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ABSTRACT

Semiparametric Functional Data Analysis for Longitudinal/Clustered Data: Theory and

Application. (December 2004)

Zonghui Hu, B.S., Dalian University of Technology, Dalian, P.R.China;

M.S., Dalian University of Technology, Dalian, P.R. China;

M.S., Texas A& M University, College Station, TX

Chair of Advisory Committee: Dr. Naisyin Wang

Semiparametric models play important roles in the field of biological statistics. In this

dissertation, two types of semiparametic models are to be studied. One is the partially

linear model, where the parametric part is a linear function. We are to investigate the two

common estimation methods for the partially linear models when the data is correlated —

longitudinal or clustered. The other is a semiparametric model where a latent covariate

is incorporated in a mixed effects model. We will propose a semiparametric approach for

estimation of this model and apply it to the study on colon carcinogenesis.

First, we study the profile-kernel and backfitting methods in partially linear models

for clustered/longitudinal data. For independent data, despite the potential root-n inconsis-

tency of the backfitting estimator noted by Rice (1986), the two estimators have the same

asymptotic variance matrix as shown by Opsomer and Ruppert (1999). In this work, the-

oretical comparisons of the two estimators for multivariate responses are investigated. We

show that, for correlated data, backfitting often produces a larger asymptotic variance than

the profile-kernel method; that is, in addition to its bias problem, the backfitting estimator

does not have the same asymptotic efficiency as the profile-kernel estimator when data is

correlated. Consequently, the common practice of using the backfitting method to com-
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pute profile-kernel estimates is no longer advised. We illustrate this in detail by following

Zeger and Diggle (1994), Lin and Carroll (2001) with a working independence covariance

structure for nonparametric estimation and a correlated covariance structure for parametric

estimation. Numerical performance of the two estimators is investigated through a simula-

tion study. Their application to an ophthalmology dataset is also described.

Next, we study a mixed effects model where the main response and covariate vari-

ables are linked through the positions where they are measured. But for technical reasons,

they are not measured at the same positions. We propose a semiparametric approach for

this misaligned measurements problem and derive the asymptotic properties of the semi-

parametric estimators under reasonable conditions. An application of the semiparametric

method to a colon carcinogenesis study is provided. We find that, as compared with the

corn oil supplemented diet, fish oil supplemented diet tends to inhibit the increment ofbcl-

2 (oncogene) gene expression in rats when the amount of DNA damage increases, and thus

promotes apoptosis.
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CHAPTER I

INTRODUCTION

The first topic in this work is on the partially linear models. As a special case of semi-

parametric models ( Ruppert, Wand, and Carroll 2003), partially linear models have been

studied intensively in the literature, see Härdle et al. (2000). Compared with parametric

models, partially linear models provide great flexibility in modeling the data. This advan-

tage of partially linear models is obvious when the main interest of the study is the linear

effects, and the effects from other factors are unidentifiable or simply unimportant.

Y = XTβ+θ(T)+ ε

Above is a general form of the partially linear model. It contains the linear termXTβ,

whereβ is unknown vector of parameters. It also contains a nonparametric termθ(T)

whereθ(·) is unknown smooth function. In this model,Y is the response,X andT are the

covariates, andε is the random error.

There are two common methods for estimating the partially linear model, namely the

profile-kernel method (Carroll et al. 1997) and the backfitting method (Buja et al. 1989).

Both methods involve the nonparametric estimation on functionθ(·) and the parametric

estimation on parameterβ. For independent data, Rice (1986) pointed out that at the opti-

mal bandwidth for nonparametric estimation, the backfitting estimator is not root-n consis-

tent, while the profile-kernel method is consistent. However, Opsomer and Ruppert (1997)

showed that these two estimators actually have the same asymptotic variances. There-

This dissertation follows the style and format of theJournal of the American Statistical
Association.
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fore, with under smoothing (a smaller bandwidth rather than the optimal one is adopted

for nonparametric estimation), estimators from both methods can be consistent. More im-

portantly, they are of the same asymptotic efficiency. Due to this equivalence between the

two methods, people frequently use backfitting as a substitute for profile-kernel even for

correlated data. They apply the backfitting method for estimation of the partially linear

model, and consider the estimator has the same properties of the profile-kernel estimator.

In fact, the properties of the backfitting estimator are not clear up to now when the data is

correlated. Therefore, it is worth investigating whether the asymptotic equivalence between

the backfitting and profile-kernel is still valid in case of correlated data. Also, we work on

the asymptotics of the backfitting estimator for correlated data, this part of work is to be

included in chapter II.

Another topic of the work is on the colon carcinogenesis. During development of

colon cancer, the first event to happen is DNA damage in cells. It takes place within the

first few hours after exposure to carcinogen. The DNA damage does not necessarily lead

to formation of cancer cells, due to a surveillance system in the cell cycle, see Karp (2002).

When the surveillance system detects the presence of DNA damage, it triggers a response

that temporarily arrests further cell cycle progress. The cell then uses the delay to repair

the damage or transmit a signal to kill the cell when the DNA damage is beyond repair. In

this way, the body reduces the risk of damaged cells becoming cancerous. The function of

“ cell suicide” is called apoptosis. Apoptosis is one of the body’s main weapons against

cancer by getting rid of the defective cells. Thus, any alteration that diminishes a cell’s

ability of apoptosis would increase the risk of cancer. In the body, there are a groups of

proteins called oncogenes. The oncogene most closely linked to apoptosis isbcl-2 gene,

which encodes a membrane - bound protein that inhibits apoptosis. Consequently, over-

expression ofbcl-2 gene leads to suppression of apoptosis, allowing abnormal cells to

proliferate and form cancer cells. Therefore, during initial stage of cancer development,
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DNA damage may cause the formation of cancer cells depending on the functioning of

apoptosis. Meanwhile, over-expression ofbcl-2 adversely affects apoptosis. Since there

are very few cases of apoptosis at the initiation stage of colon cancer, in this work, we

will investigate the relationship between DNA damage andbcl-2 gene expression, instead

of directly on apoptosis. A clear understanding of this relationship is important to that of

colon cancer development.

The objective of the colon carcinogenesis study is to investigate the relationship be-

tweenbcl-2 gene expression and DNA damage, and also the effect of diet to this relation-

ship. A difficulty in this study is that although the two measurements,bcl-2gene expression

and DNA damage, are measured from the same experimental units — rats, they are mea-

sured at different subsampling units. They are measured over the cells from different crypts

within the colon. As a result, the response and covariate are observed at varying locations

depending on the cell number in each observed crypt. Furthermore, they are observed in

different crypts. Due to these two reasons, conventional regression methods are not appro-

priate for this colon cancinogenesis study.

We propose a semiparametric approach for this study. We will apply a mixed ef-

fects model to study the relationship ofbcl-2gene expression versus DNA damage and the

diet effect. In this mixed effects model, a latent covariate is incorporated to stand for the

unobservable DNA damage at the cell positions ofbcl-2 measurement. Consequently, a

semiparametric estimation procedure is introduced for the relationship and the diet effect.

For comparison, we will also apply the traditional methods (last observation carry-forward

and nearest neighbor) to this misaligned measurements problem. Based on the regression

outcomes, we are to find out how the diet affects the development of colon cancer during

the initial stage. This second topic of the dissertation is to be presented in chapter III.
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CHAPTER II

ESTIMATION OF PARTIALLY LINEAR MODELS FOR

LONGITUDINAL/CLUSTERED DATA ∗

2.1 Introduction

The partially linear model has been investigated intensively in the literature and various

extensions have been proposed; see for example Härdle et al.(2000). There have been two

main classes of estimation methods for this model, namely the profile-kernel and back-

fitting methods. For independent data, Severini and Staniswalis (1994) and Carroll et al.

(1997), among others, have studied the profile-kernel approach. Buja et al. (1989), Hastie

and Tibshirani (1990) and Opsomer and Ruppert (1999) have investigated the backfitting

approach. For clustered data, Severini and Staniswalis (1994) and Lin and Carroll (2001)

extended the profile-kernel method to accommodate multivariate responses, as did Wang,

Carroll and Lin (2004) in an unpublished report, while Zeger and Diggle (1994) studied the

backfitting method.

On the theoretical front, the asymptotic properties of profile-kernel estimators were

provided by Severini and Staniswalis (1994), Lin and Carroll (2001) and by Wang, Carroll

and Lin in their report. Their results also cover the clustered data scenario. For indepen-

dent data the bias problem of backfitting estimation was first noted by Rice (1986); see also

Speckman (1988), Opsomer and Ruppert (1999). Their findings indicate that undersmooth-

ing during nonparametric estimation is required for root-n consistent parametric estimation

for the backfitting method. Meanwhile, Opsomer and Ruppert (1999) also showed that the

* Hu, Z., Wang, N., and Carroll, R.J., “Profile-kernel versus backfitting in the partially
linear models for longitudinal/clustered data”,Biometrika, 2004, Vol. 91 (2), 251-262,
reproduced by permission of theBiometrikaTrustees.
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two estimators share the same asymptotic variance matrix.

In contrast to profile-kernel methods, properties of backfitting for clustered data are

less well understood. In this chapter, we investigate the asymptotic properties of the back-

fitting method for clustered data. In practice, backfitting is often used as a substitute for

profile-kernel estimation, perhaps because of their variance equivalence property in the

independent case, as well as its simplicity. However, it is unclear whether or not this equiv-

alence still holds for clustered data. The main purpose of this paper is to investigate this

issue.

We will make asymptotic comparisons between profile-kernel and backfitting estima-

tion in two contexts, namely generally under a specific but widely applicable condition

on the covariance matrix of the clustered data, and specifically under the scenario consid-

ered in Zeger and Diggle (1994), Lin and Carroll (2001). For the latter, we use a working

independence correlation structure for the nonparametric estimation and a moment-based

estimated covariance structure in parametric estimation: this estimation scheme is com-

monly used in practice. We will show that, besides the bias problem, for clustered data, the

backfitting estimator tends to have larger variance than the profile-kernel estimator; that is,

the asymptotic equivalence in variance no longer holds for the multivariate case.

The organization of this chapter is as following: we discuss the two estimation pro-

cedures, profile-kernel versus backfitting, in section 2.2 and summerize their asymptotic

properties in section 2.3. We demonstrate our theoretical results with a simulation study in

section 2.4, and an application in ophthalmology is given in section 2.5. Finally, conclud-

ing remarks are given in section 2.6, and proofs of the results in this chapter are provided

in section 2.7.
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2.2 Estimation Procedures

The partially linear model is

Yi j = XT
i j β+θ(Ti j )+ εi j , (2.1)

where theith cluster,i = 1, · · · ,n, hasmi observations,β is a p×1 vector andθ(·) is an

unknown smooth function. Here, theεi j are random errors and we assume that theεi j

from different clusters are independent. Without loss of generality, we letmi = m for all

i. As in Lin and Carroll (2001), we assume thatE(Yi j |Xi ,Ti) = E(Yi j |Xi j ,Ti j ), whereXi =

(Xi1, · · · ,Xim)T, Ti = (Ti1, · · · ,Tim)T denote the covariates observed from theith subject; see

also Pepe and Couper (1997). Likewise, we assume thatE(Yi j |Ti) = E(Yi j |Ti j ) and denote

it by mY(Ti j ); mX(Ti j ) is defined equivalently.

For profile-kernel estimation, for a givenβ, the estimator ofθ(T) is

θ̂(T;β) = m̂Y(T)− m̂X(T)β,

whereT = (TT
1 , · · · ,TT

n )T, andm̂Y(T), andm̂X(T) are nonparametric estimators ofmY(T)

and mX(T), respectively. For a function with a scalar argument, for example,θ(·), the

notationθ(v) denotes a vector whoseith element isθ(vi).

The parameterβ is then estimated by a profile-kernel generalized estimating equation,

n

∑
i=1

∂{Xiβ+ θ̂(Ti ;β)}T

∂β
V−1

i (Xi ,Ti)[Yi−{Xiβ+ θ̂(Ti ;β)}] = 0,

where theVi ’s are the working covariance matrices. The profile-kernel estimators ofβ and

θ are, respectively,

β̂P =

[
n

∑
i=1
{Xi− m̂X(Ti)}TV−1

i {Xi− m̂X(Ti)}
]−1[

n

∑
i=1
{Xi− m̂X(Ti)}TV−1

i {Yi− m̂Y(Ti)}
]

,

θ̂(t) = m̂Y(t)− m̂X(t)β̂P.
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In matrix form, the profile-kernel estimator ofβ can be written as

β̂P = {XT(I −S)TV−1(I −S)X}−1XT(I −S)TV−1(I −S)Y, (2.2)

whereS is a smoother matrix with respect toT (c.f. Opsomer and Ruppert 1997), and

V = diag(V1, · · · ,Vn) is the block diagonal matrix containing then working covariance

matrices.

For backfitting, at the current value ofβ = β̂c, the updated estimator ofθ is

θ̂(T; β̂c) = m̂Y(T)− m̂X(T)β̂c,

and the updated value ofβ is obtained by a generalized least squares regression ofYi −
θ̂(Ti ; β̂c) onXi with the argumentβ minimizing

n

∑
i=1
{Yi− θ̂(Ti ; β̂c)−Xiβ}TV−1

i {Yi− θ̂(Ti ; β̂c)−Xiβ}.

At convergence, the backfitting estimators ofβ andθ are, respectively,

β̂BF =

[
n

∑
i=1

XT
i V−1

i {Xi− m̂X(Ti)}
]−1[

n

∑
i=1

XT
i V−1

i {Yi− m̂Y(Ti)}
]

,

θ̂(t) = m̂Y(t)− m̂X(t)β̂BF.

In matrix form, the backfitting estimator ofβ is

β̂BF = {XTV−1(I −S)X}−1XTV−1(I −S)Y. (2.3)

For independent data whereV = I is used, the two estimators forβ are

β̂P = {XT(I −S)T(I −S)X}−1XT(I −S)T(I −S)Y,

β̂BF = {XT(I −S)X}−1XT(I −S)Y. (2.4)
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2.3 Asymptotic Properties

Throughout, the number of observations for each subject,m, is regarded as fixed. The

usual regularity assumptions on the kernel function are assumed, including that the second

moment is assumed to equal1. We also assume that(Yi ,Xi ,Ti), i = 1, · · · ,n, are independent

and identically distributed withf j(t) denoting the marginal density ofTi j . Throughout this

section, we assume the regularity conditions as in Lin and Carroll (2001) and suppress the

index i in the presentation.

The results concerning the comparison of the asymptotic variances of the two estima-

tors can be constructed based on (2.2) and (2.3); that is, the results are not restricted to the

case of the local linear smoother.

For independent data, as observed in expression (2.4), the profile-kernel estimator and

the backfitting estimator are identical if the smoother matrixS is symmetric and idempo-

tent. They are generally different otherwise. However, the two estimators have the same

asymptotic variance matrix; see Opsomer and Ruppert (1999). For clustered data, the com-

parison of the variances of the two estimators can be simplified whenV andΣ are functions

only of T.

Proposition II.1.Under the assumption that both the working covariance matrixV and

the true covariance matrixΣ depend only onT, the asymptotic variance of the backfitting

estimator is at least as large as that of profile-kernel estimator. That is,VBF−VP is positive

semidefinite.

A sketch proof is given in the Appendix. Proposition 1 shows that, for clustered data,

the two estimators may not share the same asymptotic variance matrix, in contrast to the

independent case. This result is completely general and does not require a specific choice

of working covariance matrix beyond that it does not depend onX. The result also applies

to general nonparametric smoothers.
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To appreciate better the differences between the two estimators, we now concentrate

on the following commonly-used estimation scheme. For nonparametric estimation, we

assume a working independence correlation matrix, and, for parametric estimation, we use

a working covariance matrixVi estimated by data. Wang and Wang (2001), Lin and Carroll

(2001) discuss the advantage of variance reduction in using the correlation for parametric

estimation versus ignoring the correlation.

The following proposition concerning the profile-kernel method is given in Lin and

Carroll (2001). We quote it here to ease comparison with properties of the backfitting

method given in Proposition II.3. In the next two propositions, the results are based on

using a local linear smoother with working independence in nonparametric estimation. This

estimation scheme is also taken for the numerical studies in the following sections.

Proposition II.2.(Lin and Carroll, 2001) Suppose thath ∝ n−α, 1/5≤ α ≤ 1/3 and

n→ ∞ and define

X̃ = X + lim
n→∞

∂θ̂(T;β)/∂β.

Thenβ̂P converges in distribution:
√

n{β̂P−β+h2bP(β,θ)/2} −→ N(0,VP), where

bP(β,θ) = E(X̃TV−1X̃)−1E{X̃TV−1θ(2)(T)},

VP = E(X̃TV−1X̃)−1E{(Z1−Z2)TΣ(Z1−Z2)}E(X̃TV−1X̃)−1.

Here X̃ = {X −mX(T)}, Σ = var(Y|X,T),Z1 = V−1X̃, Z2 = (Z1
2, · · · ,Zm

2 )T, with Z j
2 =

{∑m
k=1∑m

l=1E(X̃kVkl|T l = T j)} f j(T j)/∑m
l=1 fl (T j), andVkl denotes the(k, l) entry ofV−1.

Proposition II.3.Under the same conditions as those of Proposition II.2, the backfit-

ting estimator̂βBF converges in distribution:
√

n{β̂BF−β+h2bBF(β,θ)/2} −→N(0,VBF),

where

bBF(β,θ) = E(X̃TV−1X̃)−1E{XTV−1θ(2)(T)},
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VBF = E(X̃TV−1X̃)−1E{(Z∗1−Z∗2)
TΣ(Z∗1−Z∗2)}E(X̃TV−1X̃)−1,

andZ∗1 = V−1X, Z∗2 = (Z∗12 , · · · ,Z∗m2 )T, with Z∗ j
2 = {∑m

k=1∑m
l=1E(XkVkl|T l = T j)} f j(T j)

/∑m
l=1 fl (T j).

A sketch proof of Proposition II.3 is provided in the Appendix.

For clustered data under the estimation scheme considered, the profile-kernel estima-

tor is in general root-n inconsistent. An exception occurs when working independence is

assumed throughout (Lin and Carroll 2001).

Corollary II.1. Under the assumption that the working covariance matrixV depends

only onT, whenh is of regular ordern−1/5, the profile-kernel estimator is root-n consis-

tent, while the backfitting estimator is root-n inconsistent; under the assumed conditions,

E{XTV−1θ(2)(T)} in bBF remains non-zero.

Corollary II.1 is a direct consequence of (A.3) with straightforward conditional expec-

tation calculations.

As shown in Proposition II.1, the results concerning asymptotic variance matrices

of the two estimators apply to general nonparametric smoothers. For independent data,

Opsomer and Ruppert (1999) point out that the two estimators have the same asymptotic

variance matrix. This is also an easy consequence of Propositions II.2 and II.3. To see

this, note that, for independent data, bothΣ andV equalσ2I . In this case,Z1 = σ−2X̃,

Z2 = σ−2E(X̃|T) = 0, Z∗1 = σ−2X andZ∗2 = σ−2E(X|T). Consequently,Z1−Z2 = Z∗1−
Z∗2 = σ−2X̃ and the asymptotic variance matrices of the two estimators areVP = VBF =

σ2[E{cov(X|T)}]−1.

For clustered data, the results in the Appendix indicate that the two asymptotic vari-

ance matrices will be the same if and only ifE{mX(T)TV−1(I −S) Σ (I −S)TV−1mX(T)}
is zero; that is, a specific structure is required of the smoother matrix. In Lemma 1 of Wang,

Carroll and Lin’s report, it is shown that the nonparametric smoother of Wang (2003) pos-
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sesses such a property. The above propositions and Corollary II.1 clearly indicate that,

under the currently most commonly used estimation scheme, backfitting in general has a

larger asymptotic variance than the profile-kernel estimator and is often more biased.

2.4 Simulation Study

We conducted a simulation study to evaluate the finite sample performance of the profile-

kernel method versus the backfitting method, again in the specific context that the nonpara-

metric estimation uses working independence. Of course, from our results, we expect the

profile-kernel method to have smaller variance in general, not just for this particular choice

of smoother.

For the case of clustered data, we generated500 datasets, each comprisingn = 100

subjects withm= 5 observations per subject. The covariate vectors(Ti j ,Xi j ), j = 1, · · · ,m,

were independently generated from the bivariate normal distribution with mean0, variance

1 and correlation coefficient0.751/2. TheYi j were generated from the partially linear model

(2.1), whereθ(t) = sin(2t) andβ = 1, with normally distributed error with variance1 and

exchangeable correlation0.4. For nonparametric estimation, we used local linear kernel

estimation with the bandwidth choices0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, and we assumed

working independence. For parametric estimation, the working covarianceVi was set to be

the true within-subject covariance ofYi .

Table 1 reports the empirical biases and standard deviations, SD, of the estimated

β from the profile-kernel and backfitting methods. It shows that the bias of the profile-

kernel estimator is negligible over the range of bandwidths, but the bias of the backfitting

estimator increases sharply as the bandwidth gets larger. This observation implies that

backfitting estimator is more sensitive to bandwidth selection, as suggested by our theory.

Table 1 also shows that the backfitting estimator has larger empirical standard deviations,

about twice the size of the profile-kernel standard deviations. This observation agrees with
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Table 1. Simulation results for500clustered datasets.̂βP stands for profile-kernel
estimator,̂βBF stands for backfitting estimator.

bandwidth

Estimator h = 0.1 h = 0.2 h = 0.3 h = 0.4 h = 0.5 h = 0.6

β̂P bias -0.0014 -0.0022 -0.0016 -0.0015 -0.0019 -0.0022

SD 0.1608 0.1563 0.1539 0.1534 0.1533 0.1530

β̂BF bias 0.0147 0.0641 0.1412 0.2473 0.3801 0.5385

SD 0.3801 0.3730 0.3671 0.3610 0.3609 0.3625

our general theoretical result in Proposition II.1.

As a contrast, a numerical study was also carried out on independent data, where

500datasets were generated, each comprising300subjects. Variables(Ti ,Xi) andYi were

generated in the same way as in the clustered-data case, except that the responsesYi are

independent of each other. The empirical biases and standard deviations from the two

methods are reported in Table 2.

Table 2 shows a similar pattern in bias to that for clustered data, but the backfitting

estimator has very similar standard deviations to those of the profile-kernel estimator. This

indicates that the two estimators are nearly equally efficient for independent data, which is

consistent with the traditional finding.

Another observation from Table 1 and 2 is that, since the working covariance matrixVi

used in the clustered-data simulation does not depend onX, the profile-kernel estimator is

actually root-n consistent. This is the situation in Corollary II.1. Thus, it is natural that we

observe negligible bias from profile-kernel estimation in both the clustered and independent

cases.
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Table 2. Simulation results for500 independent datasets.β̂P stands for profile-kernel
estimator,̂βBF stands for backfitting estimator.

bandwidth

Estimator h = 0.1 h = 0.2 h = 0.3 h = 0.4 h = 0.5 h = 0.6

hline β̂P bias 0.0015 0.0078 0.0090 0.0091 0.0096 0.0100

SD 0.2444 0.2351 0.2328 0.2320 0.2320 0.2316

β̂BF bias 0.0160 0.0802 0.1695 0.2783 0.4153 0.5802

SD 0.2710 0.2555 0.2548 0.2603 0.2615 0.2663

2.5 An Application in Ophthalmology

In this section we analyze data from a prospective ophthalmology study on the use of

intraocular gas in retinal repair surgeries (Meyers et al. 1992; Song and Tan 2000). Three

different volumes of gas were injected into the eye before surgery in a total of31 patients.

The patients were then followed up3 to 8 times over a60-day time period, and the volume

of the gas left in the eye at the follow-up times was recorded as a percentage of the initial

gas level in that eye. The issue was to estimate the kinetics of the disappearance of the gas

with respect to time. We let the response variable be thearcsinsquare root transformed

percentage of gas left in the eye. The covariates are the initial level of gas concentration in

the eye, denoted byX, and the follow-up observation timeT, in the unit of days. We then

assume that the transformed response follows the partially linear model (2.1).

Since there seems to exist a positive correlation among responses from the same pa-

tient, we need to incorporate a correlation structure into the estimation scheme. From the

analysis of the residuals from the initial estimate assuming working independence (Diggle

et al. 2002, Ch. 3), we found that the compound symmetry covariance matrix fit the data

reasonably well. The estimated correlation isρ = 0.5442, and the estimated variance is

σ2 = 0.0678.
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The bandwidthh was chosen by ‘leaving one subject out’ cross validation (Rice and

Silverman 1991; Ḧardle et al. 2000,§2.1.3) using the profile-kernel method. The exact

procedure and a short justification of the use of this bandwidth selection method are given

in the Appendix. We found that estimates with bandwidth ranging from6 to 7 performed

best and that differences among them were negligible. To ensure that the conclusion was

not bandwidth dependent, we carried out the estimation for the bandwidth choices6, 6.5,

7 and 8. We then applied the profile-kernel and the backfitting estimation methods as

described in section 2.1 to these data, where the estimated compound symmetry working

covariance matrix was assumed in the parametric estimation and the local linear smoother

was used for nonparametric estimation. The results are given in Table 3.

Table 3. Ophthalmology example. Estimates and standard errors of the parametric
coefficient using profile-kernel and backfitting methods.

bandwidth

Estimator h = 6.0 h = 6.5 h = 7.0 h = 8.0

β̂P estimate 0.1037 0.1024 0.1014 0.1041

SE 0.0080 0.0072 0.0070 0.0063

β̂BF estimate 0.0898 0.0890 0.0884 0.0879

SE 0.0118 0.0119 0.0117 0.0151

Based on the results, we see that the percentage of gas volume left in the eye depends

positively on the original gas concentration in the eye. The positive estimated values ofβ

indicate that the percentage of gas volume left in the eye is high when the original level is

high. This result is consistent with the findings of Song and Tan (2000). Moreover, both

profile-kernel and backfitting estimation show a significant effect from the original gas con-

centration for all bandwidths considered. Regarding this aspect, the semiparametric model

and estimation scheme considered here improve over Song and Tan (2000), where a more
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complex model involving the same response and covariates suggests that the effect from the

original gas concentration is insignificant. Our graphical diagnosis indicates that modeling

the transformed responses with a semiparametric partially linear model provides sufficient

flexibility to model the data reasonably well. The assumption violation observed in the

parametric model considered in Song and Tan, which motivated their proposed model, no

longer exists.
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Figure 1. Ophthalmology example. Fitted curve forθ(t) by profile-kernel and backfit-
ting methods, shown by dotted and dashed lines respectively, at bandwidthh = 7.
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The time profile of the percentage of gas left in the eye is reflected byθ(t) in the

semiparametric model, and we plot the estimated curve ofθ(t) based on bandwidthh = 7

in Figure 1. The plots from profile-kernel and backfitting estimation are almost identical

and indicate the same decreasing trend.

Finally, we note that in Table 3, for all bandwidths, the backfitting estimator had larger

estimated standard error than the profile-kernel estimator. This observation agrees with the

asymptotic properties and the simulation results in section 2.2 and section 2.3. It also

suggests that for multivariate data one should no longer use backfitting as a substitute for

the profile-kernel method.

2.6 Discussion

For a comment on the use of kernel methods versus penalized spline approaches as a gen-

eral statistical methodology, and in particular the implementation of penalized splines via

variance component model representations. We will let others comment on the somewhat

controversial nature of penalized low-order basis splines versus smoothing splines, knot

selection methods without penalties and estimation of smoothing parameters, the spline

literature being in no agreement on these points.

The advantages and disadvantages of kernel methods and penalized splines using vari-

ance component model representations are fairly well known. As made clear by Ruppert et

al. (2003, Ch. 1-2), penalized splines have the advantage that they are easily adopted into

a wide variety of likelihood-type problems, by incorporating the penalties via a variance

components representation.

However, a variance component model representation of penalized splines may not

always make sense, as for example in the marginal generalized partially linear model in Lin

and Carroll (2001) when the responses were non-Gaussian. There is no likelihood function

for such problems in general, so that the penalized spline method would have to abandon
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the variance component representation in favor of ad hoc approaches or alternatives which

are known to have non-trivial computation and marginalization problems.

While variance component model representation of penalized splines can have cer-

tain advantages over kernels in terms of ease of method development, the opposite is true

in terms of theoretical development. It is generally easy to analyze kernel methods, to

develop appropriate bandwidths and to estimate these bandwidths in such a way that the-

oretical properties are ensured. In our Propositions 2 and 3, for example, we see that a

standard bandwidth of ordern−1/5 will not result in
√

n-convergence rates for estimated

β in general, while one of ordern−1/3 will do so. In contrast, the variance component

model representation of penalized splines results in an estimated smoothing parameter, but

it is generally unknown whether or not that smoothing parameter is estimated at rates that

ensure asymptotic properties, especially for example for low-order basis representations

where the number of knots is allowed to grow with the sample size.

Other examples of this difference in ease of theoretical development are available,

such as in partially linear single-index models; Carroll et al. (1997) develop a semiparamet-

ric efficient kernel method for estimating the parameters in the model. We conjecture that

the method of penalized low-order basis splines of Yu and Ruppert (2002) is also semipara-

metric efficient if the number of knots grows at an appropriate rate and if the smoothing

parameter is appropriately selected, but deriving these two items in generality may well

prove to be extremely challenging.

2.7 Proofs

The purpose of this section is to prove the propositions and results in chapter II.

In the following proofs,T, X, andY denote the observations over all the clusters.

That isT = (TT
1 , · · · ,TT

n )T, and similarly forX andY. Also,V andΣ stand for thenm×nm

assumed and true covariance matrices for all data, respectively.
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Proof for Proposition II.1

Proposition II.1Under the assumption that both the working covariance matrixV and the

true covariance matrixΣ depend only onT, the asymptotic variance of the backfitting

estimator is at least as large as that of profile-kernel estimator. That is,VBF−VP is positive

semidefinite.

Proof: For clustered data, the asymptotic varianceVBF has its central component generated

from n−1XTV−1(I −S)ε; as we will show in (A5). Similarly, the central component in the

asymptotic varianceVP is from n−1XT(I −S)TV−1(I −S)ε, which is n−1X̃TV−1(I −S)ε

asymptotically. To compareVP andVBF, it is thus sufficient to compare the variances of the

two central terms.

We now show that, under the condition thatV andΣ depend only onT, cov{XTV−1(I−
S)ε} ≥ cov{X̃TV−1(I −S)ε}. For the backfitting estimator,

cov{XTV−1(I −S)ε} = E{XTV−1(I −S)Σ(I −S)TV−1X}

= E{mT
X(T)V−1(I −S)Σ(I −S)TV−1mX(T)}

+E[tr{V−1(I −S)Σ(I −S)TV−1cov(X|T)}]. (A.1)

In this expression,mX(T) is generally nonzero and the first term is positive semidefinite

becauseV−1(I −S)Σ(I −S)TV−1 is positive semidefinite. Also,

cov(X̃TV−1(I −S)ε) = E{X̃TV−1(I −S)Σ(I −S)TV−1X̃}

= E{E(X̃|T)TV−1(I −S)Σ(I −S)TV−1E(X̃|T)}

+E[tr{V−1(I −S)Σ(I −S)TV−1cov(X̃|T)}]. (A.2)

Note that

E(X̃i |Ti) = E{Xi−mX(Ti)|Ti}= 0, (A.3)

cov(X̃i |Ti) = cov{Xi−mX(Ti)|Ti}= cov(Xi |Ti).
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Therefore, the first term in (A.2) is0, and the second terms in (A.1) and (A.2) are identical.

It follows that cov{XTV−1(I −S)ε} ≥ cov{X̃TV−1(I −S)ε)}, and consequentlyVBF≥VP.

Proof for Proposition II.2

Proposition II.2Suppose thath ∝ n−α, 1/5≤ α≤ 1/3 andn→ ∞ and define

X̃ = X + lim
n→∞

∂θ̂(T;β)/∂β.

Thenβ̂P converges in distribution:
√

n{β̂P−β+h2bP(β,θ)/2} −→ N(0,VP), where

bP(β,θ) = E(X̃TV−1X̃)−1E{X̃TV−1θ(2)(T)},

VP = E(X̃TV−1X̃)−1E{(Z1−Z2)TΣ(Z1−Z2)}E(X̃TV−1X̃)−1.

Here X̃ = {X −mX(T)}, Σ = var(Y|X,T),Z1 = V−1X̃, Z2 = (Z1
2, · · · ,Zm

2 )T, with Z j
2 =

{∑m
k=1∑m

l=1E(X̃kVkl|T l = T j)} f j(T j)/∑m
l=1 fl (T j), andVkl denotes the(k, l) entry ofV−1.

proof: See Lin and Carroll (2001).

Proof for Proposition II.3

Proposition II.3Under the same conditions as those of Proposition II.2, the backfitting es-

timatorβ̂BF converges in distribution:
√

n{β̂BF−β+h2bBF(β,θ)/2} −→N(0,VBF), where

bBF(β,θ) = E(X̃TV−1X̃)−1E{XTV−1θ(2)(T)},

VBF = E(X̃TV−1X̃)−1E{(Z∗1−Z∗2)
TΣ(Z∗1−Z∗2)}E(X̃TV−1X̃)−1,

andZ∗1 = V−1X, Z∗2 = (Z∗12 , · · · ,Z∗m2 )T, with Z∗ j
2 = {∑m

k=1∑m
l=1E(XkVkl|T l = T j)} f j(T j)

/∑m
l=1 fl (T j).

proof: For the backfitting estimator, based on expression (2.3),

β̂BF−β = {n−1XTV−1(I −S)X}−1{n−1XTV−1(I −S)(θ(T)+ ε)} (A.4)

In the first term of (A.4), with probability 1,

1
n

XTV−1(I −S)X → E[XT
i V−1

i {Xi−mX(Ti)}]
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whereE[XT
i V−1

i {Xi−mX(Ti)}] = E[{Xi−mX(Ti)}TV−1
i {Xi−mX(Ti)}] = E(X̃T

i V−1
i X̃i). In

the second term of (A.4),

1
n

XTV−1(I −S)(θ(T)+ ε) =
1
n

XTV−1(I −S)θ(T)+
1
n

XTV−1(I −S)ε, (A.5)

where the first term determines the bias of the backfitting estimator in Proposition 3:

1
n

XTV−1(I −S)θ(T) =−h2

2
E

{
XT

i V−1
i θ(2)(Ti)

}
+oP(h2),

see Opsomer and Ruppert (1997). The second term in (A.5) determines the ‘centred’

asymptotic distribution of the backfitting estimator and can be written as

1
n

n

∑
i=1

XT
i V−1

i εi− 1
n

n

∑
i=1

XT
i V−1

i {m̂ε(Ti)−mε(Ti)},

wherem̂ε(t) is the nonparametric smooth ofε at t andmε(t) is its expectation.

Recalling thatKh(s) = h−1K(s/h), whereK is a kernel function in nonparametric

estimation, we have

m̂ε(t;β)−mε(t) = w−1
2 (t)

1
n

n

∑
i=1

m

∑
j=1

Kh(Ti j − t)εi j +oP(n−1/2),

wherew2(t) = ∑m
l=1 fl (t). Proposition 3 follows by substituting this expression back into

(A.4) and carrying out the expectation calculation.

Leave one subject out cross validation

This is to prove the validity of using “Leave one subject out cross validation” for

choosing bandwidth in partially linear model estimation. This bandwidth selection is ap-

plied in section 2.4.

Proof: Let β̂P[i] and θ̂h[i](t) = θ̂h[i](t, β̂P[i]) be the profile-kernel estimators ofβ andθ(T)

without observations from subjecti. We letCV(h) be n−1∑i

{
Yi−Xi β̂P[i]− θ̂h[i](Ti)

}⊗2
,

wherev⊗2 = vTv, and consider the following decomposition:

CV(h) = n−1

(
n

∑
i=1

ε⊗2
i +

n

∑
i=1

{
Xi(β̂P[i]−β)

}⊗2
+

n

∑
i=1

{
θ̂h[i](Ti)−θ(Ti)

}⊗2
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−
n

∑
i=1

[
εT

i

{
Xi(β̂P[i]−β)+ θ̂h[i](Ti)−θ(Ti)

}
+

{
Xi(β̂P[i]−β)+ θ̂h[i](Ti)−θ(Ti)

}T
εi

]

+
n

∑
i=1

[{
Xi(β̂P[i]−β)

}T {
θ̂h[i](Ti)−θ(Ti)

}
+

{
θ̂h[i](Ti)−θ(Ti)

}T {
Xi(β̂P[i]−β)

}])
.(A.6)

We select the bandwidth to beh∗ which minimizesCV(h) in an interval of[b1n−1/5,

b2n−1/5], where0 < b1 < b2 < ∞. The first term in the right-hand side of (A.6) does

not depend onh, while, under the conditions of Proposition 1 and forh = Op(n−1/5), the

second term is negligible when compared to the third term. Direct derivations also show

that, forh = Op(n−1/5), all other terms in (A.6) converge to0 faster than the third term;

that is, the bandwidth selection criterion that minimisesCV(h) is asymptotically equivalent

to the criterion that minimises

n−1
n

∑
i=1

{
θ̂h[i](Ti)−θ(Ti)

}⊗2
= n−1

n

∑
i=1

m

∑
j=1

{
θ̂h[i](Ti j )−θ(Ti j )

}2
.

The asymptotic bias and variance structures in Lin and Carroll (2001) and Wang (2003) can

be used to show that the selected optimalh is of ordern−1/5, as in the independent case.
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CHAPTER III

SEMIPARAMETRIC APPROACH FOR LATENT COVARIATES IN MIXED EFFECTS

MODELS

3.1 Introduction

Colon cancer is the second leading cause of death from cancer in the United States. There

are strong epidemiological and clinical indications that a high proportion of the deaths

could be prevented through appropriate diet (AICR 1997). Until recently, colon cancer

development was thought to occur primarily due to increasing cell proliferation. This em-

phasis has now been shifted and there is considerable interest in linking colon tumor devel-

opment to inhibition of apoptosis (cell death; see Heemels et al. 2000). When affected by

carcinogen, apoptosis causes the termination of the cells with irreparable genetic damages

that have the potential to progress into cancer cells. That is, by getting rid of damaged cells,

apoptosis prevents them from proliferating to cancer cells.

There is a family of oncogenes that encode products adversely affecting apoptosis. An

oncogene closely linked to apoptosis isbcl-2. Over-expression of thebcl-2gene leads to the

suppression of apoptosis, thus allows tumor cells alive and proliferating. During the initial

stage of colon carcinogenesis (e.g., the first 12 hours post exposure to a carcinogen), few

apoptotic cells are formed and the main information is carried by an apoptosis-related gene

(e.g.,bcl-2). Therefore, in this study, we focus on investigating the relationship between

bcl-2 gene expression and the amount of DNA damage during this initial stage of colon

cancer. Our primary interest is how the diet affects this relationship at different time after

exposure to carcinogen. In the laboratory, the amount of DNA damage is measured by the

DNA adduct level.

We now briefly describe the experiment. Thirty rats were divided evenly into two



23

groups. Each group was fed with one of the two diets: a fish oil supplemented or a corn

oil supplemented for two weeks. After this, all 30 rats were injected with azoxymethane

(AOM), a carcinogen that induces colon cancer. Three rats from each diet group were

then euthanized at 0, 3, 6, 9, and 12 hours post exposure to carcinogen to measure the

DNA adduct level andbcl-2 gene expression in colonic cells. For each rat, 20 crypts were

selected to measurebcl-2, and another group of 14 to 25 crypts were selected to measure the

adduct level. These two measurements were taken at each cell within the selected crypts:

about 14 to 25 cells in the crypts forbcl-2measurement, and 14 to 56 cells in the crypts for

DNA adduct measurement.

Figure 2. Structure of colon crypts

Colon crypts are discrete units where colonic cells replicate. Within each crypt, there

are stationary, permanent cells called stem cells that generate all of the cells within that

crypt. Daughter cells are formed at the crypt depth where the stem cells are located. As



24

more cells are created, they move up the crypt unit and exfoliate into the intestinal lumen.

Thus, a cell’s relative position within a crypt is an indicator of its age: cells at the bottom

are younger, while cells near the top are older. In this data, the relative cell positions in a

crypt are recorded ranging from 0 at the bottom to 1 at the top. Figure 2 shows the structure

of the crypts in a colon.

Our goal is to understand the relationship between the two measurements, cell DNA

adduct level and thebcl-2 gene expression, as well as the effect of diet. More precisely,

we want to investigate, in comparison to the corn oil supplemented diet, whether the fish

oil supplemented diet helps reducebcl-2 gene expression when DNA damage increases.

We need a mixed effects model for this relationship to accommodate the diet and time

treatment effects, and also the random effects from rat and crypt. The special aspect about

this study is: DNA adduct level andbcl-2 gene expression were not measured in the same

crypts, though from the same rats. This is because in this study, once a crypt was selected

to take DNA adduct measurement, this same crypt could not be used again to measure

bcl-2. Instead, a different crypt from the same rat was used. Since the number of cells

varies from crypt to crypt, cells within different crypts have different relative cell positions.

Consequently, the two measurements,bcl-2 gene expression and DNA adduct level, were

observed at different cell positions. It is a problem of misaligned measurements. Conven-

tional regression methods are not appropriate here.

For the misaligned measurements problem, we propose a semiparametric statistical

methodology. When the covariate values are unavailable, the traditionally common practice

are the nearest neighbor (NN, Pielou 1961) method or the last observation carry-forward

(LOCF, Mallinckrodt et al. 2003) method. These two methods, when applied to the colon

carcinogenesis study, are to use the DNA adduct values that are observed at cell positions

nearest to or immediately in front of thebcl-2measuring positions as the DNA adduct val-

ues corresponding to thebcl-2 measurement. Our semiparametric approach is to assume
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a latent process that relates DNA adduct to the relative cell position at rat level, and use

this latent process for the latent covariate - DNA adduct - in the mixed effects model esti-

mation. The rat level latent process can be estimated nonparametrically from the group of

crypts selected for measuring DNA adduct. We refer to this practice of incorporating non-

parametric estimates in parametric model estimation as the semiparametric approach. This

semiparametric approach and the NN, LOCF methods, are all based on the fact thatbcl-2

and the unobserved corresponding DNA adduct are related through the cell position. How-

ever, the semiparametric approach takes into account that the two measurements are not

only misaligned, but more importantly from different crypts. Another possible approach

for this misaligned measurements problem is the EM (estimation maximization) method.

However, due to the complexity of the colon carcinogenesis data, EM method is not as

applicable as the semiparametric approach.

This semiparametric approach can be considered as an extension of Carroll and Wand

(1991) and Pepe and Fleming (1991) in that a nonparametric estimation method is used

to obtain the estimates of the unobserved covariate. The major differences are two fold:

first, the previous two papers actually partially observe the true covariates while we do

not. Secondly, the DNA adduct measurement forms a nonparametric mixed effect model

with the marginal mean as a function of the relative cell position. That is, the observed

surrogates are correlated while the previous work focus on independent responses. While

the method developed in this paper is motivated by and applied to the colon cancer data,

the proposed method has more general applications. In biological studies, it is common

that true covariates are not directly observable and can only be postulated as coefficients

or functional of another regression model (see Wang and Wang 2001, for a parametric

example).

This chapter is organized as following. Section 3.2 formulates the mixed effects mod-

els for the colon cancer data, and describes the proposed semiparametric method. Section
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3.3 develops the asymptotic properties of the semiparametric estimators. Section 3.4 gives

a simulation study. Section 3.5 presents the application of our method to the colon cancer

data. Finally the concluding remarks are in section 3.6, and the proofs of the results in this

chapter are provided in section 3.7.

3.2 The Model and the Method

3.2.1 Model Specification

Due to the fact that the cell DNA adduct measurement is unavailable for the crypts where

bcl-2 gene expression is taken, we assume a rat level latent adduct processXi(t) for rat i at

relative cell positiont, t ∈ (0,1). Here cell position, or the relative cell position, refers to

the relative position of each cell within the selected crypt.

The following mixed effects model describes the relationship betweenbcl-2 and the

rat level latent covariate:

Ytr
i jk = H(Xtr

i (ti jk),βtr)+Ztr
i j b

tr
i j + εtr

i jk . (3.1)

In this model,i is the index of rat,j is the index of crypt selected to measurebcl-2, k is the

index of the cells in the selected crypt, and the sup-index “tr” is the treatment indicator for

the diet and time group. The cell levelbcl-2 gene expression,Ytr
i jk , is linked to the rat level

DNA adduct covariate,Xtr
i , through the relative cell positionti jk . β is the unknown fixed

effect parameter vector andH is the known link function. The random effect,btr, coupling

with rat and crypt level observed covariate,Ztr, lay out the hierarchical rat and crypt-level

dependency in model (3.1). Finally, we letγtr denote the unknown parameters in the error

distribution ofbtr and the additive cell level errorεtr. Hereafter, to ease the notation, we

suppress the sup-index “tr” in the text.

The latent covariate,Xi(t), is completely unobservable but can be considered as the

rat-level conditional mean at cell positiont . That is, we can link the observed cell DNA
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adduct measurement at rati, crypt j ′ and cellk′, which is denoted asWi j ′k′, to Xi(·) through

the following model:

Wi j ′k′ = Xi(ti j ′k′)+di j ′(ti j ′k′)+ei j ′k′, (3.2)

wheredi j ′ denotes the crypt level variation andei j ′k′ denotes the cell level additive error.

Conditional onXtr
i (t), we assume that measurements from different crypts are independent

of each other. Model (3.2) is equivalent to the nonparametric model considered in Morris,

et al. (2001). Note that,j ′ is the index of the crypts selected for DNA adduct measure,

andk′ is the index of the cell within that crypt. Due to the nature of the experiment, in no

situation, j ′ = j in (3.1) and (3.2).

Since crypts are randomly selected from the same rat to measurebcl-2 and DNA

adduct, biologically, the two groups of crypts should have similar properties. Therefore, it

is reasonable to assume that the latent process for adductXi is the same for the two groups

of crypts. This suggests that we can estimate the latent covariateXi in model (3.1) from the

nonparametric model (3.2).

3.2.2 Method Description

Since the latent covariateXi(t) can be considered as the rat-level conditional mean at cell

positiont, one way to recover this unobserved covariate is to estimate it nonparametrically.

Our semiparametric method to estimate parameters,β andγ in model (3.1) can be described

by two steps. Step 1: nonparametrically estimate the latent processXi(.) for each rat. That

is to estimateXi(t) at cell positiont based on model (3.2). Step 2: Use the estimatedXi(ti jk)

to replace the trueXi(ti jk) in mixed effects model (3.1) and then estimateβ andγ.

For estimation of the latent adduct process, we estimate within each rat separately, due

to the fact that the rats are independent. To estimateXi(t), we use the local linear smoothing

and assume the working independence correlation structure (Lin and Carroll 2000). That
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is, we will ignore the correlation among observed DNA adduct from a common crypt in the

process of nonparametric estimation ofXi .

For estimation of the parametric part, we use the generalized estimating equation

(GEE). We will focus on two special cases of model (3.1) in the study of semiparamet-

ric estimation and its application in colon carcinogenesis. That is, the link function is taken

as quadratic or generalized linear function.

Yi jk = β0 +β1Xi(ti jk)+β2Xi(ti jk)2 +Zi j b
tr
i j + εi jk (3.3)

or

Yi jk = H(Xi(ti jk)β)+Zi j b
tr
i j + εi jk . (3.4)

For the mixed effects quadratic model (3.3), semiparametric estimator forβ is,

β̂∗= {n−1
n

∑
i=1

[
1, X̃i(Ti), X̃2

i (Ti)
]T

Σ̂−1
i

[
1, X̃i(Ti), X̃2

i (Ti)
]
}−1{n−1

n

∑
i=1

[
1, X̃i(Ti), X̃2

i (Ti)
]T

Σ̂−1
i Yi}

(3.5)

Wheren is the number of rats,Ti is the vector of observation cell positions forbcl-2 in

rat i, Yi is the vector of observedbcl-2, Xi is the realization ofXi(·) at Ti , X̃i(Ti) is the

nonparametrically estimated latent processXi at Ti . Σ̂i is the estimated covariance matrix

for thebcl-2measurements in rati.

For the mixed effects generalized linear model, the semiparametric estimate ofβ can

be calculated using scoring method usingX̃i(Ti). The estimator has the following asymp-

totic expression:

β̂∗−β = {n−1
n

∑
i=1

X̃i(Ti)T 4i Σ̂−1
i 4i X̃i(Ti)}−1

[n−1
n

∑
i=1

X̃i(Ti)T 4i Σ̂−1
i {Yi−H(X̃i(Ti)β)}]{1+oP(1)}. (3.6)

Here,4i = H(1)(X̃i(Ti)β) is the first order derivative of link functionH.
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Accounting for the nested experimental design in the colon carcinogenesis study: cells

within a crypt and crypts within a rat, we consider the following simple structure of the

covariance matrix in model (3.1, 3.3, 3.4):

Σi = σ2
aJNi +σ2

bdiag(JKi,1, · · · ,JKi,Ji
)+σ2

cINi , (3.7)

whereσ2
a andσ2

b are the variance components for the random effects from rat and crypt

respectively, andσ2
c is that for the random error. Thusγ = (σ2

a,σ2
b,σ

2
c). J is matrix of

entry 1; I is the identity matrix.Ni is the total number ofbcl-2 observations in rati; Ji

is the number of crypts forbcl-2 observation in rati; Ki, j is the number of cells forbcl-2

observation in cryptj of rat i. Σ̂i is calculated by replacingγ by γ̂.

When the goal is to construct consistent variance component estimator to be used in

the estimated covariance in say (3.5) or in the asymptotic inference procedure, we replace

X in the design matrix bỹX and use the traditional maximum likelihood (ML) or restricted

maximum likelihood (REML) estimators when trueX were observed. To ease the pre-

sentation of our investigation on conditions that allow such an replacement and still result

consistency outcomes, we focus our presentation of this subject on the use of an “fitting-

of-constants” method (Henderson, 1953) in quadratic models. The outcomes are given in

Section 3.3. This “fitting-of-constants” method was studied extensively by Fuller and Bat-

tese (1973) for the nested design. We choose this particular estimator for two reasons. First,

its construction is particularly suitable for nested design so we use it in our data analysis.

Secondly, the role played by the latent covariate can be clearly described. This feature

simplifies the task of presenting the basic rationale behind the consistency of the estimated

variance components and the conditions required for the consistency. The basic idea behind

the estimator is to use simple regression analysis on transformed response and covariates

to ease the task of obtaining estimated variance components. The estimation procedure

and the exact form of estimators with observed covariates are given in Fuller and Battese
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(1973) and summarized in section 3.7.

3.3 Asymptotic Properties of the Semiparametric Estimator

We develop the asymptotic properties of the semiparametric estimators based on using

local linear smoother. The nonparametric estimate of the latent processXi(.) is obtained by

local linear smoothing rat by rat. Hereafter, the sub-index for rati is suppressed. Routine

derivations give the following asymptotic expression which is used throughout the section.

To ease the presentation, we assume that all crypts within a rat have the same number of

cells.

X̃(t) = X(t)+W−1
2 (t)

1
J′

J′

∑
j ′=1

K′

∑
k′=1

Kh(Tj ′k′− t)η j ′k′ +D2X(t)h2/2+op{(J′)−1/2}, (3.8)

whereJ′ is the number of crypts for adduct observation in a specified rat,K′ is the number

of cells per crypt. Further,D2X(t) denotes the second derivative ofX(t) and Kh(v) =

h−1K(v/h) with K being a symmetric, variance1 kernel density function.η j ′k′ = d j ′ +ej ′k′

is the random error in the DNA adduct model. LetfT(t) be the marginal density of relative

cell counts at cell positiont. W2(t) = ∑K′
k′=1 fT(t). For the mixed effects quadratic model,

we obtain the following properties:

Proposition III.1.With n andJ′ → ∞, h→ 0 andJ′K′h→ ∞,
√

n(β̂∗− β−Bβ) −→
N(0,Vβ), with

Bβ = B−1A(β)h2 +op{(J′)−1/2}+O{(J′K′h)−1}, (3.9)

Vβ = B−1 +(J′K′h)−1B−1C(β)B−1, (3.10)

where

B = limn→∞
1
n

n

∑
i=1

[1,Xi ,Xi
2]TΣ−1

i [1,Xi ,Xi
2],

A(β) = h2limn→∞
1
n

n

∑
i=1

[0,Xi/2,Xi ∗D2Xi ]Σ−1
i [1,Xi ,Xi

2]β,
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C(β) = limn→∞
1
n

n

∑
i=1

PT
i Σw

i Pi .

Pi = [0, pi , pi ∗ 2Xi ] with pi = Σ−1
i [1,Xi ,Xi

2]β, and * standing for the element-wise vec-

tor/matrix product.(J′K′h)−1Σw
i is the covariance matrix of the nonparametric local linear

estimate in (3.8) evaluated atTi . Σw
i is a (JK)× (JK) matrix, with the diagonal entry

(Σw
i )l ,l = γK(0)(σ2

d +σ2
e) / fT(Til ), and the off-diagonal entry(Σw

i )l1,l2 = hσ2
dW12(Til1,Til2)

/ { fT(Til1)W2(Til2)}, whereW12(t1, t2) = ∑k′1 6=k′2 f(T1,T2)(t1, t2), γK (0) =
R

K2(s)ds, and

f(T1,T2)(t1, t2) is the bivariate density of relative frequency of having cells at positionst1,

t2 within the same crypt.

Whennh4 → 0, β̂∗ is
√

n-consistent. A sketch of proof of the proposition III.1 is in

appendix.

Remarks:

1. Both (3.9) and the second term in (3.10) goes to0 as1/(J′K′h) andh go to 0 and

J′ goes to∞. Thus the bandwidth selection is not determined by the crypt number

alone, but the number of observations of DNA adduct from all crypts within a rat.

Even though we do not need to assumeK′→∞, we carefully keep track of the role of

K′ in the asymptotic distribution. In the colon carcinogenesis study, though the crypt

numberJ′ is around twenty,J′K′ is much bigger, ranging from several hundreds to

one thousand.

2. Covariance of semiparametric estimatorβ̂∗ has two parts.B−1 is the asymptotic

covariance matrix whenX is observed. The second term in (3.10) is from the non-

parametric estimation of the latent covariateXi ’s. As J′K′h→∞, the second part will

diminish, and variance of̂β∗ is mainly fromB−1. Also, when matrixB is diagonal,

the variance of intercept̂β0 and its covariance witĥβ1 andβ̂2 are nearly not affected

by the nonparametric estimation, due to the fact that the first row and first column in

C(β) are zero, see (B.5) in section 3.7.
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3. Estimation on the covariance ofβ̂∗ can be obtained by,

v̂ar(β̂∗) = B̂−1 + B̂−1(
n

∑
i=1

ζ∗i ζ∗i
T)B̂−1, (3.11)

based on the proof in the Appendix, where

B̂ =
n

∑
i=1

[1, X̃i , X̃i
2
]T Σ̂i

−1[1, X̃i , X̃i
2
],

ζ∗i = [0,Wi ,2X̃i ∗Wi ]T Σ̂i
−1[1, X̃i , X̃i

2
]β̂∗.

andWi is the random error in the nonparametric estimation of latent processXi , as

defined in the appendix.

4. When there are more than one treatment groups, indicator variables can be used to

enlarge the design matrix. Because of the block diagonal nature of the setup, the

extension is straightforward.

For the estimates of the variance components in (3.7), we obtain the following consis-

tency property.

Proposition III.2.Estimates of variance componentsσ2
a, σ2

b andσ2
c in the mixed effect

model (3.1), with the nonparametrically estimatedXi , are consistent ash→ 0 , J′→ ∞ and

J′K′h→ ∞.

A sketch of the proof of Proposition III.2 is given in section 3.7. Fuller and Battese

(1973) have shown that estimation of the variance components does not affect the asymp-

totic properties of their weighted least square estimator. Following their derivations, we

can show that when Proposition III.2 holds, the asymptotic property for the semiparametric

estimatedβ remains the same when we replaceΣ by Σ̂. We just need to obtain the following

properties of semiparametric estimator ofβ for Σ.

For the mixed effects general linear model (3.4), the semiparametric estimator has the

similar asymptotic property.
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Proposition III.3.Under the same condition of Proposition 1, the semiparametric esti-

mator (3.6) is consistent and asymptotically normally distributed, with

Bβ = B−1A(β)h2 +op{(J′)−1/2}+O{(J′K′h)−1},

Vβ = B−1 +(J′K′h)−1B−1C(β)B−1,

where

B = limn→∞n−1
n

∑
i=1

Xi
T 4i Σ−1

i 4i Xi ,

A(β) = h2limn→∞n−1
n

∑
i=1

Xi
T 4i Σ−1

i 4i D
2Xiβ/2,

C(β) = limn→∞n−1
n

∑
i=1

Xi
T 4i Σ−1

i 4i Σw
i 4i Σ−1

i 4i Xiβ2

A sketch proof of this proposition is given in section 3.7..

3.4 Simulation Study

To study the numerical performance of the proposed semiparametric approach, we conduct

a small simulation study.

Fifty (n = 50) subjects are generated. For each subject, we generateK = 40 response

(Y) within each of theJ = 20crypts. Also, in that same subject, anotherJ′ = 30crypts and

K′ = 50 covariate (X) within each crypt are generated. The cell-positions for observingX

are evenly spaced, and those for observingY are randomly uniformly distributed, both in

[0,1].

The covariate process isXi(t) = 5−5sin(3t · r i1)+ r i2, with r i1 ∼ unif[0.9,1.1], and

r i2 ∼ N(0,1). The observed covariate,W, is generated by model (3.2), withdi j ′(t) ≡ di j ′ ,

di j ′ and ei j ′k′ are independent of each other and normally distributed with means0 and

varianceσ2
d andσ2

e, respectively. In this simulation, the variance components are chosen

asσd = 0.3, σe = 0.7. The observed responseY is generated by mixed quadratic model
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(3.3) with covariance structure as specified in (3.7). The parametric values are chosen to be

β0 = 1, β1 =−2, β2 = 1, and variance componentsσa = 1, σb = 1, σc = 3. There are 300

replications in the simulation. We carry out the estimation of the mixed quadratic model

with latent covariate by four methods: (1). GEE with the true covariate values (True), (2)

the nearest neighbor method (NN); (3) the last observation carry-forward method (LOCF),

and (4) the semiparametric method (Semip). For the semiparametric method, estimates

are computed over several bandwidths. We report In table 4 the Monte-Carlo mean and

the Monte-Carlo standard deviation of the estimated quadratic coefficients. Also, for the

semiparametric estimates, we report the estimated standard error based on their asymptotic

distribution in Proposition III.1.

Table 4. Simulation results: Mean is the Monte-Carlo mean of the estimates, SD is the
Monte-Carlo standard deviation, and ESE is the estimated standard error from the

asymptotic distribution.

Method β0 = 1 β1 =−2 β2 = 1
True mean 0.998 -1.995 0.999

SD 0.166 0.023 0.005
NN mean 0.779 -0.929 0.677

SD 0.185 0.068 0.017
LOCF mean 0.808 -0.927 0.667

SD 0.185 0.070 0.018
Semip
h = 0.03 mean 0.980 -1.983 0.994

SD(ESE) 0.167 (0.157) 0.031(0.027) 0.007 (0.006)
h = 0.04 mean 0.987 -1.994 0.996

SD(ESE) 0.167 (0.157) 0.030 (0.027) 0.007 (0.006)
h = 0.05 mean 9.995 -2.004 0.998

SD(ESE) 0.166 (0.156) 0.030 (0.026) 0.007 (0.006)
h = 0.06 mean 1.002 -2.015 1.000

SD(ESE) 0.166 (0.156) 0.029 (0.026) 0.007 (0.006)
h = 0.07 mean 1.011 -2.028 1.002

SD(ESE) 0.165 (0.156) 0.029 (0.025) 0.007 (0.006)

In table 4, we see that the LOCF and the NN estimates are biased toward null findings,
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due to the effect of attenuation. However, the semiparametric method yields much better

results than the other two methods. In addition, the estimated standard errors from the

asymptotic distribution of the semiparametric estimator are quite close to the Monte-Carlo

standard deviation. Here we see thatβ̂∗ from semiparametric estimation has more deviation

than that from the regular GEE by using the true covariate values (which is unattainable in

practice for misaligned measurements problem). This additional deviation from nonpara-

metric estimation onXi ’s decreases asJ′K′h gets big.

For the estimation of the variance components in the mixed quadratic model, based

on semiparametric approach as in (B.6, B.7, B.8), the estimated variance components at

h = 0.05are:σ̃a = 0.999, σ̃b = 1.022, andσ̃c = 3.003, with the Monte Carlo SD as 0.064,

0.030, and 0.019 respectively.

3.5 Analysis of Colon Carcinogenesis Data

In this section, we summarize the procedures and outcomes of the analysis to the colon car-

cinogenesis data introduced in Section 3.1. The goal of this study is to investigate whether

increase in DNA adduct level induces an increment or a decrement inbcl-2 gene expres-

sion, also whether the increment slopes vary with diet within a individual rat. Recall that

the response,bcl-2, and the covariate, DNA adduct, were not observed from the same crypts

within a rat. Since the relative cell positions for observing these two measurements differed

from crypt to crypt, it is a problem with misaligned measurements. We assume each rat’s

DNA adduct level follows a specific processXi . We then postulate the relationship between

bcl-2and DNA adduct by the semiparametric approach.

For this colon carcinogenesis study, these are several features to be noticed. First, as

introduced earlier, the relative cell position actually indicates the age of the cell. To detect

any effect from the cell age, we carry out analysis within each portion of the crypt sepa-

rately: the bottom1/3 section, the middle1/3 section, and the top1/3 section. This has
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been a common practice in the field of animal studies of colon carcinogenesis and the sim-

ple models provide directly interpretable outcomes for easy communication. Secondly, we

focus on the analysis using the mixed effects linear model, that is to use linear link function

H in the general mixed effects model (3.1). For the model checking purpose, we carry

out regression using mixed effects quadratic models, and find out that for most treatment

groups, the quadratic coefficients are not significantly different from zero. Therefore, we

choose to use a mixed effects linear model instead of the quadratic model. The properties

we developed for quadratic models apply here, and the linear model allows easier inter-

pretation for the diet effect on thebcl-2 vs. DNA adduct relationship. Finally, we use the

centered regression. That is to regress on the centered DNA adduct. By centered DNA

adduct, we mean the DNA adduct values centered around their rat level mean within each

section: bottom, middle, and top. The reason behind “centered” regression is as following.

Due to subject to subject variation, different rats could have different range of adduct val-

ues even within the same treatment group. The analysis using the centered adduct captures

the common structure of rat specific pattern. In fact, it models the trend betweenbcl-2

and DNA adduct within each rat and then summarizes the trends over all the rats within a

same treatment group. On the contrary, the regression using uncentered adduct practically

models the trend between the rat level averages ofbcl-2 and DNA adduct cross different

rats.

In summary, we study the colon cancer data by the linear mixed effects model on the

centered adduct values, at each of the three sections of crypts. Based on how the values

of adduct — the latent covariate in primary model (3.1) are obtained, we consider and

compare three methods: the proposed semiparametric method, the NN method, and the

LOCF method. For the semiparametric approach, bandwidth selection is from the leave

one subject out cross-validation (Rice and Silverman 1991) with the selected bandwidth

h = 0.05. It is worth noting that the values of the generalized cross validation function
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changes little over a range of bandwidths around0.05 and the outcomes vary little using

bandwidths in that neighborhood.

Analyses are performed in all three sections of the crypts. Here, we focus on report-

ing the results for the top section. Due to the research by Hong et al. (2000), it is the

location where the proportions of apoptosis differ between fish oil enhanced and corn oil

enhanced diets in the later stage of carcinogenesis. The results for the other two sections

are either non-significant or similar to the findings in this top section. In table 5, we list the

estimated coefficients from the three methods: semiparametric (Semip), last observation

carry-forward (LOCF), and the nearest neighbor (NN). For the semiparametric method, we

report the estimated intercepts and slopes for the10 treatment groups. Also reported are

the standard errors of the estimates and thep-values for the contrast between the two diets

within each of the 5 time groups. While the estimates of intercepts and slopes are from

point estimation on the colon carcinogenesis data, estimates of the standard error andp-

value are from parametric bootstrap, based on the semiparametric regression results. As

comparison, we also report the estimated slopes from LOCF and NN methods. We see that

these estimated slopes are shrunk toward zero. However, they lead to non-contradicting

conclusions as the semiparametric estimates, in the sense that the contrasts between the

two diet groups are of the similar pattern, though of much lower significance.

From table 5, we can see that during the initial stage of colon cancer development (

first 12 hours after exposure to carcinogen), except for time group 0, the fish oil fed rats

have significantly smaller slopes than the corn oil fed rats. More specifically, as DNA

damage increases, for the fish oil fed rats, thebcl-2 gene expression either decreases as at

time 3, 9, and 12 hours after injection of carcinogen, or increases at a much lower rate than

the corn oil fed rats as at time 6.

As we know,bcl-2 is an oncogene that prohibits apoptosis. Under-expression ofbcl-2

gene expression enhances higher activity of apoptosis, and consequently more active self-
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Table 5. Estimates for the linear mixed effects model of bcl-2 versus DNA adduct: SE is
the standard error,p-val is thep value for the comparison between the two diets within

each time group.

time diet semip estimates semip P-val LOCF NN
intercept (SE) slope (SE) diff int diff slope slope slope

0 fish 33.54 (2.79) 2.32 (0.53) 0.38 < 0.01 0.052 0.069
corn 37.08 (2.94) 0.83 (0.43) -0.081 -0.031

3 fish 25.13 (2.79) -0.79 (0.28) 0.04 < 0.01 -0.092 -0.108
corn 33.08 (2.80) 0.35 (0.28) 0.050 -0.034

6 fish 25.57 (2.81) 0.18 (0.25) 0.43 < 0.01 0.084 0.014
corn 28.51 (2.81) 2.25 (0.37) 0.118 0.065

9 fish 19.48 (2.88) -1.28 (0.27) 0.54 < 0.01 -0.021 -0.115
corn 22.38 (2.89) 0.92 (0.36) -0.023 -0.041

12 fish 24.99 (2.72) -0.52 (0.30) 0.72 < 0.01 0.065 -0.022
corn 26.42 (3.04) 0.42 (0.27) 0.093 0.044

termination of the cancer-prone damaged cells. Therefore, our findings in table 5 suggest

that during initial stage of colon carcinogenesis, in comparison to corn oil diet, fish oil diet

suppresses the increment in the gene expression ofbcl-2 when the DNA damage increases

and thus potentially has a better chance in promoting apoptosis. Plots of the regression

curves from semiparametric approach are shown in Figure 3.

3.6 Summary

For the colon carcinogenesis study, the objective is to find the relationship between the cell

DNA damage (measured by DNA adduct) and thebcl-2 gene expression, during the initial

stage of colon cancer. Also, we are interested in how the diet (fish oil versus corn oil)

affects this relationship at different times post the exposure to carcinogen. A mixed effects

model is appropriate for this study to incorporate the diet, time effects, and the random

effects from rat and crypt.

The two measurements — DNA adduct level andbcl-2 gene expression were mea-
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Figure 3. Fitted regression curves for bcl-2 vs. DNA adduct at each time points from
semiparametric approach: light points and lines are for the fish oil diet group, dark points
and lines are for the corn oil group, bandwidthh = 0.05.

sured from different crypts though in the same rats. Since different crypts inside the colon

have different cell numbers, the two measurements were not measured at the same cell

positions. It is a problem of misaligned measurements. Consequently, there is the latent

covariate (DNA adduct level measured at the cell positions ofbcl-2) in the mixed effects

model. We propose the semiparametric approach for this misaligned measurements prob-

lem. Based on the theoretical investigation and the simulation results, our semiparamet-

ric approach produces estimates with nice properties. Compared with the two traditional

methods, nearest neighbor approach and the last observation carry-forward approach, our
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semiparametric approach has better performance.

Biologically, the semiparametric results support that fish oil helps to reduce the risk of

developing colon cancer at the initiation stage. During this early stage, fish oil can lower

the rate of increase inbcl-2gene expression when the DNA damage increases. Since over-

expression ofbcl-2 gene inhibits apoptosis, reduced rate of increase inbcl-2 leads to more

active functioning of apoptosis, thus reduces the danger of colon cancer by getting rid of

more damaged cells.

3.7 Proofs

This section is to prove the results in chapter III.

We derive the asymptotic results based on local linear smoothing for nonparametric

estimation of latent processXi(·). Suppressing the rat indexi:

X̃(t) = X(t)+W−1
2 (t)

1
J′

J′

∑
j ′=1

K′

∑
k′=1

Kh(Tj ′k′− t)η j ′k′ +D2X(t)2h2/2+op{(J′)−1/2} (B.1)

and,

X̃2(t) =

[
X2(t)+

2
J′

X(t)W−1
2 (t)

J′

∑
j ′=1

K′

∑
k′=1

Kh(Tj ′k′− t)η j ′k′ +X(t)D2X(t)h2

+ { 1
J′

W−1
2 (t)

J′

∑
j ′=1

K′

∑
k′=1

Kh(Tj ′k′− t)η j ′k′}2 +op{(J′)−1/2}
]
{1+op(1)}.

In the following, denoteXi asXi(Ti), which is the realization of latent processXi at the

bcl-2measuring positionsTi in rat i, andX̃i for the nonparametric estimate ofXi . Similarly,

we define the vectorsWi whose entry corresponding to cell positionTi jk is

W−1
2 (Ti jk) 1

J′ ∑
J′
j ′=1∑K′

k′=1Kh(Ti j ′k′ −Ti jk)ηi j ′k′. That is,Wi contains the random errors

in the local linear smoothing estimate ofXi . Each entry inWi is Op{(J′K′h)−1/2}, and

each entry inWi
2 is O{(J′K′h)−1}.
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In the asymptotics study, the number of crypts and the number of cells within a crypt

for observing the responseY in each rat are assumed as fixed, and denoted asJi andKi j

respectively. So,Ti , Xi , andWi are of fixed dimension∑Ji
j=1Ki j .

Proof of Proposition III.1

For the semiparametric estimatorβ̂∗ in (3.5), β̂∗ = A−1
1 A2, where

A1 =
1
n

n

∑
i=1

[1, X̃i , X̃i
2
]TΣ−1

i [1, X̃i , X̃i
2
],

A2 =
1
n

n

∑
i=1

[1, X̃i , X̃i
2
]TΣ−1

i Yi .

In A1, denote

Ãi = [1, X̃i , X̃i
2
]TΣ−1

i [1, X̃i , X̃i
2
],

so,Ãi is the matrix with entrỹAi
r,s = (X̃i

r−1
)TΣiX̃i

s−1
,for r,s= 1,2,3.

Due to the fact that̃Xi = Xi + O(h2) + Op{(J′K′h)−1/2}+ op{(J′)−1/2)} and X̃i
2

=

Xi
2 +O(h2)+O{(J′K′h)−1}+op{(J′)−1/2)},

Ãi
r,s→ (Xi

r−1)TΣ−1
i Xi

s−1, for i = 1, · · · ,n. (B.2)

in probability, asJ′→ ∞, h→ 0 andJ′K′h→ ∞. Consequently,A1→ B in probability.

Write

A2 = A21+A22+A23+A24+A25, where

A21 =
1
n

n

∑
i=1

[1,Xi ,X
2
i ]TΣ−1

i [1,Xi ,X
2
i ]β+

1
n

n

∑
i=1

[1,Xi ,X
2
i ]TΣ−1

i εi ,

A22 =
1
n

n

∑
i=1

[0,Wi ,2Xi ∗Wi +Wi
2]TΣ−1

i [1,Xi ,X
2
i ]β,

A23 =
1
n

n

∑
i=1

[0,D2Xih
2/2+op{(J′)−1/2},Xi ∗D2Xih

2 +op{(J′)−1/2}]Σ−1
i [1,Xi ,X

2
i ]β,

A24 =
1
n

n

∑
i=1

[0,Wi ,2Xi ∗Wi +Wi
2]TΣ−1

i εi , (B.3)
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A25 =
1
n

n

∑
i=1

[0,D2Xih
2/2+op{(J′)−1/2},Xi ∗D2Xih

2 +op{(J′)−1/2}]Σ−1
i εi . (B.4)

Note thatA21 corresponds to the mean and variance terms in the quadratic regression ifX

were observed. The first order bias ofβ̂∗ originates fromA22 andA23, the leading extra

variance is also fromA22. For the bias,

A23 =




0

1
2(β0a00+β1a01+β2a02)

β0a10+β1a11+β2a12




h2 +op{(J′)−1/2}

= A(β)h2 +op{(J′)−1/2}

wherears = 1
n ∑n

i=1(Xi
r)TΣ−1

i D2Xi ∗Xi
s, for r = 0,1, ands= 0,1,2, are finite.

E(A22) =
1
n

n

∑
i=1




0

0

E(W 2
i )

TΣ−1
i [1,Xi ,Xi

2]β




=
γK (0)(σ2

d +σ2
e)

J′K′h
· 1
n




0

0

D−1(Ti)TΣ−1
i [1,Xi ,Xi

2]




thus,E(A22) = O{(J′K′h)−1} provided that1n ∑n
i=1D(Ti)TΣ−1

i [1,Xi,X2
i ] < ∞, with D(Ti) =

[· · · , f−1(Ti jk), · · · ].
For the covariance,cov(A21) = 1

nB,

cov(A22) =
1
n2

n

∑
i=1




0T

pT
i

2(Xi ∗ pi)T




cov(Wi)[0, pi ,2Xi ∗ pi ]
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=
1
n
(J′K′h)−1




0 0 0

0 c00 2c01

0 2c10 4c11




=
1
n
(J′K′h)−1C(β) (B.5)

with crs = limn→∞
1
n ∑n

i=1(Xi
s∗ pi)TΣw

i (pi ∗Xi
t), for r = 0,1 ands= 0,1. (J′K′h)−1Σw

i =

cov(Wi) is the covariance of the estimatedXi .

Proposition III.1 follows thatA21 andA22 are independent givenX.

Proof of Proposition III.2

Fuller and Battese (1973) gave the variance components estimators for nested design,

and shown that they are unbiased. For estimator ofγ = (σ2
a,σ2

b,σ
2
c) in the mixed model,

they have the following expressions:

σ̂2
c = τ̂T τ̂/(N2−N1− p+λ12) (B.6)

σ̂2
b =

ûT û− (N2−n− p+λ1)σ̂2
c

N2− tr(Hb)
(B.7)

σ̂2
a =

v̂T v̂− (N2− p)σ̂2
c−{N2− tr(Ha1)}σ̂2

b

N2− tr(Ha2)
(B.8)

whereτ is the vector of residuals from the centered regression ofyi jk −yi j . on xi jkm−
xi j .m, m = 1, · · · , p; u is the residual ofyi jk − yi.. on xi jkm− xi..m; v is that of yi jk on

xi jkm. N1 is the total number of sub-units (crypts for observingbcl-2) ∑n
i=1Ji . N2 is

the total number of sub-sub-units(cells for observingbcl-2) ∑n
i=1∑Ji

j=1Ki j . n is the num-

ber of subjects (rats).λ1 and λ12 are the number of x-variables that have constant val-

ues for the sub-units and the sub-sub units respectively.p is dimension ofβ. For the

mixed quadratic model,p = 3 and λ1 = λ12 = 1. X is the design matrix at the true

value of the covariates.Hb, Ha1, andHa2 are the hat matrices in the estimation of vari-

ance components.Hb = (X−X(1..))T(X−X(1..))∑n
i=1∑Ji

j=1K2
i (X i j .−X i..)T(X i j .−X i..);
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Ha1 = (XTX)−1∑n
i=1∑Ji

j=1K2
i X

T
i j .X i j .; Ha2 = (XTX)−1∑n

i=1J2
i K2

i X
T
i..X i... Ki is the number

of sub-sub-units within each sub-unit of subjecti. To ease the presentation, we assume this

number is the same for all the sub-units with a subject. That is,Ki is the number of cells in

each crypt for observing bcl-2 at rati. Here the notations related to design matrixX are the

same as in Fuller and Battese (1973).

The semiparametric variance component estimatorsσ̃a
2, σ̃b

2, andσ̃c
2 are of the same

expression as in (B.8), (B.7), and (B.6), except thatX is replaced bỹX, which is the design

matrix of the nonparametrically estimated covariates. To study these semiparametric vari-

ance components estimators, we need only to focus on the effects from the nonparametric

estimation on the covariates, which are contained in the following terms:

X̃TX̃ (B.9)

X̃(X̃TX̃)−1X̃T (B.10)

where (B.9) determines the terms in hat matricesHb, Ha1, andHa2; (B.10) determines the

estimated sum of squared errorsτ̂T τ̂, ûT û, andv̂T v̂.

For mixed effects quadratic model (3.3),

X̃TX̃ =
n

∑
i=1

[1, X̃i , X̃i
2
]T [1, X̃i , X̃i

2
]

By refering to (B.2),1nX̃TX̃ → 1
nXTX in probability asJ′→ ∞, h→ 0 andJ′K′h→

∞. Similarly, 1
nX̃(X̃TX̃)−1X̃T → 1

nX(XTX)−1XT in probability. Thus, the semiparametric

variance components estimators (σ̃a
2, σ̃b

2, σ̃c
2) converge to(σ̂a

2, σ̂b
2, σ̂c

2) in probability.

Since(σ̂a
2, σ̂b

2, σ̂c
2) are unbiased, the semiparametric variance components estimators are

thus consistent.

Proof of Proposition III.3
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Estimateβ̂∗ is solution to,

n

∑
i=1

X̃i4i Σi{Yi−H(X̃iβ)}= 0

So,

β̂∗−β = (
1
n

n

∑
i=1

X̃i
T 4i Σi4i X̃i)−1{1

n

n

∑
i=1

X̃i
T 4i Σi [Yi−H(X̃iβ)]}{1+op(1)}.

The rest of this proof can be done following the structure that proves proposition III.1.
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CHAPTER IV

CONCLUSION

4.1 Study of the Partially Linear Models

Our study on profile-kernel and backfitting methods for the partially linear model con-

cludes that the two methods are not equivalent for correlated data. When the data is lon-

gitudinal/clustered, the backfitting method is more sensitive to the choice of bandwidth,

and it generally has larger variation than the profile-kernel method. Though the asymp-

totic normality of the backfitting estimator is formulated following the common estimation

scheme of Zeger and Diggle (1994), the general result on the asymptotic efficiency of the

two methods apply to any estimation setup and nonparametric smoothers. The simulation

results show that, for both independent and correlated cases, the backfitting estimator is

more sensitive to the bandwidth selection. The bias of the backfitting estimator can be

large when the selected bandwidth is big. However, when it comes to the standard devi-

ation, backfitting is similar to the profile-kernel for independent data, but its deviation is

much larger than profile-kernel for correlated data.

The ophthalmology example indicates that the partially linear model yields more ef-

ficient results than a completely parametric model. In the parametric model for the dis-

appearance of intraocular gas in retinal repair surgeries, complicated transformations were

adopted to model the unknown time effect. The logistic transformation applied to the mean

function causes the effect of initial dosage to be not significant in the inference. However,

our partially linear model uses the nonparametric term for the unknown time effect. Not

only is the model much simpler, it also detects that the initial dosage of intraocular gas

significantly affects the time profile of disappearance of this gas.
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4.2 Study of the Semiparametric Approach for Colon Carcinogenesis Study

For the study on colon carcinogenesis, our semiparametric approach for the misaligned

measurements problem produces results with good properties. This is demonstrated by

the asymptotic study, and also the simulation outcomes. Our semiparametric approach

makes use of the latent process for the unobservable covariate corresponding to the re-

sponse. Compared with the last observation carry-forward and nearest neighbor methods,

a semiparametric approach can be consistent under reasonable conditions. In addition, it

can reach the estimation efficiency of a regular likelihood estimator asJ′K′h→ ∞.

Based on semiparametric outcomes for the colon carcinogenesis data, we conclude

that the fish oil lowers the rate of increase inbcl-2gene expression, when the DNA damage

increases in cells. Therefore, fish oil appears advantagous relative to corn oil in preventing

colon cancer. During the initial stage of colon cancer, fish oil promotes more active func-

tioning of apoptosis, and thus makes it possible for the body to get rid of more defective

cells.
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