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ABSTRACT 

 
Analysis of Oil-Pipeline Distribution of Multiple Products 

Subject to Delivery Time-Windows. (December 2004) 

Phongchai Jittamai, B.ENG., Thammasat University, Bangkok, Thailand; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Alberto Garcia-Diaz 
 
 
 

 This dissertation defines the operational problems of, and develops solution 

methodologies for, a distribution of multiple products into oil pipeline subject to delivery 

time-windows constraints.  A multiple-product oil pipeline is a pipeline system 

composing of pipes, pumps, valves and storage facilities used to transport different types 

of liquids.  Typically, products delivered by pipelines are petroleum of different grades 

moving either from production facilities to refineries or from refineries to distributors.  

Time-windows, which are generally used in logistics and scheduling areas, are 

incorporated in this study.  

 The distribution of multiple products into oil pipeline subject to delivery time-

windows is modeled as multicommodity network flow structure and mathematically 

formulated.  The main focus of this dissertation is the investigation of operating issues 

and problem complexity of single-source pipeline problems and also providing solution 

methodology to compute input schedule that yields minimum total time violation from 

due delivery time-windows.  The problem is proved to be NP-complete.  The heuristic 

approach, a reversed-flow algorithm, is developed based on pipeline flow reversibility to 
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compute input schedule for the pipeline problem.  This algorithm is implemented in no 

longer than O(T⋅E) time.  This dissertation also extends the study to examine some 

operating attributes and problem complexity of multiple-source pipelines.  The multiple-

source pipeline problem is also NP-complete.  A heuristic algorithm modified from the 

one used in single-source pipeline problems is introduced.  This algorithm can also be 

implemented in no longer than O(T⋅E) time. 

 Computational results are presented for both methodologies on randomly 

generated problem sets.  The computational experience indicates that reversed-flow 

algorithms provide good solutions in comparison with the optimal solutions.  Only 25% 

of the problems tested were more than 30% greater than optimal values and 

approximately 40% of the tested problems were solved optimally by the algorithms. 
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CHAPTER I 

 

INTRODUCTION 

 

 

Pipeline transportation has played an essential role in supporting the growth of 

economic prosperity for over decades.  Pipelines are widely used to transport different 

kinds of products, such as water, oil, and gas.  In some less common cases, pipelines are 

also used to deliver coal, ores, aggregates, and other valuable minerals.  Compare to the 

other types of common freight transportation, the transport of products along the 

pipelines is considered unconventional.  Unlike other common transportation modes that 

usually move carriers of stationary shipment, products in the pipelines are the moving 

parts that travel along the stationary pipelines.   

Despite the fact that pipelines require initial large amount of capital investment, 

operating costs are much lower compared to other freight modes.  There are plenty of 

benefits due to this distinction.  The large amount of products, e.g. crude oil or natural 

gas, can be sent out for deliveries at destinations in the enormous distance away without 

sharply escalation of freight costs with the more distance the products travel.  This 

transportation mode also brings about the superiority in maintaining safety, reliability 

_______________ 
This dissertation follows the style and format of Annals of Operations Research. 
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and monitoring the distribution of products. 

The oil pipeline activity is measured in term of trunkline-traffic, i.e. barrel-mile 

(bbl-mile).  Namely, 1 bbl-mile is equal to moving 1 bbl of petroleum product for 1 mile.  

Based on the data available from Federal Energy Regulatory Commission (FERC), the 

total US trunkline-traffic in 2002 is 3,562,652 million bbl-miles and the total US 

interstate pipeline mileages of all pipeline companies in 2002 are 149,619 miles.   

In the U.S. alone the petroleum products consumption rate is at almost 20 million 

barrels per day in 2002 and this rate is likely to be non-decreasing.  Thus, pipeline 

engages in an irreplaceable role in transport petroleum products from supply sources to 

demand points all over the country that propels the development and the shape up of the 

petroleum industry.  More than 60% of these petroleum products delivered in the U.S. 

use pipeline as primary mode of transportation.  The rest is transported by trucks, rail 

and water carriers.  Pipelines have advantages over other modes of transportation in 

terms of surpassing the geography limitation and economical freight cost.  According to 

the figure from Association of Oil Pipe Lines (AOPL), the transport of oil along 

pipelines accounts for more than 17% of the freight transferred all over the country, 

however it accounts for less than 2% of the national freight cost.  In order to obtain the 

picture of how economical oil pipeline transport is, assuming each truck holds 

approximately 200 barrels and can travel 500 miles a day, it would require a fleet of 

3,000 trucks, with one truck arriving and unloading in every two minutes, to replace a 
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150,000-barrel a day, on 1,000-mile pipeline.  It would take about 75-car train, with a 

unit train of 2,000-barrel tank car, to replace the same 150,000-barrel per day pipeline1. 

The oil market in the United States is outlined into five regions according to its 

geography, the Gulf Coast, the East Coast, the Midwest, the Rocky Mountain Region, 

and the West Coast.   

The Gulf Coast is the largest supply area in the U.S.  It supplies crude oil to the 

Midwest and refined products to the Midwest and the East Coast.  The highest demand 

region is the East Coast.  Most of imported crude oil is delivered to this area.  The 

Midwest processes crude oil produced locally and sent from the Gulf Coast and also 

from Canada.  The Rocky Mountain Region has the lowest petroleum consumption, but 

has increased growth in recent years.  This area processes crude oil sent from Canada 

plus local supply.  The West Coast is logistically separated from the rest of the nation.  

Crude oil in this region is supplied mainly from the Alaskan oil fields.  The rest of 

production in this region comes from California.  In 2000, 70% of oil shipment among 

these five regions is conducted via pipelines. 

 

1.1 Introduction to Oil Pipeline Operations 

 

The most important objective of the oil pipeline problem is to transport products 

from sources to designated destinations within appropriate delivery times.  In general, 

primary components of any pipeline system are pumps, valves, pipes, and storage tanks.  

                                                 
1 All statistics came from Association of Oil Pipe Lines. 
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Most petroleum products pipelines have multiple sources and destinations.  Oil is 

commonly traveled along pipelines by the propulsion from centrifugal pumps powered 

by either electricity or gas turbines.  Pumps are located along the pipelines at the 

approximate interval of 20 to 100 miles, depending on the geography, size of the 

pipelines and capacity requirements.  Multiple petroleum products are transported 

throughout the pipelines.  For example, at Colonial Pipeline, whose pipelines connect 

from the Gulf Coast to the east Coast (1,500 miles), transports 38 different grades of 

gasoline, including reformulated gasoline (RFG) and multiple vapor pressures for each 

grades, and seven grades of home heating oil and diesel fuel.  

Pipeline structures can be either: a path (P), a tree (T), an acyclic graph (A), or a 

general graph (G).  Flow movement along the graph can be either directed (D) or 

undirected (U).  If the pipeline network is either a path or a tree, the path between any 

pair of each source and each destination is unique.  Otherwise, there exists more than a 

single path between any pair of source and destination nodes.   

Products transported along the oil pipeline are categorized into two forms, 

fungible and segregated products.  Fungible products are generic products.  Shippers will 

receive equivalent product but may not get back the product actually shipped.  Namely, 

products are interchangeable in a fungible pipeline.  Fungible products provide shippers 

with a significant degree of flexibility for scheduling lifting and delivery times.  

Generally, gasoline is categorized as fungible product.  On the other hand, segregated 

products are branded products and are not interchangeable.  Shippers receive the same 

product they inject into the pipeline on segregated shipments. 
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Typically, products are transported in pipelines in form of batches.  A batch is a 

quantity of homogeneous product or grade bundled together and then injected into 

pipeline.  For fungible pipeline, products that meet common requirements can be put 

together as a batch and shipped through the pipeline.  Colonial Pipeline Company 

defines the meaning of a fungible batch as a batch of petroleum product meeting 

carrier’s established specifications, which may be mixed with other quantities of 

petroleum product meeting the same specifications.  Batch sizes vary according to the 

sizes of pipelines.  Batch sizes can be as small as 2,500 barrels and as big as 3,200,000 

barrels depending on requirements of each pipeline company.   

On the interface of any pair of batches, the intermixing of two products is 

unavoidable.  Different liquids or fluids of different viscosity tend to mix if they are 

transported consecutively.  One way to prevent such mixing is shipping products in 

turbulent flow.  This method diminishes the settling of heavier fluid.  Despite this effort, 

the interface mixing still arises.  If products are of similar gasoline but different grades, 

the mixture is put in the lower grade product.  If two products are not the same, such as 

gasoline and diesel, the “transmix”, which is the hybrid product created by intermixing 

at the interface, must be channeled to separated storage and reprocessed.   

Products in pipelines move at approximately three to five miles per hours in the 

main pipelines at Colonial Pipeline.  The greater the volume being shipped, the more 

rapidly the product moves.  Generally, the transportation of any batch from Houston, 

Texas to the New York harbor can take from 14 to 24 days via Colonial Pipeline, with 

the average shipping time of 18.5 days.  In order to maintain proper function of the 
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pipeline transport, it is required that the pipeline be full at all time.  In the scenario where 

the flow direction of pipeline is uphill, if the liquid in the pipeline is not at its full 

volume, it lacks the propulsion to forward the flow all the way through the end of 

pipeline.  Flow continuity is a crucial property of the function of pipeline transport. 

Determine the cost function that truly represents the cost of operating pipeline is 

cumbersome due to the fact that the energy cost structures of different power companies 

are not under the same standard.  Additionally, the difference in the way batches are 

sequenced can draw a significant consequence on the operating costs.  Poor-sequenced 

batches can lead to high operating cost.  For example, a sequence containing the 

shipment of a considerable order of small batches causes numerous stoppages along the 

pipeline to siphon off these orders.  Each stoppage immobilizes the downstream 

movement and also halts the pump operation.  Stoppage has financial damage in terms of 

shorten pump life cycle and additional energy cost.  The estimated cost for each 

stoppage at Colonial Pipeline is $50,000.   

Sequencing batches on any pipelines, even on a simple pipeline, is not an easy 

task to do.  There are various constraints that pipeline operators have to take into 

consideration.  Some products are not allowed to travel consecutively.  Practically, 

products may be required to arrive within time-window restrictions.  These time-

windows restrictions are caused by the availability and/or limitation of storage capacity 

at delivery points, production process and/or storage requirements at sources and/or 

destinations, demand by consumers to be delivered at particular range of time, 

connecting transportation modes arrangement to deliver to final destinations, and some 
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other logistical reasons.  The consequences of being unable to deliver products within 

time-window requirements may possibly cause several significant effects.  These effects 

can be interpreted in terms of economic losses and financial penalties.   

The decisions on pipeline scheduling are likely to have considerable impact on 

the cost effectiveness of the whole operation.  As a result, it is a crucial task for pipeline 

operators to spend their great effort to produce decent and effective pipeline sequencing 

and scheduling.  This is a challenging task since pipeline scheduling, by its nature, is a 

difficult optimization problem and pipeline problems are commonly tackled by brute 

force in conjunction with past experience of pipeline operators as pointed out by Crane 

et al. (1999).  Time-window is a new concept in logistic management used mostly in 

scheduling and inventory problems.  The introduction of this concept to the pipeline 

problem makes this dissertation more challenging to work on.   

 

1.2 Scope of the Dissertation 

 

In this study, we explore a pipeline scheduling problem in which products are 

pushed into the pipe at a source moving on a fixed-path pipeline and pushed out of the 

pipe at a destination node.  Delivery time-windows are taken into consideration in this 

study and products are expected to be delivered within these time-windows.  The 

principal purposes for conducting this research is to provide model formulation and 

practical solution methodologies in order to find input schedule for the distribution of 

multiple-product into oil pipeline subjected to delivery time-windows that produces a 
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minimum value of the total number of delivery time that violates due delivery time- 

window requirements.  We called this problem an “oil-pipeline distribution of multiple 

products subject to delivery time-windows”.  To accomplish these objectives, the 

following issues will be considered: 

(1) Construct a problem model to represent the scheduling and transportation of 

multiple products with delivery time restrictions for a single supply source and various 

delivery points;  

(2) Develop solution methodology for single-source, oil-pipeline distribution of 

multiple products subject to delivery time-windows;  

(3) Extend and work on the model from (1) to accommodate the pipeline 

structure with multiple sources.  Develop a problem framework and a guideline for 

solution methodology based on an approach provided for single-source pipelines;  

(4) Provide an analysis of the problem and solution methodology;  

(5) Illustrate computational results by working and analyzing on random problem 

sets. 

 

1.3 Literature Review 

 

The literature survey was conducted in three major areas that were pertinent to 

our purposed research: oil pipeline scheduling, dynamic programming in scheduling and 

sequencing areas and time-windows.  In the following three subsections are the 

highlights of the important results found in these areas. 
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1.3.1 Oil Pipeline Scheduling 

 

 To the best of our knowledge, little work has been done and there is not much 

exploration in the subject of oil pipeline scheduling.  There are a small number of 

publications found related to this area.  The highlight of some of the important results 

published is provided below. 

 Camacho et al. (1990) used simulation method on oil pipeline networks in search 

for scheduling and operating pipelines that yielded an optimal operation.  The optimal 

pipeline operation is determined by finding appropriate pump rates that generate the 

minimization of power costs.   

 The pivotal study in this area was reported in the publication by Hane (1991).  

This groundbreaking and inaugural research focused on putting down the extensive 

fundamental framework of the problem as well as providing the analysis of pipeline 

scheduling, particularly on the scheduling of a multiple product pipeline.  The author 

examined an optimization strategy in order to minimize the operating cost of the pipeline 

incurring from energy and maintenance costs of pumping the fluids.  Basically, the 

author focused the work on minimizing pump restart cost of pipeline.  The operating cost 

function is minimized by a combination of local heuristics, greedy procedure and 

dynamic programming approach.  However, the authored concluded that it is still 

uncertain if there are any polynomial solution procedures for the cost minimization 

problem and this inquiry remains open.  This problem is appealing because it may not be 

in NP-hard, but does not require enumeration of a solution space.   
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Hane and Ratliff (1995) also examined the sequencing of multiple commodities 

in pipelines in order to minimize operating costs.  The sequencing problem was 

decomposed into subproblems and solved by branch-and-bound approach.  The solution 

method was tested on small problems and the results showed that branch-and-bound 

algorithm was able to explore a small region of the solution space within a reasonable 

amount of time.  Sasikumar et al. (1997) introduced a knowledge-based heuristic search 

approach to compute a good one-month pumping schedule for a single-source, multiple-

destinations, and multiple-products oil pipeline problem.  Crane et al. (1999) used 

genetic algorithms to schedule problem of multiple fungible products pipelines.  The 

objective of this research is to make the shortages at demand points as minimal as 

possible.  The authors tested the genetic algorithms approach on a small problem 

instance with two petroleum products to transport on eight demand locations.  Paolucci 

et al. (2002) applied simulation approach to work on the problem of crude oil supply 

allocation from port to refinery tanks through pipeline.  The objectives of this problem 

are twofold: the first and critical one is to minimize tanker service time in order to avoid 

idle time waiting for tank availability; and the other is to allocate crude oil supplies to 

appropriate tanks in order to minimize amount of unaccepted crude oil.  The authors 

applied the methodology to the small to medium-sized refinery system. 

 There are a few publications that highlight more on the mathematical formulation 

of oil pipeline scheduling problem.  Shah (1996) presented a mixed-integer linear 

programming (MILP) formulation of the crude oil scheduling problem from a supply 

facility to a refinery, delivering multiple products on single pipeline.  The objective of 
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his research is to minimize the amount of products left in a tank after feeding to a crude 

distillation unit (CDU).  The model was developed for a single refinery problem.  

Rejowski and Pinto (2002) developed a MILP formulation on systems of multiple-

product pipeline with the objective of minimizing operating costs emerged from 

inventory cost, pumping cost and transition cost.  The formulation was tested on small 

pipeline systems that contain up to five demand depots and four products delivered on 

the three-day time horizon. 

 

1.3.2 Dynamic Programming and Sequencing 

 

Dynamic programming [Bellman (2003)] is a mathematical procedure designed 

primarily to improve the computational efficiency of select mathematical programming 

problems.  It is also considered as a computational method that allows us to break up a 

complex problem into a sequence of easier subproblems.  Dynamic programming, 

created by Richard Bellman, has its uniqueness lies in the principle of optimality and it 

is this principle that the entire concept of dynamic programming is based on.   

 Dynamic programming has been prevalently used in many areas; however, it is 

our intention to focus the literature review in the scope of sequencing problems.  Held 

and Karp (1962) used dynamic programming to work on three sequencing problems: a 

scheduling problem involving arbitrary cost functions, a traveling salesman problem, 

and an assembly-line balancing problem.  Ibaraki and Nakamura (1994) solved the 

minimization of weighted sums of earliness and tardiness for single machine scheduling 
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by using successive sublimation dynamic programming.  This technique helps keep the 

number of states generated to be within manageable level.  Mingozzi et al. (1997) 

worked on the traveling salesman problem with time-window and precedence 

constraints, which is a NP-hard problem.  They proposed an algorithm based on dynamic 

programming to solve and reduced state space graph by using bounding functions.  

Ioachim et al. (1998) used dynamic programming to solve shortest path problem with 

time-windows and linear node costs on the node service start times.  The proposed 

algorithm was proved to perform better empirically than the discretization approach.  

Lorigeon et al. (2002) scheduled jobs in a two-machine open shop by using pseudo-

polynomial time dynamic programming.  The authors assumed in the model that a 

machine is not available at all time and job processing can be resumed after interruption 

when a machine is available. 

 

1.3.3 Time-Windows 

 

 The concept of time-windows is recognizable in scheduling and routing 

problems.  There are numerous literatures in this area as can be seen in the survey 

reviewed by Solomon and Desrosiers (1988).   

Many researchers incorporated time-window concept into vehicle routing 

problem (VRP) and solved in different ways.  It is known that VRP is NP-hard and by 

further restricting the problem with time-window constraints makes it NP-hard as well.  

Kolen et al. (1987) used branch and bound to solve vehicle routing problem with time-
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windows to minimize total route length.  Solomon (1987) provided several algorithms to 

solve vehicle routing and scheduling problems with time-windows.  Fisher Jornsten and 

Madsen (1997) used lagrangian decomposition method to solve VRP with time-

windows.  Desaulniers et al. (1998) performed a vehicle fleet scheduling with time-

windows to minimize cost by formulating the problem as non-linear multicommodity 

network flow model with time variables and used column generation approach to solve.  

Chen et al. (2001) studied the job shop scheduling problem with time-windows in order 

to minimize the weighted earliness and tardiness cost.  The problem was solved by using 

lagrangian relaxation and algorithm to find a feasible schedule within or approximately 

within the time-windows. 

 

1.4 Research Objectives 

 

 The principal purposes for conducting this research is to provide model 

formulation and practical solution methodologies for oil-pipeline distribution of multiple 

products subject to delivery time-windows in order to find an input schedule that 

minimizes the total number of delivery time that violates time-window requirements.  In 

order to accomplish these objectives, the following issues will be considered: 

 

(1) Construct a problem model to represent the scheduling and transportation of 

multiple products with delivery time restrictions for a single-source and multiple 

destinations; 
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(2) Develop solution methodology for a oil-pipeline distribution of multiple 

products subject to delivery time-windows;  

(3) Extend and work on the model from (1) to accommodate the pipeline 

structure with multiple sources.  Develop problem framework and guideline for solution 

methodology based on approach provided for single-source pipelines;  

(4) Provide analysis of the problem and solution methodology;  

(5) Illustrate computational results by working and analyzing on random problem 

sets. 

 

1.5 Organization of the Dissertation 

 

 This dissertation is organized as follows.  Chapter II studies the model and 

provides the mathematical formulation of the oil-pipeline distribution of multiple 

products subject to delivery time-windows.  Chapter III discusses the pipeline 

scheduling problem on a single-source, simple pipeline (a pipeline with a directed path 

structure).  The solution methodology is also provided in this chapter.  The multiple-

source pipeline problem is introduced and discussed, based on an extension of the study 

of a single-source pipeline, in Chapter IV.  Computational implementation and results 

are displayed in Chapter V.  Chapter VI concludes this dissertation, provides the 

contributions of this research and suggests the directions of possible research in the 

future. 
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CHAPTER II 

 

MODEL FORMULATION OF OIL PIPELINE DISTRIBUTION OF 

MULTIPLE PRODUCTS SUBJECT TO DELIVERY  

TIME-WINDOWS 

 

 

 In this chapter we outline a network model and a mathematical formulation that 

represent the oil-pipeline distribution of multiple products subject to delivery time-

windows.  We define the scope of the problem and elementary terms used throughout 

this study.  Principal assumptions adopted in this dissertation are also laid out in this 

chapter. 

We can define the pipeline problem, P, by using a set of orders, O, and a pipeline 

structure.  The set of orders O composes of product information of each batch entering 

the pipeline, its corresponding source and destination nodes, delivery time-windows.  

The pipeline structure is formed as a directed network G(V, E), where V is a set of nodes 

and E is a set of all edges.  The capacity of each edge is defined in term of volume v(e), 

representing the pipe capacity between any two adjacent nodes.  The volume of each 

edge is assumed to be integral. 

This chapter generates the model of oil-pipeline distribution of multiple products 

subject to delivery time-windows studied in this dissertation.   The building of the model 
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is constructed based on the following assumptions.  The structure of a pipeline in this 

study is assumed to be a path.  Namely, each node has only one immediate predecessor 

and one immediate successor nodes.  Products entering the pipeline are assumed to be in 

form of batches where each batch contains a section of homogeneous product content 

and has volume of one unit.  Each batch is injected into the pipe from the source node, 

traveled along the pipe and pushed out only at its designated destination node.  It is 

assumed that there is no mixing of products at the interface of any two batches along the 

pipe.  The splitting or merging of any batches at any nodes along the pipeline is 

prohibited.  These assumptions make flow stop downstream when delivery is made.  

Thus, this forces flow traveling along the pipeline by originating at one source node and 

departing at one destination node.  Furthermore, it is not allowed for any batch to travel 

beyond its corresponding destination. 

 

2.1 Definitions 

 

 A path in a graph G(V, E) is a sequence of edges (S, n1), (n1, n2), …, (nk-1, nk), 

(nk, T) such that the nodes S,   n1, n2, …, nk-1, nk, T are distinct.  A graph G(V, E) is called 

a path if all of its edges form such a sequence. 

 A simple pipeline is a fixed, directed-path and acyclic pipeline, whose route each 

order follows is always the same.  There exists a unique path for each pair of any source 

node and any destination node in a simple pipeline. 
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 An input sequence is sequence of all batches of products sent into the pipeline 

with the information on sources, destinations, product types. 

 A delivery sequence is defined on the actual delivery information of products at 

destinations. 

 An input schedule is an input sequence with the due delivery time-windows 

information.  A delivery schedule is a delivery sequence with the actual delivery time-

windows information. 

  

Since we assume that the pipeline is a path and each batch has its fixed route to 

travel from its corresponding source to its corresponding destination, then it is claimed 

that there must be a 1:1 mapping of input schedules to delivery schedules.  Namely, for a 

pipeline problem P with a set of orders O entering a simple pipeline, given that the 

pipeline is empty at the beginning period, then each input schedule generates a unique 

delivery schedule.  

 

2.2 Feasible Input Schedules 

 

 How can we determine a feasible input schedule for a pipeline problem P that 

generates its corresponding delivery schedule?  If the set of orders O for P has the total 

product volume less than the volume of the whole pipeline, how the products that need 

delivery at the very end of the pipeline are pushed to that point.  This can be problematic 
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because it is not feasible to find out what the delivery schedule and actual delivery time 

are.   

This difficulty can be resolved by extending the set of orders O by either assume 

the existence of an infinite amount of some filler product or replicate the orders from the 

original set of orders O.  It is sensible and practical to assume in the latter case as future 

demands tend to follow the current demand and the fluctuation of the demand in the 

future is negligible.  Therefore, it is assumed in this study that the set of orders O will be 

serviced repeatedly again and again in the same manner until the delivery schedule has 

been determined. 

 Consider a situation where customers have steady demand for delivery 

requirement.   Thus, the repetition of input schedule will substantiate this requirement.  

Customers would prefer the products be delivered at destinations at the same rate as the 

product flow rate along the pipeline.  We call a schedule that ensures the product 

delivery at the same rate as the product flow rate a balanced schedule.  Namely, a 

balanced schedule enforces the amount of products delivered to be equal to the amount 

of products ordered.  This concept is important for building the pipeline model in this 

study.  With the assumption of a balanced schedule, the delivery schedule in a simple 

pipeline will be a repetition of the unit volumes from the set of orders O.  Hence, the 

delivery schedule will represent the schedule of deliveries in the future. 

 As described in section 2.1, an input schedule composes of product information, 

source-destination information and due delivery time-windows.  Product of the same 

type traveling to the same destination must be grouped together in the input schedule.  
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Splitting batches of the same type that traveling to the same destination in the input 

schedule is not allowed.  Due delivery time-window is indicated in a window of the 

earliest due delivery time and latest due delivery time representing for the group of 

batches of the same product type traveling to the same destination, i.e., if there are 10 

batches of product A traveling to a destination node n, then there is a single due delivery 

time-window that represents these ten batches for a delivery at node n. 

 Input schedule of order set O can be reduced to a sequence form of unit volumes.  

We already assumed that each batch has a unit volume.  Consider a simple pipeline 

problem with a single source, two delivery nodes.  There are three units volume of 

product going to each delivery node.  The feasible input schedule can be represented in a 

sequence form as [111222, 111222, …] or [222111, 222111, …].  Each number i ∈ I in 

the sequence represent one batch of a product traveling to node i.  As mentioned earlier 

that splitting orders is forbidden.  The number of input batches for each cycle is equal to 

the total volume of the set of orders O.  We assume for this study that the schedule is 

balanced and the product flow rate in the pipeline is one unit of volume per one unit of 

time.  These assumptions play an important role in facilitating the construction of a 

pipeline model. 

 

2.3 Principal Assumptions 

 

 The pipeline scheduling is generally a complex problem and contains many 

levels of details.  To construct a pipeline scheduling model that realistically represents 
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the practice in the industry, it would make the model too complicated to be able to solve 

in a reasonable amount time.  In order to construct the pipeline model that serves our 

purposes as indicated in Chapter I, the following assumptions are adopted: 

 

 (1) Flow in the pipeline is traveled at a constant speed.  Namely, the pipeline 

problem is assumed to have a balanced schedule.  The reasons behind this assumption 

are two-fold.  First of all, it simplifies the complications of the oil pipeline structure and 

allows us to initially construct a multiple-product pipeline network structure that 

represents this problem for multiple time-periods.  Additionally, the focus of this 

research is underlined in the area of optimization.  If variable flow rates are allowed in 

our model, we would have to go deep and work into the hydraulic and fluid issues in the 

pipeline, which are obviously out of bound for the study scope of our area;   

(2) All orders are known and available at the beginning of the scheduling 

process.  Orders in the future are assumed not to fluctuate and follow the demand pattern 

of the current orders; therefore, the repetition of input schedules in the pipeline is 

justified in this case;   

(3) The model is handled deterministically, i.e., stochastic arrivals of orders are 

disregarded;   

(4) Flow in the pipeline network is pushed by pumps and momentum propagates 

immediately along paths, i.e. for a period of ∆t a total quantity of products entering a 

network is equal to the total exiting quantity at delivery points, namely conservation of 

flow is observed;   
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(5) Orders are transported in form of batches and batch interfaces are impassable.  

Namely there is no product mixing at batch interfaces and merging of products at any 

node is forbidden;  

(6) Some product types are required not to travel adjacent to one another due to 

their product natures; 

(7) Orders in each order set O are arranged and modified to be in the form of 

equal batches.  A batch has one unit of volume.  Each unit volume of product travels at 

the rate of one unit distance per one unit time; 

(8) Delivery before and/or after the time-window requirement at each destination 

is permitted but penalty will be enforced for such delivery; namely, soft delivery time-

windows are assumed; 

(9) Storage capacity at the destinations is assumed to be large enough to 

accommodate the delivery of all products destined to each delivery node; 

(10) Pipeline is assumed to be empty at the beginning period.  Once products 

start entering the pipeline, no gap between batches or interruption of input schedule is 

allowed.  Namely, the pipeline remains completely full for the whole duration of the 

finite T-period, where T is assumed to be long enough to cover all the necessary input, 

product flow and delivery operations required for the study; 

(11) Batches of same product type and destination node must be grouped 

together.  Splitting batches of this kind in the input schedule is prohibited. 

 

 

 



 22

2.4 Multiple-Product Oil Pipeline Problem 

 

Consider a simple pipeline problem with a single source, S, and three destination 

nodes, 1, 3, and 4, as shown in Figure 2.1.  Delivery of products is permitted at these 

three destination nodes.  The distances of (S, 1), (1, 3), and (3, 4) are equal to one, two, 

and one unit(s), respectively. 

 

 

 

 

 
1 

1 2
3 4 

1 
S 

 

 

Figure 2.1 Original Pipeline 

 

 

In order to simplify the formulation of the pipeline network model, the pipeline 

in Figure 2.1 will be modified to match up with the assumption that we have adopted.  

Namely, the distance between any pair of nodes in the pipeline will be transformed to be 

of equal length.  Specifically, the length of every pair of nodes is set equal to one unit 

distance.  A unit distance between every edge connecting nodes in the pipeline will 

synchronize with the flow rate of products in the pipeline assuming that one unit volume 

of product (one batch) travels at a speed of one unit distance per one time unit.  The 

modified pipeline is constructed and illustrated in Figure 2.2. 
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Figure 2.2 Modified Pipeline 

 

 

 

 

It is seen in Figure 2.1 that an edge having the length greater than one unit is the 

one connecting node 1 and node 3, which has the length of two units.  In order to make 

every edge have the same unit length in distance, the pipeline network structure needs 

modification.  An additional node, node 2, is inserted between node 1 and node 3 in 

Figure 2.2 and the unit-length edges connecting between node 1 and node 2 and between 

node 2 and node 3 are added to this pipeline network.  Node 2 is called an intermediate 

node.  Batches are allowed to travel pass through this intermediate node; however, 

delivery or entry of any batches is not allowed at this intermediate node. 

 

2.4.1 Network Representation 

 

It is assumed in this dissertation that we consider a finite T−period pipeline, 

where t = 0, 1, …, T, and the pipeline is empty at the beginning period, t = 0.  The total 
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time horizon, T, is assumed to be long enough to cover all activities in the pipeline 

operation, at least until all the products of the first input cycle are completely delivered. 

The construction of a multiple time-periods multicommodity network flow is 

based on the suggestion from the study of Hane (1991) and it will be described as the 

following.   

The network representation of a multiple time-periods multiple-product oil 

pipeline problem is based on the pipeline structure similar to the one shown in Figure 

2.2.  Batches enter the pipeline from a source node and continuously travel downstream 

to their corresponding destination nodes.  Each batch moves from one node to another at 

a rate of one unit distance per one unit time.  When a delivery of any batch i is 

performed at any destination node n, all batches downstream from this node n will be 

stationary for one time unit and concurrently all upstream batches continue moving and 

pushing this batch i out of the pipe at node n.  

Let ∈ I be a set of all destination nodes including a source node in period t, 

St, and ∈ I be a set of additional intermediate nodes used to construct the modified 

pipeline in period t.  Define SP as a set of pseudo-source nodes, where the number of 

pseudo-source nodes is equal to the number of product types transported in the pipeline 

and also define DP as a set of pseudo-sink nodes, where the number of pseudo-sink 

nodes is equal to the number of destination nodes.  Therefore, in each time period t there 

is the union of  and  nodes in the network.  Since the algorithm allows the 

D
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+
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D
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opportunity for flow to change in each time period, the node sets of  and  need to 

appear for each time period.   

D
tN +

tN

A network G = (V, E) is a multiple time-periods multicommodity network flow 

model where a set of vertex is the union of SP, DP, , and , t = 0, 1, …, T, and E is 

a set of edges that controls how products are allowed to enter, travel through and exit the 

pipeline network.  Each pseudo-source node , k = 1, 2, …, K, where K is the number 

of product types delivered in pipeline, is connect to a source node St in each time period.  

Each node in a set of excluding St, t = 0, 1, …, T, for each time period is connected 

to its correspond pseudo-sink node , n = 1, 2, …, N, where N is the number of 

destination nodes in the pipeline.  The edges connecting each pseudo-source node and 

the source node in each time period is assumed to have the length of zero.  The same 

assumption is applied to edges connecting each destination node in each time period and 

its corresponding pseudo-sink node.    

D
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tN

P
ks

D
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P
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In each time period, the batches occupying an edge of E can either move to any 

of its downstream neighbors or remain stationary.  For convenience of further reference 

in this study, let’s define N be the union of and .  An example of a multiple time-

periods multicommodity network with K = 2 products and N = 3 destination nodes for T 

= 3 periods is exhibited in Figure 2.3.  The construction of this model is based on the 

modified pipeline shown in Figure 2.2.  As mentioned earlier, the model is constructed 

based on the assumption that flow rate is constant throughout the pipeline. 
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Figure 2.3 Multiple Time-Periods Multicommodity Network Structure for a Single-

Source Oil Pipeline Problem 
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2.4.2 Pipeline Flow Representation 

 

The following example demonstrates the movement of flow and the delivery of 

batches in a pipeline.  Consider a simple pipeline problem with a single source node, S, 

and five destinations, node 1 to node 5.  The edge volume of every pair of nodes is equal 

to one unit and we called this type of pipeline a unitized pipeline.  Each destination node 

demands the delivery of one batch.  Therefore, there are a total of five batches of flow in 

each cycle.  Let [b5 b4 b3 b2 b1] be an input order set, where bi is a batch whose 

destination is node i.  In this input sequence, b5 enters the pipeline first.  The set of batch 

may be simplified to be in the form of [54321].  The illustration of a pipeline and the 

representation of product flow simulation are shown in Figure 2.4.   

In this example, there are four repetitions of input schedule.  The first batch to 

enter the pipeline is b5.  Then, at time t = 1, this batch b5 occupies the entire volume of 

the edge connecting node S and node 1.  The next batch to enter the pipeline at node S is 

b4.  At the time immediately after t = 1, b4 enters the pipeline and pushes b5 forward as 

time elapses.  When the time is exactly at t = 2, b4 occupies the full volume of the edge 

(S, 1) and b5 moves one unit forward occupying the full volume of the edge (1, 2).  The 

following batches keep pushing the preceding ones forward downstream in the pipeline.  

Batches continue moving along the pipeline in this manner.   

The numerical representation of the flow simulation showing the flow movement 

along the pipeline as time elapses in Figure 2.4 is called a flow matrix.  This 

representation shall be referred throughout this study.  The first delivery occurs at node 
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1. Each delivery is indicated by an up-arrow sign (↑).  The delivery of a batch takes one 

time unit to complete.  The delivery of b1 begins instantaneously right after t = 5 and 

completes precisely at time t = 6.  Namely, the delivery time of a batch is equal to one 

time unit.  At t = 6, batch b5 is sent from the source node S into the pipeline and occupies 

the volume of edge (S, 1) as b1 is pushed out off the pipeline simultaneously.  When 

delivery is conducted at this period, downstream batches from node 1 remain stationary, 

i.e. from the time immediately right after t = 5 to t = 6 where b1 is being delivered, 

downstream batches, b2, b3, b4 and b5, have no movement.   

Since there is the repetition of input schedule in the pipeline, we will consider 

only the movement of the first cycle.  The delivery sequence is obtained after the last 

batch of the first cycle is delivered and the actual delivery time is recorded.  

 The actual delivery schedule of products from the input schedule [54321] sent 

into the pipeline shown in Figure 2.4 is as follows: b1 is delivered at node 1 at t = 6; b2 is 

delivered at node 2 at t = 7; b3 is delivered at node 3 at t = 8; b4 is delivered at node 4 at t 

= 9; and b5 is delivered at node 5 at t = 10.  The delivery schedule of the succeeding 

input schedule cycles follows the pattern of the one from the first cycle. 
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 1 1 1 5 431 21 1 S 
 

 

                            S     1     2      3      4     5  
                                                     •    •    •    •   • 

      t = 1            5          
      t = 2            4     5 
      t = 3            3     4     5 
      t = 4            2     3     4     5 
      t = 5            1     2     3     4     5 
      t = 6            5 ↑  2     3     4     5 
      t = 7            4     5 ↑  3     4     5 
      t = 8            3     4     5 ↑  4     5   
      t = 9            2     3     4     5 ↑  5 
      t = 10          1     2     3     4     5 ↑ 

        t = 11          5 ↑  2     3     4     5 
        t = 12          4     5 ↑  3     4     5 
        t = 13          3     4     5 ↑  4     5 
        t = 14          2     3     4     5 ↑  5 
        t = 15          1     2     3     4     5 ↑ 
                              t = 16          5 ↑  2     3     4     5 
                              t = 17          4     5 ↑  3     4     5 
                              t = 18          3     4     5 ↑  4     5 
                              t = 19          2     3     4     5 ↑  5 
                              t = 20          1     2     3     4     5 ↑ 

 
 

 

Figure 2.4 Unitized Pipeline and Product Flow Matrix 
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2.4.3 Mathematical Formulation 

 

 This mathematical representation of the multicommodity network shown in 

Figure 2.3 will be put together in this section.  The formulation is based on the 

generalization of the minimum cost multicommodity network flow formulation with an 

inclusion of delivery time-window restrictions.  Since cost is not the focus in the 

dissertation, the objective function is modified to correspond to the delivery times 

[Ahuja et al. (1993), Bazaraa et al. (1990), Chen et al. (2001), Evans (1978), Hartmann 

(1999), and Phillips and Garcia-Diaz (1990)]. 

Let  be binary variables where (i, j) ∈ E, t = 0, 1, …, T and k = 1, …, K.   

is set equal to 1 if there is a single unit of product k, travels on edge (i, j) at time t.  

Otherwise,  is set equal to 0.  Define as the time that a batch of product k is 

delivered at node j before its earliest due time, , and also define  as the time that a 

batch of product k is delivered at node j after its latest due time, .   The goal is to 

minimize the total time deviation from due delivery time-windows. 
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 The objective function (1) indicates the goal of minimizing the total delivery 

time that exceeds due delivery time-windows requirements.  Constraints (2) are set to 
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control all products supply out of source nodes and constraints (3) force the flows into 

destination nodes in order to meet the demand requirements.  Constraints (4) enforce the 

conservation of flow; however equalities (4) do not impose in the last time period, i.e., 

period T.  Realistically, flows in the pipeline do not stop at period T as we assume that 

pipeline must be full at all time.  We consider the problem in the time span T that is long 

enough to cover the interest of our pipeline study.  Besides, all nodes in period T are not 

destination nodes.  If we impose (4) in the last time period, we would wrongly assume 

that all nodes i, i ∈ , in period T require delivery at amounts specified by the model.  

Constraints (5) are formulated to prevent such problem.  The upper bound constraints of 

flow on all edges in the network are formulated in (6).  In addition, inequalities (6) are 

known as the “bundle constraints” for the reason that they tie together the commodities 

on each edge by imposing the total allowable flow of all commodities not to exceed the 

upper bound limit.  The next pair of constraints, (7) and (8), enforces the delivery time- 

window requirements of product k at destination nodes.  Constraints (9) check the 

number of product k delivered at destination node up to time t.  Constraints (10) and (11) 

compute the start delivery time of product k and constraints (12) and (13) compute the 

finish delivery time of product k.  Constraints (14) enforce variables and  to be 

binary.  The nonnegativity requirements of and  are enforced in (15) and (16).  The 

last constraints, (17), restrict all flows to have values either 0 or 1.  Namely, flows are 

not allowed for splitting or joining in this model. 
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2.4.4 Delivery Time-Windows 

 

 It is a goal of this study to find the input schedule that yields the minimum time 

deviation from the due delivery time-windows.  However, in practicality finding input 

schedules that meets the due delivery time-windows of every batch in the sequence may 

be hard and sometimes infeasible.  As a result, we relax this condition by allowing 

products to be delivered either before or after the due delivery windows.  This section 

examines how the product delivery patterns are and how to compute the time deviation 

from due delivery windows. 

 Let define a due delivery time-window at any destination node i as [βi, αi] and 

this time-window is represented by the box displayed in Figure 2.5.  βi is the earliest due 

time for delivery and αi is the latest due time for delivery.  Define tsi be the actual start 

time of batches delivery at node i and tfi be the actual finish time of batches delivery at 

node i.  The patterns of delivery are categorized into four major instances as shown in 

Figure 2.5.  Each delivery pattern has its unique approach to calculate the total delivery 

time violation.  
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Figure 2.5 Types of Products Delivery 
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 If the actual product delivery starts and finishes within the due delivery time- 

window, then there is no time violation in this case.  Namely, if the actual delivery time 

stays inside the delivery time-window box shown in Figure 2.5, then no penalty is 

imposed.  Thus, this is a scenario for case 1.   

In case 2, the actual delivery starts prior to the earliest due time of the due 

delivery time-window, βi.  There are two possible situations under this circumstance.  

The first one is the situation where the actual delivery starts before βi, i.e. tsi < βi, and 

finishes at the time tfi where βi < tfi < αi.  The time violation is the part of delivery time 

that does not stay in delivery time-window box, which is the time difference between βi 

and tsi.  The other situation is the one where the entire actual delivery process starts and 

finishes entirely before βi.  Then, the total time violation is calculated by the time 

difference between βi and tsi.   

In case 3, the actual delivery finishes after the latest due time of the due delivery 

time-window, αi.  There are also two feasible situations under this circumstance.  The 

first one is the situation where the actual delivery starts sometime between βi and αi, i.e. 

βi < tsi < αi and the delivery is completely finished after αi, i.e., tfi > αi.  The time 

violation is the part of delivery time that does not remain in delivery time-window box, 

which is the time difference between tfi and αi.  The other situation is the one where the 

whole actual delivery process is in fact conducted after αi.  The time violation for this 

situation is calculated from the time difference between tfi and αi. 
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The final case, case 4, is the circumstance where the actual delivery starts before 

βi.  The delivery is carried on and completed after αi.  The time violation is computed 

from the part of actual delivery time that does not remain in the due delivery time- 

window box.  Namely the total time violation is in this case is the addition of (βi  − tsi) 

and (tfi  − αi). 
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CHAPTER III 

 

SINGLE-SOURCE PIPELINES 

 

 

 In this chapter, we examine the problems of scheduling on a simple pipeline with 

a single source in order to find an input schedule that minimizes the total time violation 

from the due delivery time-windows.  Recall that product mixing is not allowed in this 

study; therefore, all orders can be treated as different products.  Demands are assumed 

not to be fungible; thus, each order has a fixed destination.  

 We begin this chapter with an example of a simple pipeline problem.  This 

example will be referred throughout this chapter.  The time-windows are not yet 

considered in this example and the first few sections of this chapter but they will be 

introduced in the later sections of this chapter.  It is our intention to present this example 

first without the inclusion of delivery time-windows in order to generate some 

perception about the pipeline operation.  Furthermore, this example will assist us in 

exploring some important attributes of the single-source pipeline problem.  Later in the 

chapter, we will examine the complexity of a single-source oil pipeline distribution of 

multiple products subject to delivery time-windows.  The reversed-flow algorithm 

developed based on an important attributes of the pipeline operation is used to determine 

the input schedule for the single-source pipeline problem will also be introduced later in 

this chapter. 
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3.1 Example 1 

 

This section will work on an example of a simple pipeline problem with a single 

source and five destination nodes.  The pipeline structure of this example is illustrated in 

Figure 3.1.  These five destination nodes receive a total of 10 batches for each input 

cycle; namely, two batches are requested for a delivery at node 1, three batches at node 

2, two batches at node 3, two batches at node 4, and two batches at node 5.  The volumes 

of edges connecting nodes (S, 1), (1, 2), (2, 3), (3, 4) and (4, 5) are 3, 5, 3, 1 and 3 units, 

respectively.  Let [55 4 33 222 11] be an input sequence for this example.  Note that the 

time-windows are not taken into consideration yet in this section.   

 

 

3 1 3 5435 21 3 S  

 

 

Figure 3.1 Pipeline Structure of Example 1 

 

 

The delivery sequence for this input sequence is computed by a pipeline flow 

simulation.  The pipeline flow simulation matrix for this example is shown in Figure 3.2.  

Each number i in the flow matrix represents a unit volume of a batch traveling to 

destination node i.  A delivery at any destination node is indicated by an up-arrow sign 

(↑).  A large space between batches in the sequence also indicates the position of a 

destination node.   
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              S           1                2             3     4           5  
                             •         •            •         •    •        • 
 

 t = 1  5 
 t = 2  5  5 
 t = 3  4  5  5 
 t = 4   3  4  5       5 
 t = 5  3  3  4       5  5 
 t = 6  2  3  3       4  5  5 
 t = 7  2  2  3       3  4  5  5 
 t = 8  2  2  2       3  3  4  5  5 
 t = 9  1  2  2       2  3  3  4  5       5 
 t = 10  1  1  2       2  2  3  3  4       5  5 
 t = 11  5  1  1       2  2  2  3  3       4  5  5 
 t = 12  5  5  1↑     2  2  2  3  3       4  5  5 
 t = 13  4  5  5↑     2  2  2  3  3       4  5  5 
 t = 14  3  4  5       5  2  2  2  3       3  4  5       5 
 t = 15  3  3  4       5  5  2  2  2       3  3  4       5       5 
 t = 16  2  3  3       4  5  5  2  2↑     3  3  4       5       5 
 t = 17  2  2  3       3  4  5  5  2↑     3  3  4       5       5 
 t = 18  2  2  2       3  3  4  5  5↑     3  3  4       5       5 
 t = 19  1  2  2       2  3  3  4  5       5  3  3       4       5  5 
 t = 20  1  1  2       2  2  3  3  4       5  5  3↑     4       5  5 
 t = 21  5  1  1       2  2  2  3  3       4  5  5↑     4       5  5 
 t = 22  5  5  1↑     2  2  2  3  3       4  5  5       4       5  5 
 t = 23  4  5  5↑     2  2  2  3  3       4  5  5       4       5  5 
 t = 24  3  4  5       5  2  2  2  3       3  4  5       5↑     5  5 
 t = 25  3  3  4       5  5  2  2  2       3  3  4       5       5  5  5 
 t = 26  2  3  3       4  5  5  2  2↑     3  3  4       5       5  5  5 
 t = 27  2  2  3       3  4  5  5  2↑     3  3  4       5       5  5  5  
 t = 28  2  2  2       3  3  4  5  5↑     3  3  4       5       5  5  5 
 t = 29  1  2  2       2  3  3  4  5       5  3  3       4       5  5  5↑ 
 t = 30  1  1  2       2  2  3  3  4       5  5  3↑     4       5  5  5 
 t = 31  5  1  1       2  2  2  3  3       4  5  5↑     4       5  5  5 
 t = 32  5  5  1↑     2  2  2  3  3       4  5  5       4       5  5  5 
 t = 33  4  5  5↑     2  2  2  3  3       4  5  5       4       5  5  5 
 t = 34  3  4  5       5  2  2  2  3       3  4  5       5↑     5  5  5 
 t = 35  3  3  4       5  5  2  2  2       3  3  4       5       5  5  5↑ 
 t = 36  2  3  3       4  5  5  2  2↑     3  3  4       5       5  5  5 
 t = 37  2  2  3       3  4  5  5  2↑     3  3  4       5       5  5  5 
 t = 38  2  2  2       3  3  4  5  5↑     3  3  4       5       5  5  5 
 t = 39  1  2  2       2  3  3  4  5       5  3  3       4       5  5  5↑ 
 t = 40  1  1  2       2  2  3  3  4       5  5  3↑     4       5  5  5 
 t = 41  5  1  1       2  2  2  3  3       4  5  5↑     4       5  5  5 
 t = 42  5  5  1↑     2  2  2  3  3       4  5  5       4       5  5  5 
 t = 43  4  5  5↑     2  2  2  3  3       4  5  5       4       5  5  5 
 t = 44  3  4  5       5  2  2  2  3       3  4  5       5↑     5  5  5 
 t = 45  3  3  4       5  5  2  2  2       3  3  4       5       5  5  5↑ 

 

 

Figure 3.2 Pipeline Simulation Flow Matrix 
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In order to obtain the delivery sequence for this problem, the input sequence is 

repeated at least four times.  Thus, the delivery sequence of the first input cycle is [11 

222 33 4 55]. 

 

3.2 Pipeline Decomposition 

 

 Decomposition is a fundamental concept behind the formation of the delivery 

sequence from the known input sequence.  The following statement develops the idea for 

decomposition of single-source pipelines. 

 “A simple pipeline problem P with a single source node and n destination nodes 

can be broken down into a set of n simple pipeline problems Pi, i = 1, …, n, where each 

Pi has a single source node and merely a single destination node.” 

The pipeline structure in Figure 3.1 represents the pipeline problem of an 

example 1 in section 3.1. Consider the first edge of P connecting (S, 1), called edge a1.  

Each and every batch from the input sequence must pass through this edge in order to 

arrive at node 1.  At node 1, every batch may either be delivered or pass through this 

node.   

The pipeline problem Pi has node i-1 as its source, define this source node as si-1, 

node i as its destination and ai as the edge connecting these two nodes.  For example, 

problem P1 has node S as its source and node 1 as its destination.  The input sequence of 

P1 at node S is the same as delivery sequence at node 1.  The flow surpassing node 1 

behaves like it is a delivery at node 1 and an actual delivery at node 1 would look like 
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the flow is stationary in edge a2.  If the flow in edge a2 is stationary, then flow in edges 

downstream of edge a2 must also be stationary.   

   

 

 

 

 

 
S P1 3 1  

 
P2S1 25  

 

 P3

S3 41

S2 33 

 

 P4 
 

 P5S4 5 3 

 

 

 

 

Figure 3.3 Pipeline Decomposition 
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         S            1                    2                3         4               5  
                   •          •               •            •      •            • 

t = 1  5 
t = 2  5  5 
t = 3  4  5  5 
t = 4   3  4  5     5     5 
t = 5  3  3  4     5     5  5 
t = 6  2  3  3     4     4  5  5 
t = 7  2  2  3     3     3  4  5  5 
t = 8  2  2  2     3     3  3  4  5  5 
t = 9  1  2  2     2     2  3  3  4  5     5     5 
t = 10  1  1  2     2     2  2  3  3  4     5     5  5 
t = 11  5  1  1     2     2  2  2  3  3     4     4  5  5 
t = 12  5  5  1 ↑         2  2  2  3  3            4  5  5 
t = 13  4  5  5 ↑         2  2  2  3  3            4  5  5 
t = 14  3  4  5     5     5  2  2  2  3     3     3  4  5     5     5 
t = 15  3  3  4     5     5  5  2  2  2     3     3  3  4     5     5     5     5 
t = 16  2  3  3     4     4  5  5  2  2 ↑         3  3  4            5            5 
t = 17  2  2  3     3     3  4  5  5  2 ↑         3  3  4            5            5 
t = 18  2  2  2     3     3  3  4  5  5 ↑         3  3  4            5            5 
t = 19  1  2  2     2     2  3  3  4  5     5     5  3  3     4     4     5     5  5 
t = 20  1  1  2     2     2  2  3  3  4     5     5  5  3 ↑         4            5  5 
t = 21  5  1  1     2     2  2  2  3  3     4     4  5  5 ↑         4            5  5 
t = 22  5  5  1 ↑         2  2  2  3  3            4  5  5            4            5  5 
t = 23  4  5  5 ↑         2  2  2  3  3            4  5  5            4            5  5 
t = 24  3  4  5     5     5  2  2  2  3     3     3  4  5     5     5 ↑         5  5 
t = 25  3  3  4     5     5  5  2  2  2     3     3  3  4     5     5     5     5  5  5 
t = 26  2  3  3     4     4  5  5  2  2 ↑         3  3  4            5            5  5  5 
t = 27  2  2  3     3     3  4  5  5  2 ↑         3  3  4            5            5  5  5  
t = 28  2  2  2     3     3  3  4  5  5 ↑         3  3  4            5            5  5  5 
t = 29  1  2  2     2     2  3  3  4  5     5     5  3  3     4     4     5     5  5  5 ↑ 
t = 30  1  1  2     2     2  2  3  3  4     5     5  5  3 ↑         4            5  5  5 
t = 31  5  1  1     2     2  2  2  3  3     4     4  5  5 ↑         4            5  5  5 
t = 32  5  5  1 ↑         2  2  2  3  3            4  5  5            4            5  5  5 
t = 33  4  5  5 ↑         2  2  2  3  3            4  5  5            4            5  5  5 
t = 34  3  4  5     5     5  2  2  2  3     3     3  4  5     5     5 ↑         5  5  5 
t = 35  3  3  4     5     5  5  2  2  2     3     3  3  4     5     5     5     5  5  5 ↑ 
t = 36  2  3  3     4     4  5  5  2  2 ↑         3  3  4            5            5  5  5 
t = 37  2  2  3     3     3  4  5  5  2 ↑         3  3  4            5            5  5  5 
t = 38  2  2  2     3     3  3  4  5  5 ↑         3  3  4            5            5  5  5 
t = 39  1  2  2     2     2  3  3  4  5     5     5  3  3     4     4     5     5  5  5 ↑ 
t = 40  1  1  2     2     2  2  3  3  4     5     5  5  3 ↑         4            5  5  5 
t = 41  5  1  1     2     2  2  2  3  3     4     4  5  5 ↑         4            5  5  5 
t = 42  5  5  1 ↑         2  2  2  3  3            4  5  5            4            5  5  5 
t = 43  4  5  5 ↑         2  2  2  3  3            4  5  5            4            5  5  5 
t = 44  3  4  5     5     5  2  2  2  3     3     3  4  5     5     5 ↑         5  5  5 
t = 45  3  3  4     5     5  5  2  2  2     3     3  3  4     5     5     5     5  5  5 ↑ 

 

 

Figure 3.4 Pipeline Flow Simulation for Decomposition 
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The input sequence for P2 will be the modification of the delivery sequence of 

P1.  Idle time will be replaced in the sequence on the position where deliveries 

corresponding to the original input sequence are made at node 1.  The start time for P2 

will be the total volume units of the upstream edge, a1, plus the total stationary time 

period(s) in P1. The rest of the nodes in the pipeline will follow this pattern of structure.  

Figure 3.3 illustrates the pipeline decomposition structure of an example 1. 

The flow simulation matrix for this pipeline decomposition is displayed in Figure 

3.4.  The columns of numbers printed in bold underneath the position of each destination 

node i represent the delivery sequence for Pi and the modification of this delivery 

sequence is the input sequence for the following pipeline problem Pi+1.  For instance, the 

delivery sequence for P1 is the same as its input sequence, which is [55 4 33 222 11].  By 

removing batches delivered at node 1 from this sequence and replacing them with two 

stationary time periods for downstream flow, then the modified sequence, [55 4 33 222 

ØØ], is an input sequence for P2.  Note that Ø in the sequence represents a stationary 

period.  Since there is no stationary period in P1 from the time the first batch is pushed 

into a1 to the time of the first delivery, then the start time for P2 is equal to the total 

volume units of edge a1.  For P2, the first batch enters node 1 and occupies the first 

volume unit of a2 at time t = 4.  At t =12 and t = 13, flow in a2 remains stationary due to 

an upstream delivery at node 1.  As mentioned earlier that once flow is stationary at any 

edge at any time period, the rest of the flow in all downstream edges is also stationary at 

that time period.  The delivery sequence for P2 is [55 4 ØØ 33 222].  Delivery starts 

right after t = 8 and finishes at t = 18 for P2.  Note that flow in a2 is stationary in period t 
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= 12 and t = 13.  Thus, the modified input for P3 is [55 4 ØØ 33 ØØØ].  The problem is 

carried on in the same approach until P5 is obtained. 

 

3.3 Forward-Filling the Pipeline 

 

 The data given based on the input sequence can be used to determine the contents 

in the pipeline.  Specifically, we can determine the contents in the pipeline at the period 

when the line is full for the first time, given that the pipeline is empty at an initial period.  

We restrict our attention merely to simple pipeline problems.   

Products enter a pipeline in form of batches, where each batch travels from 

source node to destination node, νi.  Some characteristics of products moving along the 

pipeline can be described as the following.  Batches that are allowed to traverse on edge 

ai are those whose source-destination route intersects edge ai.  It can be observed from 

sequencing a simple pipeline that it is easier to start at the most downstream portion of 

the pipeline because the fewest batches are permitted at the end of the line.  Consider a 

case with a batch bn going to the last destination node νn of the pipeline and an incoming 

edge connecting nodes νn-1  and νn has the length greater than one unit.  When this batch 

bn occupies the last unit portion in the pipe right before node, the upstream batch 

immediately adjacent to bn must be a batch whose destination is the same as batch bn; 

namely the adjacent batch must have node νn as its destination. 

If we have a set of orders O composing of three batches, b1 b2 and b3, being 

pushed into the pipeline where b1 enters first, follows by b2 and then b3, and these three 
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batches travel on the same edge set, there is only one possible way that b1 can be 

neighboring with b3 in the pipeline, which is after b2 is delivered at a destination node 

prior to destination nodes of b1 and b3. 

If we arrange an input sequence in such a way that batches going to the most 

downstream node enter the pipeline first, then this method is called “forward-filling” or 

“backfilling”.  This method determines the pipeline contents and reduces the transit time 

in the pipeline of batches in each input cycle.  Forward-filling is an simple approach to 

construct a pipeline operation schedule given an input batches information.   

It can be seen in Figure 3.2 that the line is completely filled with products for the 

first time at t = 25.  At this period, the line is filled with batches entirely from the input 

sequence.  Instead of simulating product flow for 25 periods, we can use forward-filling 

technique to determine the pipeline contents when the line is filled for the first time.  

By using forward-filling technique, we start filling from the very end of the 

pipeline and move backward toward the source node.  Thus, we start at edge (4, 5).  

Only b5 can occupy this edge.  We have two batches of b5 in each order cycle and the 

volume of this edge is three, thus two orders going to node 5 (four batches of b5) are 

filled here.  Now edges (3, 4) and (4, 5) are filled and we search for the next input that 

may travel upstream of node 3. 

From the input sequence, we know that b2 pushes b3, b4 is pushed by b3 and b5 is 

pushed by b4.  Then, we continue filling the line with one order set of b4 (one batch), one 

order set of b3 (two batches) and one order set of b2 (three batches).  Up to this point, ten 

batches fill the pipeline and two units volume of edge (1, 2) is left unoccupied.  From the 
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input sequence, b1 pushes b2 but the assumption would be violated if we place b1 on edge 

(1, 2).  Thus, the next possible batch to be placed in this position is an order set of b5 

(two batches).  The pipeline is filled according to the input sequence from this point 

upstream toward the source node.  Namely, at the steady state, t = 25, edge (S, 1) is filled 

with b3b3b4, edge (1, 2) is filled with b5b5b2b2b2, edge (2, 3) is filled with b3b3b4, edge (3, 

4) is filled with b5 and edge (4, 5) is filled with b5b5b5. 

From the flow simulation matrix in Figure 3.2, without the consideration of time-

windows, the first delivery made at the last node in the line is defined to be the 

beginning of the steady state of the pipeline flow.  Namely, the steady state starts at t = 

29.  The steady state is defined as the state where the delivery sequence repeats itself.  

We can obtain the delivery sequence starting from the first delivery made at node 5 at t = 

29 for each input cycle.  As the input sequence sent into the pipeline repeats itself, the 

delivery sequence obtained from the flow simulation also repeats itself.  Thus, the input 

sequence for this example is [55 4 33 222 11] and the delivery sequence obtained from 

Figure 3.2 is [3 11 4 5 222 5 3]. 

 

3.4 Pipeline Flow Reversibility 

 

 As we mentioned earlier in Chapter II and it is seen from an example 1 in section 

3.1 that a path pipeline yields a unique delivery sequence for each input sequence given 

that the pipeline is empty at the beginning.  Consequently, we can use the delivery 

sequence to generate the input sequence by constructing a pipeline and let product flow 
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travels in a reverse direction.  Namely, in the reversed-flow pipeline problem PR the 

function of each node in the pipe will be changed.  The destination nodes are switched to 

perform as source nodes, a source node is switched to perform as a destination node and 

the products will move in an opposite direction from the direction of a regular-flow 

pipeline problem P.  In PR, flow travels from multiple sources to a single destination.  

Therefore, if the problem P is a single-source pipeline, then its reversal problem PR will 

be a single-destination pipeline. 

 Reversed-flow pipeline problem is feasible under the condition that the time 

horizon must be finite.  Let define T be the finish time for P.  The reverse-flow pipeline 

problem starts with the pipeline contents at time T and flow continues to simulate 

reversely until time 0.  Thus, the delivery sequence of P from time T to 0 is the input 

sequence for PR.  The pipeline contents of PR are simply identical to those of P at the 

same time period.  The delivery sequence of PR at node S is the input sequence for P. 

 The reversed-flow pipeline problem is beneficial in case that the delivery 

sequence carries more significant influence on the outcome of the pipeline study.  In our 

study we emphasize more on the producing delivery schedules that minimize the total 

deviation from time-windows; therefore, reversed-flow concept will play a principal role 

throughout this study. 

 Consider the pipeline flow matrix in Figure 3.2 assuming T equal to 40 and it is 

known that the delivery sequence is [3 11 4 5 222 5 3].  The input sequence for PR is 

obtained by reversing this sequence.  The first batch to enter is b3 follows by b5, b2b2b2, 

… , b3.    When each batch is inserted into the pipeline at a source node i, flow moves 
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leftward toward node S, which performs as a destination node in PR, and batches on the 

right of node i remain stationary.   

 
 
              S             1                  2            3      4            5  
                                       •          •             •         •    •        • 

 
 
 t = 40  1  1  2       2  2  3  3  4       5  5  3       4       5  5  5 
 t = 39        1← 1  2  2       2  3  3  4  5       5  3  3 «    4       5  5  5 
 t = 38        1← 2  2  2       3  3  4  5  5       3  3  4       5       5  5  5 « 
 t = 37        2← 2  2  3       3  4  5  5  2 «    3  3  4       5       5  5  5 
 t = 36        2← 2  3  3       4  5  5  2  2 «    3  3  4       5       5  5  5 
 t = 35        2← 3  3  4       5  5  2  2  2 «    3  3  4       5       5  5  5 
 t = 34        3← 3  4  5       5  2  2  2  3       3  4  5       5       5  5  5 « 
 t = 33        3← 4  5  5       2  2  2  3  3       4  5  5       4 «    5  5  5 
 t = 32        4← 5  5  1 «    2  2  2  3  3       4  5  5       4       5  5  5 
 t = 31        5← 5  1  1 «    2  2  2  3  3       4  5  5       4       5  5  5 
 t = 30        5← 1  1  2       2  2  3  3  4       5  5  3 «    4       5  5  5 
 t = 29        1← 1  2  2       2  3  3  4  5       5  3  3 «    4       5  5  5 
 t = 28        1← 2  2  2       3  3  4  5  5       3  3  4       5       5  5  5 « 
 t = 27        2← 2  2  3       3  4  5  5  2 «    3  3  4       5       5  5  5  
 t = 26        2← 2  3  3       4  5  5  2  2 «    3  3  4       5       5  5  5 
 t = 25        2← 3  3  4       5  5  2  2  2 «    3  3  4       5       5  5  5 
 t = 24        3← 3  4  5       5  2  2  2  3       3  4  5       5       5  5  5 « 
 t = 23        3← 4  5  5       2  2  2  3  3       4  5  5       4 «    5  5  5 
 t = 22        4← 5  5  1 «    2  2  2  3  3       4  5  5       4       5  5  5 
 t = 21        5← 5  1  1 «    2  2  2  3  3       4  5  5       4       5  5  5 
 t = 20        5← 1  1  2       2  2  3  3  4       5  5  3 «    4       5  5  5 
 t = 19        1← 1  2  2       2  3  3  4  5       5  3  3 «    4       5  5  5 
 t = 18        1← 2  2  2       3  3  4  5  5       3  3  4       5       5  5  5 « 
 t = 17        2← 2  2  3       3  4  5  5  2 «    3  3  4       5       5  5  5 
 t = 16        2← 2  3  3       4  5  5  2  2 «    3  3  4       5       5  5  5 
 t = 15        2← 3  3  4       5  5  2  2  2 «    3  3  4       5       5  5  5 
 t = 14        3← 3  4  5       5  2  2  2  3       3  4  5       5       5  5  5 « 
 t = 13        3← 4  5  5       2  2  2  3  3       4  5  5       4 «    5  5  5 
 t = 12        4← 5  5  1 «    2  2  2  3  3       4  5  5       4       5  5  5 
 t = 11        5← 5  1  1 «    2  2  2  3  3       4  5  5       4       5  5  5 
 t = 10        5← 1  1  2       2  2  3  3  4       5  5  3 «    4       5  5  5 

 

 

 

Figure 3.5 Reversed-Flow Simulation Matrix for PR 
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The delivery sequence at node S in PR is actually the input sequence for P.  The 

matrix of reversed-flow pipeline simulation of example in section 3.1 is shown in Figure 

3.5.  

We assume T equal to 40 and start simulating flow in pipeline PR.  The pipeline 

contents are exactly the same as the contents in P at t = 40 as shown in the first row of 

the flow matrix in Figure 3.5.  The entry of each batch from various sources of the input 

sequence in PR is indicated by a symbol “«” located in a space in a flow sequence at the 

position underneath its corresponding source node.  All batches are delivered only at 

node S.  As shown in Figure 3.5 that the delivery sequence for PR is [11 222 33 4 55], 

which is printed in bolded in the first column.  By reversing the delivery sequence 

obtained from PR, then this new sequence is actually an input sequence for P.   Hence, 

the input sequence for P is [55 4 33 222 11]. 

  

3.5 Pipeline Flow with Delivery Time-Windows 

 

 In the previous sections the delivery time-windows are not considered in order to 

study some fundamental attributes of a simple pipeline problem.  We will now include 

delivery time-windows in the pipeline problem and use the attributes that we just 

examined to study the problem in the scope of our interests.  Generally, the delivery 

time-window for batches of the same product type destined for the same destination 

node i grouping together is represented in the form of [βi, αi], where βi is the earliest due 

time and αi is the latest due time for delivery at node i.  
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 Consider a pipeline problem in example 1, we assign the due delivery time-

windows for batches traveling to each destination node i as the following: due delivery 

window of b1b1 at node 1 : [10, 14]; due delivery window of b2b2b2 at node 2 : [15, 19]; 

due delivery window of b3b3 at node 3 : [20, 22]; due delivery window of b4 at node 4 : 

[23, 25]; and due delivery window of b5b5 at node 5 : [28, 32].   

As we mentioned earlier that input sequences enters the pipeline in repetitive 

manner.  If we keep track of any batch placed in the ith position of the input sequence 

entering, traversing and exit the pipeline and record the total traversing time, then the 

same batch placed in the ith position of the following input cycles will spend the same 

amount of traversing time in the pipeline and exit at the same destination node in an 

equal amount of shifting flow time.  When delivery time-windows are incorporated, we 

are interested primarily on the delivery time-windows that batches made at each 

destination node.  Therefore, it is justifiable for us to examine simply just the movement 

of batches in the first input order cycle starting from the first batch entering the line until 

the last batch of this cycle exiting the line. 

 We collect the actual delivery time-windows of the first input cycle from Figure 

3.2 as the following: b1b1 at node 1 at time [11, 13]; b2b2b2 at node 2 at time [15, 18]; 

b3b3 at node 3 at time [19, 21]; b4 at node 4 at time [23, 24]; b5b5 at node 5 at time [28, 

35].  The calculation of time violation is described in section 2.3.4 and Figure 2.5.  The 

actual delivery time-windows at node 3 and node 5 do not range within the due time-

windows set for these two nodes, and the time violations at each node equal to 1 and 3, 

respectively.  Hence, the total time violation for this input schedule is equal to 4. 
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 There is one observation obtained from pipeline flow simulation of a single-

source pipeline.    The travel time of each batch in the pipe is greater than or equal to the 

distance from the source node to its corresponding destination node.  Only batches, 

whose delivery is expected at the first destination node adjacent to the source node, take 

time to reach this destination node equal to the edge length of this node pair.  Most 

batches takes more time than the actual source-destination edge length to travel to their 

corresponding destination node(s) due to the fact that the delivery at any destination 

node upstream in the pipeline causes the downstream flow to be stationary.  

Consequently, it is not logical to assign any due delivery time-window with βi to start at 

a time that is fewer than the source-destination length of their corresponding batch(es) or 

the one that has αi end at the time fewer than the length of corresponding source-

destination nodes since it is not feasible to find an input schedule that fulfills such due 

delivery time-window. 

 

3.6 Single-Source Oil Pipeline Distribution of Multiple Products Subject to Delivery 

Time-Windows Is NP-Complete 

 

 We will explain in this section that the single-source oil pipeline distribution of 

multiple products subject to delivery time-windows is NP-complete by way of a 

reduction from a satisfiability (SAT, for short) problem.   This reduction not only 

provides us with a measure of complexity for the oil pipeline distribution of multiple 



 52

products subject to delivery time-windows, but also gives us an additional insight into 

the structure of the problem.   
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Figure 3.6 Network Structure Used as an Instance 
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We can express a single-source oil pipeline distribution of multiple products 

subject to delivery time-windows as a decision problem as the following.  Note that the 

pipeline has a single source and the number of destinations in the pipeline is equal to |Z|, 

where Z ∈ I+.  The network representing the instance stated below is illustrated in Figure 

3.6.  The instance and question to proof NP-complete for a single-source oil pipeline 

distribution of multiple products subject to delivery time-windows is explained as the 

following. 

 

INSTANCE:  A directed graph G = (V, E) ; a set K of |K| unit-batches of input products 

where each batch has its destination node z; a set t ∈ T of discrete time points where T ∈ 

I+ and T > |K| is large enough to include the specific time periods of pipeline operation; 

in the multiple time-periods multicommodity network there are |K| source nodes for each 

time period each batch k is pushed into the line, st ∈ V, and |Z| × T destination nodes, nz, t 

∈ V for each node z and time period t, all edges emanating from nodes nz, t are connected 

to their corresponding pseudo-destination node Dz ∈ E; capacity c(e) = 1 for all edges e 

∈ E, requirement Rz ∈ I+ for each z ∈ Z and the delivery of a batch k is expected to be 

within [βi, αi] where βi and αi ∈ I+. 

 

QUESTION: Are there |K| flow functions f1, f2, …, fk : E → I+ such that 

(1) for each e ∈ E, Σ k∈K  fk(e) ≤ c(e) (capacity constraints); 
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(2) for each ν ∈ V  \ {sk , Dz} where k ∈ K and z ∈ Z, the conservation of flow is 

observed at each node ν ;  

(3) the total flow into pseudo-destination node Dz under flow Σ k∈K  fk, for each z 

∈ Z, is at least Rz ; and 

(4) for each batch k ∈ K , its delivery is conducted within a time-window of [βi, 

αi]? 

 

The satisfiability problem [Garey and Johnson (2003)] can be described as 

follows:  

Let a set of Boolean variables U = {u1, u2, …, uk} in which each variable can be 

either true or false.  The literals of variable u over U are “u” and “ u ”.  The clause is 

simply an “or” connection of a set of literals; i.e., 431 uuu ∪∪ .  A collection of clauses 

over U with the “and” connection is called conjunctive normal form expression; i.e., 

}{}{ 42431 uuuuu ∪∩∪∪ .  Each variable is assigned value as either true (T) or false 

(F).  Assign the values of these variables as follows: u1 = T, u2 = F, u3 = T, u4 = T.  The 

evaluation of the conjunctive normal form expression shown above is T.  A conjunctive 

normal form expression is satisfiable if and only if there exists some truth assignment 

for U that simultaneously satisfies all the clauses.  The satisfiability problem is to find 

out, given an arbitrary conjunctive normal form expression, if the expression is 

satisfiable.  
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SATISFIABLE (SAT) 

 

INSTANCE: A set U of variables and a collection C of clauses over U. 

 

QUESTION: Is there a satisfying truth assignment for C ? 

 

Theorem 3.1.  Single-source oil pipeline distribution of multiple products subject to 

delivery time-windows problem is NP-complete. 

 

Proof.  It suffices to show that satisfiability ∝ multicommodity flow problem and 

multicommodity flow problem ∝ single-source oil pipeline distribution of multiple 

products subject to delivery time-windows.  A single-source oil pipeline distribution of 

multiple products subject to delivery time-windows is simply a restricted form of the 

multicommodity flow problem. 

According to Karp (1975) and Even et al. (1976), satisfiability problem is 

reduced to a restricted version of multicommodity flow by creating a network in which, 

for each variable, there exists two possible paths from source and sink, one 

corresponding to the true value of the variable and the other corresponding to its 

negation.  The network is constructed in such a way that flow can only take place 

through merely one of the two paths, but not both. 

Consider k source-destination node pairs of k different batches 

.  This asks whether or not there is a set of k flow ),(,),,(),,( ,1,1,0 2
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1
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paths.  We can transform any instance of a satisfiability problem in polynomial time into 

an equivalent instance of a single-source oil pipeline distribution of multiple products 

subject to delivery time-windows.  Let assume that the source-destination node pairs be 

a one-to one correspondence with clauses in the satisfiability problem; namely, a pair 

will corresponds to a clause cj. ),( ,1 ti
n
j j

ji ns −

We can construct a graph to represent each variable u.  If literal u appears in 

clauses c1, c2, …, cp and literal u  appears in clauses cp+1, cp+2, …, cq, then the graph that 

represents a variable u is depicted in Figure 3.7.  The graph for all variables will be 

obtained by joining together a number of graphs that correspond to each variable.   

In Figure 3.7, it can be seen that it is possible to connect all to their 

matching by horizontal paths (for literal u) and by vertical paths (for literal 

ss
lc '

sn
lc ' u ).  

Every horizontal path has a node in common with every vertical path.  The network of 

all variables are obtained by identifying, as a single node, all the occurrences of each 

(or ) in all graphs. 
lcs

lcn
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Figure 3.7 A Subgraph for Variable u 
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(→)  If there exists a conjunctive normal form expression for a satisfiability 

problem and this conjunctive normal form expression is satisfiable, then the single-

source oil pipeline distribution of multiple products subject to delivery time-windows is 

feasible.  Given that each variable is assigned the truth value (“true” or “false”).  The 

horizontal path in the subgraph for variable u is chosen if u is assigned a “true” value 

and the vertical path in the subgraph for variable u is chosen if u is assigned a “false” 

value.  If either u or u  appears in clause cj and its value is “true”, there is a path in the 

subgraph connecting and for variable u. 
lcs

lcn

(←)  Assume that the single-source oil pipeline distribution of multiple 

products subject to delivery time-windows is feasible and there exists a solution to our 

problem by having |K|  flow functions, which satisfy requirements, for |K|  batches 

entering the pipeline.  Then each batch is delivered to its designated destination node and 

exactly one path is taken that corresponds to each clause of the instance of the 

satisfiability problem.  Assign the truth value “true” for each variable u to a path 

traversed by a batch from source to sink (implicitly assigning “false” value to its 

negation).  Arbitrarily assign “true” value for any unassigned variables and no variable is 

assigned both “true” and “false” values.  As a result, each variable has a single value 

assigned and the satisfiability problem is satisfiable.                                

Thus, both requirements are met.            Q.E.D.

  

Given the above result, there is no polynomial time optimal algorithm to solve 

the single-source oil pipeline distribution of multiple products subject to delivery time-
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windows unless P = NP.  However, there are ways to approach single-source oil pipeline 

distribution of multiple products subject to delivery time-windows if we are willing to 

relax our need for optimal solutions.  We look to construct an approximation algorithm 

to solve the problem.  Approximation algorithm gives up the notion of an optimal 

solution to an optimization problem but, in turn, guarantees that the quality of the 

solution of the resulting algorithm is within a factor of the optimal solution for any 

problem instance. 

The approximation algorithm that we construct for a single-source pipeline 

problem is based on pipeline flow reversibility mentioned in section 3.4.  With this 

technique and without the consideration of delivery time-windows, the optimal sequence 

can be obtained.  However, with the inclusion of delivery time-windows, this method 

does not guarantee the optimal schedule and minimum total time violation.  

 

3.7 Reversed-Flow Algorithm for Single-Source Pipeline 

 

 This section introduces a constructive algorithm based on the pipeline flow 

reversibility technique used in order to obtain an input schedule for the single-source oil 

pipeline distribution of multiple products subject to delivery time-windows.  Without 

delivery time-windows, pipeline flow reversibility technique can generate the input 

sequence that yields the delivery sequence to the need of the pipeline scheduling 

planner.  However, with the inclusion of delivery time-windows, the problem is so 

complex that it is very hard to determine the delivery schedule that makes all batches 
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delivered within their corresponding time-windows.  The problem may be infeasible to 

solve in a number of cases.  Therefore, we simplify this complication by assuming that 

the delivery of batches is allowed at their destination nodes either before or after the 

delivery time-windows.  Nevertheless, it is unattainable to determine a delivery schedule 

from only just an input schedule without performing a pipeline flow simulation. 

The pipeline scheduling problem is complicated because of its unique pattern of 

flow movement in the pipe.  The way each batch is sequenced for the input schedule 

before being pushed into the pipeline has a tremendous effect on the outcome of actual 

delivery time at destination nodes.  The interchange of some pair(s) of batches in the 

input schedule may yield a huge different in total time deviation from due delivery time-

windows.   

The motivation behind the reversed-flow algorithm rests on the observation that 

obtaining input schedule from generating pipeline flow reversibility would bring a 

decent and reasonable outcome on the delivery schedule.  Since it is not possible to 

determine the exact delivery time of each batch, we would use the information we have 

on their due delivery time-windows to establish an input schedule.  Recall that batches 

traveling to destinations downstream that are further away from a source node need more 

travel time than those traveling to destinations closer to a source node.  In general the 

delivery time-windows for any batches should not have their times overlapped; however, 

this incident is not forbidden.   
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            S              1                   2            3      4            5  
                            •          •              •         •    •        • 

 
 
 t = 1                                                                                                 5 « 
 t = 2                                                                                             5  5 « 
 t = 3                                                                                4 «        5  5  
 t = 4                                                            3 «    4           5  5 
 t = 5                                                        3  3 «    4           5  5 
 t = 6                                           2 «        3  3       4           5  5 
 t = 7                                       2  2 «        3  3       4           5  5  
 t = 8                                   2  2  2 «        3  3       4           5  5 
 t = 9                  1 «            2  2  2           3  3       4           5  5 
 t = 10              1  1 «            2  2  2           3  3       4           5  5 
 t = 11              1  1               2  2  2           3  3       4       5  5  5 « 
 t = 12              1  1               2  2  2       3  3  4       5       5  5  5 « 
 t = 13              1  1           2  2  2  3       3  4  5       4 «    5  5  5  
 t = 14              1  1       2  2  2  3  3       4  5  3 «    4       5  5  5  
 t = 15          1  1  2       2  2  3  3  4       5  3  3 «    4       5  5  5 
 t = 16      {1}←1  2  2       2  3  3  4  2 «    5  3  3       4       5  5  5 
 t = 17      {1}←2  2  2       3  3  4  2  2 «    5  3  3       4       5  5  5  
 t = 18      {2}←2  2  3       3  4  2  2  2 «    5  3  3       4       5  5  5 
 t = 19      {2}←2  3  1 «    3  4  2  2  2       5  3  3       4       5  5  5 
 t = 20      {2}←3  1  1 «    3  4  2  2  2       5  3  3       4       5  5  5 
 t = 21      {3}←1  1  3       4  2  2  2  5       3  3  4       5       5  5  5 « 
 t = 22        1 ←1  3  4       2  2  2  5  3       3  4  5       5       5  5  5 « 
 t = 23        1 ←3  4  2       2  2  5  3  3       4  5  5       4 «    5  5  5  
 t = 24      {3}←4  2  2       2  5  3  3  4       5  5  3 «    4       5  5  5 
 t = 25      {4}←2  2  2       5  3  3  4  5       5  3  3 «    4       5  5  5 
 t = 26        2 ←2  2  5       3  3  4  5  2 «    5  3  3       4       5  5  5 
 t = 27        2 ←2  5  3       3  4  5  2  2 «    5  3  3       4       5  5  5  
 t = 28        2 ←5  3  3       4  5  2  2  2 «    5  3  3       4       5  5  5 
 t = 29      {5}←3  3  1 «    4  5  2  2  2       5  3  3       4       5  5  5 
 t = 30        3 ←3  1  1 «    4  5  2  2  2       5  3  3       4       5  5  5 
 t = 31        3 ←1  1  4       5  2  2  2  5       3  3  4       5       5  5  5 « 
 t = 32        1 ←1  4  5       2  2  2  5  3       3  4  5       5       5  5  5 « 
 t = 33        1 ←4  5  2       2  2  5  3  3       4  5  5       4 «    5  5  5 
 t = 34        4 ←5  2  2       2  5  3  3  4       5  5  3 «    4       5  5  5 
 t = 35      {5}←2  2  2       5  3  3  4  5       5  3  3 «    4       5  5  5 
 t = 36        2 ←2  2  5       3  3  4  5  2 «    5  3  3       4       5  5  5 
 

Figure 3.8 Reversed-Flow Simulation of Example 1 to Find OUTPUT-R 
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The algorithm starts by sorting batches according to their due delivery time-

windows, [βi, αi], starting from the earliest to the latest of βi.  It is logical and justifiable 

to arrange batches in this manner because batches with early due delivery time-windows 

should enter pipeline before batches with later due delivery time-windows.  Thus, we 

call the sequence that obtained from arranging batches by their due delivery time-

windows an “INPUT-R”.   

This INPUT-R is actually a delivery schedule that we prefer for the final 

outcome.  From an example 1 and due delivery time-windows assigned to this example 

in section 3.5, an INPUT-R is [55 4 33 222 11].  If some batches have common βi’s in 

their due delivery time-windows, then sort batches with earliest αi first.  If some batches 

have common on both βi’s and αi’s in their delivery time-windows, then sort batches that 

are away from a source node the most first.   

Then, send input batches of INPUT-R starting from the end of the sequence into 

the pipeline and perform reversed-flow pipeline simulation.  Those five destination 

nodes will behave as source nodes for this reversed-flow pipeline simulation.  Each 

batch from the INPUT-R enters the pipeline at its corresponding source node and travel 

to a single destination node.   

The delivery schedule from simulating reversed-flow pipeline is called 

“OUTPUT-R”.  Recall that we will record the information of the batches only from the 

first input cycle.  The delivery batches that belong to the first input cycle are indicated 

by the {bi} in Figure 3.8.  The OUTPUT-R obtained from simulating reversed-flow 
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pipeline is [11 222 33 4 55].  We can acquire the final input schedule by reversing the 

sequence in OUTPUT-R and let call this new input sequence “INPUT-F1”.   

INPUT-F1 will be used to compute the delivery schedule by performing a regular 

pipeline flow simulation (forward-flow).  Hence, an INPUT-F1 obtained by reversing 

OUTPUT-R is [55 4 33 222 11].  The delivery schedule of this INPUT-F1 is identical to 

the pipeline flow simulation matrix shown in Figure 3.2 and the actual delivery time-

windows in section 3.5. 

Since we assume in this study that batches of the same product traveling to the 

same destination node must be grouped together in the input schedule, then if batches 

order obtained in INPUT-F1 does not follow this assumption, the modification of 

INPUT-F1 to meet this assumption is required.   

In a situation where batches of the same product type traveling to the same 

destination node are not grouped together, for example if INPUT-F1 is [55 4 2 33 22 

11], then b2 are not grouped together in this sequence.  We can modify this input 

sequence by moving batches b2’s in the rear of the sequence forward and grouping them 

together with one batch of b2 ahead in the sequence.  As a result, the new input that 

satisfies our assumption is [55 4 222 33 11] and we call the modified input sequence that 

moving ungrouped batches forward an “INPUT-F2”.  Additionally, we can move the 

ungrouped batches in the front if the sequence backward and group with two batches of 

b2 in the rear of the sequence and we call this modified sequence an “INPUT-F3”.  

Thus, INPUT-F3 is [55 4 33 222 11].  We run pipeline flow simulation for both INPUT-

F2 and INPUT-F3 and choose the best delivery schedule from these two modified input 
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sequences.  The reversed-flow algorithm for single-source pipeline is summarized as 

follows: 

 

Algorithm 1 : Reversed-Flow Algorithm (Single-Source Pipeline) 

 

Step1 

Sort batches according to their due delivery time-windows [βi, αi].  This sorting 

process is conducted by heap sorting technique.  For n delivery time-windows (i.e., n 

groups of batches), sort batches by ascending of βi’s, namely β1 < β2 < … < βn.  Call the 

input schedule from this sorting “INPUT-R”. 

 If βi = βi+1, then sort batches with the earliest αi first, i.e., if βi = βi+1 and αi < 

αi+1, then batches of group i are preceding batches of group i+1 in the sequence. 

If βi = βi+1 and αi = αi+1, then we break tie by using the length of source-

destination nodes for each group of batches.  Namely, batches whose length of their 

corresponding source and corresponding destination nodes is the longest are sorted first. 

Step 2 

Use INPUT-R to simulate reversed-flowed pipeline by sending batches into the 

pipeline starting from the end of the sequence. 

Step 3  

Collect the delivery sequence from reversed-flow simulation.  Since this is a 

single-source pipeline, then the reversed-flow problem will be a single-destination 

problem.  So all output information for the delivery sequence will be gathered from a 
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single point in the pipeline of the reversed-flow simulation.  Recall that the information 

collected is from the first cycle of the input sequence.  Call the delivery sequence 

obtained in this step “OUTPUT-R”. 

Step 4  

Reverse the sequence in OUTPUT-R and call this new sequence “INPUT-F1”.  

If each group of batches is sequenced together in INPUT-F1, then this INPUT-F1 is the 

final input schedule for forward flow simulation.  Otherwise, create two new sequences 

“INPUT-F2”, by moving ungrouped batches in the rear of the sequence forward, and 

“INPUT-F3”, by moving ungrouped batches in the preceding of the sequence backward.  

Hence, INPUT-F2 and INPUT-F3 are the final input schedules for forward flow 

simulation. 

Step 5 

 Use either INPUT-F1 or INPUT-F2 and INPUT-F3 as input schedule(s) for 

forward flow simulation and then calculate time violation from the actual delivery 

schedule(s).  If INPUT-F2 and INPUT-F3 are created, choose the input schedule that 

yields the minimum total time violation. 

 

3.7.1 Complexity Analysis 

 

It is important for us to determine the time complexity of this reversed-flow 

algorithm.  The next theorem explains the complexity analysis of this algorithm.  The 
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theorem proves that this algorithm can solve the single-source pipeline problem in 

O(T⋅E) time. 

 

Theorem 3.2.  Reverse-flow algorithm for single-source pipeline can be computed in 

O(T⋅E) time. 

 

Proof.  Assume that there are N order sets, where each order set n ∈ N has b ∈ Ι+ 

batches, to be sent into the pipeline.  Thus, the number of all batches in the input 

sequence is equal to b⋅N.  Each order set n ∈ N has its corresponding due delivery time-

window.  Hence, there are N due delivery time-windows.  Let also assume a simple 

pipeline with total length of E. 

The sorting of N sets of due delivery time-windows is done by heap sorting 

technique and can be computed in O(N log N) time.  There are b⋅N batches in each input 

cycle and we perform reversed-flow simulation for time T ∈ I+ periods, where T is big 

enough to include all the time periods used to generate delivery schedule and T > b⋅N.  In 

the worst case the total number of input cycles used to simulate flow in order to obtain 

the delivery schedule of the first input cycle is equal to 
Nb ⋅

T .  Each batch enters the 

pipe and travels to a destination node with the length at most E.  The time computation 

for reversed-flow pipeline simulation to obtain an OUTPUT-R is O )( E
Nb

Nb ⋅
⋅

⋅⋅
T .  

The reverse of an OUTPUT-R sequence in order to obtain INPUT-F1 can be computed 
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in O(b⋅N) time.  The calculation of INPUT-F2 and INPUT-F3 are determined in O(2b⋅N) 

time.  The time computation of forward flow pipeline simulation can be calculated in the 

similar approach to the calculation of reverse flow pipeline simulation, which is equal to 

O )( E
Nb

Nb ⋅
⋅

⋅⋅
T .  Therefore, the reversed-flow algorithm for a single-source pipeline 

problem can be implemented in O(2T⋅E + 3b⋅N + N log N+2N) ∼ O(2T⋅E + 4b⋅N) ∼ 

O(T⋅E) time.                     Q.E.D. 

 

3.7.2 Discussion  

 

It is expectable for the reversed-flow algorithm to yield input sequences that give 

poor delivery time results for some sets of pipeline information since the algorithm tends 

to sort batches whose destination is further away the most from the source node first into 

the pipeline.  Furthermore, the position of each group of batches in the sequence is 

dependent of one another so that each unique input sequence could yield a tremendously 

different result on the actual product delivery times.  Specifically, if batches traveling to 

the destination nodes closer to the source node have earlier due delivery time-windows 

than ones traveling to nodes further away from the source node, then the results of actual 

delivery time is likely to be poor. 
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 Since the nature of flow movement in the pipeline is unique and the position of 

each batch in the sequence is dependent to one another during the movement in the 

pipeline, then it is quite difficult to determine the input sequence that yields the 

minimum violation of the actual delivery time from the due delivery time-windows.  The 

possible approach to find the optimal input sequence may be conducted by exhaustive 

search.  If there are N groups of batches to be sent into the pipeline, it would take N! 

time to compute the feasible input sequences.  Moreover, each input sequence requires 

T⋅E times to simulate pipeline flow in order to compute the actual product delivery 

times. 

 Consider the following pipeline problem with seven destinations, node 1 to 7, 

and fifty input batches.  The total length of pipeline is 71 and the lengths of (S, 1), (1, 2), 

(2, 3), (3, 4), (4, 5), (5, 6), (6, 7) equal 8, 12, 9, 11, 11, 11, 9, respectively.  The input 

batches information is as follows: node 1 requires a delivery of 5 batches between time 

[40, 47]; node 2 requires a delivery of 6 batches between time [62, 69];  node 3 requires 

a delivery of 11 batches between time [25, 40]; node 4 requires a delivery of 8 batches 

between time [73, 100]; node 5 requires a delivery of 7 batches between time [109, 125]; 

node 6 requires a delivery of 8 batches between time [150, 158]; node 7 requires a 

delivery of 5 batches between time [185, 229].  The input sequence yielded from the 

reversed-flow algorithm is [77777 66666666 5555555 44444444 33333333333 222222 

11111] and the total time violation is equal to 134 while the optimal input sequence is 

[33333333333 77777 66666666 44444444 11111 5555555 222222] and minimum total 

time violation is 1.  the results of this example is displayed in Table 3.1. 
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Table 3.1 Solution of an Example of a Poor Performance Problem 

 

Product 
Batches 

 

Due Time-
windows 

Actual 
Delivery 
Windows 

(Algorithm) 

Actual 
Delivery 
Windows 
(Optimal) 

    

11111 [40, 47] [53, 58] [40, 45] 

222222 [62, 69] [64, 79] [64, 70] 

33333333333 [25, 40] [62, 79] [29, 40] 

44444444 [73, 100] [82, 90] [75, 99] 

5555555 [109, 125] [94, 101] [110, 123] 

66666666 [150, 158] [109, 142] [150, 158] 

77777 [185, 229] [158, 203] [199, 225] 

    

 

3.7.3 Optimal Solution 

 

 As we proved in Theorem 3.1 that single-source oil pipeline distribution of 

multiple products subject to delivery time-windows problem is NP-complete.  So for any 

problem with a large number of destinations and input batches, the optimal solution 

cannot be computed in polynomial time.  However, the optimal solution for small-sized 

pipeline problems can be computed by using exhaustive search on the input schedule.   
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CHAPTER IV 

 

MULTIPLE-SOURCE PIPELINES 

 

 

We study the oil pipeline distribution of multiple products subject to with 

delivery time-windows for multiple-source pipelines in this chapter.  The multiple-

source pipeline is an extension of the single-source pipeline discussed in the previous 

chapter.  The complexity of the problem and the proposed solution methodology will be 

examined in this chapter.  The algorithm proposed to solve the problem in this chapter is 

modified from the one used to solve the single-source pipeline. 

Consider a multiple-source pipeline as a pipeline that connects at least two 

single-source, simple pipeline problems together as a path.  In the single-source pipeline 

problems, we usually assume that the first node located at the beginning of the pipe is a 

source node.  This assumption is still applicable for the multiple-source pipeline 

introduced in this chapter.  The source node(s) other than the one at the beginning of the 

pipeline are assumed to be located anywhere downstream of the pipe.  The principal 

assumption of each batch travels one unit distance per one unit time is also applied to the 

multiple-source problem.  Pipeline flow is also assumed to be directed and assumptions 

outlined in Chapter II are also hold for the pipeline problems in this chapter.  Hence, a 

pipeline with multiple sources is also a path, in which a route of any pair of source-
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destination nodes is fixed and unique.  Furthermore, some additional assumptions are 

necessary for examining the multiple-source pipeline problem.  Source nodes are solely 

used for dispensing products into the pipeline.  Therefore, it is not allowed for the 

delivery of products at any source nodes located downstream in the pipe.  Each source 

node is assumed to carry unique products that are uncommon with the ones of other 

source node(s).  For example, if there are four product types, A, B, C and D, and there 

are three source nodes, S1, S2 and S3, then it is valid to our assumption for products A and 

C to be released from S1, and products B and D to be released from S2 and S3, 

respectively.  Namely, any single product type is not sent into the pipeline from two or 

more source nodes.  

The complicating issue in the transition from a single to multiple source pipelines 

is that input batches can be inserted into the middle of pipeline flow.  This obvious 

difference causes profound changes in the nature of pipeline operations.  Thus, there 

may be a way to exploit the multiple-source pipeline based on the knowledge we 

developed in single-source pipeline problems. 

The multiple-pipeline problem can be better explained by using an example.  

Thus, the first section of this chapter is the illustration of an example problem of a 

multiple-source pipeline.  Then, it is followed by a study of the attributes and 

characteristics of multiple-source pipeline problem and also its problem complexity.  

The reversed-flow algorithm developed in Chapter III will be modified for use in 

multiple-source pipeline problem.   
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4.1 Example 2 

 

 Consider a simple pipeline problem with two source nodes and three destination 

nodes as the pipeline structure is illustrated in Figure 4.1.  Nodes 1 and 3 are assigned to 

be source nodes and the other nodes are destination nodes.  The edge volume connecting 

every node pair is set equal to two volume units. 

 

 

 
2 4 5 2 3 2 2 21 

 
Source Source

 

 

Figure 4.1 A Pipeline with Two Sources and Three Destination Nodes 

 

 

Let assume that there are three product types to be transported in the pipeline; 

i.e., products A, B and C.  Source node 1 dispenses products A and B and source node 3 

dispenses product C.  Each destination node requests the product delivery as the 

following: three units of A at node 2, two units of A at node 4, three units of C at node 4 

and two units of B at node 5.   Namely, each batch requires the input information of its 

corresponding source and destination nodes as the source node is not fixed to be only at 

the first node at the start of the pipe like in the single-source pipeline. 
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        1             2            3           4           5  
                            •         •         •        •        • 
 

 t = 1                    5B

 t = 2                    5B 5B

 t = 3                    4A 5B          5B

 t = 4                    4A 4A          5B 5B

 t = 5                    4A 4A          5B 5B          4C

 t = 6                    4A 4A          5B 5B          4C 4C

 t = 7                    4A 4A          5B 5B          4C 4C ↑ 
 t = 8                    2A 4A          4A 5B          5B 4C ↑ 
 t = 9                    2A 2A          4A 4A          5B 5B ↑ 
 t = 10                  2A 2A ↑       4A 4A          5B 5B  
 t = 11                  5B 2A ↑       4A 4A          5B 5B

 t = 12                  5B 5B ↑       4A 4A          5B 5B

 t = 13                  4A 5B          5B 4A          4A 5B          5B

 t = 14                  4A 4A          5B 5B          4A 4A          5B 5B

 t = 15                  4A 4A          5B 5B          4C 4A ↑       5B 5B

 t = 16                  4A 4A          5B 5B          4C 4C ↑       5B 5B

 t = 17                  4A 4A          5B 5B          4C 4C ↑       5B 5B

 t = 18                  2A 4A          4A 5B          5B 4C ↑       5B 5B

 t = 19                  2A 2A          4A 4A          5B 5B ↑       5B 5B

 t = 20                  2A 2A ↑       4A 4A          5B 5B          5B 5B

 t = 21                  5B 2A ↑       4A 4A          5B 5B          5B 5B

 t = 22                  5B 5B ↑       4A 4A          5B 5B          5B 5B

 t = 23                  4A 5B          5B 4A          4A 5B          5B 5B ↑ 
 t = 24                  4A 4A          5B 5B          4A 4A          5B 5B ↑ 
 
 
 
 
 

Figure 4.2 Pipeline Flow Simulation of Example 2 

 

 

Let [ ] be an input sequence for this example.  Note 

that due delivery time-windows will be introduced later in this section.  Pipeline flow 

simulation matrix of this input sequence is displayed in Figure 4.2.  Another assumption 

required for operating a multiple-source pipeline is when a batch is inserted from any 

AAACCCAABB bbbbbbbbbb 2224444455
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source node located elsewhere in the middle of the pipe; all upstream batches from that 

source node remain stationary as that input batch pushes all downstream batches from 

that source node forward.  This assumption makes it possible to generate the pipeline 

flow simulation.  For example in Figure 4.2, at time t = 15 when is inserted into the 

pipe at node 3 then all batches in the pipe upstream of node 3

Cb4

 stay motionless.  This 

assumption is also applied to the case that a batch is sent into a pipeline from a source 

node located in the middle of the pipeline and the upstream pipe from that source node is 

not completely filled.  Since we do not require the release of input batches to be in any 

particular order of the source nodes, then each source node may alternately pushes 

batches into the pipe according to its corresponding input sequence.  This scenario leads 

to an event when there is a gap between batches in the pipe as it is shown in Figure 4.3. 

 

 

        1             2            3           4           5  
                            •         •         •        •        • 
 

 t = 1                    5B

 t = 2                    5B 5B

 t = 3                    5B 5B                             4C

 t = 4                    5B 5B                             4C 4C

 t = 5                    5B 5B                             4C 4C ↑ 
 t = 6                    4A 5B          5B               4C 4C

 t = 7                    4A 4A          5B 5B          4C 4C  
 t = 8                    2A 4A          4A 5B          5B 4C ↑ 
 t = 9                    2A 2A          4A 4A          5B 5B ↑ 
 t = 10                  2A 2A ↑       4A 4A          5B 5B  
  

 

Figure 4.3 Gap Between Batches in the Pipeline 
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Let assume the input sequence of set of orders O for Figure 4.3 be 

[ ].  Two batches  are sent into the pipe from node 1 at 

the first two periods, following by  enters the pipe at node 3 at t = 3.  At this period, 

 remain stationary by occupying the first two volume units of edge (1, 2), and  

moves downstream and occupies the first one volume unit of edge (3, 4).  It can be seen 

in Figure 4.3 that there exits a gap between batches on an edge connecting node 2 and 

node 3 from periods t = 3 to 6.   

AAAAACCCBB bbbbbbbbbb 2224444455
BBbb 55

Cb4

BBbb 55
Cb4

At t = 6 when  enters the pipeline at node 1, it pushes the two batches of  

that are already in the pipe forward for one unit.  However,  since there still is a gap 

between batches entering the pipe from node 1 and batches entering from node 3 at this 

period and it is not possible to have any adjacent batch to be able to push two batches of 

 occupying two volume units of edge (3, 4), then these two batches must remain 

stationary in this period. 

Ab4
BBbb 55

CCbb 44

Assign the due delivery time-windows for each group of batches for this pipeline 

problem as follows:  at node 2 at time [10, 15];  at node 4 at time [5, 10]; 

 at node 4 at time [13, 16];  at node 5 at time [21, 25].  The actual delivery 

time-windows recorded from the flow simulation shown in Figure 4.2 are as the 

following:   are delivered at time [9, 12];   are delivered at time [6, 9]; 

 are delivered at time [14, 16]; and  are delivered at time [22, 24].  Therefore, 

the total time violation equals 1. 

AAA bbb 222
CCC bbb 444

AAbb 44
BBbb 55

AAA bbb 222
CCC bbb 444

AAbb 44
BBbb 55
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4.2 Network Representation for Multiple-Source Oil Pipeline Distribution of 

Multiple Products Problem 

 

 Multiple-source, multiple-product oil pipeline problem can be transformed into 

multiple time-periods multicommodity network representation in the same approach as 

the case of a single-source problem.  Pipeline structure in Figure 4.1 can be transformed 

to be a unitized pipeline by adding intermediate nodes to any edges that have a length 

greater than one unit, like the modified pipeline structure shown in Figure 2.2.  Thus, the 

modified multiple-source pipeline structure of an example shown in Figure 4.1 is 

constructed by replacing each edge with an intermediate node and reconnecting all nodes 

in the structure with one-unit directed edges.  The modified pipeline structure is shown 

in Figure 4.4. 

 

 
1 1 1 1 1 1 1 1 

 
2 I2 3 I3 4 I4 5 I11 

 

Figure 4.4 Modified Pipeline Structure for Pipeline from Example 2 

 

 

In Figure 4.4, four intermediate nodes, I1, I2, I3 and I4, are added in order to make 

every edge in the pipeline has a unit length.  Recall that delivery of products is not 

allowed at these intermediate nodes.   
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Figure 4.5 Multiple Time-Periods Multicommodity Network for Example 2 
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The multiple time-periods multicommodity network for oil pipeline problem for 

multiple-source pipeline is constructed based on the replication of single-source pipeline 

structure and it is illustrated in Figure 4.4.  Each node ν in period t except the last node 

of each row is connected to nodes in the next period, t+1, by two edges.  One edge 

connecting to node ν+1 in period t+1 represents the moving of flow in the pipe for one 

unit distance.  The other edge connecting to node ν in period t+1 represents the 

stationary of the flow for one unit of time.  Each source node in every time period is 

connected to its corresponding pseudo-source node and each destination node of all time 

periods is connected to its corresponding pseudo-sink node. 

It can be seen in Figure 4.5 that there are three pseudo-source nodes and three 

pseudo-sink nodes.  Each pseudo-source node represents each product type.  There are 

three product types, A, B and C, in example 2.  Pseudo-source nodes A and B have edges 

connecting to node 1 of every time period and pseudo-source node C also has edges 

connecting to node 3 of every time period. 

 

4.3 Multiple-Source Oil Pipeline Distribution of Multiple Products Subject to 

Delivery Time-Windows Is NP-Complete 

 

 The NP-complete proof for multiple-source oil pipeline distribution of multiple 

products subject to delivery time-windows can be done in the similar approach to that of 

a single-source problem.  The proof is conducted by means of a reduction from a 
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satisfiability problem.  The instance and question for multiple-source problem are the 

same as those of a single-source problem described in section 3.6. 

 

Theorem 4.1.  Multiple-source oil pipeline distribution of multiple products subject to 

delivery time-windows problem is NP-complete. 

 

Proof.  In a similar claim to a single-source pipeline problem, we can reduce a 

satisfiability problem into multicommodity flow problem, and then transform into a 

version of our problem.  Regardless of how many source nodes the pipeline has, the 

transformation of a pipeline problem into a multiple time-periods multicommodity 

network flow used in the proof is identical to the transformation of a single-source 

pipeline.  Each batch is released into the pipe from its corresponding source node at any 

possible time period and will be delivered at its corresponding destination node.  

Therefore, it is able to claim that the proof for multiple-source problem is analogous to 

the one of the single-source problem shown in Theorem 3.1. 

(→)  If there exists a conjunctive normal form expression for a satisfiability 

problem and this conjunctive normal form expression is satisfiable, then the multiple-

source oil pipeline distribution of multiple products subject to delivery time-windows is 

feasible.  Given that each variable is assigned the truth value (“true” or “false”).  The 

horizontal path in the subgraph for variable u is chosen if u is assigned a “true” value 

and the vertical path in the subgraph for variable u is chosen if u is assigned a “false” 

value.  If either u or u  appears in clause cj and its value is “true”, there is a path in the 
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subgraph connecting and for variable u.  Note that the subgraph for variable u can 

be seen in to Figure 3.7. 

lcs
lcn

 (←)  Assume that the multiple-source oil pipeline distribution of multiple 

products subject to delivery time-windows is feasible and there exists a solution to our 

problem by having |K| flow functions, which satisfy the requirements, for the total 

number of |K|  batches entering the pipeline.  Each batch is released from its 

corresponding source node and delivered to its designated destination node.  There is 

exactly one path corresponding to each clause of the instance of the satisfiability 

problem.  Assign the truth value “true” for each variable u to a path traversed by a batch 

from source to destination (implicitly assigning “false” value to its negation).  Arbitrarily 

assign “true” value for any unassigned variables and no variable is assigned both “true” 

and “false” values.  As a result, each variable has a single value assigned and the 

satisfiability problem is satisfiable.                                 

Thus both requirements are met.              Q.E.D.

  

 Therefore, there is no polynomial algorithm to solve multiple-source oil pipeline 

distribution of multiple products subject to delivery time-windows unless P = NP.  The 

construction of approximation algorithm for multiple-source oil pipeline distribution of 

multiple products subject to delivery time-windows is modified from the algorithm 

provided for the single-source problem as described in Chapter III. 
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4.4 Modified Reverse-Flow Algorithm for Multiple-Source Pipeline 

 

 The constructive algorithm for multiple-source pipeline is constructed based on a 

reverse-flow technique similar to the algorithm of a single source-pipeline.  We will 

implement the algorithm to the problem in example 2 and the summary of the algorithm 

will be provided later in this section. 

 We start an algorithm by arranging input batches according to their due delivery 

time-windows [βi, αi], starting from the earliest to the latest of βi.  If some batches have 

common βi, then the rule for tie-breaking is the same as the one in a single-source 

pipeline problem.  The sequence obtained after arranging batches by due time-windows 

is called “INPUT-R”.  Thus INPUT-R for example 2 is [ ].  

This input sequence can be shorten in the form of [4

BBAAAAACCC bbbbbbbbbb 5544222444

C4C4C 2A2A2A 4A4A 5B5B].  Then, 

send input batches into the pipeline starting from the end of INPUT-R sequence.  Then, 

perform a reversed-flow pipeline simulation as shown in Figure 4.6.  Recall that 

destination nodes and source nodes in regular-flow pipeline function as source nodes and 

destination nodes, respectively, in this reversed-flow pipeline.  In Figure 4.6, flow 

travels in reverse direction from three sources, node 2, 4 and 5, to two destinations, 

nodes 1 and 3.  Product deliveries at either node 1 or 3 are indicated in { } sign 

underneath such nodes. 
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        1             2            3             4           5  
                            •         •         •          •        • 
  

 t = 1                                                                                     5B « 
 t = 2                                                                                5B 5B « 
 t = 3                                                                    4A «     5B 5B

 t = 4                                                               4A 4A «     5B 5B

 t = 5                         2A «                               4A 4A        5B 5B

 t = 6                    2A 2A «                               4A 4A        5B 5B

 t = 7         {2A}←2A 2A «                               4A 4A        5B 5B

 t = 8                    2A 2A              4A                4A 4C «     5B 5B

 t = 9                    2A 2A         4A 4A                4C 4C «      5B 5B

 t = 10                  2A 2A         4A 4A     {4C}←4C 4C «      5B 5B

 t = 11                  2A 2A         4A 4A     {4C}←4C 5B         5B 5B « 
 t = 12                  2A 2A         4A 4A     {4C}←5B 5B         5B 5B « 
 t = 13       {2A}←2A 4A         4A 5B                5B 4A «      5B 5B

 t = 14       {2A}←4A 4A         5B 5B                4A 4A «      5B 5B

 t = 15       {4A}←4A 2A «      5B 5B                4A 4A         5B 5B

 t = 16       {4A}←2A 2A «      5B 5B                4A 4A         5B 5B

 t = 17       {2A}←2A 2A «      5B 5B                4A 4A         5B 5B

 t = 18       {2A}←2A 5B         5B 4A                4C 4C «      5B 5B

 t = 19       {2A}←5B 5B         4A 4A                4C 4C «      5B 5B

 t = 20                  5B 5B         4A 4A     {4C}←4C 4C «      5B 5B

 t = 21                  5B 5B         4A 4A     {4C}←4C 5B         5B 5B « 
 t = 22                  5B 5B         4A 4A     {4C}←5B 5B         5B 5B « 
 t = 23       {5B}←5B 4A         4A 5B                5B 4A «      5B 5B

 t = 24       {5B}←4A 4A         5B 5B                4A 4A «      5B 5B

 

 

Figure 4.6 Pipeline Reversed-Flow Simulation of Example 2 to Find OUTPUT-R 

 

The delivery sequence obtained from simulating reversed-flow pipeline is also 

called “OUTPUT-R”.  The information for OUTPUT-R is those from the first input 

sequence.  OUTPUT-R from Figure 4.6 is [2A 4C4C4C 2A2A 4A4A 5B5B].  INPUT-F1, [5B5B 

4A4A 2A2A 4C4C4C 2A], is obtained by reversing OUTPUT-R sequence.  In case that 

batches in INPUT-F1 are not grouped together according to their product types and the 

destination nodes, then “INPUT-F2” and “INPUT-F3” will be introduced.   
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We see that batches 2A’s in INPUT-F1 are not grouped together.  We can modify 

INPUT-F1 either by moving one batch of 2A in the rear forward and grouping it with the 

ones in the front and define this new sequence INPUT-F2 or by moving those two 

batches in the front and group them with the one in the rear and call this new sequence 

INPUT-F3.  Therefore, INPUT-F2 is [5B5B 4A4A 2A2A2A 4C4C4C] and INPUT-F3 is [5B5B 

4A4A 4C4C4C 2A2A2A].  These two sequences are used to perform pipeline flow simulation 

and the best delivery schedule will be selected from these two input sequences.  The 

reversed-flow algorithm for multiple-source pipeline problem can be summarized as the 

following: 

 

Algorithm 2 : Modified Reversed-Flow Algorithm (Multiple-Source Pipeline) 

 

Step1   

Sort batches according to their due delivery time-windows [βi, αi] by using heap 

sorting technique.  For n delivery time-windows (i.e., n groups of batches), sort batches 

by an ascending of βi’s, namely β1 < β2 < … < βn.  Call the input schedule from this 

sorting “INPUT-R”. 

 If βi = βi+1, then sort batches with the earliest αi first, i.e., if βi = βi+1 and αi < 

αi+1, then batches of group i are preceding batches of group i+1 in the sequence. 

 If βi = βi+1 and αi = αi+1, then batches whose length of their source and 

corresponding destination nodes is the longest are sorted first.  Namely, if batches of 

group i have node n as a destination node and batches of group i+1 have node n−1 as 
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destination node, where node n−1 precedes node n in the pipeline, then batches of group 

i are preceding batches of group i+1 in the input sequence. 

Step 2  

Use INPUT-R to simulate reversed-flowed pipeline by sending batches starting 

from the end of the sequence. 

Step 3 

Collect the delivery sequence from reversed-flow pipeline simulation.  Unlike the 

single-source pipeline problem, the reversed-flow simulation for multiple-source 

pipeline is a multiple-destination problem.  Thus, output information for the delivery 

sequence will be collected from multiple destination points in the pipeline of the 

reversed-flow simulation.  Recall that the information collected is from the first cycle of 

the input sequence.  Define the delivery sequence obtained from this step “OUTPUT-

R”. 

Step 4  

Reverse OUTPUT-R sequence and call this new sequence “INPUT-F1”.  If each 

group of batches is sequenced together in INPUT-F1, then this INPUT-F1 is the final 

solution.  Otherwise, create new sequences “INPUT-F2”, by moving ungrouped batches 

in the rear of the sequence forward, and “INPUT-F3”, by moving ungrouped batches in 

the preceding of the sequence backward.  Hence, INPUT-F2 and INPUT-F3 are the final 

solutions. 
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Step 5 

 Use either INPUT-F1 or INPUT-F2 and INPUT-F3 as input schedule(s) for 

forward flow simulation and then calculate time violation from the actual delivery 

schedule(s).  If INPUT-F2 and INPUT-F3 are created, choose the input schedule that 

yields the minimum total time violation. 

 

4.4.1 Complexity Analysis 

 

The algorithm for multiple-source pipeline is essentially modified from the one 

of single-source pipeline.  The next theorem explains the time complexity of the 

algorithm provided in section 4.4. 

 

Theorem 4.2.  Reverse-flow algorithm for multiple-source pipeline can be implemented 

in O(T⋅E) time. 

 

Proof.  Basically, the reversed-flow algorithms for single-source and multiple-source 

problems are similar.  The algorithm is composed of one sorting, one reverse of 

sequences, reversed-flow simulation, two modifications of ungrouped input sequence, 

INPUT-F1 to determine INPUT-F2 and INPUT-F3, forward flow pipeline simulation 

and the computation of time violation.  Thus, the reversed-flow algorithm for multiple-

source pipeline problem can be implemented in O(2T⋅E + 3b⋅N + N log N+2N) ∼ O(2T⋅E 

+ 4b⋅N) ∼ O(T⋅E) time.                            Q.E.D. 
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CHAPTER V 

 

COMPUTATIONAL IMPLEMENTATION 

 

 

 In the previous chapters, we provided an analysis for the oil pipeline distribution 

of multiple products subject to delivery time-windows and its solution methodologies.  

However, it is important to see how well the proposed algorithms perform in practice.  In 

this chapter, we tested and analyzed the reversed-flow algorithms for both single-source 

and multiple-source pipeline problems on a set of random problems from a uniform 

distribution.  The problems are composed of different pipeline length and destination 

nodes.  All proposed algorithms were coded in Borland JBuilder 9.0. 

 In each problem, there is just one order per destination.  If each destination node 

is allowed to receive multiple orders, then the problem is equivalent to permit split 

orders.  The input data were randomly generated to approximate the line.  For example, 

Colonial Pipeline has two major pipelines that vary from 32” to 40” in diameter with 

minimum order of 75,000 barrels.  The length of both lines is approximately 2,800 miles 

with 20 points assigned as delivery depots.  Assuming a pipe diameter of 3 feet to 

simplify the calculations, thus a minimum is slightly more than 420,000 ft3, or about 9-

mile in length.  Though the problems randomly generated in this study are not as 

comparable as the ones used in generally used in the industry, their results yield useful 

information that could be useful for applying to problems in actual scenarios. 
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5.1 Single-Source Pipeline 

 

 There are four data sets generated for testing the algorithm on single-source 

pipeline problem.  Tables 5.1, 5.2 and 5.3 are the information for data sets 1, 2 and 3, 

respectively.  The number of destinations varies from 5 to 10 nodes, the total edge 

volumes from 45 to 141 and the total number of input batches from 16 to 130.  In data 

sets 1, 2 and 3 the numbers of destination nodes are U[5, 8], U[5, 10] and U[6,10], 

respectively.  Problems are labeled in numeric form after the letter P.  The first two 

digits are the number of source node, the next two digits are the number of to total nodes 

in the pipeline, and the next three digits are the total edge volumes of the pipeline. 

 Data set 4 was generated differently.  The problems in data set 4 were 

constructed in such a way that larger orders were placed at destination nodes 

downstream of the pipeline and the total number of input batches for each pipeline 

problem was intended to be larger than the total pipeline volume.  The motivation for 

generating this data set was that they would be harder to solve than the previous sets and 

they certainly require much longer computing time to find optimal solutions.  Data set 4 

are displayed in Table 5.4. 

 Tables 5.5, 5.6, 5.7 and 5.8 show the input sequences and total time violation of 

each problem calculated from reversed-flow algorithm as well as the optimal input 

sequence and minimum total time violation.   
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Table 5.1 Data Set 1 

 
 

Problem  
Number 

 
Number of 

Input 
Batches 

 
Number of 
Destination 

Nodes 

 
 

Pipeline 
Length 

    
P0106045 25 5 45 
P0106060 32 5 60 
P0107087 35 6 87 
P0107105 58 6 105 
P0108123 50 7 123 
P0108114 44 7 114 
P0109152 63 8 152 
P0109188 89 8 188 
P0109120 55 8 120 
P0107105 120 6 105 

    
 

 

 

Table 5.2 Data Set 2 

 
 

Problem  
Number 

 
Number of 

Input 
Batches 

 
Number of 
Destination 

Nodes 

 
 

Pipeline 
Length 

    
P0106045 32 5 45 
P0108069 42 7 69 
P0107847 39 7 47 
P0107042 49 6 42 
P0109074 63 8 74 
P0107096 82 6 96 
P0110086 47 9 86 
P0109052 31 8 52 
P0111020 16 10 20 
P0109115 130 8 115 

    
 



 89

Table 5.3 Data Set 3 

 
 

Problem  
Number 

 
Number of 

Input 
Batches 

 
Number of 
Destination 

Nodes 

 
 

Pipeline 
Length 

    
P0107127 58 6 127 
P0107092 70 6 92 
P0107115 81 6 115 
P0108141 63 7 141 
P0108118 47 7 118 
P0108098 39 7 98 
P0108130 67 7 130 
P0109120 50 8 120 
P0110105 35 9 105 
P0111100 29 10 100 

    
 

 

 

Table 5.4 Data Set 4 

 
 

Problem  
Number 

 
Number of 

Input 
Batches 

 
Number of 
Destination 

Nodes 

 
 

Pipeline 
Length 

    
P0106045 133 5 45 
P0107087 250 6 87 
P0108123 296 7 123 
P0108114 293 7 114 
P0108098 342 7 98 
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Table 5.5 Solutions for Data Set 1 

 
 
 

Problem  
Number 

 
 

Reversed-
Flow Time 
Violation 

 
 

Sequence 
(Reversed-

Flow) 

 
Min 
Time 

Violation 
(Optimal)

 
 
 

Sequence 
(Optimal) 

     
P0106045 95 [5E 4D 3C 2B 1A] 84 [5E 1A 3C 4D 2B] 

P0106060 98 [5E 4D 3C 2B 1A] 92 [5E 3C 4D 2B 1A] 

P0107087 28 [6F 5E 4D 3C 2B 1A] 18 [6F 4D 5E 3C 2B 1A] 

P0107105 19 [6F 5E 4D 3C 2B 1A] 16 [6F 4D 3C 5E 2B 1A] 

P0108123 5 [7G 6F 5E 4D 3C 2B 

1A] 

5 [7G 6F 5E 4D 3C 2B 

1A] 

P0108114 33 [7G 6F 5E 4D 3C 2B 

1A] 

30 [7G 6F 5E 1A 3C 4D 

2B] 

P0109152 114 [8H 7G 6F 5E 4D 3C 

2B 1A] 

83 [8H 6F 7G 3C 5E 4D 2B 

1A] 

P0109188 65 [8H 7G 6F 5E 4D 3C 

2B 1A] 

34 [8H 6F 7G 1A 5E 3C 4D 

2B] or 

[8H 6F 1A 7G 4D 5E 3C 

2B] 

P0109120 18 [8H 7G 6F 5E 4D 3C 

2B 1A] 

18 [8H 7G 6F 5E 4D 3C 2B 

1A] 

P0107105 150 [5E 6F 3C 4D 2B 1A] 82 [5E 3C 4D 2B 1A 6F] 
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Table 5.6 Solutions for Data Set 2 

 
 
 

Problem  
Number 

 
 

Reversed-
Flow Time 
Violation 

 
 

(Sequence) 
Reversed-

Flow) 

 
Min 
Time 

Violation 
(Optimal)

 
 
 

Sequence 
(Optimal) 

     
P0106045 67 [5E 4D 3C 2B 1A] 66 [5E 4D 3C 1A 2B] or 

[4D 3C 5E 2B 1A] 

P0108069 23 [7G 6F 5E 4D 3C 2B 

1A] 

23 [7G 6F 5E 4D 3C 2B 

1A] 

P0107847 50 [7G 6F 5E 4D 3C 2B 

1A] 

45 [7G 5E 4D 6F 3C 2B 

1A] 

P0107042 21 [6F 5E 4D 3C 2B 1A] 21 [7G 6F 5E 4D 3C 2B 

1A] 

P0109074 10 [8H 7G 6F 5E 4D 3C 

2B 1A] 

6 [8H 7G 6F 5E 4D 2B 1A 

3C] 

P0107096 28 [6F 5E 2B 3C 4D 1A] 28 [6F 5E 2B 3C 4D 1A] 

P0110086 9 [9I 8H 7G 6F 5E 4D 

3C 2B 1A] 

9 [9I 8H 7G 6F 5E 4D 3C 

2B 1A] 

P0109052 61 [8H 7G 6F 4D 5E 3C 

2B 1A] 

61 [8H 7G 6F 4D 5E 3C 2B 

1A] 

P0111020 15 [10J 9I 8H 7G 6F 5E 

4D 3C 2B 1A] 

15 [10J 9I 8H 7G 6F 5E 

4D 3C 2B 1A] 

P0109115 135 [6F 5E 7G 8H 1A 2B 

3C 4D] 

121 [6F 5E 7G 8H 1A 4D 2B 

3C] 

     
 

 

 

 

 



 92

 

Table 5.7 Solutions for Data Set 3 

 
 
 

Problem  
Number 

 
 

Reversed-
Flow Time 
Violation 

 
 
 

(Sequence) 
Reversed-Flow) 

 
Min 
Time 

Violation 
(Optimal)

 
 
 

Sequence 
(Optimal) 

     
P0107127 76 [6F 5E 4D 3C 2B 1A] 70 [6F 4D 5E 3C 2B 1A] 

P0107092 53 [4D 5E 6F 3C 2B 1A] 53 [4D 5E 6F 3C 2B 1A] 

P0107115 80 [6F 5E 4D 3C 2B 1A] 80 [6F 5E 4D 3C 2B 1A] 

P0108141 106 [7G 6F 5E 4D 3C 2B 

1A] 

65 [7G 6F 3C 5E 4D1A 2B] 

P0108118 110 [7G 6F 5E 4D 3C 2B 

1A] 

93 [7G 6F 5E 4D 2B 3C 1A] 

P0108098 109 [7G 6F 5E 4D 3C 2B 

1A] 

95 [7G 6F 2B 4D 5E 3C 1A] 

or [7G 2B 6F 4D 5E 3C 

1A] 

P0108130 109 [7G 6F 5E 4D 3C 2B 

1A] 

76 [7G 5E 6F 2B 4D 3C 1A] 

P0109120 105 [8H 7G 6F 4D 5E 3C 

2B 1A] 

83 [8H 6F 3C 2B 7G 4D 5E 

1A] 

P0110105 15 [9I 8H 7G 6F 5E 4D 3C 

2B 1A] 

15 [9I 8H 7G 6F 5E 4D 3C 

2B 1A] 

P0111100 49 [10J 9I 8H 7G 6F 5E 

4D 3C 2B 1A] 

29 [8H 10J 7G 6F 9I 2B 5E 

4D 3C 1A] or 

[8H 10J 9I 6F 7G 2B 5E 

4D 3C 1A] or [8H 10J 

6F 7G 9I 2B 5E 4D 3C 

1A] 
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Table 5.8 Solutions for Data Set 4 

 
 
 

Problem  
Number 

 
 

Reversed-
Flow Time 
Violation 

 
 

Sequence 
(Reversed-

Flow) 

 
Min 
Time 

Violation 
(Optimal)

 
 
 

Sequence 
(Optimal) 

     
P0106045 95 [2B 1A 4D 5E 3C] 70 [2B 1A 5E 3C 4D] 

P0107087 234 [2B 3C 1A 4D 5E 6F] 234 [2B 3C 1A 4D 5E 6F] 

P0108123 321 [3C 2B 4D 1A 5E 6F 

7G] 

317 [2B 4D 1A 3C 5E 6F 

7G] 

P0108114 291 [3C 2B 1A 4D 5E 6F 

7G] 

291 [3C 2B 1A 4D 5E 6F 

7G] 

P0108098 306 [2B 3C 1A 4D 5E 6F 

7G] 

306 [2B 3C 1A 4D 5E 6F 

7G] 

     

 

 

 

 

The results of this reversed-flow algorithm are quite good compared to the 

optimal solutions.  Fourteen of the thirty-five problems were solved optimally by the 

reversed-flow algorithm, and nine of the overall problems were more than 30% greater 

than the optimal values.  In order to understand the running time, all problems in data set 

1, 2 and 3, which have up to 10 destination nodes, 130 input batches and 188 pipeline 

volume units were solved in less than 3 seconds by the algorithm.  However, the running 
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times for computing the optimal solutions are ranging from a few seconds to more than 

17,000 seconds.  In data set 4, which has up to 7 destination nodes, 342 batches and 123 

pipeline volume units took less than 6 seconds to solve by the algorithm and up to 3,100 

seconds to compute the optimal solutions.  The proposed algorithm has a considerable 

advantage of computing an input schedule that yields the value of total time violation 

closer to the optimal value without consuming much of the running time.  Unlike finding 

an optimal input schedule, the reversed-flow algorithm can determine a solution in a 

matter of seconds.  The proposed algorithm is capable to solve problems with a large 

number of input batches, destination nodes and pipeline length. 
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Figure 5.1 Relationship between Number of Input Batches and Computation Time for 

Single-Source Pipeline 
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Figure 5.1 illustrates the relationship between computation time and the number 

of input batches.  As the number of input batches increases, the computation time is 

likely to increase in linear manner.  However, the relationship between the number of 

destination nodes and computation time is likely to be in nonlinear form.  The 

computation time increases exponentially as the number of destination nodes increases.  

The relationship between computation time and the number of destination nodes are 

displayed in Figure 5.2. 
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Figure 5.2 Relationship between Number of Destination Nodes and Computation Time 

for Single-Source Pipeline 
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5.2 Multiple-Source Pipeline 

 

 This section displays the implementation of reversed-flow algorithm to multiple-

source pipeline problems.  The problem sets are randomly generated and the maximum 

number of sources in these problems is 4.  Each problem is labeled in the same numeric 

form as the ones in single-source problems presented in section 5.1.  The data set 5 are 

multiple-source pipeline problems as the information of this data set is shown in Tables 

5.9 and 5.10. 

 

 

Table 5.9 Data Set 5 

 
 

Problem  
Number 

 
Number 
of Input 
Batches 

 
Number 
of Source 

Nodes 

 
Number of 
Destination 

Nodes 

 
 

Pipeline 
Length 

     
P0208064 49 2 6 64 
P0210053 17 2 8 53 
P0209097 42 2 7 97 
P0206046 30 2 4 46 
P0312087 56 3 9 87 
P0208068 33 3 5 68 
P0312099 48 3 9 99 
P0412069 40 4 8 69 
P0411092 59 4 7 92 
P0414111 81 4 10 111 
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Table 5.10 Source Nodes & Product Types Information for Data Set 5 

 
 

Problem  
Number 

 
 

Product Types 

 
 
 

[Source Nodes]-Product Types 
   

P0208064 A,B,C,D,E      [0]-A,B,C;  [3]-D,E 

P0210053 A,B,C,D,E      [0]-A,B,E;  [5]-C,D 

P0209097 A,B,C,D      [0]-A,C,D;  [5]-B 

P0206046 A,B,C      [0]-A,B;  [2]-C 

P0312087 A,B,C,D,E,F      [0]A,E;  [3]-B,C;  [6]-D,F 

P0208068 A,B,C,D,E,F      [0]-A,B,C,D; [4]-E,F 

P0312099 A,B,C,D,E,F,G      [0]-A,B,C,H;  [4]-D,E;  [7]-F,G 

P0412069 A,B,C,D,E,F,G      [0]-A;  [2]-B,C,D;  [5]-E,F;  [9]-G 

P0411092 A,B,C,D,E,F,G      [0]-A,B,C;  [4]-D;  [6]-E,F;  [9]-G 

P0414111 A,B,C,D,E,F,G      [0]-A,B;  [3]-C,D;  [8]-E,F;  [10]-G 

   
 

 

 

 The solutions of problems in data set 5 are presented in Table 5.11.  Since all 

INPUT-F1’s in this data set do not yield the solutions in the sequence pattern required by 

this study, then the best solution is selected from the minimum total time violation 

between INPUT-F2 and INPUTF3 for each problem as the best solution is indicated by 

an asterisk (*). 
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Table 5.11 Solutions for Data Set 5 

 
 

Problem  
Number 

 
INPUT-F1 

[Sequence]-Time 
Violation 

 
INPUT-F2 
[Sequence]-

Time Violation 

 
INPUT-F3 
[Sequence]-

Time Violation 
    

P0208064 [6C 7E 6C 4B 7E 2C 1A 5D 

2C]-50 

[6C 7E 4B 2C 1A 5D]-

55∗
[6C 4B 7E 2C 1A 5D 2C]-

70 

P0210053 [6B 4B 9D 3A 9D 2A 8D 2A 

8D 7C 1A 7C]-105 

[6B 4B 9D 3A 2A 8D 

7C 1A]-101 ∗

[6B 4B 3A 9D 2A 8D 1A 

7C]-104 

P0209097 [7A 6C 8B 6C 8B 4D 8B 4D 

3A 2C 1D]-29 

[7A 6C 8B 4D 3A 2C 

1D]-31∗
[7A 6C 8B 4D 3A 2C 

1D]-31 ∗

P0206046 [5C 4A 5C 4A 5C 4A 3B 

1A]-28 

[5C 4A 3B 1A]-25∗ [5C 4A 3B 1A]-25∗

P0312087 [4A 11F 9B 11F 10F 2A 7C 

10F 7C 10F 8D 5B 2A 1E 

5B 8D 5B]-140 

[4A 11F 9B 10F 2A 7C 

8D 5B 1E]-180 

[4A 11F 9B 7C 10F 2A 

1E 8D 5B]-136∗

P0208068 [7F 5D 7F 3C 6E 3C 2B 6E 

2B 1A]-61 

[7F 5D 3C 6E 2B 1A]-

64∗
[5D 7F 3C 6E 2B 1A]-

68 

P0312099 [10D 5H 11G 8E 11G 6D 

3C 2A 9F 2A 1B 9F]-79 

[10D 5H 11G 8E 6D 

3C 2A 9F 1B]-83∗
[10D 5H 8E 11G 6D 3C 

2A 9F]-158 

P0412069 [11E 7D 8F 1A 4C 8F 4C 

10G 4C 1A 4C 3B 6E 10G 

6E]-30 

[11E 7D 8F 1A 4C 10G 

3B 6E]-39 

[11E 7D 8F 1A 4C 3B 

10G 6E]-37∗

P0411092 [3C 5D 3C 8F 3C 2B 5D 1A 

8F 7E 10G 1A 7E]-34 

[3C 5D 8F 2B 1A 7E 

10G]-45∗
[3C 2B 5D  8F 10G 1A 

7E]-66 

P0414111 [7D 6A 12E 13G 7D 6A 7D 

4B 12E 11F 13G 11F 9E 4B 

5C 4B 2A 1A 5C 2A]-246 

[7D 6A 12E 13G 4B  

11F 9E 2A 1A 5C]-320 

[6A 7D 12E 13G 11F 9E 

4B 1A 5C 2A]-131∗
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 Similar to an algorithm for single-source pipeline, the relationship between 

computation time and number of batches is likely to be linear as shown in Figure 5.3.  

The computation time is likely to increase exponentially as the number of destination 

nodes in the pipeline grows as illustrated in Figure 5.4. 
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Figure 5.3 Relationship between Number of Input Batches and Computation Time for 

Multiple-Source Pipeline 
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Figure 5.4 Relationship between Number of Destination Nodes and Computation Time 

for Multiple-Source Pipeline 
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CHAPTER VI 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

 This chapter provides the summary of this dissertation, contributions and 

suggestions of the possible research works in the future. 

 

6.1 Summary 

 

This dissertation investigates a single-source and a multiple-source oil pipeline 

distribution of multiple products subject to delivery time-windows.  Time-windows are 

generally used in scheduling and logistic problems and they are introduced to 

incorporate in pipeline scheduling problem.  The principal objective of this dissertation 

is to construct a model representing the problem and find a solution methodology that 

calculate the pipeline input schedule that yields delivery schedule with the minimum of 

total time violation from due delivery  time-windows.  The investigation in this 

dissertation accentuates more on the single-source pipeline problem as it is explained in 

Chapter III; however, this dissertation also discusses in Chapter IV providing a 

preliminary study on multiple-source pipeline problem based on an extension of the 

study from Chapter III.   

Basically, pipeline scheduling problem without delivery time-windows is a 

difficult one to solve.  The problem is much more difficult by including the delivery 
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time-windows.  This dissertation proved that a single-source oil pipeline distribution of 

multiple products subject to delivery time-windows is NP-Complete.  The algorithm 

based on flow reversibility approach is introduced and the algorithm is tested 

computationally.  In the same course as the single-source pipeline, the multiple-source 

oil pipeline distribution problem is also proved to be NP-Complete.  The algorithm to 

solve the pipeline problem with multiple-source is also presented. 

The computational results are presented in the last part of this dissertation.  Sets 

of randomly generated problems are used to test the reversed-flow algorithms.  The 

algorithms take running time in a matter of seconds and provide good results compared 

to the optimal solutions.  About a quarter of all the problems tested were more than 30% 

greater than the optimal values and about 40% of all the tested problems were solved 

optimally by the algorithm. 

 

6.2 Research Contribution 

 

The principal contribution of this dissertation will be in introducing delivery 

time-window concept to the oil pipeline distribution of multiple products problem, 

which is realistic and practical aspects and is a challenging area to work on.  The 

problem is also interesting and challenging due to its complexity and non-traditional 

nature.  This dissertation has laid groundwork to build the model for pipeline scheduling 

problem with delivery time-windows.  We explored the computational complexity of the 

pipeline problem and provided solution methodologies to solve the problem for both 
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single-source and multiple-source pipelines.  It is our expectation that the effective 

results from this study will be crucial tools to guide and assist pipeline 

operators/schedulers to ease the difficulty in planning the pipeline schedule instead of 

using only the brute force and past experience.  It is also our expectation that this 

research will be part of the initial exploration of using optimization tool to provide a 

theoretical basis for future work on this area of complicated oil pipeline problem.    

 

6.3 Future Research Recommendations 

 

 There are numerous potentials for the future work in this area.  Since we assume 

in this dissertation that all the pipelines in this dissertation are path, it is possible to 

extend the work and study the pipelines that are in different structure such as tree 

pipeline.  Flow splitting and the study of pipeline with fungible products which are 

comparable to real-world situation are challenging and interesting topics to be explored 

in the future.  A further investigation on multiple-source pipeline problem is another 

research direction that needs to be explored.  It is encouraged to investigate different 

approaches to solve the problems. 
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