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ABSTRACT 

 

Reservoir Simulation of CO2 Sequestration and Enhanced Oil Recovery in the Tensleep 

Formation, Teapot Dome Field. (December 2005) 

Ricardo Gaviria Garcia, B.S., Universidad Industrial de Santander 

Chair of Advisory Committee:   Dr. David Schechter 

 

Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County.  

This field has been selected by the U.S. Department of Energy to implement a field-size 

CO2 storage project.  With a projected storage of 2.6 million tons of carbon dioxide a 

year under fully operational conditions in 2006, the multiple-partner Teapot Dome 

project could be one of the world’s largest CO2 storage sites. 

CO2 injection has been used for decades to improve oil recovery from depleted 

hydrocarbon reservoirs.  In the CO2 sequestration technique, the aim is to “co-optimize” 

CO2 storage and oil recovery. 

In order to achieve the goal of CO2 sequestration, this study uses reservoir simulation to 

predict the amount of CO2 that can be stored in the Tensleep Formation and the amount 

of oil that can be produced as a side benefit of CO2 injection. 

This research discusses the effects of using different reservoir fluid models from EOS 

regression and fracture permeability in dual porosity models on enhanced oil recovery 

and CO2 storage in the Tensleep Formation.  Oil and gas production behavior obtained 

from the fluid models were completely different. 

Fully compositional and pseudo-miscible black oil fluid models were tested in a quarter 

of a five spot pattern.  Compositional fluid model is more convenient for enhanced oil 

recovery evaluation.   
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Detailed reservoir characterization was performed to represent the complex 

characteristics of the reservoir.  A 3D black oil reservoir simulation model was used to 

evaluate the effects of fractures in reservoir fluids production.  Single porosity 

simulation model results were compared with those from the dual porosity model.   

Based on the results obtained from each simulation model, it has been concluded that the 

pseudo-miscible model can not be used to represent the CO2 injection process in Teapot 

Dome.  Dual porosity models with variable fracture permeability provided a better 

reproduction of oil and water rates in the highly fractured Tensleep Formation. 
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CHAPTER I 

2. INTRODUCTION 

1.1 Background 

Teapot Dome field, also known as Naval Petroleum Reserve #3 (NPR-3) is located in the 

southwest portion of the Powder River Basin,  35 miles north of Casper, Wyoming in the 

Natrona County (Figure 1.1).  The reserve is a Government-owned oil field of 9,481 

acres and was established in 1915 by executive order from President Wilson and became 

famous during the 1920’ during the scandals of the Harding administration.  The field is 

operated by the Department of Energy (DOE) through its Rocky Mountain Oilfield 

Testing Center (RMOTC). 

Some activity occurred during a period of production in the 1920s and during 1958 to 

1976 to mitigate loss of oil off the reserve.  Full production was initiated in 1976 as 

provided by the Naval Petroleum Reserve production Act which mandates production of 

the reserve at the minimum efficient rate.  Under the Act, production is authorized for 6 

years and the U.S. President is authorized to extend production in increments of up to 3 

years each.  Each period the President makes his decision for extension on the basis that 

production, in contrast to shut-in, would produce revenue for the federal government and 

provide national security benefits.1 

Oil production in Teapot Dome field is from three formations, the shallow Shannon 

Formation, at depths of 400 to 1000 ft; the Second Wall Creek member of the Frontier 

Formation at 2500 to 3000 ft; and the Tensleep Sandstone at 55002 ft. Teapot Dome gets 

its name from nearby Teapot Creek which in turn was named for Teapot Rock, 6 miles 

southwest of the structure. 

_________________ 

This thesis follows the style of SPE Reservoir Evaluation and Engineering. 
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Teapot Dome is considered as an extension of the much larger Salt Creek anticline; an 

oil field operated by Anadarko Petroleum Co. 

Primary depletion drive production of the Tensleep Formation began in 1978 with single 

well production rates no greater than 150 STBD  

Teapot Dome field initially contained more than 5 million barrels of oil in the oil column 

(OC), which is the interval of the San Andres hydrocarbon accumulation above the 

producing oil/water contact (OWC).  The field’s producing oil water contact (POWC), 

above which oil is produced water-free during primary recovery is -400 ft below sea 

level.  Tensleep Formation does not contain a primary gas cap.  

 

 

Figure 1.1 - Location map of Teapot Dome Field. 
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1.2 Problem Description 

This research evaluates the effects of natural fractures and the hydrocarbon 

characterization in CO2 storage process in the Tensleep Formation.  Due to the presence 

of high permeability channels in the reservoir, the amount of CO2 that can be injected 

varies across the field affecting the overall CO2 storage goals in the project.   

Tensleep reservoir fluid composition indicates dead oil characteristics.  CO2 injection 

and miscibility process response depends on how the reservoir oil has been 

characterized.  Evaluation of different reservoir fluid models via reservoir simulation 

will provide additional evidence to establish the fluid model to be used in field scale CO2 

injection. 

1.3 Objectives 

The main objective of this research is establish the amount of CO2 that can be storage 

and the additional oil that can be recovered from Tensleep Formation, Teapot Dome 

field by the CO2 injection process. 

The specific objectives are to evaluate how fracture permeability and reservoir 

hydrocarbon model affects CO2 injection process to “co-optimize” the CO2 storage and 

enhanced oil recovery performance using single and dual porosity simulation models. 

Fracture permeability will be incorporated from fracture aperture measurements in core 

samples using X-Ray Computer Tomography Scanner. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 CO2 Flooding Mechanisms 

Carbon dioxide injection has been used in enhanced oil recovery (EOR) processes 

applicable to light to medium oil reservoirs since the 1970s; the traditional approach is 

oriented to recover the higher amount of oil from the reservoir injecting the minimum 

amount of gas. 

There is a significant experience and knowledge in the oil industry to separate, transport, 

inject and process the quantities of CO2 required in different projects. 

The recovery mechanisms in immiscible processes involve reduction in oil viscosity, oil 

swelling, and dissolved-gas drive.  CO2 has a viscosity similar to miscible or light 

hydrocarbon components.  Miscible displacement between crude oil and CO2 is caused 

by extraction of hydrocarbons from the oil into the CO2 and by dissolution of CO2 into 

the oil.  In general, CO2 is very soluble in crude oils at reservoir pressures swelling the 

oil and reducing its viscosity.3 

Multiple-contact miscibility process governs the mixture between CO2 and crude starting 

with CO2 as a dense-phase and hydrocarbon liquid.  CO2 first condenses into the oil, 

making it lighter and extracting methane from the oil bank.  The lighter components of 

the oil then vaporize into the CO2-rich phase, making it denser, more like the oil, and 

thus more easily soluble in the oil.  Mass transfer continues between the CO2 and the oil 

until the two mixtures become indistinguishable in terms of fluid properties.  Figure 2.1 

illustrates the condensing/vaporizing mechanisms for miscibility.4 
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Figure 2.1 - One-dimensional schematic showing CO2 flooding.4 

Because of this mechanism, oil recovery may occur at pressures high enough to achieve 

miscibility.  CO2 needs to be compressed at high pressures to reach a density at which it 

becomes a solvent for the lighter hydrocarbons in the crude oil.  This pressure is known 

as “minimum miscibility pressure” (MMP) and it is the minimum pressure at which 

miscibility between CO2 and crude oil can occur.3 

2.2 CO2 Storage 

The CO2 storage from the flu gases did not start because environmental concerns about 

green house effect, instead, it gained attention as a source for enhance oil recovery 

processes.  It is very likely that fossil fuels will be the main source of energy in the 21 st 

century.  However increased concentrations of carbon dioxide due to carbon emissions 

are expected. 
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CO2 has been actively injected into geological formations, oil and gas reservoirs, 

unmineable coal seams and deep saline reservoirs (Figure 2.2).  These formations have 

storage oil, natural gas, brine and CO2 over million of years proving to be effective seals.  

These seals maintain their integrity as long as the original pressure of the reservoir is not 

exceeded.  Monitoring and verification of CO2 flow in geological formations is critical 

for gas sequestration, but technical development is in its infancy.5 

 

 

Figure 2.2 - CO2 geological storage.6 

 

Hydrocarbon production from oil and gas reservoirs can be enhanced by pumping CO2 

gas into the reservoir.  This process represents an opportunity to store carbon at a low 

cost due to the revenues from oil and gas recovery.  The United States is the world 

leader in enhanced oil recovery technology, using about 32 million tons of CO2 per year 

for this purpose. 
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Coal beds typically contain large amounts of methane adsorbed onto the surface of the 

coal.  The current practices to recover the methane are depressurizing the coal bed or 

inject CO2.  CO2 have twice the methane adsorption rate and tend to remain storage in 

the carbon bed.7  Methane provides a value-added revenue stream to the carbon storage 

process. 

Saline formations do not provide products economically exploitable when carbon is 

storage, but it has other advantages.  The storage capacity of saline formations in United 

States has been estimated at up to 500 billion tones of CO2 and carbon sources are within 

easy access to saline injection points. 

Before CO2 can be stored, it must be captured as a relatively pure gas.  In the United 

States, however, CO2 is routinely separated and captured as a by-product from industrial 

processes.  Usually power plants exhaust CO2 diluted with nitrogen as flue gas.  

Commonly coal-fired power plant flue gas contains 10-12 % of CO2 by volume and 

from natural gas plants between 3-6 %.  Existing capture technologies are not cost-

effective when considered in the context of CO2 storage from power plants. 

Good oil response, gas injectivity and gas production within designed limits are 

considered as positives aspects from the CO2 injection process.  Simultaneously one of 

the main concerns in the projects performed has been the early CO2 breakthrough, which 

compromises gas processing facilities. 

2.3 Parameters Affecting a CO2 Storage Process 

2.3.1 Reservoir Heterogeneity 

Reservoir heterogeneity has a strong influence on the gas/oil displacement process.8  The 

degree of vertical reservoir heterogeneity can affect the CO2 performance.  Formations 

with higher vertical permeability such as naturally fractured reservoirs are influenced by 
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cross-flow perpendicular to the bulk flow direction.9 Cross-flow is more commonly 

presented in water alternate gas (WAG) projects, this may increase the vertical sweep 

but generally the oil recovery is low due to the gravity segregation and decreased flood 

velocity in the reservoir, Figure 2.3.  As CO2 flows preferentially toward the top portion 

of thick, high permeability zone, injected water may flow preferentially toward the lower 

portion of the zone. 
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Figure 2.3 - Effect of gravity during WAG injection.4 

2.3.1.1 Relative Permeabilities 

As an important petrophysical parameter, relative permeability includes rock wetting 

characteristics, heterogeneity of reservoir fluids and rock and fluid saturations.   Relative 
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permeability commonly changes during alternate water/CO2 injection, water injectivity is 

significantly reduced after the first gas injection cycle due to the effect of CO2 on water 

relative permeability.  It is very important to have a good understanding of the relative 

permeability curves to be used in reservoir simulators to predict the CO2 storage.4 

Laboratory experiments have showed hysteresis effects in the water relative permeability 

between the drainage and imbibition curves.  Irreducible water saturations after drainage 

cycles were 15 to 20% higher than the initial connate water saturation.10 

Hysteresis refers to the directional saturation phenomena exhibited by many relative 

permeability and capillary pressure curves when a given fluid phase saturation is 

increased or decreased.11  This phenomena is illustrated in Figure 2.4. 
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Figure 2.4 - Two-phase relative permeability diagram.7 
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2.3.1.2 Natural Fractures 

Structures such as fractures, fracture networks, and faults can influence permeability and 

therefore fluid flow within an aquifer or petroleum reservoir.  Distinct permeability 

anisotropy has been observed in reservoirs with low matrix permeability and a well 

developed open fracture systems, with the highest permeability parallel to the fractures. 

Within a given rock volume, fractures generally result in an overall permeability 

increase.  Significant interaction between the fracture surface and the matrix allows 

better drainage of the rock matrix.  This matrix/fracture interaction could allow for a 

substantial increase in recoverable hydrocarbon reserves. 

In contrast, mineralized fractures and deformation bands (i.e., small displacement faults 

characterized by tight cataclasis and/or pore reduction through compaction) are typically 

characterized by significant permeability reduction.  Where fractures are mineralized or 

the rock is cut by deformation bands, the rock matrix is more permeable than the 

structures, so the rock is more permeable parallel to, and between, fractures and 

deformation bands.  Therefore, within a given rock volume containing mineralized 

fractures and/or deformation bands, there will be overall permeability decrease and 

possible reservoir compartmentalization.  Partially mineralized fractures may still have 

some permeability.  However, there could be a significant reduction in the interaction 

between the remaining open fracture fluid pathway and the rock matrix.  Either 

mineralized or partially mineralized fractures could have the effect of decreasing the 

total amount of recoverable reserves. 

Fractures commonly increase or decrease permeability in certain directions and thus 

introduce permeability anisotropy and heterogeneity; and it is important, from a 

production standpoint, that they can be modeled accurately.  It can be very difficult, 

however, to predict the location, spacing and orientation of fractures and small-

displacement faults in the subsurface.  Most regional fractures are sub-vertical, and are 

thus unlikely to be sampled in vertical boreholes.  Reasonable predictions of 
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permeability anisotropy require an understanding of controls on the distribution and 

orientations of such features.  Fractures can have predictable orientations with regard to 

large-scale structures such as anticlines. 

For modeling and production purposes, it is important to document directions of 

preferred fracture and fault orientations within primary hydrocarbon traps, such as 

anticlines.  By understanding controls on fracture and fault orientation and distribution in 

a given reservoir, the accuracy of flow modeling can be improved, thereby increasing 

primary and secondary hydrocarbon recovery.12 

2.3.2 Reservoir Fluids 

Reservoir fluid composition controls the miscible process between the reservoir fluid 

and injected CO2.  CO2 is less dense and viscous than reservoir fluids 

Complete dissolution of injected CO2 takes place in a scale of hundred to thousand of 

years, this depending on the gas migration and fluids reaction.13 

 When reservoir characterization is well understood and described, CO2 injection process 

has performed as expected.   

As carbon dioxide CO2 is injected in the formation, it mobilizes oil, dissolves into brine 

and promotes dissolution of carbonates cements.14  Brine can become supersaturated 

with dissolved solids and when pressure drops as it advances through the reservoir, 

precipitates such as gypsum can form.5 
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CHAPTER III 

2. GEOLOGY REVIEW 

3.1 Introduction 

Teapot Dome also known as the Naval Petroleum Reserve No. 3 (NPR-3) is located in 

central Wyoming, near the southwestern edge of the Powder River Basin, (Figure 3.1).  

The deepest portions of the Powder River Basin contain nearly 5,500 m of sedimentary 

rocks, approximately 2,440 m of which are non-marine, Upper Cretaceous and lower 

Tertiary clastic sedimentary rocks related to Laramide orogenesis (Fox et al., 1991).12  

The structural style is represented mainly by basement-involved tectonic structures, 

associated with the Laramide orogeny.  The greatest deformation is concentrated along 

the western and southern structure margins. 

Teapot Dome is one of several productive structural hydrocarbon traps associated with 

Laramide structures in this area.  It is part of a larger structural complex which 

comprises the Salt Creek anticline to the north and the Sage Spring Creek and Cole 

Creek oil fields to the south (Doelger et al., 1993; Gay, 1999).12  Teapot Dome is also 

similar to other Laramide structures such as Elk Basin anticline and Oil Mountain 

(Engelder et al., 1997; Hennings et al., 1998; Hennings et al., 2000).12 

Teapot Dome is a basement-cored anticline, similar to other structures within the Rocky 

Mountain region that have been hydrocarbon exploration targets since the turn of the 

past century.  Structures of this type can be found in many other areas of the world (e.g., 

DeSitter, 1964; Harding and Lowell, 1979).12 

Teapot Dome field is a large northwest-southeast trending anticline considered as an 

extension of the larger Salt Creek anticline.  It is a double plunging structure with four-
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way closure, asymmetrical and SW verging; limited on its west flank by a large regional 

fault. 

One of the primary reasons basement-cored anticlines are exploration targets is that they 

can provide excellent four-way closure.  Four-way closure can allow the entrapment of 

migrating hydrocarbons in economically significant amounts.  To maximize recovery of 

these trapped hydrocarbons, it is essential to accurately model any permeability 

anisotropy associated with these structures. 

A total of nine (9) productive horizons (Figure 3.2) including the shales of Shannon, 

Steele and Niobara formations are present, Second Wall Creek and Tensleep sandstone 

formations being the most productive.  Tensleep is the lowest producing formation found 

in Teapot Dome and is generally found at the bottom of each well, which complicates 

the formation evaluation as the layer is not completely logged.15 

 

 

Figure 3.1 - Location of Teapot Dome Field in the Permian Basin.17 
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Figure 3.2 - Generalized stratigraphic column showing Permian section at the 

Teapot Dome field.16 
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3.2 Stratigraphy and Depositional Environment 

The Tensleep Formation of Pennsylvanian age consists of 300 ft of multi-sequence 

boundaries between sandstone and dolomite, is the deeper formation in Teapot Dome 

field and an important producing unit elsewhere in Wyoming.  Stratigraphicaly, it is 

located between dolomite strata of the Goose Egg Formation, which is not productive in 

the Teapot Dome area although it may have some potential not evaluated, and dolomite 

units of the underlying Amsden Formation, Figure 3.3. 

Tensleep sandstones contain multiple sequence boundaries in response to frequent and 

high-amplitude sea level changes.  Thin dolomites relatively continuous cap each dune 

deposition sequence. 

Generally from bottom to top, Tensleep sandstone changes from dominantly marine, 

with abundant crinoids and corals, thick tabular carbonate beds and thin sandstone 

layers, to dominantly continental, with thick eolian cross-bedded sandstones, scarce 

fossils, and thin and discontinuous carbonates.17 

The Tensleep Formation is hard and tight, regionally located where good sandstones on 

the west change eastward to dolomitic limestones, anhydrites and thin sandstones of the 

Minnelusa facies.2  Clay is rare and less than 1% (1’/100’). 

Cementation by dolomite, calcite, anhydrite and quartz has greatly reduced porosity and 

permeability in the Tensleep sandstone, whereas dissolution of cements during 

diagenesis has enhanced both porosity and permeability.17 

An evaluation of gamma ray, resistivity, bulk density, compression and acoustic 

impedance logs from Well 11-MX-11 were performed by RMOTC on January 2002.  

This evaluation provides the current stratigraphical division of the Tensleep Formation.  

This representation of so called flow units would honor the heterogeneity and zonation 

of the formation, (Figure 3.4). 
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Figure 3.3 - Late Paleozoic stratigraphic chart of part of Wyoming.17 
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Figure 3.4 - Tensleep Formation type log well 11-MX-11. 
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3.3 Seismic Interpretation 

A 3D seismic survey designed to image the Pennsylvanian Tensleep Formation was shot 

in the field on January 2001, with a coverage of 72.3 square kilometers (17800) 

consisting of 345 in-lines and 188 cross-lines with a bin size of 110 ft. 38 km2 was 

available for interpretation.  This 3D seismic information covers the Teapot Dome 

structure completely as shown in Figure 3.5. 

 

 

Figure 3.5 – Time map showing seismic coverage at Tensleep Formation. 
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From a gravity survey view point, the basement rock, referred to as granite, will be 

approximately 750 feet closer to the surface at the top of the anticline than at the edges.  

The density contrast in the overlying formations is essentially the intrusion of the higher 

density granite basement as compared with the marine shales and sandstones of the 

producing formations.15 

3.3.1 Time Interpretation 

A post-stack migrated volume acquired on January 2001 was interpreted in time.  Well 

log information and geological tops measured in Well 62-X-11 were used to generate a 

velocity log and a synthetic seismogram (Figure 3.6).  This well provides useful 

information to assist with the interpretation.  The synthetic seismogram allowed the 

identification of a dolomite marker at the top of Tensleep Formation (TNSP) (Figure 

3.7).  This marker has good seismic continuity in the area of interpretation. 
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Figure 3.6 - Seismogram log from well 62-X-11. 
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Figure 3.7 - Synthetic seismogram from well 62-X-11. 

The interpretation of the dolomite marker provided a top isochron map that indicates a 

semi-regular spaced northeast-southwest trending fault system cutting the horizon with 

major faults approximately every mile. 

The main fault (MF1) is a reverse fault that strikes NW-SE, and is considered to be the 

west limit of the field,  A second system of normal faults with N45E direction is present, 

where fault 3 (F3) divides the Tensleep structure in Teapot Dome field from Salt Creek 

field, Figure 3.8. 

A third strike fault (SF) located south of fault F3 is at crest of the structure.  This area 

can be considered of good productivity because most of the wells are located near this 

fault, (Figure 3.9). The Final isochron map at top of Tensleep Formation can be observed 

in Figure 3.10. 
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Figure 3.8 - Cross line A-A’. 

 

Figure 3.9 - Inline B-B’. 
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Figure 3.10 - Isochron Map for Tensleep Formation at Teapot Dome. 
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3.3.2 Time to Depth Conversion 

A structural map at the top of the Tensleep Formation was generated by integrating 

seismic time interpretation and well depths information, (Figure 3.11).  The conversion 

was done by the multiplication of the isochron grid with the average velocity or pseudo-

velocity grid.  The pseudo-velocity map came from the Tensleep depth in the wells and 

the time in the isochron map, this velocity is in agreement with the velocity calculated 

from the sonic log. 

No check shots or vertical seismic profiles (VSP) data have been taken in the field.  An 

average of 4267 m/sec was used to generate a projection from the time surface into 

elevation map. 

The structural map has the sub sea level as reference and it was weighted with the well 

tops information in the field. 

3.4 Fracture Evaluation from Cores 

About 197 ft of core was recovered from the Tensleep Formation from the well RMOTC 

48-TPX-28 in May of 2004.  The core was relatively broken in the coring process 

especially in the intervals containing numerous natural fractures.  High fracture intensity 

is reported in a core description performed in the Sandia National Laboratories, (Figure 

3.12). 
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Figure 3.11- Structural Map for Tensleep Formation. 
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Figure 3.12- Highly fractured Tensleep sandstone. 

Fractures are present in both, sandstone and dolomites.  Fracture intensity can be 

measure as one fracture per ten feet of core.  Fractures are mostly vertical to near-

vertical and commonly terminate at bedding planes and stylolites, although many of 

them terminate within upper layers. 

Most of the fractures present an aperture less than one millimeter (1 mm) in total width.  

The aperture is occluded in the small fractures by partial mineralization of quartz and/or 

dolomite, (Figure 3.13).  Significant porosity remains in the fractures between 10 to 18 

%, especially in the large ones that usually splits the rock showing this mineralization as 

an incomplete and weak seal between fracture faces. 
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Figure 3.13- Natural fracture face partially covered with crystalline dolomite. 

 

Some parallel and intersecting fractures were found in fine-grained dolomites where one 

of them was filled with dolomite in a 70% to 80%. 

Bitumen lined fractures was observed in the fine-grained, white dolomite facies that 

overlies oil-stained reservoir sandstone. 

A zone of inclined fractures, possibly a conjugated shear system is very similar to that 

seen in Tensleep outcrops at south of Alcova reservoir.  FMI log indicates that the 

maximum horizontal in-situ compressive stress and most of the natural fractures strike 

E-W to WNW-ESE. 

High degree of fracture connectivity supported by past pressure interference tests is 

present.  A pump-off operations of a Tensleep completion, was felt impacted by 

operational swings in high volume Salt Creek field Tensleep producers.18 
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3.5  Lithologic Controls 

Both fracture spacing and orientation vary with lithology at Teapot Dome.  In general, 

fractures are most closely spaced in carbonaceous shales (Unit 4), more widely spaced in 

fluvial (Unit 5) and beach (Unit 2) sands, and most widely spaced in marine shales (Unit 

1).  Fractures are generally absent, replaced by deformation bands; within the white 

beach sandstones of Unit 3.18 
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CHAPTER IV 

RESERVOIR PERFORMANCE 

4.1 Reservoir Basic Data 

Teapot Dome Field is considered as the continuation of the Salt Lake Field operated by 

Anadarko Petroleum Company.  Teapot Dome produces light and sweet (low sulfur 

content, 0.16 %) oil from nine different formations.  Just Tensleep Formation produces a 

lower gravity, sulfurous oil.  This oil is mainly used for oiling roads and other lease uses.  

Tensleep the lower productive unit is located at subsea depths approximately at 5500 

feet (5000 ft-ss). 

Tensleep Formation is Pennsylvanian dolomite cemented sandstone with a gross 

thickness that varies between 250 and 300 ft.  A net oil pay thickness about 75 feet has 

been measured from logs.  It has been estimated that Tensleep Formation initially 

contains nearly 4.5 million barrels of oil in place.  Hydrocarbon is accumulated between 

the high structural point at 80 ft-ss and the producing oil/water contact (OWC) estimated 

at 400 ft-ss. 

No pressure data have been recorded in the formation, water production rates indicates 

that underlying formations are influenced by a strong aquifer.  The aquifer has 

maintained almost constant reservoir pressure during the course of the field life.  The 

pressure drop is less than 100 psi through out the Tensleep Formation.  Water drive then 

considered as the primary producing mechanism in the reservoir.  Table 4.1 summarizes 

basic reservoir and fluid data. 

 

 

 



    

    

28  

Table 4.1 - Summary of reservoir data. 

Reservoir Characteristics Values
Producing area 440 acres
Formation Pennsylvanian Dolomitic Tensleep
Average Depth 5500 ft
Gas-oil Contact No present
Average Matrix Permeability 80  mD
Average Porosity 13.50%
Oil Gravity 31 °API
Reservoir Temperature 190 °F
Primary production mechanism Water Drive
Original reservoir pressure 2300 psi
Bubble point pressure 40-70 psi
Average pressure at start of CO2 injection 2000± 100 psi
Initial FVF 1.312 RB/BBL
Solution GOR at original pressure 4 SCF/BBL

Oil viscosity at 60° F and 42 psi 3.5 cp
Minimum miscibility pressure 1300 psi  

4.2 Reservoir Development History 

Teapot Dome field had its first production from the so-called “Dutch” well with 200 

BOPD from First Wall Creek sandstone in 1908.  In 1909 a few wells value were drilled 

to develop the Shannon sand. 

Prior to initiating the development and exploration program at Teapot Dome in 1976, 

233 wells were drilled in all the producing formations.  At 1996 additional 1007 

development wells and 90 exploratory wells were drilled.  27 of the 1007 wells were 

drilled in fiscal year 1996 targeting Tensleep Formation.  Two of these wells 

experienced the highest initial production rates of any wells in Wyoming at that time 

paying for their capital cost in less than 3 months. 
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Primary depletion began on 1977 when six wells were drilled in Tensleep Formation, 

however just one the structurally highest is capable of production (Well 74-CMX-10) 

with intermittent rates lower than 10 BOPD.2 

Historical oil and water production from Tensleep Formation can be observed in Figure 

4.1. 
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Figure 4.1 - Tensleep Formation production history. 
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CHAPTER V 

SIMULATION PARAMETERS AND MODEL 

All the reservoir parameters used in the simulation model are described in this chapter.  

Evaluation and definition of rock properties to be used in reservoir simulation is 

presented.  Matrix and fractures relative permeabilities and capillary pressure data from 

Tensleep cores were defined.  Matrix wettability and fracture spacing is established. 

Calibration of equation-of-state to describe phase behavior of the reservoir fluid was 

obtained.  Evaluation of compositional Vs pseudo-miscible approach is presented.  The 

number of components in the fluid sample and component lumping process were 

compared to obtain the best fluid model in terms of accuracy in laboratory data 

reproduction and efficiency in simulation run time. 

The initialization of the simulation model was conducted to assess the volume of the 

original hydrocarbon in place. 

5.1 Numerical Simulator 

One of the concerns about the reservoir fluid model was to select the simulator that best 

represents CO2 displacement process.  Compositional simulation and pseudo-miscible 

black oil models have been widely used to reproduce CO2 displacement processes.  The 

compositional simulators GEMTM 19 and, the black oil finite-difference simulator 

IMEXTM 20 were used in this study. 

One compositional and one pseudo-miscible model were built to evaluate the accuracy 

of the black to represent CO2 displacement process.  Compositional simulation use 

equations of state (EOS) with theoretical parameters that are able to predict fluid 

behavior of hydrocarbon mixtures commonly encountered in oil and gas reservoirs.  
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Pseudo-miscibility simulator is a black oil approximation that takes into account only the 

gas dissolution. 

Compositional model construction is time consuming and expensive.  Pseudo-miscible 

option is capable of modeling the essential features of miscible displacement while 

leaving the fine structure of unstable miscible flow unresolved, making it possible to 

represent the reservoir by a fairly coarse numerical grid.21 

5.2 Relative Permeability 

5.2.1 Matrix Relative Permeability 

Four rock samples were used in relative permeability laboratory tests.  One sample A 

from 62-TPX-10 well (5443’) and three samples from 43-TPX-10 well; sample B 

(5486’), sample C (5492’) and sample D (5500’).  The tests were performed using 

simulated reservoir brine and mineral oil with a viscosity of 30 cp. 

Similar rock compositions have been encountered in the samples, sandstones with fine to 

very fine grains and well indurate are basic characteristics.  Despite the similar 

composition, relative permeability experiments show important differences in the end-

points.  Initial water saturations (Swi) are between 12.5% to 22.1 and residual oil 

saturations (Sro) are between 28.7% and 56.3%, Figure 5.1. 
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Figure 5.1 – Water-oil relative permeability curves as a function of water 

saturation. 

The two phase oil-water at Sg = 0 and gas-oil relative permeability curves used for the 

CO2 simulation are shown in Figures 5.2 and 5.3.  To avoid complication and make the 

model simulation simple, this set of curves was used to describe both the oil column and 

the transition zone. 
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Figure 5.2 – Water-oil relative permeability curves. 
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Figure 5.3 - Gas-oil relative permeability curves. 
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The maximum oil relative permeability is 0.65 at connate water saturation (Swc = 15%).  

At 60% water saturation, the oil relative permeability is almost zero.  As water saturation 

increases in the reservoir, the water relative permeability increases, reaching a maximum 

value of 0.04 at 94% water saturation. 

Hysteresis effect is not considered in the simulation, after the drainage process of water 

displacing oil, CO2 injection is going to be the governing displacement process. 

5.2.2 Fracture Relative Permeability 

A lot of research have been done in the characterization of relative permeability in 

fractures, it have been found that fracture aperture changes due to compaction,22 

mineralization and other factors affect the fluid flow.  Roughness, capillary pressure and 

wettability constitute influence factors in the fluid flow interference; therefore, the 

assumption of straight lines in oil-water relative permeability would not the best 

representation.23 

However, considering very high fracture permeability values, straight line relative 

permeability curves were used in this study. 

5.3 Capillary Pressure 

Three rock samples from Tensleep were selected for capillary pressure data, this samples 

were extracted from well 56-TPX-10; samples E (5391’) and F (5400’) and from well 

44-1-TPX-10; sample G (5538’). 

The samples indicate a very similar lithological description, however, the initial water 

saturation values observed vary widely from 10.8% to 20.4%.  Capillary pressure curves 

in the three samples show low displacement pressure (about 1 psi), this is an indication 

of good reservoir; very good sorting and big pore throats (W. Ahr, Carbonate Reservoir 

Course, Professor, Department of Geology and Geophysics, Texas A&M University). 
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Capillary pressure laboratory tests were performed using an air-brine system.  These data 

were corrected to obtain oil-water capillary pressure values at reservoir conditions as 

shown in Figure 5.4. In order to do this correction, the following equation was applied: 

( )
( ) labPc

lab
res

resPc ,
cos
cos

,
θσ
θσ=  

where σ is interfacial tension and θ is the contact angle. 
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Figure 5.4- Capillary pressure curves at laboratory and reservoir conditions. 

 

In order to account for porosity and permeability changes, normalization of capillary 

values, were conducted using the Leverett J function as follows: 

( ) φθσ
kPc

SJ n cos
*2166.0

)( =  
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Matrix capillary pressure was calculated from the average J curve using a regression of 

all data points in Sw vs. J plot as sown in Figure 5.5.  Capillary pressure for fractures 

was assumed to be zero. 
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Figure 5.5 - Laboratory and average reservoir capillary pressure curves. 

 

5.4 Wettability 

A wettability test was performed in a core sample from the well 62-TPX-10 (5418’) at 

reservoir temperature of 190 °F.  Synthetic brine and crude oil were flushed through the 

sample.  Evaluation of results provides a water-wet indicator of 0.402 versus oil-wet 

indicator of 0.033. 
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The water-wet indicator is a relation between the volume oil displaced spontaneously 

when the oil saturated rock sample is submerged in the synthetic brine, and the total oil 

volume displaced injecting brine in the sample up to residual oil saturation conditions. 

5.5 Fracture Spacing 

According with the measurements of fracture spacing in Tensleep core samples, a 

homogeneous matrix dimension of 10 ft were used in the dual-porosity simulation 

model. 

5.6 Fluid Properties 

The reservoir oil is sulfurous saturated black oil with a stock tank gravity of 31.4 °API 

and with a laboratory initial gas-oil ratio between 2 and 4 SCF/STB.  Initial reservoir 

pressure and temperature are 2300 psi at reference depth of 5500 ft and 190 °F, bubble 

pressure and minimum miscibility pressure was determined experimentally to be of 42 

psia and 1,300 psi respectively 

5.6.1 PVT Information 

Two bottom-hole oil samples were recollected and tested in the wells 54-TPX-10 

(sample A) on June 15, 1984 and 62-TPX-10 (sample B) on April 28, 1986.  The 

saturation pressure measured in the samples is between 61 to 76 psia.  Very low value 

considering that higher saturation pressures can be expected in oil samples with stock 

tank API gravity of 31.4° and 31.1° in samples A and B, respectively.  Table 5.1 shows 

the fluid composition. 
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Table 5.1 - Reservoir fluid composition in mole fractions. 

Sample A Sample B Sample C

CO2 0.04 0.03 0.08

N2 1.08 0.05 0.13

C1 0.01 0.01 0.02

C2 0.03 0.04 0.12

C3 0.13 0.03 0.17

i-C4 0.1 0.01 0.08

n-C4 0.29 0.02 0.22

i-C5 0.59 0.01 0.15

n-C5 0.39 0.01 0.3

C6 0.98 0.02 1.29

C7+ 96.36 99.7 97.44

Mw C7+ 285 270 303.85

Density C7+ @ 60°F, gr/cm
3 0.8284 0.8694 0.8972

Temperature (°F) 190 190 190.4

Mol Fraction
Component

 

 

Composition analysis for the samples A and B show very low content of light 

components, where almost 100% mole percent of plus fraction were found. 

Fluid composition, constant composition expansion, differential liberation and separator 

tests were performed.  Values of solution gas-oil ratio between 1 and 4 SCF/STB were 

measured at standard conditions and supported by the zero gas-oil ratio found in 

production reports.  The amount of gas dissolved in the oil is very low and almost 

impossible to measure in the field. 

A third PVT (sample C) was taken in 2004 from well 72-TPX-10 at surface conditions.  

Oil sample was recombined with a gas sample to obtain a reservoir fluid sample and 

performed a miscibility evaluation.  Composition up to C30+ was measured in this 

sample. 
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Constant composition expansion (CCE) was run on the reservoir fluid adding four (4) 

different CO2 amounts for a known volume of reservoir fluid at reservoir temperature of 

190.4 °F.  Swelling Factor (SF), density and viscosity were measured for the different 

oil-CO2 mixtures. 

The three oil reservoir samples show the basic characteristics of the reservoir fluid have 

remained the same.  Molar percentage of plus fraction between 95 to 98% and small oil-

gas ratio were found.  These data were used to tune an EOS capable of characterizing the 

CO2/reservoir-oil system above the minimum miscibility pressure (MMP).  

Table 5.2 lists the experiments and the measured parameters loaded into the PVT 

software. 

 

Table 5.2 - PVT experimental data. 

Experiment Description

Reservoir Fluid Composition Mole fractions, C30+ density and molecular weight

Constant Composition Expansion Relative Volumes, saturation pressure, oil density

Injection Test Swelling test  

 

Phase diagrams for samples A and C were generated to evaluate the possible changes of 

the reservoir fluid characteristics after two decades of production.  The two phase 

diagrams are representatives of black oil fluids.  At reservoir temperature phase 

diagrams show a saturation pressure near 20 psi, this value is lower than the values 

measured in the lab from the two samples. 

Sample C, the latest oil sample was chosen to evaluate the reservoir simulation of CO2 

injection process, because it is the only tests that includes swelling information. 



    

    

40  

5.7 Fluid Model Selection  

In compositional simulation, the computational time is proportional to the number of 

components considered in the fluids model.  Therefore it is necessary to evaluate the 

effect of the number of components in the EOS tuning, this considering that the sample 

with swelling information is characterized up to C30+ component.  

Two different compositions were used, the original components that goes up to C30+ and 

a compressed one with components up to C6+.  For the last one, plus component was 

splitted into five pseudo-components.  Simulation results from the compressed 

components were compared with the results from the original components.  The results 

of these simulations are presented late in this chapter.  The fluid models have different 

critical points and the phase diagrams. However at reservoir temperature (190 °F) the 

equilibrium lines of initial component behave very similar to those for the compressed 

components as shown in Figure 5.6. 
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Figure 5.6- Phase diagrams for C6+ and C30+. 
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5.7.1 Equation-of-State Characterization 

CO2 injection in an oil reservoir as a miscible process needs the best phase equilibrium 

prediction during the CO2 injection process.  EOS has general acceptance as tools 

calculate the complex phase behavior associated with rich condensates, volatile oils and 

gas injection processes.24 Tuning an equation-of-state (EOS) that reproduces the 

observed fluid behavior is required to accurately predict the CO2 /oil phase behavior in 

the compositional simulation. 

WinProp, a CMGTM software was used in the EOS tuning process.  The characterization 

of CO2-oil mixtures process follows the methodology suggested by Khan.25  The Peng-

Robinson26 EOS was chosen because it is applicable for low-temperature CO2/oil 

mixtures.25  The viscosity model from Lohrenz-Bray-Clark (LBC)27 was considered. 

5.7.2 EOS Tuning Process for C6+ Sample 

PVT simulation model for EOS tuning process was performed using Peng-Robinson 

EOS.  First, a model with no regression of any parameters (Initial curve) was run.  Then 

a second model by changing plus fraction critical properties and binary interaction 

coefficients between CO2 and the plus fraction (Final curve) was generated, (Figure 5.7).   

Results from the runs show a very poor reproduction of the laboratory observations 

(PVT-lab).  Neither the original Peng-Robinson EOS nor the modified EOS with 

regressed C6+ critical properties could reproduce swelling factor and saturation pressure.   
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Swelling Factor and Saturation Pressure Calculation 
Regression Summary
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Figure 5.7 - Initial swelling factor for C6+ sample. 

The EOS tuning was a multi-step process starting by splitting the heavy component C6+ 

as proposed by Whitson.28  Whitson’s method uses a three-parameter gamma probability 

function to characterize the molar distribution (mole fraction / molecular weight relation) 

and physical properties of petroleum fractions such as heptanes-plus (C7 +),  preserving 

the molecular weight of the plus fraction.29  This method is used to enhance the EOS 

predictions. 

Since a single heavy fraction lumps thousands of compounds with a carbon number 

higher than seven, the properties of the heavy component C7+ are usually not known 

precisely, and thus represent the main source of error in the EOS and reducing its 

predictive accuracy.  For this reason, regressions were performed against the pseudo-

components to improve the EOS predictions. 
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The C6+ component was splitted into five pseudo-components based on its relative mole 

fraction as suggested by Khan.25  The pseudo components were identified as C6-C12(1), 

C13-C19(2), C20-C27(3), C28-C29(4) and C30+.  By splitting the heavy component (C6+), 

the total number of components of the reservoir fluid was then increased from 9 to 13 

components.  This 13-component mixture was used to tune the EOS to match data. 

WinPropTM suggest some parameters to be changed in an initial regression.  A total of 21 

parameters were changed including critical pressure (Pc), critical temperature (Tc), 

critical volume (Vc), molecular weight (MW) of the heavy pseudo-components.  Also 

binary interaction coefficients between the carbon dioxide and the heavy pseudo-

components were modified.  Although a good match was achieved, this model is not 

efficient, because many number of parameters need to be modified to match laboratory 

data. 

In the attempt to reduce the number of parameters to be changed and preserve the EOS 

as original as possible, several models with less number of parameters were run. 

Finally, only modifications of the heaviest pseudo component C30+ critical properties 

(Pc and Tc), and binary interaction coefficients CO2-C1 and CO2-C30+ were necessary to 

match swelling data (Figure 5.8).  Swelling factor is not only function of the amount of 

CO2 dissolved, but also of the size of the oil molecules.30  Plus fraction molar weight 

was also used as regression parameter to obtain a confident match in the swelling and 

saturation pressure calculation. 
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Swelling Factor and Saturation Pressure Calculation
Regression Summary
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Figure 5.8 - Match of swelling factor splitting C6+. 

Simultaneously the sample with composition up to C30+ was tuned following the same 

procedure described before.  No splitting process was applied to the C30+ component.  

The regression parameters used to match the swelling experiment were Pc, Tc and 

molecular weight in the heaviest pseudo-component, as in the C6+ sample. 

A reservoir fluid model with 30 components represents a large number of equations to 

be solved in reservoir simulation, which is the reason why this model is not practical in 

terms of simulation running time. 

Pseudoize, group or lump the components into a fewer number of pseudo-components is 

performed primarily for speeding up the simulation running time.  Fewer components 

result in faster run time.  The Fevang31 lumping process consists of forming new pseudo-

components from existing 13 was used. 
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Similar component properties and molecular weight were the criteria for lumping the 

pseudo-components.  Several numbers of regressions were necessary to select the best 

grouping scheme for tuning laboratory experiments. 

Finally a 9-component EOS fluid model was obtained after grouping C2 + C3, iC4 + nC4 

+ iC5 + nC5, leaving the remaining components ungrouped. 

New regression of EOS parameters is necessary.  As in the no-lumped fluid model, only 

critical properties of the heaviest fraction (C30+) and the interaction coefficient 

parameters between CO2-C1 and CO2-C30+ were necessary to match laboratory data.  

After performing these regressions, the PVT properties of the 9-component EOS model 

matched closely with the 13-component EOS model, (Figure 5.9). 
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Figure 5.9 - Match of swelling factor using lumped model. 



    

    

46  

The low saturation pressure of the reservoir fluid measured in the laboratory (42 psia) 

indicates that the oil is currently in under-saturation conditions.  No oil viscosity or 

density under saturation pressure was measured in the laboratory. 

The low gas oil ratio (4 SCF/STB) measured in the field, suggests that no big variations 

in reservoir fluid viscosity or density can be expected when CO2 is injected.  In the mean 

time viscosity and oil density measured above saturation pressure at different CO2 mole 

fractions could not be represented by PR-EOS. 

5.7.3 Tuned Fluid Sample Evaluation 

Lumped and no lumped fluid samples reproduce the experimental swelling factor very 

well, however several lump schemes could match laboratory data while provide different 

results when they are used in reservoir simulation. 

Taking into consideration that only swelling factor test is available for Tensleep oil to 

tune the EOS, evaluation of the two fluid samples (lumped and no lumped) using a 

synthetic reservoir model was performed. 

A quarter of a 40-acre inverted five spot pattern was built.  The 10 acres single porosity 

model contains two vertical wells, one producer and one injector.  The 20 x 20 x 1 grid 

contains 4000 cells with 66 ft on the sides.  Rock properties were taken from core 

analysis and compositional fluid model for C6+ was used in the comparison. 

Porosity and permeability modifications were applied to the peripheral cells to avoid 

adding extra pore volume to the one quarter of pattern.  Well fraction in producer and 

injector were set to 0.25. 

Two compositional fluid models, one from the lumped sample and one from the no 

lumped sample were used in a simulation model.  Different oil production behaviors 

were observed for those two models. 
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Lumped simulation model can not maintain oil production for the same period as the no-

lumped model.  Drop in oil rate is related with gas breakthrough, this occurs six months 

earlier than in no-lumped fluid model as shown in Figure 5.10.  This unexpected result, 

suggests that further reservoir fluid characterization is required. 

 

COMOPITIONAL MODEL

PRODUCER 

No Lumped Sample Lumped Sample

Time (Date)

O
il 

R
at

e 
S

C
 (b

bl
/d

ay
)

2005-7 2006-1 2006-7 2007-1 2007-7 2008-1 2008-7 2009-1 2009-7 2010-1
0

10

20

30

 

Figure 5.10 – Comparison of oil production between lumped and no lumped fluid 

model. 

 

No-lumped sample can be considered as the original fluid sample, this fluid model 

represent the behavior of reservoir fluid under CO2 injection process.   
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To understand how the number of components in the fluid sample or the reservoir fluid 

model can affect reservoir simulation performance, evaluation of different fluid samples 

will be carry on as follows. 

Table 5.3 summarizes the best fit parameters of Peng-Robinson EOS obtained for the 

splitted, no-lumped C6+ sample 

 

Table 5.3 - Description of Tensleep reservoir fluid sample. 

Component Mw Pc (atm) Tc (K) Omega A Omega B Acentric 
Factor

Vc (ft3/lb-
mol) Zc

CO2 44.0 72.8 304.2 0.4572 0.0778 0.225 0.094 0.274
C1 16.0 45.4 190.6 0.4572 0.0778 0.008 0.099 0.288
C2 30.1 48.2 305.4 0.4572 0.0778 0.098 0.148 0.279
C3 44.1 41.9 369.8 0.4572 0.0778 0.152 0.203 0.276
iC4 58.1 36.0 408.1 0.4572 0.0778 0.176 0.263 0.275
nC4 58.1 37.5 425.2 0.4572 0.0778 0.193 0.255 0.273
iC5 72.2 33.4 460.4 0.4572 0.0778 0.227 0.306 0.272
nC5 72.2 33.3 469.6 0.4572 0.0778 0.251 0.304 0.269

C6-C12 121.2 26.9 592.5 0.4572 0.0778 0.342 0.468 0.265
C13-C19 219.4 17.6 732.5 0.4572 0.0778 0.595 0.809 0.253
C20-C27 323.5 13.4 829.0 0.4572 0.0778 0.823 1.114 0.248
C28-C29 398.0 11.5 884.3 0.4572 0.0778 0.981 1.307 0.244

C30+ 637.6 8.1 1030.0 0.4572 0.0778 1.289 1.816 0.234  

5.8 Compositional vs. Pseudo-Miscible Models 

Compositional simulation is commonly used in CO2 flooding process.  This model 

predicts the multi-contact miscibility gas-oil process as the surface tension between the 

two hydrocarbon phases drops to zero. 

Pseudo-miscible model only defines the amount of injected gas that is miscible with the 

hydrocarbons in the reservoir.  Pseudo-miscible model is based on the empirical 

treatment suggested by M. Todd and W. Longstaff21 to represent miscible processes 

without going into the complexity of compositional models. 
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Pseudo-miscible model considers three components system, reservoir oil, injection gas 

(solvent) and water.  The reservoir oil component consists of stock tank oil together with 

the associated solution gas.  The solvent and reservoir oil components are assumed to be 

miscible in all proportions and consequently only one hydrocarbon phase exists in the 

reservoir. 

Tensleep reservoir fluid can be considered as dead oil.  Small interaction between CO2 

and the scare light components in the oil is expected.   

In this study, I evaluate the use of pseudo-miscible fluid models to describe the CO2 

injection process in Tensleep Formation.  Results from this model were compared with 

results from compositional simulation. Pseudo-miscible model was considered because 

is faster as previous discussed. 

Results provided from the pseudo-miscible and compositional models show that for 

Tensleep reservoir fluid, pseudo-miscible option do not behave closely to the 

compositional approach.  

Tuned PR-EOS was used to generate two oil PVT models (C6+ and C30+) for pseudo-

miscible and compositional simulators.  The synthetic reservoir model mentioned before 

was used. 

5.8.1 Comparison of Pseudo-Miscible C6+ and C30+ Models 

Two pseudo-miscible simulation models were generated.  One of the models used fluid 

description with components up to C6+ and other using components up to C30+.  Oil and 

gas production rates and reservoir pressure were plotted to describe the effect of the 

number of components on oil production rate. 

Both fluid samples show similar oil rate production profile, CO2 breakthrough time 

differs on one month, 6% of the time, (Figure 5.11).  Only slight differences in the 
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average reservoir pressure are observed; reservoir pressure drops slightly faster in the 

C30+ model. 

These results suggest that to save simulation running time, C6+ fluid sample can be used 

in the field simulation model with assurance. 
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Figure 5.11 - Qo and Np for pseudo-miscible models C6+ vs C30+. 
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5.8.2 Comparison of Compositional C6+ and C30+ Models 

Using the compositional fluid models, similar behavior as in the pseudo-miscible model 

was observed.  Similar CO2 breakthrough time was obtained from the two fluid models.  

Flat oil production period last for 3.5 years, this is two more years than in pseudo-

miscible model, (Figure 5.12).   

As the objective of the CO2 storage is to maximize the amount of gas dissolved in the 

reservoir fluid, a late gas breakthrough time is desired.  After gas breakthrough occurs, 

commonly liquid production is constrained to avoid gas recirculation. 
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Figure 5.12- Qo and Np for compositional models C6+ vs C30+. 
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Comparison of compositional fluid models provides similar results as in pseudo-miscible 

models.  However in this case using C6+ sample a difference of 4 months in gas 

breakthrough time are observed, this is a 7% more time than using C30+ model. 

Compositional simulation also demonstrates that C6+ fluid model can be used with 

confidence, this reducing simulation complexity and run time. 

5.8.3 Comparison of Compositional and Pseudo-Miscible Models 

From previous fluid evaluation have been recognized that no-lumped C6+ fluid sample 

can be used in the numerical simulation of CO2 storage in Tensleep Formation.  Now it 

is necessary to establish which fluid model, pseudo-miscible or compositional should be 

used in order to have accurate forecast results. 

Figure 5.13 shows oil production performance from the two models.  Earlier gas 

breakthrough is observed in the pseudo-miscible model, then lower cumulative oil 

production is obtained.  Basically, compositional fluid model produces twice the oil 

volume than pseudo-miscible model. 

This is a big difference, considering that due to the dead oil characteristic of Tensleep 

reservoir fluid; similar oil production behavior can be expected from the two fluid 

models. 
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COMPOSITIONAL Vs PSEUDO-MISCIBLE MODELS
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Figure 5.13 - Qo and Np for compositional and pseudo-miscible models. 

 

In pseudo-miscible reservoir simulation model 70% of the CO2 injected is miscible with 

the dead oil.  Not dissolved gas acts like a piston displacing the oil and accelerating the 

gas breakthrough.   

Commonly CO2 injection process is represented with compositional simulation.  

Results from compositional and pseudo-miscible numerical simulation models provides 

evidence that to represent a CO2 storage process in Tensleep Formation it is necessary to 

use the compositional approach. 



    

    

54  

5.9  Reservoir Simulation Model 

The reservoir simulation model covers 400 acres and contains 15 production wells.  All 

the wells are vertical and completed in the 4th layer of the simulation model.  The grid 

was 50 x 30 x 6 with 9000 total cells in the model.  There are 5088 active cells with 300 

x 300 ft.  The model consists of the main faults that limit the structure at west and north 

locations.  Figure 5.14 shows a 3D view of the simulation grid for Teapot Dome field. 

Six layers described in the geologic model of Tensleep Formation as main units, 

represent an intercalation of sandstones and dolomites.  Layers 1, 3 and 5 were defined 

as dolomites with low matrix porosity and low permeability.  Layers 2, 4 and 6 are 

sandstones with better values of porosity and permeability.  The main productive unit is 

located in 4th layer. 

 

 

Figure 5.14 - Simulation grid for Tensleep Formation. 
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All the layers have a constant thickness as determined from the subdivision in the log 

type.  Porosity for each layer is an average value calculated from porosity values 

measured in cores.   

Air permeabilities values were assumed as total permeability for layers 2, 4 and 6.  

Vertical permeability was obtained from kh/kv correlations derived from core 

measurements taken from Well 48-X-28.  Table 5.4 lists the values of permeability, 

porosity and net pay of each layer in the simulation model. 

Table 5.4 - Net pay, porosity and permeability in the simulation model. 

Layer Thickness (ft) Net Pay 
(fraction) Porosity (%) Horizontal K 

(mD) Vertical K (mD

1 30 0.1 1.0 1 0.1

2 20 0.1 13.5 50 9.5

3 20 0.1 1.0 1 0.1

4 60 0.1 13.5 50 9.5

5 90 0.1 1.0 1 0.1

6 40 0.1 13.5 50 9.5  

5.9.1 Initial Conditions  

Reservoir simulation model was initiated at a uniform pressure of 2300 psia @ 200 ft 

sub sea and constant temperature of 190°F.  The initial water saturation from the relative 

permeability curve was 0.15.  Initial oil saturation within the grid blocks was 0.85. 

The simulation model contains an estimate of 4.5 million barrels of OOIP at the 

initialization stage. 

5.9.2 Aquifer Representation  

An analytical aquifer was selected to represent the strong water influx in the reservoir.  

This is a modified Van-Everdingen and Hurst method.  It changes the assumption from 
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“a field producing at a constant hydrocarbon rate” to “an aquifer with influx water at a 

constant rate”.  This assumption simplifies the solution implemented in the simulator.19 

The precise extension and strength is not known because no pressure data have been 

collected from the reservoir. 
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CHAPTER VI 

HISTORY MATCHING 

In this chapter the technique to reproduce historical fluid production rates and field 

pressure behavior is presented, along with validating and tuning the geological model to 

predict the future performance of the reservoir in different scenarios. 

Initially, Black oil simulator IMEXTM was used as a first approximation to evaluate the 

accuracy of the simulation models. Black oil simulator is simplest in terms of reservoir 

fluid description; this is the reason why it runs faster than compositional simulation. 

As described in the geological evaluation, Teapot Dome formation is a highly fractured 

formation.  Effects of fractures in reservoir fluids production will be evaluated.  Single 

porosity simulation model results will be compared with those from dual porosity model.   

Dual porosity models with constant and variable fracture permeability will be compared.  

Variable fracture permeability will be generated fracture aperture using the cubic law.  

Has been found that fracture aperture measured with X-Ray CT scanner follows 

lognormal distribution. 

Historical oil production and water rates of each well were used with the simulation 

results to compare the effectiveness of those models.  Gas production was not considered 

due to the dead oil nature of the reservoir fluid.  The quality of the models was judged 

from how well the simulated water and oil production rates fit with historical data.  

Analytical aquifer was used to reproduce the slight pressure drop present in the field.  

Size and strength of the aquifer were defined by trial and error process.   
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The matching of historical performance was performed to test the validity of the 

simulation model and to prepare the model for the prediction of the future reservoir 

performance. 

Summary of the simulation models used in the history match and its main characteristics 

are described in Table 6.1. 

 

Table 6.1. Reservoir simulation cases. 

Case Porosity Model Fracture K (mD) Cummulative Water 
(MM STB) % Difference

CASE-1 Single N.A. 3 98%

CASE-2 Single N.A. 9 94%

CASE-3 Dual 1,000 16 89%

CASE-4 Dual 10,000 83 45%

CASE-5 Dual 100,000 84 44%

CASE-6 Dual 10000-20000 116 23%

CASE-7 Dual 10000-60000 135 10%

CASE-8

CASE-9

Dual Porosity Model, Compositional Fluid Model

Dual Porosity Model, Pseudo-miscible Model
 

6.1 Aquifer Dimensioning 

A trial and error approach was used to establish the proper aquifer size and strength.  

Using an analytical Carter-Tracy aquifer connected at the bottom of the simulation grid, 

with 1500 ft thickness, 8% porosity, 1000 mD permeability of and 30000 ft radius size 

the assumed pressure drop could be reproduced. The model could approximately 

reproduce reservoir pressure as well as water production rates, (Figure 6.1). 
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6.2 Single Porosity Model 

Single porosity model is commonly used in the reservoir simulation of detritus 

formations where intergranular porosity is considered the main storage and fluid flow 

media.  In this case permeability is function of pore throat size, pore space tortuosity, 

shale content and mineralization through the rock pores.   

In the CASE-1, relative permeabilities and capillary pressure measured in the cores were 

used.  As expected, this model is limited to reproduce the high water production volumes 

observed in the field.  Although the model can reproduce specified oil rates, water 

breakthrough times are too long and water rates are less than the observed values.  

In an attempt to increase the field water production, capillary pressure, OWC depth and 

vertical permeability were changed.  However the field water production can not match 

the observed data. 

In the simulation CASE-2 a straight line for water relative permeability from 0 (Sw = 

Swc) to 0.5 (Sw = 1-Sor) was used to increase water mobility.  Even though, this change 

increase water rate but it is still not enough to reach historical water production rates, 

(Figure 6.1). 
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Figure 6.1 - Water production in single porosity models. 

 

A reservoir model that has high permeability channels is required.  Fractures will 

improve water flow thorough the reservoir, then field water production can be 

reproduced. 

6.3 Dual Porosity Model  

Dual porosity model, consider that fluids exist in two interconnected systems; the rock 

matrix, which usually provides the bulk of the reservoir volume and fractures which 

provide the main flow path. Traditional approach uses a constant fracture permeability 

value.  This study uses variable fracture permeability calculated from fracture aperture 

distribution measured in fracture core samples. 



    

    

61  

6.3.1 Constant Fracture Permeability 

In order to investigate the effect of fractures in reservoir performances, a constant 

fracture permeability of 1000 mD was used as an initial approach (CASE-3).  This 

model was compared to single porosity model.  Figure 6.2 shows the potential of using 

the dual porosity model to reproduce field production.  Introduced fractures in the 

reservoir model improve simulated water rates. The fracture permeability is one of main 

issues in using dual porosity model.  Usually permeability values obtained from pressure 

build-up test analysis are used.  Permeabilities are tuned to match production rates and 

bottom-hole pressures in the tested well.  Unfortunately in Teapot Dome, field pressure 

information in the Tensleep Formation is not available and a comparison with wells data 

is not possible. 
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Figure 6.2 - Water production, dual and single porosity models. 
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Three cases with different fracture permeability values were run to investigate the 

magnitude of fracture permeability values that could reproduce observed water 

production.  The cases are defined as CASE-3 with a permeability of 1.000 mD, CASE-4 

with 10.000 mD and CASE-5 with 100.000 mD. 

The CASE-4 results show a significant improvement compared to CASE-3, (Figure 6.3).  

The CASE-4 model could give a closer water production to observed data.   

In the mean time, CASE-5 that has higher fracture permeability produces extremely high 

water rate at initial period.  After 20 years of field production cumulative water produced 

is one third the historic value,  At this time the average reservoir pressure have dropped 

more than 1500 psi and the model is not able to produce the oil rate constrained. 
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Figure 6.3 - Water production of dual porosity models with constant Kf. 
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Even though the CASE-4 shows a promising result but the use of constant fracture 

permeability is difficult to accept.  As all we know fracture surfaces are rough due to the 

natural rock braking process and for the presence of certain minerals formed by 

mineralization or cementation, therefore the permeability fracture is not constant, 

(Figure 6.4). 

 

 

Figure 6.4 – Natural fracture face. 

6.2.2 Variable Fracture Permeability 

In this study we utilized a 4th generation X-Ray CT computerized tomography (CT) 

scanner to measure fracture aperture from Tensleep Formation core sample.  The X-Ray 

CT scanner is one of the non-intrusive techniques widely used to determine rock 

properties and visualize fluid flow through porous media.  Several CT applications9, 10, 11, 

12, 13, 14 include study of heterogeneous rocks, fractures, vuggy carbonates and 

determination of porosity and bulk density.  The CT images have been used to analyze 
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oil bypassing, CO2 injection reduction using surfactants and water alternate gas process, 

to name a few. 

A core sample of 2.5 in. with a natural mineralized fracture from Tensleep Formation 

was used to measure fracture aperture distribution (Figure 6.5).   

The results of CT scan images are shown in Figure 6.6.  CT images clearly show that 

fracture penetrates the core sample.  This fracture aperture was measured with our 

previous techniques.19 
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Figure 6.5 - Tensleep fractured core sample. 



    

    

65  

 

Figure 6.6 – CT X-Ray images from Tensleep core sample. 

The X-Ray CT scan measure CT Number, this is function of the material density.  As 

density do not represent fracture aperture, a calibration process to calculate aperture 

from CT Number is then needed.  A rock specimen from unfractured part of a Tensleep 

core is cut using a diamond saw along the longitudinal direction.  Cut faces were grinded 

using a grinding machine to reduce surface roughness as much as possible.  Feeler 

gauges of 51 µm, 76 �µm, 203 �µm, 279 � µm, 330 �µm were inserted between the halves to 

obtain small fracture known apertures. 

Multiple CT scans were taken in the middle of the core between the two feeler gauges.  

The more dense area is shown with an orange color and less dense area is shown green, 

blue and black in decreasing order of density. 

Although the matrix and the fracture can be clearly distinguished with CT number, it is 

impossible to determine the aperture size with CT number only.  However, this CT 

numbers correspond to a known fracture size in µm, (Figure 6.7). 
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Figure 6.7 – Comparison of CT number plots for different fracture sizes. 

We found that if the feeler gauge size increases the CT numbers of fracture decrease and 

thus the dip of CT numbers is deepened and widen.   

Now fracture aperture can be correlated with the integrated CT signal for those values 

identified under the minimum CT Number for matrix. 

After calculating areas for different feeler gauges, plot of integrated CT signal versus 

aperture size shows a linear relationship as it can be seen in Figure 6.8. 
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Figure 6.8 – Integrated CT signal vs. fracture aperture. 

Once fracture aperture was measure a long the core, these values were found lognormal 

distributed.  It is distributed with mean value of 22 �m and standard deviation of 500. 

This fracture aperture data can be converted to fracture permeability by the following 

equation32 

 [ ]mdw.k f
2910458 ×=   

where, w is in microns. 

 

This distribution will be converted into fracture permeability via cubic law equation.  

The calculated fracture permeability then could be used as input data in dual porosity 

simulation model. 

However there is no methodology to upscale fracture permeability values calculated in a 

core sample (micro scale) to reservoir simulations models (macro scale).  Therefore, we 



    

    

68  

randomly generated several fracture permeability models using a lognormal distribution.  

Different minimum and maximum values between 1000 and 100000 mD were used to 

avoid unrealistic permeability values that may cause reservoir simulation calculations 

instability. 

After several simulation runs using different fracture permeability distributions we found 

that the model with fracture permeability values between 20000 mD to 40000 mD shows 

a better match to observed data (Figure 6.9). 

As a result, an additional improvement in the water production rates was obtained as 

show in CASE-6 model (Figure 6.10). 
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Figure 6.9 – Variable fracture permeability model. 
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Figure 6.10 - Water production, dual porosity models with constant and variable 

Kf. 

 

Once the simulation CASE-6 was obtained, additional modifications in fracture 

permeability around the wells were necessary to match field production rates (Figure 

6.11).  Although the cumulative water production of the field could not be exactly 

matched, we considered that the model represents the current reservoir water saturation 

conditions because the good match achieved in water production rates for the last 5 

years.   

All the wells were completed in the layer 4, the main producing interval in Tensleep 

Formation.  In order to match fluids production, in some wells were necessary to 

complete either upper or lower layers.  

Most of the wells are currently producing at a water cut of 99%, (Figure 6.12).  Tensleep 

Formation is currently at residual oil saturation conditions, if the by-passed oil is not 

considered. 
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DUAL POROSITY MODEL
Variable Fracture Permeability
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Figure 6.11 - Water production history match. 
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Figure 6.12 - Water cut history match. 
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In most of the wells, a good match of oil and water rates was obtained.  Figures 6.13 to 

6.15 show examples of history match in some wells.   

Based on these results, we considered that the simulation model has been properly 

calibrated and furthermore it can be used to run prediction cases. 
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Figure 6.13 - History match in Well W10439. 

Lack of information related with location of perforated intervals in previous Tensleep 

zones division and the simplified homogeneous geological model difficult to match the 

observed data. 
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Figure 6.14 - History match in Well W10610. 
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Figure 6.15 - History match in Well W11207. 
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In the simulation model, Tensleep Formation initially contained 5.8 MMSTBO.  At the 

end of the history match period, 1.52 MMSTB have been produced or 26% of the OOIP. 

The remaining oil in place is 4.28 MMSTBO.  Despite the high water cut in all the wells, 

the average remaining oil saturation at the end of the history match was 40%. 

Water breakthrough in the wells through the fracture system, his causes a non-uniform 

advance of the water front and therefore poor sweep efficiency.  High-permeability 

fractures ease water breakthrough earlier than the low-permeability fractures, leaving 

some untapped oil reserves behind.  

6.3 History Matching Using Compositional and Pseudo-Miscible Simulation 

A full field simulation model was generated to obtain current saturation conditions using 

the geological grid of CASE-7 and the compositional fluid model described in Chapter 

V.  Unfortunately, in this field compositional simulation case (CASE-8), very small time 

steps are necessary and the numerical solution procedure asked for non practical 

computer memory to reach a solution.  High material balance errors, around 20% in the 

gas were observed.  Several attempts to correct the compositional model increasing 

available computer memory for the simulation were unsuccessfully tested. 

A CASE-9 was run using the pseudo-compositional fluid model.  As in the CASE-8, 

pseudo-miscible model showed calculation difficulties at field scale.  Reservoir fluid 

model appear to be confident and reliable, however no improvement in the simulation 

time and stability was possible. 
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CHAPTER VII 

ENHANCED OIL RECOVERY AND CO2 STORAGE EVALUATION 

In this chapter, the enhanced oil recovery and CO2 storage process evaluation is 

discussed.  Several problems were obtained running the dual porosity field simulation 

model either with compositional or pseudo-miscible fluid models. 

Enhanced oil recovery evaluation was perform using the quarter pattern model described 

Chapter V.  This model was converted to dual porosity model and CO2 injection rate 

sensitivity was evaluated.   

CO2 storage process was calculated at the breakthrough time and scaled to field size. 

7.1 Quarter Pattern Compositional Model 

The quarter pattern model used in the comparison of compositional vs. pseudo-miscible 

simulators was convert to dual porosity and used in this evaluation, (Figure 7.1).  

Fracture permeability of 10000 mD was used.  The model was initialized with matrix So 

= 40% and fracture So = 99% to represent the current saturation conditions in the 

reservoir.  The possible by-passed oil is not considered in this evaluation; only additional 

recovery due to residual oil saturation reduction is contemplated. 

Compositional fluid models were used to represent the miscible process of enhanced oil 

recovery in Tensleep formation.   

Synthetic model has a hydrocarbon pore volume of 208 MSTB. 
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To investigate the effect of CO2 injection rate on the enhanced oil recovery process, five 

sensitivities cases were run.  Injection rates at reservoir conditions of 100, 200, 300, 400 

and MSCFD of CO2 were used.   

Formation fracture pressure was assumed to be the initial reservoir pressure, then 

maximum injection pressure of 2300 psi at the well head was specified in the injectors.  

Producer is constrained by bottom-hole pressure of 2000 psi. 
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Figure 7.1 – Quarter pattern compositional model. 

Injection gas rate sensitivity using compositional fluid model shows that at CO2 volume 

injected of 0.6 PV, oil recovery decrease as injection rate increases, (Figure 7.2).  Good 

oil recovery is observed in all injection cases.   
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OIL RECOVERY FROM COMPOSITIONAL MODEL

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

CO2 Injected (PV)

O
il 

R
ec

ov
er

y 
(f

ra
c)

100 Mscfd 200 Mscfd 300 Mscfd 400 Mscfd 500 Mscfd

 

Figure 7.2 – Oil recovery from compositional model. 

Comparison of final oil recovery as function of gas pore volume injected shows that a 

maximum recovery of 32% of the residual oil saturation can be obtained when gas is 

injected at 200 MSCFD, (Figure 7.3). 

Acceleration in CO2 gas breakthrough is observed when injection rate is increases.  Dual 

porosity simulation models involve fractures; these fractures represent high permeability 

channels.  These channels accelerate breakthrough of fluid with favorable mobility like 

CO2. 

These results can be used evaluate enhanced oil recovery at reservoir scale.  Field 

simulation shows 33 times the quarter pattern hydrocarbon pore volume.  Field model 

have an OOIP of 5.8 MMSTB.  With a residual oil saturation of 40%, 2.32 MMSTB can 

be expected to remain in the reservoir. 
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Using the 32% of oil recovery, from the field scale approximately 0.7 MMSTB can be 

produced.  
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Figure 7.3 – Oil recovery as a function of injection rates. 

CO2 storage estimation for Tensleep Formation can be obtained in the same way form 

the quarter pattern model.  

CO2 breakthrough occurs at 18 months of continuous injection at 200 MSCFD, then at 

this time 109 MM SCF CO2 were injected.   

Theoretically extrapolating this value to reservoir scale we obtaining that 3597 MM 

SCFD of CO2 can be storage in the reservoir.  
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7.2  Field Compositional Model 

The dual porosity black oil simulation model used in the history match process was 

converted to compositional model.  The no-lumped fluid model with 13 components was 

used in the evaluation. 

The models start running without reporting any error in the simulation data file, this 

present calculation problems at the first day and the run can not continue.   

Several attempts were made to run the compositional model changing different reservoir 

properties and conditions; however no stable runs could be obtained.  
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CHAPTER VIII 

CONCLUSIONS 

From the evaluation performed to the field data from Tensleep Formation, the next 

conclusions can be derived: 

1. Compositional simulation should be used to evaluate CO2 injection process. 

2. Pseudo-miscible model is not able to represent the miscible process between CO2 

and reservoir fluid in Tensleep Formation.  

3. Variable fracture permeability lognormal distributed depicts better the water 

advance thorough the highly fractured Tensleep Formation. 

4. Additional PVT experiments like constant composition expansion and differential 

liberation are necessary to improve the hydrocarbon model. 

5. A maximum of 32% of the residual oil volume can be recovered from a quarter 

pattern reservoir model when CO2 is injected at 200 MSCFD. 

6. 3597 MM SCFD of CO2 can be storage in Tensleep Formation using the quarter 

pattern analogy. 

 

8.1  Recommendations 

7. Velocity information should be acquired in Teapot Dome in order to improve the 

geological model. 

8. Sealing capacity of faults should be evaluated to improve the CO2 storage capacity 

in Tensleep Formation. 
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9. For future field compositional simulation evaluation, lumped and no-lumped fluid 

samples should be tested. 

10. Techniques to upscale fracture permeability values from cores to dual porosity 

simulation models should be evaluated. 

11. Use of field simulation model in CO2 storage evaluation in Tensleep Formation is 

necessary to know field response under different injection/production scenarios. 
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NOMENCLATURE 

 
 
 
Z = gas deviation factor 

φ = porosity 

K = permeability, mD. 

µ = viscosity, cp 

ρ = fluid density, lbm/ft3 

σ = interfacial tension  

θ = contact angle. 

FVF= formation volume factor 

GOR=Gas-oil ratio 

 

Subscripts 

 

g = gas 

w = water 

o = oil 

f = fracture 

m = matrix 
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