it creates negative strain rates. Generally, the ice flow shows the
characteristics of compressive flow. On the other hand, it is showing positive strain rates
when the glacier flows away from the mountains; and the ice flow shows the

characteristics of extending flow. From the characteristics, it is safe to say that the high
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positive strain rate area experiences ice thinning and the high negative strain rate area
experiences ice thickening.

The computation results show that the major ice stream channels and their
confluence zones are experiencing strong deformations. The strain rate variation is
dominant in transverse direction, compared with the longitudinal direction of the glacial
channels. The high strain rate in the shear margins has significant impacts on the internal
properties of the glaciers. The strain heating within the shear margins can raise the
temperature of the core of the shear margins, leading to significant horizontal
temperature gradients out of the margins (Harrison et al. 1998). The strain rate varies
along the longitudinal direction of the Amery Ice Self. Above or near the grounding
zone, the velocities of the three main glaciers (the Lambert, the Mellor, and the Fisher)
are increasing in the downstream direction, resulting in positive strain rate and extensive
deformation. At the confluence zone and upper stretch of the ice shelf, the strain rate is
positive, causing compressive deformation. This is confirmed by visually examining the
SAR image and InSAR coherence image for this region. In the middle stretch of the ice
shelf, not much velocity change is detected in the longitudinal direction, meaning not
much longitudinal deformation. At the front of the ice shelf, significant positive strain
rate values imply the extensive deformation. This may contribute to the development of

longitudinal rifts and crevasses, and hence influence ice berg calving process.
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CHAPTER IV

GROUNDING LINE DETERMINATION

4.1. Definitions
The grounding line is a transitional area separating inland ice from the ice shelf
(Weertman 1974). On the ice shelf, the floating ice is the major area of mass loss from
the Antarctic ice sheet, via iceberg calving and basal melting (Jacobs et al. 1992).

Increased basal melting may cause increased strain rates near the grounding zone
and it allows the ice stream to thin and flow more rapidly (Budd and Warner 1998). The
horizontal location of the grounding zone is sensitive to changes in ice thickness and
sea-level (Stephenson 1984) and it is an important indicator of the dynamic state of the
ice stream. Since the grounding line may migrate in response to changes in ice thickness
and sea level, accurate delineation of the position and shape of the grounding zone of a
glacier-ice shelf system is critical to asses possible changes in ice sheet dynamics; the
mass flux entering an ice shelf though the grounding line can be an indicator of an ice
stream dynamics, basal conditions, mass balance, and accumulation rates. In addition,
the location of the grounding zone provides essential information for describing the
basal conditions for an assessment of the ice dynamics, for inclusion in numerical
models of the ice flow, and for an assessment of ice-ocean interaction (Fricker et al.
2002).

The Amery Ice Shelf is the largest ice shelf in East Antarctica. It drains the

grounded portion of the Lambert Glacier-Amery Ice Shelf system, which accounts for 16
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% of the area of the grounded East Antarctic ice sheet (Fricker et al. 2000). The
Lambert, Mellor, and Fisher Glaciers flow through the grounding line of the Lambert
Glacier system; it has been well studied as one of the main components of ice mass
discharging into Amery Ice Shelf. However, significant mass from tributary glaciers and
Charybdis Glacier is contributed into Amery Ice Shelf and the grounding lines and mass
flux from these glaciers has not received much attention compared to fluxes and
grounding lines from the three largest glaciers. Furthermore, the grounding line
delineated recently for the region (Fricker et al. 2002) has limited accuracy since it is
based on the hydrostatic calculation using surface elevations. This study derives a more
accurate grounding line along the whole Amery Ice Shelf perimeter based on a
combination of SAR interferometry and hydrostatic calculation of elevation.

This chapter describes previous studies of the grounding line for the Lambert-
Amery system, the details of methodology, and the grounding lines of the Lambert
system, tributary glaciers, and Charybdis Glacier.

Until a more recent grounding line location was verified from various studies
(Ficker et al. 2002, Rignot 2002), the location of the grounding zone of the Lambert-
Amery system from Budd et al. (1982) has been generally accepted. They inferred that
the grounding-floating transition occurs around 71.2 °S coinciding with a maximum
surface slope near Pickering Nunatack. This location was based on the data collected
during a theodolite and electronic distance measurement survey (EDM) of the ice shelf
by the Australian National Antarctic Research Expedition (ANARE) in 1968-70 (Budd

et al. 1982).
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This grounding line location has been questioned by several subsequent studies.
Robin (1983) suggested the grounding zone would need to be further south based on a
single ice core at 69.451°S, 71.497 °E and Radar Echo Sounding (RES) data; Drewry
and Robin (1983) also suggested that ice between 300 and 500 km from the Amery ice
front mainly afloat on the basis of RES data from Morgan and Budd (1975). Bentley
(1987) also noted that the lower 180 km section of the Lambert Glacier shows more
likely the ice dynamic characteristics of an ice shelf than an ice stream. In addition,
visual interpretations from satellite data supported the further south location of the
grounding zone (Swithinbank 1988, Hambrey and Dowdeswell 1994). However, no
conclusive quantitative evidence has been previously presented to contradict the location
of Budd er al. (1982). Based on hydrostatic equilibrium, Fricker et al. (2002) determined
that the grounding-line position was located some 200 km upstream from the grounding
line from Budd et al. (1982). Their analysis, however, could not locate the grounding
line position better than within several km. Rignot (2002) utilized InSAR data to
delineate the grounding line for the portion of system. He delineated only half of the
grounding line of the Lambert/Mellor/Fisher system from InSAR due to a lack of InNSAR
coverage. The grounding line position was determined using a topographic map, the
boundary of narrow interferometric fringes, and the map of the difference in ice velocity
between ERS InSAR and RADARSAT speckle tracking. This work established the
confluence of Lambert/Mellor/Fisher Glacier as the grounding line of the Lambert-

Amery system.
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Although the grounding line position of the confluence of main three glaciers has
been actively studied, grounding line position for the tributary glaciers of the Amery Ice
Shelf is limited. Fricker et al. (2002) delineated the grounding line location for the
Amery Ice Shelf based on the hydrostatic calculation. However, their study focused on
describing the grounding line position of main glacier region. The grounding line
position is very important in mass balance calculation in terms of flux gate location, and
the grounding line position of tributary glaciers should not be ignored in a
comprehensive mass balance study. In addition, the computed location of grounding line
from Fricker et al. (2002) most likely detects the stable floating point of the ice shelf
which is located more downstream on the ice shelf than real grounding line position. The
limitations of the method create uncertainty in the grounding line location. The studies
of the main grounding line position has provided the clue of grounding line migration
because the more recent study claims the more southward location of grounding line.
Fricker et al. (2002) confirmed the southward extension of the grounding line position.

The result of this study provides the supporting evidence of grounding line migration.

4.2. Grounding line identification methods

Because the grounding line is the transition zone of inland ice and floating ice, it
experiences both vertical movement of floating ice and differential horizontal movement
between grounded ice and floating ice. Interferometric SAR processing has been used as
an effective tool in identification of the grounding line in numerous areas (Goldstein et

al. 1993, Rignot 1996, Gray et al. 2002). In addition, the hydrostatic height anomaly
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(the difference between the measured surface height and the surface height calculated

from measured ice thickness) can be used to identify floating ice (Ficker et al. 2001).

4.2.1. Hydrostatic calculation of elevation
The relationship between the surface height H (relative to sea level) and the ice thickness

Z at any point is given by the hydrostatic equation:

— Z(Iow_pt)
P

H 4.1

where p, and p, are the column-averaged densities of sea water and ice respectively.

The hydrostatic anomaly (k') is defined as the difference between the measured surface
height and the surface height calculated from the measured ice thickness using the

equation.

&':E-Z(p“'_pi)
pw

4.2)

Since the grounding line is a transition area between inland ice and floating ice, oh' is
significant for grounded ice or where there are errors in the total ice thickness or density
values (Fricker et al. 2001). This study used recent surface height data obtained from
the ICESat laser altimetry data (Zwally et al. 2003). The Geoscience Laser Altimeter
System (GLAS) instrument on the Ice, Cloud, and land Elevation Satellite (ICESat)
provides global measurements of polar ice sheet elevation to discern changes in ice
volume over time. The 1062 nm laser channel produces surface altimetry with 183-day

repeat cycles. The separation between the tracks is about 15 km. The height measured
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from laser altimeter is expected to be the precision of better than 10 cm (Zwally et al.
2002). However, the preliminary laser altimetry data used by this study has limited
accuracy of 1.5 m (Zwally et al. 2003).

BEDMAP ice thickness data (Lythe ef al. 2000) is utilized for the hydrostatic
calculation of ice thickness. The major source of the BEDMAP ice thickness are
airborne Radio Echo Sounder by the Russian Polar Marine Geological Reseach
Expedition (PMGRE) over seven field seasons between 1986 and 1995 (Fricker et al.
2001). The 5 km original BEDMAP ice thickness grid is resampled into 1 km grids
using bilinear interpolation. The vertical accuracy of the ice thickness for the Amery Ice
Shelf area is expected to be 50 m with the distance between RES flightlines around 5
km. Fricker et al. (2001) derived the column-averaged ice density from a density model
which has two layers of meteoric ice to account for a firm layer plus a marine ice layer at
the base of the shelf. The column-averaged ice density ranges 860 Kg m” at the calving
front to 921 kg m™ near the grounding line of the Lambert Glacier (Figure 4.1). The
column-averaged density of the sea-water displaced by the ice shelf was taken as 1029

kg m> , based on measurements off the ice shelf front (Wong et al., 1998).
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Figure 4.1 Simple linear model for the column-averaged ice density of the Amery Ice

Shelf (Fricker, 1999).

4.2.2. SAR Interferometry

The vertical velocities increase abruptly at grounding lines. Due to the vertical
movement of floating ice and differential horizontal movement between grounded ice
and floating ice, interferometric fringes change sharply with a high gradient at the
grounding line. Fringes are lost or abrupt, coherence estimates are reduced when the
phase is changing rapidly; this is because the phase will change over the window used to
calculate the coherence. In this way coherence images can be complementary to the

phase-gradient images in estimating the position of the grounding zones (Gray et al.
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2002). This study used the interfeometry coherence image and vertical velocity from
repeat-pass SAR interferometry from the Antarctic Mapping Mission-2 (Jezek 2003) to

identify the location of the grounding line.

4.3. Grounding Line of the Lambert Glacial Basin

Because of the characteristic features of grounding lines, coherence images can be used
to accurately map the location of the grounding line. However, the 24 day repeat orbit of
RADARSAT can be a disadvantage if there is a large velocity gradient across the
grounding line, because there can be a loss of coherence. In this case, information such
as topography and ice velocity must be used to estimate the grounding line position.
However, if coherence is maintained across the grounding zone then the 24 day image
separation can be an advantage since the height difference of floating ice because two of
the main tidal constituents, M2 (period: 12.42 hours) and O1 (period: 25.82 hours) are
much larger for the 24 day pass separation since it increases the vertical movement
between the pairs (Gray et al. 2002). This study utilizes coherence images of an
ascending pass of AMM-2 (Jezek 2003) as a main constraint to delineate the grounding

lines of glaciers discharging into Amery Ice Shelf (Figure 4.2).
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Figure 4.2 Coherence image of Radarsat SAR interferometry.

Since most of ice streams flow down slope as they pass through the grounding
line, the vertical velocity of the slope shows negative vector flowing downward flow;
when the ice stream floats at the grounding zone, the negative velocity gradient changes
into a positive gradient because the direction vertical velocity vector upward. Therefore,
the vertical velocity component (Vz) can be an alternative choice to support a coherence
image. However, it is necessary to differentiate the change in velocity gradients because
of surface slope change and because of a floating ice stream. This study used vertical
velocity components as a second constraint to delineate the grounding line overlaid on
SAR magnitude images to distinguish surface glacier features (Figure 4.3). In addition, a

velocity magnitude image is very effective in delineating glacier flows that can be used
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to delineate glacier margins if the margin in the coherence image is too wide to

delineate.

Figure 4.3 Vertical velocity component from Radarsat SAR interferometry.

The grounding line delineated from this study is subdivided into 5 main glacier
regions around Amery Ice Shelf; the Lambert Glacier system, the western tributary
glaciers, the Charybdis Glacier area, the eastern tributary glaciers, and the eastern

tributary glaciers near Reinbolt Hills (Figure 4.4). The grounding line extraction and
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pattern are discussed in terms of coherence, surface features, surface velocity, and

vertical velocity components in the following.

E "‘\ -

.St

Flow lines
Grounding line and ice shelf boundang s

Figure 4.4 Five main glacier regions overlaid on grounding line and flow lines.

4.3.1. Lambert Glacier system grounding line

The Lambert Glacier system grounding line defines the south end of Amery Ice Shelf. In
other words, the main ice stream consisting of Fisher, Mellor, and Lambert Glaciers
begins floating from that point. Because of its glacial characteristics of fast movement
caused by ice stream merging and floating ice, SAR interferometry fails in coregistration

and phase unwrapping (Figure 4.5 b and c). SAR images show there is an abrupt slope
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change where Fisher, Mellor and Lambert Glaciers converge, and it can be an alternative
hint to give the location of the grounding line (Figure 4.5 a). Coherence images, because
of the failure in phase unwrapping, indicate the grounding zone is 24 km long in the N-S
direction near 67°E and 73.5°S. Vertical velocity components from SAR interferometry

show similar patterns.

Figure 4.5 The SAR image (a), coherence image (b), vertical velocity (c), and surface
velocity map (d) of Lambert Glacier system grounding line area. Red colors represent

high velocity areas and blue colors represent low velocity areas for velocity maps (c) and

(d).
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To support the grounding line from the SAR image, this study mosaiced velocity
information from speckle tracking for the ice convolution area (Figure 4.6 d). Increased
basal melting may lead to increased strain rates near the grounding zone, allowing the
ice stream to flow more rapidly (Budd and Warner 1998). Three flows lines were placed
to detect the grounding line location from ice velocity profiles, one from each glacier
(Figure 4.6). The red line in Figure 4.6 indicates the grounding line position determined
from this study.

The velocity profile for each glacier confirms the grounding line location from
the SAR image (Figure 4.6). The velocity of Fisher Glacier increases from 193 m/year to
580 m/year at the grounding line (Figure 4.7 a). The velocity of Mellor Glacier shows a
positive velocity change of 300 m/year from the beginning of the flow line (390 m/year)
to the grounding line location (688 m/year) (Figure 4.7 b). Lambert Glacier draws the
highest velocity on the grounding line with 780 m/year which increased from 420 m/year
at the beginning of flow line (Figure 4.7 c). The grounding line derived from the SAR
image and surface velocity filed is positioned at E 66.62° and S 73.18° for Fisher
Glacier, E 66.82° and S 73.27° for Mellor Glacier, and E 67.33° and S 73.3° for Lambert

Glacier.
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Figure 4.6 Flow lines from Fisher, Mellor, and Lambert Glaciers for velocity profile.

Red line indicates the grounding line from this study.
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Figure 4.7 Surface velocity profile of Fisher (a), Mellor (c), and Lambert (c) Glaciers.

4.3.2. Tributary glaciers on the west part of Amery Ice Shelf

Five main ice streams discharge into the west portion of Amery Ice Shelf from the
Prince Charles Mountains along the 350 km section from Mt. Stenear to Fisher Massif
(Figure 4.8 a and d). The surface velocity of the five tributary channels ranges from 70
to 180 m/year along the grounding line leading to a significant ice mass discharge into

Amery Ice Shelf (Figure 4.8 d). The location of the grounding line is well distinguished
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at the downstream edge associated with the low coherence (Figure 4.8 b and Figure 4.9
e). The grounding line defined by the coherence image well matches with the change in
the vertical velocity component (Figure 4.9 ¢ and Figure 4.9 e).

Four flow lines are placed to determine the grounding line position for the
western tributary glaciers (Figure 4.9 e). Flow line “a” shows a vertical velocity increase
from -5 to 0.5 m/year between minimum and maximum at the grounding line (Figure 4.9
a). The vertical velocity of flow line “b” increases from -3.5 m/year to 1 m/year at the
grounding line (Figure 4.9 b). The vertical velocity of flow line “c” shows a positive
velocity change of 4 m/year from the minimum value of the flow line (-3.8 m/year) to
the grounding line location (0.2 m/year) (Figure 4.9 c). The vertical velocity profile of
flow line “d” draws the highest velocity on the grounding line of 0 m/year which
increased from -4.5 m/year at the beginning of the flow line (Figure 4.9 d). As the
profiles shows, our grounding line position matches with the low coherence boundaries

and high vertical velocity.
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Figure 4.8 The SAR image (a), coherence image (b), vertical velocity (c), and surface
velocity map (d) of the western tributary glaciers of Amery Ice Shelf. The red colors
represent high velocity areas and blue colors represent low velocity areas for velocity

maps (c) and (d).
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Figure 4.9 Vertical velocity profile of western tributary glaciers (a, b, ¢, d) and

grounding line overlaid with vertical velocity field and coherence image (e).

4.3.3. Charybdis Glacier area

Five glacier streams including Nemesis, Charybdis, and Scylla Glacier flow into Amery
Ice Shelf through the conduit between Jetty Peninsula and Single Island (Figure 4.10 a
and d). Nemesis Glacier has a maximum surface velocity of 145 m/year in the high slope
area. Charybdis Glacier and Scylla Glacier are the glaciers contributing the most ice
mass in the area, and their surface velocity reaches a maximum of 198 m/year

(Charydbis) and 158 m/year (Scylla) (Figure 4.10 d). The surface velocity increases in
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the confluence area and reaches a maximum of 352 m/year where the confluence stream
merges with the main stream of Amery Ice Shelf. Coherence image show complicated
pattern of ice flow margins and grounding line position (Figure 4.10 b).

The vertical velocity component provides supplementary evidence in the
grounding line position where the coherence image shows complications (Figure 4.10 c).
This study determined the grounding line position based on overlapping areas of low

coherence and positive vertical velocity component gradients.

Figure 4.10 The SAR image (a), coherence image (b), vertical velocity (c), and surface
velocity map (d) of the Charybdis Glacier area. Red colors represent high velocity areas

and blue colors represent low velocity areas for velocity maps (c) and (d).
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Six flow lines are placed for each of the glacier flows to obtain vertical velocity
profiles (Figure 4.11). As Figure 4.11 shows, the grounding line from this study matches

with the low coherence and positive gradients of the vertical velocity component.

Figure 4.11 Flow lines from Nemesis, Charybdis, Scylla, and other tributary glaciers
located on the western part of Amery Ice Shelf. The background image is the vertical
velocity component field overlaid on the coherence image. The red line indicates the

grounding line from this study.

Nemesis Glacier records a maximum vertical velocity of 0.8 m/year near
grounding line and the minimum of -4.5 m/year at the high downward slope area (Figure

4.12 a). Charybdis Glacier shows two positive slopes in the vertical velocity profile
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(Figure 4.12 b). However, the maximum vertical velocity of 0.7 m/year matches with the
low coherence boundary. The first positive gradient is caused by a general trend of small
upslope topography. Scylla Glacier does not show abrupt changes in vertical velocity
(Figure 4.12 c). However, the grounding line location is drawn based on low coherence,
and it matches with the highest vertical velocity along the flow line. The grounding line
of tributary glaciers “d” and “e” in Figure 4.12 are not coincide between the vertical
velocity and coherence image. Based on the vertical velocity gradient, the location of the
grounding line for ice stream “d” should be placed further downstream since the abrupt
vertical velocity change is detected at the downstream than this study identified based on
low coherence boundary (Figure 4.12). Stream “e” shows a large increase in vertical
velocity, but the grounding line is not placed at that point. The big jump is caused by fail
in phase unwrapping and the inconsistent velocity data between the neighboring orbits;
in this case the jump area is the orbit boundary. Therefore, it is more sound to determine
the grounding line based on the coherence and velocity profiles within the same orbit
which have the same processing parameters. Stream “f” shows similar patterns with

Scylla Glacier (Figure 4.12 f).
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Figure 4.12 Surface velocity profile of Nemesis (a), Charybdis (b), Scylla (c), and other

tributary glaciers (d, e, f) located on the western part of Amery Ice Shelf.

4.3.4. Tributary glaciers on east part of Amery Ice Shelf

Three main ice streams and three supplementary ice streams discharge from the east side
of Amery Ice Shelf in the segment between Clemence Massif and Foster Ntk (Figure
4.13 a and d). The maximum velocity of three main ice streams ranges from 235 m/year
(stream “a” in Figure 4.13) to 607 m/year (stream “d” in Figure 4.13), and velocity
decreases as they merge into the main ice stream of Amery Ice Shelf (Figure 4.13 d).
The supplementary ice stream have velocity ranges from 78 m/year (stream “c” ) to 119

m/year (stream “f”’) (Figure 4.13 d).
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Figure 4.13 The SAR image (a), coherence image (b), vertical velocity (c), and surface
velocity map (d) of the eastern tributary glacier of Amery Ice Shelf. Red colors represent

high velocity areas and blue colors represent low velocity areas for velocity maps (c) and

(d).

The grounding line position matches with the low coherence areas and stream
channel boundaries (Figure 4.14 a). However, the vertical velocity component indicates
different grounding line location different from low coherence areas (Figure 4.14 b and

Figure 4.15).
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Figure 4.14 The grounding line of the eastern tributary glaciers of Amery Ice Shelf

overlaid on a coherence image (a) and vertical velocity component (b).

The vertical velocity profile for the ice flow of the five main streams does not

match with the coherence image in grounding line positions, which are placed in a
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negative vertical velocity (Figure 4.15). This indicates that the grounding line is in

transition which shows a wide range of grounding zone distributions.
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Figure 4.15 Vertical velocity profiles of eastern tributary glaciers of Amery Ice Shelf.

4.3.5. Tributary glaciers on the east side of Amery Ice Shelf near Reinbolt Hills
Tributary glaciers on the east side of Amery Ice Shelf near Reinbolt Hills consist of three
ice streams with a maximum velocity range of 87 m/year to 148 m/year (Figure 4.16).

This region shows similar patterns in the grounding line that its position in the coherence
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image does not match with the vertical velocity component (Figure 4.17 and Figure
4.18). The previously applied interpretation for the eastern tributary glaciers can be used
again here. It is presumed that the grounding line placed in this study is in a changing ice

stream floatation zone.

Figure 4.16 The SAR image (a), coherence image (b), vertical velocity (c), and surface
velocity map (d) of tributary glaciers on the east side of Amery Ice Shelf near Reinbolt
Hills. Red colors represent high velocity areas and blue colors represent low velocity

areas for velocity maps (c) and (d).
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Figure 4.17 The grounding line of tributary glaciers on the east side of Amery Ice Shelf

near Reinbolt Hills overlaid on a coherence image (a) and vertical velocity component

(b).
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Figure 4.18 Vertical velocity profiles of tributary glaciers on the east side of Amery Ice

Shelf near Reinbolt Hills.

4.4. Grounding line validation

As mentioned in the methodology, surface elevation combined with ice densities is
useful for identifying floating ice. This study utilizes ICESat laser altimetry data as the
major source of surface elevation (Zwally et al.2002). If the ice is floating, the height
anomaly between the height from laser altimetry and height from the hydrostatic
calculation of the ice thickness data should be zero. Based on the standard statistical
theory of error propagation (Taylor 1997), 50 m of ice thickness, 1.5 m of height error
and 10 kg/m3 of density error produce a 30 to 32 m of error range on floating ice
identification. This study uses 30 m as a threshold to identify floating ice. In other

words, the hydrostatic anomalies within 30 m are considered as floating ice.
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A total of 36,832 surface elevation points are calculated from ICESat laser
altimetry (Figure 4.19). Of these, 26,130 points are within the error range indicating
floating ice.

The observed general floating ice distribution matches the grounding line
delineated from this study. As Figure 4.19 illustrates, some portions on the ice shelf are
identified as grounded ice. Most of these observations are correct, detecting rock
exposures on the ice stream such as Clemence Massif and Corry Rock. However,
misidentified grounded ice points are mainly distributed in the ice shelf front and
discharging area and are caused by irregular distributions and errors in ice thicknesses;
only 126 out of 12,393 points are considered as errors in the ice shelf discharging area.
The hydrostatic error range is 30.1 ~ 33.0 m for those areas which indicates those are
the border the 30 m control for defining floating ice.

The elevation points near the grounding line show shifts to upstream ranges up to
9.8 km in the eastern tributary glacier, excluding the obvious error in the Beaver Lake
area. The Beaver Lake area shows floating ice points on a rock exposure area which
again is mainly caused by ice thickness errors. The main Lambert Glacier system
grounding line positioned from this study is identified as grounded ice from the
hydrostatic calculation and the difference between the grounding lines from the two
methods ranges up to 24 km. This is expected since this method detects floating ice. If
the glacier system is in transition at the grounding zone; a high down-slope angle with

high surface velocity and large ice mass might induce a larger area of transition zones
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between floating and grounded ice which the hydrostatic method has difficulty in

quantifying (Fricker et al. 2002).

Floating ice
Grounded ice
— Grounding line

Figure 4.19 Floating ice points from the hydrostatic anomaly calculation with the

grounding line from this study.

4.5. Comparisons with previous studies

A grounding line delineated by SAR interferometry is provided from this study. The
most of the grounding line position has placed in high accuracy less than 2 km around
the Amery Ice Shelf except the grounding line position of three main ice streams. The
grounding line position of the three main ice stream is place within a range of 20 km low
coherence zone which cause by the failure in phase unwrapping from the abrupt velocity

increase. It might also indicate that the main ice stream grounding zone is distributed in
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wide area. Most of the tributary glaciers shows good phase unwrapping result, and it
enables higher accuracy in grounding line determination. With a vertical velocity profile
and hydrostatic data, the grounding line position from this study is confirmed.
Comparing the results to a previous study (Figure 4.20), general positions are
similar between this study and the groundling line by Fricker et al. (2002) from
hydrostatic calculation. However, this study places the grounding line farther upstream
compared to previous studies. The distance between the tow lines ranges up to 16.5 km
at the main ice stream. This can be explained by the characteristics of the methodology.
As Figure 4.21 shows, the grounding line from the hydrostatic calculation can only
placed at the location of floating ice whereas the actual grounding line is located farther
upstream. Therefore, the distance between the InSAR and hydrostatic results can be
significant where the ice thickness is greater and surface velocity is faster which will

result in pushing the hydrostatic point (H” in Figure 4.21) farther downstream.
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Figure 4.20 Grounding line comparison between this study and previous study.

On the other hand, there are some locations where the previous grounding line
detected more upstream. But the hydrostatic calculation from this study indicates that the
location is possibly wrong since it more consistently matches the grounding line from
InSAR; it can be explained by accuracy in elevation data. The previous study used DEM
from ERS-1 radar altimetry data in 1 km spacing (Fricker er al. 2000). Comparing the
vertical accuracy of 1.7 m from ERS-1 and 1.5 m from ICESat data and 170 m spacing
of ICESat along track spacing in addition to point level measurement, it is expected that

the data from this study will provide more accurate calculation of hydrostatic anomalies.
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Figure 4.21 Schematic diagram of points associated with the grounding zone. F is ‘limit
of flexure’, G is the ‘grounding line’, H and H’ are the ‘hydrostatic points’ and I is the

location of the change in slope. The Figure is from Fricker ef al. (2002).

The second possible reason may be a grounding line transition. Depending on the
status of ice dynamics and tidal differences, the position of the grounding line can
change as was studied in the northern Greenland grounding line migration (Rignot et al.
2001). The data used in the InSAR process was taken in 2000 and the ICESat data in
2003 which makes 8 to 10 years difference between the data acquisition of this study and
that of Fricker et al. (2002). In addition, this the grounding line location of this study
positioned the grounding line for the main glacier further south from Fricker et al
(2002). This supports the grounding line extension southward suggested by Fricker et al.
(2002). However, it is necessary to have a more thorough investigation follow up to
determine the rate of grounding line migration and its impact on glacier dynamics of the

arca.
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CHAPTER V

COMPUTATION OF BALANCE VELOCITY

5.1. Concept of balance velocity

Balance velocity is the depth averaged horizontal velocity required to maintain a steady
state. In other words, the outward flow distribution exactly matches the net accumulation
(Budd et al. 1971). The balance flux of a glacier system is the hypothetical distribution
of mass flux in a steady state system. There are two sources of mass input, surface

accumulation (A) and ice flux coming from higher elevations (Q;,) (Figure 5.1).

Figure 5.1 Schematic diagram showing the concept of balance velocity.

Since ice flux at any point is calculated by depth averaged velocity (V) multiplied
by ice thickness (H), the combined value of ice flux from high elevation (Q;,) and
accumulation at the point (A) should be equal to the value (Q,,) of ice thickness (H)

times the depth averaged velocity (V). It can be summarized as the following equations;
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0=VxH (5.1)

0,+A=0,, =VxH (5.2)

y = Lo (5.3)
H

Therefore, the balance velocity is directly calculated by the division of ice
thickness if balance flux is calculated. It is necessary to know the ice flow direction and
the spatial distribution of the mass accumulation rate to calculate an accurate balance
flux. The balance flux distributions can provide local information on the balance state of
the system using the flow velocity and ice thickness information. Balance flux
calculation is carried out by two main procedures: ice flow direction calculation and ice
flux distribution. Surface slopes derived from DEMs are the major sources for extracting
flow direction information. However, the assumption of the ice flow direction from the
DEM is valid only when the surface slope is averaged over a horizontal scale of between
10 and 20 ice thickness (Budd 1968). Because of 2,000 m average ice thickness, the
highest spatial resolution of DEM for the Lambert Glacier system is limited to 20 km.
As Figure 5.2 shows, the course spatial resolution is disadvantageous in detecting small
ice streams. In addition, small error in flow direction and flux distribution can make
huge difference in the final output.

This chapter summarizes the previous studies of balance flux calculations,
suggests a new method for calculating ice flow direction and flux distribution, and
compares the results on the Lambert Glacier system between previous methods and the

method used in this study.
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Figure 5.2 SAR image of portion of ice streams in Lambert Glacier System overlaid with

20 km grid.

A flowline-type technique was first introduced by Budd et al. (1971). They
examined a block of ice bounded by digitized flow lines, and the net surface
accumulation was calculated. This techniques was adapted by later used by other
researchers (Budd and Carter 1971, Budd and Allison 1975, Smith and Budd 1981, Budd
et al. 1982, Radok et al. 1987). Although this approach represents the concept of balance
velocity, it has some limitations in processing time and flow direction extraction because
of manual digitizing and limited flow line features.

The mostly widely used grid based method, was introduced by Budd and Smith
(1965), Budd and Warner (1996) devised a finite difference method coupling the

balance flux equations with flux magnitudes of neighboring cells, and this method was
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later updated by Fricker et al. (2000). They calculated ice flow direction based on the
direction of the steepest slope using a digital elevation model by comparing elevations in

four cardinal pixels to the center pixel (Figure 5.3).
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Figure 5.3 Grid cell and its neighboring pixels in flow direction calculation.

If the surface elevation of pixel (i, j) is denoted as E;;, the elevation difference with

neighboring pixels is

5.4
dj+1:E 54)

d,,=E

@y E
iy~ Eapy (5.5)

@@, j+1)

Once the slope components of x (dx) and y (dy) are derived, the flow direction () is

cos@=d, /\d;+d; (5.6)
sin@=d, / d? +d’ (5.7
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since the rate of ice flow through a cell with side length [ is related to both the flux

magnitude and the direction of flow through the cell, the balance flux can be calculated

as
v
o = >/
b l(|cos 0| +|sin 49|) (5-8)
where out flux of cell (i, j) is
l//;jl;r = ai,jlz + l//zm] 5.9

where a;jis surface accumulation of cell (i, j) and [ is cell size.
However, this method has limitations in detecting slope and flux distribution in diagonal

pixels, since the process is based on cardinal pixels.

5.2. Flow direction calculation

The main concept of balance velocity has a lot in common with hydrological modeling,
where there have been many studies approaches for calculating flow direction and flow
accumulation from DEM (O’Callagham and Mark 1984, Quinn et al. 1991, Freeman
1991, Costa-Cabral and Burges 1994, Lea 1992, Tarboton, 1997). Therefore,
hydrological modeling can provide useful options for flow direction calculation. This
study uses Tarboton (1997)’s fitting plane algorithm (D o ) to calculate flow direction

from a DEM.
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Figure 5.4 Plane triangular facets on a block-centered grid (a) and definition of variables

(b) for the calculation of slope.

Tarboton (1997) calculated the slope magnitude and slope direction for each
facet created on planar triangular facets on a block-centered grid (Figure 5.4) with the

following;

r=tan"'(s,/s,) (5.10)

s=(s; +s7)" (5.11)
where r is the steepest slope direction, s is the slope magnitude. And the slope vector of
each component can be calculated as (Figure 5.4);
s, =(e,—¢)/d, (5.12)
s, =(e, —e,)ld, (5.13)
where e is the elevation and d is the pixel size.

Once all the components for each facet have been calculated, the flow direction of the

center pixel can be extracted with,
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r,=a,r+a,zwl?2 (5.14)

where 1’ is the slope direction from the facet with the maximum slope magnitude. And

the multiplier a; and the constant a. depend on the facet selected.

5.3. Flux distribution

Previous studies have had problems in assigning the flux to diagonal pixels. If the
cardinal pixel is flowing away from the diagonal pixel, the flux can never be assigned to
the diagonal pixel (Figure 5.5). However, it could be contrary to physical law to assign
the flux directly to the diagonal pixel because there is no face contacting the diagonal

pixel to assign the flux.

NN
N5

Figure 5.5 Schematic diagram showing cardinal flux distribution.
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To solve this problem, this study created new algorithms to deal with two
different types of flux; passing through flux and redistributing flux. Ice flux in one pixel
calculated from equation 5.7 is subdivided into passing-through flux and redistributing

flux based on the ice flow direction following;

Yoy = Wiy A xtand (5.15)
where ¥, ;) 1s the passing through flux distributed from cell (i, j), ¥, ; 1s the total
influx to cell (i, j), A(l., H is the surface mass accumulation for cell (i, j), and @ is the flow

direction (Figure 5.6). Since the total out flux from the cell should be equal to the total

input to the cell, the redistributing flux (¥, ;) of cell (i, j) is;

Vi = Wiy T Ain) = ¥eas (5.16)

Once the passing-through flux and redistributing flux are calculated, the
redistributing flux is assigned to neighboring cardinal pixel following the flow direction
(Figure 5.5 a). The passing-through flux is divided into two identical fluxes to be
assigned to two neighboring pixels in a cardinal direction following the flow direction
(Figure 5.6 a). After assigning the passing-through flux to the cardinal pixels, the flux
amount is considered for just the input flux to the cardinal flux but not considered for
accumulated flux to be redistributed for out-flux calculation. Instead, the passing-
through flux is assigned once again to the cardinal pixel that is diagonal from the origin
(Figure 5.6 b). The passing-through flux reassigned to the destination pixel is saved as
influx to that pixel and will be added in the out-flux calculation resulting in the same

effect of flux assignment to the diagonal pixel from the origin (Figure 5.6 c). Therefore,
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the whole flux in the pixel will be considered as passing-through flux and assigned to the
diagonal pixel if the flow direction is n* nx% (Figure 5.6 d). Since this algorithm

assigns the diagonal flux through cardinal pixel, it is named the Cardinal Addressing and

Redistributing Algorithm.

a) b)

Redistributing Flux

|:| Passing-through Flux

——
-

Figure 5.6 Flux distributing process of cardinal addressing and redistributing flux

algorithm from this study.
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5.4. Balance velocity of the Lambert Glacial Basin

The OSU DEM (Liu et al. 1999) is used as major input of elevations for flow direction
calculations. The DEM is compiled using several topographic data sets which have
rather disparate sampling intervals. The interpolated product is re-sampled into 200, 400,
and 1000 m post spacing. This study resampled 200 m DEM to 20 km spatial resolution
to derive flow direction based on the surface elevation.

The accumulation data from Vaughan et al. (1999) is utilized to calculate balance
flux. The surface accumulation map of Vaughan et al. (1999) in a 10 km resolution grid
was derived from passive microwave satellite data along with 1800 in situ
measurements. The 10 km cell size accumulation grid is resampled to 20 km for
consistency with surface elevations. The balance flux grid is divided by ice thickness to
calculate balance velocity. The BEDMAP 5 km cell size ice thickness data (Lythe ef al.
2001) is the source of the ice thickness in the balance velocity calculation. The
BEDMAP ice thickness is derived from more than 150 independents surveys, conducted
by 15 nations, over the pas 50 years. Compared to other parts of Antarctica, Lambert
Glacial Basin-Amery Ice Shelf system has the densest data coverage, where ground
based Radar Echo Sounding and Airborne Radar Echo Sound data have 5 km to 10 km
track-spacing. The accuracy of ice thickness is different in different regions. The
thickness accuracy of the study area ranges 50 m at Amery Ice Shelf to 150 m at high
elevation areas (Lythe et al. 2001).

Following the methods for ice flow calculation and ice flux distribution above,

the balance flux distribution over the Lambert Glacial Basin is derived (Figure 5.7). As
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Figure 5.7 shows, the balance flux provides an effective representation of the pattern of
surface ice flow that would be present if the system were in balance. Streaming behavior
of the flow in topographic channels is clearly distinguished in spite of limited spatial
resolution. Stream boundaries and tributary channels are easily detected, and the
magnitude of flux increases as the stream order increases.

To show the general pattern in detail, the balance flux grid is resampled into a 5
km cell size using bilinear interpolation, and the balance velocity is calculated at 5 km
spatial resolution. As Figure 5.8 shows, the main ice streams are identified easily and it
indicates that the ice flux is mainly transported by the Lambert and Mellor Glaciers.
Except for abnormally high velocity on the high elevation area of the western tributary
glacier, balance velocity increases downward and shows two main discharges from
Amery Ice Shelf to the ocean; one from a major stream from the Lambert system, and
the other from western glaciers located in the down stream area including Charybdis

Glacier.
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Figure 5.7 Balance flux of Lambert Glacier — Amery Ice Shelf system.
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Figure 5.8 Balance velocity of Lambert Glacier — Amery Ice Shelf system.

5.5. Interpretation

To make comparisons and spatial distribution of balance velocity over the Lambert
Glacier - Amery Ice Shelf system, the balance velocity from Budd and Warner (1996),
balance velocity from this study, and the ice depth averaged velocity from SAR

interferometry are utilized. Although differences exist in basic assumptions between
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balance velocity and measured velocity from satellites, the general pattern of stream line
topography and velocity distribution should be the same. The InSAR surface velocity is
converted into the ice depth average velocity by multiplying by 0.87 (Budd and Warner,
1996) for the grounded ice area. It is assumed that ice depth average velocity is the same
as the surface velocity multiplied by ice depth average velocity factor of 0.87.

As Figure 5.9 shows, the balance velocity from this study delineates the main
stream and stream boundaries (b) compared to Budd and Warner’s algorithm (a).
General stream patterns and stream widths have more similarities with this study and
InSAR velocity. However, both of the balance velocities failed in the detection of the
main ice stream in Amery Ice Shelf because the flat surface elevation in the ice shelf
area presents difficulties in determining the ice flow direction. In addition, the balance
velocity calculation is not valid for the ice shelf region since it does not consider basal
melting. Therefore, ice shelf area is excluded for the interpretation and analysis. The ice
stream detection in the mountain areas is inconsistent with the InSAR velocity as the 20
km resolution of cell size has disadvantages where topographic variations result in small
stream channels flowing through valleys. It results in limitation in flow direction

calculation and ice flux distribution in mountain areas.
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Figure 5.9 Balance velocity and ice depth averaged velocity comparison from Budd and

Warner (1996) (a), this study (b), and SAR interferometry (c).
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To compare the abilities of detecting stream channel in relatively gentle slope
areas and mountainous areas, transverse velocity profiles were created for Lambert,
Mellor, Fisher and Charybdis Glaciers (Figure 5.10 and 11). The profile line for
Lambert and Mellor Glaciers represent gentle slope stream channels and the profile line
for Fisher and Charybdis Glaciers represent valley stream channels.

Both the balance velocity from Budd and Warner (1996) and this study
delineated the ice streams in gentle slopes (Figure 5.11 a and b). But in terms of stream
location and velocity distribution, the balance velocity of this study is superior compared
to that of the previous study. This study was successful in deferring the velocity range in
Lambert Glacier showing 10 to 15 m/year difference from InSAR velocity (Figure 5.11
a), and also the shape of the profile is identical to the InSAR velocity, except the area
where the velocity decreases abruptly because of the limitations on spatial resolution.
The balance velocity from the Budd and Water (1996) generally estimated the velocity
50 ~ 60 % lower than the InSAR velocity and it often detects incorrect stream position as
in the case of Mellor Glacier (Figure 5.11 b). As previously stated, the valley glaciers
can not be detected effectively using balance velocity and so both of the balance velocity
methods failed and showed reverse patterns of velocity distribution (Figure 5.11 ¢ and
d). However, both of the balance velocity methods detected small balance velocities as
in the case of Charybdis Glacier because of the relatively wide width of the stream
channel (Figure 5.11 d). The velocity distribution for the valley glacier shows huge
differences in the reverse pattern (Figure 5.11 ¢), and even the velocity estimation is 50

to 70 % lower for relatively wide valley glaciers.
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Figure 5.10 Location of velocity profile overlaid on SAR interferometry ice depth

averaged velocity map.
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Figure 5.11 Transverse velocity profiles of Lambert (a), Mellor (b), Fisher (c), and
Charybdis Glaciers (d). “Budd” indicates the balance velocity from Budd and Warner
(1996), “This” indicates the balance velocity from this study, and “InSAR” indicates ice

depth average velocity from SAR interferometry.
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The velocity difference grids between the balance velocity and InSAR velocity
were created to illustrate the balance velocity distribution errors in terms of stream line
extraction to compare the result between Budd and Warner (1996) and this study. As
Figure 5.12 and Table 5.1 show, minimal velocity difference pixels are more widely
distributed for this study. It is especially effective for delineating the upstream area.
Whereas the previous study shows larger differences in major channels of Lambert and
Mellor Glaciers, this study provides a better representation of the general trends of ice
streams. However, this study has disadvantages in the downstream area since it
overestimates balance velocity as it discharges because of the flux distribution algorithm
based on the velocity difference with InSAR velocity. In conclusion, this study is very
effective in balance velocity calculation in upstream area. It makes this study a more

reliable tool in balance velocity calculation since it is more useful in upstream areas.
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Table 5.1 Summary of velocity difference between balance velocity from Budd and

Warner (1996) and InSAR velocity, and between balance velocity from this study and

InSAR velocity.
Velocity Budd and Warner (1996) This study
difference
(m/year) No. of pixels % of pixels No. of pixels % of pixels
0~50 52946 93.4 53114 93.8
50~200 2148 3.8 1872 3.3
200~500 998 1.8 904 1.6
500~1000 464 0.8 310 0.5
> 1000 126 0.2 433 0.8
Total 56682 100 56633 100
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Figure 5.12 Velocity difference between the balance velocity from Budd and Warner
(1996) and InSAR velocity (a), and between the balance velocity from this study and

InSAR velocity (b).
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On the other hand, the velocity difference can explain the current balance state of
the Lambert Glacier - Amery Ice Shelf system. As it mentioned above, the downstream
area is not reliable in terms of explaining the balance state. The mass imbalance map is
created based on the velocity differences between the balance velocity of this study and
the InSAR ice depth velocity (Figure 5.13). A positive imbalance occurs where the
balance velocity is higher than the InSAR velocity and a negative imbalance where the
InSAR velocity is higher than the balance velocity. Since balance velocity for the ice
shelf area is not reliable, only grounded ice is considered for mass imbalance.

The most of the upstream area and accumulation catchment area is in balance.
The mountain area is the major source of the positive imbalance. The ice stream areas
are the negative imbalance. The confluence of the Lambert, Mellor, and Fisher area

shows a especially large negative imbalance near a grounding line.
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Figure 5.13 Mass imbalance map of Lambert Glacier system grounded ice area.
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CHAPTER VI

MASS BALANCE ANALYSIS

6.1. Overview

The mass balance of ice sheets is important because major changes in their dimensions
affect the climate and sea level globally. Methods for ice sheet mass balance calculations
can be classified into 3 types (Patterson 1994): calculation of balance terms, comparison
of mass flux and accumulation rate, and measurement of changes in ice thickness. The
calculation of balance terms calculates every input and output components in a mass
balance system using all available data and methodology. Patterson (1994) listed
accumulation as a positive input term, and calving, surface ablation, and melting as
major negative terms for mass balance calculations. This method has certain limitations
in data quality due to lack of in-situ measurements for negative input terms, and is not
appropriate for glacial basins that discharge ice mass into an ice shelf.

The comparison of the mass flux and accumulation rate method, also called
mass-flux (mass budget) method, is the most commonly used mass balance calculation
method for the Antarctic ice sheet. This method avoids the difficulty in determining
calving rates. The ice flux per unit width is the ice thickness multiplied by the depth-
averaged velocity. This velocity can range from about 70 % to 100 % of the measured
surface velocity depending on the relative proportions of ice deformation and basal
motion. However, most of the ice is discharged through the ice shelves, where the

velocity at depth is equal to the surface velocity. The flux can be measured across the
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grounding line where the need to estimate basal melting is eliminated. This method is
simply a comparison between the flux across the grounding line and the accumulation
over the grounded part of the basin.

Measurement of changes in ice thickness uses repeated elevation measurements
of marker set in the ice. Surface elevation measurements should be converted to ice
thickness to calculate changes in ice mass. If the elevation represents a short-term
change in snowfall, it should be multiplied by the ratio of the density of near-surface
snow to the density of ice. If it represents a long-term change, which is more interesting,
the base of each marker should be set below the firn-ice transition. Thickness changes
can be determined by comparing accumulation rates with the submergence velocity.
Repeated surface elevation measurements, and changes in surface elevation can be
obtained by averaging thousands of individual measurements at crossovers widely
spaced in time using satellite techniques such as radar altimetry and laser altimetry.

The GIS based mass balance calculation was introduced by Bindschadler et al.
(1993). This method is based on the theoretical background of the mass flux method. It
deals with the mass balance at individual point, whereas the flux method only treats one
flux gate in a basin. This point or pixel-based method enables the analysis of spatial
distribution of mass balance as well as thickening and thinning spatial variations. The
basal melting and ice-depth average ice velocity need to be determined in order to
calculate the ice flux in each cell, since its flux gate is at the micro-scale (one pixel).

This study provides the mass balance calculations from the GIS ice mass balance

model and mass flux methods under the assumption of steady-state conditions. As
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mentioned before, basal melting and vertical velocity distribution should be taken into
account to calculate the mass balance of each cell GIS based mass balance calculation.
But in most of the cases, basal melting is negligible compared with the surface ablation
unless the ice is floating (Paterson 1994). Therefore, the GIS based mass balance
distribution is valid only for the grounded ice unless good basal melting rates are known.

With the assumption of two dimensional movement, plastic, and laminar ice
motion in steady state, the velocity at any depth along the central axis can be estimated
by assuming that shear stress is proportional to depth and that the strain rate directly
relates to that stress. The internal vertical velocity profile of a glacier in a longitudinal
section should show a decreasing rate of flow from the surface to the bedrock floor (Nye
1952). Since the velocity distribution is a function of the shear stress, the surface
velocity can represent the velocity through the entire ice thickness when the basal shear
stress is negligible (Bindchabler et al. 1993). This study takes the ice depth average

velocity factor of 0.87 (Budd and Warner 1998).
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6.2. Previous studies

Allison (1979) estimated the mass balance of the Lambert Glacier Drainage Basin based
on ice movement measurements at ground stations in Prince Charles Mountains. The
Lambert Glacier Drainage Basin is the part of the system that drains the major ice
streams entering Amery Ice Shelf. It does not include ice streams that drain the western
or eastern margins of the Amery Ice Shelf. He estimated the positive mass balance of 12
Gt a! on the basis of flux calculations. The total accumulation for the interior portion of
the basin upstream from the ground station line was informed to be 60 Gt a”', and
discharge across the ground station line in upstream was estimated at 29.7 Gt a”'. Allison
estimated an additional mass loss of 18 Gt a™' from the ice streams converging into the
Amery Ice Shelf.

Bentley and Givinetto (1991) estimated the imbalance of the Lambert-Amery
system as part of mass balance of Antarctica study. Surface accumulation was calculated
based on the data from the 1968-70 ANARE surveys (Budd ef al. 1982) and Mclntyre’s
(1985) reinterpretation of surface mass input data. Bentley and Givinetto (1991)
obtained a positive mass imbalance of 39 Gt a™ for the Lambert drainage basin.

Fricker et al. (2000) computed balance flux for the entire Lambert-Amery system
based on ERS-1 satellite radar altimeter surface elevations (Fricker et al. 2000) with six
different of accumulation data sets. They also calculated the mass balance between a
traverse line (LGB) in the upstream area and the ground station line (GL) in the
downstream area using in-situ measurements. They concluded that the mass balance

between the two transects is positive and it is not possible to accurately determine the
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state of balance of large Antarctic drainage basins based on the currently available
accumulation data.

Rignot (2002) calculated the mass balance for the three major glaciers of
Lambert Glacial Basin as part of mass balance study of nine East Antarctic glaciers. He
extracted surface ice velocity using RADARSAT-1 speckle tracking method. Total snow
accumulation was based on two digital accumulation maps (Givinetto and Zwally 2000,
Vaughan et al. 1999). BEDMAP (Lythe et al. 2000) and ERS DEM are used to calculate
ice flux through grounding line. His analysis suggested that the glacier system close to
balance of -2 * 4.66 km® ice a”’. The grounding line ice flux is 57.5 + 5 km? ice a”' and
calculated mass input is 55.2 +1 km® ice .

Although many studies on mass balance of Lambert Glacier basin have been
conducted, the previous studies only focused on the mass balance of the confluence
Lambert Glacier, which accounts for only 60 % of Lambert Glacier—Amery Ice Shelf
System in terms of surface accumulation. No study has investigated the sub-basin scale
of mass balancer for entire Lambert Glacier—Amery Ice Shelf System. This study will
provide the mass balance of all sub-basins draining its ice mass into the Amery Ice
Shelf. In addition, newly extracted ice velocities will increase the accuracy of the mass
balance study. Furthermore, the new ice velocity field enables the GIS based mass
balance study which can to give detailed picture of ice thickening and ice thinning

within the basin.
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6.3. Methods

6.3.1 Mass budget method

As described before, the mass budget method compares the mass input and the mass
output in the glacier system. All the mass in a glacier basin drains to the ice shelf
through the grounding line. The major mass input source of the glacier basin system is
surface accumulation. The basal melting and ice flux passing though grounding line are
the major output of the glacier basin system (Figure 6.1). For grounded ice flow, the
basal melting amount is negligible, compared with the surface ablation (Paterson 1994).
Therefore, the mass output should be ice flux passing through grounding line.

To calculate the flux across the grounding line an imaginary flux gate is placed
along the grounding line (Figure 6.1). If surface velocities and ice thicknesses along the
grounding line are available, the flux can be calculated as sum of the flux at each pixel
across the gate. The flux gates are aligned perpendicular to the flow direction. Therefore,

the total flux through the grounding line is;

b =

out

H; xW; xV, (6.1)

M-

1l
_

where H; W, and V; denote ice thickness, pixel width perpendicular to the flow
direction, and ice flow velocity of pixel i along the flux gate. The mass balance of the
entire glacial basin can be calculated by comparing the total accumulation of the area
and the total outflux passing through the grounding line.

The random error of flux calculation and mass balance calculation is estimated

based on the standard statistical theory of error propagation (Taylor 1997). From the
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equation 6.1, there are two parameters that have errors in input data; ice thickness and

ice flow velocity. By applying multiplication error propagation, the random error (0, )

of flux calculation can be estimated as

O =AWV 02 + W H G (6.2)
where W denotes the cell size, V denotes ice velocity, H denotes ice thickness, o, and
o, denote the errors of ice thickness and ice velocity, respectively. Since the mass
balance calculation is based on simple subtraction between the two parameters of ice
flux and surface accumulation, the addition/subtraction error propagation equation can

be applied to calculated the random error of mass balance (o, ) as

ass _balance

_ , 2 2
O-mass _ balance — o-ﬂux + O-accum (63)

where O e and o denote the errors of ice flux and surface accumulation,

accum

respectively.

Accumulation

Grounding line
(equilibrium line) Iceberg

Glacial basin

Figure 6.1 Schematic diagram showing concept of mass budget method and flux gate at

grounding line.
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6.3.2. GIS based net mass balance

A raster-based GIS system enables us to model the ice mass balance at each grid cell at
the basin scale (Bindchadler ef al. 1993). The net mass balance for any grid cell is
calculated by summing the normal component of mass flux across each of the four
vertical faces and adding the mass contributions from the top and bottom surfaces
(Bindchadler et al., 1993):

N=p| >0,+(A-BWW, (6.4)

vertical
faces

where N is the net mass balance, pis the density of ice (917 kg m>), Q, are the volume
fluxes across each of the four vertical faces, W_ and W, are the widths in the x and y

directions, A is surface accumulation and B is basal melting (Figure 6.2). Ice-thickness
and velocity values are specified at each grid point, while the vertical faces of each grid
cell occur between grid points. Thus midpoint approximations are used to calculate the

mass flux from the grids of ice thickness and ice velocity (Bindchadler et al. 1993):

i[H(z‘il, N+HGHU G2, H+U G HW,
oo (6.5)
0, j%7)= ?Z[H(i, JED+HG U, G i) +U G )W,

Qn(ii%,j)=¢

where 1 and j are grid coordinates, H is the ice thickness, and Uy and Uy are the
components of velocity in the x and y directions. The grid will be aligned the positive y-
axis with the 180° meridian and the positive x-axis with 90°E. With this orientation, the
velocity components are calculated from the velocity vector by the formulas

(Bindchadler et al. 1993):
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U, j)= UG, j) sin[0(, j)+ 9, j)]

(6.6)

U, G, ) =[UG, j)cosloG, )+, )]

In addition, the net mass balance in terms of ice-equivalent thickening or thinning can be
expressed by the following formula (Bindchadler ef al. 1993):

dH N

6.7)

a (WW,p)

Figure 6.2 Diagram of scheme to compute net mass balance for a grid cell centered at

grid point (i,j) (Bindchadler ez al. 1993).

6.4. Sub-basin delineation
Flow lines and drainage basin are important concepts in glaciology. Basin delineation is
one of the most important components in mass balance calculation, since mass input for

the basin depends on the area of the basin. Ice flow is driven by gravity force from
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surface and basal slopes (Paterson 1994). A flow line in glacier system is the surface
projection of the path that an individual ice particle would take in moving through the
system (Fricker et al. 2000). The tangent at any point along a flowline matches the
direction of the velocity vector at the point. All the ice flowing through a section
transverse are originated from the up-slope catchment area bounded by the two flowlines
that pass through the end points of the transverse section. Flow lines can be used to
delineate catchments.

All the currently available drainage basin boundaries and flow lines are generated
from DEMs based on maximum surface slope. Because of local topographic variation,
DEMs must be smoothed on an appropriate spatial scale. The smoothing scales ranges
from 10 km to 35 km (Vaughan et al. 1999, Fricker et al. 2000, Liu et al. 1999), and loss
of topographic detail is inevitable. The coarse spatial resolution from the smoothing
limits detection of small ice streams, ice flow in flat surface topography and topographic
variations because the cell size should be 10 times as large as the average ice thickness
to satisfy the basic assumption of the ice flow direction from DEM (Paterson 1994). The
flow direction information from SAR interferometry provides accurate ice flow
direction. Since flow direction is based on arctangent of x and y directional surface
movement, it is very sensitive to errors in surface movement. When the flow speed is
high, the flow direction is reliable.

This study combines the flow direction from SAR interferometry for high
velocity areas and the flow direction from surface DEM derived from ICESat laser

altimetry data for low velocity but relatively high elevation areas. The ICESat laser
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altimetry points are interpolated into 10 km grid and depressionless DEM is created
using Arc/Info GRID function (Figure 6.3). The boundary of the Lambert Glacier—
Amery Ice Shelf System is delineated using ICESat laser altimetry DEM (Figure 6.3).

The direction grid from SAR interferometry is clipped based on the velocity
threshold of 10 m/year considering the error range of ice velocity (2 ~ 8 m/year). In
addition, the manual delineation of clip area is carried out to remove outliers based on
surface features since the direction grid has considerable errors in high elevation area.
The flow line extraction from InSAR direction grid confronts a new problem of circular
flow pattern in some areas. An algorithm is developed to force the glacier to flow into
the nearest outlet. The extracted flow direction grid is converted into 8-directional grid
and merged with DEM flow direction grid to extract sub basins using “WATERSHED”
algorithm in Arc/Info GRID function (Figure 6.4).

Along the grounding line, eight major sub glacier systems are identified; Lambert
Glacier, Mellor Glacier, Fisher Glacier, West tributary Glacier, East tributary Glacier,
Charybdis Glacier area, West downstream glacier, and East downstream glacier (Figure
6.5). A transect line is placed along the grounding line for each sub glacier system as
discharge gate to identify its corresponding catchment area. The output sub-basin
contains errors, because its 8-directional characteristics can not adequately describe
small variations in flow direction. The obvious errors, such as ice divides cutting through
ice stream, have been manually corrected based on surface features overlaid with flow

direction arrow.
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Figure 6.3 Digital Elevation Model draped on the SAR image mosaic over the Lambert

Glacier— Amery Ice Shelf system created from ICESat laser altimetry data.
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Figure 6.4 8-directional flow direction from combined InSAR and DEM flow direction

grid.

As a result, eight major sub-basins and two small mountain areas that are not
contributing ice mass are delineated (Figure 6.5). The drainage basin contributing ice
mass to the Lambert Glacier— Amery Ice Shelf system is 1427 x 10° km? including the
Amery Ice Shelf. The total area which the ice mass is passing the main grounding line
(named T Lambert Glacier in this chapter) located at the confluence area of Lambert,

Mellor, and Fisher glacier accounts for 66.62 % of the entire Lambert Glacier— Amery
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Ice Shelf system. If the Amery Ice Shelf is excluded, this percent is increased to 69.67
%. Previous mass balance study did not consider the remaining 30.33 % of catchment
area of the Amery Ice Shelf (Table 6.1). The catchment areas of the east tributary glacier
and west tributary glacier accounts for 13.27 % and 6.54 % of the entire drainage basin

of the Amery Ice Shelf.
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Figure 6.5 8 major sub-basins of the Lambert Glacier— Amery Ice Shelf system.
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Table 6.1 Area of sub-basins and ice shelf of the Lambert Glacier— Amery Ice Shelf

system.
Sub Basin Area (km?) Qfgégﬁ) with ﬁ:fghgﬁ)) without
T Lambert Glacier 951363 66.62 69.67
Lambert Glacier 410440 28.74 30.06
Mellor Glacier 359668 25.19 26.34
Fisher Glacier 178420 12.49 13.07
East Tributary Glacier 181255 12.69 13.27
West Tributary Glacier 89325 6.26 6.54
East Downstream 67097 4.70 4.91
Charybdis Glacier Area | 48138 3.37 3.53
West Downstream 21137 1.48 1.55
Jetty Peninsula Area 7228 0.51 0.53
I\A/Iraev;son Escarpment 5882 0.20 0.21
Amery Ice Shelf 62345 4.37
TOTAL 1427935 100.00 100.00

6.5. Input data of mass balance calculations

Accumulation is considered as mass input in the mass balance calculation. In addition,

mass flux calculation requires ice velocity, ice thickness information. This study uses

InSAR derived surface velocity data as major source of ice velocity, and the published

surface accumulation and ice thicknesses.
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6.5.1. Surface accumulation data
The most recently published net surface accumulation rates were provided by Giovinetto
and Zwally (2000) and Vaughan et al. (1999).

Giovinetto and Zwally (2000) created a contour map showing the spatial
distribution of net mass accumulation for the Antarctic ice sheet based on 5365 grid
points in 50 km spacing from visual interpolation of approximately 2000 in-situ
measurements. Net surface mass balance map of Vaughan et al. (1999) in a 10 km
resolution grid was derived from passive microwave satellite data with 1800 in-situ
measurements. Although both studies used the same in-situ measurements, they show
noticeable difference because of different interpolation schemes. The comparison shows
that two data sets are coherent in continental scale, but different at regional scale
(Giovinetto and Zwally 2000).

Since the selection of the accumulation rates is very critical in mass balance
calculation, spatial resolution and accuracy should be considered in data selection
depending on the scale of mass balance calculation. The stated error range of Vaughn et
al. (1999) accumulation data is £5 %. Giovineitto and Zwally (2000) compared the two
accumulation data sets. They found that 40 % of the area shows more than 22 %
difference between the two (1999). Rignot (2002) used average value between the two,
and showed that there is standard deviation of = 1 km” ice a™.

However, this study calculates the mass balance of sub-basins and pixel level

GIS based mass balance calculation. The spatial resolution of 50 km (Giovinetto and

Zwally 2000) is not appropriate for the purpose since only several point can determine
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the accumulation if the sub-basin is small. Using average value between the two is not
considered, since the accumulation can be biased and lose consistency with the location.

Thus this study resampled 10 km accumulation grid from Vaughn ez al. (1999) to 400 m
for the consistency in mass balance and flux calculation using bilinear interpolation

(Figure 6.6).

Figure 6.6 Resampled surface accumulation map draped on SAR image mosaic (Vaughn

et al. 1999)
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6.5.2. Ice thickness

The ice thickness data used in this study are obtained from the BEDMAP project
(Lythe et al. 2001). The data are derived from more than 150 independents surveys,
conducted by 15 nations, over the past 50 years. Compared to other parts of Antarctica,
the Lambert Glacial Basin-Amery Ice Shelf system has the densest data coverage, where
ground based Radar Echo Sounding and Airborne Radar Echo Sound data have 5 km to
10 km track-spacing. The thickness precision for these surveys ranges from 30 m to 100
m for the Lambert Glacial Basin and crossover analysis shows that around 58% of
crossover errors are less than 20 m, 73% are less than 50 m, and 84% are less than 100
m. This indicates that the majority of crossover errors fall within typical navigational
and measurement uncertainties (Lythe er al. 2001). The spatial resolution of ice
thickness grid is 5 km. It is resampled to 400 m for this study using bilinear interpolation

(Figure 6.7).
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Figure 6.7 Resampled and interpolated ice thickness map of the Lambert Glacier—

Amery Ice Shelf system draped on SAR image mosaic.

6.6. Sub-basin scale mass balance and basal melting

6.6.1. Flux gate placement

The mass budget method is used for sub-basin scale mass balance calculation. The mass
budget method requires total accumulation of the sub-basin and the mass flux flowing
out through the grounding line of the sub-basin. This study placed eight flux gates for

each major ice stream: Lambert, Mellor, Fisher, East tributary, East downstream,
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Charybdis, West tributary, and West downstream Glaciers (Figure 6.8). The flux gates
are located along or near the grounding lines keeping the flux gate direction
perpendicular to the flow direction. The flux gates of Lambert, Mellor, and Fisher
Glaciers are located at the confluence area so that the flux total of Lambert, Mellor, and
Fisher Glaciers can represent the ice flux for the Lambert Glacier Basin. The glacier
below the confluence area is denoted by T Lambert Glacier, and its mass flux includes
grounded ice of Lambert, Mellor, and Fisher Glaciers. The flux gate is placed
discontinuously to cover only the actual outflux for W tributary, W down, and E
tributary Glaciers.

Four cascading flux gates are placed in the Amery Ice Shelf to calculate basal
melting of the ice shelf (Figure 6.8). The first gate is placed about 42 km down-stream
from the front of T Lambert flux gate to monitor the basal melting of main grounding
zone. The second gate is placed at the north end of the Jetty Peninsula to calculate basal
melting of the middle section of the stream with the mass contributed by West and East
tributary glaciers. The third flux gate is located at the mouth of ice stream from
Charybdis Glacier merging into the Amery Ice Shelf for calculation of basal melting of
Charybdis Glacier area grounding zone. Finally, the last flux gate is located about 20 km
inside of Amery Ice Shelf Front due to limitations of surface accumulation and ice
thickness data coverage in the region. This flux gate acts as basal melting detector of the

downstream end of the Amery Ice Shelf.



157

— Flux gate
— Sub-basin |

Figure 6.8 Flux gate locations for mass balance and ice shelf basal melting calculation

overlaid on surface velocity field.

6.6.2. Surface Accumulation of sub-basins

The surface accumulation grid discussed in chapter 6.5 is used to calculate total mass

input for each sub-basin. The catchment area for each flux gates located on Amery Ice

Shelf is shown in Figure 6.9. The Mass flux is not calculated for the Mawson

Escarpment area and the Jetty Peninsula bains, but the snow accumulation in these two

small basins are included into mass balance calculation for the entire Amery Ice Shelf.
The total accumulation of eight major sub-basins is 90.54 + 1.55 Gt/year. Since

the accumulation increases towards the coast, accumulation is highest the northern sub-
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basins. The total snow accumulation for the Lambert, Mellor, and Fisher glacier
accounts for just 56.48 % of total accumulation, but comprises 69.67 % of the total area.
Notably, Charybdis Glacier area and East down stream Glacier show relatively higher
snow concentration accounting for 9 % and 7.88 % of total accumulation, despite only
having 3.53 % and 4.91 % of basin areas, respectively. Tributary glaciers located near
shore play important role in mass input of the system, and should not be ignored in mass
balance calculation of the Lambert Glacier— Amery Ice Shelf system. The snow
accumulation result is summarized in Table 6.2. The snow accumulation for the ice shelf

area is included in the ice shelf basal melting calculation.

Table 6.2 Surface accumulation of sub-basins in the Lambert Glacier— Amery Ice Shelf

system.
Sub Basin Accumulation (Gt/year) | Error (Gt/year) Accumulation (%)
T Lambert 51.138 +1.263 56.48
Lambert 23.186 +1.159 25.61
Mellor 17.073 +0.854 18.86
Fisher 10.879 +0.544 12.02
W Tributary 7.403 +0.370 8.18
Charybdis 8.155 +0.408 9.01
W down 5.693 +0.285 6.29
E tributary 11.031 +0.552 12.18
E down 7.124 +0.356 7.87
Total 90.544 +1.553 100.00
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Figure 6.9 Boundary of accumulation area for sub-basins and basal melting flux gates.
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6.6.3. Ice mass flux of sub-basins in the Lambert Glacier— Amery Ice Shelf system

The ice flux from each sub-basin is considered as mass output from the sub-system.
Therefore, the total ice flux from eight sub-basins discharges into the Amery Ice Shelf
and, eventually, contribute the mass into the ocean by basal melting and ice calving. The
total ice flux discharged to Amery Ice Shelf from grounded ice is 95.64 + 2.89 Gt/year
(Table 6.3). The total ice flux from T Lambert Glacier makes up 60.81 % of total ice
mass. Compare to its size, the ice flux contribution is less than its share of basin size.
The general pattern of ice flux for each sub-basin is closely related to surface
accumulation. High accumulation rate results in high ice flux contribution except for

East down stream glacier (Table 6.3).

Table 6.3. Ice mass flux for sub-basins in the Lambert Glacier— Amery Ice Shelf system.

Sub Basin I(:Clitf[;(year) (E(gt[?;ear) (F"I/cL:)X

T Lambert 58.769 +2.329 61.45
Lambert 25.501 + 1.833 26.66
Mellor 22.595 +1.100 23.63
Fisher 10.673 +0.925 11.16

W Tributary 7.922 +1.502 8.28

Charybdis 8.555 +0.874 8.95

W down 4.894 +0.726 512

E tributary 13.189 +1.047 13.79

E down 2.309 +0.419 2.41

Total 95.637 + 3.020 100.00
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6.6.4. Mass balance of sub-basins in the Lambert Glacier— Amery Ice Shelf system
By comparing the total accumulation and total ice flux at the flux gate for each sub
basin, the mass balance of each sub basin is calculated. The calculated mass imbalance
can be converted into average ice thickness change rate by dividing the mass imbalance
by the total area of each sub basin. The mass imbalance of eight sub basins provides the
status of mass balance for the grounded ice of the Lambert Glacier— Amery Ice Shelf
system.

The calculation reveals that the Lambert Glacier system has a slight negative
imbalance of -5.09 + 3.46 Gt ice a™! (Table 6.4). The total accumulation of the grounded
ice of the system is 90.54 + 1.55 Gt ice a™', and the total ice flux discharged into Amery
Ice Shelf is calculated as 95.64 + 3.02 Gt ice a”'. The average ice thickness change rate is
-0.0041 = 0.003 m/year.

The T Lambert glacier has negative mass imbalance of -7.630 + 2.65 Gt ice a™.
The major reason for the T Lambert mass imbalance is Mellor glacier which has the
mass imbalance of -5.52 + 1.39 Gt ice a”'. The Charybdis Glacier sub-basin loses the
most ice mass and shows thickness change rate of -0.0091 + 0.022 m/year. In general,
most of the sub-basins have a negative mass imbalance, whereas Fisher and West down
Glacier sub basins shows slight positive imbalances of 0.21 + 1.07 Gt ice a™' and 0.80 +
0.78 Gt ice a”', respectively. East down glacier has a relatively large positive imbalance
number of 4.82 + 0.55 Gt ice a”. The average thickness change rate shows the sub basins
near coast are experiencing the apparent ice thickening because of high accumulation

rate in coastal area and low ice flow velocities.
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Table 6.4 Mass balance of eight major sub-basins and their average ice thickness change

rate.
Average

Sub Basin Accumulation Flux Mass Balance Aregt Thickness

(Gt /year) (Gt/year) (Gt/year) (km®) Change
(m/year)

T Lambert | 51.14+1.26 | 58.77+2.33 |-7.63+2.65 951363 -0.0088 + 0.003
Lambert 23.19+1.16 | 2550+1.83 | -2.31+2.17 410440 -0.0062 £ 0.006
Mellor 17.07+0.85 | 22.60+1.10 | -5.52+1.39 359668 -0.0168 £ 0.004
Fisher 10.88+0.54 | 10.67 £0.93 | 0.21 £1.07 178420 0.0013 + 0.007

W Tributary | 7.40 £ 0.37 7.92 + 1.50 -0.52 £1.55 89325 -0.0064 £ 0.019

Charybdis | 8.16 £ 0.41 8.56 + 0.87 -0.40 £0.96 48138 -0.0091 £ 0.022

W down 5.69 + 0.29 4.89 £0.73 0.80 +0.78 21137 0.0413 + 0.040

E tributary | 11.03+0.55 | 13.19+1.05 |-2.16+1.18 181254 -0.0130 £ 0.007

E down 7.12£0.36 231042 4.82 + 0.55 67097 0.0785 + 0.009

Total 90.54 +1.55 | 95.64 £3.02 | -5.09  3.46 1355481 | -0.0041 + 0.003

6.6.5. Basal Melting of Amery Ice Shelf

The steady state basal melt rate of the ice shelves can be deduced by considering the flux
difference between a flux gate at grounding line and the flux gate from downstream and
accumulation between the two gates using a mass conservation equation (Rignot 2002).
The difference in flux needs to be large enough compared to the precision in ice flux
calculation. Flux gates should be placed near the boundary between the major ice-flow
merging area for conveniently calculating input flux. The gate denoted “Basal 1” and
“Basal 3” in Table 6.4 are used to calculate basal melting of T Lambert Glacier

grounding zone and Charybdis Glacier grounding zone. The “Basal 2”” and “Basal 4 are
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the flux gates used to estimate basal melt rate of upstream and downstream of the Amery
Ice Shelf which placed long distance apart.

The total basal melting in the grounding zone of T Lambert Glacier is estimated
to be 21.64 +2.17 Gt ice a”', and the average melting rate is -19.19 + 1.92 m/year for the
grounding zone and upstream area of Amery Ice Shelf. Comparing the downstream and
other grounding zones, the upstream experienced great basal melting accounting for
about 30 % of total basal melting. The basal melting rate dramatically decreases to -0.85
+ 0.32 m/year as it moves to mid stream. The Charybdis Glacier area shows relatively
small basal melting because of small input flux from tributary glaciers in Charybdis

Glacier region. The result is summarized in Table 6.5.

Table 6.5 Basal melt rate of Amery Ice Shelf.

. Flux input Flux down | Total Basal Average

Flux Accumulation | from . Area .
stream Melting 2, | Basal Melting
gate (Gt/year) upstream (Gtlyear) (Gt/year) (km*) (m/year)
(Gt/year)

Basal 1 | 0.00003 58.77+1.83 | 37.13£1.15 | -21.64+2.17 1233 | -19.19+1.92
Basal 2 | 1.3110.07 58.24+2.17 | 18.09+£1.70 | -41.46+2.75 | 25390 | -1.79+0.12
Basal 3 | 1.1810.06 8.56+0.87 6.994+0.57 | -2.74+1.05 3551 | -0.85+0.32
Basal 4 | 8.7710.44 32.29+1.98 | 16.35£3.11 | -24.72+3.71 28580 | -0.95+0.14




164

6.7. GIS based net mass balance

The raster based net mass calculation provides the micro-scale mass balance information
by placing flux gates around the pixel boundary. The ice flux from upstream is taken as
the mass input to the pixel, and the flux to downstream is regarded as output of the pixel.
The ice flux difference is compared with surface accumulation to determine if the pixel
is gaining the ice mass. By doing so, the ice thickening/thinning of the pixel can be
inferred. The mass balance state of each sub basin can only provide the average ice
thickening/thinning rate of the system. This pixel-based GIS method provides
information of which part of the sub-basin makes positive or negative contribution to
mass imbalance.

Although the ice thickening/thinning rate is different from the average ice
thickening/thinning rate calculated by sub-basin mass balance calculation, the
distribution of ice thickening/thinning rate shows valuable information about the ice
mass distribution in the system. It shows that major negative imbalance is caused by ice
thinning in downstream area where the velocity is increasing as the glaciers are
discharged into the Amery Ice Shelf. The most of upstream region of glaciers and
mountain area shows minimal ice thickening. Even the sub-basin is in negative
imbalance, the Lambert and Mellor Glaciers have ice thickening in upstream regions,
and it explains why the Mellor Glacier is the major contributor of negative mass
imbalance as the ice thinning dominates for the most of the basin (Figure 6.10).

The ice thickening distribution of East and West downstream Glaciers explains

the positive mass imbalance in sub-basin level. Especially, the distribution is consistent
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with the West down stream glacier where the largest positive imbalance is estimated in
mass budget method. The ice thinning and thickening in Amery Ice Shelf is not
considered in result analysis since the basal melting is not incorporated in pixel level net
mass balance calculation. However, it can emphasize the high ice thinning rate near
main grounding line, and ice thinning rate decrease as it moves downstream.

The ice thickening/thinning grid shows consistent results with the result from the
previous chapters. The ice thickening and thinning distribution is very similar to that of
strain rate distribution where the extending flow creates the ice thinning and
compressive flow creates ice thickening. In addition, this GIS based mass balance
distribution shows the consistency with the balance velocity base mass imbalance map.
Both of the mass imbalance maps identify the major ice stream as ice thinning
contributor and the mountain and upstream area as ice thickening contributor. This result
also explains the positive mass imbalance of high elevation area of the Lambert Glacier

system (Fricker et al. 2000)
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Figure 6.10 GIS based net mass balance of the Lambert Glacier — Amery Ice Shelf

system draped on SAR image mosaic.

6.8 Result analysis
This study presents a detailed mass balance calculation for the Lambert glacier system
using the most accurate data available for this area. This study calculated the mass

balance for the entire Lambert Glacier — Amery Ice Shelf system. The Lambert, Fisher
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and Mellor Glaciers account for 70 % of total area and 60 % of total accumulation in the
Lambert Glacier — Amery Ice Shelf system.

This study utilized the flow direction from SAR interferometry which is superior
in accuracy and spatial resolution whereas previous studies used DEM based basin
delineation that has limitations in spatial resolution. Especially, the slight difference in
flow direction in downstream results in huge difference in upstream area since the basin
delineation algorithm follows the flow in a downstream to upstream direction. As a
result, this study delineated smaller basin area of T-Lambert glacier compare to Rignot
(2002).

The higher accuracy of surface velocities increased the reliability of the ice flux
calculation. Rignot (2002) claimed that Lambert Glacier is balanced in balance since the
output mass balance calculation is in the range of error. Considering the T-Lambert
Glacier only, this study shows negative imbalance for the region. However the mass
compensation from downstream glaciers and the increased error estimation by adding
more glaciers in mass balance calculation for the Lambert Glacier — Amery Ice Shelf
system makes the system is in the slightly negative imbalanced. The individual mass
balance calculation shows clearer picture of the mass balance state of the Lambert
Glacier — Amery Ice Shelf system. Five of eight major sub-basins are in the negative
imbalance, and the remaining three show a positive imbalance. Summing up the total
mass imbalance, the value of negative mass imbalance is greater than the two positive
mass imbalances. Therefore, this study concludes the mass balance of the Lambert

Glacier — Amery Ice Shelf system is losing the mass.



168

Both study deduced the high basal melting near the main grounding zone located
in confluence area of Lambert, Mellor, and Fisher Glaciers. This study calculated the
significant amount of basal melting contribution into the ocean with concentrated basal
melting in the major grounding zone that accounts for 23.9 % of total basal melting in
2.2 % area of Amery Ice Shelf. The comparison between this study and Rignot (2002) is

summarized in Table 6.6.

Table 6.6 Mass balance calculation comparison between this study and Rignot (2002).

Rignot (2002) T-Lambert
Area (km?) 953670 951363
Accumulation | o5 45 4 ¢ 91 5114 +1.26
(Gt/year)
Ice Flux
(Gtiyear) 52.56 + 4.57 58.77 +2.33
Mass Balance
(Gtlyear) -2.1+4.66 -7.63 +2.65
Total Basal
Melting 26.6 6.4 21.64+2.17
(Gt/year)

Based on the results of mass balance and basal melting, ice mass contribution to
sea level rise from Lambert Glacier — Amery Ice Shelf system and the glaciological
interpretations can be assessed. The total ice mass contribution from the grounded ice in
the system is 95.637 + 2.89 Gt/year, which is equivalent to an increase of the global sea
level by 0.24 mm/year. Although the significant amount of ice mass is discharged into

the ocean, the net contribution of this glacial system to global sea level rise is negligible
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considering the net mass balance of -5.094 + 3.46 Gt/year. However, the result provides
important information on global sea level ice in terms of net mass balance of Antarctica.

It has been believed that East Antarctica is accumulating the ice mass, with the
West Antarctica has been the major source if the ice mass loss (Rignot and Thomas
2002). This study suggests that large portion of East Antarctica is not gaining the mass,
but losing the mass. Based on the large mass loss in West Antarctica confirmed by the
recent SAR interferometry study (Rignot and Thomas 2002), overall mass budget of
Antarctica is believed to be negative.

The iceberg calving and basal melting of floating ice shelf could have profound
influences on ocean circulation, climate and the dynamics of grounded glaciers (Rignot
and Thomas 2002). The large amount of basal melting in this study (87.82 + 3.78
Gt/year) demonstrates that basal melting rather than iceberg calving is the dominant term
of mass attrition on floating ice which was speculated that the iceberg calving is the
dominant term (Jacobs et al. 1992). Also, a large basal melting near grounding zone is
computed from this study. It is caused by the temperature and salinity of seawater that
comes into contact with ice in the region (Rignot and Jacobs 2002). The seawater profile
of Arctic ocean shows that the temperature and salinity increase as the depth increase.
The seawater is layered in the order of Ice-Ocean boundary layer and ocean mixed layer
below the ice shelf (Holland and Jenkins 1999). Since the grounding zone is located at
the deepest depth in seawater along the ice shelf, the bottom ice of grounding zone is
experiencing the highest temperature and salinity gradient in the contact with sea water.

If the ice thickness at grounding line is thick and velocity at grounding line is high, the
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depth of bottom ice is increased and, therefore, the temperature and salinity gradient is
enhanced (Rignot and Jacobs 2002). Considering ice thickness of 3000 ~ 4000 m in
grounding zone, the seawater circulation in the bottom layer is enhanced and increases
the driving stress and flow velocity. In addition to the seawater profile, the large amount
of basal melting in the grounding zone is also probably caused by deeper ice draft
compare to down stream ice, and it enhances the circulation of seawater caused by
temperature of the water above the pressure melting point (Doake 1976, Lewis and
Perkin 1986). Through the processes, the high rate of the basal melting in grounding
zone is developed. This can reduce the ice shelf resistance to ice discharge, potentially
causing the glacier to accelerate and the grounding zone to retreat to inland (Rignot and

Jacobs 2002).
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CHAPTER VII

CONCLUSIONS

This study calculated and analyzed the mass balance in detail for the entire Lambert
Glacier — Amery Ice Shelf system. The analysis results have been helpful in improving
our knowledge and understanding the glacial dynamic behaviors of the glacial system
and its impacts on the global sea level and environment.

This research estimated that the Lambert Glacier — Amery Ice Shelf is
contributing the total ice mass of 95.64 £ 2.89 Gt/year to the ocean, which is equivalent
to an increase of the global sea level by 0.24 mm/year. Although the significant amount
of ice mass is discharged into the ocean, the net contribution of this glacial system to
global sea level rise is negligible, considering 90.54 = 1.55 Gt/year of snow
accumulation input to the system. This study concludes that the entire Lambert Glacier —
Amery Ice Shelf system is overall balanced or with slight negative imbalance of -5.09 +
3.46 Gt/year. This finding is consistent with a recent research conducted by Rignot
(2002), who estimated a negative mass imbalance of -2.1 + 4.66 km?® ice a’ for the
catchment area of the Lambert, Fisher, and Mellor glaciers.

Previously, many researchers believed that the interior of East Antarctica is
accumulating the ice mass (Allison 1979, Bentley and Giovinetto 1991) and the West
Antarctica is the major source of the ice mass loss of -48 + 14 km” ice a” (Rignot and
Thomas 2002). However, this study suggests that large portion of East Antarctica is not

gaining mass, in fact may be losing the mass. Considering the large mass loss in West
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Antarctica confirmed by the recent SAR interferometry based research (Rignot and
Thomas 2002), the author of this research believe that the overall mass budget in
Antarctica is negative based on this research and the balanced mass balance of the other
glaciers in East Antarctica from previous study (Rignot 2002). In other words, the
Antarctic ice sheet as the whole is losing mass and thinning.

This study derived the most accurate, detailed mass balance budgets for the entire
Lambert Glacier — Amery Ice Shelf system with the advanced remote sensing
technology. For the first time, this research broke down the percentage contributions of
eight major sub-glacial systems to the mass budget. It is concluded that the Lambert
glacier, the Fisher Glacier and the Mellor glacier together contribute about 61 % of ice
mass flux into the Amery Ice Shelf, and other five glacial systems makes the remaining
39%. Although similar research was conducted by others for the three main glaciers in
the system, namely, the Lambert glacier, the Fisher glacier and Mellor glacier, this
research represents the first accurate and reliable mass balance analysis for the tributary
glaciers in the east and west sides of the Amery Ice Shelf. In particular, W Tributary,
Charybdis and E Tributary sub-glacial systems make significant contribution to feed the
Amery Ice Shelf, and each of these subglacial systems accounts for 8-13% of total ice
mass influx into the Amery Ice Shelf. The complete coverage of velocity field derived
from the Radarsat interferometric data is the primary reason why this research is able to
fully and accurately examine the mass balance within the entire Lambert-Amery glacial

system.
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This study also reveals obvious regional variation in mass balance. Although the
entire system is estimated to have a slight negative mass balance, three sub glacial
systems, including the East Down Stream glacier, the West Down Stream glacier and the
Fisher glacier, have net positive mass balance. The reason is that large parts of these
glacial basins are either located near the coast with a relatively high snow accumulation
rate or have relatively slow ice motion. For the five sub-glacial systems that have a
negative mass balance, the imbalance magnitude also vary. The Mellor glacier and
Lambert glacier have the largest negative imbalances. The total negative imbalance
value of these two sub-glacier system is significantly larger than that of the entire
Lambert-Amery glacial system, because part of the negative imbalance is compensated
by other three sub-glacial systems with positive imbalance. In addition, GIS based net
mass balance analysis shows mass balance variation within each sub-glacial system. It is
common to each sub-glacial system that downstream areas have a larger magnitude of
negative mass imbalance and show higher ice thinning rate, due to the increasing ice
motion and decreasing snow accumulation. For those sub-glacial basins with an overall
negative mass balance, considerable portions of the sub-basins show positive balance
and ice thickening. The comparison of the balance velocity with the actual velocity
indicates that all the glacier channels tend to have a negative balance, compared with the
areas outside the edges of the main glacial channels.

The strain rate has been computed and analyzed for the entire Lambert-Amery
basin. Shear margins of glacial channels and ice streams are clearly identified from the

strain rate map. The range of lateral shear strain rate varies from -0.0621 to 0.0542 a™',
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depending on the location. The computation results show that the major ice stream
channels and their confluence zones are experiencing strong deformations. The strain
rate variation is dominant in transverse direction, compared with the longitudinal
direction of the glacial channels. The high strain rate in the shear margins has significant
impacts on the internal properties of the glaciers. The strain heating within the shear
margins can raise the temperature of the core of the shear margins, leading to significant
horizontal temperature gradients out of the margins (Harrison et al. 1998). The strain
rate varies along the longitudinal direction of the Amery Ice Self. Above or near the
grounding zone, the velocities of the three main glaciers (the Lambert, the Mellor, and
the Fisher) are increasing in the downstream direction, resulting in positive strain rate
and extensive deformation. At the confluence zone and upper stretch of the ice shelf, the
strain rate is positive, causing compressive deformation. This is confirmed by visually
examining the SAR image and InSAR coherence image for this region. In the middle
stretch of the ice shelf, not much velocity change is detected in the longitudinal
direction, meaning not much longitudinal deformation. At the ice shelf front, significant
negative strain rate values imply the extensive deformation. This may contribute to the
development of longitudinal rifts and fractures, and hence influence iceberg calving
process.

The iceberg calving and basal melting of floating ice shelf could have profound
influences on ocean circulation, climate and the dynamics of tributary glaciers (Rignot
and Thomas 2002). Some researchers speculated the iceberg calving is the dominant

term of mass attrition on floating ice (Jacobs et al. 1992). The findings of this research
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support an opposite view. The total basal melting is estimated to be 87.82 + 3.78 Gt/year
for the entire Amery Ice Shelf. Compared with the ice flux (16.35 + 3.11 Gt/year) at ice
shelf front, which represents the maximum amount possibly discharged by ice calving
process into the ocean, the basal melting is apparent the dominant discharging process of
the system. This research also suggests that the basal melting rate for the Amery Ice
Shelf decreases rapidly from the grounding zone to the ice shelf front. The basal melting
rate in the main grounding zone is about 20 times larger than the middle and front
sections of the ice shelf. The large amount of basal melting in the grounding zone is
probably caused by deeper ice draft compare to downstream ice and seawater
temperature/salinity profile, and it enhances the circulation of seawater caused by
temperature of the water above the pressure melting point (Doake 1976, Lewis and
Perkin 1986). The basal melting has a strong influence on the stability of the ice shelf
(Warner and Budd 1998, Huybrechts and deWolde 1999). Comparing the basal melting
rate of the grounding line of the system to the other glaciers in East Antarctica, the basal
melting rate of this system (21.64 £+ 2.17 m/year) shows the similar characteristics with
the neighboring glaciers showing ranges from 14 + 4 m/year to 27 + 7 m/year (Rignot
and Jacobs 2002). The glaciers located in West Antarctica shows the similar trend of
basal melting except about 30 % of the glaciers shows small amount of basal melting
less than 11 m/year of basal melting at the grounding zone (Rignot and Jacobs 2002).
This study confirms the characteristics of widespread rapid bottom melting in grounding

zone of Antarctic ice sheet (Rignot and Jacobs 2002).
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In support of the mass balance analysis and modeling, this study employed the
state-of-the art remote sensing and GIS techniques. Two algorithms have been
developed to enhance and improve the available software tools. One algorithm is
designed to calibrate and merging velocity fields derived from individual InSAR frames.
This algorithm relaxes the ground control point requirements and effectively reduces the
velocity discrepancies between adjacent frames. The other algorithm is developed to
compute the balance velocity. This new algorithm overcomes the limitations of the
previous method in representing diagonal flux distribution for balanced flux calculation.
The balance velocity field created from this method shows more consistent and
reasonable pattern, compared to the real observations from the SAR interferometry
technique.

To achieve accurate and reliable mass balance estimates, a great effort has been
made to improve the quality of the input data and minimize the possible errors in data
preparation and processing. The input velocity field derived from the Radarsat SAR
interferometric data covers the entire Lambert-Amery basin with high measurement
accuracy and spatial resolution. The grounding lines of the outlet glaciers are improved
and updated based on the InSAR coherence image and vertical velocity field newly
derived from InSAR processing. The basin boundaries of sub-glacial systems have been
accurately delineated by using the ICESat Laser altimetry data and the InSAR derived
ice flow direction information. Despite these improvements, the mass balance
calculation in this study still has a certain level of uncertainty. The uncertainty is mainly

due to our poor knowledge of the snow accumulation rate and ice thickness. The ice
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thickness error explains about 60 % of the uncertainty in the mass flux calculation. The
error in accumulation rate accounts for about 24 % of the uncertainty of the mass
balance. To further improve the accuracy of the mass balance, the future research needs
to focus on the improvements of the ice thickness and snow accumulation
measurements. The repeat ICESat laser measurements promise more accurate
accumulation measurements as the mission progresses (Zwally et al. 2002). The ice
thickness data over the floating ice shelf can be enhanced by using a hydrostatic model

with the ICESat laser altimeter derived surface elevation measurements (Zwally et al.

2002).
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